eap.c revision 8d520ff1dc2da35cdca849e982051b86468016d8
1/* 2 * EAP peer state machines (RFC 4137) 3 * Copyright (c) 2004-2010, Jouni Malinen <j@w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 * 14 * This file implements the Peer State Machine as defined in RFC 4137. The used 15 * states and state transitions match mostly with the RFC. However, there are 16 * couple of additional transitions for working around small issues noticed 17 * during testing. These exceptions are explained in comments within the 18 * functions in this file. The method functions, m.func(), are similar to the 19 * ones used in RFC 4137, but some small changes have used here to optimize 20 * operations and to add functionality needed for fast re-authentication 21 * (session resumption). 22 */ 23 24#include "includes.h" 25 26#include "common.h" 27#include "pcsc_funcs.h" 28#include "state_machine.h" 29#include "crypto/crypto.h" 30#include "crypto/tls.h" 31#include "common/wpa_ctrl.h" 32#include "eap_common/eap_wsc_common.h" 33#include "eap_i.h" 34#include "eap_config.h" 35 36#define STATE_MACHINE_DATA struct eap_sm 37#define STATE_MACHINE_DEBUG_PREFIX "EAP" 38 39#define EAP_MAX_AUTH_ROUNDS 50 40#define EAP_CLIENT_TIMEOUT_DEFAULT 60 41 42 43static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 44 EapType method); 45static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); 46static void eap_sm_processIdentity(struct eap_sm *sm, 47 const struct wpabuf *req); 48static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); 49static struct wpabuf * eap_sm_buildNotify(int id); 50static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); 51#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 52static const char * eap_sm_method_state_txt(EapMethodState state); 53static const char * eap_sm_decision_txt(EapDecision decision); 54#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 55 56 57 58static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) 59{ 60 return sm->eapol_cb->get_bool(sm->eapol_ctx, var); 61} 62 63 64static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, 65 Boolean value) 66{ 67 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); 68} 69 70 71static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) 72{ 73 return sm->eapol_cb->get_int(sm->eapol_ctx, var); 74} 75 76 77static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, 78 unsigned int value) 79{ 80 sm->eapol_cb->set_int(sm->eapol_ctx, var, value); 81} 82 83 84static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) 85{ 86 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); 87} 88 89 90static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) 91{ 92 if (sm->m == NULL || sm->eap_method_priv == NULL) 93 return; 94 95 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " 96 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); 97 sm->m->deinit(sm, sm->eap_method_priv); 98 sm->eap_method_priv = NULL; 99 sm->m = NULL; 100} 101 102 103/** 104 * eap_allowed_method - Check whether EAP method is allowed 105 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 106 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types 107 * @method: EAP type 108 * Returns: 1 = allowed EAP method, 0 = not allowed 109 */ 110int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) 111{ 112 struct eap_peer_config *config = eap_get_config(sm); 113 int i; 114 struct eap_method_type *m; 115 116 if (config == NULL || config->eap_methods == NULL) 117 return 1; 118 119 m = config->eap_methods; 120 for (i = 0; m[i].vendor != EAP_VENDOR_IETF || 121 m[i].method != EAP_TYPE_NONE; i++) { 122 if (m[i].vendor == vendor && m[i].method == method) 123 return 1; 124 } 125 return 0; 126} 127 128 129/* 130 * This state initializes state machine variables when the machine is 131 * activated (portEnabled = TRUE). This is also used when re-starting 132 * authentication (eapRestart == TRUE). 133 */ 134SM_STATE(EAP, INITIALIZE) 135{ 136 SM_ENTRY(EAP, INITIALIZE); 137 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && 138 sm->m->has_reauth_data(sm, sm->eap_method_priv) && 139 !sm->prev_failure) { 140 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " 141 "fast reauthentication"); 142 sm->m->deinit_for_reauth(sm, sm->eap_method_priv); 143 } else { 144 eap_deinit_prev_method(sm, "INITIALIZE"); 145 } 146 sm->selectedMethod = EAP_TYPE_NONE; 147 sm->methodState = METHOD_NONE; 148 sm->allowNotifications = TRUE; 149 sm->decision = DECISION_FAIL; 150 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 151 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 152 eapol_set_bool(sm, EAPOL_eapFail, FALSE); 153 os_free(sm->eapKeyData); 154 sm->eapKeyData = NULL; 155 sm->eapKeyAvailable = FALSE; 156 eapol_set_bool(sm, EAPOL_eapRestart, FALSE); 157 sm->lastId = -1; /* new session - make sure this does not match with 158 * the first EAP-Packet */ 159 /* 160 * RFC 4137 does not reset eapResp and eapNoResp here. However, this 161 * seemed to be able to trigger cases where both were set and if EAPOL 162 * state machine uses eapNoResp first, it may end up not sending a real 163 * reply correctly. This occurred when the workaround in FAIL state set 164 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do 165 * something else(?) 166 */ 167 eapol_set_bool(sm, EAPOL_eapResp, FALSE); 168 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); 169 sm->num_rounds = 0; 170 sm->prev_failure = 0; 171} 172 173 174/* 175 * This state is reached whenever service from the lower layer is interrupted 176 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE 177 * occurs when the port becomes enabled. 178 */ 179SM_STATE(EAP, DISABLED) 180{ 181 SM_ENTRY(EAP, DISABLED); 182 sm->num_rounds = 0; 183} 184 185 186/* 187 * The state machine spends most of its time here, waiting for something to 188 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and 189 * SEND_RESPONSE states. 190 */ 191SM_STATE(EAP, IDLE) 192{ 193 SM_ENTRY(EAP, IDLE); 194} 195 196 197/* 198 * This state is entered when an EAP packet is received (eapReq == TRUE) to 199 * parse the packet header. 200 */ 201SM_STATE(EAP, RECEIVED) 202{ 203 const struct wpabuf *eapReqData; 204 205 SM_ENTRY(EAP, RECEIVED); 206 eapReqData = eapol_get_eapReqData(sm); 207 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ 208 eap_sm_parseEapReq(sm, eapReqData); 209 sm->num_rounds++; 210} 211 212 213/* 214 * This state is entered when a request for a new type comes in. Either the 215 * correct method is started, or a Nak response is built. 216 */ 217SM_STATE(EAP, GET_METHOD) 218{ 219 int reinit; 220 EapType method; 221 222 SM_ENTRY(EAP, GET_METHOD); 223 224 if (sm->reqMethod == EAP_TYPE_EXPANDED) 225 method = sm->reqVendorMethod; 226 else 227 method = sm->reqMethod; 228 229 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { 230 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", 231 sm->reqVendor, method); 232 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 233 "vendor=%u method=%u -> NAK", 234 sm->reqVendor, method); 235 goto nak; 236 } 237 238 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD 239 "vendor=%u method=%u", sm->reqVendor, method); 240 241 /* 242 * RFC 4137 does not define specific operation for fast 243 * re-authentication (session resumption). The design here is to allow 244 * the previously used method data to be maintained for 245 * re-authentication if the method support session resumption. 