Threads.cpp revision cecb30a22f3657483f07f259231b81b02b2a7305
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74#include "AutoPark.h"
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113
114
115
116// don't warn about blocked writes or record buffer overflows more often than this
117static const nsecs_t kWarningThrottleNs = seconds(5);
118
119// RecordThread loop sleep time upon application overrun or audio HAL read error
120static const int kRecordThreadSleepUs = 5000;
121
122// maximum time to wait in sendConfigEvent_l() for a status to be received
123static const nsecs_t kConfigEventTimeoutNs = seconds(2);
124
125// minimum sleep time for the mixer thread loop when tracks are active but in underrun
126static const uint32_t kMinThreadSleepTimeUs = 5000;
127// maximum divider applied to the active sleep time in the mixer thread loop
128static const uint32_t kMaxThreadSleepTimeShift = 2;
129
130// minimum normal sink buffer size, expressed in milliseconds rather than frames
131// FIXME This should be based on experimentally observed scheduling jitter
132static const uint32_t kMinNormalSinkBufferSizeMs = 20;
133// maximum normal sink buffer size
134static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
135
136// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
137// FIXME This should be based on experimentally observed scheduling jitter
138static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
139
140// Offloaded output thread standby delay: allows track transition without going to standby
141static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
142
143// Direct output thread minimum sleep time in idle or active(underrun) state
144static const nsecs_t kDirectMinSleepTimeUs = 10000;
145
146
147// Whether to use fast mixer
148static const enum {
149    FastMixer_Never,    // never initialize or use: for debugging only
150    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
151                        // normal mixer multiplier is 1
152    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
153                        // multiplier is calculated based on min & max normal mixer buffer size
154    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
155                        // multiplier is calculated based on min & max normal mixer buffer size
156    // FIXME for FastMixer_Dynamic:
157    //  Supporting this option will require fixing HALs that can't handle large writes.
158    //  For example, one HAL implementation returns an error from a large write,
159    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
160    //  We could either fix the HAL implementations, or provide a wrapper that breaks
161    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
162} kUseFastMixer = FastMixer_Static;
163
164// Whether to use fast capture
165static const enum {
166    FastCapture_Never,  // never initialize or use: for debugging only
167    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
168    FastCapture_Static, // initialize if needed, then use all the time if initialized
169} kUseFastCapture = FastCapture_Static;
170
171// Priorities for requestPriority
172static const int kPriorityAudioApp = 2;
173static const int kPriorityFastMixer = 3;
174static const int kPriorityFastCapture = 3;
175
176// IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
177// track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
178// AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
179
180// This is the default value, if not specified by property.
181static const int kFastTrackMultiplier = 2;
182
183// The minimum and maximum allowed values
184static const int kFastTrackMultiplierMin = 1;
185static const int kFastTrackMultiplierMax = 2;
186
187// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
188static int sFastTrackMultiplier = kFastTrackMultiplier;
189
190// See Thread::readOnlyHeap().
191// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
192// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
193// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
194static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
195
196// ----------------------------------------------------------------------------
197
198static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
199
200static void sFastTrackMultiplierInit()
201{
202    char value[PROPERTY_VALUE_MAX];
203    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
204        char *endptr;
205        unsigned long ul = strtoul(value, &endptr, 0);
206        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
207            sFastTrackMultiplier = (int) ul;
208        }
209    }
210}
211
212// ----------------------------------------------------------------------------
213
214#ifdef ADD_BATTERY_DATA
215// To collect the amplifier usage
216static void addBatteryData(uint32_t params) {
217    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
218    if (service == NULL) {
219        // it already logged
220        return;
221    }
222
223    service->addBatteryData(params);
224}
225#endif
226
227// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
228struct {
229    // call when you acquire a partial wakelock
230    void acquire(const sp<IBinder> &wakeLockToken) {
231        pthread_mutex_lock(&mLock);
232        if (wakeLockToken.get() == nullptr) {
233            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
234        } else {
235            if (mCount == 0) {
236                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
237            }
238            ++mCount;
239        }
240        pthread_mutex_unlock(&mLock);
241    }
242
243    // call when you release a partial wakelock.
244    void release(const sp<IBinder> &wakeLockToken) {
245        if (wakeLockToken.get() == nullptr) {
246            return;
247        }
248        pthread_mutex_lock(&mLock);
249        if (--mCount < 0) {
250            ALOGE("negative wakelock count");
251            mCount = 0;
252        }
253        pthread_mutex_unlock(&mLock);
254    }
255
256    // retrieves the boottime timebase offset from monotonic.
257    int64_t getBoottimeOffset() {
258        pthread_mutex_lock(&mLock);
259        int64_t boottimeOffset = mBoottimeOffset;
260        pthread_mutex_unlock(&mLock);
261        return boottimeOffset;
262    }
263
264    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
265    // and the selected timebase.
266    // Currently only TIMEBASE_BOOTTIME is allowed.
267    //
268    // This only needs to be called upon acquiring the first partial wakelock
269    // after all other partial wakelocks are released.
270    //
271    // We do an empirical measurement of the offset rather than parsing
272    // /proc/timer_list since the latter is not a formal kernel ABI.
273    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
274        int clockbase;
275        switch (timebase) {
276        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
277            clockbase = SYSTEM_TIME_BOOTTIME;
278            break;
279        default:
280            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
281            break;
282        }
283        // try three times to get the clock offset, choose the one
284        // with the minimum gap in measurements.
285        const int tries = 3;
286        nsecs_t bestGap, measured;
287        for (int i = 0; i < tries; ++i) {
288            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
289            const nsecs_t tbase = systemTime(clockbase);
290            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
291            const nsecs_t gap = tmono2 - tmono;
292            if (i == 0 || gap < bestGap) {
293                bestGap = gap;
294                measured = tbase - ((tmono + tmono2) >> 1);
295            }
296        }
297
298        // to avoid micro-adjusting, we don't change the timebase
299        // unless it is significantly different.
300        //
301        // Assumption: It probably takes more than toleranceNs to
302        // suspend and resume the device.
