eap.c revision 61d9df3e62aaa0e87ad05452fcb95142159a17b6
1/*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18#include "includes.h"
19
20#include "common.h"
21#include "pcsc_funcs.h"
22#include "state_machine.h"
23#include "ext_password.h"
24#include "crypto/crypto.h"
25#include "crypto/tls.h"
26#include "common/wpa_ctrl.h"
27#include "eap_common/eap_wsc_common.h"
28#include "eap_i.h"
29#include "eap_config.h"
30
31#define STATE_MACHINE_DATA struct eap_sm
32#define STATE_MACHINE_DEBUG_PREFIX "EAP"
33
34#define EAP_MAX_AUTH_ROUNDS 50
35#define EAP_CLIENT_TIMEOUT_DEFAULT 60
36
37
38static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
39				  EapType method);
40static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
41static void eap_sm_processIdentity(struct eap_sm *sm,
42				   const struct wpabuf *req);
43static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
44static struct wpabuf * eap_sm_buildNotify(int id);
45static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
46#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
47static const char * eap_sm_method_state_txt(EapMethodState state);
48static const char * eap_sm_decision_txt(EapDecision decision);
49#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
50
51
52
53static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
54{
55	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
56}
57
58
59static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
60			   Boolean value)
61{
62	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
63}
64
65
66static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
67{
68	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
69}
70
71
72static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
73			  unsigned int value)
74{
75	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
76}
77
78
79static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
80{
81	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
82}
83
84
85static void eap_notify_status(struct eap_sm *sm, const char *status,
86				      const char *parameter)
87{
88	wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
89		   status, parameter);
90	if (sm->eapol_cb->notify_status)
91		sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
92}
93
94
95static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
96{
97	ext_password_free(sm->ext_pw_buf);
98	sm->ext_pw_buf = NULL;
99
100	if (sm->m == NULL || sm->eap_method_priv == NULL)
101		return;
102
103	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
104		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
105	sm->m->deinit(sm, sm->eap_method_priv);
106	sm->eap_method_priv = NULL;
107	sm->m = NULL;
108}
109
110
111/**
112 * eap_allowed_method - Check whether EAP method is allowed
113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
114 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
115 * @method: EAP type
116 * Returns: 1 = allowed EAP method, 0 = not allowed
117 */
118int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
119{
120	struct eap_peer_config *config = eap_get_config(sm);
121	int i;
122	struct eap_method_type *m;
123
124	if (config == NULL || config->eap_methods == NULL)
125		return 1;
126
127	m = config->eap_methods;
128	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
129		     m[i].method != EAP_TYPE_NONE; i++) {
130		if (m[i].vendor == vendor && m[i].method == method)
131			return 1;
132	}
133	return 0;
134}
135
136
137/*
138 * This state initializes state machine variables when the machine is
139 * activated (portEnabled = TRUE). This is also used when re-starting
140 * authentication (eapRestart == TRUE).
141 */
142SM_STATE(EAP, INITIALIZE)
143{
144	SM_ENTRY(EAP, INITIALIZE);
145	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
146	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
147	    !sm->prev_failure) {
148		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
149			   "fast reauthentication");
150		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
151	} else {
152		eap_deinit_prev_method(sm, "INITIALIZE");
153	}
154	sm->selectedMethod = EAP_TYPE_NONE;
155	sm->methodState = METHOD_NONE;
156	sm->allowNotifications = TRUE;
157	sm->decision = DECISION_FAIL;
158	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
159	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
160	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
161	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
162	os_free(sm->eapKeyData);
163	sm->eapKeyData = NULL;
164	sm->eapKeyAvailable = FALSE;
165	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
166	sm->lastId = -1; /* new session - make sure this does not match with
167			  * the first EAP-Packet */
168	/*
169	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
170	 * seemed to be able to trigger cases where both were set and if EAPOL
171	 * state machine uses eapNoResp first, it may end up not sending a real
172	 * reply correctly. This occurred when the workaround in FAIL state set
173	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
174	 * something else(?)
175	 */
176	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
177	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
178	sm->num_rounds = 0;
179	sm->prev_failure = 0;
180}
181
182
183/*
184 * This state is reached whenever service from the lower layer is interrupted
185 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
186 * occurs when the port becomes enabled.
187 */
188SM_STATE(EAP, DISABLED)
189{
190	SM_ENTRY(EAP, DISABLED);
191	sm->num_rounds = 0;
192	/*
193	 * RFC 4137 does not describe clearing of idleWhile here, but doing so
194	 * allows the timer tick to be stopped more quickly when EAP is not in
195	 * use.
196	 */
197	eapol_set_int(sm, EAPOL_idleWhile, 0);
198}
199
200
201/*
202 * The state machine spends most of its time here, waiting for something to
203 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
204 * SEND_RESPONSE states.
205 */
206SM_STATE(EAP, IDLE)
207{
208	SM_ENTRY(EAP, IDLE);
209}
210
211
212/*
213 * This state is entered when an EAP packet is received (eapReq == TRUE) to
214 * parse the packet header.
215 */
216SM_STATE(EAP, RECEIVED)
217{
218	const struct wpabuf *eapReqData;
219
220	SM_ENTRY(EAP, RECEIVED);
221	eapReqData = eapol_get_eapReqData(sm);
222	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
223	eap_sm_parseEapReq(sm, eapReqData);
224	sm->num_rounds++;
225}
226
227
228/*
229 * This state is entered when a request for a new type comes in. Either the
230 * correct method is started, or a Nak response is built.
231 */
232SM_STATE(EAP, GET_METHOD)
233{
234	int reinit;
235	EapType method;
236	const struct eap_method *eap_method;
237
238	SM_ENTRY(EAP, GET_METHOD);
239
240	if (sm->reqMethod == EAP_TYPE_EXPANDED)
241		method = sm->reqVendorMethod;
242	else
243		method = sm->reqMethod;
244
245	eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
246
247	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
248		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
249			   sm->reqVendor, method);
250		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
251			"vendor=%u method=%u -> NAK",
252			sm->reqVendor, method);
253		eap_notify_status(sm, "refuse proposed method",
254				  eap_method ?  eap_method->name : "unknown");
255		goto nak;
256	}
257
258	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
259		"vendor=%u method=%u", sm->reqVendor, method);
260
261	eap_notify_status(sm, "accept proposed method",
262			  eap_method ?  eap_method->name : "unknown");
263	/*
264	 * RFC 4137 does not define specific operation for fast
265	 * re-authentication (session resumption). The design here is to allow
266	 * the previously used method data to be maintained for
267	 * re-authentication if the method support session resumption.
268	 * Otherwise, the previously used method data is freed and a new method
269	 * is allocated here.
270	 */
271	if (sm->fast_reauth &&
272	    sm->m && sm->m->vendor == sm->reqVendor &&
273	    sm->m->method == method &&
274	    sm->m->has_reauth_data &&
275	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
276		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
277			   " for fast re-authentication");
278		reinit = 1;
279	} else {
280		eap_deinit_prev_method(sm, "GET_METHOD");
281		reinit = 0;
282	}
283
284	sm->selectedMethod = sm->reqMethod;
285	if (sm->m == NULL)
286		sm->m = eap_method;
287	if (!sm->m) {
288		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
289			   "vendor %d method %d",
290			   sm->reqVendor, method);
291		goto nak;
292	}
293
294	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
295
296	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
297		   "vendor %u method %u (%s)",
298		   sm->reqVendor, method, sm->m->name);
299	if (reinit)
300		sm->eap_method_priv = sm->m->init_for_reauth(
301			sm, sm->eap_method_priv);
302	else
303		sm->eap_method_priv = sm->m->init(sm);
304
305	if (sm->eap_method_priv == NULL) {
306		struct eap_peer_config *config = eap_get_config(sm);
307		wpa_msg(sm->msg_ctx, MSG_INFO,
308			"EAP: Failed to initialize EAP method: vendor %u "
309			"method %u (%s)",
310			sm->reqVendor, method, sm->m->name);
311		sm->m = NULL;
312		sm->methodState = METHOD_NONE;
313		sm->selectedMethod = EAP_TYPE_NONE;
314		if (sm->reqMethod == EAP_TYPE_TLS && config &&
315		    (config->pending_req_pin ||
316		     config->pending_req_passphrase)) {
317			/*
318			 * Return without generating Nak in order to allow
319			 * entering of PIN code or passphrase to retry the
320			 * current EAP packet.
