Threads.cpp revision 2f366df67c31119bb6dd726becd32d14b18e6573
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <private/android_filesystem_config.h>
37#include <audio_utils/conversion.h>
38#include <audio_utils/primitives.h>
39#include <audio_utils/format.h>
40#include <audio_utils/minifloat.h>
41#include <system/audio_effects/effect_ns.h>
42#include <system/audio_effects/effect_aec.h>
43#include <system/audio.h>
44
45// NBAIO implementations
46#include <media/nbaio/AudioStreamInSource.h>
47#include <media/nbaio/AudioStreamOutSink.h>
48#include <media/nbaio/MonoPipe.h>
49#include <media/nbaio/MonoPipeReader.h>
50#include <media/nbaio/Pipe.h>
51#include <media/nbaio/PipeReader.h>
52#include <media/nbaio/SourceAudioBufferProvider.h>
53#include <mediautils/BatteryNotifier.h>
54
55#include <powermanager/PowerManager.h>
56
57#include "AudioFlinger.h"
58#include "AudioMixer.h"
59#include "BufferProviders.h"
60#include "FastMixer.h"
61#include "FastCapture.h"
62#include "ServiceUtilities.h"
63#include "mediautils/SchedulingPolicyService.h"
64
65#ifdef ADD_BATTERY_DATA
66#include <media/IMediaPlayerService.h>
67#include <media/IMediaDeathNotifier.h>
68#endif
69
70#ifdef DEBUG_CPU_USAGE
71#include <cpustats/CentralTendencyStatistics.h>
72#include <cpustats/ThreadCpuUsage.h>
73#endif
74
75#include "AutoPark.h"
76
77// ----------------------------------------------------------------------------
78
79// Note: the following macro is used for extremely verbose logging message.  In
80// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
81// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
82// are so verbose that we want to suppress them even when we have ALOG_ASSERT
83// turned on.  Do not uncomment the #def below unless you really know what you
84// are doing and want to see all of the extremely verbose messages.
85//#define VERY_VERY_VERBOSE_LOGGING
86#ifdef VERY_VERY_VERBOSE_LOGGING
87#define ALOGVV ALOGV
88#else
89#define ALOGVV(a...) do { } while(0)
90#endif
91
92// TODO: Move these macro/inlines to a header file.
93#define max(a, b) ((a) > (b) ? (a) : (b))
94template <typename T>
95static inline T min(const T& a, const T& b)
96{
97    return a < b ? a : b;
98}
99
100#ifndef ARRAY_SIZE
101#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
102#endif
103
104namespace android {
105
106// retry counts for buffer fill timeout
107// 50 * ~20msecs = 1 second
108static const int8_t kMaxTrackRetries = 50;
109static const int8_t kMaxTrackStartupRetries = 50;
110// allow less retry attempts on direct output thread.
111// direct outputs can be a scarce resource in audio hardware and should
112// be released as quickly as possible.
113static const int8_t kMaxTrackRetriesDirect = 2;
114
115
116
117// don't warn about blocked writes or record buffer overflows more often than this
118static const nsecs_t kWarningThrottleNs = seconds(5);
119
120// RecordThread loop sleep time upon application overrun or audio HAL read error
121static const int kRecordThreadSleepUs = 5000;
122
123// maximum time to wait in sendConfigEvent_l() for a status to be received
124static const nsecs_t kConfigEventTimeoutNs = seconds(2);
125
126// minimum sleep time for the mixer thread loop when tracks are active but in underrun
127static const uint32_t kMinThreadSleepTimeUs = 5000;
128// maximum divider applied to the active sleep time in the mixer thread loop
129static const uint32_t kMaxThreadSleepTimeShift = 2;
130
131// minimum normal sink buffer size, expressed in milliseconds rather than frames
132// FIXME This should be based on experimentally observed scheduling jitter
133static const uint32_t kMinNormalSinkBufferSizeMs = 20;
134// maximum normal sink buffer size
135static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
136
137// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
138// FIXME This should be based on experimentally observed scheduling jitter
139static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
140
141// Offloaded output thread standby delay: allows track transition without going to standby
142static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
143
144// Direct output thread minimum sleep time in idle or active(underrun) state
145static const nsecs_t kDirectMinSleepTimeUs = 10000;
146
147// The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
148// balance between power consumption and latency, and allows threads to be scheduled reliably
149// by the CFS scheduler.
150// FIXME Express other hardcoded references to 20ms with references to this constant and move
151// it appropriately.
152#define FMS_20 20
153
154// Whether to use fast mixer
155static const enum {
156    FastMixer_Never,    // never initialize or use: for debugging only
157    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
158                        // normal mixer multiplier is 1
159    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
160                        // multiplier is calculated based on min & max normal mixer buffer size
161    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
162                        // multiplier is calculated based on min & max normal mixer buffer size
163    // FIXME for FastMixer_Dynamic:
164    //  Supporting this option will require fixing HALs that can't handle large writes.
165    //  For example, one HAL implementation returns an error from a large write,
166    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
167    //  We could either fix the HAL implementations, or provide a wrapper that breaks
168    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
169} kUseFastMixer = FastMixer_Static;
170
171// Whether to use fast capture
172static const enum {
173    FastCapture_Never,  // never initialize or use: for debugging only
174    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
175    FastCapture_Static, // initialize if needed, then use all the time if initialized
176} kUseFastCapture = FastCapture_Static;
177
178// Priorities for requestPriority
179static const int kPriorityAudioApp = 2;
180static const int kPriorityFastMixer = 3;
181static const int kPriorityFastCapture = 3;
182
183// IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
184// track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
185// AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
186
187// This is the default value, if not specified by property.
188static const int kFastTrackMultiplier = 2;
189
190// The minimum and maximum allowed values
191static const int kFastTrackMultiplierMin = 1;
192static const int kFastTrackMultiplierMax = 2;
193
194// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
195static int sFastTrackMultiplier = kFastTrackMultiplier;
196
197// See Thread::readOnlyHeap().
198// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
199// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
200// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
201static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
202
203// ----------------------------------------------------------------------------
204
205static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
206
207static void sFastTrackMultiplierInit()
208{
209    char value[PROPERTY_VALUE_MAX];
210    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
211        char *endptr;
212        unsigned long ul = strtoul(value, &endptr, 0);
213        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
214            sFastTrackMultiplier = (int) ul;
215        }
216    }
217}
218
219// ----------------------------------------------------------------------------
220
221#ifdef ADD_BATTERY_DATA
222// To collect the amplifier usage
223static void addBatteryData(uint32_t params) {
224    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
225    if (service == NULL) {
226        // it already logged
227        return;
228    }
229
230    service->addBatteryData(params);
231}
232#endif
233
234// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
235struct {
236    // call when you acquire a partial wakelock
237    void acquire(const sp<IBinder> &wakeLockToken) {
238        pthread_mutex_lock(&mLock);
239        if (wakeLockToken.get() == nullptr) {
240            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
241        } else {
242            if (mCount == 0) {
243                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
244            }
245            ++mCount;
246        }
247        pthread_mutex_unlock(&mLock);
248    }
249
250    // call when you release a partial wakelock.
251    void release(const sp<IBinder> &wakeLockToken) {
252        if (wakeLockToken.get() == nullptr) {
253            return;
254        }
255        pthread_mutex_lock(&mLock);
256        if (--mCount < 0) {
257            ALOGE("negative wakelock count");
258            mCount = 0;
259        }
260        pthread_mutex_unlock(&mLock);
261    }
262
263    // retrieves the boottime timebase offset from monotonic.
264    int64_t getBoottimeOffset() {
265        pthread_mutex_lock(&mLock);
266        int64_t boottimeOffset = mBoottimeOffset;
267        pthread_mutex_unlock(&mLock);
268        return boottimeOffset;
269    }
270
271    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
272    // and the selected timebase.
273    // Currently only TIMEBASE_BOOTTIME is allowed.
274    //
275    // This only needs to be called upon acquiring the first partial wakelock
276    // after all other partial wakelocks are released.
277    //
278    // We do an empirical measurement of the offset rather than parsing
279    // /proc/timer_list since the latter is not a formal kernel ABI.
280    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
281        int clockbase;
282        switch (timebase) {
283        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
284            clockbase = SYSTEM_TIME_BOOTTIME;
285            break;
286        default:
287            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
288            break;
289        }
290        // try three times to get the clock offset, choose the one
291        // with the minimum gap in measurements.
292        const int tries = 3;
293        nsecs_t bestGap, measured;
294        for (int i = 0; i < tries; ++i) {
295            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
296            const nsecs_t tbase = systemTime(clockbase);
297            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
298            const nsecs_t gap = tmono2 - tmono;
299            if (i == 0 || gap < bestGap) {
300                bestGap = gap;
301                measured = tbase - ((tmono + tmono2) >> 1);
302            }
303        }
304
305        // to avoid micro-adjusting, we don't change the timebase
306        // unless it is significantly different.
307        //
308        // Assumption: It probably takes more than toleranceNs to
309        // suspend and resume the device.
310        static int64_t toleranceNs = 10000; // 10 us
311        if (llabs(*offset - measured) > toleranceNs) {
312            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
313                    (long long)*offset, (long long)measured);
314            *offset = measured;
315        }
316    }
317
318    pthread_mutex_t mLock;
319    int32_t mCount;
320    int64_t mBoottimeOffset;
321} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
322
323// ----------------------------------------------------------------------------
324//      CPU Stats
325// ----------------------------------------------------------------------------
326
327class CpuStats {
328public:
329    CpuStats();
330    void sample(const String8 &title);
331#ifdef DEBUG_CPU_USAGE
332private:
333    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
334    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
335
336    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
337
338    int mCpuNum;                        // thread's current CPU number
339    int mCpukHz;                        // frequency of thread's current CPU in kHz
340#endif
341};
342
343CpuStats::CpuStats()
344#ifdef DEBUG_CPU_USAGE
345    : mCpuNum(-1), mCpukHz(-1)
346#endif
347{
348}
349
350void CpuStats::sample(const String8 &title
351#ifndef DEBUG_CPU_USAGE
352                __unused
353#endif
354        ) {
355#ifdef DEBUG_CPU_USAGE
356    // get current thread's delta CPU time in wall clock ns
357    double wcNs;
358    bool valid = mCpuUsage.sampleAndEnable(wcNs);
359
360    // record sample for wall clock statistics
361    if (valid) {
362        mWcStats.sample(wcNs);
363    }
364
365    // get the current CPU number
366    int cpuNum = sched_getcpu();
367
368    // get the current CPU frequency in kHz
369    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
370
371    // check if either CPU number or frequency changed
372    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
373        mCpuNum = cpuNum;
374        mCpukHz = cpukHz;
375        // ignore sample for purposes of cycles
376        valid = false;
377    }
378
379    // if no change in CPU number or frequency, then record sample for cycle statistics
380    if (valid && mCpukHz > 0) {
381        double cycles = wcNs * cpukHz * 0.000001;
382        mHzStats.sample(cycles);
383    }
384
385    unsigned n = mWcStats.n();
386    // mCpuUsage.elapsed() is expensive, so don't call it every loop
387    if ((n & 127) == 1) {
388        long long elapsed = mCpuUsage.elapsed();
389        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
390            double perLoop = elapsed / (double) n;
391            double perLoop100 = perLoop * 0.01;
392            double perLoop1k = perLoop * 0.001;
393            double mean = mWcStats.mean();
394            double stddev = mWcStats.stddev();
395            double minimum = mWcStats.minimum();
396            double maximum = mWcStats.maximum();
397            double meanCycles = mHzStats.mean();
398            double stddevCycles = mHzStats.stddev();
399            double minCycles = mHzStats.minimum();
400            double maxCycles = mHzStats.maximum();
401            mCpuUsage.resetElapsed();
402            mWcStats.reset();
403            mHzStats.reset();
404            ALOGD("CPU usage for %s over past %.1f secs\n"
405                "  (%u mixer loops at %.1f mean ms per loop):\n"
406                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
407                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
408                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
409                    title.string(),
410                    elapsed * .000000001, n, perLoop * .000001,
411                    mean * .001,
412                    stddev * .001,
413                    minimum * .001,
414                    maximum * .001,
415                    mean / perLoop100,
416                    stddev / perLoop100,
417                    minimum / perLoop100,
418                    maximum / perLoop100,
419                    meanCycles / perLoop1k,
420                    stddevCycles / perLoop1k,
421                    minCycles / perLoop1k,
422                    maxCycles / perLoop1k);
423
424        }
425    }
426#endif
427};
428
429// ----------------------------------------------------------------------------
430//      ThreadBase
431// ----------------------------------------------------------------------------
432
433// static
434const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
435{
436    switch (type) {
437    case MIXER:
438        return "MIXER";
439    case DIRECT:
440        return "DIRECT";
441    case DUPLICATING:
442        return "DUPLICATING";
443    case RECORD:
444        return "RECORD";
445    case OFFLOAD:
446        return "OFFLOAD";
447    default:
448        return "unknown";
449    }
450}
451
452String8 devicesToString(audio_devices_t devices)
453{
454    static const struct mapping {
455        audio_devices_t mDevices;
456        const char *    mString;
457    } mappingsOut[] = {
458        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
459        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
460        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
461        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
462        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
463        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
464        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
465        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
466        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
467        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
468        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
469        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
470        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
471        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
472        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
473        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
474        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
475        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
476        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
477        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
478        {AUDIO_DEVICE_OUT_FM,               "FM"},
479        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
480        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
481        {AUDIO_DEVICE_OUT_IP,               "IP"},
482        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
483        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
484    }, mappingsIn[] = {
485        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
486        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
487        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
488        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
489        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
490        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
491        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
492        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
493        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
494        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
495        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
496        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
497        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
498        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
499        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
500        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
501        {AUDIO_DEVICE_IN_LINE,              "LINE"},
502        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
503        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
504        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
505        {AUDIO_DEVICE_IN_IP,                "IP"},
506        {AUDIO_DEVICE_IN_BUS,               "BUS"},
507        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
508    };
509    String8 result;
510    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
511    const mapping *entry;
512    if (devices & AUDIO_DEVICE_BIT_IN) {
513        devices &= ~AUDIO_DEVICE_BIT_IN;
514        entry = mappingsIn;
515    } else {
516        entry = mappingsOut;
517    }
518    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
519        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
520        if (devices & entry->mDevices) {
521            if (!result.isEmpty()) {
522                result.append("|");
523            }
524            result.append(entry->mString);
525        }
526    }
527    if (devices & ~allDevices) {
528        if (!result.isEmpty()) {
529            result.append("|");
530        }
531        result.appendFormat("0x%X", devices & ~allDevices);
532    }
533    if (result.isEmpty()) {
534        result.append(entry->mString);
535    }
536    return result;
537}
538
539String8 inputFlagsToString(audio_input_flags_t flags)
540{
541    static const struct mapping {
542        audio_input_flags_t     mFlag;
543        const char *            mString;
544    } mappings[] = {
545        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
546        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
547        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
548        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
549        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
550    };
551    String8 result;
552    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
553    const mapping *entry;
554    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
555        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
556        if (flags & entry->mFlag) {
557            if (!result.isEmpty()) {
558                result.append("|");
559            }
560            result.append(entry->mString);
561        }
562    }
563    if (flags & ~allFlags) {
564        if (!result.isEmpty()) {
565            result.append("|");
566        }
567        result.appendFormat("0x%X", flags & ~allFlags);
568    }
569    if (result.isEmpty()) {
570        result.append(entry->mString);
571    }
572    return result;
573}
574
575String8 outputFlagsToString(audio_output_flags_t flags)
576{
577    static const struct mapping {
578        audio_output_flags_t    mFlag;
579        const char *            mString;
580    } mappings[] = {
581        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
582        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
583        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
584        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
585        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
586        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
587        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
588        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
589        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
590        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
591        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
592    };
593    String8 result;
594    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
595    const mapping *entry;
596    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
597        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
598        if (flags & entry->mFlag) {
599            if (!result.isEmpty()) {
600                result.append("|");
601            }
602            result.append(entry->mString);
603        }
604    }
605    if (flags & ~allFlags) {
606        if (!result.isEmpty()) {
607            result.append("|");
608        }
609        result.appendFormat("0x%X", flags & ~allFlags);
610    }
611    if (result.isEmpty()) {
612        result.append(entry->mString);
613    }
614    return result;
615}
616
617const char *sourceToString(audio_source_t source)
618{
619    switch (source) {
620    case AUDIO_SOURCE_DEFAULT:              return "default";
621    case AUDIO_SOURCE_MIC:                  return "mic";
622    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
623    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
624    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
625    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
626    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
627    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
628    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
629    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
630    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
631    case AUDIO_SOURCE_HOTWORD:              return "hotword";
632    default:                                return "unknown";
633    }
634}
635
636AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
637        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
638    :   Thread(false /*canCallJava*/),
639        mType(type),
640        mAudioFlinger(audioFlinger),
641        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
642        // are set by PlaybackThread::readOutputParameters_l() or
643        // RecordThread::readInputParameters_l()
644        //FIXME: mStandby should be true here. Is this some kind of hack?
645        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
646        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
647        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
648        // mName will be set by concrete (non-virtual) subclass
649        mDeathRecipient(new PMDeathRecipient(this)),
650        mSystemReady(systemReady)
651{
652    memset(&mPatch, 0, sizeof(struct audio_patch));
653}
654
655AudioFlinger::ThreadBase::~ThreadBase()
656{
657    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
658    mConfigEvents.clear();
659
660    // do not lock the mutex in destructor
661    releaseWakeLock_l();
662    if (mPowerManager != 0) {
663        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
664        binder->unlinkToDeath(mDeathRecipient);
665    }
666}
667
668status_t AudioFlinger::ThreadBase::readyToRun()
669{
670    status_t status = initCheck();
671    if (status == NO_ERROR) {
672        ALOGI("AudioFlinger's thread %p ready to run", this);
673    } else {
674        ALOGE("No working audio driver found.");
675    }
676    return status;
677}
678
679void AudioFlinger::ThreadBase::exit()
680{
681    ALOGV("ThreadBase::exit");
682    // do any cleanup required for exit to succeed
683    preExit();
684    {
685        // This lock prevents the following race in thread (uniprocessor for illustration):
686        //  if (!exitPending()) {
687        //      // context switch from here to exit()
688        //      // exit() calls requestExit(), what exitPending() observes
689        //      // exit() calls signal(), which is dropped since no waiters
690        //      // context switch back from exit() to here
691        //      mWaitWorkCV.wait(...);
692        //      // now thread is hung
693        //  }
694        AutoMutex lock(mLock);
695        requestExit();
696        mWaitWorkCV.broadcast();
697    }
698    // When Thread::requestExitAndWait is made virtual and this method is renamed to
699    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
700    requestExitAndWait();
701}
702
703status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
704{
705    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
706    Mutex::Autolock _l(mLock);
707
708    return sendSetParameterConfigEvent_l(keyValuePairs);
709}
710
711// sendConfigEvent_l() must be called with ThreadBase::mLock held
712// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
713status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
714{
715    status_t status = NO_ERROR;
716
717    if (event->mRequiresSystemReady && !mSystemReady) {
718        event->mWaitStatus = false;
719        mPendingConfigEvents.add(event);
720        return status;
721    }
722    mConfigEvents.add(event);
723    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
724    mWaitWorkCV.signal();
725    mLock.unlock();
726    {
727        Mutex::Autolock _l(event->mLock);
728        while (event->mWaitStatus) {
729            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
730                event->mStatus = TIMED_OUT;
731                event->mWaitStatus = false;
732            }
733        }
734        status = event->mStatus;
735    }
736    mLock.lock();
737    return status;
738}
739
740void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
741{
742    Mutex::Autolock _l(mLock);
743    sendIoConfigEvent_l(event, pid);
744}
745
746// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
747void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
748{
749    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
750    sendConfigEvent_l(configEvent);
751}
752
753void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
754{
755    Mutex::Autolock _l(mLock);
756    sendPrioConfigEvent_l(pid, tid, prio);
757}
758
759// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
760void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
761{
762    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
763    sendConfigEvent_l(configEvent);
764}
765
766// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
767status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
768{
769    sp<ConfigEvent> configEvent;
770    AudioParameter param(keyValuePair);
771    int value;
772    if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
773        setMasterMono_l(value != 0);
774        if (param.size() == 1) {
775            return NO_ERROR; // should be a solo parameter - we don't pass down
776        }
777        param.remove(String8(AudioParameter::keyMonoOutput));
778        configEvent = new SetParameterConfigEvent(param.toString());
779    } else {
780        configEvent = new SetParameterConfigEvent(keyValuePair);
781    }
782    return sendConfigEvent_l(configEvent);
783}
784
785status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
786                                                        const struct audio_patch *patch,
787                                                        audio_patch_handle_t *handle)
788{
789    Mutex::Autolock _l(mLock);
790    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
791    status_t status = sendConfigEvent_l(configEvent);
792    if (status == NO_ERROR) {
793        CreateAudioPatchConfigEventData *data =
794                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
795        *handle = data->mHandle;
796    }
797    return status;
798}
799
800status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
801                                                                const audio_patch_handle_t handle)
802{
803    Mutex::Autolock _l(mLock);
804    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
805    return sendConfigEvent_l(configEvent);
806}
807
808
809// post condition: mConfigEvents.isEmpty()
810void AudioFlinger::ThreadBase::processConfigEvents_l()
811{
812    bool configChanged = false;
813
814    while (!mConfigEvents.isEmpty()) {
815        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
816        sp<ConfigEvent> event = mConfigEvents[0];
817        mConfigEvents.removeAt(0);
818        switch (event->mType) {
819        case CFG_EVENT_PRIO: {
820            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
821            // FIXME Need to understand why this has to be done asynchronously
822            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
823                    true /*asynchronous*/);
824            if (err != 0) {
825                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
826                      data->mPrio, data->mPid, data->mTid, err);
827            }
828        } break;
829        case CFG_EVENT_IO: {
830            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
831            ioConfigChanged(data->mEvent, data->mPid);
832        } break;
833        case CFG_EVENT_SET_PARAMETER: {
834            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
835            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
836                configChanged = true;
837            }
838        } break;
839        case CFG_EVENT_CREATE_AUDIO_PATCH: {
840            CreateAudioPatchConfigEventData *data =
841                                            (CreateAudioPatchConfigEventData *)event->mData.get();
842            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
843        } break;
844        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
845            ReleaseAudioPatchConfigEventData *data =
846                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
847            event->mStatus = releaseAudioPatch_l(data->mHandle);
848        } break;
849        default:
850            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
851            break;
852        }
853        {
854            Mutex::Autolock _l(event->mLock);
855            if (event->mWaitStatus) {
856                event->mWaitStatus = false;
857                event->mCond.signal();
858            }
859        }
860        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
861    }
862
863    if (configChanged) {
864        cacheParameters_l();
865    }
866}
867
868String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
869    String8 s;
870    const audio_channel_representation_t representation =
871            audio_channel_mask_get_representation(mask);
872
873    switch (representation) {
874    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
875        if (output) {
876            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
877            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
878            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
879            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
880            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
881            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
882            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
883            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
884            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
885            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
886            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
887            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
888            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
889            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
890            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
891            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
892            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
893            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
894            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
895        } else {
896            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
897            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
898            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
899            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
900            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
901            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
902            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
903            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
904            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
905            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
906            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
907            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
908            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
909            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
910            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
911        }
912        const int len = s.length();
913        if (len > 2) {
914            (void) s.lockBuffer(len);      // needed?
915            s.unlockBuffer(len - 2);       // remove trailing ", "
916        }
917        return s;
918    }
919    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
920        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
921        return s;
922    default:
923        s.appendFormat("unknown mask, representation:%d  bits:%#x",
924                representation, audio_channel_mask_get_bits(mask));
925        return s;
926    }
927}
928
929void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
930{
931    const size_t SIZE = 256;
932    char buffer[SIZE];
933    String8 result;
934
935    bool locked = AudioFlinger::dumpTryLock(mLock);
936    if (!locked) {
937        dprintf(fd, "thread %p may be deadlocked\n", this);
938    }
939
940    dprintf(fd, "  Thread name: %s\n", mThreadName);
941    dprintf(fd, "  I/O handle: %d\n", mId);
942    dprintf(fd, "  TID: %d\n", getTid());
943    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
944    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
945    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
946    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
947    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
948    dprintf(fd, "  Channel count: %u\n", mChannelCount);
949    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
950            channelMaskToString(mChannelMask, mType != RECORD).string());
951    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
952    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
953    dprintf(fd, "  Pending config events:");
954    size_t numConfig = mConfigEvents.size();
955    if (numConfig) {
956        for (size_t i = 0; i < numConfig; i++) {
957            mConfigEvents[i]->dump(buffer, SIZE);
958            dprintf(fd, "\n    %s", buffer);
959        }
960        dprintf(fd, "\n");
961    } else {
962        dprintf(fd, " none\n");
963    }
964    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
965    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
966    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
967
968    if (locked) {
969        mLock.unlock();
970    }
971}
972
973void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
974{
975    const size_t SIZE = 256;
976    char buffer[SIZE];
977    String8 result;
978
979    size_t numEffectChains = mEffectChains.size();
980    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
981    write(fd, buffer, strlen(buffer));
982
983    for (size_t i = 0; i < numEffectChains; ++i) {
984        sp<EffectChain> chain = mEffectChains[i];
985        if (chain != 0) {
986            chain->dump(fd, args);
987        }
988    }
989}
990
991void AudioFlinger::ThreadBase::acquireWakeLock()
992{
993    Mutex::Autolock _l(mLock);
994    acquireWakeLock_l();
995}
996
997String16 AudioFlinger::ThreadBase::getWakeLockTag()
998{
999    switch (mType) {
1000    case MIXER:
1001        return String16("AudioMix");
1002    case DIRECT:
1003        return String16("AudioDirectOut");
1004    case DUPLICATING:
1005        return String16("AudioDup");
1006    case RECORD:
1007        return String16("AudioIn");
1008    case OFFLOAD:
1009        return String16("AudioOffload");
1010    default:
1011        ALOG_ASSERT(false);
1012        return String16("AudioUnknown");
1013    }
1014}
1015
1016void AudioFlinger::ThreadBase::acquireWakeLock_l()
1017{
1018    getPowerManager_l();
1019    if (mPowerManager != 0) {
1020        sp<IBinder> binder = new BBinder();
1021        // Uses AID_AUDIOSERVER for wakelock.  updateWakeLockUids_l() updates with client uids.