303        static int64_t toleranceNs = 10000; // 10 us
304        if (llabs(*offset - measured) > toleranceNs) {
305            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
306                    (long long)*offset, (long long)measured);
307            *offset = measured;
308        }
309    }
310
311    pthread_mutex_t mLock;
312    int32_t mCount;
313    int64_t mBoottimeOffset;
314} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
315
316// ----------------------------------------------------------------------------
317//      CPU Stats
318// ----------------------------------------------------------------------------
319
320class CpuStats {
321public:
322    CpuStats();
323    void sample(const String8 &title);
324#ifdef DEBUG_CPU_USAGE
325private:
326    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
327    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
328
329    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
330
331    int mCpuNum;                        // thread's current CPU number
332    int mCpukHz;                        // frequency of thread's current CPU in kHz
333#endif
334};
335
336CpuStats::CpuStats()
337#ifdef DEBUG_CPU_USAGE
338    : mCpuNum(-1), mCpukHz(-1)
339#endif
340{
341}
342
343void CpuStats::sample(const String8 &title
344#ifndef DEBUG_CPU_USAGE
345                __unused
346#endif
347        ) {
348#ifdef DEBUG_CPU_USAGE
349    // get current thread's delta CPU time in wall clock ns
350    double wcNs;
351    bool valid = mCpuUsage.sampleAndEnable(wcNs);
352
353    // record sample for wall clock statistics
354    if (valid) {
355        mWcStats.sample(wcNs);
356    }
357
358    // get the current CPU number
359    int cpuNum = sched_getcpu();
360
361    // get the current CPU frequency in kHz
362    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
363
364    // check if either CPU number or frequency changed
365    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
366        mCpuNum = cpuNum;
367        mCpukHz = cpukHz;
368        // ignore sample for purposes of cycles
369        valid = false;
370    }
371
372    // if no change in CPU number or frequency, then record sample for cycle statistics
373    if (valid && mCpukHz > 0) {
374        double cycles = wcNs * cpukHz * 0.000001;
375        mHzStats.sample(cycles);
376    }
377
378    unsigned n = mWcStats.n();
379    // mCpuUsage.elapsed() is expensive, so don't call it every loop
380    if ((n & 127) == 1) {
381        long long elapsed = mCpuUsage.elapsed();
382        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
383            double perLoop = elapsed / (double) n;
384            double perLoop100 = perLoop * 0.01;
385            double perLoop1k = perLoop * 0.001;
386            double mean = mWcStats.mean();
387            double stddev = mWcStats.stddev();
388            double minimum = mWcStats.minimum();
389            double maximum = mWcStats.maximum();
390            double meanCycles = mHzStats.mean();
391            double stddevCycles = mHzStats.stddev();
392            double minCycles = mHzStats.minimum();
393            double maxCycles = mHzStats.maximum();
394            mCpuUsage.resetElapsed();
395            mWcStats.reset();
396            mHzStats.reset();
397            ALOGD("CPU usage for %s over past %.1f secs\n"
398                "  (%u mixer loops at %.1f mean ms per loop):\n"
399                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
400                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
401                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
402                    title.string(),
403                    elapsed * .000000001, n, perLoop * .000001,
404                    mean * .001,
405                    stddev * .001,
406                    minimum * .001,
407                    maximum * .001,
408                    mean / perLoop100,
409                    stddev / perLoop100,
410                    minimum / perLoop100,
411                    maximum / perLoop100,
412                    meanCycles / perLoop1k,
413                    stddevCycles / perLoop1k,
414                    minCycles / perLoop1k,
415                    maxCycles / perLoop1k);
416
417        }
418    }
419#endif
420};
421
422// ----------------------------------------------------------------------------
423//      ThreadBase
424// ----------------------------------------------------------------------------
425
426// static
427const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
428{
429    switch (type) {
430    case MIXER:
431        return "MIXER";
432    case DIRECT:
433        return "DIRECT";
434    case DUPLICATING:
435        return "DUPLICATING";
436    case RECORD:
437        return "RECORD";
438    case OFFLOAD:
439        return "OFFLOAD";
440    default:
441        return "unknown";
442    }
443}
444
445String8 devicesToString(audio_devices_t devices)
446{
447    static const struct mapping {
448        audio_devices_t mDevices;
449        const char *    mString;
450    } mappingsOut[] = {
451        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
452        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
453        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
454        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
455        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
456        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
457        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
458        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
459        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
460        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
461        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
462        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
463        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
464        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
465        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
466        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
467        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
468        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
469        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
470        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
471        {AUDIO_DEVICE_OUT_FM,               "FM"},
472        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
473        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
474        {AUDIO_DEVICE_OUT_IP,               "IP"},
475        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
476        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
477    }, mappingsIn[] = {
478        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
479        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
480        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
481        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
482        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
483        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
484        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
485        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
486        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
487        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
488        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
489        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
490        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
491        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
492        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
493        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
494        {AUDIO_DEVICE_IN_LINE,              "LINE"},
495        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
496        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
497        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
498        {AUDIO_DEVICE_IN_IP,                "IP"},
499        {AUDIO_DEVICE_IN_BUS,               "BUS"},
500        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
501    };
502    String8 result;
503    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
504    const mapping *entry;
505    if (devices & AUDIO_DEVICE_BIT_IN) {
506        devices &= ~AUDIO_DEVICE_BIT_IN;
507        entry = mappingsIn;
508    } else {
509        entry = mappingsOut;
510    }
511    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
512        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
513        if (devices & entry->mDevices) {
514            if (!result.isEmpty()) {
515                result.append("|");
516            }
517            result.append(entry->mString);
518        }
519    }
520    if (devices & ~allDevices) {
521        if (!result.isEmpty()) {
522            result.append("|");
523        }
524        result.appendFormat("0x%X", devices & ~allDevices);
525    }