246 * Otherwise, the previously used method data is freed and a new method 247 * is allocated here. 248 */ 249 if (sm->fast_reauth && 250 sm->m && sm->m->vendor == sm->reqVendor && 251 sm->m->method == method && 252 sm->m->has_reauth_data && 253 sm->m->has_reauth_data(sm, sm->eap_method_priv)) { 254 wpa_printf(MSG_DEBUG, "EAP: Using previous method data" 255 " for fast re-authentication"); 256 reinit = 1; 257 } else { 258 eap_deinit_prev_method(sm, "GET_METHOD"); 259 reinit = 0; 260 } 261 262 sm->selectedMethod = sm->reqMethod; 263 if (sm->m == NULL) 264 sm->m = eap_peer_get_eap_method(sm->reqVendor, method); 265 if (!sm->m) { 266 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " 267 "vendor %d method %d", 268 sm->reqVendor, method); 269 goto nak; 270 } 271 272 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 273 274 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " 275 "vendor %u method %u (%s)", 276 sm->reqVendor, method, sm->m->name); 277 if (reinit) 278 sm->eap_method_priv = sm->m->init_for_reauth( 279 sm, sm->eap_method_priv); 280 else 281 sm->eap_method_priv = sm->m->init(sm); 282 283 if (sm->eap_method_priv == NULL) { 284 struct eap_peer_config *config = eap_get_config(sm); 285 wpa_msg(sm->msg_ctx, MSG_INFO, 286 "EAP: Failed to initialize EAP method: vendor %u " 287 "method %u (%s)", 288 sm->reqVendor, method, sm->m->name); 289 sm->m = NULL; 290 sm->methodState = METHOD_NONE; 291 sm->selectedMethod = EAP_TYPE_NONE; 292 if (sm->reqMethod == EAP_TYPE_TLS && config && 293 (config->pending_req_pin || 294 config->pending_req_passphrase)) { 295 /* 296 * Return without generating Nak in order to allow 297 * entering of PIN code or passphrase to retry the 298 * current EAP packet. 299 */ 300 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " 301 "request - skip Nak"); 302 return; 303 } 304 305 goto nak; 306 } 307 308 sm->methodState = METHOD_INIT; 309 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD 310 "EAP vendor %u method %u (%s) selected", 311 sm->reqVendor, method, sm->m->name); 312 return; 313 314nak: 315 wpabuf_free(sm->eapRespData); 316 sm->eapRespData = NULL; 317 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); 318} 319 320 321/* 322 * The method processing happens here. The request from the authenticator is 323 * processed, and an appropriate response packet is built. 324 */ 325SM_STATE(EAP, METHOD) 326{ 327 struct wpabuf *eapReqData; 328 struct eap_method_ret ret; 329 330 SM_ENTRY(EAP, METHOD); 331 if (sm->m == NULL) { 332 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); 333 return; 334 } 335 336 eapReqData = eapol_get_eapReqData(sm); 337 338 /* 339 * Get ignore, methodState, decision, allowNotifications, and 340 * eapRespData. RFC 4137 uses three separate method procedure (check, 341 * process, and buildResp) in this state. These have been combined into 342 * a single function call to m->process() in order to optimize EAP 343 * method implementation interface a bit. These procedures are only 344 * used from within this METHOD state, so there is no need to keep 345 * these as separate C functions. 346 * 347 * The RFC 4137 procedures return values as follows: 348 * ignore = m.check(eapReqData) 349 * (methodState, decision, allowNotifications) = m.process(eapReqData) 350 * eapRespData = m.buildResp(reqId) 351 */ 352 os_memset(&ret, 0, sizeof(ret)); 353 ret.ignore = sm->ignore; 354 ret.methodState = sm->methodState; 355 ret.decision = sm->decision; 356 ret.allowNotifications = sm->allowNotifications; 357 wpabuf_free(sm->eapRespData); 358 sm->eapRespData = NULL; 359 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, 360 eapReqData); 361 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " 362 "methodState=%s decision=%s", 363 ret.ignore ? "TRUE" : "FALSE", 364 eap_sm_method_state_txt(ret.methodState), 365 eap_sm_decision_txt(ret.decision)); 366 367 sm->ignore = ret.ignore; 368 if (sm->ignore) 369 return; 370 sm->methodState = ret.methodState; 371 sm->decision = ret.decision; 372 sm->allowNotifications = ret.allowNotifications; 373 374 if (sm->m->isKeyAvailable && sm->m->getKey && 375 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { 376 os_free(sm->eapKeyData); 377 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, 378 &sm->eapKeyDataLen); 379 } 380} 381 382 383/* 384 * This state signals the lower layer that a response packet is ready to be 385 * sent. 386 */ 387SM_STATE(EAP, SEND_RESPONSE) 388{ 389 SM_ENTRY(EAP, SEND_RESPONSE); 390 wpabuf_free(sm->lastRespData); 391 if (sm->eapRespData) { 392 if (sm->workaround) 393 os_memcpy(sm->last_md5, sm->req_md5, 16); 394 sm->lastId = sm->reqId; 395 sm->lastRespData = wpabuf_dup(sm->eapRespData); 396 eapol_set_bool(sm, EAPOL_eapResp, TRUE); 397 } else 398 sm->lastRespData = NULL; 399 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 400 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); 401} 402 403 404/* 405 * This state signals the lower layer that the request was discarded, and no 406 * response packet will be sent at this time. 407 */ 408SM_STATE(EAP, DISCARD) 409{ 410 SM_ENTRY(EAP, DISCARD); 411 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 412 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 413} 414 415 416/* 417 * Handles requests for Identity method and builds a response. 418 */ 419SM_STATE(EAP, IDENTITY) 420{ 421 const struct wpabuf *eapReqData; 422 423 SM_ENTRY(EAP, IDENTITY); 424 eapReqData = eapol_get_eapReqData(sm); 425 eap_sm_processIdentity(sm, eapReqData); 426 wpabuf_free(sm->eapRespData); 427 sm->eapRespData = NULL; 428 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); 429} 430 431 432/* 433 * Handles requests for Notification method and builds a response. 434 */ 435SM_STATE(EAP, NOTIFICATION) 436{ 437 const struct wpabuf *eapReqData; 438 439 SM_ENTRY(EAP, NOTIFICATION); 440 eapReqData = eapol_get_eapReqData(sm); 441 eap_sm_processNotify(sm, eapReqData); 442 wpabuf_free(sm->eapRespData); 443 sm->eapRespData = NULL; 444 sm->eapRespData = eap_sm_buildNotify(sm->reqId); 445} 446 447 448/* 449 * This state retransmits the previous response packet. 450 */ 451SM_STATE(EAP, RETRANSMIT) 452{ 453 SM_ENTRY(EAP, RETRANSMIT); 454 wpabuf_free(sm->eapRespData); 455 if (sm->lastRespData) 456 sm->eapRespData = wpabuf_dup(sm->lastRespData); 457 else 458 sm->eapRespData = NULL; 459} 460 461 462/* 463 * This state is entered in case of a successful completion of authentication 464 * and state machine waits here until port is disabled or EAP authentication is 465 * restarted. 466 */ 467SM_STATE(EAP, SUCCESS) 468{ 469 SM_ENTRY(EAP, SUCCESS); 470 if (sm->eapKeyData != NULL) 471 sm->eapKeyAvailable = TRUE; 472 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 473 474 /* 475 * RFC 4137 does not clear eapReq here, but this seems to be required 476 * to avoid processing the same request twice when state machine is 477 * initialized. 478 */ 479 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 480 481 /* 482 * RFC 4137 does not set eapNoResp here, but this seems to be required 483 * to get EAPOL Supplicant backend state machine into SUCCESS state. In 484 * addition, either eapResp or eapNoResp is required to be set after 485 * processing the received EAP frame. 486 */ 487 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 488 489 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 490 "EAP authentication completed successfully"); 491} 492 493 494/* 495 * This state is entered in case of a failure and state machine waits here 496 * until port is disabled or EAP authentication is restarted. 497 */ 498SM_STATE(EAP, FAILURE) 499{ 500 SM_ENTRY(EAP, FAILURE); 501 eapol_set_bool(sm, EAPOL_eapFail, TRUE); 502 503 /* 504 * RFC 4137 does not clear eapReq here, but this seems to be required 505 * to avoid processing the same request twice when state machine is 506 * initialized. 507 */ 508 eapol_set_bool(sm, EAPOL_eapReq, FALSE); 509 510 /* 511 * RFC 4137 does not set eapNoResp here. However, either eapResp or 512 * eapNoResp is required to be set after processing the received EAP 513 * frame. 514 */ 515 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); 516 517 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE 518 "EAP authentication failed"); 519 520 sm->prev_failure = 1; 521} 522 523 524static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) 525{ 526 /* 527 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending 528 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and 529 * RFC 4137 require that reqId == lastId. In addition, it looks like 530 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. 531 * 532 * Accept this kind of Id if EAP workarounds are enabled. These are 533 * unauthenticated plaintext messages, so this should have minimal 534 * security implications (bit easier to fake EAP-Success/Failure). 