321			 */
322			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
323				   "request - skip Nak");
324			return;
325		}
326
327		goto nak;
328	}
329
330	sm->methodState = METHOD_INIT;
331	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
332		"EAP vendor %u method %u (%s) selected",
333		sm->reqVendor, method, sm->m->name);
334	return;
335
336nak:
337	wpabuf_free(sm->eapRespData);
338	sm->eapRespData = NULL;
339	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
340}
341
342
343/*
344 * The method processing happens here. The request from the authenticator is
345 * processed, and an appropriate response packet is built.
346 */
347SM_STATE(EAP, METHOD)
348{
349	struct wpabuf *eapReqData;
350	struct eap_method_ret ret;
351
352	SM_ENTRY(EAP, METHOD);
353	if (sm->m == NULL) {
354		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
355		return;
356	}
357
358	eapReqData = eapol_get_eapReqData(sm);
359	if (!eap_hdr_len_valid(eapReqData, 1))
360		return;
361
362	/*
363	 * Get ignore, methodState, decision, allowNotifications, and
364	 * eapRespData. RFC 4137 uses three separate method procedure (check,
365	 * process, and buildResp) in this state. These have been combined into
366	 * a single function call to m->process() in order to optimize EAP
367	 * method implementation interface a bit. These procedures are only
368	 * used from within this METHOD state, so there is no need to keep
369	 * these as separate C functions.
370	 *
371	 * The RFC 4137 procedures return values as follows:
372	 * ignore = m.check(eapReqData)
373	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
374	 * eapRespData = m.buildResp(reqId)
375	 */
376	os_memset(&ret, 0, sizeof(ret));
377	ret.ignore = sm->ignore;
378	ret.methodState = sm->methodState;
379	ret.decision = sm->decision;
380	ret.allowNotifications = sm->allowNotifications;
381	wpabuf_free(sm->eapRespData);
382	sm->eapRespData = NULL;
383	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
384					 eapReqData);
385	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
386		   "methodState=%s decision=%s",
387		   ret.ignore ? "TRUE" : "FALSE",
388		   eap_sm_method_state_txt(ret.methodState),
389		   eap_sm_decision_txt(ret.decision));
390
391	sm->ignore = ret.ignore;
392	if (sm->ignore)
393		return;
394	sm->methodState = ret.methodState;
395	sm->decision = ret.decision;
396	sm->allowNotifications = ret.allowNotifications;
397
398	if (sm->m->isKeyAvailable && sm->m->getKey &&
399	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
400		os_free(sm->eapKeyData);
401		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
402					       &sm->eapKeyDataLen);
403	}
404}
405
406
407/*
408 * This state signals the lower layer that a response packet is ready to be
409 * sent.
410 */
411SM_STATE(EAP, SEND_RESPONSE)
412{
413	SM_ENTRY(EAP, SEND_RESPONSE);
414	wpabuf_free(sm->lastRespData);
415	if (sm->eapRespData) {
416		if (sm->workaround)
417			os_memcpy(sm->last_md5, sm->req_md5, 16);
418		sm->lastId = sm->reqId;
419		sm->lastRespData = wpabuf_dup(sm->eapRespData);
420		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
421	} else
422		sm->lastRespData = NULL;
423	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
424	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
425}
426
427
428/*
429 * This state signals the lower layer that the request was discarded, and no
430 * response packet will be sent at this time.
431 */
432SM_STATE(EAP, DISCARD)
433{
434	SM_ENTRY(EAP, DISCARD);
435	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
436	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
437}
438
439
440/*
441 * Handles requests for Identity method and builds a response.
442 */
443SM_STATE(EAP, IDENTITY)
444{
445	const struct wpabuf *eapReqData;
446
447	SM_ENTRY(EAP, IDENTITY);
448	eapReqData = eapol_get_eapReqData(sm);
449	if (!eap_hdr_len_valid(eapReqData, 1))
450		return;
451	eap_sm_processIdentity(sm, eapReqData);
452	wpabuf_free(sm->eapRespData);
453	sm->eapRespData = NULL;
454	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
455}
456
457
458/*
459 * Handles requests for Notification method and builds a response.
460 */
461SM_STATE(EAP, NOTIFICATION)
462{
463	const struct wpabuf *eapReqData;
464
465	SM_ENTRY(EAP, NOTIFICATION);
466	eapReqData = eapol_get_eapReqData(sm);
467	if (!eap_hdr_len_valid(eapReqData, 1))
468		return;
469	eap_sm_processNotify(sm, eapReqData);
470	wpabuf_free(sm->eapRespData);
471	sm->eapRespData = NULL;
472	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
473}
474
475
476/*
477 * This state retransmits the previous response packet.
478 */
479SM_STATE(EAP, RETRANSMIT)
480{
481	SM_ENTRY(EAP, RETRANSMIT);
482	wpabuf_free(sm->eapRespData);
483	if (sm->lastRespData)
484		sm->eapRespData = wpabuf_dup(sm->lastRespData);
485	else
486		sm->eapRespData = NULL;
487}
488
489
490/*
491 * This state is entered in case of a successful completion of authentication
492 * and state machine waits here until port is disabled or EAP authentication is
493 * restarted.
494 */
495SM_STATE(EAP, SUCCESS)
496{
497	SM_ENTRY(EAP, SUCCESS);
498	if (sm->eapKeyData != NULL)
499		sm->eapKeyAvailable = TRUE;
500	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
501
502	/*
503	 * RFC 4137 does not clear eapReq here, but this seems to be required
504	 * to avoid processing the same request twice when state machine is
505	 * initialized.
506	 */
507	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
508
509	/*
510	 * RFC 4137 does not set eapNoResp here, but this seems to be required
511	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
512	 * addition, either eapResp or eapNoResp is required to be set after
513	 * processing the received EAP frame.
514	 */
515	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
516
517	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
518		"EAP authentication completed successfully");
519}
520
521
522/*
523 * This state is entered in case of a failure and state machine waits here
524 * until port is disabled or EAP authentication is restarted.
525 */
526SM_STATE(EAP, FAILURE)
527{
528	SM_ENTRY(EAP, FAILURE);
529	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
530
531	/*
532	 * RFC 4137 does not clear eapReq here, but this seems to be required
533	 * to avoid processing the same request twice when state machine is
534	 * initialized.
535	 */
536	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
537
538	/*
539	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
540	 * eapNoResp is required to be set after processing the received EAP
541	 * frame.
542	 */
543	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
544
545	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
546		"EAP authentication failed");
547
548	sm->prev_failure = 1;
549}
550
551
552static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
553{
554	/*
555	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
556	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
557	 * RFC 4137 require that reqId == lastId. In addition, it looks like
558	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
559	 *
560	 * Accept this kind of Id if EAP workarounds are enabled. These are
561	 * unauthenticated plaintext messages, so this should have minimal
562	 * security implications (bit easier to fake EAP-Success/Failure).
563	 */
564	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
565			       reqId == ((lastId + 2) & 0xff))) {
566		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
567			   "identifier field in EAP Success: "
568			   "reqId=%d lastId=%d (these are supposed to be "
569			   "same)", reqId, lastId);
570		return 1;
571	}
572	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
573		   "lastId=%d", reqId, lastId);
574	return 0;
575}
576
577
578/*
579 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
580 */
581
582static void eap_peer_sm_step_idle(struct eap_sm *sm)
583{
584	/*
585	 * The first three transitions are from RFC 4137. The last two are
586	 * local additions to handle special cases with LEAP and PEAP server
587	 * not sending EAP-Success in some cases.
588	 */
589	if (eapol_get_bool(sm, EAPOL_eapReq))
590		SM_ENTER(EAP, RECEIVED);
591	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
592		  sm->decision != DECISION_FAIL) ||
593		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
594		  sm->decision == DECISION_UNCOND_SUCC))
595		SM_ENTER(EAP, SUCCESS);
596	else if (eapol_get_bool(sm, EAPOL_altReject) ||
597		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
598		  sm->decision != DECISION_UNCOND_SUCC) ||
599		 (eapol_get_bool(sm, EAPOL_altAccept) &&
600		  sm->methodState != METHOD_CONT &&
601		  sm->decision == DECISION_FAIL))
602		SM_ENTER(EAP, FAILURE);
603	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
604		 sm->leap_done && sm->decision != DECISION_FAIL &&
605		 sm->methodState == METHOD_DONE)
606		SM_ENTER(EAP, SUCCESS);
607	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
608		 sm->peap_done && sm->decision != DECISION_FAIL &&
609		 sm->methodState == METHOD_DONE)
610		SM_ENTER(EAP, SUCCESS);
611}
612
613
614static int eap_peer_req_is_duplicate(struct eap_sm *sm)
615{
616	int duplicate;
617
618	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
619	if (sm->workaround && duplicate &&
620	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
621		/*
622		 * RFC 4137 uses (reqId == lastId) as the only verification for
623		 * duplicate EAP requests. However, this misses cases where the
624		 * AS is incorrectly using the same id again; and
625		 * unfortunately, such implementations exist. Use MD5 hash as
626		 * an extra verification for the packets being duplicate to
627		 * workaround these issues.
