1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <assert.h>  // For assert
6#include <limits.h>  // For LONG_MIN, LONG_MAX.
7
8#if V8_TARGET_ARCH_PPC
9
10#include "src/base/bits.h"
11#include "src/base/division-by-constant.h"
12#include "src/bootstrapper.h"
13#include "src/codegen.h"
14#include "src/debug/debug.h"
15#include "src/register-configuration.h"
16#include "src/runtime/runtime.h"
17
18#include "src/ppc/macro-assembler-ppc.h"
19
20namespace v8 {
21namespace internal {
22
23MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size,
24                               CodeObjectRequired create_code_object)
25    : Assembler(arg_isolate, buffer, size),
26      generating_stub_(false),
27      has_frame_(false) {
28  if (create_code_object == CodeObjectRequired::kYes) {
29    code_object_ =
30        Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
31  }
32}
33
34
35void MacroAssembler::Jump(Register target) {
36  mtctr(target);
37  bctr();
38}
39
40
41void MacroAssembler::JumpToJSEntry(Register target) {
42  Move(ip, target);
43  Jump(ip);
44}
45
46
47void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
48                          Condition cond, CRegister cr) {
49  Label skip;
50
51  if (cond != al) b(NegateCondition(cond), &skip, cr);
52
53  DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY);
54
55  mov(ip, Operand(target, rmode));
56  mtctr(ip);
57  bctr();
58
59  bind(&skip);
60}
61
62
63void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
64                          CRegister cr) {
65  DCHECK(!RelocInfo::IsCodeTarget(rmode));
66  Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr);
67}
68
69
70void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
71                          Condition cond) {
72  DCHECK(RelocInfo::IsCodeTarget(rmode));
73  // 'code' is always generated ppc code, never THUMB code
74  AllowDeferredHandleDereference embedding_raw_address;
75  Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
76}
77
78
79int MacroAssembler::CallSize(Register target) { return 2 * kInstrSize; }
80
81
82void MacroAssembler::Call(Register target) {
83  BlockTrampolinePoolScope block_trampoline_pool(this);
84  Label start;
85  bind(&start);
86
87  // branch via link register and set LK bit for return point
88  mtctr(target);
89  bctrl();
90
91  DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start));
92}
93
94
95void MacroAssembler::CallJSEntry(Register target) {
96  DCHECK(target.is(ip));
97  Call(target);
98}
99
100
101int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode,
102                             Condition cond) {
103  Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode);
104  return (2 + instructions_required_for_mov(ip, mov_operand)) * kInstrSize;
105}
106
107
108int MacroAssembler::CallSizeNotPredictableCodeSize(Address target,
109                                                   RelocInfo::Mode rmode,
110                                                   Condition cond) {
111  return (2 + kMovInstructionsNoConstantPool) * kInstrSize;
112}
113
114
115void MacroAssembler::Call(Address target, RelocInfo::Mode rmode,
116                          Condition cond) {
117  BlockTrampolinePoolScope block_trampoline_pool(this);
118  DCHECK(cond == al);
119
120#ifdef DEBUG
121  // Check the expected size before generating code to ensure we assume the same
122  // constant pool availability (e.g., whether constant pool is full or not).
123  int expected_size = CallSize(target, rmode, cond);
124  Label start;
125  bind(&start);
126#endif
127  // This can likely be optimized to make use of bc() with 24bit relative
128  //
129  // RecordRelocInfo(x.rmode_, x.imm_);
130  // bc( BA, .... offset, LKset);
131  //
132
133  mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode));
134  mtctr(ip);
135  bctrl();
136
137  DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
138}
139
140
141int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode,
142                             TypeFeedbackId ast_id, Condition cond) {
143  AllowDeferredHandleDereference using_raw_address;
144  return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
145}
146
147
148void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
149                          TypeFeedbackId ast_id, Condition cond) {
150  BlockTrampolinePoolScope block_trampoline_pool(this);
151  DCHECK(RelocInfo::IsCodeTarget(rmode));
152
153#ifdef DEBUG
154  // Check the expected size before generating code to ensure we assume the same
155  // constant pool availability (e.g., whether constant pool is full or not).
156  int expected_size = CallSize(code, rmode, ast_id, cond);
157  Label start;
158  bind(&start);
159#endif
160
161  if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
162    SetRecordedAstId(ast_id);
163    rmode = RelocInfo::CODE_TARGET_WITH_ID;
164  }
165  AllowDeferredHandleDereference using_raw_address;
166  Call(reinterpret_cast<Address>(code.location()), rmode, cond);
167  DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
168}
169
170
171void MacroAssembler::Drop(int count) {
172  if (count > 0) {
173    Add(sp, sp, count * kPointerSize, r0);
174  }
175}
176
177void MacroAssembler::Drop(Register count, Register scratch) {
178  ShiftLeftImm(scratch, count, Operand(kPointerSizeLog2));
179  add(sp, sp, scratch);
180}
181
182void MacroAssembler::Call(Label* target) { b(target, SetLK); }
183
184
185void MacroAssembler::Push(Handle<Object> handle) {
186  mov(r0, Operand(handle));
187  push(r0);
188}
189
190
191void MacroAssembler::Move(Register dst, Handle<Object> value) {
192  mov(dst, Operand(value));
193}
194
195
196void MacroAssembler::Move(Register dst, Register src, Condition cond) {
197  DCHECK(cond == al);
198  if (!dst.is(src)) {
199    mr(dst, src);
200  }
201}
202
203
204void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
205  if (!dst.is(src)) {
206    fmr(dst, src);
207  }
208}
209
210
211void MacroAssembler::MultiPush(RegList regs, Register location) {
212  int16_t num_to_push = NumberOfBitsSet(regs);
213  int16_t stack_offset = num_to_push * kPointerSize;
214
215  subi(location, location, Operand(stack_offset));
216  for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) {
217    if ((regs & (1 << i)) != 0) {
218      stack_offset -= kPointerSize;
219      StoreP(ToRegister(i), MemOperand(location, stack_offset));
220    }
221  }
222}
223
224
225void MacroAssembler::MultiPop(RegList regs, Register location) {
226  int16_t stack_offset = 0;
227
228  for (int16_t i = 0; i < Register::kNumRegisters; i++) {
229    if ((regs & (1 << i)) != 0) {
230      LoadP(ToRegister(i), MemOperand(location, stack_offset));
231      stack_offset += kPointerSize;
232    }
233  }
234  addi(location, location, Operand(stack_offset));
235}
236
237
238void MacroAssembler::MultiPushDoubles(RegList dregs, Register location) {
239  int16_t num_to_push = NumberOfBitsSet(dregs);
240  int16_t stack_offset = num_to_push * kDoubleSize;
241
242  subi(location, location, Operand(stack_offset));
243  for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) {
244    if ((dregs & (1 << i)) != 0) {
245      DoubleRegister dreg = DoubleRegister::from_code(i);
246      stack_offset -= kDoubleSize;
247      stfd(dreg, MemOperand(location, stack_offset));
248    }
249  }
250}
251
252
253void MacroAssembler::MultiPopDoubles(RegList dregs, Register location) {
254  int16_t stack_offset = 0;
255
256  for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) {
257    if ((dregs & (1 << i)) != 0) {
258      DoubleRegister dreg = DoubleRegister::from_code(i);
259      lfd(dreg, MemOperand(location, stack_offset));
260      stack_offset += kDoubleSize;
261    }
262  }
263  addi(location, location, Operand(stack_offset));
264}
265
266
267void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index,
268                              Condition cond) {
269  DCHECK(cond == al);
270  LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0);
271}
272
273
274void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index,
275                               Condition cond) {
276  DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
277  DCHECK(cond == al);
278  StoreP(source, MemOperand(kRootRegister, index << kPointerSizeLog2), r0);
279}
280
281
282void MacroAssembler::InNewSpace(Register object, Register scratch,
283                                Condition cond, Label* branch) {
284  DCHECK(cond == eq || cond == ne);
285  CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cond, branch);
286}
287
288
289void MacroAssembler::RecordWriteField(
290    Register object, int offset, Register value, Register dst,
291    LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
292    RememberedSetAction remembered_set_action, SmiCheck smi_check,
293    PointersToHereCheck pointers_to_here_check_for_value) {
294  // First, check if a write barrier is even needed. The tests below
295  // catch stores of Smis.
296  Label done;
297
298  // Skip barrier if writing a smi.
299  if (smi_check == INLINE_SMI_CHECK) {
300    JumpIfSmi(value, &done);
301  }
302
303  // Although the object register is tagged, the offset is relative to the start
304  // of the object, so so offset must be a multiple of kPointerSize.
305  DCHECK(IsAligned(offset, kPointerSize));
306
307  Add(dst, object, offset - kHeapObjectTag, r0);
308  if (emit_debug_code()) {
309    Label ok;
310    andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
311    beq(&ok, cr0);
312    stop("Unaligned cell in write barrier");
313    bind(&ok);
314  }
315
316  RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action,
317              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
318
319  bind(&done);
320
321  // Clobber clobbered input registers when running with the debug-code flag
322  // turned on to provoke errors.
323  if (emit_debug_code()) {
324    mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4)));
325    mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8)));
326  }
327}
328
329
330// Will clobber 4 registers: object, map, dst, ip.  The
331// register 'object' contains a heap object pointer.
332void MacroAssembler::RecordWriteForMap(Register object, Register map,
333                                       Register dst,
334                                       LinkRegisterStatus lr_status,
335                                       SaveFPRegsMode fp_mode) {
336  if (emit_debug_code()) {
337    LoadP(dst, FieldMemOperand(map, HeapObject::kMapOffset));
338    Cmpi(dst, Operand(isolate()->factory()->meta_map()), r0);
339    Check(eq, kWrongAddressOrValuePassedToRecordWrite);
340  }
341
342  if (!FLAG_incremental_marking) {
343    return;
344  }
345
346  if (emit_debug_code()) {
347    LoadP(ip, FieldMemOperand(object, HeapObject::kMapOffset));
348    cmp(ip, map);
349    Check(eq, kWrongAddressOrValuePassedToRecordWrite);
350  }
351
352  Label done;
353
354  // A single check of the map's pages interesting flag suffices, since it is
355  // only set during incremental collection, and then it's also guaranteed that
356  // the from object's page's interesting flag is also set.  This optimization
357  // relies on the fact that maps can never be in new space.
358  CheckPageFlag(map,
359                map,  // Used as scratch.
360                MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
361
362  addi(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
363  if (emit_debug_code()) {
364    Label ok;
365    andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
366    beq(&ok, cr0);
367    stop("Unaligned cell in write barrier");
368    bind(&ok);
369  }
370
371  // Record the actual write.
372  if (lr_status == kLRHasNotBeenSaved) {
373    mflr(r0);
374    push(r0);
375  }
376  RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
377                       fp_mode);
378  CallStub(&stub);
379  if (lr_status == kLRHasNotBeenSaved) {
380    pop(r0);
381    mtlr(r0);
382  }
383
384  bind(&done);
385
386  // Count number of write barriers in generated code.
387  isolate()->counters()->write_barriers_static()->Increment();
388  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst);
389
390  // Clobber clobbered registers when running with the debug-code flag
391  // turned on to provoke errors.
392  if (emit_debug_code()) {
393    mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 12)));
394    mov(map, Operand(bit_cast<intptr_t>(kZapValue + 16)));
395  }
396}
397
398
399// Will clobber 4 registers: object, address, scratch, ip.  The
400// register 'object' contains a heap object pointer.  The heap object
401// tag is shifted away.
402void MacroAssembler::RecordWrite(
403    Register object, Register address, Register value,
404    LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode,
405    RememberedSetAction remembered_set_action, SmiCheck smi_check,
406    PointersToHereCheck pointers_to_here_check_for_value) {
407  DCHECK(!object.is(value));
408  if (emit_debug_code()) {
409    LoadP(r0, MemOperand(address));
410    cmp(r0, value);
411    Check(eq, kWrongAddressOrValuePassedToRecordWrite);
412  }
413
414  if (remembered_set_action == OMIT_REMEMBERED_SET &&
415      !FLAG_incremental_marking) {
416    return;
417  }
418
419  // First, check if a write barrier is even needed. The tests below
420  // catch stores of smis and stores into the young generation.
421  Label done;
422
423  if (smi_check == INLINE_SMI_CHECK) {
424    JumpIfSmi(value, &done);
425  }
426
427  if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
428    CheckPageFlag(value,
429                  value,  // Used as scratch.
430                  MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
431  }
432  CheckPageFlag(object,
433                value,  // Used as scratch.
434                MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
435
436  // Record the actual write.
437  if (lr_status == kLRHasNotBeenSaved) {
438    mflr(r0);
439    push(r0);
440  }
441  RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
442                       fp_mode);
443  CallStub(&stub);
444  if (lr_status == kLRHasNotBeenSaved) {
445    pop(r0);
446    mtlr(r0);
447  }
448
449  bind(&done);
450
451  // Count number of write barriers in generated code.
452  isolate()->counters()->write_barriers_static()->Increment();
453  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip,
454                   value);
455
456  // Clobber clobbered registers when running with the debug-code flag
457  // turned on to provoke errors.
458  if (emit_debug_code()) {
459    mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12)));
460    mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16)));
461  }
462}
463
464void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
465                                               Register code_entry,
466                                               Register scratch) {
467  const int offset = JSFunction::kCodeEntryOffset;
468
469  // Since a code entry (value) is always in old space, we don't need to update
470  // remembered set. If incremental marking is off, there is nothing for us to
471  // do.
472  if (!FLAG_incremental_marking) return;
473
474  DCHECK(js_function.is(r4));
475  DCHECK(code_entry.is(r7));
476  DCHECK(scratch.is(r8));
477  AssertNotSmi(js_function);
478
479  if (emit_debug_code()) {
480    addi(scratch, js_function, Operand(offset - kHeapObjectTag));
481    LoadP(ip, MemOperand(scratch));
482    cmp(ip, code_entry);
483    Check(eq, kWrongAddressOrValuePassedToRecordWrite);
484  }
485
486  // First, check if a write barrier is even needed. The tests below
487  // catch stores of Smis and stores into young gen.
488  Label done;
489
490  CheckPageFlag(code_entry, scratch,
491                MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
492  CheckPageFlag(js_function, scratch,
493                MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
494
495  const Register dst = scratch;
496  addi(dst, js_function, Operand(offset - kHeapObjectTag));
497
498  // Save caller-saved registers.  js_function and code_entry are in the
499  // caller-saved register list.
500  DCHECK(kJSCallerSaved & js_function.bit());
501  DCHECK(kJSCallerSaved & code_entry.bit());
502  mflr(r0);
503  MultiPush(kJSCallerSaved | r0.bit());
504
505  int argument_count = 3;
506  PrepareCallCFunction(argument_count, code_entry);
507
508  mr(r3, js_function);
509  mr(r4, dst);
510  mov(r5, Operand(ExternalReference::isolate_address(isolate())));
511
512  {
513    AllowExternalCallThatCantCauseGC scope(this);
514    CallCFunction(
515        ExternalReference::incremental_marking_record_write_code_entry_function(
516            isolate()),
517        argument_count);
518  }
519
520  // Restore caller-saved registers (including js_function and code_entry).
521  MultiPop(kJSCallerSaved | r0.bit());
522  mtlr(r0);
523
524  bind(&done);
525}
526
527void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
528                                         Register address, Register scratch,
529                                         SaveFPRegsMode fp_mode,
530                                         RememberedSetFinalAction and_then) {
531  Label done;
532  if (emit_debug_code()) {
533    Label ok;
534    JumpIfNotInNewSpace(object, scratch, &ok);
535    stop("Remembered set pointer is in new space");
536    bind(&ok);
537  }
538  // Load store buffer top.
539  ExternalReference store_buffer =
540      ExternalReference::store_buffer_top(isolate());
541  mov(ip, Operand(store_buffer));
542  LoadP(scratch, MemOperand(ip));
543  // Store pointer to buffer and increment buffer top.
544  StoreP(address, MemOperand(scratch));
545  addi(scratch, scratch, Operand(kPointerSize));
546  // Write back new top of buffer.
547  StoreP(scratch, MemOperand(ip));
548  // Call stub on end of buffer.
549  // Check for end of buffer.
550  TestBitMask(scratch, StoreBuffer::kStoreBufferMask, r0);
551
552  if (and_then == kFallThroughAtEnd) {
553    bne(&done, cr0);
554  } else {
555    DCHECK(and_then == kReturnAtEnd);
556    Ret(ne, cr0);
557  }
558  mflr(r0);
559  push(r0);
560  StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
561  CallStub(&store_buffer_overflow);
562  pop(r0);
563  mtlr(r0);
564  bind(&done);
565  if (and_then == kReturnAtEnd) {
566    Ret();
567  }
568}
569
570void MacroAssembler::PushCommonFrame(Register marker_reg) {
571  int fp_delta = 0;
572  mflr(r0);
573  if (FLAG_enable_embedded_constant_pool) {
574    if (marker_reg.is_valid()) {
575      Push(r0, fp, kConstantPoolRegister, marker_reg);
576      fp_delta = 2;
577    } else {
578      Push(r0, fp, kConstantPoolRegister);
579      fp_delta = 1;
580    }
581  } else {
582    if (marker_reg.is_valid()) {
583      Push(r0, fp, marker_reg);
584      fp_delta = 1;
585    } else {
586      Push(r0, fp);
587      fp_delta = 0;
588    }
589  }
590  addi(fp, sp, Operand(fp_delta * kPointerSize));
591}
592
593void MacroAssembler::PopCommonFrame(Register marker_reg) {
594  if (FLAG_enable_embedded_constant_pool) {
595    if (marker_reg.is_valid()) {
596      Pop(r0, fp, kConstantPoolRegister, marker_reg);
597    } else {
598      Pop(r0, fp, kConstantPoolRegister);
599    }
600  } else {
601    if (marker_reg.is_valid()) {
602      Pop(r0, fp, marker_reg);
603    } else {
604      Pop(r0, fp);
605    }
606  }
607  mtlr(r0);
608}
609
610void MacroAssembler::PushStandardFrame(Register function_reg) {
611  int fp_delta = 0;
612  mflr(r0);
613  if (FLAG_enable_embedded_constant_pool) {
614    if (function_reg.is_valid()) {
615      Push(r0, fp, kConstantPoolRegister, cp, function_reg);
616      fp_delta = 3;
617    } else {
618      Push(r0, fp, kConstantPoolRegister, cp);
619      fp_delta = 2;
620    }
621  } else {
622    if (function_reg.is_valid()) {
623      Push(r0, fp, cp, function_reg);
624      fp_delta = 2;
625    } else {
626      Push(r0, fp, cp);
627      fp_delta = 1;
628    }
629  }
630  addi(fp, sp, Operand(fp_delta * kPointerSize));
631}
632
633void MacroAssembler::RestoreFrameStateForTailCall() {
634  if (FLAG_enable_embedded_constant_pool) {
635    LoadP(kConstantPoolRegister,
636          MemOperand(fp, StandardFrameConstants::kConstantPoolOffset));
637    set_constant_pool_available(false);
638  }
639  LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
640  LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
641  mtlr(r0);
642}
643
644const RegList MacroAssembler::kSafepointSavedRegisters = Register::kAllocatable;
645const int MacroAssembler::kNumSafepointSavedRegisters =
646    Register::kNumAllocatable;
647
648// Push and pop all registers that can hold pointers.