1022        status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1023                    binder,
1024                    getWakeLockTag(),
1025                    String16("audioserver"),
1026                    true /* FIXME force oneway contrary to .aidl */);
1027        if (status == NO_ERROR) {
1028            mWakeLockToken = binder;
1029        }
1030        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1031    }
1032
1033    gBoottime.acquire(mWakeLockToken);
1034    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1035            gBoottime.getBoottimeOffset();
1036}
1037
1038void AudioFlinger::ThreadBase::releaseWakeLock()
1039{
1040    Mutex::Autolock _l(mLock);
1041    releaseWakeLock_l();
1042}
1043
1044void AudioFlinger::ThreadBase::releaseWakeLock_l()
1045{
1046    gBoottime.release(mWakeLockToken);
1047    if (mWakeLockToken != 0) {
1048        ALOGV("releaseWakeLock_l() %s", mThreadName);
1049        if (mPowerManager != 0) {
1050            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1051                    true /* FIXME force oneway contrary to .aidl */);
1052        }
1053        mWakeLockToken.clear();
1054    }
1055}
1056
1057void AudioFlinger::ThreadBase::getPowerManager_l() {
1058    if (mSystemReady && mPowerManager == 0) {
1059        // use checkService() to avoid blocking if power service is not up yet
1060        sp<IBinder> binder =
1061            defaultServiceManager()->checkService(String16("power"));
1062        if (binder == 0) {
1063            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1064        } else {
1065            mPowerManager = interface_cast<IPowerManager>(binder);
1066            binder->linkToDeath(mDeathRecipient);
1067        }
1068    }
1069}
1070
1071void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1072    getPowerManager_l();
1073
1074#if !LOG_NDEBUG
1075    std::stringstream s;
1076    for (int uid : uids) {
1077        s << uid << " ";
1078    }
1079    ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
1080#endif
1081
1082    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1083        if (mSystemReady) {
1084            ALOGE("no wake lock to update, but system ready!");
1085        } else {
1086            ALOGW("no wake lock to update, system not ready yet");
1087        }
1088        return;
1089    }
1090    if (mPowerManager != 0) {
1091        sp<IBinder> binder = new BBinder();
1092        status_t status;
1093        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1094                    true /* FIXME force oneway contrary to .aidl */);
1095        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1096    }
1097}
1098
1099void AudioFlinger::ThreadBase::clearPowerManager()
1100{
1101    Mutex::Autolock _l(mLock);
1102    releaseWakeLock_l();
1103    mPowerManager.clear();
1104}
1105
1106void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1107{
1108    sp<ThreadBase> thread = mThread.promote();
1109    if (thread != 0) {
1110        thread->clearPowerManager();
1111    }
1112    ALOGW("power manager service died !!!");
1113}
1114
1115void AudioFlinger::ThreadBase::setEffectSuspended(
1116        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1117{
1118    Mutex::Autolock _l(mLock);
1119    setEffectSuspended_l(type, suspend, sessionId);
1120}
1121
1122void AudioFlinger::ThreadBase::setEffectSuspended_l(
1123        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1124{
1125    sp<EffectChain> chain = getEffectChain_l(sessionId);
1126    if (chain != 0) {
1127        if (type != NULL) {
1128            chain->setEffectSuspended_l(type, suspend);
1129        } else {
1130            chain->setEffectSuspendedAll_l(suspend);
1131        }
1132    }
1133
1134    updateSuspendedSessions_l(type, suspend, sessionId);
1135}
1136
1137void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1138{
1139    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1140    if (index < 0) {
1141        return;
1142    }
1143
1144    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1145            mSuspendedSessions.valueAt(index);
1146
1147    for (size_t i = 0; i < sessionEffects.size(); i++) {
1148        const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1149        for (int j = 0; j < desc->mRefCount; j++) {
1150            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1151                chain->setEffectSuspendedAll_l(true);
1152            } else {
1153                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1154                    desc->mType.timeLow);
1155                chain->setEffectSuspended_l(&desc->mType, true);
1156            }
1157        }
1158    }
1159}
1160
1161void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1162                                                         bool suspend,
1163                                                         audio_session_t sessionId)
1164{
1165    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1166
1167    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1168
1169    if (suspend) {
1170        if (index >= 0) {
1171            sessionEffects = mSuspendedSessions.valueAt(index);
1172        } else {
1173            mSuspendedSessions.add(sessionId, sessionEffects);
1174        }
1175    } else {
1176        if (index < 0) {
1177            return;
1178        }
1179        sessionEffects = mSuspendedSessions.valueAt(index);
1180    }
1181
1182
1183    int key = EffectChain::kKeyForSuspendAll;
1184    if (type != NULL) {
1185        key = type->timeLow;
1186    }
1187    index = sessionEffects.indexOfKey(key);
1188
1189    sp<SuspendedSessionDesc> desc;
1190    if (suspend) {
1191        if (index >= 0) {
1192            desc = sessionEffects.valueAt(index);
1193        } else {
1194            desc = new SuspendedSessionDesc();
1195            if (type != NULL) {
1196                desc->mType = *type;
1197            }
1198            sessionEffects.add(key, desc);
1199            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1200        }
1201        desc->mRefCount++;
1202    } else {
1203        if (index < 0) {
1204            return;
1205        }
1206        desc = sessionEffects.valueAt(index);
1207        if (--desc->mRefCount == 0) {
1208            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1209            sessionEffects.removeItemsAt(index);
1210            if (sessionEffects.isEmpty()) {
1211                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1212                                 sessionId);
1213                mSuspendedSessions.removeItem(sessionId);
1214            }
1215        }
1216    }
1217    if (!sessionEffects.isEmpty()) {
1218        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1219    }
1220}
1221
1222void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1223                                                            bool enabled,
1224                                                            audio_session_t sessionId)
1225{
1226    Mutex::Autolock _l(mLock);
1227    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1228}
1229
1230void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1231                                                            bool enabled,
1232                                                            audio_session_t sessionId)
1233{
1234    if (mType != RECORD) {
1235        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1236        // another session. This gives the priority to well behaved effect control panels
1237        // and applications not using global effects.
1238        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1239        // global effects
1240        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1241            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1242        }
1243    }
1244
1245    sp<EffectChain> chain = getEffectChain_l(sessionId);
1246    if (chain != 0) {
1247        chain->checkSuspendOnEffectEnabled(effect, enabled);
1248    }
1249}
1250
1251// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1252status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1253        const effect_descriptor_t *desc, audio_session_t sessionId)
1254{
1255    // No global effect sessions on record threads
1256    if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1257        ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1258                desc->name, mThreadName);
1259        return BAD_VALUE;
1260    }
1261    // only pre processing effects on record thread
1262    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1263        ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1264                desc->name, mThreadName);
1265        return BAD_VALUE;
1266    }
1267
1268    // always allow effects without processing load or latency
1269    if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1270        return NO_ERROR;
1271    }
1272
1273    audio_input_flags_t flags = mInput->flags;
1274    if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1275        if (flags & AUDIO_INPUT_FLAG_RAW) {
1276            ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1277                  desc->name, mThreadName);
1278            return BAD_VALUE;
1279        }
1280        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1281            ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1282                  desc->name, mThreadName);
1283            return BAD_VALUE;
1284        }
1285    }
1286    return NO_ERROR;
1287}
1288
1289// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1290status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1291        const effect_descriptor_t *desc, audio_session_t sessionId)
1292{
1293    // no preprocessing on playback threads
1294    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1295        ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1296                " thread %s", desc->name, mThreadName);
1297        return BAD_VALUE;
1298    }
1299
1300    switch (mType) {
1301    case MIXER: {
1302        // Reject any effect on mixer multichannel sinks.
1303        // TODO: fix both format and multichannel issues with effects.
1304        if (mChannelCount != FCC_2) {
1305            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1306                    " thread %s", desc->name, mChannelCount, mThreadName);
1307            return BAD_VALUE;
1308        }
1309        audio_output_flags_t flags = mOutput->flags;
1310        if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1311            if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1312                // global effects are applied only to non fast tracks if they are SW
1313                if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1314                    break;
1315                }
1316            } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1317                // only post processing on output stage session
1318                if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1319                    ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1320                            " on output stage session", desc->name);
1321                    return BAD_VALUE;
1322                }
1323            } else {
1324                // no restriction on effects applied on non fast tracks
1325                if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1326                    break;
1327                }
1328            }
1329
1330            // always allow effects without processing load or latency
1331            if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1332                break;
1333            }
1334            if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1335                ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1336                      desc->name);
1337                return BAD_VALUE;
1338            }
1339            if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1340                ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1341                        " in fast mode", desc->name);
1342                return BAD_VALUE;
1343            }
1344        }
1345    } break;
1346    case OFFLOAD:
1347        // nothing actionable on offload threads, if the effect:
1348        //   - is offloadable: the effect can be created
1349        //   - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1350        //     will take care of invalidating the tracks of the thread
1351        break;
1352    case DIRECT:
1353        // Reject any effect on Direct output threads for now, since the format of
1354        // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1355        ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1356                desc->name, mThreadName);
1357        return BAD_VALUE;
1358    case DUPLICATING:
1359        // Reject any effect on mixer multichannel sinks.
1360        // TODO: fix both format and multichannel issues with effects.
1361        if (mChannelCount != FCC_2) {
1362            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1363                    " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1364            return BAD_VALUE;
1365        }
1366        if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1367            ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1368                    " thread %s", desc->name, mThreadName);
1369            return BAD_VALUE;
1370        }
1371        if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1372            ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1373                    " DUPLICATING thread %s", desc->name, mThreadName);
1374            return BAD_VALUE;
1375        }
1376        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1377            ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1378                    " DUPLICATING thread %s", desc->name, mThreadName);
1379            return BAD_VALUE;
1380        }
1381        break;
1382    default:
1383        LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1384    }
1385
1386    return NO_ERROR;
1387}
1388
1389// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1390sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1391        const sp<AudioFlinger::Client>& client,
1392        const sp<IEffectClient>& effectClient,
1393        int32_t priority,
1394        audio_session_t sessionId,
1395        effect_descriptor_t *desc,
1396        int *enabled,
1397        status_t *status)
1398{
1399    sp<EffectModule> effect;
1400    sp<EffectHandle> handle;
1401    status_t lStatus;
1402    sp<EffectChain> chain;
1403    bool chainCreated = false;
1404    bool effectCreated = false;
1405    bool effectRegistered = false;
1406
1407    lStatus = initCheck();
1408    if (lStatus != NO_ERROR) {
1409        ALOGW("createEffect_l() Audio driver not initialized.");
1410        goto Exit;
1411    }
1412
1413    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1414
1415    { // scope for mLock
1416        Mutex::Autolock _l(mLock);
1417
1418        lStatus = checkEffectCompatibility_l(desc, sessionId);
1419        if (lStatus != NO_ERROR) {
1420            goto Exit;
1421        }
1422
1423        // check for existing effect chain with the requested audio session
1424        chain = getEffectChain_l(sessionId);
1425        if (chain == 0) {
1426            // create a new chain for this session
1427            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1428            chain = new EffectChain(this, sessionId);
1429            addEffectChain_l(chain);
1430            chain->setStrategy(getStrategyForSession_l(sessionId));
1431            chainCreated = true;
1432        } else {
1433            effect = chain->getEffectFromDesc_l(desc);
1434        }
1435
1436        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1437
1438        if (effect == 0) {
1439            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1440            // Check CPU and memory usage
1441            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1442            if (lStatus != NO_ERROR) {
1443                goto Exit;
1444            }
1445            effectRegistered = true;
1446            // create a new effect module if none present in the chain
1447            effect = new EffectModule(this, chain, desc, id, sessionId);
1448            lStatus = effect->status();
1449            if (lStatus != NO_ERROR) {
1450                goto Exit;
1451            }
1452            effect->setOffloaded(mType == OFFLOAD, mId);
1453
1454            lStatus = chain->addEffect_l(effect);
1455            if (lStatus != NO_ERROR) {
1456                goto Exit;
1457            }
1458            effectCreated = true;
1459
1460            effect->setDevice(mOutDevice);
1461            effect->setDevice(mInDevice);
1462            effect->setMode(mAudioFlinger->getMode());
1463            effect->setAudioSource(mAudioSource);
1464        }
1465        // create effect handle and connect it to effect module
1466        handle = new EffectHandle(effect, client, effectClient, priority);
1467        lStatus = handle->initCheck();
1468        if (lStatus == OK) {
1469            lStatus = effect->addHandle(handle.get());
1470        }
1471        if (enabled != NULL) {
1472            *enabled = (int)effect->isEnabled();
1473        }
1474    }
1475
1476Exit:
1477    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1478        Mutex::Autolock _l(mLock);
1479        if (effectCreated) {
1480            chain->removeEffect_l(effect);
1481        }
1482        if (effectRegistered) {
1483            AudioSystem::unregisterEffect(effect->id());
1484        }
1485        if (chainCreated) {
1486            removeEffectChain_l(chain);
1487        }
1488        handle.clear();
1489    }
1490
1491    *status = lStatus;
1492    return handle;
1493}
1494
1495sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1496        int effectId)
1497{
1498    Mutex::Autolock _l(mLock);
1499    return getEffect_l(sessionId, effectId);
1500}
1501
1502sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1503        int effectId)
1504{
1505    sp<EffectChain> chain = getEffectChain_l(sessionId);
1506    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1507}
1508
1509// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1510// PlaybackThread::mLock held
1511status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1512{
1513    // check for existing effect chain with the requested audio session
1514    audio_session_t sessionId = effect->sessionId();
1515    sp<EffectChain> chain = getEffectChain_l(sessionId);
1516    bool chainCreated = false;
1517
1518    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1519             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1520                    this, effect->desc().name, effect->desc().flags);
1521
1522    if (chain == 0) {
1523        // create a new chain for this session
1524        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1525        chain = new EffectChain(this, sessionId);
1526        addEffectChain_l(chain);
1527        chain->setStrategy(getStrategyForSession_l(sessionId));
1528        chainCreated = true;
1529    }
1530    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1531
1532    if (chain->getEffectFromId_l(effect->id()) != 0) {
1533        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1534                this, effect->desc().name, chain.get());
1535        return BAD_VALUE;
1536    }
1537
1538    effect->setOffloaded(mType == OFFLOAD, mId);
1539
1540    status_t status = chain->addEffect_l(effect);
1541    if (status != NO_ERROR) {
1542        if (chainCreated) {
1543            removeEffectChain_l(chain);
1544        }
1545        return status;
1546    }
1547
1548    effect->setDevice(mOutDevice);
1549    effect->setDevice(mInDevice);
1550    effect->setMode(mAudioFlinger->getMode());
1551    effect->setAudioSource(mAudioSource);
1552    return NO_ERROR;
1553}
1554
1555void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1556
1557    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1558    effect_descriptor_t desc = effect->desc();
1559    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1560        detachAuxEffect_l(effect->id());
1561    }
1562
1563    sp<EffectChain> chain = effect->chain().promote();
1564    if (chain != 0) {
1565        // remove effect chain if removing last effect
1566        if (chain->removeEffect_l(effect) == 0) {
1567            removeEffectChain_l(chain);
1568        }
1569    } else {
1570        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1571    }
1572}
1573
1574void AudioFlinger::ThreadBase::lockEffectChains_l(
1575        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1576{
1577    effectChains = mEffectChains;
1578    for (size_t i = 0; i < mEffectChains.size(); i++) {
1579        mEffectChains[i]->lock();
1580    }
1581}
1582
1583void AudioFlinger::ThreadBase::unlockEffectChains(
1584        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1585{
1586    for (size_t i = 0; i < effectChains.size(); i++) {
1587        effectChains[i]->unlock();
1588    }
1589}
1590
1591sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1592{
1593    Mutex::Autolock _l(mLock);
1594    return getEffectChain_l(sessionId);
1595}
1596
1597sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1598        const
1599{
1600    size_t size = mEffectChains.size();
1601    for (size_t i = 0; i < size; i++) {
1602        if (mEffectChains[i]->sessionId() == sessionId) {
1603            return mEffectChains[i];
1604        }
1605    }
1606    return 0;
1607}
1608
1609void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1610{
1611    Mutex::Autolock _l(mLock);
1612    size_t size = mEffectChains.size();
1613    for (size_t i = 0; i < size; i++) {
1614        mEffectChains[i]->setMode_l(mode);
1615    }
1616}
1617
1618void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1619{
1620    config->type = AUDIO_PORT_TYPE_MIX;
1621    config->ext.mix.handle = mId;
1622    config->sample_rate = mSampleRate;
1623    config->format = mFormat;
1624    config->channel_mask = mChannelMask;
1625    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1626                            AUDIO_PORT_CONFIG_FORMAT;
1627}
1628
1629void AudioFlinger::ThreadBase::systemReady()
1630{
1631    Mutex::Autolock _l(mLock);
1632    if (mSystemReady) {
1633        return;
1634    }
1635    mSystemReady = true;
1636
1637    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1638        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1639    }
1640    mPendingConfigEvents.clear();
1641}
1642
1643template <typename T>
1644ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1645    ssize_t index = mActiveTracks.indexOf(track);
1646    if (index >= 0) {
1647        ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1648        return index;
1649    }
1650    mActiveTracksGeneration++;
1651    mLatestActiveTrack = track;
1652    BatteryNotifier::getInstance().noteStartAudio(track->uid());
1653    return mActiveTracks.add(track);
1654}
1655
1656template <typename T>
1657ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1658    ssize_t index = mActiveTracks.remove(track);
1659    if (index < 0) {
1660        ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1661        return index;
1662    }
1663    mActiveTracksGeneration++;
1664    BatteryNotifier::getInstance().noteStopAudio(track->uid());
1665    // mLatestActiveTrack is not cleared even if is the same as track.
1666    return index;
1667}
1668
1669template <typename T>
1670void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1671    for (const sp<T> &track : mActiveTracks) {
1672        BatteryNotifier::getInstance().noteStopAudio(track->uid());
1673    }
1674    mLastActiveTracksGeneration = mActiveTracksGeneration;
1675    mActiveTracks.clear();
1676    mLatestActiveTrack.clear();
1677}
1678
1679// ----------------------------------------------------------------------------
1680//      Playback
1681// ----------------------------------------------------------------------------
1682
1683AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1684                                             AudioStreamOut* output,
1685                                             audio_io_handle_t id,
1686                                             audio_devices_t device,
1687                                             type_t type,
1688                                             bool systemReady)
1689    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1690        mNormalFrameCount(0), mSinkBuffer(NULL),
1691        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1692        mMixerBuffer(NULL),
1693        mMixerBufferSize(0),
1694        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1695        mMixerBufferValid(false),
1696        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1697        mEffectBuffer(NULL),
1698        mEffectBufferSize(0),
1699        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1700        mEffectBufferValid(false),
1701        mSuspended(0), mBytesWritten(0),
1702        mFramesWritten(0),
1703        mSuspendedFrames(0),
1704        // mStreamTypes[] initialized in constructor body
1705        mOutput(output),
1706        mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1707        mMixerStatus(MIXER_IDLE),
1708        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1709        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1710        mBytesRemaining(0),
1711        mCurrentWriteLength(0),
1712        mUseAsyncWrite(false),
1713        mWriteAckSequence(0),
1714        mDrainSequence(0),
1715        mSignalPending(false),
1716        mScreenState(AudioFlinger::mScreenState),
1717        // index 0 is reserved for normal mixer's submix
1718        mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1719        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1720{
1721    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1722    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1723
1724    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1725    // it would be safer to explicitly pass initial masterVolume/masterMute as
1726    // parameter.
1727    //
1728    // If the HAL we are using has support for master volume or master mute,
1729    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1730    // and the mute set to false).
1731    mMasterVolume = audioFlinger->masterVolume_l();
1732    mMasterMute = audioFlinger->masterMute_l();
1733    if (mOutput && mOutput->audioHwDev) {
1734        if (mOutput->audioHwDev->canSetMasterVolume()) {
1735            mMasterVolume = 1.0;
1736        }
1737
1738        if (mOutput->audioHwDev->canSetMasterMute()) {
1739            mMasterMute = false;
1740        }
1741    }
1742
1743    readOutputParameters_l();
1744
1745    // ++ operator does not compile
1746    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1747            stream = (audio_stream_type_t) (stream + 1)) {
1748        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1749        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1750    }
1751}
1752
1753AudioFlinger::PlaybackThread::~PlaybackThread()
1754{
1755    mAudioFlinger->unregisterWriter(mNBLogWriter);
1756    free(mSinkBuffer);
1757    free(mMixerBuffer);
1758    free(mEffectBuffer);
1759}
1760
1761void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1762{
1763    dumpInternals(fd, args);
1764    dumpTracks(fd, args);
1765    dumpEffectChains(fd, args);
1766}
1767
1768void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1769{
1770    const size_t SIZE = 256;
1771    char buffer[SIZE];
1772    String8 result;
1773
1774    result.appendFormat("  Stream volumes in dB: ");
1775    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1776        const stream_type_t *st = &mStreamTypes[i];
1777        if (i > 0) {
1778            result.appendFormat(", ");
1779        }
1780        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1781        if (st->mute) {
1782            result.append("M");
1783        }
1784    }
1785    result.append("\n");
1786    write(fd, result.string(), result.length());
1787    result.clear();
1788
1789    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1790    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1791    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1792            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1793
1794    size_t numtracks = mTracks.size();
1795    size_t numactive = mActiveTracks.size();
1796    dprintf(fd, "  %zu Tracks", numtracks);
1797    size_t numactiveseen = 0;
1798    if (numtracks) {
1799        dprintf(fd, " of which %zu are active\n", numactive);
1800        Track::appendDumpHeader(result);
1801        for (size_t i = 0; i < numtracks; ++i) {
1802            sp<Track> track = mTracks[i];
1803            if (track != 0) {
1804                bool active = mActiveTracks.indexOf(track) >= 0;
1805                if (active) {
1806                    numactiveseen++;
1807                }
1808                track->dump(buffer, SIZE, active);
1809                result.append(buffer);
1810            }
1811        }
1812    } else {
1813        result.append("\n");
1814    }
1815    if (numactiveseen != numactive) {
1816        // some tracks in the active list were not in the tracks list
1817        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1818                " not in the track list\n");
1819        result.append(buffer);
1820        Track::appendDumpHeader(result);
1821        for (size_t i = 0; i < numactive; ++i) {
1822            sp<Track> track = mActiveTracks[i];
1823            if (mTracks.indexOf(track) < 0) {
1824                track->dump(buffer, SIZE, true);
1825                result.append(buffer);
1826            }
1827        }
1828    }
1829
1830    write(fd, result.string(), result.size());
1831}
1832
1833void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1834{
1835    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1836
1837    dumpBase(fd, args);
1838
1839    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1840    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1841            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1842    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1843    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1844    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1845    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1846    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1847    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1848    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1849    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1850    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1851    AudioStreamOut *output = mOutput;
1852    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1853    String8 flagsAsString = outputFlagsToString(flags);
1854    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1855    dprintf(fd, "  Frames written: %lld\n", (long long)mFramesWritten);
1856    dprintf(fd, "  Suspended frames: %lld\n", (long long)mSuspendedFrames);
1857    if (mPipeSink.get() != nullptr) {
1858        dprintf(fd, "  PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
1859    }
1860    if (output != nullptr) {
1861        dprintf(fd, "  Hal stream dump:\n");
1862        (void)output->stream->dump(fd);
1863    }
1864}
1865
1866// Thread virtuals
1867
1868void AudioFlinger::PlaybackThread::onFirstRef()
1869{
1870    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1871}
1872
1873// ThreadBase virtuals
1874void AudioFlinger::PlaybackThread::preExit()
1875{
1876    ALOGV("  preExit()");
1877    // FIXME this is using hard-coded strings but in the future, this functionality will be
1878    //       converted to use audio HAL extensions required to support tunneling
1879    status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1880    ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1881}
1882
1883// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1884sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1885        const sp<AudioFlinger::Client>& client,
1886        audio_stream_type_t streamType,
1887        uint32_t sampleRate,
1888        audio_format_t format,
1889        audio_channel_mask_t channelMask,
1890        size_t *pFrameCount,
1891        const sp<IMemory>& sharedBuffer,
1892        audio_session_t sessionId,
1893        audio_output_flags_t *flags,
1894        pid_t tid,
1895        int uid,
1896        status_t *status)
1897{
1898    size_t frameCount = *pFrameCount;
1899    sp<Track> track;
1900    status_t lStatus;
1901    audio_output_flags_t outputFlags = mOutput->flags;
1902
1903    // special case for FAST flag considered OK if fast mixer is present
1904    if (hasFastMixer()) {
1905        outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1906    }
1907
1908    // Check if requested flags are compatible with output stream flags
1909    if ((*flags & outputFlags) != *flags) {
1910        ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1911              *flags, outputFlags);
1912        *flags = (audio_output_flags_t)(*flags & outputFlags);
1913    }
1914
1915    // client expresses a preference for FAST, but we get the final say
1916    if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1917      if (
1918            // PCM data
1919            audio_is_linear_pcm(format) &&
1920            // TODO: extract as a data library function that checks that a computationally
1921            // expensive downmixer is not required: isFastOutputChannelConversion()
1922            (channelMask == mChannelMask ||
1923                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1924                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1925                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1926            // hardware sample rate
1927            (sampleRate == mSampleRate) &&
1928            // normal mixer has an associated fast mixer
1929            hasFastMixer() &&
1930            // there are sufficient fast track slots available
1931            (mFastTrackAvailMask != 0)
1932            // FIXME test that MixerThread for this fast track has a capable output HAL
1933            // FIXME add a permission test also?
1934        ) {
1935        // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1936        if (sharedBuffer == 0) {
1937            // read the fast track multiplier property the first time it is needed
1938            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1939            if (ok != 0) {
1940                ALOGE("%s pthread_once failed: %d", __func__, ok);
1941            }
1942            frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1943        }
1944
1945        // check compatibility with audio effects.
1946        { // scope for mLock
1947            Mutex::Autolock _l(mLock);
1948            for (audio_session_t session : {
1949                    AUDIO_SESSION_OUTPUT_STAGE,
1950                    AUDIO_SESSION_OUTPUT_MIX,
1951                    sessionId,
1952                }) {
1953                sp<EffectChain> chain = getEffectChain_l(session);
1954                if (chain.get() != nullptr) {
1955                    audio_output_flags_t old = *flags;
1956                    chain->checkOutputFlagCompatibility(flags);
1957                    if (old != *flags) {
1958                        ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
1959                                (int)session, (int)old, (int)*flags);
1960                    }
1961                }
1962            }
1963        }
1964        ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1965                 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1966                 frameCount, mFrameCount);
1967      } else {
1968        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1969                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1970                "sampleRate=%u mSampleRate=%u "
1971                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1972                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1973                audio_is_linear_pcm(format),
1974                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1975        *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1976      }
1977    }
1978    // For normal PCM streaming tracks, update minimum frame count.
1979    // For compatibility with AudioTrack calculation, buffer depth is forced
1980    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1981    // This is probably too conservative, but legacy application code may depend on it.
1982    // If you change this calculation, also review the start threshold which is related.
1983    if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1984            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1985        // this must match AudioTrack.cpp calculateMinFrameCount().
1986        // TODO: Move to a common library
1987        uint32_t latencyMs = 0;
1988        lStatus = mOutput->stream->getLatency(&latencyMs);
1989        if (lStatus != OK) {
1990            ALOGE("Error when retrieving output stream latency: %d", lStatus);
1991            goto Exit;
1992        }
1993        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1994        if (minBufCount < 2) {
1995            minBufCount = 2;
1996        }
1997        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1998        // or the client should compute and pass in a larger buffer request.
1999        size_t minFrameCount =
2000                minBufCount * sourceFramesNeededWithTimestretch(
2001                        sampleRate, mNormalFrameCount,
2002                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
2003        if (frameCount < minFrameCount) { // including frameCount == 0
2004            frameCount = minFrameCount;
2005        }
2006    }
2007    *pFrameCount = frameCount;
2008
2009    switch (mType) {
2010
2011    case DIRECT:
2012        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2013            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2014                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2015                        "for output %p with format %#x",
2016                        sampleRate, format, channelMask, mOutput, mFormat);
2017                lStatus = BAD_VALUE;
2018                goto Exit;
2019            }
2020        }
2021        break;
2022
2023    case OFFLOAD:
2024        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2025            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2026                    "for output %p with format %#x",
2027                    sampleRate, format, channelMask, mOutput, mFormat);
2028            lStatus = BAD_VALUE;
2029            goto Exit;
2030        }
2031        break;
2032
2033    default:
2034        if (!audio_is_linear_pcm(format)) {
2035                ALOGE("createTrack_l() Bad parameter: format %#x \""
2036                        "for output %p with format %#x",
2037                        format, mOutput, mFormat);
2038                lStatus = BAD_VALUE;
2039                goto Exit;
2040        }
2041        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2042            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2043            lStatus = BAD_VALUE;
2044            goto Exit;
2045        }
2046        break;
2047
2048    }
2049
2050    lStatus = initCheck();
2051    if (lStatus != NO_ERROR) {
2052        ALOGE("createTrack_l() audio driver not initialized");
2053        goto Exit;
2054    }
2055
2056    { // scope for mLock
2057        Mutex::Autolock _l(mLock);
2058
2059        // all tracks in same audio session must share the same routing strategy otherwise
2060        // conflicts will happen when tracks are moved from one output to another by audio policy
2061        // manager
2062        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2063        for (size_t i = 0; i < mTracks.size(); ++i) {
2064            sp<Track> t = mTracks[i];
2065            if (t != 0 && t->isExternalTrack()) {
2066                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2067                if (sessionId == t->sessionId() && strategy != actual) {
2068                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2069                            strategy, actual);
2070                    lStatus = BAD_VALUE;
2071                    goto Exit;
2072                }
2073            }
2074        }
2075
2076        track = new Track(this, client, streamType, sampleRate, format,
2077                          channelMask, frameCount, NULL, sharedBuffer,
2078                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
2079
2080        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2081        if (lStatus != NO_ERROR) {
2082            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2083            // track must be cleared from the caller as the caller has the AF lock
2084            goto Exit;
2085        }
2086        mTracks.add(track);
2087
2088        sp<EffectChain> chain = getEffectChain_l(sessionId);
2089        if (chain != 0) {
2090            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2091            track->setMainBuffer(chain->inBuffer());
2092            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2093            chain->incTrackCnt();
2094        }
2095
2096        if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2097            pid_t callingPid = IPCThreadState::self()->getCallingPid();
2098            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2099            // so ask activity manager to do this on our behalf
2100            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
2101        }
2102    }
2103
2104    lStatus = NO_ERROR;
2105
2106Exit:
2107    *status = lStatus;
2108    return track;
2109}
2110
2111uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2112{
2113    return latency;
2114}
2115
2116uint32_t AudioFlinger::PlaybackThread::latency() const
2117{
2118    Mutex::Autolock _l(mLock);
2119    return latency_l();
2120}
2121uint32_t AudioFlinger::PlaybackThread::latency_l() const
2122{
2123    uint32_t latency;
2124    if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2125        return correctLatency_l(latency);
2126    }
2127    return 0;
2128}
2129
2130void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2131{
2132    Mutex::Autolock _l(mLock);
2133    // Don't apply master volume in SW if our HAL can do it for us.