628		 */
629		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
630			   "EAP packets were not identical");
631		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
632			   "duplicate packet");
633		duplicate = 0;
634	}
635
636	return duplicate;
637}
638
639
640static void eap_peer_sm_step_received(struct eap_sm *sm)
641{
642	int duplicate = eap_peer_req_is_duplicate(sm);
643
644	/*
645	 * Two special cases below for LEAP are local additions to work around
646	 * odd LEAP behavior (EAP-Success in the middle of authentication and
647	 * then swapped roles). Other transitions are based on RFC 4137.
648	 */
649	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
650	    (sm->reqId == sm->lastId ||
651	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
652		SM_ENTER(EAP, SUCCESS);
653	else if (sm->methodState != METHOD_CONT &&
654		 ((sm->rxFailure &&
655		   sm->decision != DECISION_UNCOND_SUCC) ||
656		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
657		   (sm->selectedMethod != EAP_TYPE_LEAP ||
658		    sm->methodState != METHOD_MAY_CONT))) &&
659		 (sm->reqId == sm->lastId ||
660		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
661		SM_ENTER(EAP, FAILURE);
662	else if (sm->rxReq && duplicate)
663		SM_ENTER(EAP, RETRANSMIT);
664	else if (sm->rxReq && !duplicate &&
665		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
666		 sm->allowNotifications)
667		SM_ENTER(EAP, NOTIFICATION);
668	else if (sm->rxReq && !duplicate &&
669		 sm->selectedMethod == EAP_TYPE_NONE &&
670		 sm->reqMethod == EAP_TYPE_IDENTITY)
671		SM_ENTER(EAP, IDENTITY);
672	else if (sm->rxReq && !duplicate &&
673		 sm->selectedMethod == EAP_TYPE_NONE &&
674		 sm->reqMethod != EAP_TYPE_IDENTITY &&
675		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
676		SM_ENTER(EAP, GET_METHOD);
677	else if (sm->rxReq && !duplicate &&
678		 sm->reqMethod == sm->selectedMethod &&
679		 sm->methodState != METHOD_DONE)
680		SM_ENTER(EAP, METHOD);
681	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
682		 (sm->rxSuccess || sm->rxResp))
683		SM_ENTER(EAP, METHOD);
684	else
685		SM_ENTER(EAP, DISCARD);
686}
687
688
689static void eap_peer_sm_step_local(struct eap_sm *sm)
690{
691	switch (sm->EAP_state) {
692	case EAP_INITIALIZE:
693		SM_ENTER(EAP, IDLE);
694		break;
695	case EAP_DISABLED:
696		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
697		    !sm->force_disabled)
698			SM_ENTER(EAP, INITIALIZE);
699		break;
700	case EAP_IDLE:
701		eap_peer_sm_step_idle(sm);
702		break;
703	case EAP_RECEIVED:
704		eap_peer_sm_step_received(sm);
705		break;
706	case EAP_GET_METHOD:
707		if (sm->selectedMethod == sm->reqMethod)
708			SM_ENTER(EAP, METHOD);
709		else
710			SM_ENTER(EAP, SEND_RESPONSE);
711		break;
712	case EAP_METHOD:
713		if (sm->ignore)
714			SM_ENTER(EAP, DISCARD);
715		else
716			SM_ENTER(EAP, SEND_RESPONSE);
717		break;
718	case EAP_SEND_RESPONSE:
719		SM_ENTER(EAP, IDLE);
720		break;
721	case EAP_DISCARD:
722		SM_ENTER(EAP, IDLE);
723		break;
724	case EAP_IDENTITY:
725		SM_ENTER(EAP, SEND_RESPONSE);
726		break;
727	case EAP_NOTIFICATION:
728		SM_ENTER(EAP, SEND_RESPONSE);
729		break;
730	case EAP_RETRANSMIT:
731		SM_ENTER(EAP, SEND_RESPONSE);
732		break;
733	case EAP_SUCCESS:
734		break;
735	case EAP_FAILURE:
736		break;
737	}
738}
739
740
741SM_STEP(EAP)
742{
743	/* Global transitions */
744	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
745	    eapol_get_bool(sm, EAPOL_portEnabled))
746		SM_ENTER_GLOBAL(EAP, INITIALIZE);
747	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
748		SM_ENTER_GLOBAL(EAP, DISABLED);
749	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
750		/* RFC 4137 does not place any limit on number of EAP messages
751		 * in an authentication session. However, some error cases have
752		 * ended up in a state were EAP messages were sent between the
753		 * peer and server in a loop (e.g., TLS ACK frame in both
754		 * direction). Since this is quite undesired outcome, limit the
755		 * total number of EAP round-trips and abort authentication if
756		 * this limit is exceeded.
757		 */
758		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
759			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
760				"authentication rounds - abort",
761				EAP_MAX_AUTH_ROUNDS);
762			sm->num_rounds++;
763			SM_ENTER_GLOBAL(EAP, FAILURE);
764		}
765	} else {
766		/* Local transitions */
767		eap_peer_sm_step_local(sm);
768	}
769}
770
771
772static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
773				  EapType method)
774{
775	if (!eap_allowed_method(sm, vendor, method)) {
776		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
777			   "vendor %u method %u", vendor, method);
778		return FALSE;
779	}
780	if (eap_peer_get_eap_method(vendor, method))
781		return TRUE;
782	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
783		   "vendor %u method %u", vendor, method);
784	return FALSE;
785}
786
787
788static struct wpabuf * eap_sm_build_expanded_nak(
789	struct eap_sm *sm, int id, const struct eap_method *methods,
790	size_t count)
791{
792	struct wpabuf *resp;
793	int found = 0;
794	const struct eap_method *m;
795
796	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
797
798	/* RFC 3748 - 5.3.2: Expanded Nak */
799	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
800			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
801	if (resp == NULL)
802		return NULL;
803
804	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
805	wpabuf_put_be32(resp, EAP_TYPE_NAK);
806
807	for (m = methods; m; m = m->next) {
808		if (sm->reqVendor == m->vendor &&
809		    sm->reqVendorMethod == m->method)
810			continue; /* do not allow the current method again */
811		if (eap_allowed_method(sm, m->vendor, m->method)) {
812			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
813				   "vendor=%u method=%u",
814				   m->vendor, m->method);
815			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
816			wpabuf_put_be24(resp, m->vendor);
817			wpabuf_put_be32(resp, m->method);
818
819			found++;
820		}
821	}
822	if (!found) {
823		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
824		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
825		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
826		wpabuf_put_be32(resp, EAP_TYPE_NONE);
827	}
828
829	eap_update_len(resp);
830
831	return resp;
832}
833
834
835static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
836{
837	struct wpabuf *resp;
838	u8 *start;
839	int found = 0, expanded_found = 0;
840	size_t count;
841	const struct eap_method *methods, *m;
842
843	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
844		   "vendor=%u method=%u not allowed)", sm->reqMethod,
845		   sm->reqVendor, sm->reqVendorMethod);
846	methods = eap_peer_get_methods(&count);
847	if (methods == NULL)
848		return NULL;
849	if (sm->reqMethod == EAP_TYPE_EXPANDED)
850		return eap_sm_build_expanded_nak(sm, id, methods, count);
851
852	/* RFC 3748 - 5.3.1: Legacy Nak */
853	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
854			     sizeof(struct eap_hdr) + 1 + count + 1,
855			     EAP_CODE_RESPONSE, id);
856	if (resp == NULL)
857		return NULL;
858
859	start = wpabuf_put(resp, 0);
860	for (m = methods; m; m = m->next) {
861		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
862			continue; /* do not allow the current method again */
863		if (eap_allowed_method(sm, m->vendor, m->method)) {
864			if (m->vendor != EAP_VENDOR_IETF) {
865				if (expanded_found)
866					continue;
867				expanded_found = 1;
868				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
869			} else
870				wpabuf_put_u8(resp, m->method);
871			found++;
872		}
873	}
874	if (!found)
875		wpabuf_put_u8(resp, EAP_TYPE_NONE);
876	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
877
878	eap_update_len(resp);
879
880	return resp;
881}
882
883
884static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
885{
886	const u8 *pos;
887	size_t msg_len;
888
889	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
890		"EAP authentication started");
891
892	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
893			       &msg_len);
894	if (pos == NULL)
895		return;
896
897	/*
898	 * RFC 3748 - 5.1: Identity
899	 * Data field may contain a displayable message in UTF-8. If this
900	 * includes NUL-character, only the data before that should be
901	 * displayed. Some EAP implementasitons may piggy-back additional
902	 * options after the NUL.