649void MacroAssembler::PushSafepointRegisters() {
650  // Safepoints expect a block of kNumSafepointRegisters values on the
651  // stack, so adjust the stack for unsaved registers.
652  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
653  DCHECK(num_unsaved >= 0);
654  if (num_unsaved > 0) {
655    subi(sp, sp, Operand(num_unsaved * kPointerSize));
656  }
657  MultiPush(kSafepointSavedRegisters);
658}
659
660
661void MacroAssembler::PopSafepointRegisters() {
662  const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
663  MultiPop(kSafepointSavedRegisters);
664  if (num_unsaved > 0) {
665    addi(sp, sp, Operand(num_unsaved * kPointerSize));
666  }
667}
668
669
670void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
671  StoreP(src, SafepointRegisterSlot(dst));
672}
673
674
675void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
676  LoadP(dst, SafepointRegisterSlot(src));
677}
678
679
680int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
681  // The registers are pushed starting with the highest encoding,
682  // which means that lowest encodings are closest to the stack pointer.
683  RegList regs = kSafepointSavedRegisters;
684  int index = 0;
685
686  DCHECK(reg_code >= 0 && reg_code < kNumRegisters);
687
688  for (int16_t i = 0; i < reg_code; i++) {
689    if ((regs & (1 << i)) != 0) {
690      index++;
691    }
692  }
693
694  return index;
695}
696
697
698MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
699  return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
700}
701
702
703MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
704  // General purpose registers are pushed last on the stack.
705  const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
706  int doubles_size = config->num_allocatable_double_registers() * kDoubleSize;
707  int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
708  return MemOperand(sp, doubles_size + register_offset);
709}
710
711
712void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst,
713                                     const DoubleRegister src) {
714  // Turn potential sNaN into qNaN.
715  fsub(dst, src, kDoubleRegZero);
716}
717
718void MacroAssembler::ConvertIntToDouble(Register src, DoubleRegister dst) {
719  MovIntToDouble(dst, src, r0);
720  fcfid(dst, dst);
721}
722
723void MacroAssembler::ConvertUnsignedIntToDouble(Register src,
724                                                DoubleRegister dst) {
725  MovUnsignedIntToDouble(dst, src, r0);
726  fcfid(dst, dst);
727}
728
729void MacroAssembler::ConvertIntToFloat(Register src, DoubleRegister dst) {
730  MovIntToDouble(dst, src, r0);
731  fcfids(dst, dst);
732}
733
734void MacroAssembler::ConvertUnsignedIntToFloat(Register src,
735                                               DoubleRegister dst) {
736  MovUnsignedIntToDouble(dst, src, r0);
737  fcfids(dst, dst);
738}
739
740#if V8_TARGET_ARCH_PPC64
741void MacroAssembler::ConvertInt64ToDouble(Register src,
742                                          DoubleRegister double_dst) {
743  MovInt64ToDouble(double_dst, src);
744  fcfid(double_dst, double_dst);
745}
746
747
748void MacroAssembler::ConvertUnsignedInt64ToFloat(Register src,
749                                                 DoubleRegister double_dst) {
750  MovInt64ToDouble(double_dst, src);
751  fcfidus(double_dst, double_dst);
752}
753
754
755void MacroAssembler::ConvertUnsignedInt64ToDouble(Register src,
756                                                  DoubleRegister double_dst) {
757  MovInt64ToDouble(double_dst, src);
758  fcfidu(double_dst, double_dst);
759}
760
761
762void MacroAssembler::ConvertInt64ToFloat(Register src,
763                                         DoubleRegister double_dst) {
764  MovInt64ToDouble(double_dst, src);
765  fcfids(double_dst, double_dst);
766}
767#endif
768
769
770void MacroAssembler::ConvertDoubleToInt64(const DoubleRegister double_input,
771#if !V8_TARGET_ARCH_PPC64
772                                          const Register dst_hi,
773#endif
774                                          const Register dst,
775                                          const DoubleRegister double_dst,
776                                          FPRoundingMode rounding_mode) {
777  if (rounding_mode == kRoundToZero) {
778    fctidz(double_dst, double_input);
779  } else {
780    SetRoundingMode(rounding_mode);
781    fctid(double_dst, double_input);
782    ResetRoundingMode();
783  }
784
785  MovDoubleToInt64(
786#if !V8_TARGET_ARCH_PPC64
787      dst_hi,
788#endif
789      dst, double_dst);
790}
791
792#if V8_TARGET_ARCH_PPC64
793void MacroAssembler::ConvertDoubleToUnsignedInt64(
794    const DoubleRegister double_input, const Register dst,
795    const DoubleRegister double_dst, FPRoundingMode rounding_mode) {
796  if (rounding_mode == kRoundToZero) {
797    fctiduz(double_dst, double_input);
798  } else {
799    SetRoundingMode(rounding_mode);
800    fctidu(double_dst, double_input);
801    ResetRoundingMode();
802  }
803
804  MovDoubleToInt64(dst, double_dst);
805}
806#endif
807
808#if !V8_TARGET_ARCH_PPC64
809void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high,
810                                   Register src_low, Register src_high,
811                                   Register scratch, Register shift) {
812  DCHECK(!AreAliased(dst_low, src_high, shift));
813  DCHECK(!AreAliased(dst_high, src_low, shift));
814  Label less_than_32;
815  Label done;
816  cmpi(shift, Operand(32));
817  blt(&less_than_32);
818  // If shift >= 32
819  andi(scratch, shift, Operand(0x1f));
820  slw(dst_high, src_low, scratch);
821  li(dst_low, Operand::Zero());
822  b(&done);
823  bind(&less_than_32);
824  // If shift < 32
825  subfic(scratch, shift, Operand(32));
826  slw(dst_high, src_high, shift);
827  srw(scratch, src_low, scratch);
828  orx(dst_high, dst_high, scratch);
829  slw(dst_low, src_low, shift);
830  bind(&done);
831}
832
833void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high,
834                                   Register src_low, Register src_high,
835                                   uint32_t shift) {
836  DCHECK(!AreAliased(dst_low, src_high));
837  DCHECK(!AreAliased(dst_high, src_low));
838  if (shift == 32) {
839    Move(dst_high, src_low);
840    li(dst_low, Operand::Zero());
841  } else if (shift > 32) {
842    shift &= 0x1f;
843    slwi(dst_high, src_low, Operand(shift));
844    li(dst_low, Operand::Zero());
845  } else if (shift == 0) {
846    Move(dst_low, src_low);
847    Move(dst_high, src_high);
848  } else {
849    slwi(dst_high, src_high, Operand(shift));
850    rlwimi(dst_high, src_low, shift, 32 - shift, 31);
851    slwi(dst_low, src_low, Operand(shift));
852  }
853}
854
855void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high,
856                                    Register src_low, Register src_high,
857                                    Register scratch, Register shift) {
858  DCHECK(!AreAliased(dst_low, src_high, shift));
859  DCHECK(!AreAliased(dst_high, src_low, shift));
860  Label less_than_32;
861  Label done;
862  cmpi(shift, Operand(32));
863  blt(&less_than_32);
864  // If shift >= 32
865  andi(scratch, shift, Operand(0x1f));
866  srw(dst_low, src_high, scratch);
867  li(dst_high, Operand::Zero());
868  b(&done);
869  bind(&less_than_32);
870  // If shift < 32
871  subfic(scratch, shift, Operand(32));
872  srw(dst_low, src_low, shift);
873  slw(scratch, src_high, scratch);
874  orx(dst_low, dst_low, scratch);
875  srw(dst_high, src_high, shift);
876  bind(&done);
877}
878
879void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high,
880                                    Register src_low, Register src_high,
881                                    uint32_t shift) {
882  DCHECK(!AreAliased(dst_low, src_high));
883  DCHECK(!AreAliased(dst_high, src_low));
884  if (shift == 32) {
885    Move(dst_low, src_high);
886    li(dst_high, Operand::Zero());
887  } else if (shift > 32) {
888    shift &= 0x1f;
889    srwi(dst_low, src_high, Operand(shift));
890    li(dst_high, Operand::Zero());
891  } else if (shift == 0) {
892    Move(dst_low, src_low);
893    Move(dst_high, src_high);
894  } else {
895    srwi(dst_low, src_low, Operand(shift));
896    rlwimi(dst_low, src_high, 32 - shift, 0, shift - 1);
897    srwi(dst_high, src_high, Operand(shift));
898  }
899}
900
901void MacroAssembler::ShiftRightAlgPair(Register dst_low, Register dst_high,
902                                       Register src_low, Register src_high,
903                                       Register scratch, Register shift) {
904  DCHECK(!AreAliased(dst_low, src_high, shift));
905  DCHECK(!AreAliased(dst_high, src_low, shift));
906  Label less_than_32;
907  Label done;
908  cmpi(shift, Operand(32));
909  blt(&less_than_32);
910  // If shift >= 32
911  andi(scratch, shift, Operand(0x1f));
912  sraw(dst_low, src_high, scratch);
913  srawi(dst_high, src_high, 31);
914  b(&done);
915  bind(&less_than_32);
916  // If shift < 32
917  subfic(scratch, shift, Operand(32));
918  srw(dst_low, src_low, shift);
919  slw(scratch, src_high, scratch);
920  orx(dst_low, dst_low, scratch);
921  sraw(dst_high, src_high, shift);
922  bind(&done);
923}
924
925void MacroAssembler::ShiftRightAlgPair(Register dst_low, Register dst_high,
926                                       Register src_low, Register src_high,
927                                       uint32_t shift) {
928  DCHECK(!AreAliased(dst_low, src_high));
929  DCHECK(!AreAliased(dst_high, src_low));
930  if (shift == 32) {
931    Move(dst_low, src_high);
932    srawi(dst_high, src_high, 31);
933  } else if (shift > 32) {
934    shift &= 0x1f;
935    srawi(dst_low, src_high, shift);
936    srawi(dst_high, src_high, 31);
937  } else if (shift == 0) {
938    Move(dst_low, src_low);
939    Move(dst_high, src_high);
940  } else {
941    srwi(dst_low, src_low, Operand(shift));
942    rlwimi(dst_low, src_high, 32 - shift, 0, shift - 1);
943    srawi(dst_high, src_high, shift);
944  }
945}
946#endif
947
948void MacroAssembler::LoadConstantPoolPointerRegisterFromCodeTargetAddress(
949    Register code_target_address) {
950  lwz(kConstantPoolRegister,
951      MemOperand(code_target_address,
952                 Code::kConstantPoolOffset - Code::kHeaderSize));
953  add(kConstantPoolRegister, kConstantPoolRegister, code_target_address);
954}
955
956
957void MacroAssembler::LoadConstantPoolPointerRegister(Register base,
958                                                     int code_start_delta) {
959  add_label_offset(kConstantPoolRegister, base, ConstantPoolPosition(),
960                   code_start_delta);
961}
962
963
964void MacroAssembler::LoadConstantPoolPointerRegister() {
965  mov_label_addr(kConstantPoolRegister, ConstantPoolPosition());
966}
967
968void MacroAssembler::StubPrologue(StackFrame::Type type, Register base,
969                                  int prologue_offset) {
970  {
971    ConstantPoolUnavailableScope constant_pool_unavailable(this);
972    LoadSmiLiteral(r11, Smi::FromInt(type));
973    PushCommonFrame(r11);
974  }
975  if (FLAG_enable_embedded_constant_pool) {
976    if (!base.is(no_reg)) {
977      // base contains prologue address
978      LoadConstantPoolPointerRegister(base, -prologue_offset);
979    } else {
980      LoadConstantPoolPointerRegister();
981    }
982    set_constant_pool_available(true);
983  }
984}
985
986
987void MacroAssembler::Prologue(bool code_pre_aging, Register base,
988                              int prologue_offset) {
989  DCHECK(!base.is(no_reg));
990  {
991    PredictableCodeSizeScope predictible_code_size_scope(
992        this, kNoCodeAgeSequenceLength);
993    Assembler::BlockTrampolinePoolScope block_trampoline_pool(this);
994    // The following instructions must remain together and unmodified
995    // for code aging to work properly.
996    if (code_pre_aging) {
997      // Pre-age the code.
998      // This matches the code found in PatchPlatformCodeAge()
999      Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
1000      intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
1001      // Don't use Call -- we need to preserve ip and lr
1002      nop();  // marker to detect sequence (see IsOld)
1003      mov(r3, Operand(target));
1004      Jump(r3);
1005      for (int i = 0; i < kCodeAgingSequenceNops; i++) {
1006        nop();
1007      }
1008    } else {
1009      // This matches the code found in GetNoCodeAgeSequence()
1010      PushStandardFrame(r4);
1011      for (int i = 0; i < kNoCodeAgeSequenceNops; i++) {
1012        nop();
1013      }
1014    }
1015  }
1016  if (FLAG_enable_embedded_constant_pool) {
1017    // base contains prologue address
1018    LoadConstantPoolPointerRegister(base, -prologue_offset);
1019    set_constant_pool_available(true);
1020  }
1021}
1022
1023
1024void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
1025  LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1026  LoadP(vector, FieldMemOperand(vector, JSFunction::kLiteralsOffset));
1027  LoadP(vector, FieldMemOperand(vector, LiteralsArray::kFeedbackVectorOffset));
1028}
1029
1030
1031void MacroAssembler::EnterFrame(StackFrame::Type type,
1032                                bool load_constant_pool_pointer_reg) {
1033  if (FLAG_enable_embedded_constant_pool && load_constant_pool_pointer_reg) {
1034    // Push type explicitly so we can leverage the constant pool.
1035    // This path cannot rely on ip containing code entry.
1036    PushCommonFrame();
1037    LoadConstantPoolPointerRegister();
1038    LoadSmiLiteral(ip, Smi::FromInt(type));
1039    push(ip);
1040  } else {
1041    LoadSmiLiteral(ip, Smi::FromInt(type));
1042    PushCommonFrame(ip);
1043  }
1044  if (type == StackFrame::INTERNAL) {
1045    mov(r0, Operand(CodeObject()));
1046    push(r0);
1047  }
1048}
1049
1050
1051int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) {
1052  ConstantPoolUnavailableScope constant_pool_unavailable(this);
1053  // r3: preserved
1054  // r4: preserved
1055  // r5: preserved
1056
1057  // Drop the execution stack down to the frame pointer and restore
1058  // the caller's state.
1059  int frame_ends;
1060  LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
1061  LoadP(ip, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1062  if (FLAG_enable_embedded_constant_pool) {
1063    LoadP(kConstantPoolRegister,
1064          MemOperand(fp, StandardFrameConstants::kConstantPoolOffset));
1065  }
1066  mtlr(r0);
1067  frame_ends = pc_offset();
1068  Add(sp, fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment, r0);
1069  mr(fp, ip);
1070  return frame_ends;
1071}
1072
1073void MacroAssembler::EnterBuiltinFrame(Register context, Register target,
1074                                       Register argc) {
1075  int fp_delta = 0;
1076  mflr(r0);
1077  if (FLAG_enable_embedded_constant_pool) {
1078    if (target.is_valid()) {
1079      Push(r0, fp, kConstantPoolRegister, context, target);
1080      fp_delta = 3;
1081    } else {
1082      Push(r0, fp, kConstantPoolRegister, context);
1083      fp_delta = 2;
1084    }
1085  } else {
1086    if (target.is_valid()) {
1087      Push(r0, fp, context, target);
1088      fp_delta = 2;
1089    } else {
1090      Push(r0, fp, context);
1091      fp_delta = 1;
1092    }
1093  }
1094  addi(fp, sp, Operand(fp_delta * kPointerSize));
1095  Push(argc);
1096}
1097
1098void MacroAssembler::LeaveBuiltinFrame(Register context, Register target,
1099                                       Register argc) {
1100  Pop(argc);
1101  if (FLAG_enable_embedded_constant_pool) {
1102    if (target.is_valid()) {
1103      Pop(r0, fp, kConstantPoolRegister, context, target);
1104    } else {
1105      Pop(r0, fp, kConstantPoolRegister, context);
1106    }
1107  } else {
1108    if (target.is_valid()) {
1109      Pop(r0, fp, context, target);
1110    } else {
1111      Pop(r0, fp, context);
1112    }
1113  }
1114  mtlr(r0);
1115}
1116
1117// ExitFrame layout (probably wrongish.. needs updating)
1118//
1119//  SP -> previousSP
1120//        LK reserved
1121//        code
1122//        sp_on_exit (for debug?)
1123// oldSP->prev SP
1124//        LK
1125//        <parameters on stack>
1126
1127// Prior to calling EnterExitFrame, we've got a bunch of parameters
1128// on the stack that we need to wrap a real frame around.. so first
1129// we reserve a slot for LK and push the previous SP which is captured
1130// in the fp register (r31)
1131// Then - we buy a new frame
1132
1133void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
1134                                    StackFrame::Type frame_type) {
1135  DCHECK(frame_type == StackFrame::EXIT ||
1136         frame_type == StackFrame::BUILTIN_EXIT);
1137  // Set up the frame structure on the stack.
1138  DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
1139  DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
1140  DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
1141  DCHECK(stack_space > 0);
1142
1143  // This is an opportunity to build a frame to wrap
1144  // all of the pushes that have happened inside of V8
1145  // since we were called from C code
1146
1147  LoadSmiLiteral(ip, Smi::FromInt(frame_type));
1148  PushCommonFrame(ip);
1149  // Reserve room for saved entry sp and code object.
1150  subi(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp));
1151
1152  if (emit_debug_code()) {
1153    li(r8, Operand::Zero());
1154    StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset));
1155  }
1156  if (FLAG_enable_embedded_constant_pool) {
1157    StoreP(kConstantPoolRegister,
1158           MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
1159  }
1160  mov(r8, Operand(CodeObject()));
1161  StoreP(r8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
1162
1163  // Save the frame pointer and the context in top.
1164  mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1165  StoreP(fp, MemOperand(r8));
1166  mov(r8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
1167  StoreP(cp, MemOperand(r8));
1168
1169  // Optionally save all volatile double registers.
1170  if (save_doubles) {
1171    MultiPushDoubles(kCallerSavedDoubles);
1172    // Note that d0 will be accessible at
1173    //   fp - ExitFrameConstants::kFrameSize -
1174    //   kNumCallerSavedDoubles * kDoubleSize,
1175    // since the sp slot and code slot were pushed after the fp.
1176  }
1177
1178  addi(sp, sp, Operand(-stack_space * kPointerSize));
1179
1180  // Allocate and align the frame preparing for calling the runtime
1181  // function.
1182  const int frame_alignment = ActivationFrameAlignment();
1183  if (frame_alignment > kPointerSize) {
1184    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
1185    ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
1186  }
1187  li(r0, Operand::Zero());
1188  StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
1189
1190  // Set the exit frame sp value to point just before the return address
1191  // location.
1192  addi(r8, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
1193  StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset));
1194}
1195
1196
1197void MacroAssembler::InitializeNewString(Register string, Register length,
1198                                         Heap::RootListIndex map_index,
1199                                         Register scratch1, Register scratch2) {
1200  SmiTag(scratch1, length);
1201  LoadRoot(scratch2, map_index);
1202  StoreP(scratch1, FieldMemOperand(string, String::kLengthOffset), r0);
1203  li(scratch1, Operand(String::kEmptyHashField));
1204  StoreP(scratch2, FieldMemOperand(string, HeapObject::kMapOffset), r0);
1205  StoreP(scratch1, FieldMemOperand(string, String::kHashFieldSlot), r0);
1206}
1207
1208
1209int MacroAssembler::ActivationFrameAlignment() {
1210#if !defined(USE_SIMULATOR)
1211  // Running on the real platform. Use the alignment as mandated by the local
1212  // environment.