2134    if (mOutput && mOutput->audioHwDev &&
2135        mOutput->audioHwDev->canSetMasterVolume()) {
2136        mMasterVolume = 1.0;
2137    } else {
2138        mMasterVolume = value;
2139    }
2140}
2141
2142void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2143{
2144    Mutex::Autolock _l(mLock);
2145    // Don't apply master mute in SW if our HAL can do it for us.
2146    if (mOutput && mOutput->audioHwDev &&
2147        mOutput->audioHwDev->canSetMasterMute()) {
2148        mMasterMute = false;
2149    } else {
2150        mMasterMute = muted;
2151    }
2152}
2153
2154void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2155{
2156    Mutex::Autolock _l(mLock);
2157    mStreamTypes[stream].volume = value;
2158    broadcast_l();
2159}
2160
2161void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2162{
2163    Mutex::Autolock _l(mLock);
2164    mStreamTypes[stream].mute = muted;
2165    broadcast_l();
2166}
2167
2168float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2169{
2170    Mutex::Autolock _l(mLock);
2171    return mStreamTypes[stream].volume;
2172}
2173
2174// addTrack_l() must be called with ThreadBase::mLock held
2175status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2176{
2177    status_t status = ALREADY_EXISTS;
2178
2179    if (mActiveTracks.indexOf(track) < 0) {
2180        // the track is newly added, make sure it fills up all its
2181        // buffers before playing. This is to ensure the client will
2182        // effectively get the latency it requested.
2183        if (track->isExternalTrack()) {
2184            TrackBase::track_state state = track->mState;
2185            mLock.unlock();
2186            status = AudioSystem::startOutput(mId, track->streamType(),
2187                                              track->sessionId());
2188            mLock.lock();
2189            // abort track was stopped/paused while we released the lock
2190            if (state != track->mState) {
2191                if (status == NO_ERROR) {
2192                    mLock.unlock();
2193                    AudioSystem::stopOutput(mId, track->streamType(),
2194                                            track->sessionId());
2195                    mLock.lock();
2196                }
2197                return INVALID_OPERATION;
2198            }
2199            // abort if start is rejected by audio policy manager
2200            if (status != NO_ERROR) {
2201                return PERMISSION_DENIED;
2202            }
2203#ifdef ADD_BATTERY_DATA
2204            // to track the speaker usage
2205            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2206#endif
2207        }
2208
2209        // set retry count for buffer fill
2210        if (track->isOffloaded()) {
2211            if (track->isStopping_1()) {
2212                track->mRetryCount = kMaxTrackStopRetriesOffload;
2213            } else {
2214                track->mRetryCount = kMaxTrackStartupRetriesOffload;
2215            }
2216            track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2217        } else {
2218            track->mRetryCount = kMaxTrackStartupRetries;
2219            track->mFillingUpStatus =
2220                    track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2221        }
2222
2223        track->mResetDone = false;
2224        track->mPresentationCompleteFrames = 0;
2225        mActiveTracks.add(track);
2226        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2227        if (chain != 0) {
2228            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2229                    track->sessionId());
2230            chain->incActiveTrackCnt();
2231        }
2232
2233        status = NO_ERROR;
2234    }
2235
2236    onAddNewTrack_l();
2237    return status;
2238}
2239
2240bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2241{
2242    track->terminate();
2243    // active tracks are removed by threadLoop()
2244    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2245    track->mState = TrackBase::STOPPED;
2246    if (!trackActive) {
2247        removeTrack_l(track);
2248    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2249        track->mState = TrackBase::STOPPING_1;
2250    }
2251
2252    return trackActive;
2253}
2254
2255void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2256{
2257    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2258    mTracks.remove(track);
2259    deleteTrackName_l(track->name());
2260    // redundant as track is about to be destroyed, for dumpsys only
2261    track->mName = -1;
2262    if (track->isFastTrack()) {
2263        int index = track->mFastIndex;
2264        ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2265        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2266        mFastTrackAvailMask |= 1 << index;
2267        // redundant as track is about to be destroyed, for dumpsys only
2268        track->mFastIndex = -1;
2269    }
2270    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2271    if (chain != 0) {
2272        chain->decTrackCnt();
2273    }
2274}
2275
2276void AudioFlinger::PlaybackThread::broadcast_l()
2277{
2278    // Thread could be blocked waiting for async
2279    // so signal it to handle state changes immediately
2280    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2281    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2282    mSignalPending = true;
2283    mWaitWorkCV.broadcast();
2284}
2285
2286String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2287{
2288    Mutex::Autolock _l(mLock);
2289    String8 out_s8;
2290    if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2291        return out_s8;
2292    }
2293    return String8();
2294}
2295
2296void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2297    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2298    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2299
2300    desc->mIoHandle = mId;
2301
2302    switch (event) {
2303    case AUDIO_OUTPUT_OPENED:
2304    case AUDIO_OUTPUT_CONFIG_CHANGED:
2305        desc->mPatch = mPatch;
2306        desc->mChannelMask = mChannelMask;
2307        desc->mSamplingRate = mSampleRate;
2308        desc->mFormat = mFormat;
2309        desc->mFrameCount = mNormalFrameCount; // FIXME see
2310                                             // AudioFlinger::frameCount(audio_io_handle_t)
2311        desc->mFrameCountHAL = mFrameCount;
2312        desc->mLatency = latency_l();
2313        break;
2314
2315    case AUDIO_OUTPUT_CLOSED:
2316    default:
2317        break;
2318    }
2319    mAudioFlinger->ioConfigChanged(event, desc, pid);
2320}
2321
2322void AudioFlinger::PlaybackThread::onWriteReady()
2323{
2324    mCallbackThread->resetWriteBlocked();
2325}
2326
2327void AudioFlinger::PlaybackThread::onDrainReady()
2328{
2329    mCallbackThread->resetDraining();
2330}
2331
2332void AudioFlinger::PlaybackThread::onError()
2333{
2334    mCallbackThread->setAsyncError();
2335}
2336
2337void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2338{
2339    Mutex::Autolock _l(mLock);
2340    // reject out of sequence requests
2341    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2342        mWriteAckSequence &= ~1;
2343        mWaitWorkCV.signal();
2344    }
2345}
2346
2347void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2348{
2349    Mutex::Autolock _l(mLock);
2350    // reject out of sequence requests
2351    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2352        mDrainSequence &= ~1;
2353        mWaitWorkCV.signal();
2354    }
2355}
2356
2357void AudioFlinger::PlaybackThread::readOutputParameters_l()
2358{
2359    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2360    mSampleRate = mOutput->getSampleRate();
2361    mChannelMask = mOutput->getChannelMask();
2362    if (!audio_is_output_channel(mChannelMask)) {
2363        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2364    }
2365    if ((mType == MIXER || mType == DUPLICATING)
2366            && !isValidPcmSinkChannelMask(mChannelMask)) {
2367        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2368                mChannelMask);
2369    }
2370    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2371
2372    // Get actual HAL format.
2373    status_t result = mOutput->stream->getFormat(&mHALFormat);
2374    LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2375    // Get format from the shim, which will be different than the HAL format
2376    // if playing compressed audio over HDMI passthrough.
2377    mFormat = mOutput->getFormat();
2378    if (!audio_is_valid_format(mFormat)) {
2379        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2380    }
2381    if ((mType == MIXER || mType == DUPLICATING)
2382            && !isValidPcmSinkFormat(mFormat)) {
2383        LOG_FATAL("HAL format %#x not supported for mixed output",
2384                mFormat);
2385    }
2386    mFrameSize = mOutput->getFrameSize();
2387    result = mOutput->stream->getBufferSize(&mBufferSize);
2388    LOG_ALWAYS_FATAL_IF(result != OK,
2389            "Error when retrieving output stream buffer size: %d", result);
2390    mFrameCount = mBufferSize / mFrameSize;
2391    if (mFrameCount & 15) {
2392        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2393                mFrameCount);
2394    }
2395
2396    if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2397        if (mOutput->stream->setCallback(this) == OK) {
2398            mUseAsyncWrite = true;
2399            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2400        }
2401    }
2402
2403    mHwSupportsPause = false;
2404    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2405        bool supportsPause = false, supportsResume = false;
2406        if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2407            if (supportsPause && supportsResume) {
2408                mHwSupportsPause = true;
2409            } else if (supportsPause) {
2410                ALOGW("direct output implements pause but not resume");
2411            } else if (supportsResume) {
2412                ALOGW("direct output implements resume but not pause");
2413            }
2414        }
2415    }
2416    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2417        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2418    }
2419
2420    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2421        // For best precision, we use float instead of the associated output
2422        // device format (typically PCM 16 bit).
2423
2424        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2425        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2426        mBufferSize = mFrameSize * mFrameCount;
2427
2428        // TODO: We currently use the associated output device channel mask and sample rate.
2429        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2430        // (if a valid mask) to avoid premature downmix.
2431        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2432        // instead of the output device sample rate to avoid loss of high frequency information.
2433        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2434    }
2435
2436    // Calculate size of normal sink buffer relative to the HAL output buffer size
2437    double multiplier = 1.0;
2438    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2439            kUseFastMixer == FastMixer_Dynamic)) {
2440        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2441        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2442
2443        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2444        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2445        maxNormalFrameCount = maxNormalFrameCount & ~15;
2446        if (maxNormalFrameCount < minNormalFrameCount) {
2447            maxNormalFrameCount = minNormalFrameCount;
2448        }
2449        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2450        if (multiplier <= 1.0) {
2451            multiplier = 1.0;
2452        } else if (multiplier <= 2.0) {
2453            if (2 * mFrameCount <= maxNormalFrameCount) {
2454                multiplier = 2.0;
2455            } else {
2456                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2457            }
2458        } else {
2459            multiplier = floor(multiplier);
2460        }
2461    }
2462    mNormalFrameCount = multiplier * mFrameCount;
2463    // round up to nearest 16 frames to satisfy AudioMixer
2464    if (mType == MIXER || mType == DUPLICATING) {
2465        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2466    }
2467    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2468            mNormalFrameCount);
2469
2470    // Check if we want to throttle the processing to no more than 2x normal rate
2471    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2472    mThreadThrottleTimeMs = 0;
2473    mThreadThrottleEndMs = 0;
2474    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2475
2476    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2477    // Originally this was int16_t[] array, need to remove legacy implications.
2478    free(mSinkBuffer);
2479    mSinkBuffer = NULL;
2480    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2481    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2482    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2483    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2484
2485    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2486    // drives the output.
2487    free(mMixerBuffer);
2488    mMixerBuffer = NULL;
2489    if (mMixerBufferEnabled) {
2490        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2491        mMixerBufferSize = mNormalFrameCount * mChannelCount
2492                * audio_bytes_per_sample(mMixerBufferFormat);
2493        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2494    }
2495    free(mEffectBuffer);
2496    mEffectBuffer = NULL;
2497    if (mEffectBufferEnabled) {
2498        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2499        mEffectBufferSize = mNormalFrameCount * mChannelCount
2500                * audio_bytes_per_sample(mEffectBufferFormat);
2501        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2502    }
2503
2504    // force reconfiguration of effect chains and engines to take new buffer size and audio
2505    // parameters into account
2506    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2507    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2508    // matter.
2509    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2510    Vector< sp<EffectChain> > effectChains = mEffectChains;
2511    for (size_t i = 0; i < effectChains.size(); i ++) {
2512        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2513    }
2514}
2515
2516
2517status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2518{
2519    if (halFrames == NULL || dspFrames == NULL) {
2520        return BAD_VALUE;
2521    }
2522    Mutex::Autolock _l(mLock);
2523    if (initCheck() != NO_ERROR) {
2524        return INVALID_OPERATION;
2525    }
2526    int64_t framesWritten = mBytesWritten / mFrameSize;
2527    *halFrames = framesWritten;
2528
2529    if (isSuspended()) {
2530        // return an estimation of rendered frames when the output is suspended
2531        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2532        *dspFrames = (uint32_t)
2533                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2534        return NO_ERROR;
2535    } else {
2536        status_t status;
2537        uint32_t frames;
2538        status = mOutput->getRenderPosition(&frames);
2539        *dspFrames = (size_t)frames;
2540        return status;
2541    }
2542}
2543
2544// hasAudioSession_l() must be called with ThreadBase::mLock held
2545uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2546{
2547    uint32_t result = 0;
2548    if (getEffectChain_l(sessionId) != 0) {
2549        result = EFFECT_SESSION;
2550    }
2551
2552    for (size_t i = 0; i < mTracks.size(); ++i) {
2553        sp<Track> track = mTracks[i];
2554        if (sessionId == track->sessionId() && !track->isInvalid()) {
2555            result |= TRACK_SESSION;
2556            if (track->isFastTrack()) {
2557                result |= FAST_SESSION;
2558            }
2559            break;
2560        }
2561    }
2562
2563    return result;
2564}
2565
2566uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2567{
2568    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2569    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2570    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2571        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2572    }
2573    for (size_t i = 0; i < mTracks.size(); i++) {
2574        sp<Track> track = mTracks[i];
2575        if (sessionId == track->sessionId() && !track->isInvalid()) {
2576            return AudioSystem::getStrategyForStream(track->streamType());
2577        }
2578    }
2579    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2580}
2581
2582
2583AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2584{
2585    Mutex::Autolock _l(mLock);
2586    return mOutput;
2587}
2588
2589AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2590{
2591    Mutex::Autolock _l(mLock);
2592    AudioStreamOut *output = mOutput;
2593    mOutput = NULL;
2594    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2595    //       must push a NULL and wait for ack
2596    mOutputSink.clear();
2597    mPipeSink.clear();
2598    mNormalSink.clear();
2599    return output;
2600}
2601
2602// this method must always be called either with ThreadBase mLock held or inside the thread loop
2603sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
2604{
2605    if (mOutput == NULL) {
2606        return NULL;
2607    }
2608    return mOutput->stream;
2609}
2610
2611uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2612{
2613    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2614}
2615
2616status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2617{
2618    if (!isValidSyncEvent(event)) {
2619        return BAD_VALUE;
2620    }
2621
2622    Mutex::Autolock _l(mLock);
2623
2624    for (size_t i = 0; i < mTracks.size(); ++i) {
2625        sp<Track> track = mTracks[i];
2626        if (event->triggerSession() == track->sessionId()) {
2627            (void) track->setSyncEvent(event);
2628            return NO_ERROR;
2629        }
2630    }
2631
2632    return NAME_NOT_FOUND;
2633}
2634
2635bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2636{
2637    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2638}
2639
2640void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2641        const Vector< sp<Track> >& tracksToRemove)
2642{
2643    size_t count = tracksToRemove.size();
2644    if (count > 0) {
2645        for (size_t i = 0 ; i < count ; i++) {
2646            const sp<Track>& track = tracksToRemove.itemAt(i);
2647            if (track->isExternalTrack()) {
2648                AudioSystem::stopOutput(mId, track->streamType(),
2649                                        track->sessionId());
2650#ifdef ADD_BATTERY_DATA
2651                // to track the speaker usage
2652                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2653#endif
2654                if (track->isTerminated()) {
2655                    AudioSystem::releaseOutput(mId, track->streamType(),
2656                                               track->sessionId());
2657                }
2658            }
2659        }
2660    }
2661}
2662
2663void AudioFlinger::PlaybackThread::checkSilentMode_l()
2664{
2665    if (!mMasterMute) {
2666        char value[PROPERTY_VALUE_MAX];
2667        if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2668            ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2669            return;
2670        }
2671        if (property_get("ro.audio.silent", value, "0") > 0) {
2672            char *endptr;
2673            unsigned long ul = strtoul(value, &endptr, 0);
2674            if (*endptr == '\0' && ul != 0) {
2675                ALOGD("Silence is golden");
2676                // The setprop command will not allow a property to be changed after
2677                // the first time it is set, so we don't have to worry about un-muting.
2678                setMasterMute_l(true);
2679            }
2680        }
2681    }
2682}
2683
2684// shared by MIXER and DIRECT, overridden by DUPLICATING
2685ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2686{
2687    mInWrite = true;
2688    ssize_t bytesWritten;
2689    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2690
2691    // If an NBAIO sink is present, use it to write the normal mixer's submix
2692    if (mNormalSink != 0) {
2693
2694        const size_t count = mBytesRemaining / mFrameSize;
2695
2696        ATRACE_BEGIN("write");
2697        // update the setpoint when AudioFlinger::mScreenState changes
2698        uint32_t screenState = AudioFlinger::mScreenState;
2699        if (screenState != mScreenState) {
2700            mScreenState = screenState;
2701            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2702            if (pipe != NULL) {
2703                pipe->setAvgFrames((mScreenState & 1) ?
2704                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2705            }
2706        }
2707        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2708        ATRACE_END();
2709        if (framesWritten > 0) {
2710            bytesWritten = framesWritten * mFrameSize;
2711        } else {
2712            bytesWritten = framesWritten;
2713        }
2714    // otherwise use the HAL / AudioStreamOut directly
2715    } else {
2716        // Direct output and offload threads
2717
2718        if (mUseAsyncWrite) {
2719            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2720            mWriteAckSequence += 2;
2721            mWriteAckSequence |= 1;
2722            ALOG_ASSERT(mCallbackThread != 0);
2723            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2724        }
2725        // FIXME We should have an implementation of timestamps for direct output threads.
2726        // They are used e.g for multichannel PCM playback over HDMI.
2727        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2728
2729        if (mUseAsyncWrite &&
2730                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2731            // do not wait for async callback in case of error of full write
2732            mWriteAckSequence &= ~1;
2733            ALOG_ASSERT(mCallbackThread != 0);
2734            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2735        }
2736    }
2737
2738    mNumWrites++;
2739    mInWrite = false;
2740    mStandby = false;
2741    return bytesWritten;
2742}
2743
2744void AudioFlinger::PlaybackThread::threadLoop_drain()
2745{
2746    bool supportsDrain = false;
2747    if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
2748        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2749        if (mUseAsyncWrite) {
2750            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2751            mDrainSequence |= 1;
2752            ALOG_ASSERT(mCallbackThread != 0);
2753            mCallbackThread->setDraining(mDrainSequence);
2754        }
2755        status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
2756        ALOGE_IF(result != OK, "Error when draining stream: %d", result);
2757    }
2758}
2759
2760void AudioFlinger::PlaybackThread::threadLoop_exit()
2761{
2762    {
2763        Mutex::Autolock _l(mLock);
2764        for (size_t i = 0; i < mTracks.size(); i++) {
2765            sp<Track> track = mTracks[i];
2766            track->invalidate();
2767        }
2768    }
2769}
2770
2771/*
2772The derived values that are cached:
2773 - mSinkBufferSize from frame count * frame size
2774 - mActiveSleepTimeUs from activeSleepTimeUs()
2775 - mIdleSleepTimeUs from idleSleepTimeUs()
2776 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2777   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2778 - maxPeriod from frame count and sample rate (MIXER only)
2779
2780The parameters that affect these derived values are:
2781 - frame count
2782 - frame size
2783 - sample rate
2784 - device type: A2DP or not
2785 - device latency
2786 - format: PCM or not
2787 - active sleep time
2788 - idle sleep time
2789*/
2790
2791void AudioFlinger::PlaybackThread::cacheParameters_l()
2792{
2793    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2794    mActiveSleepTimeUs = activeSleepTimeUs();
2795    mIdleSleepTimeUs = idleSleepTimeUs();
2796
2797    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2798    // truncating audio when going to standby.
2799    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2800    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2801        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2802            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2803        }
2804    }
2805}
2806
2807bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2808{
2809    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2810            this,  streamType, mTracks.size());
2811    bool trackMatch = false;
2812    size_t size = mTracks.size();
2813    for (size_t i = 0; i < size; i++) {
2814        sp<Track> t = mTracks[i];
2815        if (t->streamType() == streamType && t->isExternalTrack()) {
2816            t->invalidate();
2817            trackMatch = true;
2818        }
2819    }
2820    return trackMatch;
2821}
2822
2823void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2824{
2825    Mutex::Autolock _l(mLock);
2826    invalidateTracks_l(streamType);
2827}
2828
2829status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2830{
2831    audio_session_t session = chain->sessionId();
2832    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2833            ? mEffectBuffer : mSinkBuffer);
2834    bool ownsBuffer = false;
2835
2836    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2837    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2838        // Only one effect chain can be present in direct output thread and it uses
2839        // the sink buffer as input
2840        if (mType != DIRECT) {
2841            size_t numSamples = mNormalFrameCount * mChannelCount;
2842            buffer = new int16_t[numSamples];
2843            memset(buffer, 0, numSamples * sizeof(int16_t));
2844            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2845            ownsBuffer = true;
2846        }
2847
2848        // Attach all tracks with same session ID to this chain.
2849        for (size_t i = 0; i < mTracks.size(); ++i) {
2850            sp<Track> track = mTracks[i];
2851            if (session == track->sessionId()) {
2852                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2853                        buffer);
2854                track->setMainBuffer(buffer);
2855                chain->incTrackCnt();
2856            }
2857        }
2858
2859        // indicate all active tracks in the chain
2860        for (const sp<Track> &track : mActiveTracks) {
2861            if (session == track->sessionId()) {
2862                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2863                chain->incActiveTrackCnt();
2864            }
2865        }
2866    }
2867    chain->setThread(this);
2868    chain->setInBuffer(buffer, ownsBuffer);
2869    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2870            ? mEffectBuffer : mSinkBuffer));
2871    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2872    // chains list in order to be processed last as it contains output stage effects.
2873    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2874    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2875    // after track specific effects and before output stage.
2876    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2877    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2878    // Effect chain for other sessions are inserted at beginning of effect
2879    // chains list to be processed before output mix effects. Relative order between other
2880    // sessions is not important.
2881    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2882            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2883            "audio_session_t constants misdefined");
2884    size_t size = mEffectChains.size();
2885    size_t i = 0;
2886    for (i = 0; i < size; i++) {
2887        if (mEffectChains[i]->sessionId() < session) {
2888            break;
2889        }
2890    }
2891    mEffectChains.insertAt(chain, i);
2892    checkSuspendOnAddEffectChain_l(chain);
2893
2894    return NO_ERROR;
2895}
2896
2897size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2898{
2899    audio_session_t session = chain->sessionId();
2900
2901    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2902
2903    for (size_t i = 0; i < mEffectChains.size(); i++) {
2904        if (chain == mEffectChains[i]) {
2905            mEffectChains.removeAt(i);
2906            // detach all active tracks from the chain
2907            for (const sp<Track> &track : mActiveTracks) {
2908                if (session == track->sessionId()) {
2909                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2910                            chain.get(), session);
2911                    chain->decActiveTrackCnt();
2912                }
2913            }
2914
2915            // detach all tracks with same session ID from this chain
2916            for (size_t i = 0; i < mTracks.size(); ++i) {
2917                sp<Track> track = mTracks[i];
2918                if (session == track->sessionId()) {
2919                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2920                    chain->decTrackCnt();
2921                }
2922            }
2923            break;
2924        }
2925    }
2926    return mEffectChains.size();
2927}
2928
2929status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2930        const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2931{
2932    Mutex::Autolock _l(mLock);
2933    return attachAuxEffect_l(track, EffectId);
2934}
2935
2936status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2937        const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2938{
2939    status_t status = NO_ERROR;
2940
2941    if (EffectId == 0) {
2942        track->setAuxBuffer(0, NULL);
2943    } else {
2944        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2945        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2946        if (effect != 0) {
2947            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2948                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2949            } else {
2950                status = INVALID_OPERATION;
2951            }
2952        } else {
2953            status = BAD_VALUE;
2954        }
2955    }
2956    return status;
2957}
2958
2959void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2960{
2961    for (size_t i = 0; i < mTracks.size(); ++i) {
2962        sp<Track> track = mTracks[i];
2963        if (track->auxEffectId() == effectId) {
2964            attachAuxEffect_l(track, 0);
2965        }
2966    }
2967}
2968
2969bool AudioFlinger::PlaybackThread::threadLoop()
2970{
2971    Vector< sp<Track> > tracksToRemove;
2972
2973    mStandbyTimeNs = systemTime();
2974    nsecs_t lastWriteFinished = -1; // time last server write completed
2975    int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2976
2977    // MIXER
2978    nsecs_t lastWarning = 0;
2979
2980    // DUPLICATING
2981    // FIXME could this be made local to while loop?
2982    writeFrames = 0;
2983
2984    cacheParameters_l();
2985    mSleepTimeUs = mIdleSleepTimeUs;
2986
2987    if (mType == MIXER) {
2988        sleepTimeShift = 0;
2989    }
2990
2991    CpuStats cpuStats;
2992    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2993
2994    acquireWakeLock();
2995
2996    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2997    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2998    // and then that string will be logged at the next convenient opportunity.
2999    const char *logString = NULL;
3000
3001    checkSilentMode_l();
3002
3003    while (!exitPending())
3004    {
3005        cpuStats.sample(myName);
3006
3007        Vector< sp<EffectChain> > effectChains;
3008
3009        { // scope for mLock
3010
3011            Mutex::Autolock _l(mLock);
3012
3013            processConfigEvents_l();
3014
3015            if (logString != NULL) {
3016                mNBLogWriter->logTimestamp();
3017                mNBLogWriter->log(logString);
3018                logString = NULL;
3019            }
3020
3021            // Gather the framesReleased counters for all active tracks,
3022            // and associate with the sink frames written out.  We need
3023            // this to convert the sink timestamp to the track timestamp.
3024            bool kernelLocationUpdate = false;
3025            if (mNormalSink != 0) {
3026                // Note: The DuplicatingThread may not have a mNormalSink.
3027                // We always fetch the timestamp here because often the downstream
3028                // sink will block while writing.
3029                ExtendedTimestamp timestamp; // use private copy to fetch
3030                (void) mNormalSink->getTimestamp(timestamp);
3031
3032                // We keep track of the last valid kernel position in case we are in underrun
3033                // and the normal mixer period is the same as the fast mixer period, or there
3034                // is some error from the HAL.
3035                if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3036                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3037                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3038                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3039                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3040
3041                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3042                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3043                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3044                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3045                }
3046
3047                if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3048                    kernelLocationUpdate = true;
3049                } else {
3050                    ALOGVV("getTimestamp error - no valid kernel position");
3051                }
3052
3053                // copy over kernel info
3054                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3055                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3056                        + mSuspendedFrames; // add frames discarded when suspended
3057                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3058                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3059            }
3060            // mFramesWritten for non-offloaded tracks are contiguous
3061            // even after standby() is called. This is useful for the track frame
3062            // to sink frame mapping.
3063            bool serverLocationUpdate = false;
3064            if (mFramesWritten != lastFramesWritten) {
3065                serverLocationUpdate = true;
3066                lastFramesWritten = mFramesWritten;
3067            }
3068            // Only update timestamps if there is a meaningful change.
3069            // Either the kernel timestamp must be valid or we have written something.
3070            if (kernelLocationUpdate || serverLocationUpdate) {
3071                if (serverLocationUpdate) {
3072                    // use the time before we called the HAL write - it is a bit more accurate
3073                    // to when the server last read data than the current time here.
3074                    //
3075                    // If we haven't written anything, mLastWriteTime will be -1
3076                    // and we use systemTime().