526    if (result.isEmpty()) {
527        result.append(entry->mString);
528    }
529    return result;
530}
531
532String8 inputFlagsToString(audio_input_flags_t flags)
533{
534    static const struct mapping {
535        audio_input_flags_t     mFlag;
536        const char *            mString;
537    } mappings[] = {
538        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
539        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
540        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
541        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
542        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
543    };
544    String8 result;
545    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
546    const mapping *entry;
547    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
548        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
549        if (flags & entry->mFlag) {
550            if (!result.isEmpty()) {
551                result.append("|");
552            }
553            result.append(entry->mString);
554        }
555    }
556    if (flags & ~allFlags) {
557        if (!result.isEmpty()) {
558            result.append("|");
559        }
560        result.appendFormat("0x%X", flags & ~allFlags);
561    }
562    if (result.isEmpty()) {
563        result.append(entry->mString);
564    }
565    return result;
566}
567
568String8 outputFlagsToString(audio_output_flags_t flags)
569{
570    static const struct mapping {
571        audio_output_flags_t    mFlag;
572        const char *            mString;
573    } mappings[] = {
574        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
575        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
576        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
577        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
578        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
579        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
580        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
581        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
582        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
583        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
584        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
585    };
586    String8 result;
587    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
588    const mapping *entry;
589    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
590        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
591        if (flags & entry->mFlag) {
592            if (!result.isEmpty()) {
593                result.append("|");
594            }
595            result.append(entry->mString);
596        }
597    }
598    if (flags & ~allFlags) {
599        if (!result.isEmpty()) {
600            result.append("|");
601        }
602        result.appendFormat("0x%X", flags & ~allFlags);
603    }
604    if (result.isEmpty()) {
605        result.append(entry->mString);
606    }
607    return result;
608}
609
610const char *sourceToString(audio_source_t source)
611{
612    switch (source) {
613    case AUDIO_SOURCE_DEFAULT:              return "default";
614    case AUDIO_SOURCE_MIC:                  return "mic";
615    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
616    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
617    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
618    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
619    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
620    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
621    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
622    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
623    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
624    case AUDIO_SOURCE_HOTWORD:              return "hotword";
625    default:                                return "unknown";
626    }
627}
628
629AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
630        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
631    :   Thread(false /*canCallJava*/),
632        mType(type),
633        mAudioFlinger(audioFlinger),
634        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
635        // are set by PlaybackThread::readOutputParameters_l() or
636        // RecordThread::readInputParameters_l()
637        //FIXME: mStandby should be true here. Is this some kind of hack?
638        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
639        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
640        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
641        // mName will be set by concrete (non-virtual) subclass
642        mDeathRecipient(new PMDeathRecipient(this)),
643        mSystemReady(systemReady),
644        mNotifiedBatteryStart(false)
645{
646    memset(&mPatch, 0, sizeof(struct audio_patch));
647}
648
649AudioFlinger::ThreadBase::~ThreadBase()
650{
651    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
652    mConfigEvents.clear();
653
654    // do not lock the mutex in destructor
655    releaseWakeLock_l();
656    if (mPowerManager != 0) {
657        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
658        binder->unlinkToDeath(mDeathRecipient);
659    }
660}
661
662status_t AudioFlinger::ThreadBase::readyToRun()
663{
664    status_t status = initCheck();
665    if (status == NO_ERROR) {
666        ALOGI("AudioFlinger's thread %p ready to run", this);
667    } else {
668        ALOGE("No working audio driver found.");
669    }
670    return status;
671}
672
673void AudioFlinger::ThreadBase::exit()
674{
675    ALOGV("ThreadBase::exit");
676    // do any cleanup required for exit to succeed
677    preExit();
678    {
679        // This lock prevents the following race in thread (uniprocessor for illustration):
680        //  if (!exitPending()) {
681        //      // context switch from here to exit()
682        //      // exit() calls requestExit(), what exitPending() observes
683        //      // exit() calls signal(), which is dropped since no waiters
684        //      // context switch back from exit() to here
685        //      mWaitWorkCV.wait(...);
686        //      // now thread is hung
687        //  }
688        AutoMutex lock(mLock);
689        requestExit();
690        mWaitWorkCV.broadcast();
691    }
692    // When Thread::requestExitAndWait is made virtual and this method is renamed to
693    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
694    requestExitAndWait();
695}
696
697status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
698{
699    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
700    Mutex::Autolock _l(mLock);
701
702    return sendSetParameterConfigEvent_l(keyValuePairs);
703}
704
705// sendConfigEvent_l() must be called with ThreadBase::mLock held
706// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
707status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
708{
709    status_t status = NO_ERROR;
710
711    if (event->mRequiresSystemReady && !mSystemReady) {
712        event->mWaitStatus = false;
713        mPendingConfigEvents.add(event);
714        return status;
715    }
716    mConfigEvents.add(event);
717    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
718    mWaitWorkCV.signal();
719    mLock.unlock();
720    {
721        Mutex::Autolock _l(event->mLock);
722        while (event->mWaitStatus) {
723            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
724                event->mStatus = TIMED_OUT;
725                event->mWaitStatus = false;
726            }
727        }
728        status = event->mStatus;
729    }
730    mLock.lock();
731    return status;
732}
733
734void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
735{
736    Mutex::Autolock _l(mLock);
737    sendIoConfigEvent_l(event, pid);
738}
739
740// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
741void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
742{
743    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
744    sendConfigEvent_l(configEvent);
745}
746
747void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
748{
749    Mutex::Autolock _l(mLock);
750    sendPrioConfigEvent_l(pid, tid, prio);
751}
752
753// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
754void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
755{
756    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
757    sendConfigEvent_l(configEvent);
758}
759
760// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
761status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
762{
763    sp<ConfigEvent> configEvent;
764    AudioParameter param(keyValuePair);
765    int value;
766    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
767        setMasterMono_l(value != 0);
768        if (param.size() == 1) {
769            return NO_ERROR; // should be a solo parameter - we don't pass down
770        }
771        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