1213  // Note: This will break if we ever start generating snapshots on one PPC
1214  // platform for another PPC platform with a different alignment.
1215  return base::OS::ActivationFrameAlignment();
1216#else  // Simulated
1217  // If we are using the simulator then we should always align to the expected
1218  // alignment. As the simulator is used to generate snapshots we do not know
1219  // if the target platform will need alignment, so this is controlled from a
1220  // flag.
1221  return FLAG_sim_stack_alignment;
1222#endif
1223}
1224
1225
1226void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
1227                                    bool restore_context,
1228                                    bool argument_count_is_length) {
1229  ConstantPoolUnavailableScope constant_pool_unavailable(this);
1230  // Optionally restore all double registers.
1231  if (save_doubles) {
1232    // Calculate the stack location of the saved doubles and restore them.
1233    const int kNumRegs = kNumCallerSavedDoubles;
1234    const int offset =
1235        (ExitFrameConstants::kFixedFrameSizeFromFp + kNumRegs * kDoubleSize);
1236    addi(r6, fp, Operand(-offset));
1237    MultiPopDoubles(kCallerSavedDoubles, r6);
1238  }
1239
1240  // Clear top frame.
1241  li(r6, Operand::Zero());
1242  mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1243  StoreP(r6, MemOperand(ip));
1244
1245  // Restore current context from top and clear it in debug mode.
1246  if (restore_context) {
1247    mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
1248    LoadP(cp, MemOperand(ip));
1249  }
1250#ifdef DEBUG
1251  mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
1252  StoreP(r6, MemOperand(ip));
1253#endif
1254
1255  // Tear down the exit frame, pop the arguments, and return.
1256  LeaveFrame(StackFrame::EXIT);
1257
1258  if (argument_count.is_valid()) {
1259    if (!argument_count_is_length) {
1260      ShiftLeftImm(argument_count, argument_count, Operand(kPointerSizeLog2));
1261    }
1262    add(sp, sp, argument_count);
1263  }
1264}
1265
1266
1267void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
1268  Move(dst, d1);
1269}
1270
1271
1272void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
1273  Move(dst, d1);
1274}
1275
1276void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
1277                                        Register caller_args_count_reg,
1278                                        Register scratch0, Register scratch1) {
1279#if DEBUG
1280  if (callee_args_count.is_reg()) {
1281    DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
1282                       scratch1));
1283  } else {
1284    DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
1285  }
1286#endif
1287
1288  // Calculate the end of destination area where we will put the arguments
1289  // after we drop current frame. We add kPointerSize to count the receiver
1290  // argument which is not included into formal parameters count.
1291  Register dst_reg = scratch0;
1292  ShiftLeftImm(dst_reg, caller_args_count_reg, Operand(kPointerSizeLog2));
1293  add(dst_reg, fp, dst_reg);
1294  addi(dst_reg, dst_reg,
1295       Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
1296
1297  Register src_reg = caller_args_count_reg;
1298  // Calculate the end of source area. +kPointerSize is for the receiver.
1299  if (callee_args_count.is_reg()) {
1300    ShiftLeftImm(src_reg, callee_args_count.reg(), Operand(kPointerSizeLog2));
1301    add(src_reg, sp, src_reg);
1302    addi(src_reg, src_reg, Operand(kPointerSize));
1303  } else {
1304    Add(src_reg, sp, (callee_args_count.immediate() + 1) * kPointerSize, r0);
1305  }
1306
1307  if (FLAG_debug_code) {
1308    cmpl(src_reg, dst_reg);
1309    Check(lt, kStackAccessBelowStackPointer);
1310  }
1311
1312  // Restore caller's frame pointer and return address now as they will be
1313  // overwritten by the copying loop.
1314  RestoreFrameStateForTailCall();
1315
1316  // Now copy callee arguments to the caller frame going backwards to avoid
1317  // callee arguments corruption (source and destination areas could overlap).
1318
1319  // Both src_reg and dst_reg are pointing to the word after the one to copy,
1320  // so they must be pre-decremented in the loop.
1321  Register tmp_reg = scratch1;
1322  Label loop;
1323  if (callee_args_count.is_reg()) {
1324    addi(tmp_reg, callee_args_count.reg(), Operand(1));  // +1 for receiver
1325  } else {
1326    mov(tmp_reg, Operand(callee_args_count.immediate() + 1));
1327  }
1328  mtctr(tmp_reg);
1329  bind(&loop);
1330  LoadPU(tmp_reg, MemOperand(src_reg, -kPointerSize));
1331  StorePU(tmp_reg, MemOperand(dst_reg, -kPointerSize));
1332  bdnz(&loop);
1333
1334  // Leave current frame.
1335  mr(sp, dst_reg);
1336}
1337
1338void MacroAssembler::InvokePrologue(const ParameterCount& expected,
1339                                    const ParameterCount& actual, Label* done,
1340                                    bool* definitely_mismatches,
1341                                    InvokeFlag flag,
1342                                    const CallWrapper& call_wrapper) {
1343  bool definitely_matches = false;
1344  *definitely_mismatches = false;
1345  Label regular_invoke;
1346
1347  // Check whether the expected and actual arguments count match. If not,
1348  // setup registers according to contract with ArgumentsAdaptorTrampoline:
1349  //  r3: actual arguments count
1350  //  r4: function (passed through to callee)
1351  //  r5: expected arguments count
1352
1353  // The code below is made a lot easier because the calling code already sets
1354  // up actual and expected registers according to the contract if values are
1355  // passed in registers.
1356
1357  // ARM has some sanity checks as per below, considering add them for PPC
1358  //  DCHECK(actual.is_immediate() || actual.reg().is(r3));
1359  //  DCHECK(expected.is_immediate() || expected.reg().is(r5));
1360
1361  if (expected.is_immediate()) {
1362    DCHECK(actual.is_immediate());
1363    mov(r3, Operand(actual.immediate()));
1364    if (expected.immediate() == actual.immediate()) {
1365      definitely_matches = true;
1366    } else {
1367      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1368      if (expected.immediate() == sentinel) {
1369        // Don't worry about adapting arguments for builtins that
1370        // don't want that done. Skip adaption code by making it look
1371        // like we have a match between expected and actual number of
1372        // arguments.
1373        definitely_matches = true;
1374      } else {
1375        *definitely_mismatches = true;
1376        mov(r5, Operand(expected.immediate()));
1377      }
1378    }
1379  } else {
1380    if (actual.is_immediate()) {
1381      mov(r3, Operand(actual.immediate()));
1382      cmpi(expected.reg(), Operand(actual.immediate()));
1383      beq(&regular_invoke);
1384    } else {
1385      cmp(expected.reg(), actual.reg());
1386      beq(&regular_invoke);
1387    }
1388  }
1389
1390  if (!definitely_matches) {
1391    Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
1392    if (flag == CALL_FUNCTION) {
1393      call_wrapper.BeforeCall(CallSize(adaptor));
1394      Call(adaptor);
1395      call_wrapper.AfterCall();
1396      if (!*definitely_mismatches) {
1397        b(done);
1398      }
1399    } else {
1400      Jump(adaptor, RelocInfo::CODE_TARGET);
1401    }
1402    bind(&regular_invoke);
1403  }
1404}
1405
1406
1407void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
1408                                             const ParameterCount& expected,
1409                                             const ParameterCount& actual) {
1410  Label skip_flooding;
1411  ExternalReference last_step_action =
1412      ExternalReference::debug_last_step_action_address(isolate());
1413  STATIC_ASSERT(StepFrame > StepIn);
1414  mov(r7, Operand(last_step_action));
1415  LoadByte(r7, MemOperand(r7), r0);
1416  extsb(r7, r7);
1417  cmpi(r7, Operand(StepIn));
1418  blt(&skip_flooding);
1419  {
1420    FrameScope frame(this,
1421                     has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
1422    if (expected.is_reg()) {
1423      SmiTag(expected.reg());
1424      Push(expected.reg());
1425    }
1426    if (actual.is_reg()) {
1427      SmiTag(actual.reg());
1428      Push(actual.reg());
1429    }
1430    if (new_target.is_valid()) {
1431      Push(new_target);
1432    }
1433    Push(fun, fun);
1434    CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
1435    Pop(fun);
1436    if (new_target.is_valid()) {
1437      Pop(new_target);
1438    }
1439    if (actual.is_reg()) {
1440      Pop(actual.reg());
1441      SmiUntag(actual.reg());
1442    }
1443    if (expected.is_reg()) {
1444      Pop(expected.reg());
1445      SmiUntag(expected.reg());
1446    }
1447  }
1448  bind(&skip_flooding);
1449}
1450
1451
1452void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
1453                                        const ParameterCount& expected,
1454                                        const ParameterCount& actual,
1455                                        InvokeFlag flag,
1456                                        const CallWrapper& call_wrapper) {
1457  // You can't call a function without a valid frame.
1458  DCHECK(flag == JUMP_FUNCTION || has_frame());
1459  DCHECK(function.is(r4));
1460  DCHECK_IMPLIES(new_target.is_valid(), new_target.is(r6));
1461
1462  if (call_wrapper.NeedsDebugStepCheck()) {
1463    FloodFunctionIfStepping(function, new_target, expected, actual);
1464  }
1465
1466  // Clear the new.target register if not given.
1467  if (!new_target.is_valid()) {
1468    LoadRoot(r6, Heap::kUndefinedValueRootIndex);
1469  }
1470
1471  Label done;
1472  bool definitely_mismatches = false;
1473  InvokePrologue(expected, actual, &done, &definitely_mismatches, flag,
1474                 call_wrapper);
1475  if (!definitely_mismatches) {
1476    // We call indirectly through the code field in the function to
1477    // allow recompilation to take effect without changing any of the
1478    // call sites.
1479    Register code = ip;
1480    LoadP(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
1481    if (flag == CALL_FUNCTION) {
1482      call_wrapper.BeforeCall(CallSize(code));
1483      CallJSEntry(code);
1484      call_wrapper.AfterCall();
1485    } else {
1486      DCHECK(flag == JUMP_FUNCTION);
1487      JumpToJSEntry(code);
1488    }
1489
1490    // Continue here if InvokePrologue does handle the invocation due to
1491    // mismatched parameter counts.
1492    bind(&done);
1493  }
1494}
1495
1496
1497void MacroAssembler::InvokeFunction(Register fun, Register new_target,
1498                                    const ParameterCount& actual,
1499                                    InvokeFlag flag,
1500                                    const CallWrapper& call_wrapper) {
1501  // You can't call a function without a valid frame.
1502  DCHECK(flag == JUMP_FUNCTION || has_frame());
1503
1504  // Contract with called JS functions requires that function is passed in r4.
1505  DCHECK(fun.is(r4));
1506
1507  Register expected_reg = r5;
1508  Register temp_reg = r7;
1509
1510  LoadP(temp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
1511  LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
1512  LoadWordArith(expected_reg,
1513                FieldMemOperand(
1514                    temp_reg, SharedFunctionInfo::kFormalParameterCountOffset));
1515#if !defined(V8_TARGET_ARCH_PPC64)
1516  SmiUntag(expected_reg);
1517#endif
1518
1519  ParameterCount expected(expected_reg);
1520  InvokeFunctionCode(fun, new_target, expected, actual, flag, call_wrapper);
1521}
1522
1523
1524void MacroAssembler::InvokeFunction(Register function,
1525                                    const ParameterCount& expected,
1526                                    const ParameterCount& actual,
1527                                    InvokeFlag flag,
1528                                    const CallWrapper& call_wrapper) {
1529  // You can't call a function without a valid frame.
1530  DCHECK(flag == JUMP_FUNCTION || has_frame());
1531
1532  // Contract with called JS functions requires that function is passed in r4.
1533  DCHECK(function.is(r4));
1534
1535  // Get the function and setup the context.
1536  LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
1537
1538  InvokeFunctionCode(r4, no_reg, expected, actual, flag, call_wrapper);
1539}
1540
1541
1542void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
1543                                    const ParameterCount& expected,
1544                                    const ParameterCount& actual,
1545                                    InvokeFlag flag,
1546                                    const CallWrapper& call_wrapper) {
1547  Move(r4, function);
1548  InvokeFunction(r4, expected, actual, flag, call_wrapper);
1549}
1550
1551
1552void MacroAssembler::IsObjectJSStringType(Register object, Register scratch,
1553                                          Label* fail) {
1554  DCHECK(kNotStringTag != 0);
1555
1556  LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1557  lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1558  andi(r0, scratch, Operand(kIsNotStringMask));
1559  bne(fail, cr0);
1560}
1561
1562
1563void MacroAssembler::IsObjectNameType(Register object, Register scratch,
1564                                      Label* fail) {
1565  LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1566  lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1567  cmpi(scratch, Operand(LAST_NAME_TYPE));
1568  bgt(fail);
1569}
1570
1571
1572void MacroAssembler::DebugBreak() {
1573  li(r3, Operand::Zero());
1574  mov(r4,
1575      Operand(ExternalReference(Runtime::kHandleDebuggerStatement, isolate())));
1576  CEntryStub ces(isolate(), 1);
1577  DCHECK(AllowThisStubCall(&ces));
1578  Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
1579}
1580
1581
1582void MacroAssembler::PushStackHandler() {
1583  // Adjust this code if not the case.
1584  STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
1585  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1586
1587  // Link the current handler as the next handler.
1588  // Preserve r3-r7.
1589  mov(r8, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1590  LoadP(r0, MemOperand(r8));
1591  push(r0);
1592
1593  // Set this new handler as the current one.
1594  StoreP(sp, MemOperand(r8));
1595}
1596
1597
1598void MacroAssembler::PopStackHandler() {
1599  STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
1600  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1601
1602  pop(r4);
1603  mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1604  StoreP(r4, MemOperand(ip));
1605}
1606
1607
1608// Compute the hash code from the untagged key.  This must be kept in sync with
1609// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
1610// code-stub-hydrogen.cc
1611void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
1612  // First of all we assign the hash seed to scratch.
1613  LoadRoot(scratch, Heap::kHashSeedRootIndex);
1614  SmiUntag(scratch);
1615
1616  // Xor original key with a seed.
1617  xor_(t0, t0, scratch);
1618
1619  // Compute the hash code from the untagged key.  This must be kept in sync
1620  // with ComputeIntegerHash in utils.h.
1621  //
1622  // hash = ~hash + (hash << 15);
1623  notx(scratch, t0);
1624  slwi(t0, t0, Operand(15));
1625  add(t0, scratch, t0);
1626  // hash = hash ^ (hash >> 12);
1627  srwi(scratch, t0, Operand(12));
1628  xor_(t0, t0, scratch);
1629  // hash = hash + (hash << 2);
1630  slwi(scratch, t0, Operand(2));
1631  add(t0, t0, scratch);
1632  // hash = hash ^ (hash >> 4);
1633  srwi(scratch, t0, Operand(4));
1634  xor_(t0, t0, scratch);
1635  // hash = hash * 2057;
1636  mr(r0, t0);
1637  slwi(scratch, t0, Operand(3));
1638  add(t0, t0, scratch);
1639  slwi(scratch, r0, Operand(11));
1640  add(t0, t0, scratch);
1641  // hash = hash ^ (hash >> 16);
1642  srwi(scratch, t0, Operand(16));
1643  xor_(t0, t0, scratch);
1644  // hash & 0x3fffffff
1645  ExtractBitRange(t0, t0, 29, 0);
1646}
1647
1648void MacroAssembler::Allocate(int object_size, Register result,
1649                              Register scratch1, Register scratch2,
1650                              Label* gc_required, AllocationFlags flags) {
1651  DCHECK(object_size <= kMaxRegularHeapObjectSize);
1652  DCHECK((flags & ALLOCATION_FOLDED) == 0);
1653  if (!FLAG_inline_new) {
1654    if (emit_debug_code()) {
1655      // Trash the registers to simulate an allocation failure.
1656      li(result, Operand(0x7091));
1657      li(scratch1, Operand(0x7191));
1658      li(scratch2, Operand(0x7291));
1659    }
1660    b(gc_required);
1661    return;
1662  }
1663
1664  DCHECK(!AreAliased(result, scratch1, scratch2, ip));
1665
1666  // Make object size into bytes.
1667  if ((flags & SIZE_IN_WORDS) != 0) {
1668    object_size *= kPointerSize;
1669  }
1670  DCHECK_EQ(0, static_cast<int>(object_size & kObjectAlignmentMask));
1671
1672  // Check relative positions of allocation top and limit addresses.
1673  ExternalReference allocation_top =
1674      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1675  ExternalReference allocation_limit =
1676      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1677
1678  intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
1679  intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
1680  DCHECK((limit - top) == kPointerSize);
1681
1682  // Set up allocation top address register.
1683  Register top_address = scratch1;
1684  // This code stores a temporary value in ip. This is OK, as the code below
1685  // does not need ip for implicit literal generation.
1686  Register alloc_limit = ip;
1687  Register result_end = scratch2;
1688  mov(top_address, Operand(allocation_top));
1689
1690  if ((flags & RESULT_CONTAINS_TOP) == 0) {
1691    // Load allocation top into result and allocation limit into ip.
1692    LoadP(result, MemOperand(top_address));
1693    LoadP(alloc_limit, MemOperand(top_address, kPointerSize));
1694  } else {
1695    if (emit_debug_code()) {
1696      // Assert that result actually contains top on entry.
1697      LoadP(alloc_limit, MemOperand(top_address));
1698      cmp(result, alloc_limit);
1699      Check(eq, kUnexpectedAllocationTop);
1700    }
1701    // Load allocation limit. Result already contains allocation top.
1702    LoadP(alloc_limit, MemOperand(top_address, limit - top));
1703  }
1704
1705  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1706    // Align the next allocation. Storing the filler map without checking top is
1707    // safe in new-space because the limit of the heap is aligned there.
1708#if V8_TARGET_ARCH_PPC64
1709    STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
1710#else
1711    STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1712    andi(result_end, result, Operand(kDoubleAlignmentMask));
1713    Label aligned;
1714    beq(&aligned, cr0);
1715    if ((flags & PRETENURE) != 0) {
1716      cmpl(result, alloc_limit);
1717      bge(gc_required);
1718    }
1719    mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
1720    stw(result_end, MemOperand(result));
1721    addi(result, result, Operand(kDoubleSize / 2));
1722    bind(&aligned);
1723#endif
1724  }
1725
1726  // Calculate new top and bail out if new space is exhausted. Use result
1727  // to calculate the new top.
1728  sub(r0, alloc_limit, result);
1729  if (is_int16(object_size)) {
1730    cmpi(r0, Operand(object_size));
1731    blt(gc_required);
1732    addi(result_end, result, Operand(object_size));
1733  } else {
1734    Cmpi(r0, Operand(object_size), result_end);
1735    blt(gc_required);
1736    add(result_end, result, result_end);
1737  }
1738
1739  if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
1740    // The top pointer is not updated for allocation folding dominators.
1741    StoreP(result_end, MemOperand(top_address));
1742  }
1743
1744  // Tag object.
1745  addi(result, result, Operand(kHeapObjectTag));
1746}
1747
1748
1749void MacroAssembler::Allocate(Register object_size, Register result,
1750                              Register result_end, Register scratch,
1751                              Label* gc_required, AllocationFlags flags) {
1752  DCHECK((flags & ALLOCATION_FOLDED) == 0);
1753  if (!FLAG_inline_new) {
1754    if (emit_debug_code()) {
1755      // Trash the registers to simulate an allocation failure.