3077                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3078                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3079                            ? systemTime() : mLastWriteTime;
3080                }
3081
3082                for (const sp<Track> &t : mActiveTracks) {
3083                    if (!t->isFastTrack()) {
3084                        t->updateTrackFrameInfo(
3085                                t->mAudioTrackServerProxy->framesReleased(),
3086                                mFramesWritten,
3087                                mTimestamp);
3088                    }
3089                }
3090            }
3091
3092            saveOutputTracks();
3093            if (mSignalPending) {
3094                // A signal was raised while we were unlocked
3095                mSignalPending = false;
3096            } else if (waitingAsyncCallback_l()) {
3097                if (exitPending()) {
3098                    break;
3099                }
3100                bool released = false;
3101                if (!keepWakeLock()) {
3102                    releaseWakeLock_l();
3103                    released = true;
3104                }
3105                ALOGV("wait async completion");
3106                mWaitWorkCV.wait(mLock);
3107                ALOGV("async completion/wake");
3108                if (released) {
3109                    acquireWakeLock_l();
3110                }
3111                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3112                mSleepTimeUs = 0;
3113
3114                continue;
3115            }
3116            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3117                                   isSuspended()) {
3118                // put audio hardware into standby after short delay
3119                if (shouldStandby_l()) {
3120
3121                    threadLoop_standby();
3122
3123                    mStandby = true;
3124                }
3125
3126                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3127                    // we're about to wait, flush the binder command buffer
3128                    IPCThreadState::self()->flushCommands();
3129
3130                    clearOutputTracks();
3131
3132                    if (exitPending()) {
3133                        break;
3134                    }
3135
3136                    releaseWakeLock_l();
3137                    // wait until we have something to do...
3138                    ALOGV("%s going to sleep", myName.string());
3139                    mWaitWorkCV.wait(mLock);
3140                    ALOGV("%s waking up", myName.string());
3141                    acquireWakeLock_l();
3142
3143                    mMixerStatus = MIXER_IDLE;
3144                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3145                    mBytesWritten = 0;
3146                    mBytesRemaining = 0;
3147                    checkSilentMode_l();
3148
3149                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3150                    mSleepTimeUs = mIdleSleepTimeUs;
3151                    if (mType == MIXER) {
3152                        sleepTimeShift = 0;
3153                    }
3154
3155                    continue;
3156                }
3157            }
3158            // mMixerStatusIgnoringFastTracks is also updated internally
3159            mMixerStatus = prepareTracks_l(&tracksToRemove);
3160
3161            mActiveTracks.updateWakeLockUids(this);
3162
3163            // prevent any changes in effect chain list and in each effect chain
3164            // during mixing and effect process as the audio buffers could be deleted
3165            // or modified if an effect is created or deleted
3166            lockEffectChains_l(effectChains);
3167        } // mLock scope ends
3168
3169        if (mBytesRemaining == 0) {
3170            mCurrentWriteLength = 0;
3171            if (mMixerStatus == MIXER_TRACKS_READY) {
3172                // threadLoop_mix() sets mCurrentWriteLength
3173                threadLoop_mix();
3174            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3175                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3176                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3177                // must be written to HAL
3178                threadLoop_sleepTime();
3179                if (mSleepTimeUs == 0) {
3180                    mCurrentWriteLength = mSinkBufferSize;
3181                }
3182            }
3183            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3184            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3185            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3186            // or mSinkBuffer (if there are no effects).
3187            //
3188            // This is done pre-effects computation; if effects change to
3189            // support higher precision, this needs to move.
3190            //
3191            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3192            // TODO use mSleepTimeUs == 0 as an additional condition.
3193            if (mMixerBufferValid) {
3194                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3195                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3196
3197                // mono blend occurs for mixer threads only (not direct or offloaded)
3198                // and is handled here if we're going directly to the sink.
3199                if (requireMonoBlend() && !mEffectBufferValid) {
3200                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3201                               true /*limit*/);
3202                }
3203
3204                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3205                        mNormalFrameCount * mChannelCount);
3206            }
3207
3208            mBytesRemaining = mCurrentWriteLength;
3209            if (isSuspended()) {
3210                // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3211                mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3212                const size_t framesRemaining = mBytesRemaining / mFrameSize;
3213                mBytesWritten += mBytesRemaining;
3214                mFramesWritten += framesRemaining;
3215                mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3216                mBytesRemaining = 0;
3217            }
3218
3219            // only process effects if we're going to write
3220            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3221                for (size_t i = 0; i < effectChains.size(); i ++) {
3222                    effectChains[i]->process_l();
3223                }
3224            }
3225        }
3226        // Process effect chains for offloaded thread even if no audio
3227        // was read from audio track: process only updates effect state
3228        // and thus does have to be synchronized with audio writes but may have
3229        // to be called while waiting for async write callback
3230        if (mType == OFFLOAD) {
3231            for (size_t i = 0; i < effectChains.size(); i ++) {
3232                effectChains[i]->process_l();
3233            }
3234        }
3235
3236        // Only if the Effects buffer is enabled and there is data in the
3237        // Effects buffer (buffer valid), we need to
3238        // copy into the sink buffer.
3239        // TODO use mSleepTimeUs == 0 as an additional condition.
3240        if (mEffectBufferValid) {
3241            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3242
3243            if (requireMonoBlend()) {
3244                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3245                           true /*limit*/);
3246            }
3247
3248            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3249                    mNormalFrameCount * mChannelCount);
3250        }
3251
3252        // enable changes in effect chain
3253        unlockEffectChains(effectChains);
3254
3255        if (!waitingAsyncCallback()) {
3256            // mSleepTimeUs == 0 means we must write to audio hardware
3257            if (mSleepTimeUs == 0) {
3258                ssize_t ret = 0;
3259                // We save lastWriteFinished here, as previousLastWriteFinished,
3260                // for throttling. On thread start, previousLastWriteFinished will be
3261                // set to -1, which properly results in no throttling after the first write.
3262                nsecs_t previousLastWriteFinished = lastWriteFinished;
3263                nsecs_t delta = 0;
3264                if (mBytesRemaining) {
3265                    // FIXME rewrite to reduce number of system calls
3266                    mLastWriteTime = systemTime();  // also used for dumpsys
3267                    ret = threadLoop_write();
3268                    lastWriteFinished = systemTime();
3269                    delta = lastWriteFinished - mLastWriteTime;
3270                    if (ret < 0) {
3271                        mBytesRemaining = 0;
3272                    } else {
3273                        mBytesWritten += ret;
3274                        mBytesRemaining -= ret;
3275                        mFramesWritten += ret / mFrameSize;
3276                    }
3277                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3278                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3279                    threadLoop_drain();
3280                }
3281                if (mType == MIXER && !mStandby) {
3282                    // write blocked detection
3283                    if (delta > maxPeriod) {
3284                        mNumDelayedWrites++;
3285                        if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3286                            ATRACE_NAME("underrun");
3287                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3288                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3289                            lastWarning = lastWriteFinished;
3290                        }
3291                    }
3292
3293                    if (mThreadThrottle
3294                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3295                            && ret > 0) {                         // we wrote something
3296                        // Limit MixerThread data processing to no more than twice the
3297                        // expected processing rate.
3298                        //
3299                        // This helps prevent underruns with NuPlayer and other applications
3300                        // which may set up buffers that are close to the minimum size, or use
3301                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3302                        //
3303                        // The throttle smooths out sudden large data drains from the device,
3304                        // e.g. when it comes out of standby, which often causes problems with
3305                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3306                        // (2) minimum buffer sized tracks (even if the track is full,
3307                        //     the app won't fill fast enough to handle the sudden draw).
3308                        //
3309                        // Total time spent in last processing cycle equals time spent in
3310                        // 1. threadLoop_write, as well as time spent in
3311                        // 2. threadLoop_mix (significant for heavy mixing, especially
3312                        //                    on low tier processors)
3313
3314                        // it's OK if deltaMs is an overestimate.
3315                        const int32_t deltaMs =
3316                                (lastWriteFinished - previousLastWriteFinished) / 1000000;
3317                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3318                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3319                            usleep(throttleMs * 1000);
3320                            // notify of throttle start on verbose log
3321                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3322                                    "mixer(%p) throttle begin:"
3323                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3324                                    this, ret, deltaMs, throttleMs);
3325                            mThreadThrottleTimeMs += throttleMs;
3326                            // Throttle must be attributed to the previous mixer loop's write time
3327                            // to allow back-to-back throttling.
3328                            lastWriteFinished += throttleMs * 1000000;
3329                        } else {
3330                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3331                            if (diff > 0) {
3332                                // notify of throttle end on debug log
3333                                // but prevent spamming for bluetooth
3334                                ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3335                                        "mixer(%p) throttle end: throttle time(%u)", this, diff);
3336                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3337                            }
3338                        }
3339                    }
3340                }
3341
3342            } else {
3343                ATRACE_BEGIN("sleep");
3344                Mutex::Autolock _l(mLock);
3345                if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3346                    mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3347                }
3348                ATRACE_END();
3349            }
3350        }
3351
3352        // Finally let go of removed track(s), without the lock held
3353        // since we can't guarantee the destructors won't acquire that
3354        // same lock.  This will also mutate and push a new fast mixer state.
3355        threadLoop_removeTracks(tracksToRemove);
3356        tracksToRemove.clear();
3357
3358        // FIXME I don't understand the need for this here;
3359        //       it was in the original code but maybe the
3360        //       assignment in saveOutputTracks() makes this unnecessary?
3361        clearOutputTracks();
3362
3363        // Effect chains will be actually deleted here if they were removed from
3364        // mEffectChains list during mixing or effects processing
3365        effectChains.clear();
3366
3367        // FIXME Note that the above .clear() is no longer necessary since effectChains
3368        // is now local to this block, but will keep it for now (at least until merge done).
3369    }
3370
3371    threadLoop_exit();
3372
3373    if (!mStandby) {
3374        threadLoop_standby();
3375        mStandby = true;
3376    }
3377
3378    releaseWakeLock();
3379
3380    ALOGV("Thread %p type %d exiting", this, mType);
3381    return false;
3382}
3383
3384// removeTracks_l() must be called with ThreadBase::mLock held
3385void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3386{
3387    size_t count = tracksToRemove.size();
3388    if (count > 0) {
3389        for (size_t i=0 ; i<count ; i++) {
3390            const sp<Track>& track = tracksToRemove.itemAt(i);
3391            mActiveTracks.remove(track);
3392            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3393            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3394            if (chain != 0) {
3395                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3396                        track->sessionId());
3397                chain->decActiveTrackCnt();
3398            }
3399            if (track->isTerminated()) {
3400                removeTrack_l(track);
3401            }
3402        }
3403    }
3404
3405}
3406
3407status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3408{
3409    if (mNormalSink != 0) {
3410        ExtendedTimestamp ets;
3411        status_t status = mNormalSink->getTimestamp(ets);
3412        if (status == NO_ERROR) {
3413            status = ets.getBestTimestamp(&timestamp);
3414        }
3415        return status;
3416    }
3417    if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
3418        uint64_t position64;
3419        if (mOutput->getPresentationPosition(&position64, &timestamp.mTime) == OK) {
3420            timestamp.mPosition = (uint32_t)position64;
3421            return NO_ERROR;
3422        }
3423    }
3424    return INVALID_OPERATION;
3425}
3426
3427status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3428                                                          audio_patch_handle_t *handle)
3429{
3430    status_t status;
3431    if (property_get_bool("af.patch_park", false /* default_value */)) {
3432        // Park FastMixer to avoid potential DOS issues with writing to the HAL
3433        // or if HAL does not properly lock against access.
3434        AutoPark<FastMixer> park(mFastMixer);
3435        status = PlaybackThread::createAudioPatch_l(patch, handle);
3436    } else {
3437        status = PlaybackThread::createAudioPatch_l(patch, handle);
3438    }
3439    return status;
3440}
3441
3442status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3443                                                          audio_patch_handle_t *handle)
3444{
3445    status_t status = NO_ERROR;
3446
3447    // store new device and send to effects
3448    audio_devices_t type = AUDIO_DEVICE_NONE;
3449    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3450        type |= patch->sinks[i].ext.device.type;
3451    }
3452
3453#ifdef ADD_BATTERY_DATA
3454    // when changing the audio output device, call addBatteryData to notify
3455    // the change
3456    if (mOutDevice != type) {
3457        uint32_t params = 0;
3458        // check whether speaker is on
3459        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3460            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3461        }
3462
3463        audio_devices_t deviceWithoutSpeaker
3464            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3465        // check if any other device (except speaker) is on
3466        if (type & deviceWithoutSpeaker) {
3467            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3468        }
3469
3470        if (params != 0) {
3471            addBatteryData(params);
3472        }
3473    }
3474#endif
3475
3476    for (size_t i = 0; i < mEffectChains.size(); i++) {
3477        mEffectChains[i]->setDevice_l(type);
3478    }
3479
3480    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3481    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3482    bool configChanged = mPrevOutDevice != type;
3483    mOutDevice = type;
3484    mPatch = *patch;
3485
3486    if (mOutput->audioHwDev->supportsAudioPatches()) {
3487        sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3488        status = hwDevice->createAudioPatch(patch->num_sources,
3489                                            patch->sources,
3490                                            patch->num_sinks,
3491                                            patch->sinks,
3492                                            handle);
3493    } else {
3494        char *address;
3495        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3496            //FIXME: we only support address on first sink with HAL version < 3.0
3497            address = audio_device_address_to_parameter(
3498                                                        patch->sinks[0].ext.device.type,
3499                                                        patch->sinks[0].ext.device.address);
3500        } else {
3501            address = (char *)calloc(1, 1);
3502        }
3503        AudioParameter param = AudioParameter(String8(address));
3504        free(address);
3505        param.addInt(String8(AudioParameter::keyRouting), (int)type);
3506        status = mOutput->stream->setParameters(param.toString());
3507        *handle = AUDIO_PATCH_HANDLE_NONE;
3508    }
3509    if (configChanged) {
3510        mPrevOutDevice = type;
3511        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3512    }
3513    return status;
3514}
3515
3516status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3517{
3518    status_t status;
3519    if (property_get_bool("af.patch_park", false /* default_value */)) {
3520        // Park FastMixer to avoid potential DOS issues with writing to the HAL
3521        // or if HAL does not properly lock against access.
3522        AutoPark<FastMixer> park(mFastMixer);
3523        status = PlaybackThread::releaseAudioPatch_l(handle);
3524    } else {
3525        status = PlaybackThread::releaseAudioPatch_l(handle);
3526    }
3527    return status;
3528}
3529
3530status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3531{
3532    status_t status = NO_ERROR;
3533
3534    mOutDevice = AUDIO_DEVICE_NONE;
3535
3536    if (mOutput->audioHwDev->supportsAudioPatches()) {
3537        sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
3538        status = hwDevice->releaseAudioPatch(handle);
3539    } else {
3540        AudioParameter param;
3541        param.addInt(String8(AudioParameter::keyRouting), 0);
3542        status = mOutput->stream->setParameters(param.toString());
3543    }
3544    return status;
3545}
3546
3547void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3548{
3549    Mutex::Autolock _l(mLock);
3550    mTracks.add(track);
3551}
3552
3553void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3554{
3555    Mutex::Autolock _l(mLock);
3556    destroyTrack_l(track);
3557}
3558
3559void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3560{
3561    ThreadBase::getAudioPortConfig(config);
3562    config->role = AUDIO_PORT_ROLE_SOURCE;
3563    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3564    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3565}
3566
3567// ----------------------------------------------------------------------------
3568
3569AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3570        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3571    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3572        // mAudioMixer below
3573        // mFastMixer below
3574        mFastMixerFutex(0),
3575        mMasterMono(false)
3576        // mOutputSink below
3577        // mPipeSink below
3578        // mNormalSink below
3579{
3580    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3581    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3582            "mFrameCount=%zu, mNormalFrameCount=%zu",
3583            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3584            mNormalFrameCount);
3585    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3586
3587    if (type == DUPLICATING) {
3588        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3589        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3590        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3591        return;
3592    }
3593    // create an NBAIO sink for the HAL output stream, and negotiate
3594    mOutputSink = new AudioStreamOutSink(output->stream);
3595    size_t numCounterOffers = 0;
3596    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3597#if !LOG_NDEBUG
3598    ssize_t index =
3599#else
3600    (void)
3601#endif
3602            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3603    ALOG_ASSERT(index == 0);
3604
3605    // initialize fast mixer depending on configuration
3606    bool initFastMixer;
3607    switch (kUseFastMixer) {
3608    case FastMixer_Never:
3609        initFastMixer = false;
3610        break;
3611    case FastMixer_Always:
3612        initFastMixer = true;
3613        break;
3614    case FastMixer_Static:
3615    case FastMixer_Dynamic:
3616        initFastMixer = mFrameCount < mNormalFrameCount;
3617        break;
3618    }
3619    if (initFastMixer) {
3620        audio_format_t fastMixerFormat;
3621        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3622            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3623        } else {
3624            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3625        }
3626        if (mFormat != fastMixerFormat) {
3627            // change our Sink format to accept our intermediate precision
3628            mFormat = fastMixerFormat;
3629            free(mSinkBuffer);
3630            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3631            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3632            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3633        }
3634
3635        // create a MonoPipe to connect our submix to FastMixer
3636        NBAIO_Format format = mOutputSink->format();
3637#ifdef TEE_SINK
3638        NBAIO_Format origformat = format;
3639#endif
3640        // adjust format to match that of the Fast Mixer
3641        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3642        format.mFormat = fastMixerFormat;
3643        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3644
3645        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3646        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3647        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3648        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3649        const NBAIO_Format offers[1] = {format};
3650        size_t numCounterOffers = 0;
3651#if !LOG_NDEBUG || defined(TEE_SINK)
3652        ssize_t index =
3653#else
3654        (void)
3655#endif
3656                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3657        ALOG_ASSERT(index == 0);
3658        monoPipe->setAvgFrames((mScreenState & 1) ?
3659                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3660        mPipeSink = monoPipe;
3661
3662#ifdef TEE_SINK
3663        if (mTeeSinkOutputEnabled) {
3664            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3665            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3666            const NBAIO_Format offers2[1] = {origformat};
3667            numCounterOffers = 0;
3668            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3669            ALOG_ASSERT(index == 0);
3670            mTeeSink = teeSink;
3671            PipeReader *teeSource = new PipeReader(*teeSink);
3672            numCounterOffers = 0;
3673            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3674            ALOG_ASSERT(index == 0);
3675            mTeeSource = teeSource;
3676        }
3677#endif
3678
3679        // create fast mixer and configure it initially with just one fast track for our submix
3680        mFastMixer = new FastMixer();
3681        FastMixerStateQueue *sq = mFastMixer->sq();
3682#ifdef STATE_QUEUE_DUMP
3683        sq->setObserverDump(&mStateQueueObserverDump);
3684        sq->setMutatorDump(&mStateQueueMutatorDump);
3685#endif
3686        FastMixerState *state = sq->begin();
3687        FastTrack *fastTrack = &state->mFastTracks[0];
3688        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3689        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3690        fastTrack->mVolumeProvider = NULL;
3691        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3692        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3693        fastTrack->mGeneration++;
3694        state->mFastTracksGen++;
3695        state->mTrackMask = 1;
3696        // fast mixer will use the HAL output sink
3697        state->mOutputSink = mOutputSink.get();
3698        state->mOutputSinkGen++;
3699        state->mFrameCount = mFrameCount;
3700        state->mCommand = FastMixerState::COLD_IDLE;
3701        // already done in constructor initialization list
3702        //mFastMixerFutex = 0;
3703        state->mColdFutexAddr = &mFastMixerFutex;
3704        state->mColdGen++;
3705        state->mDumpState = &mFastMixerDumpState;
3706#ifdef TEE_SINK
3707        state->mTeeSink = mTeeSink.get();
3708#endif
3709        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3710        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3711        sq->end();
3712        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3713
3714        // start the fast mixer
3715        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3716        pid_t tid = mFastMixer->getTid();
3717        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3718
3719#ifdef AUDIO_WATCHDOG
3720        // create and start the watchdog
3721        mAudioWatchdog = new AudioWatchdog();
3722        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3723        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3724        tid = mAudioWatchdog->getTid();
3725        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3726#endif
3727
3728    }
3729
3730    switch (kUseFastMixer) {
3731    case FastMixer_Never:
3732    case FastMixer_Dynamic:
3733        mNormalSink = mOutputSink;
3734        break;
3735    case FastMixer_Always:
3736        mNormalSink = mPipeSink;
3737        break;
3738    case FastMixer_Static:
3739        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3740        break;
3741    }
3742}
3743
3744AudioFlinger::MixerThread::~MixerThread()
3745{
3746    if (mFastMixer != 0) {
3747        FastMixerStateQueue *sq = mFastMixer->sq();
3748        FastMixerState *state = sq->begin();
3749        if (state->mCommand == FastMixerState::COLD_IDLE) {
3750            int32_t old = android_atomic_inc(&mFastMixerFutex);
3751            if (old == -1) {
3752                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3753            }
3754        }
3755        state->mCommand = FastMixerState::EXIT;
3756        sq->end();
3757        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3758        mFastMixer->join();
3759        // Though the fast mixer thread has exited, it's state queue is still valid.
3760        // We'll use that extract the final state which contains one remaining fast track
3761        // corresponding to our sub-mix.
3762        state = sq->begin();
3763        ALOG_ASSERT(state->mTrackMask == 1);
3764        FastTrack *fastTrack = &state->mFastTracks[0];
3765        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3766        delete fastTrack->mBufferProvider;
3767        sq->end(false /*didModify*/);
3768        mFastMixer.clear();
3769#ifdef AUDIO_WATCHDOG
3770        if (mAudioWatchdog != 0) {
3771            mAudioWatchdog->requestExit();
3772            mAudioWatchdog->requestExitAndWait();
3773            mAudioWatchdog.clear();
3774        }
3775#endif
3776    }
3777    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3778    delete mAudioMixer;
3779}
3780
3781
3782uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3783{
3784    if (mFastMixer != 0) {
3785        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3786        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3787    }
3788    return latency;
3789}
3790
3791
3792void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3793{
3794    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3795}
3796
3797ssize_t AudioFlinger::MixerThread::threadLoop_write()
3798{
3799    // FIXME we should only do one push per cycle; confirm this is true
3800    // Start the fast mixer if it's not already running
3801    if (mFastMixer != 0) {
3802        FastMixerStateQueue *sq = mFastMixer->sq();
3803        FastMixerState *state = sq->begin();
3804        if (state->mCommand != FastMixerState::MIX_WRITE &&
3805                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3806            if (state->mCommand == FastMixerState::COLD_IDLE) {
3807
3808                // FIXME workaround for first HAL write being CPU bound on some devices
3809                ATRACE_BEGIN("write");
3810                mOutput->write((char *)mSinkBuffer, 0);
3811                ATRACE_END();
3812
3813                int32_t old = android_atomic_inc(&mFastMixerFutex);
3814                if (old == -1) {
3815                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3816                }
3817#ifdef AUDIO_WATCHDOG
3818                if (mAudioWatchdog != 0) {
3819                    mAudioWatchdog->resume();
3820                }
3821#endif
3822            }
3823            state->mCommand = FastMixerState::MIX_WRITE;
3824#ifdef FAST_THREAD_STATISTICS
3825            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3826                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3827#endif
3828            sq->end();
3829            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3830            if (kUseFastMixer == FastMixer_Dynamic) {
3831                mNormalSink = mPipeSink;
3832            }
3833        } else {
3834            sq->end(false /*didModify*/);
3835        }
3836    }
3837    return PlaybackThread::threadLoop_write();
3838}
3839
3840void AudioFlinger::MixerThread::threadLoop_standby()
3841{
3842    // Idle the fast mixer if it's currently running
3843    if (mFastMixer != 0) {
3844        FastMixerStateQueue *sq = mFastMixer->sq();
3845        FastMixerState *state = sq->begin();
3846        if (!(state->mCommand & FastMixerState::IDLE)) {
3847            state->mCommand = FastMixerState::COLD_IDLE;
3848            state->mColdFutexAddr = &mFastMixerFutex;
3849            state->mColdGen++;
3850            mFastMixerFutex = 0;
3851            sq->end();
3852            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3853            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3854            if (kUseFastMixer == FastMixer_Dynamic) {
3855                mNormalSink = mOutputSink;
3856            }
3857#ifdef AUDIO_WATCHDOG
3858            if (mAudioWatchdog != 0) {
3859                mAudioWatchdog->pause();
3860            }
3861#endif
3862        } else {
3863            sq->end(false /*didModify*/);
3864        }
3865    }
3866    PlaybackThread::threadLoop_standby();
3867}
3868
3869bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3870{
3871    return false;
3872}
3873
3874bool AudioFlinger::PlaybackThread::shouldStandby_l()
3875{
3876    return !mStandby;
3877}
3878
3879bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3880{
3881    Mutex::Autolock _l(mLock);
3882    return waitingAsyncCallback_l();
3883}
3884
3885// shared by MIXER and DIRECT, overridden by DUPLICATING
3886void AudioFlinger::PlaybackThread::threadLoop_standby()
3887{
3888    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3889    mOutput->standby();
3890    if (mUseAsyncWrite != 0) {
3891        // discard any pending drain or write ack by incrementing sequence
3892        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3893        mDrainSequence = (mDrainSequence + 2) & ~1;
3894        ALOG_ASSERT(mCallbackThread != 0);
3895        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3896        mCallbackThread->setDraining(mDrainSequence);
3897    }
3898    mHwPaused = false;
3899}
3900
3901void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3902{
3903    ALOGV("signal playback thread");
3904    broadcast_l();
3905}
3906
3907void AudioFlinger::PlaybackThread::onAsyncError()
3908{
3909    for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
3910        invalidateTracks((audio_stream_type_t)i);
3911    }
3912}
3913
3914void AudioFlinger::MixerThread::threadLoop_mix()
3915{
3916    // mix buffers...
3917    mAudioMixer->process();
3918    mCurrentWriteLength = mSinkBufferSize;
3919    // increase sleep time progressively when application underrun condition clears.
3920    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3921    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3922    // such that we would underrun the audio HAL.
3923    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3924        sleepTimeShift--;
3925    }
3926    mSleepTimeUs = 0;
3927    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3928    //TODO: delay standby when effects have a tail
3929
3930}
3931
3932void AudioFlinger::MixerThread::threadLoop_sleepTime()
3933{
3934    // If no tracks are ready, sleep once for the duration of an output
3935    // buffer size, then write 0s to the output
3936    if (mSleepTimeUs == 0) {
3937        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3938            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3939            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3940                mSleepTimeUs = kMinThreadSleepTimeUs;
3941            }
3942            // reduce sleep time in case of consecutive application underruns to avoid
3943            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3944            // duration we would end up writing less data than needed by the audio HAL if
3945            // the condition persists.
3946            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3947                sleepTimeShift++;
3948            }
3949        } else {
3950            mSleepTimeUs = mIdleSleepTimeUs;
3951        }
3952    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3953        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3954        // before effects processing or output.
3955        if (mMixerBufferValid) {
3956            memset(mMixerBuffer, 0, mMixerBufferSize);
3957        } else {
3958            memset(mSinkBuffer, 0, mSinkBufferSize);
3959        }
3960        mSleepTimeUs = 0;
3961        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3962                "anticipated start");
3963    }
3964    // TODO add standby time extension fct of effect tail
3965}
3966
3967// prepareTracks_l() must be called with ThreadBase::mLock held
3968AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3969        Vector< sp<Track> > *tracksToRemove)
3970{
3971
3972    mixer_state mixerStatus = MIXER_IDLE;
3973    // find out which tracks need to be processed
3974    size_t count = mActiveTracks.size();
3975    size_t mixedTracks = 0;
3976    size_t tracksWithEffect = 0;
3977    // counts only _active_ fast tracks
3978    size_t fastTracks = 0;
3979    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3980
3981    float masterVolume = mMasterVolume;
3982    bool masterMute = mMasterMute;
3983
3984    if (masterMute) {
3985        masterVolume = 0;
3986    }
3987    // Delegate master volume control to effect in output mix effect chain if needed
3988    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3989    if (chain != 0) {
3990        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3991        chain->setVolume_l(&v, &v);
3992        masterVolume = (float)((v + (1 << 23)) >> 24);
3993        chain.clear();
3994    }
3995
3996    // prepare a new state to push
3997    FastMixerStateQueue *sq = NULL;
3998    FastMixerState *state = NULL;
3999    bool didModify = false;
4000    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4001    if (mFastMixer != 0) {
4002        sq = mFastMixer->sq();
4003        state = sq->begin();
4004    }
4005
4006    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
4007    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4008
4009    for (size_t i=0 ; i<count ; i++) {
4010        const sp<Track> t = mActiveTracks[i];
4011
4012        // this const just means the local variable doesn't change
4013        Track* const track = t.get();
4014
4015        // process fast tracks
4016        if (track->isFastTrack()) {
4017
4018            // It's theoretically possible (though unlikely) for a fast track to be created
4019            // and then removed within the same normal mix cycle.  This is not a problem, as
4020            // the track never becomes active so it's fast mixer slot is never touched.