772        configEvent = new SetParameterConfigEvent(param.toString());
773    } else {
774        configEvent = new SetParameterConfigEvent(keyValuePair);
775    }
776    return sendConfigEvent_l(configEvent);
777}
778
779status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
780                                                        const struct audio_patch *patch,
781                                                        audio_patch_handle_t *handle)
782{
783    Mutex::Autolock _l(mLock);
784    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
785    status_t status = sendConfigEvent_l(configEvent);
786    if (status == NO_ERROR) {
787        CreateAudioPatchConfigEventData *data =
788                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
789        *handle = data->mHandle;
790    }
791    return status;
792}
793
794status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
795                                                                const audio_patch_handle_t handle)
796{
797    Mutex::Autolock _l(mLock);
798    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
799    return sendConfigEvent_l(configEvent);
800}
801
802
803// post condition: mConfigEvents.isEmpty()
804void AudioFlinger::ThreadBase::processConfigEvents_l()
805{
806    bool configChanged = false;
807
808    while (!mConfigEvents.isEmpty()) {
809        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
810        sp<ConfigEvent> event = mConfigEvents[0];
811        mConfigEvents.removeAt(0);
812        switch (event->mType) {
813        case CFG_EVENT_PRIO: {
814            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
815            // FIXME Need to understand why this has to be done asynchronously
816            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
817                    true /*asynchronous*/);
818            if (err != 0) {
819                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
820                      data->mPrio, data->mPid, data->mTid, err);
821            }
822        } break;
823        case CFG_EVENT_IO: {
824            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
825            ioConfigChanged(data->mEvent, data->mPid);
826        } break;
827        case CFG_EVENT_SET_PARAMETER: {
828            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
829            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
830                configChanged = true;
831            }
832        } break;
833        case CFG_EVENT_CREATE_AUDIO_PATCH: {
834            CreateAudioPatchConfigEventData *data =
835                                            (CreateAudioPatchConfigEventData *)event->mData.get();
836            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
837        } break;
838        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
839            ReleaseAudioPatchConfigEventData *data =
840                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
841            event->mStatus = releaseAudioPatch_l(data->mHandle);
842        } break;
843        default:
844            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
845            break;
846        }
847        {
848            Mutex::Autolock _l(event->mLock);
849            if (event->mWaitStatus) {
850                event->mWaitStatus = false;
851                event->mCond.signal();
852            }
853        }
854        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
855    }
856
857    if (configChanged) {
858        cacheParameters_l();
859    }
860}
861
862String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
863    String8 s;
864    const audio_channel_representation_t representation =
865            audio_channel_mask_get_representation(mask);
866
867    switch (representation) {
868    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
869        if (output) {
870            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
871            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
872            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
873            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
874            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
875            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
876            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
877            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
878            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
879            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
880            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
881            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
882            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
883            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
884            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
885            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
886            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
887            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
888            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
889        } else {
890            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
891            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
892            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
893            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
894            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
895            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
896            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
897            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
898            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
899            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
900            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
901            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
902            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
903            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
904            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
905        }
906        const int len = s.length();
907        if (len > 2) {
908            (void) s.lockBuffer(len);      // needed?
909            s.unlockBuffer(len - 2);       // remove trailing ", "
910        }
911        return s;
912    }
913    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
914        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
915        return s;
916    default:
917        s.appendFormat("unknown mask, representation:%d  bits:%#x",
918                representation, audio_channel_mask_get_bits(mask));
919        return s;
920    }
921}
922
923void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
924{
925    const size_t SIZE = 256;
926    char buffer[SIZE];
927    String8 result;
928
929    bool locked = AudioFlinger::dumpTryLock(mLock);
930    if (!locked) {
931        dprintf(fd, "thread %p may be deadlocked\n", this);
932    }
933
934    dprintf(fd, "  Thread name: %s\n", mThreadName);
935    dprintf(fd, "  I/O handle: %d\n", mId);
936    dprintf(fd, "  TID: %d\n", getTid());
937    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
938    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
939    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
940    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
941    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
942    dprintf(fd, "  Channel count: %u\n", mChannelCount);
943    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
944            channelMaskToString(mChannelMask, mType != RECORD).string());
945    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
946    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
947    dprintf(fd, "  Pending config events:");
948    size_t numConfig = mConfigEvents.size();
949    if (numConfig) {
950        for (size_t i = 0; i < numConfig; i++) {
951            mConfigEvents[i]->dump(buffer, SIZE);
952            dprintf(fd, "\n    %s", buffer);
953        }
954        dprintf(fd, "\n");
955    } else {
956        dprintf(fd, " none\n");
957    }
958    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
959    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
960    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
961
962    if (locked) {
963        mLock.unlock();
964    }
965}
966
967void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
968{
969    const size_t SIZE = 256;
970    char buffer[SIZE];
971    String8 result;
972
973    size_t numEffectChains = mEffectChains.size();
974    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
975    write(fd, buffer, strlen(buffer));
976
977    for (size_t i = 0; i < numEffectChains; ++i) {
978        sp<EffectChain> chain = mEffectChains[i];
979        if (chain != 0) {
980            chain->dump(fd, args);
981        }
982    }
983}
984