1756      li(result, Operand(0x7091));
1757      li(scratch, Operand(0x7191));
1758      li(result_end, Operand(0x7291));
1759    }
1760    b(gc_required);
1761    return;
1762  }
1763
1764  // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag
1765  // is not specified. Other registers must not overlap.
1766  DCHECK(!AreAliased(object_size, result, scratch, ip));
1767  DCHECK(!AreAliased(result_end, result, scratch, ip));
1768  DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end));
1769
1770  // Check relative positions of allocation top and limit addresses.
1771  ExternalReference allocation_top =
1772      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1773  ExternalReference allocation_limit =
1774      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1775  intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
1776  intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
1777  DCHECK((limit - top) == kPointerSize);
1778
1779  // Set up allocation top address and allocation limit registers.
1780  Register top_address = scratch;
1781  // This code stores a temporary value in ip. This is OK, as the code below
1782  // does not need ip for implicit literal generation.
1783  Register alloc_limit = ip;
1784  mov(top_address, Operand(allocation_top));
1785
1786  if ((flags & RESULT_CONTAINS_TOP) == 0) {
1787    // Load allocation top into result and allocation limit into alloc_limit..
1788    LoadP(result, MemOperand(top_address));
1789    LoadP(alloc_limit, MemOperand(top_address, kPointerSize));
1790  } else {
1791    if (emit_debug_code()) {
1792      // Assert that result actually contains top on entry.
1793      LoadP(alloc_limit, MemOperand(top_address));
1794      cmp(result, alloc_limit);
1795      Check(eq, kUnexpectedAllocationTop);
1796    }
1797    // Load allocation limit. Result already contains allocation top.
1798    LoadP(alloc_limit, MemOperand(top_address, limit - top));
1799  }
1800
1801  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1802    // Align the next allocation. Storing the filler map without checking top is
1803    // safe in new-space because the limit of the heap is aligned there.
1804#if V8_TARGET_ARCH_PPC64
1805    STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
1806#else
1807    STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1808    andi(result_end, result, Operand(kDoubleAlignmentMask));
1809    Label aligned;
1810    beq(&aligned, cr0);
1811    if ((flags & PRETENURE) != 0) {
1812      cmpl(result, alloc_limit);
1813      bge(gc_required);
1814    }
1815    mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
1816    stw(result_end, MemOperand(result));
1817    addi(result, result, Operand(kDoubleSize / 2));
1818    bind(&aligned);
1819#endif
1820  }
1821
1822  // Calculate new top and bail out if new space is exhausted. Use result
1823  // to calculate the new top. Object size may be in words so a shift is
1824  // required to get the number of bytes.
1825  sub(r0, alloc_limit, result);
1826  if ((flags & SIZE_IN_WORDS) != 0) {
1827    ShiftLeftImm(result_end, object_size, Operand(kPointerSizeLog2));
1828    cmp(r0, result_end);
1829    blt(gc_required);
1830    add(result_end, result, result_end);
1831  } else {
1832    cmp(r0, object_size);
1833    blt(gc_required);
1834    add(result_end, result, object_size);
1835  }
1836
1837  // Update allocation top. result temporarily holds the new top.
1838  if (emit_debug_code()) {
1839    andi(r0, result_end, Operand(kObjectAlignmentMask));
1840    Check(eq, kUnalignedAllocationInNewSpace, cr0);
1841  }
1842  if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
1843    // The top pointer is not updated for allocation folding dominators.
1844    StoreP(result_end, MemOperand(top_address));
1845  }
1846
1847  // Tag object.
1848  addi(result, result, Operand(kHeapObjectTag));
1849}
1850
1851void MacroAssembler::FastAllocate(Register object_size, Register result,
1852                                  Register result_end, Register scratch,
1853                                  AllocationFlags flags) {
1854  // |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag
1855  // is not specified. Other registers must not overlap.
1856  DCHECK(!AreAliased(object_size, result, scratch, ip));
1857  DCHECK(!AreAliased(result_end, result, scratch, ip));
1858  DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end));
1859
1860  ExternalReference allocation_top =
1861      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1862
1863  Register top_address = scratch;
1864  mov(top_address, Operand(allocation_top));
1865  LoadP(result, MemOperand(top_address));
1866
1867  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1868    // Align the next allocation. Storing the filler map without checking top is
1869    // safe in new-space because the limit of the heap is aligned there.
1870#if V8_TARGET_ARCH_PPC64
1871    STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
1872#else
1873    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1874    andi(result_end, result, Operand(kDoubleAlignmentMask));
1875    Label aligned;
1876    beq(&aligned);
1877    mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
1878    stw(result_end, MemOperand(result));
1879    addi(result, result, Operand(kDoubleSize / 2));
1880    bind(&aligned);
1881#endif
1882  }
1883
1884  // Calculate new top using result. Object size may be in words so a shift is
1885  // required to get the number of bytes.
1886  if ((flags & SIZE_IN_WORDS) != 0) {
1887    ShiftLeftImm(result_end, object_size, Operand(kPointerSizeLog2));
1888    add(result_end, result, result_end);
1889  } else {
1890    add(result_end, result, object_size);
1891  }
1892
1893  // Update allocation top. result temporarily holds the new top.
1894  if (emit_debug_code()) {
1895    andi(r0, result_end, Operand(kObjectAlignmentMask));
1896    Check(eq, kUnalignedAllocationInNewSpace, cr0);
1897  }
1898  StoreP(result_end, MemOperand(top_address));
1899
1900  // Tag object.
1901  addi(result, result, Operand(kHeapObjectTag));
1902}
1903
1904void MacroAssembler::FastAllocate(int object_size, Register result,
1905                                  Register scratch1, Register scratch2,
1906                                  AllocationFlags flags) {
1907  DCHECK(object_size <= kMaxRegularHeapObjectSize);
1908  DCHECK(!AreAliased(result, scratch1, scratch2, ip));
1909
1910  // Make object size into bytes.
1911  if ((flags & SIZE_IN_WORDS) != 0) {
1912    object_size *= kPointerSize;
1913  }
1914  DCHECK_EQ(0, object_size & kObjectAlignmentMask);
1915
1916  ExternalReference allocation_top =
1917      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1918
1919  // Set up allocation top address register.
1920  Register top_address = scratch1;
1921  Register result_end = scratch2;
1922  mov(top_address, Operand(allocation_top));
1923  LoadP(result, MemOperand(top_address));
1924
1925  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1926    // Align the next allocation. Storing the filler map without checking top is
1927    // safe in new-space because the limit of the heap is aligned there.
1928#if V8_TARGET_ARCH_PPC64
1929    STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
1930#else
1931    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1932    andi(result_end, result, Operand(kDoubleAlignmentMask));
1933    Label aligned;
1934    beq(&aligned);
1935    mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
1936    stw(result_end, MemOperand(result));
1937    addi(result, result, Operand(kDoubleSize / 2));
1938    bind(&aligned);
1939#endif
1940  }
1941
1942  // Calculate new top using result.
1943  Add(result_end, result, object_size, r0);
1944
1945  // The top pointer is not updated for allocation folding dominators.
1946  StoreP(result_end, MemOperand(top_address));
1947
1948  // Tag object.
1949  addi(result, result, Operand(kHeapObjectTag));
1950}
1951
1952
1953void MacroAssembler::AllocateTwoByteString(Register result, Register length,
1954                                           Register scratch1, Register scratch2,
1955                                           Register scratch3,
1956                                           Label* gc_required) {
1957  // Calculate the number of bytes needed for the characters in the string while
1958  // observing object alignment.
1959  DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1960  slwi(scratch1, length, Operand(1));  // Length in bytes, not chars.
1961  addi(scratch1, scratch1,
1962       Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
1963  mov(r0, Operand(~kObjectAlignmentMask));
1964  and_(scratch1, scratch1, r0);
1965
1966  // Allocate two-byte string in new space.
1967  Allocate(scratch1, result, scratch2, scratch3, gc_required,
1968           NO_ALLOCATION_FLAGS);
1969
1970  // Set the map, length and hash field.
1971  InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1,
1972                      scratch2);
1973}
1974
1975
1976void MacroAssembler::AllocateOneByteString(Register result, Register length,
1977                                           Register scratch1, Register scratch2,
1978                                           Register scratch3,
1979                                           Label* gc_required) {
1980  // Calculate the number of bytes needed for the characters in the string while
1981  // observing object alignment.
1982  DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1983  DCHECK(kCharSize == 1);
1984  addi(scratch1, length,
1985       Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
1986  li(r0, Operand(~kObjectAlignmentMask));
1987  and_(scratch1, scratch1, r0);
1988
1989  // Allocate one-byte string in new space.
1990  Allocate(scratch1, result, scratch2, scratch3, gc_required,
1991           NO_ALLOCATION_FLAGS);
1992
1993  // Set the map, length and hash field.
1994  InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
1995                      scratch1, scratch2);
1996}
1997
1998
1999void MacroAssembler::AllocateTwoByteConsString(Register result, Register length,
2000                                               Register scratch1,
2001                                               Register scratch2,
2002                                               Label* gc_required) {
2003  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
2004           NO_ALLOCATION_FLAGS);
2005
2006  InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1,
2007                      scratch2);
2008}
2009
2010
2011void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
2012                                               Register scratch1,
2013                                               Register scratch2,
2014                                               Label* gc_required) {
2015  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
2016           NO_ALLOCATION_FLAGS);
2017
2018  InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
2019                      scratch1, scratch2);
2020}
2021
2022
2023void MacroAssembler::AllocateTwoByteSlicedString(Register result,
2024                                                 Register length,
2025                                                 Register scratch1,
2026                                                 Register scratch2,
2027                                                 Label* gc_required) {
2028  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
2029           NO_ALLOCATION_FLAGS);
2030
2031  InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1,
2032                      scratch2);
2033}
2034
2035
2036void MacroAssembler::AllocateOneByteSlicedString(Register result,
2037                                                 Register length,
2038                                                 Register scratch1,
2039                                                 Register scratch2,
2040                                                 Label* gc_required) {
2041  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
2042           NO_ALLOCATION_FLAGS);
2043
2044  InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
2045                      scratch1, scratch2);
2046}
2047
2048
2049void MacroAssembler::CompareObjectType(Register object, Register map,
2050                                       Register type_reg, InstanceType type) {
2051  const Register temp = type_reg.is(no_reg) ? r0 : type_reg;
2052
2053  LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset));
2054  CompareInstanceType(map, temp, type);
2055}
2056
2057
2058void MacroAssembler::CompareInstanceType(Register map, Register type_reg,
2059                                         InstanceType type) {
2060  STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
2061  STATIC_ASSERT(LAST_TYPE < 256);
2062  lbz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
2063  cmpi(type_reg, Operand(type));
2064}
2065
2066
2067void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) {
2068  DCHECK(!obj.is(r0));
2069  LoadRoot(r0, index);
2070  cmp(obj, r0);
2071}
2072
2073void MacroAssembler::CheckFastObjectElements(Register map, Register scratch,
2074                                             Label* fail) {
2075  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2076  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2077  STATIC_ASSERT(FAST_ELEMENTS == 2);
2078  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
2079  lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
2080  cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
2081  ble(fail);
2082  cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
2083  bgt(fail);
2084}
2085
2086
2087void MacroAssembler::CheckFastSmiElements(Register map, Register scratch,
2088                                          Label* fail) {
2089  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
2090  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
2091  lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
2092  cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
2093  bgt(fail);
2094}
2095
2096
2097void MacroAssembler::StoreNumberToDoubleElements(
2098    Register value_reg, Register key_reg, Register elements_reg,
2099    Register scratch1, DoubleRegister double_scratch, Label* fail,
2100    int elements_offset) {
2101  DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
2102  Label smi_value, store;
2103
2104  // Handle smi values specially.
2105  JumpIfSmi(value_reg, &smi_value);
2106
2107  // Ensure that the object is a heap number
2108  CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail,
2109           DONT_DO_SMI_CHECK);
2110
2111  lfd(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
2112  // Double value, turn potential sNaN into qNaN.
2113  CanonicalizeNaN(double_scratch);
2114  b(&store);
2115
2116  bind(&smi_value);
2117  SmiToDouble(double_scratch, value_reg);
2118
2119  bind(&store);
2120  SmiToDoubleArrayOffset(scratch1, key_reg);
2121  add(scratch1, elements_reg, scratch1);
2122  stfd(double_scratch, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize -
2123                                                     elements_offset));
2124}
2125
2126
2127void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left,
2128                                            Register right,
2129                                            Register overflow_dst,
2130                                            Register scratch) {
2131  DCHECK(!dst.is(overflow_dst));
2132  DCHECK(!dst.is(scratch));
2133  DCHECK(!overflow_dst.is(scratch));
2134  DCHECK(!overflow_dst.is(left));
2135  DCHECK(!overflow_dst.is(right));
2136
2137  bool left_is_right = left.is(right);
2138  RCBit xorRC = left_is_right ? SetRC : LeaveRC;
2139
2140  // C = A+B; C overflows if A/B have same sign and C has diff sign than A
2141  if (dst.is(left)) {
2142    mr(scratch, left);            // Preserve left.
2143    add(dst, left, right);        // Left is overwritten.
2144    xor_(overflow_dst, dst, scratch, xorRC);  // Original left.
2145    if (!left_is_right) xor_(scratch, dst, right);
2146  } else if (dst.is(right)) {
2147    mr(scratch, right);           // Preserve right.
2148    add(dst, left, right);        // Right is overwritten.
2149    xor_(overflow_dst, dst, left, xorRC);
2150    if (!left_is_right) xor_(scratch, dst, scratch);  // Original right.
2151  } else {
2152    add(dst, left, right);
2153    xor_(overflow_dst, dst, left, xorRC);
2154    if (!left_is_right) xor_(scratch, dst, right);
2155  }
2156  if (!left_is_right) and_(overflow_dst, scratch, overflow_dst, SetRC);
2157}
2158
2159
2160void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left,
2161                                            intptr_t right,
2162                                            Register overflow_dst,
2163                                            Register scratch) {
2164  Register original_left = left;
2165  DCHECK(!dst.is(overflow_dst));
2166  DCHECK(!dst.is(scratch));
2167  DCHECK(!overflow_dst.is(scratch));
2168  DCHECK(!overflow_dst.is(left));
2169
2170  // C = A+B; C overflows if A/B have same sign and C has diff sign than A
2171  if (dst.is(left)) {
2172    // Preserve left.
2173    original_left = overflow_dst;
2174    mr(original_left, left);
2175  }
2176  Add(dst, left, right, scratch);
2177  xor_(overflow_dst, dst, original_left);
2178  if (right >= 0) {
2179    and_(overflow_dst, overflow_dst, dst, SetRC);
2180  } else {
2181    andc(overflow_dst, overflow_dst, dst, SetRC);
2182  }
2183}
2184
2185
2186void MacroAssembler::SubAndCheckForOverflow(Register dst, Register left,
2187                                            Register right,
2188                                            Register overflow_dst,
2189                                            Register scratch) {
2190  DCHECK(!dst.is(overflow_dst));
2191  DCHECK(!dst.is(scratch));
2192  DCHECK(!overflow_dst.is(scratch));
2193  DCHECK(!overflow_dst.is(left));
2194  DCHECK(!overflow_dst.is(right));
2195
2196  // C = A-B; C overflows if A/B have diff signs and C has diff sign than A
2197  if (dst.is(left)) {
2198    mr(scratch, left);      // Preserve left.
2199    sub(dst, left, right);  // Left is overwritten.
2200    xor_(overflow_dst, dst, scratch);
2201    xor_(scratch, scratch, right);
2202    and_(overflow_dst, overflow_dst, scratch, SetRC);
2203  } else if (dst.is(right)) {
2204    mr(scratch, right);     // Preserve right.
2205    sub(dst, left, right);  // Right is overwritten.
2206    xor_(overflow_dst, dst, left);
2207    xor_(scratch, left, scratch);
2208    and_(overflow_dst, overflow_dst, scratch, SetRC);
2209  } else {
2210    sub(dst, left, right);
2211    xor_(overflow_dst, dst, left);
2212    xor_(scratch, left, right);
2213    and_(overflow_dst, scratch, overflow_dst, SetRC);
2214  }
2215}
2216
2217
2218void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map,
2219                                Label* early_success) {
2220  LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2221  CompareMap(scratch, map, early_success);
2222}
2223
2224
2225void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map,
2226                                Label* early_success) {
2227  mov(r0, Operand(map));
2228  cmp(obj_map, r0);
2229}
2230
2231
2232void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map,
2233                              Label* fail, SmiCheckType smi_check_type) {
2234  if (smi_check_type == DO_SMI_CHECK) {
2235    JumpIfSmi(obj, fail);
2236  }
2237
2238  Label success;
2239  CompareMap(obj, scratch, map, &success);
2240  bne(fail);
2241  bind(&success);
2242}
2243
2244
2245void MacroAssembler::CheckMap(Register obj, Register scratch,
2246                              Heap::RootListIndex index, Label* fail,
2247                              SmiCheckType smi_check_type) {
2248  if (smi_check_type == DO_SMI_CHECK) {
2249    JumpIfSmi(obj, fail);
2250  }
2251  LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2252  LoadRoot(r0, index);
2253  cmp(scratch, r0);
2254  bne(fail);
2255}
2256
2257
2258void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
2259                                     Register scratch2, Handle<WeakCell> cell,
2260                                     Handle<Code> success,
2261                                     SmiCheckType smi_check_type) {
2262  Label fail;
2263  if (smi_check_type == DO_SMI_CHECK) {
2264    JumpIfSmi(obj, &fail);
2265  }
2266  LoadP(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
2267  CmpWeakValue(scratch1, cell, scratch2);
2268  Jump(success, RelocInfo::CODE_TARGET, eq);
2269  bind(&fail);
2270}
2271
2272
2273void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
2274                                  Register scratch, CRegister cr) {
2275  mov(scratch, Operand(cell));
2276  LoadP(scratch, FieldMemOperand(scratch, WeakCell::kValueOffset));
2277  cmp(value, scratch, cr);
2278}
2279
2280
2281void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
2282  mov(value, Operand(cell));
2283  LoadP(value, FieldMemOperand(value, WeakCell::kValueOffset));
2284}
2285
2286
2287void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
2288                                   Label* miss) {
2289  GetWeakValue(value, cell);
2290  JumpIfSmi(value, miss);
2291}
2292
2293
2294void MacroAssembler::GetMapConstructor(Register result, Register map,
2295                                       Register temp, Register temp2) {
2296  Label done, loop;
2297  LoadP(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset));
2298  bind(&loop);
2299  JumpIfSmi(result, &done);
2300  CompareObjectType(result, temp, temp2, MAP_TYPE);
2301  bne(&done);
2302  LoadP(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset));
2303  b(&loop);
2304  bind(&done);
2305}
2306
2307
2308void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
2309                                             Register scratch, Label* miss) {
2310  // Get the prototype or initial map from the function.
2311  LoadP(result,
2312        FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2313
2314  // If the prototype or initial map is the hole, don't return it and
2315  // simply miss the cache instead. This will allow us to allocate a
2316  // prototype object on-demand in the runtime system.
2317  LoadRoot(r0, Heap::kTheHoleValueRootIndex);
2318  cmp(result, r0);
2319  beq(miss);
2320
2321  // If the function does not have an initial map, we're done.