4021            // The converse, of removing an (active) track and then creating a new track
4022            // at the identical fast mixer slot within the same normal mix cycle,
4023            // is impossible because the slot isn't marked available until the end of each cycle.
4024            int j = track->mFastIndex;
4025            ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4026            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4027            FastTrack *fastTrack = &state->mFastTracks[j];
4028
4029            // Determine whether the track is currently in underrun condition,
4030            // and whether it had a recent underrun.
4031            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4032            FastTrackUnderruns underruns = ftDump->mUnderruns;
4033            uint32_t recentFull = (underruns.mBitFields.mFull -
4034                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4035            uint32_t recentPartial = (underruns.mBitFields.mPartial -
4036                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4037            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4038                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4039            uint32_t recentUnderruns = recentPartial + recentEmpty;
4040            track->mObservedUnderruns = underruns;
4041            // don't count underruns that occur while stopping or pausing
4042            // or stopped which can occur when flush() is called while active
4043            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4044                    recentUnderruns > 0) {
4045                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4046                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4047            } else {
4048                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4049            }
4050
4051            // This is similar to the state machine for normal tracks,
4052            // with a few modifications for fast tracks.
4053            bool isActive = true;
4054            switch (track->mState) {
4055            case TrackBase::STOPPING_1:
4056                // track stays active in STOPPING_1 state until first underrun
4057                if (recentUnderruns > 0 || track->isTerminated()) {
4058                    track->mState = TrackBase::STOPPING_2;
4059                }
4060                break;
4061            case TrackBase::PAUSING:
4062                // ramp down is not yet implemented
4063                track->setPaused();
4064                break;
4065            case TrackBase::RESUMING:
4066                // ramp up is not yet implemented
4067                track->mState = TrackBase::ACTIVE;
4068                break;
4069            case TrackBase::ACTIVE:
4070                if (recentFull > 0 || recentPartial > 0) {
4071                    // track has provided at least some frames recently: reset retry count
4072                    track->mRetryCount = kMaxTrackRetries;
4073                }
4074                if (recentUnderruns == 0) {
4075                    // no recent underruns: stay active
4076                    break;
4077                }
4078                // there has recently been an underrun of some kind
4079                if (track->sharedBuffer() == 0) {
4080                    // were any of the recent underruns "empty" (no frames available)?
4081                    if (recentEmpty == 0) {
4082                        // no, then ignore the partial underruns as they are allowed indefinitely
4083                        break;
4084                    }
4085                    // there has recently been an "empty" underrun: decrement the retry counter
4086                    if (--(track->mRetryCount) > 0) {
4087                        break;
4088                    }
4089                    // indicate to client process that the track was disabled because of underrun;
4090                    // it will then automatically call start() when data is available
4091                    track->disable();
4092                    // remove from active list, but state remains ACTIVE [confusing but true]
4093                    isActive = false;
4094                    break;
4095                }
4096                // fall through
4097            case TrackBase::STOPPING_2:
4098            case TrackBase::PAUSED:
4099            case TrackBase::STOPPED:
4100            case TrackBase::FLUSHED:   // flush() while active
4101                // Check for presentation complete if track is inactive
4102                // We have consumed all the buffers of this track.
4103                // This would be incomplete if we auto-paused on underrun
4104                {
4105                    uint32_t latency = 0;
4106                    status_t result = mOutput->stream->getLatency(&latency);
4107                    ALOGE_IF(result != OK,
4108                            "Error when retrieving output stream latency: %d", result);
4109                    size_t audioHALFrames = (latency * mSampleRate) / 1000;
4110                    int64_t framesWritten = mBytesWritten / mFrameSize;
4111                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4112                        // track stays in active list until presentation is complete
4113                        break;
4114                    }
4115                }
4116                if (track->isStopping_2()) {
4117                    track->mState = TrackBase::STOPPED;
4118                }
4119                if (track->isStopped()) {
4120                    // Can't reset directly, as fast mixer is still polling this track
4121                    //   track->reset();
4122                    // So instead mark this track as needing to be reset after push with ack
4123                    resetMask |= 1 << i;
4124                }
4125                isActive = false;
4126                break;
4127            case TrackBase::IDLE:
4128            default:
4129                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4130            }
4131
4132            if (isActive) {
4133                // was it previously inactive?
4134                if (!(state->mTrackMask & (1 << j))) {
4135                    ExtendedAudioBufferProvider *eabp = track;
4136                    VolumeProvider *vp = track;
4137                    fastTrack->mBufferProvider = eabp;
4138                    fastTrack->mVolumeProvider = vp;
4139                    fastTrack->mChannelMask = track->mChannelMask;
4140                    fastTrack->mFormat = track->mFormat;
4141                    fastTrack->mGeneration++;
4142                    state->mTrackMask |= 1 << j;
4143                    didModify = true;
4144                    // no acknowledgement required for newly active tracks
4145                }
4146                // cache the combined master volume and stream type volume for fast mixer; this
4147                // lacks any synchronization or barrier so VolumeProvider may read a stale value
4148                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4149                ++fastTracks;
4150            } else {
4151                // was it previously active?
4152                if (state->mTrackMask & (1 << j)) {
4153                    fastTrack->mBufferProvider = NULL;
4154                    fastTrack->mGeneration++;
4155                    state->mTrackMask &= ~(1 << j);
4156                    didModify = true;
4157                    // If any fast tracks were removed, we must wait for acknowledgement
4158                    // because we're about to decrement the last sp<> on those tracks.
4159                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4160                } else {
4161                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
4162                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4163                            j, track->mState, state->mTrackMask, recentUnderruns,
4164                            track->sharedBuffer() != 0);
4165                }
4166                tracksToRemove->add(track);
4167                // Avoids a misleading display in dumpsys
4168                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4169            }
4170            continue;
4171        }
4172
4173        {   // local variable scope to avoid goto warning
4174
4175        audio_track_cblk_t* cblk = track->cblk();
4176
4177        // The first time a track is added we wait
4178        // for all its buffers to be filled before processing it
4179        int name = track->name();
4180        // make sure that we have enough frames to mix one full buffer.
4181        // enforce this condition only once to enable draining the buffer in case the client
4182        // app does not call stop() and relies on underrun to stop:
4183        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4184        // during last round
4185        size_t desiredFrames;
4186        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4187        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4188
4189        desiredFrames = sourceFramesNeededWithTimestretch(
4190                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4191        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4192        // add frames already consumed but not yet released by the resampler
4193        // because mAudioTrackServerProxy->framesReady() will include these frames
4194        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4195
4196        uint32_t minFrames = 1;
4197        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4198                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4199            minFrames = desiredFrames;
4200        }
4201
4202        size_t framesReady = track->framesReady();
4203        if (ATRACE_ENABLED()) {
4204            // I wish we had formatted trace names
4205            char traceName[16];
4206            strcpy(traceName, "nRdy");
4207            int name = track->name();
4208            if (AudioMixer::TRACK0 <= name &&
4209                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4210                name -= AudioMixer::TRACK0;
4211                traceName[4] = (name / 10) + '0';
4212                traceName[5] = (name % 10) + '0';
4213            } else {
4214                traceName[4] = '?';
4215                traceName[5] = '?';
4216            }
4217            traceName[6] = '\0';
4218            ATRACE_INT(traceName, framesReady);
4219        }
4220        if ((framesReady >= minFrames) && track->isReady() &&
4221                !track->isPaused() && !track->isTerminated())
4222        {
4223            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4224
4225            mixedTracks++;
4226
4227            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4228            // there is an effect chain connected to the track
4229            chain.clear();
4230            if (track->mainBuffer() != mSinkBuffer &&
4231                    track->mainBuffer() != mMixerBuffer) {
4232                if (mEffectBufferEnabled) {
4233                    mEffectBufferValid = true; // Later can set directly.
4234                }
4235                chain = getEffectChain_l(track->sessionId());
4236                // Delegate volume control to effect in track effect chain if needed
4237                if (chain != 0) {
4238                    tracksWithEffect++;
4239                } else {
4240                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4241                            "session %d",
4242                            name, track->sessionId());
4243                }
4244            }
4245
4246
4247            int param = AudioMixer::VOLUME;
4248            if (track->mFillingUpStatus == Track::FS_FILLED) {
4249                // no ramp for the first volume setting
4250                track->mFillingUpStatus = Track::FS_ACTIVE;
4251                if (track->mState == TrackBase::RESUMING) {
4252                    track->mState = TrackBase::ACTIVE;
4253                    param = AudioMixer::RAMP_VOLUME;
4254                }
4255                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4256            // FIXME should not make a decision based on mServer
4257            } else if (cblk->mServer != 0) {
4258                // If the track is stopped before the first frame was mixed,
4259                // do not apply ramp
4260                param = AudioMixer::RAMP_VOLUME;
4261            }
4262
4263            // compute volume for this track
4264            uint32_t vl, vr;       // in U8.24 integer format
4265            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4266            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4267                vl = vr = 0;
4268                vlf = vrf = vaf = 0.;
4269                if (track->isPausing()) {
4270                    track->setPaused();
4271                }
4272            } else {
4273
4274                // read original volumes with volume control
4275                float typeVolume = mStreamTypes[track->streamType()].volume;
4276                float v = masterVolume * typeVolume;
4277                sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4278                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4279                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4280                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4281                // track volumes come from shared memory, so can't be trusted and must be clamped
4282                if (vlf > GAIN_FLOAT_UNITY) {
4283                    ALOGV("Track left volume out of range: %.3g", vlf);
4284                    vlf = GAIN_FLOAT_UNITY;
4285                }
4286                if (vrf > GAIN_FLOAT_UNITY) {
4287                    ALOGV("Track right volume out of range: %.3g", vrf);
4288                    vrf = GAIN_FLOAT_UNITY;
4289                }
4290                // now apply the master volume and stream type volume
4291                vlf *= v;
4292                vrf *= v;
4293                // assuming master volume and stream type volume each go up to 1.0,
4294                // then derive vl and vr as U8.24 versions for the effect chain
4295                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4296                vl = (uint32_t) (scaleto8_24 * vlf);
4297                vr = (uint32_t) (scaleto8_24 * vrf);
4298                // vl and vr are now in U8.24 format
4299                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4300                // send level comes from shared memory and so may be corrupt
4301                if (sendLevel > MAX_GAIN_INT) {
4302                    ALOGV("Track send level out of range: %04X", sendLevel);
4303                    sendLevel = MAX_GAIN_INT;
4304                }
4305                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4306                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4307            }
4308
4309            // Delegate volume control to effect in track effect chain if needed
4310            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4311                // Do not ramp volume if volume is controlled by effect
4312                param = AudioMixer::VOLUME;
4313                // Update remaining floating point volume levels
4314                vlf = (float)vl / (1 << 24);
4315                vrf = (float)vr / (1 << 24);
4316                track->mHasVolumeController = true;
4317            } else {
4318                // force no volume ramp when volume controller was just disabled or removed
4319                // from effect chain to avoid volume spike
4320                if (track->mHasVolumeController) {
4321                    param = AudioMixer::VOLUME;
4322                }
4323                track->mHasVolumeController = false;
4324            }
4325
4326            // XXX: these things DON'T need to be done each time
4327            mAudioMixer->setBufferProvider(name, track);
4328            mAudioMixer->enable(name);
4329
4330            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4331            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4332            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4333            mAudioMixer->setParameter(
4334                name,
4335                AudioMixer::TRACK,
4336                AudioMixer::FORMAT, (void *)track->format());
4337            mAudioMixer->setParameter(
4338                name,
4339                AudioMixer::TRACK,
4340                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4341            mAudioMixer->setParameter(
4342                name,
4343                AudioMixer::TRACK,
4344                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4345            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4346            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4347            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4348            if (reqSampleRate == 0) {
4349                reqSampleRate = mSampleRate;
4350            } else if (reqSampleRate > maxSampleRate) {
4351                reqSampleRate = maxSampleRate;
4352            }
4353            mAudioMixer->setParameter(
4354                name,
4355                AudioMixer::RESAMPLE,
4356                AudioMixer::SAMPLE_RATE,
4357                (void *)(uintptr_t)reqSampleRate);
4358
4359            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4360            mAudioMixer->setParameter(
4361                name,
4362                AudioMixer::TIMESTRETCH,
4363                AudioMixer::PLAYBACK_RATE,
4364                &playbackRate);
4365
4366            /*
4367             * Select the appropriate output buffer for the track.
4368             *
4369             * Tracks with effects go into their own effects chain buffer
4370             * and from there into either mEffectBuffer or mSinkBuffer.
4371             *
4372             * Other tracks can use mMixerBuffer for higher precision
4373             * channel accumulation.  If this buffer is enabled
4374             * (mMixerBufferEnabled true), then selected tracks will accumulate
4375             * into it.
4376             *
4377             */
4378            if (mMixerBufferEnabled
4379                    && (track->mainBuffer() == mSinkBuffer
4380                            || track->mainBuffer() == mMixerBuffer)) {
4381                mAudioMixer->setParameter(
4382                        name,
4383                        AudioMixer::TRACK,
4384                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4385                mAudioMixer->setParameter(
4386                        name,
4387                        AudioMixer::TRACK,
4388                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4389                // TODO: override track->mainBuffer()?
4390                mMixerBufferValid = true;
4391            } else {
4392                mAudioMixer->setParameter(
4393                        name,
4394                        AudioMixer::TRACK,
4395                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4396                mAudioMixer->setParameter(
4397                        name,
4398                        AudioMixer::TRACK,
4399                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4400            }
4401            mAudioMixer->setParameter(
4402                name,
4403                AudioMixer::TRACK,
4404                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4405
4406            // reset retry count
4407            track->mRetryCount = kMaxTrackRetries;
4408
4409            // If one track is ready, set the mixer ready if:
4410            //  - the mixer was not ready during previous round OR
4411            //  - no other track is not ready
4412            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4413                    mixerStatus != MIXER_TRACKS_ENABLED) {
4414                mixerStatus = MIXER_TRACKS_READY;
4415            }
4416        } else {
4417            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4418                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4419                        track, framesReady, desiredFrames);
4420                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4421            } else {
4422                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4423            }
4424
4425            // clear effect chain input buffer if an active track underruns to avoid sending
4426            // previous audio buffer again to effects
4427            chain = getEffectChain_l(track->sessionId());
4428            if (chain != 0) {
4429                chain->clearInputBuffer();
4430            }
4431
4432            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4433            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4434                    track->isStopped() || track->isPaused()) {
4435                // We have consumed all the buffers of this track.
4436                // Remove it from the list of active tracks.
4437                // TODO: use actual buffer filling status instead of latency when available from
4438                // audio HAL
4439                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4440                int64_t framesWritten = mBytesWritten / mFrameSize;
4441                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4442                    if (track->isStopped()) {
4443                        track->reset();
4444                    }
4445                    tracksToRemove->add(track);
4446                }
4447            } else {
4448                // No buffers for this track. Give it a few chances to
4449                // fill a buffer, then remove it from active list.
4450                if (--(track->mRetryCount) <= 0) {
4451                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4452                    tracksToRemove->add(track);
4453                    // indicate to client process that the track was disabled because of underrun;
4454                    // it will then automatically call start() when data is available
4455                    track->disable();
4456                // If one track is not ready, mark the mixer also not ready if:
4457                //  - the mixer was ready during previous round OR
4458                //  - no other track is ready
4459                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4460                                mixerStatus != MIXER_TRACKS_READY) {
4461                    mixerStatus = MIXER_TRACKS_ENABLED;
4462                }
4463            }
4464            mAudioMixer->disable(name);
4465        }
4466
4467        }   // local variable scope to avoid goto warning
4468
4469    }
4470
4471    // Push the new FastMixer state if necessary
4472    bool pauseAudioWatchdog = false;
4473    if (didModify) {
4474        state->mFastTracksGen++;
4475        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4476        if (kUseFastMixer == FastMixer_Dynamic &&
4477                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4478            state->mCommand = FastMixerState::COLD_IDLE;
4479            state->mColdFutexAddr = &mFastMixerFutex;
4480            state->mColdGen++;
4481            mFastMixerFutex = 0;
4482            if (kUseFastMixer == FastMixer_Dynamic) {
4483                mNormalSink = mOutputSink;
4484            }
4485            // If we go into cold idle, need to wait for acknowledgement
4486            // so that fast mixer stops doing I/O.
4487            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4488            pauseAudioWatchdog = true;
4489        }
4490    }
4491    if (sq != NULL) {
4492        sq->end(didModify);
4493        sq->push(block);
4494    }
4495#ifdef AUDIO_WATCHDOG
4496    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4497        mAudioWatchdog->pause();
4498    }
4499#endif
4500
4501    // Now perform the deferred reset on fast tracks that have stopped
4502    while (resetMask != 0) {
4503        size_t i = __builtin_ctz(resetMask);
4504        ALOG_ASSERT(i < count);
4505        resetMask &= ~(1 << i);
4506        sp<Track> track = mActiveTracks[i];
4507        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4508        track->reset();
4509    }
4510
4511    // remove all the tracks that need to be...
4512    removeTracks_l(*tracksToRemove);
4513
4514    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4515        mEffectBufferValid = true;
4516    }
4517
4518    if (mEffectBufferValid) {
4519        // as long as there are effects we should clear the effects buffer, to avoid
4520        // passing a non-clean buffer to the effect chain
4521        memset(mEffectBuffer, 0, mEffectBufferSize);
4522    }
4523    // sink or mix buffer must be cleared if all tracks are connected to an
4524    // effect chain as in this case the mixer will not write to the sink or mix buffer
4525    // and track effects will accumulate into it
4526    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4527            (mixedTracks == 0 && fastTracks > 0))) {
4528        // FIXME as a performance optimization, should remember previous zero status
4529        if (mMixerBufferValid) {
4530            memset(mMixerBuffer, 0, mMixerBufferSize);
4531            // TODO: In testing, mSinkBuffer below need not be cleared because
4532            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4533            // after mixing.
4534            //
4535            // To enforce this guarantee:
4536            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4537            // (mixedTracks == 0 && fastTracks > 0))
4538            // must imply MIXER_TRACKS_READY.
4539            // Later, we may clear buffers regardless, and skip much of this logic.
4540        }
4541        // FIXME as a performance optimization, should remember previous zero status
4542        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4543    }
4544
4545    // if any fast tracks, then status is ready
4546    mMixerStatusIgnoringFastTracks = mixerStatus;
4547    if (fastTracks > 0) {
4548        mixerStatus = MIXER_TRACKS_READY;
4549    }
4550    return mixerStatus;
4551}
4552
4553// trackCountForUid_l() must be called with ThreadBase::mLock held
4554uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid)
4555{
4556    uint32_t trackCount = 0;
4557    for (size_t i = 0; i < mTracks.size() ; i++) {
4558        if (mTracks[i]->uid() == (int)uid) {
4559            trackCount++;
4560        }
4561    }
4562    return trackCount;
4563}
4564
4565// getTrackName_l() must be called with ThreadBase::mLock held
4566int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4567        audio_format_t format, audio_session_t sessionId, uid_t uid)
4568{
4569    if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
4570        return -1;
4571    }
4572    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4573}
4574
4575// deleteTrackName_l() must be called with ThreadBase::mLock held
4576void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4577{
4578    ALOGV("remove track (%d) and delete from mixer", name);
4579    mAudioMixer->deleteTrackName(name);
4580}
4581
4582// checkForNewParameter_l() must be called with ThreadBase::mLock held
4583bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4584                                                       status_t& status)
4585{
4586    bool reconfig = false;
4587    bool a2dpDeviceChanged = false;
4588
4589    status = NO_ERROR;
4590
4591    AutoPark<FastMixer> park(mFastMixer);
4592
4593    AudioParameter param = AudioParameter(keyValuePair);
4594    int value;
4595    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4596        reconfig = true;
4597    }
4598    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4599        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4600            status = BAD_VALUE;
4601        } else {
4602            // no need to save value, since it's constant
4603            reconfig = true;
4604        }
4605    }
4606    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4607        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4608            status = BAD_VALUE;
4609        } else {
4610            // no need to save value, since it's constant
4611            reconfig = true;
4612        }
4613    }
4614    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4615        // do not accept frame count changes if tracks are open as the track buffer
4616        // size depends on frame count and correct behavior would not be guaranteed
4617        // if frame count is changed after track creation
4618        if (!mTracks.isEmpty()) {
4619            status = INVALID_OPERATION;
4620        } else {
4621            reconfig = true;
4622        }
4623    }
4624    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4625#ifdef ADD_BATTERY_DATA
4626        // when changing the audio output device, call addBatteryData to notify
4627        // the change
4628        if (mOutDevice != value) {
4629            uint32_t params = 0;
4630            // check whether speaker is on
4631            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4632                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4633            }
4634
4635            audio_devices_t deviceWithoutSpeaker
4636                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4637            // check if any other device (except speaker) is on
4638            if (value & deviceWithoutSpeaker) {
4639                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4640            }
4641
4642            if (params != 0) {
4643                addBatteryData(params);
4644            }
4645        }
4646#endif
4647
4648        // forward device change to effects that have requested to be
4649        // aware of attached audio device.
4650        if (value != AUDIO_DEVICE_NONE) {
4651            a2dpDeviceChanged =
4652                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4653            mOutDevice = value;
4654            for (size_t i = 0; i < mEffectChains.size(); i++) {
4655                mEffectChains[i]->setDevice_l(mOutDevice);
4656            }
4657        }
4658    }
4659
4660    if (status == NO_ERROR) {
4661        status = mOutput->stream->setParameters(keyValuePair);
4662        if (!mStandby && status == INVALID_OPERATION) {
4663            mOutput->standby();
4664            mStandby = true;
4665            mBytesWritten = 0;
4666            status = mOutput->stream->setParameters(keyValuePair);
4667        }
4668        if (status == NO_ERROR && reconfig) {
4669            readOutputParameters_l();
4670            delete mAudioMixer;
4671            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4672            for (size_t i = 0; i < mTracks.size() ; i++) {
4673                int name = getTrackName_l(mTracks[i]->mChannelMask,
4674                        mTracks[i]->mFormat, mTracks[i]->mSessionId, mTracks[i]->uid());
4675                if (name < 0) {
4676                    break;
4677                }
4678                mTracks[i]->mName = name;
4679            }
4680            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4681        }
4682    }
4683
4684    return reconfig || a2dpDeviceChanged;
4685}
4686
4687
4688void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4689{
4690    PlaybackThread::dumpInternals(fd, args);
4691    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4692    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4693    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4694
4695    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4696    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4697    // This is a large object so we place it on the heap.
4698    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4699    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4700    copy->dump(fd);
4701    delete copy;
4702
4703#ifdef STATE_QUEUE_DUMP
4704    // Similar for state queue
4705    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4706    observerCopy.dump(fd);
4707    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4708    mutatorCopy.dump(fd);
4709#endif
4710
4711#ifdef TEE_SINK
4712    // Write the tee output to a .wav file
4713    dumpTee(fd, mTeeSource, mId);
4714#endif
4715
4716#ifdef AUDIO_WATCHDOG
4717    if (mAudioWatchdog != 0) {
4718        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4719        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4720        wdCopy.dump(fd);
4721    }
4722#endif
4723}
4724
4725uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4726{
4727    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4728}
4729
4730uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4731{
4732    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4733}
4734
4735void AudioFlinger::MixerThread::cacheParameters_l()
4736{
4737    PlaybackThread::cacheParameters_l();
4738
4739    // FIXME: Relaxed timing because of a certain device that can't meet latency
4740    // Should be reduced to 2x after the vendor fixes the driver issue
4741    // increase threshold again due to low power audio mode. The way this warning
4742    // threshold is calculated and its usefulness should be reconsidered anyway.
4743    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4744}
4745
4746// ----------------------------------------------------------------------------
4747
4748AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4749        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4750    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4751        // mLeftVolFloat, mRightVolFloat
4752{
4753}
4754
4755AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4756        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4757        ThreadBase::type_t type, bool systemReady)
4758    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4759        // mLeftVolFloat, mRightVolFloat
4760{
4761}
4762
4763AudioFlinger::DirectOutputThread::~DirectOutputThread()
4764{
4765}
4766
4767void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4768{
4769    float left, right;
4770
4771    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4772        left = right = 0;
4773    } else {
4774        float typeVolume = mStreamTypes[track->streamType()].volume;
4775        float v = mMasterVolume * typeVolume;
4776        sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4777        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4778        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4779        if (left > GAIN_FLOAT_UNITY) {
4780            left = GAIN_FLOAT_UNITY;
4781        }
4782        left *= v;
4783        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4784        if (right > GAIN_FLOAT_UNITY) {
4785            right = GAIN_FLOAT_UNITY;
4786        }
4787        right *= v;
4788    }
4789
4790    if (lastTrack) {
4791        if (left != mLeftVolFloat || right != mRightVolFloat) {
4792            mLeftVolFloat = left;
4793            mRightVolFloat = right;
4794
4795            // Convert volumes from float to 8.24
4796            uint32_t vl = (uint32_t)(left * (1 << 24));
4797            uint32_t vr = (uint32_t)(right * (1 << 24));
4798
4799            // Delegate volume control to effect in track effect chain if needed
4800            // only one effect chain can be present on DirectOutputThread, so if
4801            // there is one, the track is connected to it
4802            if (!mEffectChains.isEmpty()) {
4803                mEffectChains[0]->setVolume_l(&vl, &vr);
4804                left = (float)vl / (1 << 24);
4805                right = (float)vr / (1 << 24);
4806            }
4807            status_t result = mOutput->stream->setVolume(left, right);
4808            ALOGE_IF(result != OK, "Error when setting output stream volume: %d", result);
4809        }
4810    }
4811}
4812
4813void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4814{
4815    sp<Track> previousTrack = mPreviousTrack.promote();
4816    sp<Track> latestTrack = mActiveTracks.getLatest();
4817
4818    if (previousTrack != 0 && latestTrack != 0) {
4819        if (mType == DIRECT) {
4820            if (previousTrack.get() != latestTrack.get()) {
4821                mFlushPending = true;
4822            }
4823        } else /* mType == OFFLOAD */ {
4824            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4825                mFlushPending = true;
4826            }
4827        }
4828    }
4829    PlaybackThread::onAddNewTrack_l();
4830}
4831
4832AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4833    Vector< sp<Track> > *tracksToRemove
4834)
4835{
4836    size_t count = mActiveTracks.size();
4837    mixer_state mixerStatus = MIXER_IDLE;
4838    bool doHwPause = false;
4839    bool doHwResume = false;
4840
4841    // find out which tracks need to be processed
4842    for (const sp<Track> &t : mActiveTracks) {
4843        if (t->isInvalid()) {
4844            ALOGW("An invalidated track shouldn't be in active list");
4845            tracksToRemove->add(t);
4846            continue;
4847        }
4848
4849        Track* const track = t.get();
4850#ifdef VERY_VERY_VERBOSE_LOGGING
4851        audio_track_cblk_t* cblk = track->cblk();
4852#endif
4853        // Only consider last track started for volume and mixer state control.
4854        // In theory an older track could underrun and restart after the new one starts
4855        // but as we only care about the transition phase between two tracks on a
4856        // direct output, it is not a problem to ignore the underrun case.