535 */ 536 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || 537 reqId == ((lastId + 2) & 0xff))) { 538 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " 539 "identifier field in EAP Success: " 540 "reqId=%d lastId=%d (these are supposed to be " 541 "same)", reqId, lastId); 542 return 1; 543 } 544 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " 545 "lastId=%d", reqId, lastId); 546 return 0; 547} 548 549 550/* 551 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions 552 */ 553 554static void eap_peer_sm_step_idle(struct eap_sm *sm) 555{ 556 /* 557 * The first three transitions are from RFC 4137. The last two are 558 * local additions to handle special cases with LEAP and PEAP server 559 * not sending EAP-Success in some cases. 560 */ 561 if (eapol_get_bool(sm, EAPOL_eapReq)) 562 SM_ENTER(EAP, RECEIVED); 563 else if ((eapol_get_bool(sm, EAPOL_altAccept) && 564 sm->decision != DECISION_FAIL) || 565 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 566 sm->decision == DECISION_UNCOND_SUCC)) 567 SM_ENTER(EAP, SUCCESS); 568 else if (eapol_get_bool(sm, EAPOL_altReject) || 569 (eapol_get_int(sm, EAPOL_idleWhile) == 0 && 570 sm->decision != DECISION_UNCOND_SUCC) || 571 (eapol_get_bool(sm, EAPOL_altAccept) && 572 sm->methodState != METHOD_CONT && 573 sm->decision == DECISION_FAIL)) 574 SM_ENTER(EAP, FAILURE); 575 else if (sm->selectedMethod == EAP_TYPE_LEAP && 576 sm->leap_done && sm->decision != DECISION_FAIL && 577 sm->methodState == METHOD_DONE) 578 SM_ENTER(EAP, SUCCESS); 579 else if (sm->selectedMethod == EAP_TYPE_PEAP && 580 sm->peap_done && sm->decision != DECISION_FAIL && 581 sm->methodState == METHOD_DONE) 582 SM_ENTER(EAP, SUCCESS); 583} 584 585 586static int eap_peer_req_is_duplicate(struct eap_sm *sm) 587{ 588 int duplicate; 589 590 duplicate = (sm->reqId == sm->lastId) && sm->rxReq; 591 if (sm->workaround && duplicate && 592 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { 593 /* 594 * RFC 4137 uses (reqId == lastId) as the only verification for 595 * duplicate EAP requests. However, this misses cases where the 596 * AS is incorrectly using the same id again; and 597 * unfortunately, such implementations exist. Use MD5 hash as 598 * an extra verification for the packets being duplicate to 599 * workaround these issues. 600 */ 601 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " 602 "EAP packets were not identical"); 603 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " 604 "duplicate packet"); 605 duplicate = 0; 606 } 607 608 return duplicate; 609} 610 611 612static void eap_peer_sm_step_received(struct eap_sm *sm) 613{ 614 int duplicate = eap_peer_req_is_duplicate(sm); 615 616 /* 617 * Two special cases below for LEAP are local additions to work around 618 * odd LEAP behavior (EAP-Success in the middle of authentication and 619 * then swapped roles). Other transitions are based on RFC 4137. 620 */ 621 if (sm->rxSuccess && sm->decision != DECISION_FAIL && 622 (sm->reqId == sm->lastId || 623 eap_success_workaround(sm, sm->reqId, sm->lastId))) 624 SM_ENTER(EAP, SUCCESS); 625 else if (sm->methodState != METHOD_CONT && 626 ((sm->rxFailure && 627 sm->decision != DECISION_UNCOND_SUCC) || 628 (sm->rxSuccess && sm->decision == DECISION_FAIL && 629 (sm->selectedMethod != EAP_TYPE_LEAP || 630 sm->methodState != METHOD_MAY_CONT))) && 631 (sm->reqId == sm->lastId || 632 eap_success_workaround(sm, sm->reqId, sm->lastId))) 633 SM_ENTER(EAP, FAILURE); 634 else if (sm->rxReq && duplicate) 635 SM_ENTER(EAP, RETRANSMIT); 636 else if (sm->rxReq && !duplicate && 637 sm->reqMethod == EAP_TYPE_NOTIFICATION && 638 sm->allowNotifications) 639 SM_ENTER(EAP, NOTIFICATION); 640 else if (sm->rxReq && !duplicate && 641 sm->selectedMethod == EAP_TYPE_NONE && 642 sm->reqMethod == EAP_TYPE_IDENTITY) 643 SM_ENTER(EAP, IDENTITY); 644 else if (sm->rxReq && !duplicate && 645 sm->selectedMethod == EAP_TYPE_NONE && 646 sm->reqMethod != EAP_TYPE_IDENTITY && 647 sm->reqMethod != EAP_TYPE_NOTIFICATION) 648 SM_ENTER(EAP, GET_METHOD); 649 else if (sm->rxReq && !duplicate && 650 sm->reqMethod == sm->selectedMethod && 651 sm->methodState != METHOD_DONE) 652 SM_ENTER(EAP, METHOD); 653 else if (sm->selectedMethod == EAP_TYPE_LEAP && 654 (sm->rxSuccess || sm->rxResp)) 655 SM_ENTER(EAP, METHOD); 656 else 657 SM_ENTER(EAP, DISCARD); 658} 659 660 661static void eap_peer_sm_step_local(struct eap_sm *sm) 662{ 663 switch (sm->EAP_state) { 664 case EAP_INITIALIZE: 665 SM_ENTER(EAP, IDLE); 666 break; 667 case EAP_DISABLED: 668 if (eapol_get_bool(sm, EAPOL_portEnabled) && 669 !sm->force_disabled) 670 SM_ENTER(EAP, INITIALIZE); 671 break; 672 case EAP_IDLE: 673 eap_peer_sm_step_idle(sm); 674 break; 675 case EAP_RECEIVED: 676 eap_peer_sm_step_received(sm); 677 break; 678 case EAP_GET_METHOD: 679 if (sm->selectedMethod == sm->reqMethod) 680 SM_ENTER(EAP, METHOD); 681 else 682 SM_ENTER(EAP, SEND_RESPONSE); 683 break; 684 case EAP_METHOD: 685 if (sm->ignore) 686 SM_ENTER(EAP, DISCARD); 687 else 688 SM_ENTER(EAP, SEND_RESPONSE); 689 break; 690 case EAP_SEND_RESPONSE: 691 SM_ENTER(EAP, IDLE); 692 break; 693 case EAP_DISCARD: 694 SM_ENTER(EAP, IDLE); 695 break; 696 case EAP_IDENTITY: 697 SM_ENTER(EAP, SEND_RESPONSE); 698 break; 699 case EAP_NOTIFICATION: 700 SM_ENTER(EAP, SEND_RESPONSE); 701 break; 702 case EAP_RETRANSMIT: 703 SM_ENTER(EAP, SEND_RESPONSE); 704 break; 705 case EAP_SUCCESS: 706 break; 707 case EAP_FAILURE: 708 break; 709 } 710} 711 712 713SM_STEP(EAP) 714{ 715 /* Global transitions */ 716 if (eapol_get_bool(sm, EAPOL_eapRestart) && 717 eapol_get_bool(sm, EAPOL_portEnabled)) 718 SM_ENTER_GLOBAL(EAP, INITIALIZE); 719 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) 720 SM_ENTER_GLOBAL(EAP, DISABLED); 721 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { 722 /* RFC 4137 does not place any limit on number of EAP messages 723 * in an authentication session. However, some error cases have 724 * ended up in a state were EAP messages were sent between the 725 * peer and server in a loop (e.g., TLS ACK frame in both 726 * direction). Since this is quite undesired outcome, limit the 727 * total number of EAP round-trips and abort authentication if 728 * this limit is exceeded. 729 */ 730 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { 731 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " 732 "authentication rounds - abort", 733 EAP_MAX_AUTH_ROUNDS); 734 sm->num_rounds++; 735 SM_ENTER_GLOBAL(EAP, FAILURE); 736 } 737 } else { 738 /* Local transitions */ 739 eap_peer_sm_step_local(sm); 740 } 741} 742 743 744static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, 745 EapType method) 746{ 747 if (!eap_allowed_method(sm, vendor, method)) { 748 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " 749 "vendor %u method %u", vendor, method); 750 return FALSE; 751 } 752 if (eap_peer_get_eap_method(vendor, method)) 753 return TRUE; 754 wpa_printf(MSG_DEBUG, "EAP: not included in build: " 755 "vendor %u method %u", vendor, method); 756 return FALSE; 757} 758 759 760static struct wpabuf * eap_sm_build_expanded_nak( 761 struct eap_sm *sm, int id, const struct eap_method *methods, 762 size_t count) 763{ 764 struct wpabuf *resp; 765 int found = 0; 766 const struct eap_method *m; 767 768 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); 769 770 /* RFC 3748 - 5.3.2: Expanded Nak */ 771 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 772 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); 773 if (resp == NULL) 774 return NULL; 775 776 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 777 wpabuf_put_be32(resp, EAP_TYPE_NAK); 778 779 for (m = methods; m; m = m->next) { 780 if (sm->reqVendor == m->vendor && 781 sm->reqVendorMethod == m->method) 782 continue; /* do not allow the current method again */ 783 if (eap_allowed_method(sm, m->vendor, m->method)) { 784 wpa_printf(MSG_DEBUG, "EAP: allowed type: " 785 "vendor=%u method=%u", 786 m->vendor, m->method); 787 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 788 wpabuf_put_be24(resp, m->vendor); 789 wpabuf_put_be32(resp, m->method); 790 791 found++; 792 } 793 } 794 if (!found) { 795 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); 796 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 797 wpabuf_put_be24(resp, EAP_VENDOR_IETF); 798 wpabuf_put_be32(resp, EAP_TYPE_NONE); 