2322  Label done;
2323  CompareObjectType(result, scratch, scratch, MAP_TYPE);
2324  bne(&done);
2325
2326  // Get the prototype from the initial map.
2327  LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
2328
2329  // All done.
2330  bind(&done);
2331}
2332
2333
2334void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id,
2335                              Condition cond) {
2336  DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
2337  Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
2338}
2339
2340
2341void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
2342  Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
2343}
2344
2345
2346bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
2347  return has_frame_ || !stub->SometimesSetsUpAFrame();
2348}
2349
2350void MacroAssembler::SmiToDouble(DoubleRegister value, Register smi) {
2351  SmiUntag(ip, smi);
2352  ConvertIntToDouble(ip, value);
2353}
2354
2355
2356void MacroAssembler::TestDoubleIsInt32(DoubleRegister double_input,
2357                                       Register scratch1, Register scratch2,
2358                                       DoubleRegister double_scratch) {
2359  TryDoubleToInt32Exact(scratch1, double_input, scratch2, double_scratch);
2360}
2361
2362void MacroAssembler::TestDoubleIsMinusZero(DoubleRegister input,
2363                                           Register scratch1,
2364                                           Register scratch2) {
2365#if V8_TARGET_ARCH_PPC64
2366  MovDoubleToInt64(scratch1, input);
2367  rotldi(scratch1, scratch1, 1);
2368  cmpi(scratch1, Operand(1));
2369#else
2370  MovDoubleToInt64(scratch1, scratch2, input);
2371  Label done;
2372  cmpi(scratch2, Operand::Zero());
2373  bne(&done);
2374  lis(scratch2, Operand(SIGN_EXT_IMM16(0x8000)));
2375  cmp(scratch1, scratch2);
2376  bind(&done);
2377#endif
2378}
2379
2380void MacroAssembler::TestDoubleSign(DoubleRegister input, Register scratch) {
2381#if V8_TARGET_ARCH_PPC64
2382  MovDoubleToInt64(scratch, input);
2383#else
2384  MovDoubleHighToInt(scratch, input);
2385#endif
2386  cmpi(scratch, Operand::Zero());
2387}
2388
2389void MacroAssembler::TestHeapNumberSign(Register input, Register scratch) {
2390#if V8_TARGET_ARCH_PPC64
2391  LoadP(scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2392#else
2393  lwz(scratch, FieldMemOperand(input, HeapNumber::kExponentOffset));
2394#endif
2395  cmpi(scratch, Operand::Zero());
2396}
2397
2398void MacroAssembler::TryDoubleToInt32Exact(Register result,
2399                                           DoubleRegister double_input,
2400                                           Register scratch,
2401                                           DoubleRegister double_scratch) {
2402  Label done;
2403  DCHECK(!double_input.is(double_scratch));
2404
2405  ConvertDoubleToInt64(double_input,
2406#if !V8_TARGET_ARCH_PPC64
2407                       scratch,
2408#endif
2409                       result, double_scratch);
2410
2411#if V8_TARGET_ARCH_PPC64
2412  TestIfInt32(result, r0);
2413#else
2414  TestIfInt32(scratch, result, r0);
2415#endif
2416  bne(&done);
2417
2418  // convert back and compare
2419  fcfid(double_scratch, double_scratch);
2420  fcmpu(double_scratch, double_input);
2421  bind(&done);
2422}
2423
2424
2425void MacroAssembler::TryInt32Floor(Register result, DoubleRegister double_input,
2426                                   Register input_high, Register scratch,
2427                                   DoubleRegister double_scratch, Label* done,
2428                                   Label* exact) {
2429  DCHECK(!result.is(input_high));
2430  DCHECK(!double_input.is(double_scratch));
2431  Label exception;
2432
2433  MovDoubleHighToInt(input_high, double_input);
2434
2435  // Test for NaN/Inf
2436  ExtractBitMask(result, input_high, HeapNumber::kExponentMask);
2437  cmpli(result, Operand(0x7ff));
2438  beq(&exception);
2439
2440  // Convert (rounding to -Inf)
2441  ConvertDoubleToInt64(double_input,
2442#if !V8_TARGET_ARCH_PPC64
2443                       scratch,
2444#endif
2445                       result, double_scratch, kRoundToMinusInf);
2446
2447// Test for overflow
2448#if V8_TARGET_ARCH_PPC64
2449  TestIfInt32(result, r0);
2450#else
2451  TestIfInt32(scratch, result, r0);
2452#endif
2453  bne(&exception);
2454
2455  // Test for exactness
2456  fcfid(double_scratch, double_scratch);
2457  fcmpu(double_scratch, double_input);
2458  beq(exact);
2459  b(done);
2460
2461  bind(&exception);
2462}
2463
2464
2465void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
2466                                                DoubleRegister double_input,
2467                                                Label* done) {
2468  DoubleRegister double_scratch = kScratchDoubleReg;
2469#if !V8_TARGET_ARCH_PPC64
2470  Register scratch = ip;
2471#endif
2472
2473  ConvertDoubleToInt64(double_input,
2474#if !V8_TARGET_ARCH_PPC64
2475                       scratch,
2476#endif
2477                       result, double_scratch);
2478
2479// Test for overflow
2480#if V8_TARGET_ARCH_PPC64
2481  TestIfInt32(result, r0);
2482#else
2483  TestIfInt32(scratch, result, r0);
2484#endif
2485  beq(done);
2486}
2487
2488
2489void MacroAssembler::TruncateDoubleToI(Register result,
2490                                       DoubleRegister double_input) {
2491  Label done;
2492
2493  TryInlineTruncateDoubleToI(result, double_input, &done);
2494
2495  // If we fell through then inline version didn't succeed - call stub instead.
2496  mflr(r0);
2497  push(r0);
2498  // Put input on stack.
2499  stfdu(double_input, MemOperand(sp, -kDoubleSize));
2500
2501  DoubleToIStub stub(isolate(), sp, result, 0, true, true);
2502  CallStub(&stub);
2503
2504  addi(sp, sp, Operand(kDoubleSize));
2505  pop(r0);
2506  mtlr(r0);
2507
2508  bind(&done);
2509}
2510
2511
2512void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
2513  Label done;
2514  DoubleRegister double_scratch = kScratchDoubleReg;
2515  DCHECK(!result.is(object));
2516
2517  lfd(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2518  TryInlineTruncateDoubleToI(result, double_scratch, &done);
2519
2520  // If we fell through then inline version didn't succeed - call stub instead.
2521  mflr(r0);
2522  push(r0);
2523  DoubleToIStub stub(isolate(), object, result,
2524                     HeapNumber::kValueOffset - kHeapObjectTag, true, true);
2525  CallStub(&stub);
2526  pop(r0);
2527  mtlr(r0);
2528
2529  bind(&done);
2530}
2531
2532
2533void MacroAssembler::TruncateNumberToI(Register object, Register result,
2534                                       Register heap_number_map,
2535                                       Register scratch1, Label* not_number) {
2536  Label done;
2537  DCHECK(!result.is(object));
2538
2539  UntagAndJumpIfSmi(result, object, &done);
2540  JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
2541  TruncateHeapNumberToI(result, object);
2542
2543  bind(&done);
2544}
2545
2546
2547void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src,
2548                                         int num_least_bits) {
2549#if V8_TARGET_ARCH_PPC64
2550  rldicl(dst, src, kBitsPerPointer - kSmiShift,
2551         kBitsPerPointer - num_least_bits);
2552#else
2553  rlwinm(dst, src, kBitsPerPointer - kSmiShift,
2554         kBitsPerPointer - num_least_bits, 31);
2555#endif
2556}
2557
2558
2559void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src,
2560                                           int num_least_bits) {
2561  rlwinm(dst, src, 0, 32 - num_least_bits, 31);
2562}
2563
2564
2565void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
2566                                 SaveFPRegsMode save_doubles) {
2567  // All parameters are on the stack.  r3 has the return value after call.
2568
2569  // If the expected number of arguments of the runtime function is
2570  // constant, we check that the actual number of arguments match the
2571  // expectation.
2572  CHECK(f->nargs < 0 || f->nargs == num_arguments);
2573
2574  // TODO(1236192): Most runtime routines don't need the number of
2575  // arguments passed in because it is constant. At some point we
2576  // should remove this need and make the runtime routine entry code
2577  // smarter.
2578  mov(r3, Operand(num_arguments));
2579  mov(r4, Operand(ExternalReference(f, isolate())));
2580  CEntryStub stub(isolate(),
2581#if V8_TARGET_ARCH_PPC64
2582                  f->result_size,
2583#else
2584                  1,
2585#endif
2586                  save_doubles);
2587  CallStub(&stub);
2588}
2589
2590
2591void MacroAssembler::CallExternalReference(const ExternalReference& ext,
2592                                           int num_arguments) {
2593  mov(r3, Operand(num_arguments));
2594  mov(r4, Operand(ext));
2595
2596  CEntryStub stub(isolate(), 1);
2597  CallStub(&stub);
2598}
2599
2600
2601void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
2602  const Runtime::Function* function = Runtime::FunctionForId(fid);
2603  DCHECK_EQ(1, function->result_size);
2604  if (function->nargs >= 0) {
2605    mov(r3, Operand(function->nargs));
2606  }
2607  JumpToExternalReference(ExternalReference(fid, isolate()));
2608}
2609
2610
2611void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
2612                                             bool builtin_exit_frame) {
2613  mov(r4, Operand(builtin));
2614  CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
2615                  builtin_exit_frame);
2616  Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2617}
2618
2619
2620void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2621                                Register scratch1, Register scratch2) {
2622  if (FLAG_native_code_counters && counter->Enabled()) {
2623    mov(scratch1, Operand(value));
2624    mov(scratch2, Operand(ExternalReference(counter)));
2625    stw(scratch1, MemOperand(scratch2));
2626  }
2627}
2628
2629
2630void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2631                                      Register scratch1, Register scratch2) {
2632  DCHECK(value > 0);
2633  if (FLAG_native_code_counters && counter->Enabled()) {
2634    mov(scratch2, Operand(ExternalReference(counter)));
2635    lwz(scratch1, MemOperand(scratch2));
2636    addi(scratch1, scratch1, Operand(value));
2637    stw(scratch1, MemOperand(scratch2));
2638  }
2639}
2640
2641
2642void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2643                                      Register scratch1, Register scratch2) {
2644  DCHECK(value > 0);
2645  if (FLAG_native_code_counters && counter->Enabled()) {
2646    mov(scratch2, Operand(ExternalReference(counter)));
2647    lwz(scratch1, MemOperand(scratch2));
2648    subi(scratch1, scratch1, Operand(value));
2649    stw(scratch1, MemOperand(scratch2));
2650  }
2651}
2652
2653
2654void MacroAssembler::Assert(Condition cond, BailoutReason reason,
2655                            CRegister cr) {
2656  if (emit_debug_code()) Check(cond, reason, cr);
2657}
2658
2659
2660void MacroAssembler::AssertFastElements(Register elements) {
2661  if (emit_debug_code()) {
2662    DCHECK(!elements.is(r0));
2663    Label ok;
2664    push(elements);
2665    LoadP(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
2666    LoadRoot(r0, Heap::kFixedArrayMapRootIndex);
2667    cmp(elements, r0);
2668    beq(&ok);
2669    LoadRoot(r0, Heap::kFixedDoubleArrayMapRootIndex);
2670    cmp(elements, r0);
2671    beq(&ok);
2672    LoadRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
2673    cmp(elements, r0);
2674    beq(&ok);
2675    Abort(kJSObjectWithFastElementsMapHasSlowElements);
2676    bind(&ok);
2677    pop(elements);
2678  }
2679}
2680
2681
2682void MacroAssembler::Check(Condition cond, BailoutReason reason, CRegister cr) {
2683  Label L;
2684  b(cond, &L, cr);
2685  Abort(reason);
2686  // will not return here
2687  bind(&L);
2688}
2689
2690
2691void MacroAssembler::Abort(BailoutReason reason) {
2692  Label abort_start;
2693  bind(&abort_start);
2694#ifdef DEBUG
2695  const char* msg = GetBailoutReason(reason);
2696  if (msg != NULL) {
2697    RecordComment("Abort message: ");
2698    RecordComment(msg);
2699  }
2700
2701  if (FLAG_trap_on_abort) {
2702    stop(msg);
2703    return;
2704  }
2705#endif
2706
2707  // Check if Abort() has already been initialized.
2708  DCHECK(isolate()->builtins()->Abort()->IsHeapObject());
2709
2710  LoadSmiLiteral(r4, Smi::FromInt(static_cast<int>(reason)));
2711
2712  // Disable stub call restrictions to always allow calls to abort.
2713  if (!has_frame_) {
2714    // We don't actually want to generate a pile of code for this, so just
2715    // claim there is a stack frame, without generating one.
2716    FrameScope scope(this, StackFrame::NONE);
2717    Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
2718  } else {
2719    Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
2720  }
2721  // will not return here
2722}
2723
2724
2725void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2726  if (context_chain_length > 0) {
2727    // Move up the chain of contexts to the context containing the slot.
2728    LoadP(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2729    for (int i = 1; i < context_chain_length; i++) {
2730      LoadP(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2731    }
2732  } else {
2733    // Slot is in the current function context.  Move it into the
2734    // destination register in case we store into it (the write barrier
2735    // cannot be allowed to destroy the context in esi).
2736    mr(dst, cp);
2737  }
2738}
2739
2740
2741void MacroAssembler::LoadTransitionedArrayMapConditional(
2742    ElementsKind expected_kind, ElementsKind transitioned_kind,
2743    Register map_in_out, Register scratch, Label* no_map_match) {
2744  DCHECK(IsFastElementsKind(expected_kind));
2745  DCHECK(IsFastElementsKind(transitioned_kind));
2746
2747  // Check that the function's map is the same as the expected cached map.
2748  LoadP(scratch, NativeContextMemOperand());
2749  LoadP(ip, ContextMemOperand(scratch, Context::ArrayMapIndex(expected_kind)));
2750  cmp(map_in_out, ip);
2751  bne(no_map_match);
2752
2753  // Use the transitioned cached map.
2754  LoadP(map_in_out,
2755        ContextMemOperand(scratch, Context::ArrayMapIndex(transitioned_kind)));
2756}
2757
2758
2759void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
2760  LoadP(dst, NativeContextMemOperand());
2761  LoadP(dst, ContextMemOperand(dst, index));
2762}
2763
2764
2765void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2766                                                  Register map,
2767                                                  Register scratch) {
2768  // Load the initial map. The global functions all have initial maps.
2769  LoadP(map,
2770        FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2771  if (emit_debug_code()) {
2772    Label ok, fail;
2773    CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
2774    b(&ok);
2775    bind(&fail);
2776    Abort(kGlobalFunctionsMustHaveInitialMap);
2777    bind(&ok);
2778  }
2779}
2780
2781
2782void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
2783    Register reg, Register scratch, Label* not_power_of_two_or_zero) {
2784  subi(scratch, reg, Operand(1));
2785  cmpi(scratch, Operand::Zero());
2786  blt(not_power_of_two_or_zero);
2787  and_(r0, scratch, reg, SetRC);
2788  bne(not_power_of_two_or_zero, cr0);
2789}
2790
2791
2792void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
2793                                                     Register scratch,
2794                                                     Label* zero_and_neg,
2795                                                     Label* not_power_of_two) {
2796  subi(scratch, reg, Operand(1));
2797  cmpi(scratch, Operand::Zero());
2798  blt(zero_and_neg);
2799  and_(r0, scratch, reg, SetRC);
2800  bne(not_power_of_two, cr0);
2801}
2802
2803#if !V8_TARGET_ARCH_PPC64
2804void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
2805  DCHECK(!reg.is(overflow));
2806  mr(overflow, reg);  // Save original value.
2807  SmiTag(reg);
2808  xor_(overflow, overflow, reg, SetRC);  // Overflow if (value ^ 2 * value) < 0.
2809}
2810
2811
2812void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src,
2813                                         Register overflow) {
2814  if (dst.is(src)) {
2815    // Fall back to slower case.
2816    SmiTagCheckOverflow(dst, overflow);
2817  } else {
2818    DCHECK(!dst.is(src));
2819    DCHECK(!dst.is(overflow));
2820    DCHECK(!src.is(overflow));
2821    SmiTag(dst, src);
2822    xor_(overflow, dst, src, SetRC);  // Overflow if (value ^ 2 * value) < 0.
2823  }
2824}
2825#endif
2826
2827void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2,
2828                                      Label* on_not_both_smi) {
2829  STATIC_ASSERT(kSmiTag == 0);
2830  orx(r0, reg1, reg2, LeaveRC);
2831  JumpIfNotSmi(r0, on_not_both_smi);
2832}
2833
2834
2835void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src,
2836                                       Label* smi_case) {
2837  STATIC_ASSERT(kSmiTag == 0);
2838  TestBitRange(src, kSmiTagSize - 1, 0, r0);
2839  SmiUntag(dst, src);
2840  beq(smi_case, cr0);
2841}
2842
2843
2844void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src,
2845                                          Label* non_smi_case) {
2846  STATIC_ASSERT(kSmiTag == 0);
2847  TestBitRange(src, kSmiTagSize - 1, 0, r0);
2848  SmiUntag(dst, src);
2849  bne(non_smi_case, cr0);
2850}
2851
2852
2853void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2,
2854                                     Label* on_either_smi) {
2855  STATIC_ASSERT(kSmiTag == 0);
2856  JumpIfSmi(reg1, on_either_smi);
2857  JumpIfSmi(reg2, on_either_smi);
2858}
2859
2860void MacroAssembler::AssertNotNumber(Register object) {
2861  if (emit_debug_code()) {
2862    STATIC_ASSERT(kSmiTag == 0);
2863    TestIfSmi(object, r0);
2864    Check(ne, kOperandIsANumber, cr0);
2865    push(object);
2866    CompareObjectType(object, object, object, HEAP_NUMBER_TYPE);
2867    pop(object);
2868    Check(ne, kOperandIsANumber);
2869  }
2870}
2871
2872void MacroAssembler::AssertNotSmi(Register object) {
2873  if (emit_debug_code()) {
2874    STATIC_ASSERT(kSmiTag == 0);
2875    TestIfSmi(object, r0);
2876    Check(ne, kOperandIsASmi, cr0);
2877  }
2878}
2879
2880
2881void MacroAssembler::AssertSmi(Register object) {
2882  if (emit_debug_code()) {
2883    STATIC_ASSERT(kSmiTag == 0);
2884    TestIfSmi(object, r0);
2885    Check(eq, kOperandIsNotSmi, cr0);
2886  }
2887}
2888
2889
2890void MacroAssembler::AssertString(Register object) {
2891  if (emit_debug_code()) {
2892    STATIC_ASSERT(kSmiTag == 0);
2893    TestIfSmi(object, r0);
2894    Check(ne, kOperandIsASmiAndNotAString, cr0);
2895    push(object);
2896    LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
2897    CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
2898    pop(object);
2899    Check(lt, kOperandIsNotAString);
2900  }
2901}
2902
2903
2904void MacroAssembler::AssertName(Register object) {
2905  if (emit_debug_code()) {
2906    STATIC_ASSERT(kSmiTag == 0);
2907    TestIfSmi(object, r0);
2908    Check(ne, kOperandIsASmiAndNotAName, cr0);
2909    push(object);
2910    LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
2911    CompareInstanceType(object, object, LAST_NAME_TYPE);
2912    pop(object);
2913    Check(le, kOperandIsNotAName);
2914  }
2915}
2916
2917
2918void MacroAssembler::AssertFunction(Register object) {
2919  if (emit_debug_code()) {
2920    STATIC_ASSERT(kSmiTag == 0);
2921    TestIfSmi(object, r0);
2922    Check(ne, kOperandIsASmiAndNotAFunction, cr0);
2923    push(object);
2924    CompareObjectType(object, object, object, JS_FUNCTION_TYPE);
2925    pop(object);
2926    Check(eq, kOperandIsNotAFunction);
2927  }
2928}
2929
2930
2931void MacroAssembler::AssertBoundFunction(Register object) {
2932  if (emit_debug_code()) {
2933    STATIC_ASSERT(kSmiTag == 0);
2934    TestIfSmi(object, r0);
2935    Check(ne, kOperandIsASmiAndNotABoundFunction, cr0);
2936    push(object);
2937    CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE);
2938    pop(object);
2939    Check(eq, kOperandIsNotABoundFunction);
2940  }
2941}
2942
2943void MacroAssembler::AssertGeneratorObject(Register object) {
2944  if (emit_debug_code()) {
2945    STATIC_ASSERT(kSmiTag == 0);
2946    TestIfSmi(object, r0);
2947    Check(ne, kOperandIsASmiAndNotAGeneratorObject, cr0);
2948    push(object);
2949    CompareObjectType(object, object, object, JS_GENERATOR_OBJECT_TYPE);
2950    pop(object);
2951    Check(eq, kOperandIsNotAGeneratorObject);
2952  }
2953}
2954
2955void MacroAssembler::AssertReceiver(Register object) {
2956  if (emit_debug_code()) {
2957    STATIC_ASSERT(kSmiTag == 0);
2958    TestIfSmi(object, r0);
2959    Check(ne, kOperandIsASmiAndNotAReceiver, cr0);
2960    push(object);
2961    STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
2962    CompareObjectType(object, object, object, FIRST_JS_RECEIVER_TYPE);
2963    pop(object);
2964    Check(ge, kOperandIsNotAReceiver);
2965  }
2966}
2967
2968void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
2969                                                     Register scratch) {
2970  if (emit_debug_code()) {
2971    Label done_checking;
2972    AssertNotSmi(object);
2973    CompareRoot(object, Heap::kUndefinedValueRootIndex);
2974    beq(&done_checking);
2975    LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2976    CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
2977    Assert(eq, kExpectedUndefinedOrCell);
2978    bind(&done_checking);
2979  }
2980}
2981
2982
2983void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
2984  if (emit_debug_code()) {
2985    CompareRoot(reg, index);
2986    Check(eq, kHeapNumberMapRegisterClobbered);
2987  }
2988}
2989
2990
2991void MacroAssembler::JumpIfNotHeapNumber(Register object,
2992                                         Register heap_number_map,
2993                                         Register scratch,
2994                                         Label* on_not_heap_number) {
2995  LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2996  AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2997  cmp(scratch, heap_number_map);
2998  bne(on_not_heap_number);
2999}
3000
3001
3002void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
3003    Register first, Register second, Register scratch1, Register scratch2,
3004    Label* failure) {
3005  // Test that both first and second are sequential one-byte strings.