4857        sp<Track> l = mActiveTracks.getLatest();
4858        bool last = l.get() == track;
4859
4860        if (track->isPausing()) {
4861            track->setPaused();
4862            if (mHwSupportsPause && last && !mHwPaused) {
4863                doHwPause = true;
4864                mHwPaused = true;
4865            }
4866            tracksToRemove->add(track);
4867        } else if (track->isFlushPending()) {
4868            track->flushAck();
4869            if (last) {
4870                mFlushPending = true;
4871            }
4872        } else if (track->isResumePending()) {
4873            track->resumeAck();
4874            if (last) {
4875                mLeftVolFloat = mRightVolFloat = -1.0;
4876                if (mHwPaused) {
4877                    doHwResume = true;
4878                    mHwPaused = false;
4879                }
4880            }
4881        }
4882
4883        // The first time a track is added we wait
4884        // for all its buffers to be filled before processing it.
4885        // Allow draining the buffer in case the client
4886        // app does not call stop() and relies on underrun to stop:
4887        // hence the test on (track->mRetryCount > 1).
4888        // If retryCount<=1 then track is about to underrun and be removed.
4889        // Do not use a high threshold for compressed audio.
4890        uint32_t minFrames;
4891        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4892            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4893            minFrames = mNormalFrameCount;
4894        } else {
4895            minFrames = 1;
4896        }
4897
4898        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4899                !track->isStopping_2() && !track->isStopped())
4900        {
4901            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4902
4903            if (track->mFillingUpStatus == Track::FS_FILLED) {
4904                track->mFillingUpStatus = Track::FS_ACTIVE;
4905                if (last) {
4906                    // make sure processVolume_l() will apply new volume even if 0
4907                    mLeftVolFloat = mRightVolFloat = -1.0;
4908                }
4909                if (!mHwSupportsPause) {
4910                    track->resumeAck();
4911                }
4912            }
4913
4914            // compute volume for this track
4915            processVolume_l(track, last);
4916            if (last) {
4917                sp<Track> previousTrack = mPreviousTrack.promote();
4918                if (previousTrack != 0) {
4919                    if (track != previousTrack.get()) {
4920                        // Flush any data still being written from last track
4921                        mBytesRemaining = 0;
4922                        // Invalidate previous track to force a seek when resuming.
4923                        previousTrack->invalidate();
4924                    }
4925                }
4926                mPreviousTrack = track;
4927
4928                // reset retry count
4929                track->mRetryCount = kMaxTrackRetriesDirect;
4930                mActiveTrack = t;
4931                mixerStatus = MIXER_TRACKS_READY;
4932                if (mHwPaused) {
4933                    doHwResume = true;
4934                    mHwPaused = false;
4935                }
4936            }
4937        } else {
4938            // clear effect chain input buffer if the last active track started underruns
4939            // to avoid sending previous audio buffer again to effects
4940            if (!mEffectChains.isEmpty() && last) {
4941                mEffectChains[0]->clearInputBuffer();
4942            }
4943            if (track->isStopping_1()) {
4944                track->mState = TrackBase::STOPPING_2;
4945                if (last && mHwPaused) {
4946                     doHwResume = true;
4947                     mHwPaused = false;
4948                 }
4949            }
4950            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4951                    track->isStopping_2() || track->isPaused()) {
4952                // We have consumed all the buffers of this track.
4953                // Remove it from the list of active tracks.
4954                size_t audioHALFrames;
4955                if (audio_has_proportional_frames(mFormat)) {
4956                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4957                } else {
4958                    audioHALFrames = 0;
4959                }
4960
4961                int64_t framesWritten = mBytesWritten / mFrameSize;
4962                if (mStandby || !last ||
4963                        track->presentationComplete(framesWritten, audioHALFrames)) {
4964                    if (track->isStopping_2()) {
4965                        track->mState = TrackBase::STOPPED;
4966                    }
4967                    if (track->isStopped()) {
4968                        track->reset();
4969                    }
4970                    tracksToRemove->add(track);
4971                }
4972            } else {
4973                // No buffers for this track. Give it a few chances to
4974                // fill a buffer, then remove it from active list.
4975                // Only consider last track started for mixer state control
4976                if (--(track->mRetryCount) <= 0) {
4977                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4978                    tracksToRemove->add(track);
4979                    // indicate to client process that the track was disabled because of underrun;
4980                    // it will then automatically call start() when data is available
4981                    track->disable();
4982                } else if (last) {
4983                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4984                            "minFrames = %u, mFormat = %#x",
4985                            track->framesReady(), minFrames, mFormat);
4986                    mixerStatus = MIXER_TRACKS_ENABLED;
4987                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4988                        doHwPause = true;
4989                        mHwPaused = true;
4990                    }
4991                }
4992            }
4993        }
4994    }
4995
4996    // if an active track did not command a flush, check for pending flush on stopped tracks
4997    if (!mFlushPending) {
4998        for (size_t i = 0; i < mTracks.size(); i++) {
4999            if (mTracks[i]->isFlushPending()) {
5000                mTracks[i]->flushAck();
5001                mFlushPending = true;
5002            }
5003        }
5004    }
5005
5006    // make sure the pause/flush/resume sequence is executed in the right order.
5007    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5008    // before flush and then resume HW. This can happen in case of pause/flush/resume
5009    // if resume is received before pause is executed.
5010    if (mHwSupportsPause && !mStandby &&
5011            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5012        status_t result = mOutput->stream->pause();
5013        ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5014    }
5015    if (mFlushPending) {
5016        flushHw_l();
5017    }
5018    if (mHwSupportsPause && !mStandby && doHwResume) {
5019        status_t result = mOutput->stream->resume();
5020        ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5021    }
5022    // remove all the tracks that need to be...
5023    removeTracks_l(*tracksToRemove);
5024
5025    return mixerStatus;
5026}
5027
5028void AudioFlinger::DirectOutputThread::threadLoop_mix()
5029{
5030    size_t frameCount = mFrameCount;
5031    int8_t *curBuf = (int8_t *)mSinkBuffer;
5032    // output audio to hardware
5033    while (frameCount) {
5034        AudioBufferProvider::Buffer buffer;
5035        buffer.frameCount = frameCount;
5036        status_t status = mActiveTrack->getNextBuffer(&buffer);
5037        if (status != NO_ERROR || buffer.raw == NULL) {
5038            // no need to pad with 0 for compressed audio
5039            if (audio_has_proportional_frames(mFormat)) {
5040                memset(curBuf, 0, frameCount * mFrameSize);
5041            }
5042            break;
5043        }
5044        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5045        frameCount -= buffer.frameCount;
5046        curBuf += buffer.frameCount * mFrameSize;
5047        mActiveTrack->releaseBuffer(&buffer);
5048    }
5049    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5050    mSleepTimeUs = 0;
5051    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5052    mActiveTrack.clear();
5053}
5054
5055void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5056{
5057    // do not write to HAL when paused
5058    if (mHwPaused || (usesHwAvSync() && mStandby)) {
5059        mSleepTimeUs = mIdleSleepTimeUs;
5060        return;
5061    }
5062    if (mSleepTimeUs == 0) {
5063        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5064            mSleepTimeUs = mActiveSleepTimeUs;
5065        } else {
5066            mSleepTimeUs = mIdleSleepTimeUs;
5067        }
5068    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5069        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5070        mSleepTimeUs = 0;
5071    }
5072}
5073
5074void AudioFlinger::DirectOutputThread::threadLoop_exit()
5075{
5076    {
5077        Mutex::Autolock _l(mLock);
5078        for (size_t i = 0; i < mTracks.size(); i++) {
5079            if (mTracks[i]->isFlushPending()) {
5080                mTracks[i]->flushAck();
5081                mFlushPending = true;
5082            }
5083        }
5084        if (mFlushPending) {
5085            flushHw_l();
5086        }
5087    }
5088    PlaybackThread::threadLoop_exit();
5089}
5090
5091// must be called with thread mutex locked
5092bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5093{
5094    bool trackPaused = false;
5095    bool trackStopped = false;
5096
5097    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5098        return !mStandby;
5099    }
5100
5101    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5102    // after a timeout and we will enter standby then.
5103    if (mTracks.size() > 0) {
5104        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5105        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5106                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5107    }
5108
5109    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5110}
5111
5112// getTrackName_l() must be called with ThreadBase::mLock held
5113int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5114        audio_format_t format __unused, audio_session_t sessionId __unused, uid_t uid)
5115{
5116    if (trackCountForUid_l(uid) > (PlaybackThread::kMaxTracksPerUid - 1)) {
5117        return -1;
5118    }
5119    return 0;
5120}
5121
5122// deleteTrackName_l() must be called with ThreadBase::mLock held
5123void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5124{
5125}
5126
5127// checkForNewParameter_l() must be called with ThreadBase::mLock held
5128bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5129                                                              status_t& status)
5130{
5131    bool reconfig = false;
5132    bool a2dpDeviceChanged = false;
5133
5134    status = NO_ERROR;
5135
5136    AudioParameter param = AudioParameter(keyValuePair);
5137    int value;
5138    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5139        // forward device change to effects that have requested to be
5140        // aware of attached audio device.
5141        if (value != AUDIO_DEVICE_NONE) {
5142            a2dpDeviceChanged =
5143                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5144            mOutDevice = value;
5145            for (size_t i = 0; i < mEffectChains.size(); i++) {
5146                mEffectChains[i]->setDevice_l(mOutDevice);
5147            }
5148        }
5149    }
5150    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5151        // do not accept frame count changes if tracks are open as the track buffer
5152        // size depends on frame count and correct behavior would not be garantied
5153        // if frame count is changed after track creation
5154        if (!mTracks.isEmpty()) {
5155            status = INVALID_OPERATION;
5156        } else {
5157            reconfig = true;
5158        }
5159    }
5160    if (status == NO_ERROR) {
5161        status = mOutput->stream->setParameters(keyValuePair);
5162        if (!mStandby && status == INVALID_OPERATION) {
5163            mOutput->standby();
5164            mStandby = true;
5165            mBytesWritten = 0;
5166            status = mOutput->stream->setParameters(keyValuePair);
5167        }
5168        if (status == NO_ERROR && reconfig) {
5169            readOutputParameters_l();
5170            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5171        }
5172    }
5173
5174    return reconfig || a2dpDeviceChanged;
5175}
5176
5177uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5178{
5179    uint32_t time;
5180    if (audio_has_proportional_frames(mFormat)) {
5181        time = PlaybackThread::activeSleepTimeUs();
5182    } else {
5183        time = kDirectMinSleepTimeUs;
5184    }
5185    return time;
5186}
5187
5188uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5189{
5190    uint32_t time;
5191    if (audio_has_proportional_frames(mFormat)) {
5192        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5193    } else {
5194        time = kDirectMinSleepTimeUs;
5195    }
5196    return time;
5197}
5198
5199uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5200{
5201    uint32_t time;
5202    if (audio_has_proportional_frames(mFormat)) {
5203        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5204    } else {
5205        time = kDirectMinSleepTimeUs;
5206    }
5207    return time;
5208}
5209
5210void AudioFlinger::DirectOutputThread::cacheParameters_l()
5211{
5212    PlaybackThread::cacheParameters_l();
5213
5214    // use shorter standby delay as on normal output to release
5215    // hardware resources as soon as possible
5216    // no delay on outputs with HW A/V sync
5217    if (usesHwAvSync()) {
5218        mStandbyDelayNs = 0;
5219    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5220        mStandbyDelayNs = kOffloadStandbyDelayNs;
5221    } else {
5222        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5223    }
5224}
5225
5226void AudioFlinger::DirectOutputThread::flushHw_l()
5227{
5228    mOutput->flush();
5229    mHwPaused = false;
5230    mFlushPending = false;
5231}
5232
5233// ----------------------------------------------------------------------------
5234
5235AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5236        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5237    :   Thread(false /*canCallJava*/),
5238        mPlaybackThread(playbackThread),
5239        mWriteAckSequence(0),
5240        mDrainSequence(0),
5241        mAsyncError(false)
5242{
5243}
5244
5245AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5246{
5247}
5248
5249void AudioFlinger::AsyncCallbackThread::onFirstRef()
5250{
5251    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5252}
5253
5254bool AudioFlinger::AsyncCallbackThread::threadLoop()
5255{
5256    while (!exitPending()) {
5257        uint32_t writeAckSequence;
5258        uint32_t drainSequence;
5259        bool asyncError;
5260
5261        {
5262            Mutex::Autolock _l(mLock);
5263            while (!((mWriteAckSequence & 1) ||
5264                     (mDrainSequence & 1) ||
5265                     mAsyncError ||
5266                     exitPending())) {
5267                mWaitWorkCV.wait(mLock);
5268            }
5269
5270            if (exitPending()) {
5271                break;
5272            }
5273            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5274                  mWriteAckSequence, mDrainSequence);
5275            writeAckSequence = mWriteAckSequence;
5276            mWriteAckSequence &= ~1;
5277            drainSequence = mDrainSequence;
5278            mDrainSequence &= ~1;
5279            asyncError = mAsyncError;
5280            mAsyncError = false;
5281        }
5282        {
5283            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5284            if (playbackThread != 0) {
5285                if (writeAckSequence & 1) {
5286                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5287                }
5288                if (drainSequence & 1) {
5289                    playbackThread->resetDraining(drainSequence >> 1);
5290                }
5291                if (asyncError) {
5292                    playbackThread->onAsyncError();
5293                }
5294            }
5295        }
5296    }
5297    return false;
5298}
5299
5300void AudioFlinger::AsyncCallbackThread::exit()
5301{
5302    ALOGV("AsyncCallbackThread::exit");
5303    Mutex::Autolock _l(mLock);
5304    requestExit();
5305    mWaitWorkCV.broadcast();
5306}
5307
5308void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5309{
5310    Mutex::Autolock _l(mLock);
5311    // bit 0 is cleared
5312    mWriteAckSequence = sequence << 1;
5313}
5314
5315void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5316{
5317    Mutex::Autolock _l(mLock);
5318    // ignore unexpected callbacks
5319    if (mWriteAckSequence & 2) {
5320        mWriteAckSequence |= 1;
5321        mWaitWorkCV.signal();
5322    }
5323}
5324
5325void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5326{
5327    Mutex::Autolock _l(mLock);
5328    // bit 0 is cleared
5329    mDrainSequence = sequence << 1;
5330}
5331
5332void AudioFlinger::AsyncCallbackThread::resetDraining()
5333{
5334    Mutex::Autolock _l(mLock);
5335    // ignore unexpected callbacks
5336    if (mDrainSequence & 2) {
5337        mDrainSequence |= 1;
5338        mWaitWorkCV.signal();
5339    }
5340}
5341
5342void AudioFlinger::AsyncCallbackThread::setAsyncError()
5343{
5344    Mutex::Autolock _l(mLock);
5345    mAsyncError = true;
5346    mWaitWorkCV.signal();
5347}
5348
5349
5350// ----------------------------------------------------------------------------
5351AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5352        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5353    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5354        mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
5355        mOffloadUnderrunPosition(~0LL)
5356{
5357    //FIXME: mStandby should be set to true by ThreadBase constructor
5358    mStandby = true;
5359    mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5360}
5361
5362void AudioFlinger::OffloadThread::threadLoop_exit()
5363{
5364    if (mFlushPending || mHwPaused) {
5365        // If a flush is pending or track was paused, just discard buffered data
5366        flushHw_l();
5367    } else {
5368        mMixerStatus = MIXER_DRAIN_ALL;
5369        threadLoop_drain();
5370    }
5371    if (mUseAsyncWrite) {
5372        ALOG_ASSERT(mCallbackThread != 0);
5373        mCallbackThread->exit();
5374    }
5375    PlaybackThread::threadLoop_exit();
5376}
5377
5378AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5379    Vector< sp<Track> > *tracksToRemove
5380)
5381{
5382    size_t count = mActiveTracks.size();
5383
5384    mixer_state mixerStatus = MIXER_IDLE;
5385    bool doHwPause = false;
5386    bool doHwResume = false;
5387
5388    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5389
5390    // find out which tracks need to be processed
5391    for (const sp<Track> &t : mActiveTracks) {
5392        Track* const track = t.get();
5393#ifdef VERY_VERY_VERBOSE_LOGGING
5394        audio_track_cblk_t* cblk = track->cblk();
5395#endif
5396        // Only consider last track started for volume and mixer state control.
5397        // In theory an older track could underrun and restart after the new one starts
5398        // but as we only care about the transition phase between two tracks on a
5399        // direct output, it is not a problem to ignore the underrun case.
5400        sp<Track> l = mActiveTracks.getLatest();
5401        bool last = l.get() == track;
5402
5403        if (track->isInvalid()) {
5404            ALOGW("An invalidated track shouldn't be in active list");
5405            tracksToRemove->add(track);
5406            continue;
5407        }
5408
5409        if (track->mState == TrackBase::IDLE) {
5410            ALOGW("An idle track shouldn't be in active list");
5411            continue;
5412        }
5413
5414        if (track->isPausing()) {
5415            track->setPaused();
5416            if (last) {
5417                if (mHwSupportsPause && !mHwPaused) {
5418                    doHwPause = true;
5419                    mHwPaused = true;
5420                }
5421                // If we were part way through writing the mixbuffer to
5422                // the HAL we must save this until we resume
5423                // BUG - this will be wrong if a different track is made active,
5424                // in that case we want to discard the pending data in the
5425                // mixbuffer and tell the client to present it again when the
5426                // track is resumed
5427                mPausedWriteLength = mCurrentWriteLength;
5428                mPausedBytesRemaining = mBytesRemaining;
5429                mBytesRemaining = 0;    // stop writing
5430            }
5431            tracksToRemove->add(track);
5432        } else if (track->isFlushPending()) {
5433            if (track->isStopping_1()) {
5434                track->mRetryCount = kMaxTrackStopRetriesOffload;
5435            } else {
5436                track->mRetryCount = kMaxTrackRetriesOffload;
5437            }
5438            track->flushAck();
5439            if (last) {
5440                mFlushPending = true;
5441            }
5442        } else if (track->isResumePending()){
5443            track->resumeAck();
5444            if (last) {
5445                if (mPausedBytesRemaining) {
5446                    // Need to continue write that was interrupted
5447                    mCurrentWriteLength = mPausedWriteLength;
5448                    mBytesRemaining = mPausedBytesRemaining;
5449                    mPausedBytesRemaining = 0;
5450                }
5451                if (mHwPaused) {
5452                    doHwResume = true;
5453                    mHwPaused = false;
5454                    // threadLoop_mix() will handle the case that we need to
5455                    // resume an interrupted write
5456                }
5457                // enable write to audio HAL
5458                mSleepTimeUs = 0;
5459
5460                mLeftVolFloat = mRightVolFloat = -1.0;
5461
5462                // Do not handle new data in this iteration even if track->framesReady()
5463                mixerStatus = MIXER_TRACKS_ENABLED;
5464            }
5465        }  else if (track->framesReady() && track->isReady() &&
5466                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5467            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5468            if (track->mFillingUpStatus == Track::FS_FILLED) {
5469                track->mFillingUpStatus = Track::FS_ACTIVE;
5470                if (last) {
5471                    // make sure processVolume_l() will apply new volume even if 0
5472                    mLeftVolFloat = mRightVolFloat = -1.0;
5473                }
5474            }
5475
5476            if (last) {
5477                sp<Track> previousTrack = mPreviousTrack.promote();
5478                if (previousTrack != 0) {
5479                    if (track != previousTrack.get()) {
5480                        // Flush any data still being written from last track
5481                        mBytesRemaining = 0;
5482                        if (mPausedBytesRemaining) {
5483                            // Last track was paused so we also need to flush saved
5484                            // mixbuffer state and invalidate track so that it will
5485                            // re-submit that unwritten data when it is next resumed
5486                            mPausedBytesRemaining = 0;
5487                            // Invalidate is a bit drastic - would be more efficient
5488                            // to have a flag to tell client that some of the
5489                            // previously written data was lost
5490                            previousTrack->invalidate();
5491                        }
5492                        // flush data already sent to the DSP if changing audio session as audio
5493                        // comes from a different source. Also invalidate previous track to force a
5494                        // seek when resuming.
5495                        if (previousTrack->sessionId() != track->sessionId()) {
5496                            previousTrack->invalidate();
5497                        }
5498                    }
5499                }
5500                mPreviousTrack = track;
5501                // reset retry count
5502                if (track->isStopping_1()) {
5503                    track->mRetryCount = kMaxTrackStopRetriesOffload;
5504                } else {
5505                    track->mRetryCount = kMaxTrackRetriesOffload;
5506                }
5507                mActiveTrack = t;
5508                mixerStatus = MIXER_TRACKS_READY;
5509            }
5510        } else {
5511            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5512            if (track->isStopping_1()) {
5513                if (--(track->mRetryCount) <= 0) {
5514                    // Hardware buffer can hold a large amount of audio so we must
5515                    // wait for all current track's data to drain before we say
5516                    // that the track is stopped.
5517                    if (mBytesRemaining == 0) {
5518                        // Only start draining when all data in mixbuffer
5519                        // has been written
5520                        ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5521                        track->mState = TrackBase::STOPPING_2; // so presentation completes after
5522                        // drain do not drain if no data was ever sent to HAL (mStandby == true)
5523                        if (last && !mStandby) {
5524                            // do not modify drain sequence if we are already draining. This happens
5525                            // when resuming from pause after drain.
5526                            if ((mDrainSequence & 1) == 0) {
5527                                mSleepTimeUs = 0;
5528                                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5529                                mixerStatus = MIXER_DRAIN_TRACK;
5530                                mDrainSequence += 2;
5531                            }
5532                            if (mHwPaused) {
5533                                // It is possible to move from PAUSED to STOPPING_1 without
5534                                // a resume so we must ensure hardware is running
5535                                doHwResume = true;
5536                                mHwPaused = false;
5537                            }
5538                        }
5539                    }
5540                } else if (last) {
5541                    ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5542                    mixerStatus = MIXER_TRACKS_ENABLED;
5543                }
5544            } else if (track->isStopping_2()) {
5545                // Drain has completed or we are in standby, signal presentation complete
5546                if (!(mDrainSequence & 1) || !last || mStandby) {
5547                    track->mState = TrackBase::STOPPED;
5548                    uint32_t latency = 0;
5549                    status_t result = mOutput->stream->getLatency(&latency);
5550                    ALOGE_IF(result != OK,
5551                            "Error when retrieving output stream latency: %d", result);
5552                    size_t audioHALFrames = (latency * mSampleRate) / 1000;
5553                    int64_t framesWritten =
5554                            mBytesWritten / mOutput->getFrameSize();
5555                    track->presentationComplete(framesWritten, audioHALFrames);
5556                    track->reset();
5557                    tracksToRemove->add(track);
5558                }
5559            } else {
5560                // No buffers for this track. Give it a few chances to
5561                // fill a buffer, then remove it from active list.
5562                if (--(track->mRetryCount) <= 0) {
5563                    bool running = false;
5564                    uint64_t position = 0;
5565                    struct timespec unused;
5566                    // The running check restarts the retry counter at least once.
5567                    status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
5568                    if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
5569                        running = true;
5570                        mOffloadUnderrunPosition = position;
5571                    }
5572                    if (ret == NO_ERROR) {
5573                        ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
5574                                (long long)position, (long long)mOffloadUnderrunPosition);
5575                    }
5576                    if (running) { // still running, give us more time.
5577                        track->mRetryCount = kMaxTrackRetriesOffload;
5578                    } else {
5579                        ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5580                                track->name());
5581                        tracksToRemove->add(track);
5582                        // indicate to client process that the track was disabled because of underrun;
5583                        // it will then automatically call start() when data is available
5584                        track->disable();
5585                    }
5586                } else if (last){
5587                    mixerStatus = MIXER_TRACKS_ENABLED;
5588                }
5589            }
5590        }
5591        // compute volume for this track
5592        processVolume_l(track, last);
5593    }
5594
5595    // make sure the pause/flush/resume sequence is executed in the right order.
5596    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5597    // before flush and then resume HW. This can happen in case of pause/flush/resume
5598    // if resume is received before pause is executed.
5599    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5600        status_t result = mOutput->stream->pause();
5601        ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5602    }
5603    if (mFlushPending) {
5604        flushHw_l();
5605    }
5606    if (!mStandby && doHwResume) {
5607        status_t result = mOutput->stream->resume();
5608        ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5609    }
5610
5611    // remove all the tracks that need to be...
5612    removeTracks_l(*tracksToRemove);
5613
5614    return mixerStatus;
5615}
5616
5617// must be called with thread mutex locked
5618bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5619{
5620    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5621          mWriteAckSequence, mDrainSequence);
5622    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5623        return true;
5624    }
5625    return false;
5626}
5627
5628bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5629{
5630    Mutex::Autolock _l(mLock);
5631    return waitingAsyncCallback_l();
5632}
5633
5634void AudioFlinger::OffloadThread::flushHw_l()
5635{
5636    DirectOutputThread::flushHw_l();
5637    // Flush anything still waiting in the mixbuffer
5638    mCurrentWriteLength = 0;
5639    mBytesRemaining = 0;
5640    mPausedWriteLength = 0;
5641    mPausedBytesRemaining = 0;
5642    // reset bytes written count to reflect that DSP buffers are empty after flush.
5643    mBytesWritten = 0;
5644    mOffloadUnderrunPosition = ~0LL;
5645
5646    if (mUseAsyncWrite) {
5647        // discard any pending drain or write ack by incrementing sequence
5648        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5649        mDrainSequence = (mDrainSequence + 2) & ~1;
5650        ALOG_ASSERT(mCallbackThread != 0);
5651        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5652        mCallbackThread->setDraining(mDrainSequence);
5653    }
5654}
5655
5656void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5657{
5658    Mutex::Autolock _l(mLock);
5659    if (PlaybackThread::invalidateTracks_l(streamType)) {
5660        mFlushPending = true;
5661    }
5662}
5663
5664// ----------------------------------------------------------------------------
5665
5666AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5667        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5668    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5669                    systemReady, DUPLICATING),
5670        mWaitTimeMs(UINT_MAX)
5671{
5672    addOutputTrack(mainThread);
5673}
5674
5675AudioFlinger::DuplicatingThread::~DuplicatingThread()
5676{
5677    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5678        mOutputTracks[i]->destroy();
5679    }
5680}
5681
5682void AudioFlinger::DuplicatingThread::threadLoop_mix()
5683{
5684    // mix buffers...
5685    if (outputsReady(outputTracks)) {
5686        mAudioMixer->process();
5687    } else {
5688        if (mMixerBufferValid) {
5689            memset(mMixerBuffer, 0, mMixerBufferSize);
5690        } else {
5691            memset(mSinkBuffer, 0, mSinkBufferSize);
5692        }
5693    }
5694    mSleepTimeUs = 0;
5695    writeFrames = mNormalFrameCount;
5696    mCurrentWriteLength = mSinkBufferSize;
5697    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5698}
5699
5700void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5701{
5702    if (mSleepTimeUs == 0) {
5703        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5704            mSleepTimeUs = mActiveSleepTimeUs;
5705        } else {
5706            mSleepTimeUs = mIdleSleepTimeUs;
5707        }
5708    } else if (mBytesWritten != 0) {
5709        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5710            writeFrames = mNormalFrameCount;
5711            memset(mSinkBuffer, 0, mSinkBufferSize);
5712        } else {
5713            // flush remaining overflow buffers in output tracks
5714            writeFrames = 0;
5715        }
5716        mSleepTimeUs = 0;
5717    }
5718}
5719
5720ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5721{
5722    for (size_t i = 0; i < outputTracks.size(); i++) {
5723        outputTracks[i]->write(mSinkBuffer, writeFrames);
5724    }
5725    mStandby = false;
5726    return (ssize_t)mSinkBufferSize;
5727}
5728
5729void AudioFlinger::DuplicatingThread::threadLoop_standby()
5730{
5731    // DuplicatingThread implements standby by stopping all tracks
5732    for (size_t i = 0; i < outputTracks.size(); i++) {
5733        outputTracks[i]->stop();
5734    }
5735}
5736
5737void AudioFlinger::DuplicatingThread::saveOutputTracks()
5738{
5739    outputTracks = mOutputTracks;
5740}
5741
5742void AudioFlinger::DuplicatingThread::clearOutputTracks()
5743{
5744    outputTracks.clear();
5745}
5746
5747void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5748{
5749    Mutex::Autolock _l(mLock);
5750    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5751    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5752    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5753    const size_t frameCount =
5754            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5755    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5756    // from different OutputTracks and their associated MixerThreads (e.g. one may
5757    // nearly empty and the other may be dropping data).