985void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
986{
987    Mutex::Autolock _l(mLock);
988    acquireWakeLock_l(uid);
989}
990
991String16 AudioFlinger::ThreadBase::getWakeLockTag()
992{
993    switch (mType) {
994    case MIXER:
995        return String16("AudioMix");
996    case DIRECT:
997        return String16("AudioDirectOut");
998    case DUPLICATING:
999        return String16("AudioDup");
1000    case RECORD:
1001        return String16("AudioIn");
1002    case OFFLOAD:
1003        return String16("AudioOffload");
1004    default:
1005        ALOG_ASSERT(false);
1006        return String16("AudioUnknown");
1007    }
1008}
1009
1010void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1011{
1012    getPowerManager_l();
1013    if (mPowerManager != 0) {
1014        sp<IBinder> binder = new BBinder();
1015        status_t status;
1016        if (uid >= 0) {
1017            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1018                    binder,
1019                    getWakeLockTag(),
1020                    String16("audioserver"),
1021                    uid,
1022                    true /* FIXME force oneway contrary to .aidl */);
1023        } else {
1024            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1025                    binder,
1026                    getWakeLockTag(),
1027                    String16("audioserver"),
1028                    true /* FIXME force oneway contrary to .aidl */);
1029        }
1030        if (status == NO_ERROR) {
1031            mWakeLockToken = binder;
1032        }
1033        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1034    }
1035
1036    if (!mNotifiedBatteryStart) {
1037        BatteryNotifier::getInstance().noteStartAudio();
1038        mNotifiedBatteryStart = true;
1039    }
1040    gBoottime.acquire(mWakeLockToken);
1041    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1042            gBoottime.getBoottimeOffset();
1043}
1044
1045void AudioFlinger::ThreadBase::releaseWakeLock()
1046{
1047    Mutex::Autolock _l(mLock);
1048    releaseWakeLock_l();
1049}
1050
1051void AudioFlinger::ThreadBase::releaseWakeLock_l()
1052{
1053    gBoottime.release(mWakeLockToken);
1054    if (mWakeLockToken != 0) {
1055        ALOGV("releaseWakeLock_l() %s", mThreadName);
1056        if (mPowerManager != 0) {
1057            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1058                    true /* FIXME force oneway contrary to .aidl */);
1059        }
1060        mWakeLockToken.clear();
1061    }
1062
1063    if (mNotifiedBatteryStart) {
1064        BatteryNotifier::getInstance().noteStopAudio();
1065        mNotifiedBatteryStart = false;
1066    }
1067}
1068
1069void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1070    Mutex::Autolock _l(mLock);
1071    updateWakeLockUids_l(uids);
1072}
1073
1074void AudioFlinger::ThreadBase::getPowerManager_l() {
1075    if (mSystemReady && mPowerManager == 0) {
1076        // use checkService() to avoid blocking if power service is not up yet
1077        sp<IBinder> binder =
1078            defaultServiceManager()->checkService(String16("power"));
1079        if (binder == 0) {
1080            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1081        } else {
1082            mPowerManager = interface_cast<IPowerManager>(binder);
1083            binder->linkToDeath(mDeathRecipient);
1084        }
1085    }
1086}
1087
1088void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1089    getPowerManager_l();
1090    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1091        if (mSystemReady) {
1092            ALOGE("no wake lock to update, but system ready!");
1093        } else {
1094            ALOGW("no wake lock to update, system not ready yet");
1095        }
1096        return;
1097    }
1098    if (mPowerManager != 0) {
1099        sp<IBinder> binder = new BBinder();
1100        status_t status;
1101        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1102                    true /* FIXME force oneway contrary to .aidl */);
1103        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1104    }
1105}
1106
1107void AudioFlinger::ThreadBase::clearPowerManager()
1108{
1109    Mutex::Autolock _l(mLock);
1110    releaseWakeLock_l();
1111    mPowerManager.clear();
1112}
1113
1114void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1115{
1116    sp<ThreadBase> thread = mThread.promote();
1117    if (thread != 0) {
1118        thread->clearPowerManager();
1119    }
1120    ALOGW("power manager service died !!!");
1121}
1122
1123void AudioFlinger::ThreadBase::setEffectSuspended(
1124        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1125{
1126    Mutex::Autolock _l(mLock);
1127    setEffectSuspended_l(type, suspend, sessionId);
1128}
1129
1130void AudioFlinger::ThreadBase::setEffectSuspended_l(
1131        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1132{
1133    sp<EffectChain> chain = getEffectChain_l(sessionId);
1134    if (chain != 0) {
1135        if (type != NULL) {
1136            chain->setEffectSuspended_l(type, suspend);
1137        } else {
1138            chain->setEffectSuspendedAll_l(suspend);
1139        }
1140    }
1141
1142    updateSuspendedSessions_l(type, suspend, sessionId);
1143}
1144
1145void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1146{
1147    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1148    if (index < 0) {
1149        return;
1150    }
1151
1152    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1153            mSuspendedSessions.valueAt(index);
1154
1155    for (size_t i = 0; i < sessionEffects.size(); i++) {
1156        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1157        for (int j = 0; j < desc->mRefCount; j++) {
1158            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1159                chain->setEffectSuspendedAll_l(true);
1160            } else {
1161                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1162                    desc->mType.timeLow);
1163                chain->setEffectSuspended_l(&desc->mType, true);
1164            }
1165        }
1166    }
1167}
1168
1169void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1170                                                         bool suspend,
1171                                                         audio_session_t sessionId)
1172{
1173    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1174
1175    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1176
1177    if (suspend) {
1178        if (index >= 0) {
1179            sessionEffects = mSuspendedSessions.valueAt(index);
1180        } else {
1181            mSuspendedSessions.add(sessionId, sessionEffects);
1182        }
1183    } else {
1184        if (index < 0) {
1185            return;
1186        }
1187        sessionEffects = mSuspendedSessions.valueAt(index);
1188    }
1189
1190
1191    int key = EffectChain::kKeyForSuspendAll;
1192    if (type != NULL) {
1193        key = type->timeLow;
1194    }
1195    index = sessionEffects.indexOfKey(key);
1196
1197    sp<SuspendedSessionDesc> desc;
1198    if (suspend) {
1199        if (index >= 0) {
1200            desc = sessionEffects.valueAt(index);
1201        } else {
1202            desc = new SuspendedSessionDesc();
1203            if (type != NULL) {
1204                desc->mType = *type;
1205            }
1206            sessionEffects.add(key, desc);
1207            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1208        }
1209        desc->mRefCount++;
1210    } else {
1211        if (index < 0) {
1212            return;
1213        }
1214        desc = sessionEffects.valueAt(index);
1215        if (--desc->mRefCount == 0) {
1216            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1217            sessionEffects.removeItemsAt(index);
1218            if (sessionEffects.isEmpty()) {
1219                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1220                                 sessionId);
1221                mSuspendedSessions.removeItem(sessionId);
1222            }
1223        }
1224    }
1225    if (!sessionEffects.isEmpty()) {
1226        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1227    }
1228}
1229
1230void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1231                                                            bool enabled,
1232                                                            audio_session_t sessionId)
1233{
1234    Mutex::Autolock _l(mLock);
1235    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1236}
1237
1238void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1239                                                            bool enabled,
1240                                                            audio_session_t sessionId)
1241{
1242    if (mType != RECORD) {
1243        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1244        // another session. This gives the priority to well behaved effect control panels
1245        // and applications not using global effects.