3006  // Assume that they are non-smis.
3007  LoadP(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
3008  LoadP(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
3009  lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3010  lbz(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
3011
3012  JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
3013                                                 scratch2, failure);
3014}
3015
3016void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
3017                                                           Register second,
3018                                                           Register scratch1,
3019                                                           Register scratch2,
3020                                                           Label* failure) {
3021  // Check that neither is a smi.
3022  and_(scratch1, first, second);
3023  JumpIfSmi(scratch1, failure);
3024  JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
3025                                               scratch2, failure);
3026}
3027
3028
3029void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
3030                                                     Label* not_unique_name) {
3031  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3032  Label succeed;
3033  andi(r0, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3034  beq(&succeed, cr0);
3035  cmpi(reg, Operand(SYMBOL_TYPE));
3036  bne(not_unique_name);
3037
3038  bind(&succeed);
3039}
3040
3041
3042// Allocates a heap number or jumps to the need_gc label if the young space
3043// is full and a scavenge is needed.
3044void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1,
3045                                        Register scratch2,
3046                                        Register heap_number_map,
3047                                        Label* gc_required,
3048                                        MutableMode mode) {
3049  // Allocate an object in the heap for the heap number and tag it as a heap
3050  // object.
3051  Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3052           NO_ALLOCATION_FLAGS);
3053
3054  Heap::RootListIndex map_index = mode == MUTABLE
3055                                      ? Heap::kMutableHeapNumberMapRootIndex
3056                                      : Heap::kHeapNumberMapRootIndex;
3057  AssertIsRoot(heap_number_map, map_index);
3058
3059  // Store heap number map in the allocated object.
3060  StoreP(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset),
3061        r0);
3062}
3063
3064
3065void MacroAssembler::AllocateHeapNumberWithValue(
3066    Register result, DoubleRegister value, Register scratch1, Register scratch2,
3067    Register heap_number_map, Label* gc_required) {
3068  AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
3069  stfd(value, FieldMemOperand(result, HeapNumber::kValueOffset));
3070}
3071
3072
3073void MacroAssembler::AllocateJSValue(Register result, Register constructor,
3074                                     Register value, Register scratch1,
3075                                     Register scratch2, Label* gc_required) {
3076  DCHECK(!result.is(constructor));
3077  DCHECK(!result.is(scratch1));
3078  DCHECK(!result.is(scratch2));
3079  DCHECK(!result.is(value));
3080
3081  // Allocate JSValue in new space.
3082  Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required,
3083           NO_ALLOCATION_FLAGS);
3084
3085  // Initialize the JSValue.
3086  LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2);
3087  StoreP(scratch1, FieldMemOperand(result, HeapObject::kMapOffset), r0);
3088  LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
3089  StoreP(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset), r0);
3090  StoreP(scratch1, FieldMemOperand(result, JSObject::kElementsOffset), r0);
3091  StoreP(value, FieldMemOperand(result, JSValue::kValueOffset), r0);
3092  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
3093}
3094
3095void MacroAssembler::InitializeNFieldsWithFiller(Register current_address,
3096                                                 Register count,
3097                                                 Register filler) {
3098  Label loop;
3099  mtctr(count);
3100  bind(&loop);
3101  StoreP(filler, MemOperand(current_address));
3102  addi(current_address, current_address, Operand(kPointerSize));
3103  bdnz(&loop);
3104}
3105
3106void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
3107                                                Register end_address,
3108                                                Register filler) {
3109  Label done;
3110  sub(r0, end_address, current_address, LeaveOE, SetRC);
3111  beq(&done, cr0);
3112  ShiftRightImm(r0, r0, Operand(kPointerSizeLog2));
3113  InitializeNFieldsWithFiller(current_address, r0, filler);
3114  bind(&done);
3115}
3116
3117
3118void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
3119    Register first, Register second, Register scratch1, Register scratch2,
3120    Label* failure) {
3121  const int kFlatOneByteStringMask =
3122      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3123  const int kFlatOneByteStringTag =
3124      kStringTag | kOneByteStringTag | kSeqStringTag;
3125  andi(scratch1, first, Operand(kFlatOneByteStringMask));
3126  andi(scratch2, second, Operand(kFlatOneByteStringMask));
3127  cmpi(scratch1, Operand(kFlatOneByteStringTag));
3128  bne(failure);
3129  cmpi(scratch2, Operand(kFlatOneByteStringTag));
3130  bne(failure);
3131}
3132
3133
3134void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
3135                                                              Register scratch,
3136                                                              Label* failure) {
3137  const int kFlatOneByteStringMask =
3138      kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3139  const int kFlatOneByteStringTag =
3140      kStringTag | kOneByteStringTag | kSeqStringTag;
3141  andi(scratch, type, Operand(kFlatOneByteStringMask));
3142  cmpi(scratch, Operand(kFlatOneByteStringTag));
3143  bne(failure);
3144}
3145
3146static const int kRegisterPassedArguments = 8;
3147
3148
3149int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
3150                                              int num_double_arguments) {
3151  int stack_passed_words = 0;
3152  if (num_double_arguments > DoubleRegister::kNumRegisters) {
3153    stack_passed_words +=
3154        2 * (num_double_arguments - DoubleRegister::kNumRegisters);
3155  }
3156  // Up to 8 simple arguments are passed in registers r3..r10.
3157  if (num_reg_arguments > kRegisterPassedArguments) {
3158    stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
3159  }
3160  return stack_passed_words;
3161}
3162
3163
3164void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index,
3165                                               Register value,
3166                                               uint32_t encoding_mask) {
3167  Label is_object;
3168  TestIfSmi(string, r0);
3169  Check(ne, kNonObject, cr0);
3170
3171  LoadP(ip, FieldMemOperand(string, HeapObject::kMapOffset));
3172  lbz(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
3173
3174  andi(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask));
3175  cmpi(ip, Operand(encoding_mask));
3176  Check(eq, kUnexpectedStringType);
3177
3178// The index is assumed to be untagged coming in, tag it to compare with the
3179// string length without using a temp register, it is restored at the end of
3180// this function.
3181#if !V8_TARGET_ARCH_PPC64
3182  Label index_tag_ok, index_tag_bad;
3183  JumpIfNotSmiCandidate(index, r0, &index_tag_bad);
3184#endif
3185  SmiTag(index, index);
3186#if !V8_TARGET_ARCH_PPC64
3187  b(&index_tag_ok);
3188  bind(&index_tag_bad);
3189  Abort(kIndexIsTooLarge);
3190  bind(&index_tag_ok);
3191#endif
3192
3193  LoadP(ip, FieldMemOperand(string, String::kLengthOffset));
3194  cmp(index, ip);
3195  Check(lt, kIndexIsTooLarge);
3196
3197  DCHECK(Smi::kZero == 0);
3198  cmpi(index, Operand::Zero());
3199  Check(ge, kIndexIsNegative);
3200
3201  SmiUntag(index, index);
3202}
3203
3204
3205void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
3206                                          int num_double_arguments,
3207                                          Register scratch) {
3208  int frame_alignment = ActivationFrameAlignment();
3209  int stack_passed_arguments =
3210      CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
3211  int stack_space = kNumRequiredStackFrameSlots;
3212
3213  if (frame_alignment > kPointerSize) {
3214    // Make stack end at alignment and make room for stack arguments
3215    // -- preserving original value of sp.
3216    mr(scratch, sp);
3217    addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
3218    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
3219    ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
3220    StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
3221  } else {
3222    // Make room for stack arguments
3223    stack_space += stack_passed_arguments;
3224  }
3225
3226  // Allocate frame with required slots to make ABI work.
3227  li(r0, Operand::Zero());
3228  StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
3229}
3230
3231
3232void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
3233                                          Register scratch) {
3234  PrepareCallCFunction(num_reg_arguments, 0, scratch);
3235}
3236
3237
3238void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d1, src); }
3239
3240
3241void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d1, src); }
3242
3243
3244void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
3245                                          DoubleRegister src2) {
3246  if (src2.is(d1)) {
3247    DCHECK(!src1.is(d2));
3248    Move(d2, src2);
3249    Move(d1, src1);
3250  } else {
3251    Move(d1, src1);
3252    Move(d2, src2);
3253  }
3254}
3255
3256
3257void MacroAssembler::CallCFunction(ExternalReference function,
3258                                   int num_reg_arguments,
3259                                   int num_double_arguments) {
3260  mov(ip, Operand(function));
3261  CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
3262}
3263
3264
3265void MacroAssembler::CallCFunction(Register function, int num_reg_arguments,
3266                                   int num_double_arguments) {
3267  CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
3268}
3269
3270
3271void MacroAssembler::CallCFunction(ExternalReference function,
3272                                   int num_arguments) {
3273  CallCFunction(function, num_arguments, 0);
3274}
3275
3276
3277void MacroAssembler::CallCFunction(Register function, int num_arguments) {
3278  CallCFunction(function, num_arguments, 0);
3279}
3280
3281
3282void MacroAssembler::CallCFunctionHelper(Register function,
3283                                         int num_reg_arguments,
3284                                         int num_double_arguments) {
3285  DCHECK(has_frame());
3286
3287  // Just call directly. The function called cannot cause a GC, or
3288  // allow preemption, so the return address in the link register
3289  // stays correct.
3290  Register dest = function;
3291  if (ABI_USES_FUNCTION_DESCRIPTORS) {
3292    // AIX/PPC64BE Linux uses a function descriptor. When calling C code be
3293    // aware of this descriptor and pick up values from it
3294    LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(function, kPointerSize));
3295    LoadP(ip, MemOperand(function, 0));
3296    dest = ip;
3297  } else if (ABI_CALL_VIA_IP) {
3298    Move(ip, function);
3299    dest = ip;
3300  }
3301
3302  Call(dest);
3303
3304  // Remove frame bought in PrepareCallCFunction
3305  int stack_passed_arguments =
3306      CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
3307  int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
3308  if (ActivationFrameAlignment() > kPointerSize) {
3309    LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
3310  } else {
3311    addi(sp, sp, Operand(stack_space * kPointerSize));
3312  }
3313}
3314
3315
3316void MacroAssembler::DecodeConstantPoolOffset(Register result,
3317                                              Register location) {
3318  Label overflow_access, done;
3319  DCHECK(!AreAliased(result, location, r0));
3320
3321  // Determine constant pool access type
3322  // Caller has already placed the instruction word at location in result.
3323  ExtractBitRange(r0, result, 31, 26);
3324  cmpi(r0, Operand(ADDIS >> 26));
3325  beq(&overflow_access);
3326
3327  // Regular constant pool access
3328  // extract the load offset
3329  andi(result, result, Operand(kImm16Mask));
3330  b(&done);
3331
3332  bind(&overflow_access);
3333  // Overflow constant pool access
3334  // shift addis immediate
3335  slwi(r0, result, Operand(16));
3336  // sign-extend and add the load offset
3337  lwz(result, MemOperand(location, kInstrSize));
3338  extsh(result, result);
3339  add(result, r0, result);
3340
3341  bind(&done);
3342}
3343
3344
3345void MacroAssembler::CheckPageFlag(
3346    Register object,
3347    Register scratch,  // scratch may be same register as object
3348    int mask, Condition cc, Label* condition_met) {
3349  DCHECK(cc == ne || cc == eq);
3350  ClearRightImm(scratch, object, Operand(kPageSizeBits));
3351  LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3352
3353  And(r0, scratch, Operand(mask), SetRC);
3354
3355  if (cc == ne) {
3356    bne(condition_met, cr0);
3357  }
3358  if (cc == eq) {
3359    beq(condition_met, cr0);
3360  }
3361}
3362
3363
3364void MacroAssembler::JumpIfBlack(Register object, Register scratch0,
3365                                 Register scratch1, Label* on_black) {
3366  HasColor(object, scratch0, scratch1, on_black, 1, 1);  // kBlackBitPattern.
3367  DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
3368}
3369
3370
3371void MacroAssembler::HasColor(Register object, Register bitmap_scratch,
3372                              Register mask_scratch, Label* has_color,
3373                              int first_bit, int second_bit) {
3374  DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
3375
3376  GetMarkBits(object, bitmap_scratch, mask_scratch);
3377
3378  Label other_color, word_boundary;
3379  lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3380  // Test the first bit
3381  and_(r0, ip, mask_scratch, SetRC);
3382  b(first_bit == 1 ? eq : ne, &other_color, cr0);
3383  // Shift left 1
3384  // May need to load the next cell
3385  slwi(mask_scratch, mask_scratch, Operand(1), SetRC);
3386  beq(&word_boundary, cr0);
3387  // Test the second bit
3388  and_(r0, ip, mask_scratch, SetRC);
3389  b(second_bit == 1 ? ne : eq, has_color, cr0);
3390  b(&other_color);
3391
3392  bind(&word_boundary);
3393  lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kIntSize));
3394  andi(r0, ip, Operand(1));
3395  b(second_bit == 1 ? ne : eq, has_color, cr0);
3396  bind(&other_color);
3397}
3398
3399
3400void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg,
3401                                 Register mask_reg) {
3402  DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
3403  DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
3404  lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
3405  and_(bitmap_reg, addr_reg, r0);
3406  const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
3407  ExtractBitRange(mask_reg, addr_reg, kLowBits - 1, kPointerSizeLog2);
3408  ExtractBitRange(ip, addr_reg, kPageSizeBits - 1, kLowBits);
3409  ShiftLeftImm(ip, ip, Operand(Bitmap::kBytesPerCellLog2));
3410  add(bitmap_reg, bitmap_reg, ip);
3411  li(ip, Operand(1));
3412  slw(mask_reg, ip, mask_reg);
3413}
3414
3415
3416void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
3417                                 Register mask_scratch, Register load_scratch,
3418                                 Label* value_is_white) {
3419  DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
3420  GetMarkBits(value, bitmap_scratch, mask_scratch);
3421
3422  // If the value is black or grey we don't need to do anything.
3423  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3424  DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
3425  DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
3426  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3427
3428  // Since both black and grey have a 1 in the first position and white does
3429  // not have a 1 there we only need to check one bit.
3430  lwz(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3431  and_(r0, mask_scratch, load_scratch, SetRC);
3432  beq(value_is_white, cr0);
3433}
3434
3435
3436// Saturate a value into 8-bit unsigned integer
3437//   if input_value < 0, output_value is 0
3438//   if input_value > 255, output_value is 255
3439//   otherwise output_value is the input_value
3440void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
3441  int satval = (1 << 8) - 1;
3442
3443  if (CpuFeatures::IsSupported(ISELECT)) {
3444    // set to 0 if negative
3445    cmpi(input_reg, Operand::Zero());
3446    isel(lt, output_reg, r0, input_reg);
3447
3448    // set to satval if > satval
3449    li(r0, Operand(satval));
3450    cmpi(output_reg, Operand(satval));
3451    isel(lt, output_reg, output_reg, r0);
3452  } else {
3453    Label done, negative_label, overflow_label;
3454    cmpi(input_reg, Operand::Zero());
3455    blt(&negative_label);
3456
3457    cmpi(input_reg, Operand(satval));
3458    bgt(&overflow_label);
3459    if (!output_reg.is(input_reg)) {
3460      mr(output_reg, input_reg);
3461    }
3462    b(&done);
3463
3464    bind(&negative_label);
3465    li(output_reg, Operand::Zero());  // set to 0 if negative
3466    b(&done);
3467
3468    bind(&overflow_label);  // set to satval if > satval
3469    li(output_reg, Operand(satval));
3470
3471    bind(&done);
3472  }
3473}
3474
3475
3476void MacroAssembler::SetRoundingMode(FPRoundingMode RN) { mtfsfi(7, RN); }
3477
3478
3479void MacroAssembler::ResetRoundingMode() {
3480  mtfsfi(7, kRoundToNearest);  // reset (default is kRoundToNearest)
3481}
3482
3483
3484void MacroAssembler::ClampDoubleToUint8(Register result_reg,
3485                                        DoubleRegister input_reg,
3486                                        DoubleRegister double_scratch) {
3487  Label above_zero;
3488  Label done;
3489  Label in_bounds;
3490
3491  LoadDoubleLiteral(double_scratch, 0.0, result_reg);
3492  fcmpu(input_reg, double_scratch);
3493  bgt(&above_zero);
3494
3495  // Double value is less than zero, NaN or Inf, return 0.
3496  LoadIntLiteral(result_reg, 0);
3497  b(&done);
3498
3499  // Double value is >= 255, return 255.