799 } 800 801 eap_update_len(resp); 802 803 return resp; 804} 805 806 807static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) 808{ 809 struct wpabuf *resp; 810 u8 *start; 811 int found = 0, expanded_found = 0; 812 size_t count; 813 const struct eap_method *methods, *m; 814 815 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " 816 "vendor=%u method=%u not allowed)", sm->reqMethod, 817 sm->reqVendor, sm->reqVendorMethod); 818 methods = eap_peer_get_methods(&count); 819 if (methods == NULL) 820 return NULL; 821 if (sm->reqMethod == EAP_TYPE_EXPANDED) 822 return eap_sm_build_expanded_nak(sm, id, methods, count); 823 824 /* RFC 3748 - 5.3.1: Legacy Nak */ 825 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, 826 sizeof(struct eap_hdr) + 1 + count + 1, 827 EAP_CODE_RESPONSE, id); 828 if (resp == NULL) 829 return NULL; 830 831 start = wpabuf_put(resp, 0); 832 for (m = methods; m; m = m->next) { 833 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) 834 continue; /* do not allow the current method again */ 835 if (eap_allowed_method(sm, m->vendor, m->method)) { 836 if (m->vendor != EAP_VENDOR_IETF) { 837 if (expanded_found) 838 continue; 839 expanded_found = 1; 840 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); 841 } else 842 wpabuf_put_u8(resp, m->method); 843 found++; 844 } 845 } 846 if (!found) 847 wpabuf_put_u8(resp, EAP_TYPE_NONE); 848 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); 849 850 eap_update_len(resp); 851 852 return resp; 853} 854 855 856static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) 857{ 858 const struct eap_hdr *hdr = wpabuf_head(req); 859 const u8 *pos = (const u8 *) (hdr + 1); 860 pos++; 861 862 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED 863 "EAP authentication started"); 864 865 /* 866 * RFC 3748 - 5.1: Identity 867 * Data field may contain a displayable message in UTF-8. If this 868 * includes NUL-character, only the data before that should be 869 * displayed. Some EAP implementasitons may piggy-back additional 870 * options after the NUL. 871 */ 872 /* TODO: could save displayable message so that it can be shown to the 873 * user in case of interaction is required */ 874 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", 875 pos, be_to_host16(hdr->length) - 5); 876} 877 878 879#ifdef PCSC_FUNCS 880static int eap_sm_imsi_identity(struct eap_sm *sm, 881 struct eap_peer_config *conf) 882{ 883 int aka = 0; 884 char imsi[100]; 885 size_t imsi_len; 886 struct eap_method_type *m = conf->eap_methods; 887 int i; 888 889 imsi_len = sizeof(imsi); 890 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { 891 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); 892 return -1; 893 } 894 895 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); 896 897 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || 898 m[i].method != EAP_TYPE_NONE); i++) { 899 if (m[i].vendor == EAP_VENDOR_IETF && 900 m[i].method == EAP_TYPE_AKA) { 901 aka = 1; 902 break; 903 } 904 } 905 906 os_free(conf->identity); 907 conf->identity = os_malloc(1 + imsi_len); 908 if (conf->identity == NULL) { 909 wpa_printf(MSG_WARNING, "Failed to allocate buffer for " 910 "IMSI-based identity"); 911 return -1; 912 } 913 914 conf->identity[0] = aka ? '0' : '1'; 915 os_memcpy(conf->identity + 1, imsi, imsi_len); 916 conf->identity_len = 1 + imsi_len; 917 918 return 0; 919} 920#endif /* PCSC_FUNCS */ 921 922 923static int eap_sm_set_scard_pin(struct eap_sm *sm, 924 struct eap_peer_config *conf) 925{ 926#ifdef PCSC_FUNCS 927 if (scard_set_pin(sm->scard_ctx, conf->pin)) { 928 /* 929 * Make sure the same PIN is not tried again in order to avoid 930 * blocking SIM. 931 */ 932 os_free(conf->pin); 933 conf->pin = NULL; 934 935 wpa_printf(MSG_WARNING, "PIN validation failed"); 936 eap_sm_request_pin(sm); 937 return -1; 938 } 939 return 0; 940#else /* PCSC_FUNCS */ 941 return -1; 942#endif /* PCSC_FUNCS */ 943} 944 945static int eap_sm_get_scard_identity(struct eap_sm *sm, 946 struct eap_peer_config *conf) 947{ 948#ifdef PCSC_FUNCS 949 if (eap_sm_set_scard_pin(sm, conf)) 950 return -1; 951 952 return eap_sm_imsi_identity(sm, conf); 953#else /* PCSC_FUNCS */ 954 return -1; 955#endif /* PCSC_FUNCS */ 956} 957 958 959/** 960 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network 961 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 962 * @id: EAP identifier for the packet 963 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) 964 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on 965 * failure 966 * 967 * This function allocates and builds an EAP-Identity/Response packet for the 968 * current network. The caller is responsible for freeing the returned data. 969 */ 970struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) 971{ 972 struct eap_peer_config *config = eap_get_config(sm); 973 struct wpabuf *resp; 974 const u8 *identity; 975 size_t identity_len; 976 977 if (config == NULL) { 978 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " 979 "was not available"); 980 return NULL; 981 } 982 983 if (sm->m && sm->m->get_identity && 984 (identity = sm->m->get_identity(sm, sm->eap_method_priv, 985 &identity_len)) != NULL) { 986 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " 987 "identity", identity, identity_len); 988 } else if (!encrypted && config->anonymous_identity) { 989 identity = config->anonymous_identity; 990 identity_len = config->anonymous_identity_len; 991 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", 992 identity, identity_len); 993 } else { 994 identity = config->identity; 995 identity_len = config->identity_len; 996 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", 997 identity, identity_len); 998 } 999 1000 if (identity == NULL) { 1001 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " 1002 "configuration was not available"); 1003 if (config->pcsc) { 1004 if (eap_sm_get_scard_identity(sm, config) < 0) 1005 return NULL; 1006 identity = config->identity; 1007 identity_len = config->identity_len; 1008 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " 1009 "IMSI", identity, identity_len); 1010 } else { 1011 eap_sm_request_identity(sm); 1012 return NULL; 1013 } 1014 } else if (config->pcsc) { 1015 if (eap_sm_set_scard_pin(sm, config) < 0) 1016 return NULL; 1017 } 1018 1019 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, 1020 EAP_CODE_RESPONSE, id); 1021 if (resp == NULL) 1022 return NULL; 1023 1024 wpabuf_put_data(resp, identity, identity_len); 1025 1026 return resp; 1027} 1028 1029 1030static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) 1031{ 1032 const u8 *pos; 1033 char *msg; 1034 size_t i, msg_len; 1035 1036 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, 1037 &msg_len); 1038 if (pos == NULL) 1039 return; 1040 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", 1041 pos, msg_len); 1042 1043 msg = os_malloc(msg_len + 1); 1044 if (msg == NULL) 1045 return; 1046 for (i = 0; i < msg_len; i++) 1047 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; 1048 msg[msg_len] = '\0'; 1049 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", 1050 WPA_EVENT_EAP_NOTIFICATION, msg); 1051 os_free(msg); 1052} 1053 1054 1055static struct wpabuf * eap_sm_buildNotify(int id) 1056{ 1057 struct wpabuf *resp; 1058 1059 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); 1060 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, 1061 EAP_CODE_RESPONSE, id); 1062 if (resp == NULL) 1063 return NULL; 1064 1065 return resp; 1066} 1067 1068 1069static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) 1070{ 1071 const struct eap_hdr *hdr; 1072 size_t plen; 1073 const u8 *pos; 1074 1075 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; 1076 sm->reqId = 0; 1077 sm->reqMethod = EAP_TYPE_NONE; 1078 sm->reqVendor = EAP_VENDOR_IETF; 1079 sm->reqVendorMethod = EAP_TYPE_NONE; 1080 1081 if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) 1082 return; 1083 1084 hdr = wpabuf_head(req); 1085 plen = be_to_host16(hdr->length); 1086 if (plen > wpabuf_len(req)) { 1087 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " 1088 "(len=%lu plen=%lu)", 1089 (unsigned long) wpabuf_len(req), 1090 (unsigned long) plen); 1091 return; 1092 } 