1246        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1247        // global effects
1248        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1249            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1250        }
1251    }
1252
1253    sp<EffectChain> chain = getEffectChain_l(sessionId);
1254    if (chain != 0) {
1255        chain->checkSuspendOnEffectEnabled(effect, enabled);
1256    }
1257}
1258
1259// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1260status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1261        const effect_descriptor_t *desc, audio_session_t sessionId)
1262{
1263    // No global effect sessions on record threads
1264    if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1265        ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1266                desc->name, mThreadName);
1267        return BAD_VALUE;
1268    }
1269    // only pre processing effects on record thread
1270    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1271        ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1272                desc->name, mThreadName);
1273        return BAD_VALUE;
1274    }
1275    audio_input_flags_t flags = mInput->flags;
1276    if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1277        if (flags & AUDIO_INPUT_FLAG_RAW) {
1278            ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1279                  desc->name, mThreadName);
1280            return BAD_VALUE;
1281        }
1282        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1283            ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1284                  desc->name, mThreadName);
1285            return BAD_VALUE;
1286        }
1287    }
1288    return NO_ERROR;
1289}
1290
1291// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1292status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1293        const effect_descriptor_t *desc, audio_session_t sessionId)
1294{
1295    // no preprocessing on playback threads
1296    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1297        ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1298                " thread %s", desc->name, mThreadName);
1299        return BAD_VALUE;
1300    }
1301
1302    switch (mType) {
1303    case MIXER: {
1304        // Reject any effect on mixer multichannel sinks.
1305        // TODO: fix both format and multichannel issues with effects.
1306        if (mChannelCount != FCC_2) {
1307            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1308                    " thread %s", desc->name, mChannelCount, mThreadName);
1309            return BAD_VALUE;
1310        }
1311        audio_output_flags_t flags = mOutput->flags;
1312        if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1313            if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1314                // global effects are applied only to non fast tracks if they are SW
1315                if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1316                    break;
1317                }
1318            } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1319                // only post processing on output stage session
1320                if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1321                    ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1322                            " on output stage session", desc->name);
1323                    return BAD_VALUE;
1324                }
1325            } else {
1326                // no restriction on effects applied on non fast tracks
1327                if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1328                    break;
1329                }
1330            }
1331            if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1332                ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1333                      desc->name);
1334                return BAD_VALUE;
1335            }
1336            if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1337                ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1338                        " in fast mode", desc->name);
1339                return BAD_VALUE;
1340            }
1341        }
1342    } break;
1343    case OFFLOAD:
1344        // nothing actionable on offload threads, if the effect:
1345        //   - is offloadable: the effect can be created
1346        //   - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1347        //     will take care of invalidating the tracks of the thread
1348        break;
1349    case DIRECT:
1350        // Reject any effect on Direct output threads for now, since the format of
1351        // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1352        ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1353                desc->name, mThreadName);
1354        return BAD_VALUE;
1355    case DUPLICATING:
1356        // Reject any effect on mixer multichannel sinks.
1357        // TODO: fix both format and multichannel issues with effects.
1358        if (mChannelCount != FCC_2) {
1359            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1360                    " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1361            return BAD_VALUE;
1362        }
1363        if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1364            ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1365                    " thread %s", desc->name, mThreadName);
1366            return BAD_VALUE;
1367        }
1368        if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1369            ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1370                    " DUPLICATING thread %s", desc->name, mThreadName);
1371            return BAD_VALUE;
1372        }
1373        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1374            ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1375                    " DUPLICATING thread %s", desc->name, mThreadName);
1376            return BAD_VALUE;
1377        }
1378        break;
1379    default:
1380        LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1381    }
1382
1383    return NO_ERROR;
1384}
1385
1386// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1387sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1388        const sp<AudioFlinger::Client>& client,
1389        const sp<IEffectClient>& effectClient,
1390        int32_t priority,
1391        audio_session_t sessionId,
1392        effect_descriptor_t *desc,
1393        int *enabled,
1394        status_t *status)
1395{
1396    sp<EffectModule> effect;
1397    sp<EffectHandle> handle;
1398    status_t lStatus;
1399    sp<EffectChain> chain;
1400    bool chainCreated = false;
1401    bool effectCreated = false;
1402    bool effectRegistered = false;
1403
1404    lStatus = initCheck();
1405    if (lStatus != NO_ERROR) {
1406        ALOGW("createEffect_l() Audio driver not initialized.");
1407        goto Exit;
1408    }
1409
1410    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1411
1412    { // scope for mLock
1413        Mutex::Autolock _l(mLock);
1414
1415        lStatus = checkEffectCompatibility_l(desc, sessionId);
1416        if (lStatus != NO_ERROR) {
1417            goto Exit;
1418        }
1419
1420        // check for existing effect chain with the requested audio session
1421        chain = getEffectChain_l(sessionId);
1422        if (chain == 0) {
1423            // create a new chain for this session
1424            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1425            chain = new EffectChain(this, sessionId);
1426            addEffectChain_l(chain);
1427            chain->setStrategy(getStrategyForSession_l(sessionId));
1428            chainCreated = true;
1429        } else {
1430            effect = chain->getEffectFromDesc_l(desc);
1431        }
1432
1433        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1434
1435        if (effect == 0) {
1436            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1437            // Check CPU and memory usage
1438            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1439            if (lStatus != NO_ERROR) {
1440                goto Exit;
1441            }
1442            effectRegistered = true;
1443            // create a new effect module if none present in the chain
1444            effect = new EffectModule(this, chain, desc, id, sessionId);
1445            lStatus = effect->status();
1446            if (lStatus != NO_ERROR) {
1447                goto Exit;
1448            }
1449            effect->setOffloaded(mType == OFFLOAD, mId);
1450