903	 */
904	/* TODO: could save displayable message so that it can be shown to the
905	 * user in case of interaction is required */
906	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
907			  pos, msg_len);
908}
909
910
911#ifdef PCSC_FUNCS
912
913/*
914 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
915 * include MNC length field.
916 */
917static int mnc_len_from_imsi(const char *imsi)
918{
919	char mcc_str[4];
920	unsigned int mcc;
921
922	os_memcpy(mcc_str, imsi, 3);
923	mcc_str[3] = '\0';
924	mcc = atoi(mcc_str);
925
926	if (mcc == 244)
927		return 2; /* Networks in Finland use 2-digit MNC */
928
929	return -1;
930}
931
932
933static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
934				    size_t max_len, size_t *imsi_len)
935{
936	int mnc_len;
937	char *pos, mnc[4];
938
939	if (*imsi_len + 36 > max_len) {
940		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
941		return -1;
942	}
943
944	/* MNC (2 or 3 digits) */
945	mnc_len = scard_get_mnc_len(sm->scard_ctx);
946	if (mnc_len < 0)
947		mnc_len = mnc_len_from_imsi(imsi);
948	if (mnc_len < 0) {
949		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
950			   "assuming 3");
951		mnc_len = 3;
952	}
953
954	if (mnc_len == 2) {
955		mnc[0] = '0';
956		mnc[1] = imsi[3];
957		mnc[2] = imsi[4];
958	} else if (mnc_len == 3) {
959		mnc[0] = imsi[3];
960		mnc[1] = imsi[4];
961		mnc[2] = imsi[5];
962	}
963	mnc[3] = '\0';
964
965	pos = imsi + *imsi_len;
966	pos += os_snprintf(pos, imsi + max_len - pos,
967			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
968			   mnc, imsi[0], imsi[1], imsi[2]);
969	*imsi_len = pos - imsi;
970
971	return 0;
972}
973
974
975static int eap_sm_imsi_identity(struct eap_sm *sm,
976				struct eap_peer_config *conf)
977{
978	enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
979	char imsi[100];
980	size_t imsi_len;
981	struct eap_method_type *m = conf->eap_methods;
982	int i;
983
984	imsi_len = sizeof(imsi);
985	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
986		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
987		return -1;
988	}
989
990	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
991
992	if (imsi_len < 7) {
993		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
994		return -1;
995	}
996
997	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
998		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
999		return -1;
1000	}
1001	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1002
1003	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1004			  m[i].method != EAP_TYPE_NONE); i++) {
1005		if (m[i].vendor == EAP_VENDOR_IETF &&
1006		    m[i].method == EAP_TYPE_AKA_PRIME) {
1007			method = EAP_SM_AKA_PRIME;
1008			break;
1009		}
1010
1011		if (m[i].vendor == EAP_VENDOR_IETF &&
1012		    m[i].method == EAP_TYPE_AKA) {
1013			method = EAP_SM_AKA;
1014			break;
1015		}
1016	}
1017
1018	os_free(conf->identity);
1019	conf->identity = os_malloc(1 + imsi_len);
1020	if (conf->identity == NULL) {
1021		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1022			   "IMSI-based identity");
1023		return -1;
1024	}
1025
1026	switch (method) {
1027	case EAP_SM_SIM:
1028		conf->identity[0] = '1';
1029		break;
1030	case EAP_SM_AKA:
1031		conf->identity[0] = '0';
1032		break;
1033	case EAP_SM_AKA_PRIME:
1034		conf->identity[0] = '6';
1035		break;
1036	}
1037	os_memcpy(conf->identity + 1, imsi, imsi_len);
1038	conf->identity_len = 1 + imsi_len;
1039
1040	return 0;
1041}
1042
1043#endif /* PCSC_FUNCS */
1044
1045
1046static int eap_sm_set_scard_pin(struct eap_sm *sm,
1047				struct eap_peer_config *conf)
1048{
1049#ifdef PCSC_FUNCS
1050	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1051		/*
1052		 * Make sure the same PIN is not tried again in order to avoid
1053		 * blocking SIM.
1054		 */
1055		os_free(conf->pin);
1056		conf->pin = NULL;
1057
1058		wpa_printf(MSG_WARNING, "PIN validation failed");
1059		eap_sm_request_pin(sm);
1060		return -1;
1061	}
1062	return 0;
1063#else /* PCSC_FUNCS */
1064	return -1;
1065#endif /* PCSC_FUNCS */
1066}
1067
1068static int eap_sm_get_scard_identity(struct eap_sm *sm,
1069				     struct eap_peer_config *conf)
1070{
1071#ifdef PCSC_FUNCS
1072	if (eap_sm_set_scard_pin(sm, conf))
1073		return -1;
1074
1075	return eap_sm_imsi_identity(sm, conf);
1076#else /* PCSC_FUNCS */
1077	return -1;
1078#endif /* PCSC_FUNCS */
1079}
1080
1081
1082/**
1083 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1084 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1085 * @id: EAP identifier for the packet
1086 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1087 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1088 * failure
1089 *
1090 * This function allocates and builds an EAP-Identity/Response packet for the
1091 * current network. The caller is responsible for freeing the returned data.
1092 */
1093struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1094{
1095	struct eap_peer_config *config = eap_get_config(sm);
1096	struct wpabuf *resp;
1097	const u8 *identity;
1098	size_t identity_len;
1099
1100	if (config == NULL) {
1101		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1102			   "was not available");
1103		return NULL;
1104	}
1105
1106	if (sm->m && sm->m->get_identity &&
1107	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1108					    &identity_len)) != NULL) {
1109		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1110				  "identity", identity, identity_len);
1111	} else if (!encrypted && config->anonymous_identity) {
1112		identity = config->anonymous_identity;
1113		identity_len = config->anonymous_identity_len;
1114		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1115				  identity, identity_len);
1116	} else {
1117		identity = config->identity;
1118		identity_len = config->identity_len;
1119		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1120				  identity, identity_len);
1121	}
1122
1123	if (identity == NULL) {
1124		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1125			   "configuration was not available");
1126		if (config->pcsc) {
1127			if (eap_sm_get_scard_identity(sm, config) < 0)
1128				return NULL;
1129			identity = config->identity;
1130			identity_len = config->identity_len;
1131			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1132					  "IMSI", identity, identity_len);
1133		} else {
1134			eap_sm_request_identity(sm);
1135			return NULL;
1136		}
1137	} else if (config->pcsc) {
1138		if (eap_sm_set_scard_pin(sm, config) < 0)
1139			return NULL;
1140	}
1141
1142	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1143			     EAP_CODE_RESPONSE, id);
1144	if (resp == NULL)
1145		return NULL;
1146
1147	wpabuf_put_data(resp, identity, identity_len);
1148
1149	return resp;
1150}
1151
1152
1153static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1154{
1155	const u8 *pos;
1156	char *msg;
1157	size_t i, msg_len;
1158
1159	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1160			       &msg_len);
1161	if (pos == NULL)
1162		return;
1163	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1164			  pos, msg_len);
1165
1166	msg = os_malloc(msg_len + 1);
1167	if (msg == NULL)
1168		return;
1169	for (i = 0; i < msg_len; i++)
1170		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1171	msg[msg_len] = '\0';
1172	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1173		WPA_EVENT_EAP_NOTIFICATION, msg);
1174	os_free(msg);
1175}
1176
1177
1178static struct wpabuf * eap_sm_buildNotify(int id)
1179{
1180	struct wpabuf *resp;
1181
1182	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1183	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1184			     EAP_CODE_RESPONSE, id);
1185	if (resp == NULL)
1186		return NULL;
1187
1188	return resp;
1189}
1190
1191
1192static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1193{
1194	const struct eap_hdr *hdr;
1195	size_t plen;
1196	const u8 *pos;
1197
1198	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1199	sm->reqId = 0;
1200	sm->reqMethod = EAP_TYPE_NONE;
1201	sm->reqVendor = EAP_VENDOR_IETF;
1202	sm->reqVendorMethod = EAP_TYPE_NONE;
1203
1204	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1205		return;
1206
1207	hdr = wpabuf_head(req);
1208	plen = be_to_host16(hdr->length);
1209	if (plen > wpabuf_len(req)) {
1210		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1211			   "(len=%lu plen=%lu)",
1212			   (unsigned long) wpabuf_len(req),
1213			   (unsigned long) plen);
1214		return;
1215	}
1216
1217	sm->reqId = hdr->identifier;
1218
1219	if (sm->workaround) {
1220		const u8 *addr[1];
1221		addr[0] = wpabuf_head(req);
1222		md5_vector(1, addr, &plen, sm->req_md5);
1223	}
1224
1225	switch (hdr->code) {
1226	case EAP_CODE_REQUEST:
1227		if (plen < sizeof(*hdr) + 1) {
1228			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1229				   "no Type field");
1230			return;
1231		}
1232		sm->rxReq = TRUE;
1233		pos = (const u8 *) (hdr + 1);
1234		sm->reqMethod = *pos++;
1235		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1236			if (plen < sizeof(*hdr) + 8) {
1237				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1238					   "expanded EAP-Packet (plen=%lu)",
1239					   (unsigned long) plen);
1240				return;
1241			}
1242			sm->reqVendor = WPA_GET_BE24(pos);
1243			pos += 3;
1244			sm->reqVendorMethod = WPA_GET_BE32(pos);
1245		}
1246		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1247			   "method=%u vendor=%u vendorMethod=%u",
1248			   sm->reqId, sm->reqMethod, sm->reqVendor,
1249			   sm->reqVendorMethod);
1250		break;
1251	case EAP_CODE_RESPONSE:
1252		if (sm->selectedMethod == EAP_TYPE_LEAP) {
1253			/*
1254			 * LEAP differs from RFC 4137 by using reversed roles
1255			 * for mutual authentication and because of this, we
1256			 * need to accept EAP-Response frames if LEAP is used.