5758
5759    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5760                                            this,
5761                                            mSampleRate,
5762                                            mFormat,
5763                                            mChannelMask,
5764                                            frameCount,
5765                                            IPCThreadState::self()->getCallingUid());
5766    status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
5767    if (status != NO_ERROR) {
5768        ALOGE("addOutputTrack() initCheck failed %d", status);
5769        return;
5770    }
5771    thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5772    mOutputTracks.add(outputTrack);
5773    ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5774    updateWaitTime_l();
5775}
5776
5777void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5778{
5779    Mutex::Autolock _l(mLock);
5780    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5781        if (mOutputTracks[i]->thread() == thread) {
5782            mOutputTracks[i]->destroy();
5783            mOutputTracks.removeAt(i);
5784            updateWaitTime_l();
5785            if (thread->getOutput() == mOutput) {
5786                mOutput = NULL;
5787            }
5788            return;
5789        }
5790    }
5791    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5792}
5793
5794// caller must hold mLock
5795void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5796{
5797    mWaitTimeMs = UINT_MAX;
5798    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5799        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5800        if (strong != 0) {
5801            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5802            if (waitTimeMs < mWaitTimeMs) {
5803                mWaitTimeMs = waitTimeMs;
5804            }
5805        }
5806    }
5807}
5808
5809
5810bool AudioFlinger::DuplicatingThread::outputsReady(
5811        const SortedVector< sp<OutputTrack> > &outputTracks)
5812{
5813    for (size_t i = 0; i < outputTracks.size(); i++) {
5814        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5815        if (thread == 0) {
5816            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5817                    outputTracks[i].get());
5818            return false;
5819        }
5820        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5821        // see note at standby() declaration
5822        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5823            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5824                    thread.get());
5825            return false;
5826        }
5827    }
5828    return true;
5829}
5830
5831uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5832{
5833    return (mWaitTimeMs * 1000) / 2;
5834}
5835
5836void AudioFlinger::DuplicatingThread::cacheParameters_l()
5837{
5838    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5839    updateWaitTime_l();
5840
5841    MixerThread::cacheParameters_l();
5842}
5843
5844// ----------------------------------------------------------------------------
5845//      Record
5846// ----------------------------------------------------------------------------
5847
5848AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5849                                         AudioStreamIn *input,
5850                                         audio_io_handle_t id,
5851                                         audio_devices_t outDevice,
5852                                         audio_devices_t inDevice,
5853                                         bool systemReady
5854#ifdef TEE_SINK
5855                                         , const sp<NBAIO_Sink>& teeSink
5856#endif
5857                                         ) :
5858    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5859    mInput(input), mRsmpInBuffer(NULL),
5860    // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
5861    mRsmpInRear(0)
5862#ifdef TEE_SINK
5863    , mTeeSink(teeSink)
5864#endif
5865    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5866            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5867    // mFastCapture below
5868    , mFastCaptureFutex(0)
5869    // mInputSource
5870    // mPipeSink
5871    // mPipeSource
5872    , mPipeFramesP2(0)
5873    // mPipeMemory
5874    // mFastCaptureNBLogWriter
5875    , mFastTrackAvail(false)
5876{
5877    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5878    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5879
5880    readInputParameters_l();
5881
5882    // create an NBAIO source for the HAL input stream, and negotiate
5883    mInputSource = new AudioStreamInSource(input->stream);
5884    size_t numCounterOffers = 0;
5885    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5886#if !LOG_NDEBUG
5887    ssize_t index =
5888#else
5889    (void)
5890#endif
5891            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5892    ALOG_ASSERT(index == 0);
5893
5894    // initialize fast capture depending on configuration
5895    bool initFastCapture;
5896    switch (kUseFastCapture) {
5897    case FastCapture_Never:
5898        initFastCapture = false;
5899        break;
5900    case FastCapture_Always:
5901        initFastCapture = true;
5902        break;
5903    case FastCapture_Static:
5904        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5905        break;
5906    // case FastCapture_Dynamic:
5907    }
5908
5909    if (initFastCapture) {
5910        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5911        NBAIO_Format format = mInputSource->format();
5912        // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
5913        size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
5914        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5915        void *pipeBuffer;
5916        const sp<MemoryDealer> roHeap(readOnlyHeap());
5917        sp<IMemory> pipeMemory;
5918        if ((roHeap == 0) ||
5919                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5920                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5921            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5922            goto failed;
5923        }
5924        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5925        memset(pipeBuffer, 0, pipeSize);
5926        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5927        const NBAIO_Format offers[1] = {format};
5928        size_t numCounterOffers = 0;
5929        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5930        ALOG_ASSERT(index == 0);
5931        mPipeSink = pipe;
5932        PipeReader *pipeReader = new PipeReader(*pipe);
5933        numCounterOffers = 0;
5934        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5935        ALOG_ASSERT(index == 0);
5936        mPipeSource = pipeReader;
5937        mPipeFramesP2 = pipeFramesP2;
5938        mPipeMemory = pipeMemory;
5939
5940        // create fast capture
5941        mFastCapture = new FastCapture();
5942        FastCaptureStateQueue *sq = mFastCapture->sq();
5943#ifdef STATE_QUEUE_DUMP
5944        // FIXME
5945#endif
5946        FastCaptureState *state = sq->begin();
5947        state->mCblk = NULL;
5948        state->mInputSource = mInputSource.get();
5949        state->mInputSourceGen++;
5950        state->mPipeSink = pipe;
5951        state->mPipeSinkGen++;
5952        state->mFrameCount = mFrameCount;
5953        state->mCommand = FastCaptureState::COLD_IDLE;
5954        // already done in constructor initialization list
5955        //mFastCaptureFutex = 0;
5956        state->mColdFutexAddr = &mFastCaptureFutex;
5957        state->mColdGen++;
5958        state->mDumpState = &mFastCaptureDumpState;
5959#ifdef TEE_SINK
5960        // FIXME
5961#endif
5962        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5963        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5964        sq->end();
5965        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5966
5967        // start the fast capture
5968        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5969        pid_t tid = mFastCapture->getTid();
5970        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5971#ifdef AUDIO_WATCHDOG
5972        // FIXME
5973#endif
5974
5975        mFastTrackAvail = true;
5976    }
5977failed: ;
5978
5979    // FIXME mNormalSource
5980}
5981
5982AudioFlinger::RecordThread::~RecordThread()
5983{
5984    if (mFastCapture != 0) {
5985        FastCaptureStateQueue *sq = mFastCapture->sq();
5986        FastCaptureState *state = sq->begin();
5987        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5988            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5989            if (old == -1) {
5990                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5991            }
5992        }
5993        state->mCommand = FastCaptureState::EXIT;
5994        sq->end();
5995        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5996        mFastCapture->join();
5997        mFastCapture.clear();
5998    }
5999    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6000    mAudioFlinger->unregisterWriter(mNBLogWriter);
6001    free(mRsmpInBuffer);
6002}
6003
6004void AudioFlinger::RecordThread::onFirstRef()
6005{
6006    run(mThreadName, PRIORITY_URGENT_AUDIO);
6007}
6008
6009bool AudioFlinger::RecordThread::threadLoop()
6010{
6011    nsecs_t lastWarning = 0;
6012
6013    inputStandBy();
6014
6015reacquire_wakelock:
6016    sp<RecordTrack> activeTrack;
6017    {
6018        Mutex::Autolock _l(mLock);
6019        acquireWakeLock_l();
6020    }
6021
6022    // used to request a deferred sleep, to be executed later while mutex is unlocked
6023    uint32_t sleepUs = 0;
6024
6025    // loop while there is work to do
6026    for (;;) {
6027        Vector< sp<EffectChain> > effectChains;
6028
6029        // activeTracks accumulates a copy of a subset of mActiveTracks
6030        Vector< sp<RecordTrack> > activeTracks;
6031
6032        // reference to the (first and only) active fast track
6033        sp<RecordTrack> fastTrack;
6034
6035        // reference to a fast track which is about to be removed
6036        sp<RecordTrack> fastTrackToRemove;
6037
6038        { // scope for mLock
6039            Mutex::Autolock _l(mLock);
6040
6041            processConfigEvents_l();
6042
6043            // check exitPending here because checkForNewParameters_l() and
6044            // checkForNewParameters_l() can temporarily release mLock
6045            if (exitPending()) {
6046                break;
6047            }
6048
6049            // sleep with mutex unlocked
6050            if (sleepUs > 0) {
6051                ATRACE_BEGIN("sleepC");
6052                mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6053                ATRACE_END();
6054                sleepUs = 0;
6055                continue;
6056            }
6057
6058            // if no active track(s), then standby and release wakelock
6059            size_t size = mActiveTracks.size();
6060            if (size == 0) {
6061                standbyIfNotAlreadyInStandby();
6062                // exitPending() can't become true here
6063                releaseWakeLock_l();
6064                ALOGV("RecordThread: loop stopping");
6065                // go to sleep
6066                mWaitWorkCV.wait(mLock);
6067                ALOGV("RecordThread: loop starting");
6068                goto reacquire_wakelock;
6069            }
6070
6071            bool doBroadcast = false;
6072            bool allStopped = true;
6073            for (size_t i = 0; i < size; ) {
6074
6075                activeTrack = mActiveTracks[i];
6076                if (activeTrack->isTerminated()) {
6077                    if (activeTrack->isFastTrack()) {
6078                        ALOG_ASSERT(fastTrackToRemove == 0);
6079                        fastTrackToRemove = activeTrack;
6080                    }
6081                    removeTrack_l(activeTrack);
6082                    mActiveTracks.remove(activeTrack);
6083                    size--;
6084                    continue;
6085                }
6086
6087                TrackBase::track_state activeTrackState = activeTrack->mState;
6088                switch (activeTrackState) {
6089
6090                case TrackBase::PAUSING:
6091                    mActiveTracks.remove(activeTrack);
6092                    doBroadcast = true;
6093                    size--;
6094                    continue;
6095
6096                case TrackBase::STARTING_1:
6097                    sleepUs = 10000;
6098                    i++;
6099                    allStopped = false;
6100                    continue;
6101
6102                case TrackBase::STARTING_2:
6103                    doBroadcast = true;
6104                    mStandby = false;
6105                    activeTrack->mState = TrackBase::ACTIVE;
6106                    allStopped = false;
6107                    break;
6108
6109                case TrackBase::ACTIVE:
6110                    allStopped = false;
6111                    break;
6112
6113                case TrackBase::IDLE:
6114                    i++;
6115                    continue;
6116
6117                default:
6118                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6119                }
6120
6121                activeTracks.add(activeTrack);
6122                i++;
6123
6124                if (activeTrack->isFastTrack()) {
6125                    ALOG_ASSERT(!mFastTrackAvail);
6126                    ALOG_ASSERT(fastTrack == 0);
6127                    fastTrack = activeTrack;
6128                }
6129            }
6130
6131            mActiveTracks.updateWakeLockUids(this);
6132
6133            if (allStopped) {
6134                standbyIfNotAlreadyInStandby();
6135            }
6136            if (doBroadcast) {
6137                mStartStopCond.broadcast();
6138            }
6139
6140            // sleep if there are no active tracks to process
6141            if (activeTracks.size() == 0) {
6142                if (sleepUs == 0) {
6143                    sleepUs = kRecordThreadSleepUs;
6144                }
6145                continue;
6146            }
6147            sleepUs = 0;
6148
6149            lockEffectChains_l(effectChains);
6150        }
6151
6152        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6153
6154        size_t size = effectChains.size();
6155        for (size_t i = 0; i < size; i++) {
6156            // thread mutex is not locked, but effect chain is locked
6157            effectChains[i]->process_l();
6158        }
6159
6160        // Push a new fast capture state if fast capture is not already running, or cblk change
6161        if (mFastCapture != 0) {
6162            FastCaptureStateQueue *sq = mFastCapture->sq();
6163            FastCaptureState *state = sq->begin();
6164            bool didModify = false;
6165            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6166            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6167                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6168                if (state->mCommand == FastCaptureState::COLD_IDLE) {
6169                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
6170                    if (old == -1) {
6171                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6172                    }
6173                }
6174                state->mCommand = FastCaptureState::READ_WRITE;
6175#if 0   // FIXME
6176                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6177                        FastThreadDumpState::kSamplingNforLowRamDevice :
6178                        FastThreadDumpState::kSamplingN);
6179#endif
6180                didModify = true;
6181            }
6182            audio_track_cblk_t *cblkOld = state->mCblk;
6183            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6184            if (cblkNew != cblkOld) {
6185                state->mCblk = cblkNew;
6186                // block until acked if removing a fast track
6187                if (cblkOld != NULL) {
6188                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6189                }
6190                didModify = true;
6191            }
6192            sq->end(didModify);
6193            if (didModify) {
6194                sq->push(block);
6195#if 0
6196                if (kUseFastCapture == FastCapture_Dynamic) {
6197                    mNormalSource = mPipeSource;
6198                }
6199#endif
6200            }
6201        }
6202
6203        // now run the fast track destructor with thread mutex unlocked
6204        fastTrackToRemove.clear();
6205
6206        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6207        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6208        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6209        // If destination is non-contiguous, first read past the nominal end of buffer, then
6210        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6211
6212        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6213        ssize_t framesRead;
6214
6215        // If an NBAIO source is present, use it to read the normal capture's data
6216        if (mPipeSource != 0) {
6217            size_t framesToRead = mBufferSize / mFrameSize;
6218            framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
6219            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6220                    framesToRead);
6221            // since pipe is non-blocking, simulate blocking input by waiting for 1/2 of
6222            // buffer size or at least for 20ms.
6223            size_t sleepFrames = max(
6224                    min(mPipeFramesP2, mRsmpInFramesP2) / 2, FMS_20 * mSampleRate / 1000);
6225            if (framesRead <= (ssize_t) sleepFrames) {
6226                sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
6227            }
6228            if (framesRead < 0) {
6229                status_t status = (status_t) framesRead;
6230                switch (status) {
6231                case OVERRUN:
6232                    ALOGW("overrun on read from pipe");
6233                    framesRead = 0;
6234                    break;
6235                case NEGOTIATE:
6236                    ALOGE("re-negotiation is needed");
6237                    framesRead = -1;  // Will cause an attempt to recover.
6238                    break;
6239                default:
6240                    ALOGE("unknown error %d on read from pipe", status);
6241                    break;
6242                }
6243            }
6244        // otherwise use the HAL / AudioStreamIn directly
6245        } else {
6246            ATRACE_BEGIN("read");
6247            size_t bytesRead;
6248            status_t result = mInput->stream->read(
6249                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
6250            ATRACE_END();
6251            if (result < 0) {
6252                framesRead = result;
6253            } else {
6254                framesRead = bytesRead / mFrameSize;
6255            }
6256        }
6257
6258        // Update server timestamp with server stats
6259        // systemTime() is optional if the hardware supports timestamps.
6260        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6261        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6262
6263        // Update server timestamp with kernel stats
6264        if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
6265            int64_t position, time;
6266            int ret = mInput->stream->getCapturePosition(&position, &time);
6267            if (ret == NO_ERROR) {
6268                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6269                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6270                // Note: In general record buffers should tend to be empty in
6271                // a properly running pipeline.
6272                //
6273                // Also, it is not advantageous to call get_presentation_position during the read
6274                // as the read obtains a lock, preventing the timestamp call from executing.
6275            }
6276        }
6277        // Use this to track timestamp information
6278        // ALOGD("%s", mTimestamp.toString().c_str());
6279
6280        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6281            ALOGE("read failed: framesRead=%zd", framesRead);
6282            // Force input into standby so that it tries to recover at next read attempt
6283            inputStandBy();
6284            sleepUs = kRecordThreadSleepUs;
6285        }
6286        if (framesRead <= 0) {
6287            goto unlock;
6288        }
6289        ALOG_ASSERT(framesRead > 0);
6290
6291        if (mTeeSink != 0) {
6292            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6293        }
6294        // If destination is non-contiguous, we now correct for reading past end of buffer.
6295        {
6296            size_t part1 = mRsmpInFramesP2 - rear;
6297            if ((size_t) framesRead > part1) {
6298                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6299                        (framesRead - part1) * mFrameSize);
6300            }
6301        }
6302        rear = mRsmpInRear += framesRead;
6303
6304        size = activeTracks.size();
6305        // loop over each active track
6306        for (size_t i = 0; i < size; i++) {
6307            activeTrack = activeTracks[i];
6308
6309            // skip fast tracks, as those are handled directly by FastCapture
6310            if (activeTrack->isFastTrack()) {
6311                continue;
6312            }
6313
6314            // TODO: This code probably should be moved to RecordTrack.
6315            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6316
6317            enum {
6318                OVERRUN_UNKNOWN,
6319                OVERRUN_TRUE,
6320                OVERRUN_FALSE
6321            } overrun = OVERRUN_UNKNOWN;
6322
6323            // loop over getNextBuffer to handle circular sink
6324            for (;;) {
6325
6326                activeTrack->mSink.frameCount = ~0;
6327                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6328                size_t framesOut = activeTrack->mSink.frameCount;
6329                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6330
6331                // check available frames and handle overrun conditions
6332                // if the record track isn't draining fast enough.
6333                bool hasOverrun;
6334                size_t framesIn;
6335                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6336                if (hasOverrun) {
6337                    overrun = OVERRUN_TRUE;
6338                }
6339                if (framesOut == 0 || framesIn == 0) {
6340                    break;
6341                }
6342
6343                // Don't allow framesOut to be larger than what is possible with resampling
6344                // from framesIn.
6345                // This isn't strictly necessary but helps limit buffer resizing in
6346                // RecordBufferConverter.  TODO: remove when no longer needed.
6347                framesOut = min(framesOut,
6348                        destinationFramesPossible(
6349                                framesIn, mSampleRate, activeTrack->mSampleRate));
6350                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6351                framesOut = activeTrack->mRecordBufferConverter->convert(
6352                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6353
6354                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6355                    overrun = OVERRUN_FALSE;
6356                }
6357
6358                if (activeTrack->mFramesToDrop == 0) {
6359                    if (framesOut > 0) {
6360                        activeTrack->mSink.frameCount = framesOut;
6361                        activeTrack->releaseBuffer(&activeTrack->mSink);
6362                    }
6363                } else {
6364                    // FIXME could do a partial drop of framesOut
6365                    if (activeTrack->mFramesToDrop > 0) {
6366                        activeTrack->mFramesToDrop -= framesOut;
6367                        if (activeTrack->mFramesToDrop <= 0) {
6368                            activeTrack->clearSyncStartEvent();
6369                        }
6370                    } else {
6371                        activeTrack->mFramesToDrop += framesOut;
6372                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6373                                activeTrack->mSyncStartEvent->isCancelled()) {
6374                            ALOGW("Synced record %s, session %d, trigger session %d",
6375                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6376                                  activeTrack->sessionId(),
6377                                  (activeTrack->mSyncStartEvent != 0) ?
6378                                          activeTrack->mSyncStartEvent->triggerSession() :
6379                                          AUDIO_SESSION_NONE);
6380                            activeTrack->clearSyncStartEvent();
6381                        }
6382                    }
6383                }
6384
6385                if (framesOut == 0) {
6386                    break;
6387                }
6388            }
6389
6390            switch (overrun) {
6391            case OVERRUN_TRUE:
6392                // client isn't retrieving buffers fast enough
6393                if (!activeTrack->setOverflow()) {
6394                    nsecs_t now = systemTime();
6395                    // FIXME should lastWarning per track?
6396                    if ((now - lastWarning) > kWarningThrottleNs) {
6397                        ALOGW("RecordThread: buffer overflow");
6398                        lastWarning = now;
6399                    }
6400                }
6401                break;
6402            case OVERRUN_FALSE:
6403                activeTrack->clearOverflow();
6404                break;
6405            case OVERRUN_UNKNOWN:
6406                break;
6407            }
6408
6409            // update frame information and push timestamp out
6410            activeTrack->updateTrackFrameInfo(
6411                    activeTrack->mServerProxy->framesReleased(),
6412                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6413                    mSampleRate, mTimestamp);
6414        }
6415
6416unlock:
6417        // enable changes in effect chain
6418        unlockEffectChains(effectChains);
6419        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6420    }
6421
6422    standbyIfNotAlreadyInStandby();
6423
6424    {
6425        Mutex::Autolock _l(mLock);
6426        for (size_t i = 0; i < mTracks.size(); i++) {
6427            sp<RecordTrack> track = mTracks[i];
6428            track->invalidate();
6429        }
6430        mActiveTracks.clear();
6431        mStartStopCond.broadcast();
6432    }
6433
6434    releaseWakeLock();
6435
6436    ALOGV("RecordThread %p exiting", this);
6437    return false;
6438}
6439
6440void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6441{
6442    if (!mStandby) {
6443        inputStandBy();
6444        mStandby = true;
6445    }
6446}
6447
6448void AudioFlinger::RecordThread::inputStandBy()
6449{
6450    // Idle the fast capture if it's currently running
6451    if (mFastCapture != 0) {
6452        FastCaptureStateQueue *sq = mFastCapture->sq();
6453        FastCaptureState *state = sq->begin();
6454        if (!(state->mCommand & FastCaptureState::IDLE)) {
6455            state->mCommand = FastCaptureState::COLD_IDLE;
6456            state->mColdFutexAddr = &mFastCaptureFutex;
6457            state->mColdGen++;
6458            mFastCaptureFutex = 0;
6459            sq->end();
6460            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6461            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6462#if 0
6463            if (kUseFastCapture == FastCapture_Dynamic) {
6464                // FIXME
6465            }
6466#endif
6467#ifdef AUDIO_WATCHDOG
6468            // FIXME
6469#endif
6470        } else {
6471            sq->end(false /*didModify*/);
6472        }
6473    }
6474    status_t result = mInput->stream->standby();
6475    ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
6476
6477    // If going into standby, flush the pipe source.
6478    if (mPipeSource.get() != nullptr) {
6479        const ssize_t flushed = mPipeSource->flush();
6480        if (flushed > 0) {
6481            ALOGV("Input standby flushed PipeSource %zd frames", flushed);
6482            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
6483            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6484        }
6485    }
6486}
6487
6488// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6489sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6490        const sp<AudioFlinger::Client>& client,
6491        uint32_t sampleRate,
6492        audio_format_t format,
6493        audio_channel_mask_t channelMask,
6494        size_t *pFrameCount,
6495        audio_session_t sessionId,
6496        size_t *notificationFrames,
6497        int uid,
6498        audio_input_flags_t *flags,
6499        pid_t tid,
6500        status_t *status)
6501{
6502    size_t frameCount = *pFrameCount;
6503    sp<RecordTrack> track;
6504    status_t lStatus;
6505    audio_input_flags_t inputFlags = mInput->flags;
6506
6507    // special case for FAST flag considered OK if fast capture is present
6508    if (hasFastCapture()) {
6509        inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6510    }
6511
6512    // Check if requested flags are compatible with output stream flags
6513    if ((*flags & inputFlags) != *flags) {
6514        ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6515                " input flags (%08x)",
6516              *flags, inputFlags);
6517        *flags = (audio_input_flags_t)(*flags & inputFlags);
6518    }
6519
6520    // client expresses a preference for FAST, but we get the final say
6521    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6522      if (
6523            // we formerly checked for a callback handler (non-0 tid),
6524            // but that is no longer required for TRANSFER_OBTAIN mode
6525            //
6526            // frame count is not specified, or is exactly the pipe depth
6527            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6528            // PCM data
6529            audio_is_linear_pcm(format) &&
6530            // hardware format
6531            (format == mFormat) &&
6532            // hardware channel mask
6533            (channelMask == mChannelMask) &&
6534            // hardware sample rate
6535            (sampleRate == mSampleRate) &&
6536            // record thread has an associated fast capture
6537            hasFastCapture() &&
6538            // there are sufficient fast track slots available
6539            mFastTrackAvail
6540        ) {
6541          // check compatibility with audio effects.
6542          Mutex::Autolock _l(mLock);
6543          // Do not accept FAST flag if the session has software effects
6544          sp<EffectChain> chain = getEffectChain_l(sessionId);
6545          if (chain != 0) {
6546              audio_input_flags_t old = *flags;
6547              chain->checkInputFlagCompatibility(flags);
6548              if (old != *flags) {
6549                  ALOGV("AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
6550                          (int)old, (int)*flags);
6551              }
6552          }
6553          ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6554                   "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6555                   frameCount, mFrameCount);
6556      } else {
6557        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6558                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6559                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6560                frameCount, mFrameCount, mPipeFramesP2,
6561                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6562                hasFastCapture(), tid, mFastTrackAvail);
6563        *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6564      }
6565    }
6566
6567    // compute track buffer size in frames, and suggest the notification frame count
6568    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6569        // fast track: frame count is exactly the pipe depth
6570        frameCount = mPipeFramesP2;
6571        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6572        *notificationFrames = mFrameCount;
6573    } else {
6574        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6575        //                 or 20 ms if there is a fast capture
6576        // TODO This could be a roundupRatio inline, and const
6577        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6578                * sampleRate + mSampleRate - 1) / mSampleRate;
6579        // minimum number of notification periods is at least kMinNotifications,
6580        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6581        static const size_t kMinNotifications = 3;
6582        static const uint32_t kMinMs = 30;
6583        // TODO This could be a roundupRatio inline
6584        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6585        // TODO This could be a roundupRatio inline
6586        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6587                maxNotificationFrames;
6588        const size_t minFrameCount = maxNotificationFrames *
6589                max(kMinNotifications, minNotificationsByMs);
6590        frameCount = max(frameCount, minFrameCount);
6591        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6592            *notificationFrames = maxNotificationFrames;
6593        }
6594    }
6595    *pFrameCount = frameCount;
6596
6597    lStatus = initCheck();
6598    if (lStatus != NO_ERROR) {
6599        ALOGE("createRecordTrack_l() audio driver not initialized");
6600        goto Exit;
6601    }
6602
6603    { // scope for mLock
6604        Mutex::Autolock _l(mLock);
6605
6606        track = new RecordTrack(this, client, sampleRate,
6607                      format, channelMask, frameCount, NULL, sessionId, uid,
6608                      *flags, TrackBase::TYPE_DEFAULT);
6609
6610        lStatus = track->initCheck();
6611        if (lStatus != NO_ERROR) {
6612            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6613            // track must be cleared from the caller as the caller has the AF lock
6614            goto Exit;
6615        }
6616        mTracks.add(track);
6617
6618        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6619        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6620                        mAudioFlinger->btNrecIsOff();
6621        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6622        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6623
6624        if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6625            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6626            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6627            // so ask activity manager to do this on our behalf
6628            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6629        }
6630    }
6631
6632    lStatus = NO_ERROR;
6633
6634Exit:
6635    *status = lStatus;
6636    return track;
6637}
6638
6639status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6640                                           AudioSystem::sync_event_t event,
6641                                           audio_session_t triggerSession)
6642{
6643    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6644    sp<ThreadBase> strongMe = this;
6645    status_t status = NO_ERROR;
6646
6647    if (event == AudioSystem::SYNC_EVENT_NONE) {
6648        recordTrack->clearSyncStartEvent();
6649    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6650        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6651                                       triggerSession,
6652                                       recordTrack->sessionId(),
6653                                       syncStartEventCallback,
6654                                       recordTrack);
6655        // Sync event can be cancelled by the trigger session if the track is not in a
6656        // compatible state in which case we start record immediately
6657        if (recordTrack->mSyncStartEvent->isCancelled()) {
6658            recordTrack->clearSyncStartEvent();
6659        } else {
6660            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6661            recordTrack->mFramesToDrop = -
6662                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6663        }
6664    }
6665
6666    {
6667        // This section is a rendezvous between binder thread executing start() and RecordThread
6668        AutoMutex lock(mLock);
6669        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6670            if (recordTrack->mState == TrackBase::PAUSING) {
6671                ALOGV("active record track PAUSING -> ACTIVE");
6672                recordTrack->mState = TrackBase::ACTIVE;
6673            } else {
6674                ALOGV("active record track state %d", recordTrack->mState);
6675            }
6676            return status;
6677        }
6678
6679        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6680        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6681        //      or using a separate command thread
6682        recordTrack->mState = TrackBase::STARTING_1;
6683        mActiveTracks.add(recordTrack);
6684        status_t status = NO_ERROR;
6685        if (recordTrack->isExternalTrack()) {
6686            mLock.unlock();
6687            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6688            mLock.lock();
6689            // FIXME should verify that recordTrack is still in mActiveTracks
6690            if (status != NO_ERROR) {
6691                mActiveTracks.remove(recordTrack);
6692                recordTrack->clearSyncStartEvent();
6693                ALOGV("RecordThread::start error %d", status);
6694                return status;
6695            }
6696        }
6697        // Catch up with current buffer indices if thread is already running.