1451            lStatus = chain->addEffect_l(effect);
1452            if (lStatus != NO_ERROR) {
1453                goto Exit;
1454            }
1455            effectCreated = true;
1456
1457            effect->setDevice(mOutDevice);
1458            effect->setDevice(mInDevice);
1459            effect->setMode(mAudioFlinger->getMode());
1460            effect->setAudioSource(mAudioSource);
1461        }
1462        // create effect handle and connect it to effect module
1463        handle = new EffectHandle(effect, client, effectClient, priority);
1464        lStatus = handle->initCheck();
1465        if (lStatus == OK) {
1466            lStatus = effect->addHandle(handle.get());
1467        }
1468        if (enabled != NULL) {
1469            *enabled = (int)effect->isEnabled();
1470        }
1471    }
1472
1473Exit:
1474    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1475        Mutex::Autolock _l(mLock);
1476        if (effectCreated) {
1477            chain->removeEffect_l(effect);
1478        }
1479        if (effectRegistered) {
1480            AudioSystem::unregisterEffect(effect->id());
1481        }
1482        if (chainCreated) {
1483            removeEffectChain_l(chain);
1484        }
1485        handle.clear();
1486    }
1487
1488    *status = lStatus;
1489    return handle;
1490}
1491
1492sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1493        int effectId)
1494{
1495    Mutex::Autolock _l(mLock);
1496    return getEffect_l(sessionId, effectId);
1497}
1498
1499sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1500        int effectId)
1501{
1502    sp<EffectChain> chain = getEffectChain_l(sessionId);
1503    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1504}
1505
1506// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1507// PlaybackThread::mLock held
1508status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1509{
1510    // check for existing effect chain with the requested audio session
1511    audio_session_t sessionId = effect->sessionId();
1512    sp<EffectChain> chain = getEffectChain_l(sessionId);
1513    bool chainCreated = false;
1514
1515    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1516             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1517                    this, effect->desc().name, effect->desc().flags);
1518
1519    if (chain == 0) {
1520        // create a new chain for this session
1521        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1522        chain = new EffectChain(this, sessionId);
1523        addEffectChain_l(chain);
1524        chain->setStrategy(getStrategyForSession_l(sessionId));
1525        chainCreated = true;
1526    }
1527    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1528
1529    if (chain->getEffectFromId_l(effect->id()) != 0) {
1530        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1531                this, effect->desc().name, chain.get());
1532        return BAD_VALUE;
1533    }
1534
1535    effect->setOffloaded(mType == OFFLOAD, mId);
1536
1537    status_t status = chain->addEffect_l(effect);
1538    if (status != NO_ERROR) {
1539        if (chainCreated) {
1540            removeEffectChain_l(chain);
1541        }
1542        return status;
1543    }
1544
1545    effect->setDevice(mOutDevice);
1546    effect->setDevice(mInDevice);
1547    effect->setMode(mAudioFlinger->getMode());
1548    effect->setAudioSource(mAudioSource);
1549    return NO_ERROR;
1550}
1551
1552void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1553
1554    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1555    effect_descriptor_t desc = effect->desc();
1556    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1557        detachAuxEffect_l(effect->id());
1558    }
1559
1560    sp<EffectChain> chain = effect->chain().promote();
1561    if (chain != 0) {
1562        // remove effect chain if removing last effect
1563        if (chain->removeEffect_l(effect) == 0) {
1564            removeEffectChain_l(chain);
1565        }
1566    } else {
1567        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1568    }
1569}
1570
1571void AudioFlinger::ThreadBase::lockEffectChains_l(
1572        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1573{
1574    effectChains = mEffectChains;
1575    for (size_t i = 0; i < mEffectChains.size(); i++) {
1576        mEffectChains[i]->lock();
1577    }
1578}
1579
1580void AudioFlinger::ThreadBase::unlockEffectChains(
1581        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1582{
1583    for (size_t i = 0; i < effectChains.size(); i++) {
1584        effectChains[i]->unlock();
1585    }
1586}
1587
1588sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1589{
1590    Mutex::Autolock _l(mLock);
1591    return getEffectChain_l(sessionId);
1592}
1593
1594sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1595        const
1596{
1597    size_t size = mEffectChains.size();
1598    for (size_t i = 0; i < size; i++) {
1599        if (mEffectChains[i]->sessionId() == sessionId) {
1600            return mEffectChains[i];
1601        }
1602    }
1603    return 0;
1604}
1605
1606void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1607{
1608    Mutex::Autolock _l(mLock);
1609    size_t size = mEffectChains.size();
1610    for (size_t i = 0; i < size; i++) {
1611        mEffectChains[i]->setMode_l(mode);
1612    }
1613}
1614
1615void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1616{
1617    config->type = AUDIO_PORT_TYPE_MIX;
1618    config->ext.mix.handle = mId;
1619    config->sample_rate = mSampleRate;
1620    config->format = mFormat;
1621    config->channel_mask = mChannelMask;
1622    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1623                            AUDIO_PORT_CONFIG_FORMAT;
1624}
1625
1626void AudioFlinger::ThreadBase::systemReady()
1627{
1628    Mutex::Autolock _l(mLock);
1629    if (mSystemReady) {
1630        return;
1631    }
1632    mSystemReady = true;
1633
1634    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1635        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1636    }
1637    mPendingConfigEvents.clear();
1638}
1639
1640
1641// ----------------------------------------------------------------------------
1642//      Playback
1643// ----------------------------------------------------------------------------
1644
1645AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1646                                             AudioStreamOut* output,
1647                                             audio_io_handle_t id,
1648                                             audio_devices_t device,
1649                                             type_t type,
1650                                             bool systemReady)
1651    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1652        mNormalFrameCount(0), mSinkBuffer(NULL),
1653        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1654        mMixerBuffer(NULL),
1655        mMixerBufferSize(0),
1656        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1657        mMixerBufferValid(false),
1658        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1659        mEffectBuffer(NULL),
1660        mEffectBufferSize(0),
1661        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1662        mEffectBufferValid(false),
1663        mSuspended(0), mBytesWritten(0),
1664        mFramesWritten(0),
1665        mActiveTracksGeneration(0),
1666        // mStreamTypes[] initialized in constructor body
1667        mOutput(output),
1668        mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1669        mMixerStatus(MIXER_IDLE),
1670        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1671        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1672        mBytesRemaining(0),
1673        mCurrentWriteLength(0),
1674        mUseAsyncWrite(false),
1675        mWriteAckSequence(0),
1676        mDrainSequence(0),
1677        mSignalPending(false),
1678        mScreenState(AudioFlinger::mScreenState),
1679        // index 0 is reserved for normal mixer's submix
1680        mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1681        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1682{
1683    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1684    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1685
1686    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1687    // it would be safer to explicitly pass initial masterVolume/masterMute as
1688    // parameter.
1689    //
1690    // If the HAL we are using has support for master volume or master mute,
1691    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1692    // and the mute set to false).