1257			 */
1258			if (plen < sizeof(*hdr) + 1) {
1259				wpa_printf(MSG_DEBUG, "EAP: Too short "
1260					   "EAP-Response - no Type field");
1261				return;
1262			}
1263			sm->rxResp = TRUE;
1264			pos = (const u8 *) (hdr + 1);
1265			sm->reqMethod = *pos;
1266			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1267				   "LEAP method=%d id=%d",
1268				   sm->reqMethod, sm->reqId);
1269			break;
1270		}
1271		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1272		break;
1273	case EAP_CODE_SUCCESS:
1274		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1275		eap_notify_status(sm, "completion", "success");
1276		sm->rxSuccess = TRUE;
1277		break;
1278	case EAP_CODE_FAILURE:
1279		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1280		eap_notify_status(sm, "completion", "failure");
1281		sm->rxFailure = TRUE;
1282		break;
1283	default:
1284		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1285			   "code %d", hdr->code);
1286		break;
1287	}
1288}
1289
1290
1291static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1292				  union tls_event_data *data)
1293{
1294	struct eap_sm *sm = ctx;
1295	char *hash_hex = NULL;
1296
1297	switch (ev) {
1298	case TLS_CERT_CHAIN_SUCCESS:
1299		eap_notify_status(sm, "remote certificate verification",
1300				  "success");
1301		break;
1302	case TLS_CERT_CHAIN_FAILURE:
1303		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1304			"reason=%d depth=%d subject='%s' err='%s'",
1305			data->cert_fail.reason,
1306			data->cert_fail.depth,
1307			data->cert_fail.subject,
1308			data->cert_fail.reason_txt);
1309		eap_notify_status(sm, "remote certificate verification",
1310				  data->cert_fail.reason_txt);
1311		break;
1312	case TLS_PEER_CERTIFICATE:
1313		if (!sm->eapol_cb->notify_cert)
1314			break;
1315
1316		if (data->peer_cert.hash) {
1317			size_t len = data->peer_cert.hash_len * 2 + 1;
1318			hash_hex = os_malloc(len);
1319			if (hash_hex) {
1320				wpa_snprintf_hex(hash_hex, len,
1321						 data->peer_cert.hash,
1322						 data->peer_cert.hash_len);
1323			}
1324		}
1325
1326		sm->eapol_cb->notify_cert(sm->eapol_ctx,
1327					  data->peer_cert.depth,
1328					  data->peer_cert.subject,
1329					  hash_hex, data->peer_cert.cert);
1330		break;
1331	case TLS_ALERT:
1332		if (data->alert.is_local)
1333			eap_notify_status(sm, "local TLS alert",
1334					  data->alert.description);
1335		else
1336			eap_notify_status(sm, "remote TLS alert",
1337					  data->alert.description);
1338		break;
1339	}
1340
1341	os_free(hash_hex);
1342}
1343
1344
1345/**
1346 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1347 * @eapol_ctx: Context data to be used with eapol_cb calls
1348 * @eapol_cb: Pointer to EAPOL callback functions
1349 * @msg_ctx: Context data for wpa_msg() calls
1350 * @conf: EAP configuration
1351 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1352 *
1353 * This function allocates and initializes an EAP state machine. In addition,
1354 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1355 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1356 * state machine. Consequently, the caller must make sure that this data
1357 * structure remains alive while the EAP state machine is active.
1358 */
1359struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1360				 struct eapol_callbacks *eapol_cb,
1361				 void *msg_ctx, struct eap_config *conf)
1362{
1363	struct eap_sm *sm;
1364	struct tls_config tlsconf;
1365
1366	sm = os_zalloc(sizeof(*sm));
1367	if (sm == NULL)
1368		return NULL;
1369	sm->eapol_ctx = eapol_ctx;
1370	sm->eapol_cb = eapol_cb;
1371	sm->msg_ctx = msg_ctx;
1372	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1373	sm->wps = conf->wps;
1374
1375	os_memset(&tlsconf, 0, sizeof(tlsconf));
1376	tlsconf.opensc_engine_path = conf->opensc_engine_path;
1377	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1378	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1379#ifdef CONFIG_FIPS
1380	tlsconf.fips_mode = 1;
1381#endif /* CONFIG_FIPS */
1382	tlsconf.event_cb = eap_peer_sm_tls_event;
1383	tlsconf.cb_ctx = sm;
1384	tlsconf.cert_in_cb = conf->cert_in_cb;
1385	sm->ssl_ctx = tls_init(&tlsconf);
1386	if (sm->ssl_ctx == NULL) {
1387		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1388			   "context.");
1389		os_free(sm);
1390		return NULL;
1391	}
1392
1393	sm->ssl_ctx2 = tls_init(&tlsconf);
1394	if (sm->ssl_ctx2 == NULL) {
1395		wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1396			   "context (2).");
1397		/* Run without separate TLS context within TLS tunnel */
1398	}
1399
1400	return sm;
1401}
1402
1403
1404/**
1405 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1406 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1407 *
1408 * This function deinitializes EAP state machine and frees all allocated
1409 * resources.
1410 */
1411void eap_peer_sm_deinit(struct eap_sm *sm)
1412{
1413	if (sm == NULL)
1414		return;
1415	eap_deinit_prev_method(sm, "EAP deinit");
1416	eap_sm_abort(sm);
1417	if (sm->ssl_ctx2)
1418		tls_deinit(sm->ssl_ctx2);
1419	tls_deinit(sm->ssl_ctx);
1420	os_free(sm);
1421}
1422
1423
1424/**
1425 * eap_peer_sm_step - Step EAP peer state machine
1426 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1427 * Returns: 1 if EAP state was changed or 0 if not
1428 *
1429 * This function advances EAP state machine to a new state to match with the
1430 * current variables. This should be called whenever variables used by the EAP
1431 * state machine have changed.
1432 */
1433int eap_peer_sm_step(struct eap_sm *sm)
1434{
1435	int res = 0;
1436	do {
1437		sm->changed = FALSE;
1438		SM_STEP_RUN(EAP);
1439		if (sm->changed)
1440			res = 1;
1441	} while (sm->changed);
1442	return res;
1443}
1444
1445
1446/**
1447 * eap_sm_abort - Abort EAP authentication
1448 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1449 *
1450 * Release system resources that have been allocated for the authentication
1451 * session without fully deinitializing the EAP state machine.