6698        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6699        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6700        // see previously buffered data before it called start(), but with greater risk of overrun.
6701
6702        recordTrack->mResamplerBufferProvider->reset();
6703        // clear any converter state as new data will be discontinuous
6704        recordTrack->mRecordBufferConverter->reset();
6705        recordTrack->mState = TrackBase::STARTING_2;
6706        // signal thread to start
6707        mWaitWorkCV.broadcast();
6708        if (mActiveTracks.indexOf(recordTrack) < 0) {
6709            ALOGV("Record failed to start");
6710            status = BAD_VALUE;
6711            goto startError;
6712        }
6713        return status;
6714    }
6715
6716startError:
6717    if (recordTrack->isExternalTrack()) {
6718        AudioSystem::stopInput(mId, recordTrack->sessionId());
6719    }
6720    recordTrack->clearSyncStartEvent();
6721    // FIXME I wonder why we do not reset the state here?
6722    return status;
6723}
6724
6725void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6726{
6727    sp<SyncEvent> strongEvent = event.promote();
6728
6729    if (strongEvent != 0) {
6730        sp<RefBase> ptr = strongEvent->cookie().promote();
6731        if (ptr != 0) {
6732            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6733            recordTrack->handleSyncStartEvent(strongEvent);
6734        }
6735    }
6736}
6737
6738bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6739    ALOGV("RecordThread::stop");
6740    AutoMutex _l(mLock);
6741    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6742        return false;
6743    }
6744    // note that threadLoop may still be processing the track at this point [without lock]
6745    recordTrack->mState = TrackBase::PAUSING;
6746    // signal thread to stop
6747    mWaitWorkCV.broadcast();
6748    // do not wait for mStartStopCond if exiting
6749    if (exitPending()) {
6750        return true;
6751    }
6752    // FIXME incorrect usage of wait: no explicit predicate or loop
6753    mStartStopCond.wait(mLock);
6754    // if we have been restarted, recordTrack is in mActiveTracks here
6755    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6756        ALOGV("Record stopped OK");
6757        return true;
6758    }
6759    return false;
6760}
6761
6762bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6763{
6764    return false;
6765}
6766
6767status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6768{
6769#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6770    if (!isValidSyncEvent(event)) {
6771        return BAD_VALUE;
6772    }
6773
6774    audio_session_t eventSession = event->triggerSession();
6775    status_t ret = NAME_NOT_FOUND;
6776
6777    Mutex::Autolock _l(mLock);
6778
6779    for (size_t i = 0; i < mTracks.size(); i++) {
6780        sp<RecordTrack> track = mTracks[i];
6781        if (eventSession == track->sessionId()) {
6782            (void) track->setSyncEvent(event);
6783            ret = NO_ERROR;
6784        }
6785    }
6786    return ret;
6787#else
6788    return BAD_VALUE;
6789#endif
6790}
6791
6792// destroyTrack_l() must be called with ThreadBase::mLock held
6793void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6794{
6795    track->terminate();
6796    track->mState = TrackBase::STOPPED;
6797    // active tracks are removed by threadLoop()
6798    if (mActiveTracks.indexOf(track) < 0) {
6799        removeTrack_l(track);
6800    }
6801}
6802
6803void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6804{
6805    mTracks.remove(track);
6806    // need anything related to effects here?
6807    if (track->isFastTrack()) {
6808        ALOG_ASSERT(!mFastTrackAvail);
6809        mFastTrackAvail = true;
6810    }
6811}
6812
6813void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6814{
6815    dumpInternals(fd, args);
6816    dumpTracks(fd, args);
6817    dumpEffectChains(fd, args);
6818}
6819
6820void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6821{
6822    dprintf(fd, "\nInput thread %p:\n", this);
6823
6824    dumpBase(fd, args);
6825
6826    if (mActiveTracks.size() == 0) {
6827        dprintf(fd, "  No active record clients\n");
6828    }
6829    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6830    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6831
6832    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6833    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6834    // This is a large object so we place it on the heap.
6835    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6836    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6837    copy->dump(fd);
6838    delete copy;
6839}
6840
6841void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6842{
6843    const size_t SIZE = 256;
6844    char buffer[SIZE];
6845    String8 result;
6846
6847    size_t numtracks = mTracks.size();
6848    size_t numactive = mActiveTracks.size();
6849    size_t numactiveseen = 0;
6850    dprintf(fd, "  %zu Tracks", numtracks);
6851    if (numtracks) {
6852        dprintf(fd, " of which %zu are active\n", numactive);
6853        RecordTrack::appendDumpHeader(result);
6854        for (size_t i = 0; i < numtracks ; ++i) {
6855            sp<RecordTrack> track = mTracks[i];
6856            if (track != 0) {
6857                bool active = mActiveTracks.indexOf(track) >= 0;
6858                if (active) {
6859                    numactiveseen++;
6860                }
6861                track->dump(buffer, SIZE, active);
6862                result.append(buffer);
6863            }
6864        }
6865    } else {
6866        dprintf(fd, "\n");
6867    }
6868
6869    if (numactiveseen != numactive) {
6870        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6871                " not in the track list\n");
6872        result.append(buffer);
6873        RecordTrack::appendDumpHeader(result);
6874        for (size_t i = 0; i < numactive; ++i) {
6875            sp<RecordTrack> track = mActiveTracks[i];
6876            if (mTracks.indexOf(track) < 0) {
6877                track->dump(buffer, SIZE, true);
6878                result.append(buffer);
6879            }
6880        }
6881
6882    }
6883    write(fd, result.string(), result.size());
6884}
6885
6886
6887void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6888{
6889    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6890    RecordThread *recordThread = (RecordThread *) threadBase.get();
6891    mRsmpInFront = recordThread->mRsmpInRear;
6892    mRsmpInUnrel = 0;
6893}
6894
6895void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6896        size_t *framesAvailable, bool *hasOverrun)
6897{
6898    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6899    RecordThread *recordThread = (RecordThread *) threadBase.get();
6900    const int32_t rear = recordThread->mRsmpInRear;
6901    const int32_t front = mRsmpInFront;
6902    const ssize_t filled = rear - front;
6903
6904    size_t framesIn;
6905    bool overrun = false;
6906    if (filled < 0) {
6907        // should not happen, but treat like a massive overrun and re-sync
6908        framesIn = 0;
6909        mRsmpInFront = rear;
6910        overrun = true;
6911    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6912        framesIn = (size_t) filled;
6913    } else {
6914        // client is not keeping up with server, but give it latest data
6915        framesIn = recordThread->mRsmpInFrames;
6916        mRsmpInFront = /* front = */ rear - framesIn;
6917        overrun = true;
6918    }
6919    if (framesAvailable != NULL) {
6920        *framesAvailable = framesIn;
6921    }
6922    if (hasOverrun != NULL) {
6923        *hasOverrun = overrun;
6924    }
6925}
6926
6927// AudioBufferProvider interface
6928status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6929        AudioBufferProvider::Buffer* buffer)
6930{
6931    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6932    if (threadBase == 0) {
6933        buffer->frameCount = 0;
6934        buffer->raw = NULL;
6935        return NOT_ENOUGH_DATA;
6936    }
6937    RecordThread *recordThread = (RecordThread *) threadBase.get();
6938    int32_t rear = recordThread->mRsmpInRear;
6939    int32_t front = mRsmpInFront;
6940    ssize_t filled = rear - front;
6941    // FIXME should not be P2 (don't want to increase latency)
6942    // FIXME if client not keeping up, discard
6943    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6944    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6945    front &= recordThread->mRsmpInFramesP2 - 1;
6946    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6947    if (part1 > (size_t) filled) {
6948        part1 = filled;
6949    }
6950    size_t ask = buffer->frameCount;
6951    ALOG_ASSERT(ask > 0);
6952    if (part1 > ask) {
6953        part1 = ask;
6954    }
6955    if (part1 == 0) {
6956        // out of data is fine since the resampler will return a short-count.
6957        buffer->raw = NULL;
6958        buffer->frameCount = 0;
6959        mRsmpInUnrel = 0;
6960        return NOT_ENOUGH_DATA;
6961    }
6962
6963    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6964    buffer->frameCount = part1;
6965    mRsmpInUnrel = part1;
6966    return NO_ERROR;
6967}
6968
6969// AudioBufferProvider interface
6970void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6971        AudioBufferProvider::Buffer* buffer)
6972{
6973    size_t stepCount = buffer->frameCount;
6974    if (stepCount == 0) {
6975        return;
6976    }
6977    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6978    mRsmpInUnrel -= stepCount;
6979    mRsmpInFront += stepCount;
6980    buffer->raw = NULL;
6981    buffer->frameCount = 0;
6982}
6983
6984AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6985        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6986        uint32_t srcSampleRate,
6987        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6988        uint32_t dstSampleRate) :
6989            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6990            // mSrcFormat
6991            // mSrcSampleRate
6992            // mDstChannelMask
6993            // mDstFormat
6994            // mDstSampleRate
6995            // mSrcChannelCount
6996            // mDstChannelCount
6997            // mDstFrameSize
6998            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6999            mResampler(NULL),
7000            mIsLegacyDownmix(false),
7001            mIsLegacyUpmix(false),
7002            mRequiresFloat(false),
7003            mInputConverterProvider(NULL)
7004{
7005    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
7006            dstChannelMask, dstFormat, dstSampleRate);
7007}
7008
7009AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
7010    free(mBuf);
7011    delete mResampler;
7012    delete mInputConverterProvider;
7013}
7014
7015size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
7016        AudioBufferProvider *provider, size_t frames)
7017{
7018    if (mInputConverterProvider != NULL) {
7019        mInputConverterProvider->setBufferProvider(provider);
7020        provider = mInputConverterProvider;
7021    }
7022
7023    if (mResampler == NULL) {
7024        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7025                mSrcSampleRate, mSrcFormat, mDstFormat);
7026
7027        AudioBufferProvider::Buffer buffer;
7028        for (size_t i = frames; i > 0; ) {
7029            buffer.frameCount = i;
7030            status_t status = provider->getNextBuffer(&buffer);
7031            if (status != OK || buffer.frameCount == 0) {
7032                frames -= i; // cannot fill request.
7033                break;
7034            }
7035            // format convert to destination buffer
7036            convertNoResampler(dst, buffer.raw, buffer.frameCount);
7037
7038            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
7039            i -= buffer.frameCount;
7040            provider->releaseBuffer(&buffer);
7041        }
7042    } else {
7043         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7044                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
7045
7046         // reallocate buffer if needed
7047         if (mBufFrameSize != 0 && mBufFrames < frames) {
7048             free(mBuf);
7049             mBufFrames = frames;
7050             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7051         }
7052        // resampler accumulates, but we only have one source track
7053        memset(mBuf, 0, frames * mBufFrameSize);
7054        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
7055        // format convert to destination buffer
7056        convertResampler(dst, mBuf, frames);
7057    }
7058    return frames;
7059}
7060
7061status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
7062        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7063        uint32_t srcSampleRate,
7064        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7065        uint32_t dstSampleRate)
7066{
7067    // quick evaluation if there is any change.
7068    if (mSrcFormat == srcFormat
7069            && mSrcChannelMask == srcChannelMask
7070            && mSrcSampleRate == srcSampleRate
7071            && mDstFormat == dstFormat
7072            && mDstChannelMask == dstChannelMask
7073            && mDstSampleRate == dstSampleRate) {
7074        return NO_ERROR;
7075    }
7076
7077    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
7078            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
7079            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
7080    const bool valid =
7081            audio_is_input_channel(srcChannelMask)
7082            && audio_is_input_channel(dstChannelMask)
7083            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
7084            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
7085            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
7086            ; // no upsampling checks for now
7087    if (!valid) {
7088        return BAD_VALUE;
7089    }
7090
7091    mSrcFormat = srcFormat;
7092    mSrcChannelMask = srcChannelMask;
7093    mSrcSampleRate = srcSampleRate;
7094    mDstFormat = dstFormat;
7095    mDstChannelMask = dstChannelMask;
7096    mDstSampleRate = dstSampleRate;
7097
7098    // compute derived parameters
7099    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
7100    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
7101    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
7102
7103    // do we need to resample?
7104    delete mResampler;
7105    mResampler = NULL;
7106    if (mSrcSampleRate != mDstSampleRate) {
7107        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
7108                mSrcChannelCount, mDstSampleRate);
7109        mResampler->setSampleRate(mSrcSampleRate);
7110        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
7111    }
7112
7113    // are we running legacy channel conversion modes?
7114    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
7115                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
7116                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
7117    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
7118                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
7119                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
7120
7121    // do we need to process in float?
7122    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
7123
7124    // do we need a staging buffer to convert for destination (we can still optimize this)?
7125    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
7126    if (mResampler != NULL) {
7127        mBufFrameSize = max(mSrcChannelCount, FCC_2)
7128                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7129    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
7130        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7131    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
7132        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
7133    } else {
7134        mBufFrameSize = 0;
7135    }
7136    mBufFrames = 0; // force the buffer to be resized.
7137
7138    // do we need an input converter buffer provider to give us float?
7139    delete mInputConverterProvider;
7140    mInputConverterProvider = NULL;
7141    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
7142        mInputConverterProvider = new ReformatBufferProvider(
7143                audio_channel_count_from_in_mask(mSrcChannelMask),
7144                mSrcFormat,
7145                AUDIO_FORMAT_PCM_FLOAT,
7146                256 /* provider buffer frame count */);
7147    }
7148
7149    // do we need a remixer to do channel mask conversion
7150    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
7151        (void) memcpy_by_index_array_initialization_from_channel_mask(
7152                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
7153    }
7154    return NO_ERROR;
7155}
7156
7157void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
7158        void *dst, const void *src, size_t frames)
7159{
7160    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
7161    if (mBufFrameSize != 0 && mBufFrames < frames) {
7162        free(mBuf);
7163        mBufFrames = frames;
7164        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7165    }
7166    // do we need to do legacy upmix and downmix?
7167    if (mIsLegacyUpmix || mIsLegacyDownmix) {
7168        void *dstBuf = mBuf != NULL ? mBuf : dst;
7169        if (mIsLegacyUpmix) {
7170            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
7171                    (const float *)src, frames);
7172        } else /*mIsLegacyDownmix */ {
7173            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
7174                    (const float *)src, frames);
7175        }
7176        if (mBuf != NULL) {
7177            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
7178                    frames * mDstChannelCount);
7179        }
7180        return;
7181    }
7182    // do we need to do channel mask conversion?
7183    if (mSrcChannelMask != mDstChannelMask) {
7184        void *dstBuf = mBuf != NULL ? mBuf : dst;
7185        memcpy_by_index_array(dstBuf, mDstChannelCount,
7186                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
7187        if (dstBuf == dst) {
7188            return; // format is the same
7189        }
7190    }
7191    // convert to destination buffer
7192    const void *convertBuf = mBuf != NULL ? mBuf : src;
7193    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
7194            frames * mDstChannelCount);
7195}
7196
7197void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
7198        void *dst, /*not-a-const*/ void *src, size_t frames)
7199{
7200    // src buffer format is ALWAYS float when entering this routine
7201    if (mIsLegacyUpmix) {
7202        ; // mono to stereo already handled by resampler
7203    } else if (mIsLegacyDownmix
7204            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7205        // the resampler outputs stereo for mono input channel (a feature?)
7206        // must convert to mono
7207        downmix_to_mono_float_from_stereo_float((float *)src,
7208                (const float *)src, frames);
7209    } else if (mSrcChannelMask != mDstChannelMask) {
7210        // convert to mono channel again for channel mask conversion (could be skipped
7211        // with further optimization).
7212        if (mSrcChannelCount == 1) {
7213            downmix_to_mono_float_from_stereo_float((float *)src,
7214                (const float *)src, frames);
7215        }
7216        // convert to destination format (in place, OK as float is larger than other types)
7217        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7218            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7219                    frames * mSrcChannelCount);
7220        }
7221        // channel convert and save to dst
7222        memcpy_by_index_array(dst, mDstChannelCount,
7223                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7224        return;
7225    }
7226    // convert to destination format and save to dst
7227    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7228            frames * mDstChannelCount);
7229}
7230
7231bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7232                                                        status_t& status)
7233{
7234    bool reconfig = false;
7235
7236    status = NO_ERROR;
7237
7238    audio_format_t reqFormat = mFormat;
7239    uint32_t samplingRate = mSampleRate;
7240    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7241    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7242
7243    AudioParameter param = AudioParameter(keyValuePair);
7244    int value;
7245
7246    // scope for AutoPark extends to end of method
7247    AutoPark<FastCapture> park(mFastCapture);
7248
7249    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7250    //      channel count change can be requested. Do we mandate the first client defines the
7251    //      HAL sampling rate and channel count or do we allow changes on the fly?
7252    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7253        samplingRate = value;
7254        reconfig = true;
7255    }
7256    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7257        if (!audio_is_linear_pcm((audio_format_t) value)) {
7258            status = BAD_VALUE;
7259        } else {
7260            reqFormat = (audio_format_t) value;
7261            reconfig = true;
7262        }
7263    }
7264    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7265        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7266        if (!audio_is_input_channel(mask) ||
7267                audio_channel_count_from_in_mask(mask) > FCC_8) {
7268            status = BAD_VALUE;
7269        } else {
7270            channelMask = mask;
7271            reconfig = true;
7272        }
7273    }
7274    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7275        // do not accept frame count changes if tracks are open as the track buffer
7276        // size depends on frame count and correct behavior would not be guaranteed
7277        // if frame count is changed after track creation
7278        if (mActiveTracks.size() > 0) {
7279            status = INVALID_OPERATION;
7280        } else {
7281            reconfig = true;
7282        }
7283    }
7284    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7285        // forward device change to effects that have requested to be
7286        // aware of attached audio device.
7287        for (size_t i = 0; i < mEffectChains.size(); i++) {
7288            mEffectChains[i]->setDevice_l(value);
7289        }
7290
7291        // store input device and output device but do not forward output device to audio HAL.
7292        // Note that status is ignored by the caller for output device
7293        // (see AudioFlinger::setParameters()
7294        if (audio_is_output_devices(value)) {
7295            mOutDevice = value;
7296            status = BAD_VALUE;
7297        } else {
7298            mInDevice = value;
7299            if (value != AUDIO_DEVICE_NONE) {
7300                mPrevInDevice = value;
7301            }
7302            // disable AEC and NS if the device is a BT SCO headset supporting those
7303            // pre processings
7304            if (mTracks.size() > 0) {
7305                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7306                                    mAudioFlinger->btNrecIsOff();
7307                for (size_t i = 0; i < mTracks.size(); i++) {
7308                    sp<RecordTrack> track = mTracks[i];
7309                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7310                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7311                }
7312            }
7313        }
7314    }
7315    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7316            mAudioSource != (audio_source_t)value) {
7317        // forward device change to effects that have requested to be
7318        // aware of attached audio device.
7319        for (size_t i = 0; i < mEffectChains.size(); i++) {
7320            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7321        }
7322        mAudioSource = (audio_source_t)value;
7323    }
7324
7325    if (status == NO_ERROR) {
7326        status = mInput->stream->setParameters(keyValuePair);
7327        if (status == INVALID_OPERATION) {
7328            inputStandBy();
7329            status = mInput->stream->setParameters(keyValuePair);
7330        }
7331        if (reconfig) {
7332            if (status == BAD_VALUE) {
7333                uint32_t sRate;
7334                audio_channel_mask_t channelMask;
7335                audio_format_t format;
7336                if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
7337                        audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
7338                        sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
7339                        audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
7340                    status = NO_ERROR;
7341                }
7342            }
7343            if (status == NO_ERROR) {
7344                readInputParameters_l();
7345                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7346            }
7347        }
7348    }
7349
7350    return reconfig;
7351}
7352
7353String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7354{
7355    Mutex::Autolock _l(mLock);
7356    if (initCheck() == NO_ERROR) {
7357        String8 out_s8;
7358        if (mInput->stream->getParameters(keys, &out_s8) == OK) {
7359            return out_s8;
7360        }
7361    }
7362    return String8();
7363}
7364
7365void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7366    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7367
7368    desc->mIoHandle = mId;
7369
7370    switch (event) {
7371    case AUDIO_INPUT_OPENED:
7372    case AUDIO_INPUT_CONFIG_CHANGED:
7373        desc->mPatch = mPatch;
7374        desc->mChannelMask = mChannelMask;
7375        desc->mSamplingRate = mSampleRate;
7376        desc->mFormat = mFormat;
7377        desc->mFrameCount = mFrameCount;
7378        desc->mFrameCountHAL = mFrameCount;
7379        desc->mLatency = 0;
7380        break;
7381
7382    case AUDIO_INPUT_CLOSED:
7383    default:
7384        break;
7385    }
7386    mAudioFlinger->ioConfigChanged(event, desc, pid);
7387}
7388
7389void AudioFlinger::RecordThread::readInputParameters_l()
7390{
7391    status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
7392    LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
7393    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7394    LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d", mChannelCount, FCC_8);
7395    mFormat = mHALFormat;
7396    LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
7397    result = mInput->stream->getFrameSize(&mFrameSize);
7398    LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
7399    result = mInput->stream->getBufferSize(&mBufferSize);
7400    LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
7401    mFrameCount = mBufferSize / mFrameSize;
7402    // This is the formula for calculating the temporary buffer size.
7403    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7404    // 1 full output buffer, regardless of the alignment of the available input.
7405    // The value is somewhat arbitrary, and could probably be even larger.
7406    // A larger value should allow more old data to be read after a track calls start(),
7407    // without increasing latency.
7408    //
7409    // Note this is independent of the maximum downsampling ratio permitted for capture.
7410    mRsmpInFrames = mFrameCount * 7;
7411    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7412    free(mRsmpInBuffer);
7413    mRsmpInBuffer = NULL;
7414
7415    // TODO optimize audio capture buffer sizes ...
7416    // Here we calculate the size of the sliding buffer used as a source
7417    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7418    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7419    // be better to have it derived from the pipe depth in the long term.
7420    // The current value is higher than necessary.  However it should not add to latency.
7421
7422    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7423    mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
7424    (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
7425    memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize); // if posix_memalign fails, will segv here.
7426
7427    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7428    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7429}
7430
7431uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7432{
7433    Mutex::Autolock _l(mLock);
7434    uint32_t result;
7435    if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
7436        return result;
7437    }
7438    return 0;
7439}
7440
7441// hasAudioSession_l() must be called with ThreadBase::mLock held
7442uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7443{
7444    uint32_t result = 0;
7445    if (getEffectChain_l(sessionId) != 0) {
7446        result = EFFECT_SESSION;
7447    }
7448
7449    for (size_t i = 0; i < mTracks.size(); ++i) {
7450        if (sessionId == mTracks[i]->sessionId()) {
7451            result |= TRACK_SESSION;
7452            if (mTracks[i]->isFastTrack()) {
7453                result |= FAST_SESSION;
7454            }
7455            break;
7456        }
7457    }
7458
7459    return result;
7460}
7461
7462KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7463{
7464    KeyedVector<audio_session_t, bool> ids;
7465    Mutex::Autolock _l(mLock);
7466    for (size_t j = 0; j < mTracks.size(); ++j) {
7467        sp<RecordThread::RecordTrack> track = mTracks[j];
7468        audio_session_t sessionId = track->sessionId();
7469        if (ids.indexOfKey(sessionId) < 0) {
7470            ids.add(sessionId, true);
7471        }
7472    }
7473    return ids;
7474}
7475
7476AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7477{
7478    Mutex::Autolock _l(mLock);
7479    AudioStreamIn *input = mInput;
7480    mInput = NULL;
7481    return input;
7482}
7483
7484// this method must always be called either with ThreadBase mLock held or inside the thread loop
7485sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
7486{
7487    if (mInput == NULL) {
7488        return NULL;
7489    }
7490    return mInput->stream;
7491}
7492
7493status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7494{
7495    // only one chain per input thread
7496    if (mEffectChains.size() != 0) {
7497        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7498        return INVALID_OPERATION;
7499    }
7500    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7501    chain->setThread(this);
7502    chain->setInBuffer(NULL);
7503    chain->setOutBuffer(NULL);
7504
7505    checkSuspendOnAddEffectChain_l(chain);
7506
7507    // make sure enabled pre processing effects state is communicated to the HAL as we
7508    // just moved them to a new input stream.
7509    chain->syncHalEffectsState();
7510
7511    mEffectChains.add(chain);
7512
7513    return NO_ERROR;
7514}
7515
7516size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7517{
7518    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7519    ALOGW_IF(mEffectChains.size() != 1,
7520            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7521            chain.get(), mEffectChains.size(), this);
7522    if (mEffectChains.size() == 1) {
7523        mEffectChains.removeAt(0);
7524    }
7525    return 0;
7526}
7527
7528status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7529                                                          audio_patch_handle_t *handle)
7530{
7531    status_t status = NO_ERROR;
7532
7533    // store new device and send to effects
7534    mInDevice = patch->sources[0].ext.device.type;
7535    mPatch = *patch;
7536    for (size_t i = 0; i < mEffectChains.size(); i++) {
7537        mEffectChains[i]->setDevice_l(mInDevice);
7538    }
7539
7540    // disable AEC and NS if the device is a BT SCO headset supporting those
7541    // pre processings
7542    if (mTracks.size() > 0) {
7543        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7544                            mAudioFlinger->btNrecIsOff();
7545        for (size_t i = 0; i < mTracks.size(); i++) {
7546            sp<RecordTrack> track = mTracks[i];
7547            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7548            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7549        }
7550    }
7551
7552    // store new source and send to effects
7553    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7554        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7555        for (size_t i = 0; i < mEffectChains.size(); i++) {
7556            mEffectChains[i]->setAudioSource_l(mAudioSource);
7557        }
7558    }
7559
7560    if (mInput->audioHwDev->supportsAudioPatches()) {
7561        sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7562        status = hwDevice->createAudioPatch(patch->num_sources,
7563                                            patch->sources,
7564                                            patch->num_sinks,
7565                                            patch->sinks,
7566                                            handle);
7567    } else {
7568        char *address;
7569        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7570            address = audio_device_address_to_parameter(
7571                                                patch->sources[0].ext.device.type,
7572                                                patch->sources[0].ext.device.address);
7573        } else {
7574            address = (char *)calloc(1, 1);
7575        }
7576        AudioParameter param = AudioParameter(String8(address));
7577        free(address);
7578        param.addInt(String8(AudioParameter::keyRouting),
7579                     (int)patch->sources[0].ext.device.type);
7580        param.addInt(String8(AudioParameter::keyInputSource),
7581                                         (int)patch->sinks[0].ext.mix.usecase.source);
7582        status = mInput->stream->setParameters(param.toString());
7583        *handle = AUDIO_PATCH_HANDLE_NONE;
7584    }
7585
7586    if (mInDevice != mPrevInDevice) {
7587        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7588        mPrevInDevice = mInDevice;
7589    }
7590
7591    return status;
7592}
7593
7594status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7595{
7596    status_t status = NO_ERROR;
7597
7598    mInDevice = AUDIO_DEVICE_NONE;
7599
7600    if (mInput->audioHwDev->supportsAudioPatches()) {
7601        sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
7602        status = hwDevice->releaseAudioPatch(handle);
7603    } else {
7604        AudioParameter param;
7605        param.addInt(String8(AudioParameter::keyRouting), 0);
7606        status = mInput->stream->setParameters(param.toString());
7607    }
7608    return status;
7609}
7610
7611void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7612{
7613    Mutex::Autolock _l(mLock);
7614    mTracks.add(record);
7615}
7616
7617void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7618{
7619    Mutex::Autolock _l(mLock);
7620    destroyTrack_l(record);
7621}
7622
7623void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7624{
7625    ThreadBase::getAudioPortConfig(config);
7626    config->role = AUDIO_PORT_ROLE_SINK;
7627    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7628    config->ext.mix.usecase.source = mAudioSource;
7629}
7630
7631} // namespace android
7632