1093 1094 sm->reqId = hdr->identifier; 1095 1096 if (sm->workaround) { 1097 const u8 *addr[1]; 1098 addr[0] = wpabuf_head(req); 1099 md5_vector(1, addr, &plen, sm->req_md5); 1100 } 1101 1102 switch (hdr->code) { 1103 case EAP_CODE_REQUEST: 1104 if (plen < sizeof(*hdr) + 1) { 1105 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " 1106 "no Type field"); 1107 return; 1108 } 1109 sm->rxReq = TRUE; 1110 pos = (const u8 *) (hdr + 1); 1111 sm->reqMethod = *pos++; 1112 if (sm->reqMethod == EAP_TYPE_EXPANDED) { 1113 if (plen < sizeof(*hdr) + 8) { 1114 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " 1115 "expanded EAP-Packet (plen=%lu)", 1116 (unsigned long) plen); 1117 return; 1118 } 1119 sm->reqVendor = WPA_GET_BE24(pos); 1120 pos += 3; 1121 sm->reqVendorMethod = WPA_GET_BE32(pos); 1122 } 1123 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " 1124 "method=%u vendor=%u vendorMethod=%u", 1125 sm->reqId, sm->reqMethod, sm->reqVendor, 1126 sm->reqVendorMethod); 1127 break; 1128 case EAP_CODE_RESPONSE: 1129 if (sm->selectedMethod == EAP_TYPE_LEAP) { 1130 /* 1131 * LEAP differs from RFC 4137 by using reversed roles 1132 * for mutual authentication and because of this, we 1133 * need to accept EAP-Response frames if LEAP is used. 1134 */ 1135 if (plen < sizeof(*hdr) + 1) { 1136 wpa_printf(MSG_DEBUG, "EAP: Too short " 1137 "EAP-Response - no Type field"); 1138 return; 1139 } 1140 sm->rxResp = TRUE; 1141 pos = (const u8 *) (hdr + 1); 1142 sm->reqMethod = *pos; 1143 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " 1144 "LEAP method=%d id=%d", 1145 sm->reqMethod, sm->reqId); 1146 break; 1147 } 1148 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); 1149 break; 1150 case EAP_CODE_SUCCESS: 1151 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); 1152 sm->rxSuccess = TRUE; 1153 break; 1154 case EAP_CODE_FAILURE: 1155 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); 1156 sm->rxFailure = TRUE; 1157 break; 1158 default: 1159 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " 1160 "code %d", hdr->code); 1161 break; 1162 } 1163} 1164 1165 1166static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, 1167 union tls_event_data *data) 1168{ 1169 struct eap_sm *sm = ctx; 1170 char *hash_hex = NULL; 1171 char *cert_hex = NULL; 1172 1173 switch (ev) { 1174 case TLS_CERT_CHAIN_FAILURE: 1175 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR 1176 "reason=%d depth=%d subject='%s' err='%s'", 1177 data->cert_fail.reason, 1178 data->cert_fail.depth, 1179 data->cert_fail.subject, 1180 data->cert_fail.reason_txt); 1181 break; 1182 case TLS_PEER_CERTIFICATE: 1183 if (data->peer_cert.hash) { 1184 size_t len = data->peer_cert.hash_len * 2 + 1; 1185 hash_hex = os_malloc(len); 1186 if (hash_hex) { 1187 wpa_snprintf_hex(hash_hex, len, 1188 data->peer_cert.hash, 1189 data->peer_cert.hash_len); 1190 } 1191 } 1192 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PEER_CERT 1193 "depth=%d subject='%s'%s%s", 1194 data->peer_cert.depth, data->peer_cert.subject, 1195 hash_hex ? " hash=" : "", hash_hex ? hash_hex : ""); 1196 1197 if (data->peer_cert.cert) { 1198 size_t len = wpabuf_len(data->peer_cert.cert) * 2 + 1; 1199 cert_hex = os_malloc(len); 1200 if (cert_hex == NULL) 1201 break; 1202 wpa_snprintf_hex(cert_hex, len, 1203 wpabuf_head(data->peer_cert.cert), 1204 wpabuf_len(data->peer_cert.cert)); 1205 wpa_msg_ctrl(sm->msg_ctx, MSG_INFO, 1206 WPA_EVENT_EAP_PEER_CERT 1207 "depth=%d subject='%s' cert=%s", 1208 data->peer_cert.depth, 1209 data->peer_cert.subject, 1210 cert_hex); 1211 } 1212 break; 1213 } 1214 1215 os_free(hash_hex); 1216 os_free(cert_hex); 1217} 1218 1219 1220/** 1221 * eap_peer_sm_init - Allocate and initialize EAP peer state machine 1222 * @eapol_ctx: Context data to be used with eapol_cb calls 1223 * @eapol_cb: Pointer to EAPOL callback functions 1224 * @msg_ctx: Context data for wpa_msg() calls 1225 * @conf: EAP configuration 1226 * Returns: Pointer to the allocated EAP state machine or %NULL on failure 1227 * 1228 * This function allocates and initializes an EAP state machine. In addition, 1229 * this initializes TLS library for the new EAP state machine. eapol_cb pointer 1230 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP 1231 * state machine. Consequently, the caller must make sure that this data 1232 * structure remains alive while the EAP state machine is active. 1233 */ 1234struct eap_sm * eap_peer_sm_init(void *eapol_ctx, 1235 struct eapol_callbacks *eapol_cb, 1236 void *msg_ctx, struct eap_config *conf) 1237{ 1238 struct eap_sm *sm; 1239 struct tls_config tlsconf; 1240 1241 sm = os_zalloc(sizeof(*sm)); 1242 if (sm == NULL) 1243 return NULL; 1244 sm->eapol_ctx = eapol_ctx; 1245 sm->eapol_cb = eapol_cb; 1246 sm->msg_ctx = msg_ctx; 1247 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; 1248 sm->wps = conf->wps; 1249 1250 os_memset(&tlsconf, 0, sizeof(tlsconf)); 1251 tlsconf.opensc_engine_path = conf->opensc_engine_path; 1252 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; 1253 tlsconf.pkcs11_module_path = conf->pkcs11_module_path; 1254#ifdef CONFIG_FIPS 1255 tlsconf.fips_mode = 1; 1256#endif /* CONFIG_FIPS */ 1257 tlsconf.event_cb = eap_peer_sm_tls_event; 1258 tlsconf.cb_ctx = sm; 1259 sm->ssl_ctx = tls_init(&tlsconf); 1260 if (sm->ssl_ctx == NULL) { 1261 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " 1262 "context."); 1263 os_free(sm); 1264 return NULL; 1265 } 1266 1267 return sm; 1268} 1269 1270 1271/** 1272 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine 1273 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1274 * 1275 * This function deinitializes EAP state machine and frees all allocated 1276 * resources. 1277 */ 1278void eap_peer_sm_deinit(struct eap_sm *sm) 1279{ 1280 if (sm == NULL) 1281 return; 1282 eap_deinit_prev_method(sm, "EAP deinit"); 1283 eap_sm_abort(sm); 1284 tls_deinit(sm->ssl_ctx); 1285 os_free(sm); 1286} 1287 1288 1289/** 1290 * eap_peer_sm_step - Step EAP peer state machine 1291 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1292 * Returns: 1 if EAP state was changed or 0 if not 1293 * 1294 * This function advances EAP state machine to a new state to match with the 1295 * current variables. This should be called whenever variables used by the EAP 1296 * state machine have changed. 1297 */ 1298int eap_peer_sm_step(struct eap_sm *sm) 1299{ 1300 int res = 0; 1301 do { 1302 sm->changed = FALSE; 1303 SM_STEP_RUN(EAP); 1304 if (sm->changed) 1305 res = 1; 1306 } while (sm->changed); 1307 return res; 1308} 1309 1310 1311/** 1312 * eap_sm_abort - Abort EAP authentication 1313 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1314 * 1315 * Release system resources that have been allocated for the authentication 1316 * session without fully deinitializing the EAP state machine. 1317 */ 1318void eap_sm_abort(struct eap_sm *sm) 1319{ 1320 wpabuf_free(sm->lastRespData); 1321 sm->lastRespData = NULL; 1322 wpabuf_free(sm->eapRespData); 1323 sm->eapRespData = NULL; 1324 os_free(sm->eapKeyData); 1325 sm->eapKeyData = NULL; 1326 1327 /* This is not clearly specified in the EAP statemachines draft, but 1328 * it seems necessary to make sure that some of the EAPOL variables get 1329 * cleared for the next authentication. */ 1330 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); 1331} 1332 1333 1334#ifdef CONFIG_CTRL_IFACE 1335static const char * eap_sm_state_txt(int state) 1336{ 1337 switch (state) { 1338 case EAP_INITIALIZE: 1339 return "INITIALIZE"; 1340 case EAP_DISABLED: 1341 return "DISABLED"; 1342 case EAP_IDLE: 1343 return "IDLE"; 1344 case EAP_RECEIVED: 1345 return "RECEIVED"; 1346 case EAP_GET_METHOD: 1347 return "GET_METHOD"; 1348 case EAP_METHOD: 1349 return "METHOD"; 1350 case EAP_SEND_RESPONSE: 1351 return "SEND_RESPONSE"; 1352 case EAP_DISCARD: 1353 return "DISCARD"; 1354 case EAP_IDENTITY: 1355 return "IDENTITY"; 1356 case EAP_NOTIFICATION: 1357 return "NOTIFICATION"; 1358 case EAP_RETRANSMIT: 1359 return "RETRANSMIT"; 1360 case EAP_SUCCESS: 1361 return "SUCCESS"; 1362 case EAP_FAILURE: 1363 return "FAILURE"; 1364 default: 1365 return "UNKNOWN"; 1366 } 1367} 1368#endif /* CONFIG_CTRL_IFACE */ 1369 1370 