1452 */
1453void eap_sm_abort(struct eap_sm *sm)
1454{
1455	wpabuf_free(sm->lastRespData);
1456	sm->lastRespData = NULL;
1457	wpabuf_free(sm->eapRespData);
1458	sm->eapRespData = NULL;
1459	os_free(sm->eapKeyData);
1460	sm->eapKeyData = NULL;
1461
1462	/* This is not clearly specified in the EAP statemachines draft, but
1463	 * it seems necessary to make sure that some of the EAPOL variables get
1464	 * cleared for the next authentication. */
1465	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
1466}
1467
1468
1469#ifdef CONFIG_CTRL_IFACE
1470static const char * eap_sm_state_txt(int state)
1471{
1472	switch (state) {
1473	case EAP_INITIALIZE:
1474		return "INITIALIZE";
1475	case EAP_DISABLED:
1476		return "DISABLED";
1477	case EAP_IDLE:
1478		return "IDLE";
1479	case EAP_RECEIVED:
1480		return "RECEIVED";
1481	case EAP_GET_METHOD:
1482		return "GET_METHOD";
1483	case EAP_METHOD:
1484		return "METHOD";
1485	case EAP_SEND_RESPONSE:
1486		return "SEND_RESPONSE";
1487	case EAP_DISCARD:
1488		return "DISCARD";
1489	case EAP_IDENTITY:
1490		return "IDENTITY";
1491	case EAP_NOTIFICATION:
1492		return "NOTIFICATION";
1493	case EAP_RETRANSMIT:
1494		return "RETRANSMIT";
1495	case EAP_SUCCESS:
1496		return "SUCCESS";
1497	case EAP_FAILURE:
1498		return "FAILURE";
1499	default:
1500		return "UNKNOWN";
1501	}
1502}
1503#endif /* CONFIG_CTRL_IFACE */
1504
1505
1506#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1507static const char * eap_sm_method_state_txt(EapMethodState state)
1508{
1509	switch (state) {
1510	case METHOD_NONE:
1511		return "NONE";
1512	case METHOD_INIT:
1513		return "INIT";
1514	case METHOD_CONT:
1515		return "CONT";
1516	case METHOD_MAY_CONT:
1517		return "MAY_CONT";
1518	case METHOD_DONE:
1519		return "DONE";
1520	default:
1521		return "UNKNOWN";
1522	}
1523}
1524
1525
1526static const char * eap_sm_decision_txt(EapDecision decision)
1527{
1528	switch (decision) {
1529	case DECISION_FAIL:
1530		return "FAIL";
1531	case DECISION_COND_SUCC:
1532		return "COND_SUCC";
1533	case DECISION_UNCOND_SUCC:
1534		return "UNCOND_SUCC";
1535	default:
1536		return "UNKNOWN";
1537	}
1538}
1539#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1540
1541
1542#ifdef CONFIG_CTRL_IFACE
1543
1544/**
1545 * eap_sm_get_status - Get EAP state machine status
1546 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1547 * @buf: Buffer for status information
1548 * @buflen: Maximum buffer length
1549 * @verbose: Whether to include verbose status information
1550 * Returns: Number of bytes written to buf.
1551 *
1552 * Query EAP state machine for status information. This function fills in a
1553 * text area with current status information from the EAPOL state machine. If
1554 * the buffer (buf) is not large enough, status information will be truncated
1555 * to fit the buffer.
1556 */
1557int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
1558{
1559	int len, ret;
1560
1561	if (sm == NULL)
1562		return 0;
1563
1564	len = os_snprintf(buf, buflen,
1565			  "EAP state=%s\n",
1566			  eap_sm_state_txt(sm->EAP_state));
1567	if (len < 0 || (size_t) len >= buflen)
1568		return 0;
1569
1570	if (sm->selectedMethod != EAP_TYPE_NONE) {
1571		const char *name;
1572		if (sm->m) {
1573			name = sm->m->name;
1574		} else {
1575			const struct eap_method *m =
1576				eap_peer_get_eap_method(EAP_VENDOR_IETF,
1577							sm->selectedMethod);
1578			if (m)
1579				name = m->name;
1580			else
1581				name = "?";
1582		}
1583		ret = os_snprintf(buf + len, buflen - len,
1584				  "selectedMethod=%d (EAP-%s)\n",
1585				  sm->selectedMethod, name);
1586		if (ret < 0 || (size_t) ret >= buflen - len)
1587			return len;
1588		len += ret;
1589
1590		if (sm->m && sm->m->get_status) {
1591			len += sm->m->get_status(sm, sm->eap_method_priv,
1592						 buf + len, buflen - len,
1593						 verbose);
1594		}
1595	}
1596
1597	if (verbose) {
1598		ret = os_snprintf(buf + len, buflen - len,
1599				  "reqMethod=%d\n"
1600				  "methodState=%s\n"
1601				  "decision=%s\n"
1602				  "ClientTimeout=%d\n",
1603				  sm->reqMethod,
1604				  eap_sm_method_state_txt(sm->methodState),
1605				  eap_sm_decision_txt(sm->decision),
1606				  sm->ClientTimeout);
1607		if (ret < 0 || (size_t) ret >= buflen - len)
1608			return len;
1609		len += ret;
1610	}
1611
1612	return len;
1613}
1614#endif /* CONFIG_CTRL_IFACE */
1615
1616
1617#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
1618static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
1619			   const char *msg, size_t msglen)
1620{
1621	struct eap_peer_config *config;
1622	char *txt = NULL, *tmp;
1623
1624	if (sm == NULL)
1625		return;
1626	config = eap_get_config(sm);
1627	if (config == NULL)
1628		return;
1629
1630	switch (field) {
1631	case WPA_CTRL_REQ_EAP_IDENTITY:
1632		config->pending_req_identity++;
1633		break;
1634	case WPA_CTRL_REQ_EAP_PASSWORD:
1635		config->pending_req_password++;
1636		break;
1637	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
1638		config->pending_req_new_password++;
1639		break;
1640	case WPA_CTRL_REQ_EAP_PIN:
1641		config->pending_req_pin++;
1642		break;
1643	case WPA_CTRL_REQ_EAP_OTP:
1644		if (msg) {
1645			tmp = os_malloc(msglen + 3);
1646			if (tmp == NULL)
1647				return;
1648			tmp[0] = '[';
1649			os_memcpy(tmp + 1, msg, msglen);
1650			tmp[msglen + 1] = ']';
1651			tmp[msglen + 2] = '\0';
1652			txt = tmp;
1653			os_free(config->pending_req_otp);
1654			config->pending_req_otp = tmp;
1655			config->pending_req_otp_len = msglen + 3;
1656		} else {
1657			if (config->pending_req_otp == NULL)
1658				return;
1659			txt = config->pending_req_otp;
1660		}
1661		break;
1662	case WPA_CTRL_REQ_EAP_PASSPHRASE:
1663		config->pending_req_passphrase++;
1664		break;
1665	default:
1666		return;
1667	}
1668
1669	if (sm->eapol_cb->eap_param_needed)
1670		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
1671}
1672#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1673#define eap_sm_request(sm, type, msg, msglen) do { } while (0)
1674#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
1675
1676const char * eap_sm_get_method_name(struct eap_sm *sm)
1677{
1678	if (sm->m == NULL)
1679		return "UNKNOWN";
1680	return sm->m->name;
1681}
1682
1683
1684/**
1685 * eap_sm_request_identity - Request identity from user (ctrl_iface)
1686 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1687 *
1688 * EAP methods can call this function to request identity information for the
1689 * current network. This is normally called when the identity is not included
1690 * in the network configuration. The request will be sent to monitor programs
1691 * through the control interface.
1692 */
1693void eap_sm_request_identity(struct eap_sm *sm)
1694{
1695	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
1696}
1697
1698
1699/**
1700 * eap_sm_request_password - Request password from user (ctrl_iface)
1701 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1702 *
1703 * EAP methods can call this function to request password information for the
1704 * current network. This is normally called when the password is not included
1705 * in the network configuration. The request will be sent to monitor programs
1706 * through the control interface.
1707 */
1708void eap_sm_request_password(struct eap_sm *sm)
1709{
1710	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
1711}
1712
1713
1714/**
1715 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
1716 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1717 *
1718 * EAP methods can call this function to request new password information for
1719 * the current network. This is normally called when the EAP method indicates
1720 * that the current password has expired and password change is required. The
1721 * request will be sent to monitor programs through the control interface.