3500  bind(&above_zero);
3501  LoadDoubleLiteral(double_scratch, 255.0, result_reg);
3502  fcmpu(input_reg, double_scratch);
3503  ble(&in_bounds);
3504  LoadIntLiteral(result_reg, 255);
3505  b(&done);
3506
3507  // In 0-255 range, round and truncate.
3508  bind(&in_bounds);
3509
3510  // round to nearest (default rounding mode)
3511  fctiw(double_scratch, input_reg);
3512  MovDoubleLowToInt(result_reg, double_scratch);
3513  bind(&done);
3514}
3515
3516
3517void MacroAssembler::LoadInstanceDescriptors(Register map,
3518                                             Register descriptors) {
3519  LoadP(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
3520}
3521
3522
3523void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
3524  lwz(dst, FieldMemOperand(map, Map::kBitField3Offset));
3525  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
3526}
3527
3528
3529void MacroAssembler::EnumLength(Register dst, Register map) {
3530  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3531  lwz(dst, FieldMemOperand(map, Map::kBitField3Offset));
3532  ExtractBitMask(dst, dst, Map::EnumLengthBits::kMask);
3533  SmiTag(dst);
3534}
3535
3536
3537void MacroAssembler::LoadAccessor(Register dst, Register holder,
3538                                  int accessor_index,
3539                                  AccessorComponent accessor) {
3540  LoadP(dst, FieldMemOperand(holder, HeapObject::kMapOffset));
3541  LoadInstanceDescriptors(dst, dst);
3542  LoadP(dst,
3543        FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
3544  const int getterOffset = AccessorPair::kGetterOffset;
3545  const int setterOffset = AccessorPair::kSetterOffset;
3546  int offset = ((accessor == ACCESSOR_GETTER) ? getterOffset : setterOffset);
3547  LoadP(dst, FieldMemOperand(dst, offset));
3548}
3549
3550
3551void MacroAssembler::CheckEnumCache(Label* call_runtime) {
3552  Register null_value = r8;
3553  Register empty_fixed_array_value = r9;
3554  LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
3555  Label next, start;
3556  mr(r5, r3);
3557
3558  // Check if the enum length field is properly initialized, indicating that
3559  // there is an enum cache.
3560  LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
3561
3562  EnumLength(r6, r4);
3563  CmpSmiLiteral(r6, Smi::FromInt(kInvalidEnumCacheSentinel), r0);
3564  beq(call_runtime);
3565
3566  LoadRoot(null_value, Heap::kNullValueRootIndex);
3567  b(&start);
3568
3569  bind(&next);
3570  LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
3571
3572  // For all objects but the receiver, check that the cache is empty.
3573  EnumLength(r6, r4);
3574  CmpSmiLiteral(r6, Smi::kZero, r0);
3575  bne(call_runtime);
3576
3577  bind(&start);
3578
3579  // Check that there are no elements. Register r5 contains the current JS
3580  // object we've reached through the prototype chain.
3581  Label no_elements;
3582  LoadP(r5, FieldMemOperand(r5, JSObject::kElementsOffset));
3583  cmp(r5, empty_fixed_array_value);
3584  beq(&no_elements);
3585
3586  // Second chance, the object may be using the empty slow element dictionary.
3587  CompareRoot(r5, Heap::kEmptySlowElementDictionaryRootIndex);
3588  bne(call_runtime);
3589
3590  bind(&no_elements);
3591  LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset));
3592  cmp(r5, null_value);
3593  bne(&next);
3594}
3595
3596
3597////////////////////////////////////////////////////////////////////////////////
3598//
3599// New MacroAssembler Interfaces added for PPC
3600//
3601////////////////////////////////////////////////////////////////////////////////
3602void MacroAssembler::LoadIntLiteral(Register dst, int value) {
3603  mov(dst, Operand(value));
3604}
3605
3606
3607void MacroAssembler::LoadSmiLiteral(Register dst, Smi* smi) {
3608  mov(dst, Operand(smi));
3609}
3610
3611
3612void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, double value,
3613                                       Register scratch) {
3614  if (FLAG_enable_embedded_constant_pool && is_constant_pool_available() &&
3615      !(scratch.is(r0) && ConstantPoolAccessIsInOverflow())) {
3616    ConstantPoolEntry::Access access = ConstantPoolAddEntry(value);
3617    if (access == ConstantPoolEntry::OVERFLOWED) {
3618      addis(scratch, kConstantPoolRegister, Operand::Zero());
3619      lfd(result, MemOperand(scratch, 0));
3620    } else {
3621      lfd(result, MemOperand(kConstantPoolRegister, 0));
3622    }
3623    return;
3624  }
3625
3626  // avoid gcc strict aliasing error using union cast
3627  union {
3628    double dval;
3629#if V8_TARGET_ARCH_PPC64
3630    intptr_t ival;
3631#else
3632    intptr_t ival[2];
3633#endif
3634  } litVal;
3635
3636  litVal.dval = value;
3637
3638#if V8_TARGET_ARCH_PPC64
3639  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3640    mov(scratch, Operand(litVal.ival));
3641    mtfprd(result, scratch);
3642    return;
3643  }
3644#endif
3645
3646  addi(sp, sp, Operand(-kDoubleSize));
3647#if V8_TARGET_ARCH_PPC64
3648  mov(scratch, Operand(litVal.ival));
3649  std(scratch, MemOperand(sp));
3650#else
3651  LoadIntLiteral(scratch, litVal.ival[0]);
3652  stw(scratch, MemOperand(sp, 0));
3653  LoadIntLiteral(scratch, litVal.ival[1]);
3654  stw(scratch, MemOperand(sp, 4));
3655#endif
3656  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3657  lfd(result, MemOperand(sp, 0));
3658  addi(sp, sp, Operand(kDoubleSize));
3659}
3660
3661
3662void MacroAssembler::MovIntToDouble(DoubleRegister dst, Register src,
3663                                    Register scratch) {
3664// sign-extend src to 64-bit
3665#if V8_TARGET_ARCH_PPC64
3666  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3667    mtfprwa(dst, src);
3668    return;
3669  }
3670#endif
3671
3672  DCHECK(!src.is(scratch));
3673  subi(sp, sp, Operand(kDoubleSize));
3674#if V8_TARGET_ARCH_PPC64
3675  extsw(scratch, src);
3676  std(scratch, MemOperand(sp, 0));
3677#else
3678  srawi(scratch, src, 31);
3679  stw(scratch, MemOperand(sp, Register::kExponentOffset));
3680  stw(src, MemOperand(sp, Register::kMantissaOffset));
3681#endif
3682  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3683  lfd(dst, MemOperand(sp, 0));
3684  addi(sp, sp, Operand(kDoubleSize));
3685}
3686
3687
3688void MacroAssembler::MovUnsignedIntToDouble(DoubleRegister dst, Register src,
3689                                            Register scratch) {
3690// zero-extend src to 64-bit
3691#if V8_TARGET_ARCH_PPC64
3692  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3693    mtfprwz(dst, src);
3694    return;
3695  }
3696#endif
3697
3698  DCHECK(!src.is(scratch));
3699  subi(sp, sp, Operand(kDoubleSize));
3700#if V8_TARGET_ARCH_PPC64
3701  clrldi(scratch, src, Operand(32));
3702  std(scratch, MemOperand(sp, 0));
3703#else
3704  li(scratch, Operand::Zero());
3705  stw(scratch, MemOperand(sp, Register::kExponentOffset));
3706  stw(src, MemOperand(sp, Register::kMantissaOffset));
3707#endif
3708  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3709  lfd(dst, MemOperand(sp, 0));
3710  addi(sp, sp, Operand(kDoubleSize));
3711}
3712
3713
3714void MacroAssembler::MovInt64ToDouble(DoubleRegister dst,
3715#if !V8_TARGET_ARCH_PPC64
3716                                      Register src_hi,
3717#endif
3718                                      Register src) {
3719#if V8_TARGET_ARCH_PPC64
3720  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3721    mtfprd(dst, src);
3722    return;
3723  }
3724#endif
3725
3726  subi(sp, sp, Operand(kDoubleSize));
3727#if V8_TARGET_ARCH_PPC64
3728  std(src, MemOperand(sp, 0));
3729#else
3730  stw(src_hi, MemOperand(sp, Register::kExponentOffset));
3731  stw(src, MemOperand(sp, Register::kMantissaOffset));
3732#endif
3733  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3734  lfd(dst, MemOperand(sp, 0));
3735  addi(sp, sp, Operand(kDoubleSize));
3736}
3737
3738
3739#if V8_TARGET_ARCH_PPC64
3740void MacroAssembler::MovInt64ComponentsToDouble(DoubleRegister dst,
3741                                                Register src_hi,
3742                                                Register src_lo,
3743                                                Register scratch) {
3744  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3745    sldi(scratch, src_hi, Operand(32));
3746    rldimi(scratch, src_lo, 0, 32);
3747    mtfprd(dst, scratch);
3748    return;
3749  }
3750
3751  subi(sp, sp, Operand(kDoubleSize));
3752  stw(src_hi, MemOperand(sp, Register::kExponentOffset));
3753  stw(src_lo, MemOperand(sp, Register::kMantissaOffset));
3754  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3755  lfd(dst, MemOperand(sp));
3756  addi(sp, sp, Operand(kDoubleSize));
3757}
3758#endif
3759
3760
3761void MacroAssembler::InsertDoubleLow(DoubleRegister dst, Register src,
3762                                     Register scratch) {
3763#if V8_TARGET_ARCH_PPC64
3764  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3765    mffprd(scratch, dst);
3766    rldimi(scratch, src, 0, 32);
3767    mtfprd(dst, scratch);
3768    return;
3769  }
3770#endif
3771
3772  subi(sp, sp, Operand(kDoubleSize));
3773  stfd(dst, MemOperand(sp));
3774  stw(src, MemOperand(sp, Register::kMantissaOffset));
3775  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3776  lfd(dst, MemOperand(sp));
3777  addi(sp, sp, Operand(kDoubleSize));
3778}
3779
3780
3781void MacroAssembler::InsertDoubleHigh(DoubleRegister dst, Register src,
3782                                      Register scratch) {
3783#if V8_TARGET_ARCH_PPC64
3784  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3785    mffprd(scratch, dst);
3786    rldimi(scratch, src, 32, 0);
3787    mtfprd(dst, scratch);
3788    return;
3789  }
3790#endif
3791
3792  subi(sp, sp, Operand(kDoubleSize));
3793  stfd(dst, MemOperand(sp));
3794  stw(src, MemOperand(sp, Register::kExponentOffset));
3795  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3796  lfd(dst, MemOperand(sp));
3797  addi(sp, sp, Operand(kDoubleSize));
3798}
3799
3800
3801void MacroAssembler::MovDoubleLowToInt(Register dst, DoubleRegister src) {
3802#if V8_TARGET_ARCH_PPC64
3803  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3804    mffprwz(dst, src);
3805    return;
3806  }
3807#endif
3808
3809  subi(sp, sp, Operand(kDoubleSize));
3810  stfd(src, MemOperand(sp));
3811  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3812  lwz(dst, MemOperand(sp, Register::kMantissaOffset));
3813  addi(sp, sp, Operand(kDoubleSize));
3814}
3815
3816
3817void MacroAssembler::MovDoubleHighToInt(Register dst, DoubleRegister src) {
3818#if V8_TARGET_ARCH_PPC64
3819  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3820    mffprd(dst, src);
3821    srdi(dst, dst, Operand(32));
3822    return;
3823  }
3824#endif
3825
3826  subi(sp, sp, Operand(kDoubleSize));
3827  stfd(src, MemOperand(sp));
3828  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3829  lwz(dst, MemOperand(sp, Register::kExponentOffset));
3830  addi(sp, sp, Operand(kDoubleSize));
3831}
3832
3833
3834void MacroAssembler::MovDoubleToInt64(
3835#if !V8_TARGET_ARCH_PPC64
3836    Register dst_hi,
3837#endif
3838    Register dst, DoubleRegister src) {
3839#if V8_TARGET_ARCH_PPC64
3840  if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
3841    mffprd(dst, src);
3842    return;
3843  }
3844#endif
3845
3846  subi(sp, sp, Operand(kDoubleSize));
3847  stfd(src, MemOperand(sp));
3848  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3849#if V8_TARGET_ARCH_PPC64
3850  ld(dst, MemOperand(sp, 0));
3851#else
3852  lwz(dst_hi, MemOperand(sp, Register::kExponentOffset));
3853  lwz(dst, MemOperand(sp, Register::kMantissaOffset));
3854#endif
3855  addi(sp, sp, Operand(kDoubleSize));
3856}
3857
3858
3859void MacroAssembler::MovIntToFloat(DoubleRegister dst, Register src) {
3860  subi(sp, sp, Operand(kFloatSize));
3861  stw(src, MemOperand(sp, 0));
3862  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3863  lfs(dst, MemOperand(sp, 0));
3864  addi(sp, sp, Operand(kFloatSize));
3865}
3866
3867
3868void MacroAssembler::MovFloatToInt(Register dst, DoubleRegister src) {
3869  subi(sp, sp, Operand(kFloatSize));
3870  frsp(src, src);
3871  stfs(src, MemOperand(sp, 0));
3872  nop(GROUP_ENDING_NOP);  // LHS/RAW optimization
3873  lwz(dst, MemOperand(sp, 0));
3874  addi(sp, sp, Operand(kFloatSize));
3875}
3876
3877
3878void MacroAssembler::Add(Register dst, Register src, intptr_t value,
3879                         Register scratch) {
3880  if (is_int16(value)) {
3881    addi(dst, src, Operand(value));
3882  } else {
3883    mov(scratch, Operand(value));
3884    add(dst, src, scratch);
3885  }
3886}
3887
3888
3889void MacroAssembler::Cmpi(Register src1, const Operand& src2, Register scratch,
3890                          CRegister cr) {
3891  intptr_t value = src2.immediate();
3892  if (is_int16(value)) {
3893    cmpi(src1, src2, cr);
3894  } else {
3895    mov(scratch, src2);
3896    cmp(src1, scratch, cr);
3897  }
3898}
3899
3900
3901void MacroAssembler::Cmpli(Register src1, const Operand& src2, Register scratch,
3902                           CRegister cr) {
3903  intptr_t value = src2.immediate();
3904  if (is_uint16(value)) {
3905    cmpli(src1, src2, cr);
3906  } else {
3907    mov(scratch, src2);
3908    cmpl(src1, scratch, cr);
3909  }
3910}
3911
3912
3913void MacroAssembler::Cmpwi(Register src1, const Operand& src2, Register scratch,
3914                           CRegister cr) {
3915  intptr_t value = src2.immediate();
3916  if (is_int16(value)) {
3917    cmpwi(src1, src2, cr);
3918  } else {
3919    mov(scratch, src2);
3920    cmpw(src1, scratch, cr);
3921  }
3922}
3923
3924
3925void MacroAssembler::Cmplwi(Register src1, const Operand& src2,
3926                            Register scratch, CRegister cr) {
3927  intptr_t value = src2.immediate();
3928  if (is_uint16(value)) {
3929    cmplwi(src1, src2, cr);
3930  } else {
3931    mov(scratch, src2);
3932    cmplw(src1, scratch, cr);
3933  }
3934}
3935
3936
3937void MacroAssembler::And(Register ra, Register rs, const Operand& rb,
3938                         RCBit rc) {
3939  if (rb.is_reg()) {
3940    and_(ra, rs, rb.rm(), rc);
3941  } else {
3942    if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == SetRC) {
3943      andi(ra, rs, rb);
3944    } else {
3945      // mov handles the relocation.
3946      DCHECK(!rs.is(r0));
3947      mov(r0, rb);
3948      and_(ra, rs, r0, rc);
3949    }
3950  }
3951}
3952
3953
3954void MacroAssembler::Or(Register ra, Register rs, const Operand& rb, RCBit rc) {
3955  if (rb.is_reg()) {
3956    orx(ra, rs, rb.rm(), rc);
3957  } else {
3958    if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) {
3959      ori(ra, rs, rb);
3960    } else {
3961      // mov handles the relocation.
3962      DCHECK(!rs.is(r0));
3963      mov(r0, rb);
3964      orx(ra, rs, r0, rc);
3965    }
3966  }
3967}
3968
3969
3970void MacroAssembler::Xor(Register ra, Register rs, const Operand& rb,
3971                         RCBit rc) {
3972  if (rb.is_reg()) {
3973    xor_(ra, rs, rb.rm(), rc);
3974  } else {
3975    if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) {
3976      xori(ra, rs, rb);
3977    } else {
3978      // mov handles the relocation.