1371#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1372static const char * eap_sm_method_state_txt(EapMethodState state) 1373{ 1374 switch (state) { 1375 case METHOD_NONE: 1376 return "NONE"; 1377 case METHOD_INIT: 1378 return "INIT"; 1379 case METHOD_CONT: 1380 return "CONT"; 1381 case METHOD_MAY_CONT: 1382 return "MAY_CONT"; 1383 case METHOD_DONE: 1384 return "DONE"; 1385 default: 1386 return "UNKNOWN"; 1387 } 1388} 1389 1390 1391static const char * eap_sm_decision_txt(EapDecision decision) 1392{ 1393 switch (decision) { 1394 case DECISION_FAIL: 1395 return "FAIL"; 1396 case DECISION_COND_SUCC: 1397 return "COND_SUCC"; 1398 case DECISION_UNCOND_SUCC: 1399 return "UNCOND_SUCC"; 1400 default: 1401 return "UNKNOWN"; 1402 } 1403} 1404#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1405 1406 1407#ifdef CONFIG_CTRL_IFACE 1408 1409/** 1410 * eap_sm_get_status - Get EAP state machine status 1411 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1412 * @buf: Buffer for status information 1413 * @buflen: Maximum buffer length 1414 * @verbose: Whether to include verbose status information 1415 * Returns: Number of bytes written to buf. 1416 * 1417 * Query EAP state machine for status information. This function fills in a 1418 * text area with current status information from the EAPOL state machine. If 1419 * the buffer (buf) is not large enough, status information will be truncated 1420 * to fit the buffer. 1421 */ 1422int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) 1423{ 1424 int len, ret; 1425 1426 if (sm == NULL) 1427 return 0; 1428 1429 len = os_snprintf(buf, buflen, 1430 "EAP state=%s\n", 1431 eap_sm_state_txt(sm->EAP_state)); 1432 if (len < 0 || (size_t) len >= buflen) 1433 return 0; 1434 1435 if (sm->selectedMethod != EAP_TYPE_NONE) { 1436 const char *name; 1437 if (sm->m) { 1438 name = sm->m->name; 1439 } else { 1440 const struct eap_method *m = 1441 eap_peer_get_eap_method(EAP_VENDOR_IETF, 1442 sm->selectedMethod); 1443 if (m) 1444 name = m->name; 1445 else 1446 name = "?"; 1447 } 1448 ret = os_snprintf(buf + len, buflen - len, 1449 "selectedMethod=%d (EAP-%s)\n", 1450 sm->selectedMethod, name); 1451 if (ret < 0 || (size_t) ret >= buflen - len) 1452 return len; 1453 len += ret; 1454 1455 if (sm->m && sm->m->get_status) { 1456 len += sm->m->get_status(sm, sm->eap_method_priv, 1457 buf + len, buflen - len, 1458 verbose); 1459 } 1460 } 1461 1462 if (verbose) { 1463 ret = os_snprintf(buf + len, buflen - len, 1464 "reqMethod=%d\n" 1465 "methodState=%s\n" 1466 "decision=%s\n" 1467 "ClientTimeout=%d\n", 1468 sm->reqMethod, 1469 eap_sm_method_state_txt(sm->methodState), 1470 eap_sm_decision_txt(sm->decision), 1471 sm->ClientTimeout); 1472 if (ret < 0 || (size_t) ret >= buflen - len) 1473 return len; 1474 len += ret; 1475 } 1476 1477 return len; 1478} 1479#endif /* CONFIG_CTRL_IFACE */ 1480 1481 1482#if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) 1483typedef enum { 1484 TYPE_IDENTITY, TYPE_PASSWORD, TYPE_OTP, TYPE_PIN, TYPE_NEW_PASSWORD, 1485 TYPE_PASSPHRASE 1486} eap_ctrl_req_type; 1487 1488static void eap_sm_request(struct eap_sm *sm, eap_ctrl_req_type type, 1489 const char *msg, size_t msglen) 1490{ 1491 struct eap_peer_config *config; 1492 char *field, *txt, *tmp; 1493 1494 if (sm == NULL) 1495 return; 1496 config = eap_get_config(sm); 1497 if (config == NULL) 1498 return; 1499 1500 switch (type) { 1501 case TYPE_IDENTITY: 1502 field = "IDENTITY"; 1503 txt = "Identity"; 1504 config->pending_req_identity++; 1505 break; 1506 case TYPE_PASSWORD: 1507 field = "PASSWORD"; 1508 txt = "Password"; 1509 config->pending_req_password++; 1510 break; 1511 case TYPE_NEW_PASSWORD: 1512 field = "NEW_PASSWORD"; 1513 txt = "New Password"; 1514 config->pending_req_new_password++; 1515 break; 1516 case TYPE_PIN: 1517 field = "PIN"; 1518 txt = "PIN"; 1519 config->pending_req_pin++; 1520 break; 1521 case TYPE_OTP: 1522 field = "OTP"; 1523 if (msg) { 1524 tmp = os_malloc(msglen + 3); 1525 if (tmp == NULL) 1526 return; 1527 tmp[0] = '['; 1528 os_memcpy(tmp + 1, msg, msglen); 1529 tmp[msglen + 1] = ']'; 1530 tmp[msglen + 2] = '\0'; 1531 txt = tmp; 1532 os_free(config->pending_req_otp); 1533 config->pending_req_otp = tmp; 1534 config->pending_req_otp_len = msglen + 3; 1535 } else { 1536 if (config->pending_req_otp == NULL) 1537 return; 1538 txt = config->pending_req_otp; 1539 } 1540 break; 1541 case TYPE_PASSPHRASE: 1542 field = "PASSPHRASE"; 1543 txt = "Private key passphrase"; 1544 config->pending_req_passphrase++; 1545 break; 1546 default: 1547 return; 1548 } 1549 1550 if (sm->eapol_cb->eap_param_needed) 1551 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); 1552} 1553#else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1554#define eap_sm_request(sm, type, msg, msglen) do { } while (0) 1555#endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ 1556 1557const char * eap_sm_get_method_name(struct eap_sm *sm) 1558{ 1559 if (sm->m == NULL) 1560 return "UNKNOWN"; 1561 return sm->m->name; 1562} 1563 1564 1565/** 1566 * eap_sm_request_identity - Request identity from user (ctrl_iface) 1567 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1568 * 1569 * EAP methods can call this function to request identity information for the 1570 * current network. This is normally called when the identity is not included 1571 * in the network configuration. The request will be sent to monitor programs 1572 * through the control interface. 1573 */ 1574void eap_sm_request_identity(struct eap_sm *sm) 1575{ 1576 eap_sm_request(sm, TYPE_IDENTITY, NULL, 0); 1577} 1578 1579 1580/** 1581 * eap_sm_request_password - Request password from user (ctrl_iface) 1582 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1583 * 1584 * EAP methods can call this function to request password information for the 1585 * current network. This is normally called when the password is not included 1586 * in the network configuration. The request will be sent to monitor programs 1587 * through the control interface. 1588 */ 1589void eap_sm_request_password(struct eap_sm *sm) 1590{ 1591 eap_sm_request(sm, TYPE_PASSWORD, NULL, 0); 1592} 1593 1594 1595/** 1596 * eap_sm_request_new_password - Request new password from user (ctrl_iface) 1597 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1598 * 1599 * EAP methods can call this function to request new password information for 1600 * the current network. This is normally called when the EAP method indicates 1601 * that the current password has expired and password change is required. The 1602 * request will be sent to monitor programs through the control interface. 1603 */ 1604void eap_sm_request_new_password(struct eap_sm *sm) 1605{ 1606 eap_sm_request(sm, TYPE_NEW_PASSWORD, NULL, 0); 1607} 1608 1609 1610/** 1611 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) 1612 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1613 * 1614 * EAP methods can call this function to request SIM or smart card PIN 1615 * information for the current network. This is normally called when the PIN is 1616 * not included in the network configuration. The request will be sent to 1617 * monitor programs through the control interface. 1618 */ 1619void eap_sm_request_pin(struct eap_sm *sm) 1620{ 1621 eap_sm_request(sm, TYPE_PIN, NULL, 0); 1622} 1623 1624 1625/** 1626 * eap_sm_request_otp - Request one time password from user (ctrl_iface) 1627 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1628 * @msg: Message to be displayed to the user when asking for OTP 1629 * @msg_len: Length of the user displayable message 1630 * 1631 * EAP methods can call this function to request open time password (OTP) for 1632 * the current network. The request will be sent to monitor programs through 1633 * the control interface. 1634 */ 1635void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) 1636{ 1637 eap_sm_request(sm, TYPE_OTP, msg, msg_len); 1638} 1639 1640 1641/** 1642 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) 1643 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1644 * 1645 * EAP methods can call this function to request passphrase for a private key 1646 * for the current network. This is normally called when the passphrase is not 1647 * included in the network configuration. The request will be sent to monitor 1648 * programs through the control interface. 