1722 */
1723void eap_sm_request_new_password(struct eap_sm *sm)
1724{
1725	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
1726}
1727
1728
1729/**
1730 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
1731 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1732 *
1733 * EAP methods can call this function to request SIM or smart card PIN
1734 * information for the current network. This is normally called when the PIN is
1735 * not included in the network configuration. The request will be sent to
1736 * monitor programs through the control interface.
1737 */
1738void eap_sm_request_pin(struct eap_sm *sm)
1739{
1740	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
1741}
1742
1743
1744/**
1745 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
1746 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1747 * @msg: Message to be displayed to the user when asking for OTP
1748 * @msg_len: Length of the user displayable message
1749 *
1750 * EAP methods can call this function to request open time password (OTP) for
1751 * the current network. The request will be sent to monitor programs through
1752 * the control interface.
1753 */
1754void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
1755{
1756	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
1757}
1758
1759
1760/**
1761 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
1762 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1763 *
1764 * EAP methods can call this function to request passphrase for a private key
1765 * for the current network. This is normally called when the passphrase is not
1766 * included in the network configuration. The request will be sent to monitor
1767 * programs through the control interface.
1768 */
1769void eap_sm_request_passphrase(struct eap_sm *sm)
1770{
1771	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
1772}
1773
1774
1775/**
1776 * eap_sm_notify_ctrl_attached - Notification of attached monitor
1777 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1778 *
1779 * Notify EAP state machines that a monitor was attached to the control
1780 * interface to trigger re-sending of pending requests for user input.
1781 */
1782void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
1783{
1784	struct eap_peer_config *config = eap_get_config(sm);
1785
1786	if (config == NULL)
1787		return;
1788
1789	/* Re-send any pending requests for user data since a new control
1790	 * interface was added. This handles cases where the EAP authentication
1791	 * starts immediately after system startup when the user interface is
1792	 * not yet running. */
1793	if (config->pending_req_identity)
1794		eap_sm_request_identity(sm);
1795	if (config->pending_req_password)
1796		eap_sm_request_password(sm);
1797	if (config->pending_req_new_password)
1798		eap_sm_request_new_password(sm);
1799	if (config->pending_req_otp)
1800		eap_sm_request_otp(sm, NULL, 0);
1801	if (config->pending_req_pin)
1802		eap_sm_request_pin(sm);
1803	if (config->pending_req_passphrase)
1804		eap_sm_request_passphrase(sm);
1805}
1806
1807
1808static int eap_allowed_phase2_type(int vendor, int type)
1809{
1810	if (vendor != EAP_VENDOR_IETF)
1811		return 0;
1812	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
1813		type != EAP_TYPE_FAST;
1814}
1815
1816
1817/**
1818 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
1819 * @name: EAP method name, e.g., MD5
1820 * @vendor: Buffer for returning EAP Vendor-Id
1821 * Returns: EAP method type or %EAP_TYPE_NONE if not found
1822 *
1823 * This function maps EAP type names into EAP type numbers that are allowed for
1824 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
1825 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
1826 */
1827u32 eap_get_phase2_type(const char *name, int *vendor)
1828{
1829	int v;
1830	u8 type = eap_peer_get_type(name, &v);
1831	if (eap_allowed_phase2_type(v, type)) {
1832		*vendor = v;
1833		return type;
1834	}
1835	*vendor = EAP_VENDOR_IETF;
1836	return EAP_TYPE_NONE;
1837}
1838
1839
1840/**
1841 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
1842 * @config: Pointer to a network configuration
1843 * @count: Pointer to a variable to be filled with number of returned EAP types
1844 * Returns: Pointer to allocated type list or %NULL on failure
1845 *
1846 * This function generates an array of allowed EAP phase 2 (tunneled) types for
1847 * the given network configuration.
1848 */
1849struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
1850					      size_t *count)
1851{
1852	struct eap_method_type *buf;
1853	u32 method;
1854	int vendor;
1855	size_t mcount;
1856	const struct eap_method *methods, *m;
1857
1858	methods = eap_peer_get_methods(&mcount);
1859	if (methods == NULL)
1860		return NULL;
1861	*count = 0;
1862	buf = os_malloc(mcount * sizeof(struct eap_method_type));
1863	if (buf == NULL)
1864		return NULL;
1865
1866	for (m = methods; m; m = m->next) {
1867		vendor = m->vendor;
1868		method = m->method;
1869		if (eap_allowed_phase2_type(vendor, method)) {
1870			if (vendor == EAP_VENDOR_IETF &&
1871			    method == EAP_TYPE_TLS && config &&
1872			    config->private_key2 == NULL)
1873				continue;
1874			buf[*count].vendor = vendor;
1875			buf[*count].method = method;
1876			(*count)++;
1877		}
1878	}
1879
1880	return buf;
1881}
1882
1883
1884/**
1885 * eap_set_fast_reauth - Update fast_reauth setting
1886 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1887 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
1888 */
1889void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
1890{
1891	sm->fast_reauth = enabled;
1892}
1893
1894
1895/**
1896 * eap_set_workaround - Update EAP workarounds setting
1897 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1898 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
1899 */
1900void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
1901{
1902	sm->workaround = workaround;
1903}
1904
1905
1906/**
1907 * eap_get_config - Get current network configuration
1908 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1909 * Returns: Pointer to the current network configuration or %NULL if not found
1910 *
1911 * EAP peer methods should avoid using this function if they can use other
1912 * access functions, like eap_get_config_identity() and
1913 * eap_get_config_password(), that do not require direct access to
1914 * struct eap_peer_config.
1915 */
1916struct eap_peer_config * eap_get_config(struct eap_sm *sm)
1917{
1918	return sm->eapol_cb->get_config(sm->eapol_ctx);
1919}
1920
1921
1922/**
1923 * eap_get_config_identity - Get identity from the network configuration
1924 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1925 * @len: Buffer for the length of the identity
1926 * Returns: Pointer to the identity or %NULL if not found
1927 */
1928const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
1929{
1930	struct eap_peer_config *config = eap_get_config(sm);
1931	if (config == NULL)
1932		return NULL;
1933	*len = config->identity_len;
1934	return config->identity;
1935}
1936
1937
1938static int eap_get_ext_password(struct eap_sm *sm,
1939				struct eap_peer_config *config)
1940{
1941	char *name;
1942
1943	if (config->password == NULL)
1944		return -1;
1945
1946	name = os_zalloc(config->password_len + 1);
1947	if (name == NULL)
1948		return -1;
1949	os_memcpy(name, config->password, config->password_len);
1950
1951	ext_password_free(sm->ext_pw_buf);
1952	sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
1953	os_free(name);
1954
1955	return sm->ext_pw_buf == NULL ? -1 : 0;
1956}
1957
1958
1959/**
1960 * eap_get_config_password - Get password from the network configuration
1961 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1962 * @len: Buffer for the length of the password
1963 * Returns: Pointer to the password or %NULL if not found
1964 */
1965const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
1966{
1967	struct eap_peer_config *config = eap_get_config(sm);
1968	if (config == NULL)
1969		return NULL;
1970
1971	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
1972		if (eap_get_ext_password(sm, config) < 0)
1973			return NULL;
1974		*len = wpabuf_len(sm->ext_pw_buf);
1975		return wpabuf_head(sm->ext_pw_buf);
1976	}
1977
1978	*len = config->password_len;
1979	return config->password;
1980}
1981
1982
1983/**
1984 * eap_get_config_password2 - Get password from the network configuration
1985 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1986 * @len: Buffer for the length of the password
1987 * @hash: Buffer for returning whether the password is stored as a
1988 * NtPasswordHash instead of plaintext password; can be %NULL if this
1989 * information is not needed
1990 * Returns: Pointer to the password or %NULL if not found
1991 */
1992const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
1993{
1994	struct eap_peer_config *config = eap_get_config(sm);
1995	if (config == NULL)
1996		return NULL;
1997
1998	if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
1999		if (eap_get_ext_password(sm, config) < 0)
2000			return NULL;
2001		*len = wpabuf_len(sm->ext_pw_buf);
2002		return wpabuf_head(sm->ext_pw_buf);
2003	}
2004
2005	*len = config->password_len;
2006	if (hash)
2007		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2008	return config->password;
2009}
2010
2011
2012/**
2013 * eap_get_config_new_password - Get new password from network configuration
2014 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2015 * @len: Buffer for the length of the new password
2016 * Returns: Pointer to the new password or %NULL if not found
2017 */
2018const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2019{
2020	struct eap_peer_config *config = eap_get_config(sm);
2021	if (config == NULL)
2022		return NULL;
2023	*len = config->new_password_len;
2024	return config->new_password;
2025}
2026
2027
2028/**
2029 * eap_get_config_otp - Get one-time password from the network configuration
2030 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2031 * @len: Buffer for the length of the one-time password
2032 * Returns: Pointer to the one-time password or %NULL if not found
2033 */
2034const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2035{
2036	struct eap_peer_config *config = eap_get_config(sm);
2037	if (config == NULL)
2038		return NULL;
2039	*len = config->otp_len;
2040	return config->otp;
2041}
2042
2043
2044/**
2045 * eap_clear_config_otp - Clear used one-time password
2046 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2047 *
2048 * This function clears a used one-time password (OTP) from the current network
2049 * configuration. This should be called when the OTP has been used and is not
2050 * needed anymore.