3979      DCHECK(!rs.is(r0));
3980      mov(r0, rb);
3981      xor_(ra, rs, r0, rc);
3982    }
3983  }
3984}
3985
3986
3987void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
3988                                   CRegister cr) {
3989#if V8_TARGET_ARCH_PPC64
3990  LoadSmiLiteral(scratch, smi);
3991  cmp(src1, scratch, cr);
3992#else
3993  Cmpi(src1, Operand(smi), scratch, cr);
3994#endif
3995}
3996
3997
3998void MacroAssembler::CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
3999                                    CRegister cr) {
4000#if V8_TARGET_ARCH_PPC64
4001  LoadSmiLiteral(scratch, smi);
4002  cmpl(src1, scratch, cr);
4003#else
4004  Cmpli(src1, Operand(smi), scratch, cr);
4005#endif
4006}
4007
4008
4009void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi,
4010                                   Register scratch) {
4011#if V8_TARGET_ARCH_PPC64
4012  LoadSmiLiteral(scratch, smi);
4013  add(dst, src, scratch);
4014#else
4015  Add(dst, src, reinterpret_cast<intptr_t>(smi), scratch);
4016#endif
4017}
4018
4019
4020void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi,
4021                                   Register scratch) {
4022#if V8_TARGET_ARCH_PPC64
4023  LoadSmiLiteral(scratch, smi);
4024  sub(dst, src, scratch);
4025#else
4026  Add(dst, src, -(reinterpret_cast<intptr_t>(smi)), scratch);
4027#endif
4028}
4029
4030
4031void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi,
4032                                   Register scratch, RCBit rc) {
4033#if V8_TARGET_ARCH_PPC64
4034  LoadSmiLiteral(scratch, smi);
4035  and_(dst, src, scratch, rc);
4036#else
4037  And(dst, src, Operand(smi), rc);
4038#endif
4039}
4040
4041
4042// Load a "pointer" sized value from the memory location
4043void MacroAssembler::LoadP(Register dst, const MemOperand& mem,
4044                           Register scratch) {
4045  int offset = mem.offset();
4046
4047  if (!is_int16(offset)) {
4048    /* cannot use d-form */
4049    DCHECK(!scratch.is(no_reg));
4050    mov(scratch, Operand(offset));
4051    LoadPX(dst, MemOperand(mem.ra(), scratch));
4052  } else {
4053#if V8_TARGET_ARCH_PPC64
4054    int misaligned = (offset & 3);
4055    if (misaligned) {
4056      // adjust base to conform to offset alignment requirements
4057      // Todo: enhance to use scratch if dst is unsuitable
4058      DCHECK(!dst.is(r0));
4059      addi(dst, mem.ra(), Operand((offset & 3) - 4));
4060      ld(dst, MemOperand(dst, (offset & ~3) + 4));
4061    } else {
4062      ld(dst, mem);
4063    }
4064#else
4065    lwz(dst, mem);
4066#endif
4067  }
4068}
4069
4070void MacroAssembler::LoadPU(Register dst, const MemOperand& mem,
4071                            Register scratch) {
4072  int offset = mem.offset();
4073
4074  if (!is_int16(offset)) {
4075    /* cannot use d-form */
4076    DCHECK(!scratch.is(no_reg));
4077    mov(scratch, Operand(offset));
4078    LoadPUX(dst, MemOperand(mem.ra(), scratch));
4079  } else {
4080#if V8_TARGET_ARCH_PPC64
4081    ldu(dst, mem);
4082#else
4083    lwzu(dst, mem);
4084#endif
4085  }
4086}
4087
4088// Store a "pointer" sized value to the memory location
4089void MacroAssembler::StoreP(Register src, const MemOperand& mem,
4090                            Register scratch) {
4091  int offset = mem.offset();
4092
4093  if (!is_int16(offset)) {
4094    /* cannot use d-form */
4095    DCHECK(!scratch.is(no_reg));
4096    mov(scratch, Operand(offset));
4097    StorePX(src, MemOperand(mem.ra(), scratch));
4098  } else {
4099#if V8_TARGET_ARCH_PPC64
4100    int misaligned = (offset & 3);
4101    if (misaligned) {
4102      // adjust base to conform to offset alignment requirements
4103      // a suitable scratch is required here
4104      DCHECK(!scratch.is(no_reg));
4105      if (scratch.is(r0)) {
4106        LoadIntLiteral(scratch, offset);
4107        stdx(src, MemOperand(mem.ra(), scratch));
4108      } else {
4109        addi(scratch, mem.ra(), Operand((offset & 3) - 4));
4110        std(src, MemOperand(scratch, (offset & ~3) + 4));
4111      }
4112    } else {
4113      std(src, mem);
4114    }
4115#else
4116    stw(src, mem);
4117#endif
4118  }
4119}
4120
4121void MacroAssembler::StorePU(Register src, const MemOperand& mem,
4122                             Register scratch) {
4123  int offset = mem.offset();
4124
4125  if (!is_int16(offset)) {
4126    /* cannot use d-form */
4127    DCHECK(!scratch.is(no_reg));
4128    mov(scratch, Operand(offset));
4129    StorePUX(src, MemOperand(mem.ra(), scratch));
4130  } else {
4131#if V8_TARGET_ARCH_PPC64
4132    stdu(src, mem);
4133#else
4134    stwu(src, mem);
4135#endif
4136  }
4137}
4138
4139void MacroAssembler::LoadWordArith(Register dst, const MemOperand& mem,
4140                                   Register scratch) {
4141  int offset = mem.offset();
4142
4143  if (!is_int16(offset)) {
4144    DCHECK(!scratch.is(no_reg));
4145    mov(scratch, Operand(offset));
4146    lwax(dst, MemOperand(mem.ra(), scratch));
4147  } else {
4148#if V8_TARGET_ARCH_PPC64
4149    int misaligned = (offset & 3);
4150    if (misaligned) {
4151      // adjust base to conform to offset alignment requirements
4152      // Todo: enhance to use scratch if dst is unsuitable
4153      DCHECK(!dst.is(r0));
4154      addi(dst, mem.ra(), Operand((offset & 3) - 4));
4155      lwa(dst, MemOperand(dst, (offset & ~3) + 4));
4156    } else {
4157      lwa(dst, mem);
4158    }
4159#else
4160    lwz(dst, mem);
4161#endif
4162  }
4163}
4164
4165
4166// Variable length depending on whether offset fits into immediate field
4167// MemOperand currently only supports d-form
4168void MacroAssembler::LoadWord(Register dst, const MemOperand& mem,
4169                              Register scratch) {
4170  Register base = mem.ra();
4171  int offset = mem.offset();
4172
4173  if (!is_int16(offset)) {
4174    LoadIntLiteral(scratch, offset);
4175    lwzx(dst, MemOperand(base, scratch));
4176  } else {
4177    lwz(dst, mem);
4178  }
4179}
4180
4181
4182// Variable length depending on whether offset fits into immediate field
4183// MemOperand current only supports d-form
4184void MacroAssembler::StoreWord(Register src, const MemOperand& mem,
4185                               Register scratch) {
4186  Register base = mem.ra();
4187  int offset = mem.offset();
4188
4189  if (!is_int16(offset)) {
4190    LoadIntLiteral(scratch, offset);
4191    stwx(src, MemOperand(base, scratch));
4192  } else {
4193    stw(src, mem);
4194  }
4195}
4196
4197
4198void MacroAssembler::LoadHalfWordArith(Register dst, const MemOperand& mem,
4199                                       Register scratch) {
4200  int offset = mem.offset();
4201
4202  if (!is_int16(offset)) {
4203    DCHECK(!scratch.is(no_reg));
4204    mov(scratch, Operand(offset));
4205    lhax(dst, MemOperand(mem.ra(), scratch));
4206  } else {
4207    lha(dst, mem);
4208  }
4209}
4210
4211
4212// Variable length depending on whether offset fits into immediate field
4213// MemOperand currently only supports d-form
4214void MacroAssembler::LoadHalfWord(Register dst, const MemOperand& mem,
4215                                  Register scratch) {
4216  Register base = mem.ra();
4217  int offset = mem.offset();
4218
4219  if (!is_int16(offset)) {
4220    LoadIntLiteral(scratch, offset);
4221    lhzx(dst, MemOperand(base, scratch));
4222  } else {
4223    lhz(dst, mem);
4224  }
4225}
4226
4227
4228// Variable length depending on whether offset fits into immediate field
4229// MemOperand current only supports d-form
4230void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem,
4231                                   Register scratch) {
4232  Register base = mem.ra();
4233  int offset = mem.offset();
4234
4235  if (!is_int16(offset)) {
4236    LoadIntLiteral(scratch, offset);
4237    sthx(src, MemOperand(base, scratch));
4238  } else {
4239    sth(src, mem);
4240  }
4241}
4242
4243
4244// Variable length depending on whether offset fits into immediate field
4245// MemOperand currently only supports d-form
4246void MacroAssembler::LoadByte(Register dst, const MemOperand& mem,
4247                              Register scratch) {
4248  Register base = mem.ra();
4249  int offset = mem.offset();
4250
4251  if (!is_int16(offset)) {
4252    LoadIntLiteral(scratch, offset);
4253    lbzx(dst, MemOperand(base, scratch));
4254  } else {
4255    lbz(dst, mem);
4256  }
4257}
4258
4259
4260// Variable length depending on whether offset fits into immediate field
4261// MemOperand current only supports d-form
4262void MacroAssembler::StoreByte(Register src, const MemOperand& mem,
4263                               Register scratch) {
4264  Register base = mem.ra();
4265  int offset = mem.offset();
4266
4267  if (!is_int16(offset)) {
4268    LoadIntLiteral(scratch, offset);
4269    stbx(src, MemOperand(base, scratch));
4270  } else {
4271    stb(src, mem);
4272  }
4273}
4274
4275
4276void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem,
4277                                        Representation r, Register scratch) {
4278  DCHECK(!r.IsDouble());
4279  if (r.IsInteger8()) {
4280    LoadByte(dst, mem, scratch);
4281    extsb(dst, dst);
4282  } else if (r.IsUInteger8()) {
4283    LoadByte(dst, mem, scratch);
4284  } else if (r.IsInteger16()) {
4285    LoadHalfWordArith(dst, mem, scratch);
4286  } else if (r.IsUInteger16()) {
4287    LoadHalfWord(dst, mem, scratch);
4288#if V8_TARGET_ARCH_PPC64
4289  } else if (r.IsInteger32()) {
4290    LoadWordArith(dst, mem, scratch);
4291#endif
4292  } else {
4293    LoadP(dst, mem, scratch);
4294  }
4295}
4296
4297
4298void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem,
4299                                         Representation r, Register scratch) {
4300  DCHECK(!r.IsDouble());
4301  if (r.IsInteger8() || r.IsUInteger8()) {
4302    StoreByte(src, mem, scratch);
4303  } else if (r.IsInteger16() || r.IsUInteger16()) {
4304    StoreHalfWord(src, mem, scratch);
4305#if V8_TARGET_ARCH_PPC64
4306  } else if (r.IsInteger32()) {
4307    StoreWord(src, mem, scratch);
4308#endif
4309  } else {
4310    if (r.IsHeapObject()) {
4311      AssertNotSmi(src);
4312    } else if (r.IsSmi()) {
4313      AssertSmi(src);
4314    }
4315    StoreP(src, mem, scratch);
4316  }
4317}
4318
4319
4320void MacroAssembler::LoadDouble(DoubleRegister dst, const MemOperand& mem,
4321                                Register scratch) {
4322  Register base = mem.ra();
4323  int offset = mem.offset();
4324
4325  if (!is_int16(offset)) {
4326    mov(scratch, Operand(offset));
4327    lfdx(dst, MemOperand(base, scratch));
4328  } else {
4329    lfd(dst, mem);
4330  }
4331}
4332
4333void MacroAssembler::LoadDoubleU(DoubleRegister dst, const MemOperand& mem,
4334                                Register scratch) {
4335  Register base = mem.ra();
4336  int offset = mem.offset();
4337
4338  if (!is_int16(offset)) {
4339    mov(scratch, Operand(offset));
4340    lfdux(dst, MemOperand(base, scratch));
4341  } else {
4342    lfdu(dst, mem);
4343  }
4344}
4345
4346void MacroAssembler::LoadSingle(DoubleRegister dst, const MemOperand& mem,
4347                                Register scratch) {
4348  Register base = mem.ra();
4349  int offset = mem.offset();
4350
4351  if (!is_int16(offset)) {
4352    mov(scratch, Operand(offset));
4353    lfsx(dst, MemOperand(base, scratch));
4354  } else {
4355    lfs(dst, mem);
4356  }
4357}
4358
4359void MacroAssembler::LoadSingleU(DoubleRegister dst, const MemOperand& mem,
4360                                Register scratch) {
4361  Register base = mem.ra();
4362  int offset = mem.offset();
4363
4364  if (!is_int16(offset)) {
4365    mov(scratch, Operand(offset));
4366    lfsux(dst, MemOperand(base, scratch));
4367  } else {
4368    lfsu(dst, mem);
4369  }
4370}
4371
4372void MacroAssembler::StoreDouble(DoubleRegister src, const MemOperand& mem,
4373                                 Register scratch) {
4374  Register base = mem.ra();
4375  int offset = mem.offset();
4376
4377  if (!is_int16(offset)) {
4378    mov(scratch, Operand(offset));
4379    stfdx(src, MemOperand(base, scratch));
4380  } else {
4381    stfd(src, mem);
4382  }
4383}
4384
4385void MacroAssembler::StoreDoubleU(DoubleRegister src, const MemOperand& mem,
4386                                 Register scratch) {
4387  Register base = mem.ra();
4388  int offset = mem.offset();
4389
4390  if (!is_int16(offset)) {
4391    mov(scratch, Operand(offset));
4392    stfdux(src, MemOperand(base, scratch));
4393  } else {
4394    stfdu(src, mem);
4395  }
4396}
4397
4398void MacroAssembler::StoreSingle(DoubleRegister src, const MemOperand& mem,
4399                                 Register scratch) {
4400  Register base = mem.ra();
4401  int offset = mem.offset();
4402
4403  if (!is_int16(offset)) {
4404    mov(scratch, Operand(offset));
4405    stfsx(src, MemOperand(base, scratch));
4406  } else {
4407    stfs(src, mem);
4408  }
4409}
4410
4411void MacroAssembler::StoreSingleU(DoubleRegister src, const MemOperand& mem,
4412                                 Register scratch) {
4413  Register base = mem.ra();
4414  int offset = mem.offset();
4415
4416  if (!is_int16(offset)) {
4417    mov(scratch, Operand(offset));
4418    stfsux(src, MemOperand(base, scratch));
4419  } else {
4420    stfsu(src, mem);
4421  }
4422}
4423
4424void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg,
4425                                                     Register scratch_reg,
4426                                                     Register scratch2_reg,
4427                                                     Label* no_memento_found) {
4428  Label map_check;
4429  Label top_check;
4430  ExternalReference new_space_allocation_top_adr =
4431      ExternalReference::new_space_allocation_top_address(isolate());
4432  const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
4433  const int kMementoLastWordOffset =
4434      kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
4435  Register mask = scratch2_reg;
4436
4437  DCHECK(!AreAliased(receiver_reg, scratch_reg, mask));
4438
4439  // Bail out if the object is not in new space.
4440  JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found);
4441
4442  DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
4443  lis(mask, Operand((~Page::kPageAlignmentMask >> 16)));
4444  addi(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset));
4445
4446  // If the object is in new space, we need to check whether it is on the same
4447  // page as the current top.
4448  mov(ip, Operand(new_space_allocation_top_adr));
4449  LoadP(ip, MemOperand(ip));
4450  Xor(r0, scratch_reg, Operand(ip));
4451  and_(r0, r0, mask, SetRC);
4452  beq(&top_check, cr0);
4453  // The object is on a different page than allocation top. Bail out if the
4454  // object sits on the page boundary as no memento can follow and we cannot
4455  // touch the memory following it.
4456  xor_(r0, scratch_reg, receiver_reg);
4457  and_(r0, r0, mask, SetRC);
4458  bne(no_memento_found, cr0);
4459  // Continue with the actual map check.
4460  b(&map_check);
4461  // If top is on the same page as the current object, we need to check whether
4462  // we are below top.
4463  bind(&top_check);
4464  cmp(scratch_reg, ip);
4465  bge(no_memento_found);
4466  // Memento map check.
4467  bind(&map_check);
4468  LoadP(scratch_reg, MemOperand(receiver_reg, kMementoMapOffset));
4469  Cmpi(scratch_reg, Operand(isolate()->factory()->allocation_memento_map()),
4470       r0);
4471}
4472
4473Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
4474                                   Register reg4, Register reg5,
4475                                   Register reg6) {
4476  RegList regs = 0;
4477  if (reg1.is_valid()) regs |= reg1.bit();
4478  if (reg2.is_valid()) regs |= reg2.bit();
4479  if (reg3.is_valid()) regs |= reg3.bit();
4480  if (reg4.is_valid()) regs |= reg4.bit();
4481  if (reg5.is_valid()) regs |= reg5.bit();
4482  if (reg6.is_valid()) regs |= reg6.bit();
4483
4484  const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
4485  for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
4486    int code = config->GetAllocatableGeneralCode(i);
4487    Register candidate = Register::from_code(code);
4488    if (regs & candidate.bit()) continue;
4489    return candidate;
4490  }
4491  UNREACHABLE();
4492  return no_reg;
4493}
4494
4495
4496void MacroAssembler::JumpIfDictionaryInPrototypeChain(Register object,
4497                                                      Register scratch0,
4498                                                      Register scratch1,
4499                                                      Label* found) {
4500  DCHECK(!scratch1.is(scratch0));
4501  Register current = scratch0;
4502  Label loop_again, end;
4503
4504  // scratch contained elements pointer.
4505  mr(current, object);
4506  LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset));
4507  LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset));
4508  CompareRoot(current, Heap::kNullValueRootIndex);
4509  beq(&end);
4510
4511  // Loop based on the map going up the prototype chain.
4512  bind(&loop_again);
4513  LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset));
4514
4515  STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE);
4516  STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
4517  lbz(scratch1, FieldMemOperand(current, Map::kInstanceTypeOffset));
4518  cmpi(scratch1, Operand(JS_OBJECT_TYPE));
4519  blt(found);
4520
4521  lbz(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4522  DecodeField<Map::ElementsKindBits>(scratch1);
4523  cmpi(scratch1, Operand(DICTIONARY_ELEMENTS));
4524  beq(found);
4525  LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset));
4526  CompareRoot(current, Heap::kNullValueRootIndex);
4527  bne(&loop_again);
4528
4529  bind(&end);
4530}
4531
4532
4533#ifdef DEBUG
4534bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4,
4535                Register reg5, Register reg6, Register reg7, Register reg8,
4536                Register reg9, Register reg10) {
4537  int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() +
4538                        reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
4539                        reg7.is_valid() + reg8.is_valid() + reg9.is_valid() +
4540                        reg10.is_valid();
4541
4542  RegList regs = 0;
4543  if (reg1.is_valid()) regs |= reg1.bit();
4544  if (reg2.is_valid()) regs |= reg2.bit();
4545  if (reg3.is_valid()) regs |= reg3.bit();
4546  if (reg4.is_valid()) regs |= reg4.bit();
4547  if (reg5.is_valid()) regs |= reg5.bit();
4548  if (reg6.is_valid()) regs |= reg6.bit();
4549  if (reg7.is_valid()) regs |= reg7.bit();
4550  if (reg8.is_valid()) regs |= reg8.bit();
4551  if (reg9.is_valid()) regs |= reg9.bit();
4552  if (reg10.is_valid()) regs |= reg10.bit();
4553  int n_of_non_aliasing_regs = NumRegs(regs);
4554
4555  return n_of_valid_regs != n_of_non_aliasing_regs;
4556}
4557#endif
4558
4559
4560CodePatcher::CodePatcher(Isolate* isolate, byte* address, int instructions,
4561                         FlushICache flush_cache)
4562    : address_(address),
4563      size_(instructions * Assembler::kInstrSize),
4564      masm_(isolate, address, size_ + Assembler::kGap, CodeObjectRequired::kNo),
4565      flush_cache_(flush_cache) {
4566  // Create a new macro assembler pointing to the address of the code to patch.
4567  // The size is adjusted with kGap on order for the assembler to generate size
4568  // bytes of instructions without failing with buffer size constraints.
4569  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4570}
4571
4572
4573CodePatcher::~CodePatcher() {
4574  // Indicate that code has changed.
4575  if (flush_cache_ == FLUSH) {
4576    Assembler::FlushICache(masm_.isolate(), address_, size_);
4577  }
4578
4579  // Check that the code was patched as expected.
4580  DCHECK(masm_.pc_ == address_ + size_);
4581  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4582}
4583
4584
4585void CodePatcher::Emit(Instr instr) { masm()->emit(instr); }
4586
4587
4588void CodePatcher::EmitCondition(Condition cond) {
4589  Instr instr = Assembler::instr_at(masm_.pc_);
4590  switch (cond) {
4591    case eq:
4592      instr = (instr & ~kCondMask) | BT;
4593      break;
4594    case ne:
4595      instr = (instr & ~kCondMask) | BF;
4596      break;
4597    default:
4598      UNIMPLEMENTED();
4599  }
4600  masm_.emit(instr);
4601}
4602
4603
4604void MacroAssembler::TruncatingDiv(Register result, Register dividend,
4605                                   int32_t divisor) {
4606  DCHECK(!dividend.is(result));
4607  DCHECK(!dividend.is(r0));
4608  DCHECK(!result.is(r0));
4609  base::MagicNumbersForDivision<uint32_t> mag =
4610      base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
4611  mov(r0, Operand(mag.multiplier));
4612  mulhw(result, dividend, r0);
4613  bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
4614  if (divisor > 0 && neg) {
4615    add(result, result, dividend);
4616  }
4617  if (divisor < 0 && !neg && mag.multiplier > 0) {
4618    sub(result, result, dividend);
4619  }
4620  if (mag.shift > 0) srawi(result, result, mag.shift);
4621  ExtractBit(r0, dividend, 31);
4622  add(result, result, r0);
4623}
4624
4625}  // namespace internal
4626}  // namespace v8
4627
4628#endif  // V8_TARGET_ARCH_PPC
4629