1649 */ 1650void eap_sm_request_passphrase(struct eap_sm *sm) 1651{ 1652 eap_sm_request(sm, TYPE_PASSPHRASE, NULL, 0); 1653} 1654 1655 1656/** 1657 * eap_sm_notify_ctrl_attached - Notification of attached monitor 1658 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1659 * 1660 * Notify EAP state machines that a monitor was attached to the control 1661 * interface to trigger re-sending of pending requests for user input. 1662 */ 1663void eap_sm_notify_ctrl_attached(struct eap_sm *sm) 1664{ 1665 struct eap_peer_config *config = eap_get_config(sm); 1666 1667 if (config == NULL) 1668 return; 1669 1670 /* Re-send any pending requests for user data since a new control 1671 * interface was added. This handles cases where the EAP authentication 1672 * starts immediately after system startup when the user interface is 1673 * not yet running. */ 1674 if (config->pending_req_identity) 1675 eap_sm_request_identity(sm); 1676 if (config->pending_req_password) 1677 eap_sm_request_password(sm); 1678 if (config->pending_req_new_password) 1679 eap_sm_request_new_password(sm); 1680 if (config->pending_req_otp) 1681 eap_sm_request_otp(sm, NULL, 0); 1682 if (config->pending_req_pin) 1683 eap_sm_request_pin(sm); 1684 if (config->pending_req_passphrase) 1685 eap_sm_request_passphrase(sm); 1686} 1687 1688 1689static int eap_allowed_phase2_type(int vendor, int type) 1690{ 1691 if (vendor != EAP_VENDOR_IETF) 1692 return 0; 1693 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && 1694 type != EAP_TYPE_FAST; 1695} 1696 1697 1698/** 1699 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name 1700 * @name: EAP method name, e.g., MD5 1701 * @vendor: Buffer for returning EAP Vendor-Id 1702 * Returns: EAP method type or %EAP_TYPE_NONE if not found 1703 * 1704 * This function maps EAP type names into EAP type numbers that are allowed for 1705 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with 1706 * EAP-PEAP, EAP-TTLS, and EAP-FAST. 1707 */ 1708u32 eap_get_phase2_type(const char *name, int *vendor) 1709{ 1710 int v; 1711 u8 type = eap_peer_get_type(name, &v); 1712 if (eap_allowed_phase2_type(v, type)) { 1713 *vendor = v; 1714 return type; 1715 } 1716 *vendor = EAP_VENDOR_IETF; 1717 return EAP_TYPE_NONE; 1718} 1719 1720 1721/** 1722 * eap_get_phase2_types - Get list of allowed EAP phase 2 types 1723 * @config: Pointer to a network configuration 1724 * @count: Pointer to a variable to be filled with number of returned EAP types 1725 * Returns: Pointer to allocated type list or %NULL on failure 1726 * 1727 * This function generates an array of allowed EAP phase 2 (tunneled) types for 1728 * the given network configuration. 1729 */ 1730struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, 1731 size_t *count) 1732{ 1733 struct eap_method_type *buf; 1734 u32 method; 1735 int vendor; 1736 size_t mcount; 1737 const struct eap_method *methods, *m; 1738 1739 methods = eap_peer_get_methods(&mcount); 1740 if (methods == NULL) 1741 return NULL; 1742 *count = 0; 1743 buf = os_malloc(mcount * sizeof(struct eap_method_type)); 1744 if (buf == NULL) 1745 return NULL; 1746 1747 for (m = methods; m; m = m->next) { 1748 vendor = m->vendor; 1749 method = m->method; 1750 if (eap_allowed_phase2_type(vendor, method)) { 1751 if (vendor == EAP_VENDOR_IETF && 1752 method == EAP_TYPE_TLS && config && 1753 config->private_key2 == NULL) 1754 continue; 1755 buf[*count].vendor = vendor; 1756 buf[*count].method = method; 1757 (*count)++; 1758 } 1759 } 1760 1761 return buf; 1762} 1763 1764 1765/** 1766 * eap_set_fast_reauth - Update fast_reauth setting 1767 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1768 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled 1769 */ 1770void eap_set_fast_reauth(struct eap_sm *sm, int enabled) 1771{ 1772 sm->fast_reauth = enabled; 1773} 1774 1775 1776/** 1777 * eap_set_workaround - Update EAP workarounds setting 1778 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1779 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds 1780 */ 1781void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) 1782{ 1783 sm->workaround = workaround; 1784} 1785 1786 1787/** 1788 * eap_get_config - Get current network configuration 1789 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1790 * Returns: Pointer to the current network configuration or %NULL if not found 1791 * 1792 * EAP peer methods should avoid using this function if they can use other 1793 * access functions, like eap_get_config_identity() and 1794 * eap_get_config_password(), that do not require direct access to 1795 * struct eap_peer_config. 1796 */ 1797struct eap_peer_config * eap_get_config(struct eap_sm *sm) 1798{ 1799 return sm->eapol_cb->get_config(sm->eapol_ctx); 1800} 1801 1802 1803/** 1804 * eap_get_config_identity - Get identity from the network configuration 1805 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1806 * @len: Buffer for the length of the identity 1807 * Returns: Pointer to the identity or %NULL if not found 1808 */ 1809const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) 1810{ 1811 struct eap_peer_config *config = eap_get_config(sm); 1812 if (config == NULL) 1813 return NULL; 1814 *len = config->identity_len; 1815 return config->identity; 1816} 1817 1818 1819/** 1820 * eap_get_config_password - Get password from the network configuration 1821 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1822 * @len: Buffer for the length of the password 1823 * Returns: Pointer to the password or %NULL if not found 1824 */ 1825const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) 1826{ 1827 struct eap_peer_config *config = eap_get_config(sm); 1828 if (config == NULL) 1829 return NULL; 1830 *len = config->password_len; 1831 return config->password; 1832} 1833 1834 1835/** 1836 * eap_get_config_password2 - Get password from the network configuration 1837 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1838 * @len: Buffer for the length of the password 1839 * @hash: Buffer for returning whether the password is stored as a 1840 * NtPasswordHash instead of plaintext password; can be %NULL if this 1841 * information is not needed 1842 * Returns: Pointer to the password or %NULL if not found 1843 */ 1844const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) 1845{ 1846 struct eap_peer_config *config = eap_get_config(sm); 1847 if (config == NULL) 1848 return NULL; 1849 *len = config->password_len; 1850 if (hash) 1851 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); 1852 return config->password; 1853} 1854 1855 1856/** 1857 * eap_get_config_new_password - Get new password from network configuration 1858 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1859 * @len: Buffer for the length of the new password 1860 * Returns: Pointer to the new password or %NULL if not found 1861 */ 1862const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) 1863{ 1864 struct eap_peer_config *config = eap_get_config(sm); 1865 if (config == NULL) 1866 return NULL; 1867 *len = config->new_password_len; 1868 return config->new_password; 1869} 1870 1871 1872/** 1873 * eap_get_config_otp - Get one-time password from the network configuration 1874 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1875 * @len: Buffer for the length of the one-time password 1876 * Returns: Pointer to the one-time password or %NULL if not found 1877 */ 1878const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) 1879{ 1880 struct eap_peer_config *config = eap_get_config(sm); 1881 if (config == NULL) 1882 return NULL; 1883 *len = config->otp_len; 1884 return config->otp; 1885} 1886 1887 1888/** 1889 * eap_clear_config_otp - Clear used one-time password 1890 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1891 * 1892 * This function clears a used one-time password (OTP) from the current network 1893 * configuration. This should be called when the OTP has been used and is not 1894 * needed anymore. 