2051 */
2052void eap_clear_config_otp(struct eap_sm *sm)
2053{
2054	struct eap_peer_config *config = eap_get_config(sm);
2055	if (config == NULL)
2056		return;
2057	os_memset(config->otp, 0, config->otp_len);
2058	os_free(config->otp);
2059	config->otp = NULL;
2060	config->otp_len = 0;
2061}
2062
2063
2064/**
2065 * eap_get_config_phase1 - Get phase1 data from the network configuration
2066 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2067 * Returns: Pointer to the phase1 data or %NULL if not found
2068 */
2069const char * eap_get_config_phase1(struct eap_sm *sm)
2070{
2071	struct eap_peer_config *config = eap_get_config(sm);
2072	if (config == NULL)
2073		return NULL;
2074	return config->phase1;
2075}
2076
2077
2078/**
2079 * eap_get_config_phase2 - Get phase2 data from the network configuration
2080 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2081 * Returns: Pointer to the phase1 data or %NULL if not found
2082 */
2083const char * eap_get_config_phase2(struct eap_sm *sm)
2084{
2085	struct eap_peer_config *config = eap_get_config(sm);
2086	if (config == NULL)
2087		return NULL;
2088	return config->phase2;
2089}
2090
2091
2092int eap_get_config_fragment_size(struct eap_sm *sm)
2093{
2094	struct eap_peer_config *config = eap_get_config(sm);
2095	if (config == NULL)
2096		return -1;
2097	return config->fragment_size;
2098}
2099
2100
2101/**
2102 * eap_key_available - Get key availability (eapKeyAvailable variable)
2103 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2104 * Returns: 1 if EAP keying material is available, 0 if not
2105 */
2106int eap_key_available(struct eap_sm *sm)
2107{
2108	return sm ? sm->eapKeyAvailable : 0;
2109}
2110
2111
2112/**
2113 * eap_notify_success - Notify EAP state machine about external success trigger
2114 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2115 *
2116 * This function is called when external event, e.g., successful completion of
2117 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2118 * success state. This is mainly used with security modes that do not use EAP
2119 * state machine (e.g., WPA-PSK).
2120 */
2121void eap_notify_success(struct eap_sm *sm)
2122{
2123	if (sm) {
2124		sm->decision = DECISION_COND_SUCC;
2125		sm->EAP_state = EAP_SUCCESS;
2126	}
2127}
2128
2129
2130/**
2131 * eap_notify_lower_layer_success - Notification of lower layer success
2132 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2133 *
2134 * Notify EAP state machines that a lower layer has detected a successful
2135 * authentication. This is used to recover from dropped EAP-Success messages.
2136 */
2137void eap_notify_lower_layer_success(struct eap_sm *sm)
2138{
2139	if (sm == NULL)
2140		return;
2141
2142	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2143	    sm->decision == DECISION_FAIL ||
2144	    (sm->methodState != METHOD_MAY_CONT &&
2145	     sm->methodState != METHOD_DONE))
2146		return;
2147
2148	if (sm->eapKeyData != NULL)
2149		sm->eapKeyAvailable = TRUE;
2150	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2151	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2152		"EAP authentication completed successfully (based on lower "
2153		"layer success)");
2154}
2155
2156
2157/**
2158 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2159 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2160 * @len: Pointer to variable that will be set to number of bytes in the key
2161 * Returns: Pointer to the EAP keying data or %NULL on failure
2162 *
2163 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2164 * key is available only after a successful authentication. EAP state machine
2165 * continues to manage the key data and the caller must not change or free the
2166 * returned data.
2167 */
2168const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2169{
2170	if (sm == NULL || sm->eapKeyData == NULL) {
2171		*len = 0;
2172		return NULL;
2173	}
2174
2175	*len = sm->eapKeyDataLen;
2176	return sm->eapKeyData;
2177}
2178
2179
2180/**
2181 * eap_get_eapKeyData - Get EAP response data
2182 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2183 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2184 *
2185 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2186 * available when EAP state machine has processed an incoming EAP request. The
2187 * EAP state machine does not maintain a reference to the response after this
2188 * function is called and the caller is responsible for freeing the data.
2189 */
2190struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2191{
2192	struct wpabuf *resp;
2193
2194	if (sm == NULL || sm->eapRespData == NULL)
2195		return NULL;
2196
2197	resp = sm->eapRespData;
2198	sm->eapRespData = NULL;
2199
2200	return resp;
2201}
2202
2203
2204/**
2205 * eap_sm_register_scard_ctx - Notification of smart card context
2206 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2207 * @ctx: Context data for smart card operations
2208 *
2209 * Notify EAP state machines of context data for smart card operations. This
2210 * context data will be used as a parameter for scard_*() functions.
2211 */
2212void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2213{
2214	if (sm)
2215		sm->scard_ctx = ctx;
2216}
2217
2218
2219/**
2220 * eap_set_config_blob - Set or add a named configuration blob
2221 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2222 * @blob: New value for the blob
2223 *
2224 * Adds a new configuration blob or replaces the current value of an existing
2225 * blob.
2226 */
2227void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2228{
2229#ifndef CONFIG_NO_CONFIG_BLOBS
2230	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2231#endif /* CONFIG_NO_CONFIG_BLOBS */
2232}
2233
2234
2235/**
2236 * eap_get_config_blob - Get a named configuration blob
2237 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2238 * @name: Name of the blob
2239 * Returns: Pointer to blob data or %NULL if not found
2240 */
2241const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2242						   const char *name)
2243{
2244#ifndef CONFIG_NO_CONFIG_BLOBS
2245	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2246#else /* CONFIG_NO_CONFIG_BLOBS */
2247	return NULL;
2248#endif /* CONFIG_NO_CONFIG_BLOBS */
2249}
2250
2251
2252/**
2253 * eap_set_force_disabled - Set force_disabled flag
2254 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2255 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2256 *
2257 * This function is used to force EAP state machine to be disabled when it is
2258 * not in use (e.g., with WPA-PSK or plaintext connections).
2259 */
2260void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2261{
2262	sm->force_disabled = disabled;
2263}
2264
2265
2266 /**
2267 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2268 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2269 *
2270 * An EAP method can perform a pending operation (e.g., to get a response from
2271 * an external process). Once the response is available, this function can be
2272 * used to request EAPOL state machine to retry delivering the previously
2273 * received (and still unanswered) EAP request to EAP state machine.
2274 */
2275void eap_notify_pending(struct eap_sm *sm)
2276{
2277	sm->eapol_cb->notify_pending(sm->eapol_ctx);
2278}
2279
2280
2281/**
2282 * eap_invalidate_cached_session - Mark cached session data invalid
2283 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2284 */
2285void eap_invalidate_cached_session(struct eap_sm *sm)
2286{
2287	if (sm)
2288		eap_deinit_prev_method(sm, "invalidate");
2289}
2290
2291
2292int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2293{
2294	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2295	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2296		return 0; /* Not a WPS Enrollee */
2297
2298	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2299		return 0; /* Not using PBC */
2300
2301	return 1;
2302}
2303
2304
2305int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2306{
2307	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2308	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2309		return 0; /* Not a WPS Enrollee */
2310
2311	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2312		return 0; /* Not using PIN */
2313
2314	return 1;
2315}
2316
2317
2318void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2319{
2320	ext_password_free(sm->ext_pw_buf);
2321	sm->ext_pw_buf = NULL;
2322	sm->ext_pw = ext;
2323}
2324