1895 */ 1896void eap_clear_config_otp(struct eap_sm *sm) 1897{ 1898 struct eap_peer_config *config = eap_get_config(sm); 1899 if (config == NULL) 1900 return; 1901 os_memset(config->otp, 0, config->otp_len); 1902 os_free(config->otp); 1903 config->otp = NULL; 1904 config->otp_len = 0; 1905} 1906 1907 1908/** 1909 * eap_get_config_phase1 - Get phase1 data from the network configuration 1910 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1911 * Returns: Pointer to the phase1 data or %NULL if not found 1912 */ 1913const char * eap_get_config_phase1(struct eap_sm *sm) 1914{ 1915 struct eap_peer_config *config = eap_get_config(sm); 1916 if (config == NULL) 1917 return NULL; 1918 return config->phase1; 1919} 1920 1921 1922/** 1923 * eap_get_config_phase2 - Get phase2 data from the network configuration 1924 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1925 * Returns: Pointer to the phase1 data or %NULL if not found 1926 */ 1927const char * eap_get_config_phase2(struct eap_sm *sm) 1928{ 1929 struct eap_peer_config *config = eap_get_config(sm); 1930 if (config == NULL) 1931 return NULL; 1932 return config->phase2; 1933} 1934 1935 1936int eap_get_config_fragment_size(struct eap_sm *sm) 1937{ 1938 struct eap_peer_config *config = eap_get_config(sm); 1939 if (config == NULL) 1940 return -1; 1941 return config->fragment_size; 1942} 1943 1944 1945/** 1946 * eap_key_available - Get key availability (eapKeyAvailable variable) 1947 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1948 * Returns: 1 if EAP keying material is available, 0 if not 1949 */ 1950int eap_key_available(struct eap_sm *sm) 1951{ 1952 return sm ? sm->eapKeyAvailable : 0; 1953} 1954 1955 1956/** 1957 * eap_notify_success - Notify EAP state machine about external success trigger 1958 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1959 * 1960 * This function is called when external event, e.g., successful completion of 1961 * WPA-PSK key handshake, is indicating that EAP state machine should move to 1962 * success state. This is mainly used with security modes that do not use EAP 1963 * state machine (e.g., WPA-PSK). 1964 */ 1965void eap_notify_success(struct eap_sm *sm) 1966{ 1967 if (sm) { 1968 sm->decision = DECISION_COND_SUCC; 1969 sm->EAP_state = EAP_SUCCESS; 1970 } 1971} 1972 1973 1974/** 1975 * eap_notify_lower_layer_success - Notification of lower layer success 1976 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 1977 * 1978 * Notify EAP state machines that a lower layer has detected a successful 1979 * authentication. This is used to recover from dropped EAP-Success messages. 1980 */ 1981void eap_notify_lower_layer_success(struct eap_sm *sm) 1982{ 1983 if (sm == NULL) 1984 return; 1985 1986 if (eapol_get_bool(sm, EAPOL_eapSuccess) || 1987 sm->decision == DECISION_FAIL || 1988 (sm->methodState != METHOD_MAY_CONT && 1989 sm->methodState != METHOD_DONE)) 1990 return; 1991 1992 if (sm->eapKeyData != NULL) 1993 sm->eapKeyAvailable = TRUE; 1994 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); 1995 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS 1996 "EAP authentication completed successfully (based on lower " 1997 "layer success)"); 1998} 1999 2000 2001/** 2002 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine 2003 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2004 * @len: Pointer to variable that will be set to number of bytes in the key 2005 * Returns: Pointer to the EAP keying data or %NULL on failure 2006 * 2007 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The 2008 * key is available only after a successful authentication. EAP state machine 2009 * continues to manage the key data and the caller must not change or free the 2010 * returned data. 2011 */ 2012const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) 2013{ 2014 if (sm == NULL || sm->eapKeyData == NULL) { 2015 *len = 0; 2016 return NULL; 2017 } 2018 2019 *len = sm->eapKeyDataLen; 2020 return sm->eapKeyData; 2021} 2022 2023 2024/** 2025 * eap_get_eapKeyData - Get EAP response data 2026 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2027 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure 2028 * 2029 * Fetch EAP response (eapRespData) from the EAP state machine. This data is 2030 * available when EAP state machine has processed an incoming EAP request. The 2031 * EAP state machine does not maintain a reference to the response after this 2032 * function is called and the caller is responsible for freeing the data. 2033 */ 2034struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) 2035{ 2036 struct wpabuf *resp; 2037 2038 if (sm == NULL || sm->eapRespData == NULL) 2039 return NULL; 2040 2041 resp = sm->eapRespData; 2042 sm->eapRespData = NULL; 2043 2044 return resp; 2045} 2046 2047 2048/** 2049 * eap_sm_register_scard_ctx - Notification of smart card context 2050 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2051 * @ctx: Context data for smart card operations 2052 * 2053 * Notify EAP state machines of context data for smart card operations. This 2054 * context data will be used as a parameter for scard_*() functions. 2055 */ 2056void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) 2057{ 2058 if (sm) 2059 sm->scard_ctx = ctx; 2060} 2061 2062 2063/** 2064 * eap_set_config_blob - Set or add a named configuration blob 2065 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2066 * @blob: New value for the blob 2067 * 2068 * Adds a new configuration blob or replaces the current value of an existing 2069 * blob. 2070 */ 2071void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) 2072{ 2073#ifndef CONFIG_NO_CONFIG_BLOBS 2074 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); 2075#endif /* CONFIG_NO_CONFIG_BLOBS */ 2076} 2077 2078 2079/** 2080 * eap_get_config_blob - Get a named configuration blob 2081 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2082 * @name: Name of the blob 2083 * Returns: Pointer to blob data or %NULL if not found 2084 */ 2085const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, 2086 const char *name) 2087{ 2088#ifndef CONFIG_NO_CONFIG_BLOBS 2089 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); 2090#else /* CONFIG_NO_CONFIG_BLOBS */ 2091 return NULL; 2092#endif /* CONFIG_NO_CONFIG_BLOBS */ 2093} 2094 2095 2096/** 2097 * eap_set_force_disabled - Set force_disabled flag 2098 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2099 * @disabled: 1 = EAP disabled, 0 = EAP enabled 2100 * 2101 * This function is used to force EAP state machine to be disabled when it is 2102 * not in use (e.g., with WPA-PSK or plaintext connections). 2103 */ 2104void eap_set_force_disabled(struct eap_sm *sm, int disabled) 2105{ 2106 sm->force_disabled = disabled; 2107} 2108 2109 2110 /** 2111 * eap_notify_pending - Notify that EAP method is ready to re-process a request 2112 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2113 * 2114 * An EAP method can perform a pending operation (e.g., to get a response from 2115 * an external process). Once the response is available, this function can be 2116 * used to request EAPOL state machine to retry delivering the previously 2117 * received (and still unanswered) EAP request to EAP state machine. 2118 */ 2119void eap_notify_pending(struct eap_sm *sm) 2120{ 2121 sm->eapol_cb->notify_pending(sm->eapol_ctx); 2122} 2123 2124 2125/** 2126 * eap_invalidate_cached_session - Mark cached session data invalid 2127 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() 2128 */ 2129void eap_invalidate_cached_session(struct eap_sm *sm) 2130{ 2131 if (sm) 2132 eap_deinit_prev_method(sm, "invalidate"); 2133} 2134 2135 2136int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) 2137{ 2138 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2139 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2140 return 0; /* Not a WPS Enrollee */ 2141 2142 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) 2143 return 0; /* Not using PBC */ 2144 2145 return 1; 2146} 2147 2148 2149int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) 2150{ 2151 if (conf->identity_len != WSC_ID_ENROLLEE_LEN || 2152 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) 2153 return 0; /* Not a WPS Enrollee */ 2154 2155 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) 2156 return 0; /* Not using PIN */ 2157 2158 return 1; 2159} 2160