1693    mMasterVolume = audioFlinger->masterVolume_l();
1694    mMasterMute = audioFlinger->masterMute_l();
1695    if (mOutput && mOutput->audioHwDev) {
1696        if (mOutput->audioHwDev->canSetMasterVolume()) {
1697            mMasterVolume = 1.0;
1698        }
1699
1700        if (mOutput->audioHwDev->canSetMasterMute()) {
1701            mMasterMute = false;
1702        }
1703    }
1704
1705    readOutputParameters_l();
1706
1707    // ++ operator does not compile
1708    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1709            stream = (audio_stream_type_t) (stream + 1)) {
1710        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1711        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1712    }
1713}
1714
1715AudioFlinger::PlaybackThread::~PlaybackThread()
1716{
1717    mAudioFlinger->unregisterWriter(mNBLogWriter);
1718    free(mSinkBuffer);
1719    free(mMixerBuffer);
1720    free(mEffectBuffer);
1721}
1722
1723void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1724{
1725    dumpInternals(fd, args);
1726    dumpTracks(fd, args);
1727    dumpEffectChains(fd, args);
1728}
1729
1730void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1731{
1732    const size_t SIZE = 256;
1733    char buffer[SIZE];
1734    String8 result;
1735
1736    result.appendFormat("  Stream volumes in dB: ");
1737    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1738        const stream_type_t *st = &mStreamTypes[i];
1739        if (i > 0) {
1740            result.appendFormat(", ");
1741        }
1742        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1743        if (st->mute) {
1744            result.append("M");
1745        }
1746    }
1747    result.append("\n");
1748    write(fd, result.string(), result.length());
1749    result.clear();
1750
1751    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1752    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1753    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1754            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1755
1756    size_t numtracks = mTracks.size();
1757    size_t numactive = mActiveTracks.size();
1758    dprintf(fd, "  %zu Tracks", numtracks);
1759    size_t numactiveseen = 0;
1760    if (numtracks) {
1761        dprintf(fd, " of which %zu are active\n", numactive);
1762        Track::appendDumpHeader(result);
1763        for (size_t i = 0; i < numtracks; ++i) {
1764            sp<Track> track = mTracks[i];
1765            if (track != 0) {
1766                bool active = mActiveTracks.indexOf(track) >= 0;
1767                if (active) {
1768                    numactiveseen++;
1769                }
1770                track->dump(buffer, SIZE, active);
1771                result.append(buffer);
1772            }
1773        }
1774    } else {
1775        result.append("\n");
1776    }
1777    if (numactiveseen != numactive) {
1778        // some tracks in the active list were not in the tracks list
1779        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1780                " not in the track list\n");
1781        result.append(buffer);
1782        Track::appendDumpHeader(result);
1783        for (size_t i = 0; i < numactive; ++i) {
1784            sp<Track> track = mActiveTracks[i].promote();
1785            if (track != 0 && mTracks.indexOf(track) < 0) {
1786                track->dump(buffer, SIZE, true);
1787                result.append(buffer);
1788            }
1789        }
1790    }
1791
1792    write(fd, result.string(), result.size());
1793}
1794
1795void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1796{
1797    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1798
1799    dumpBase(fd, args);
1800
1801    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1802    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1803            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1804    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1805    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1806    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1807    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1808    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1809    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1810    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1811    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1812    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1813    AudioStreamOut *output = mOutput;
1814    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1815    String8 flagsAsString = outputFlagsToString(flags);
1816    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1817}
1818
1819// Thread virtuals
1820
1821void AudioFlinger::PlaybackThread::onFirstRef()
1822{
1823    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1824}
1825
1826// ThreadBase virtuals
1827void AudioFlinger::PlaybackThread::preExit()
1828{
1829    ALOGV("  preExit()");
1830    // FIXME this is using hard-coded strings but in the future, this functionality will be
1831    //       converted to use audio HAL extensions required to support tunneling
1832    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1833}
1834
1835// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1836sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1837        const sp<AudioFlinger::Client>& client,
1838        audio_stream_type_t streamType,
1839        uint32_t sampleRate,
1840        audio_format_t format,
1841        audio_channel_mask_t channelMask,
1842        size_t *pFrameCount,
1843        const sp<IMemory>& sharedBuffer,
1844        audio_session_t sessionId,
1845        audio_output_flags_t *flags,
1846        pid_t tid,
1847        int uid,
1848        status_t *status)
1849{
1850    size_t frameCount = *pFrameCount;
1851    sp<Track> track;
1852    status_t lStatus;
1853    audio_output_flags_t outputFlags = mOutput->flags;
1854
1855    // special case for FAST flag considered OK if fast mixer is present
1856    if (hasFastMixer()) {
1857        outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1858    }
1859
1860    // Check if requested flags are compatible with output stream flags
1861    if ((*flags & outputFlags) != *flags) {
1862        ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1863              *flags, outputFlags);
1864        *flags = (audio_output_flags_t)(*flags & outputFlags);
1865    }
1866
1867    // client expresses a preference for FAST, but we get the final say
1868    if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1869      if (
1870            // PCM data
1871            audio_is_linear_pcm(format) &&
1872            // TODO: extract as a data library function that checks that a computationally
1873            // expensive downmixer is not required: isFastOutputChannelConversion()
1874            (channelMask == mChannelMask ||
1875                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1876                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1877                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1878            // hardware sample rate
1879            (sampleRate == mSampleRate) &&
1880            // normal mixer has an associated fast mixer
1881            hasFastMixer() &&
1882            // there are sufficient fast track slots available
1883            (mFastTrackAvailMask != 0)
1884            // FIXME test that MixerThread for this fast track has a capable output HAL
1885            // FIXME add a permission test also?
1886        ) {
1887        // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1888        if (sharedBuffer == 0) {
1889            // read the fast track multiplier property the first time it is needed
1890            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1891            if (ok != 0) {
1892                ALOGE("%s pthread_once failed: %d", __func__, ok);
1893            }
1894            frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1895        }
1896
1897        // check compatibility with audio effects.
1898        { // scope for mLock
1899            Mutex::Autolock _l(mLock);
1900            // do not accept RAW flag if post processing are present. Note that post processing on
1901            // a fast mixer are necessarily hardware
1902            sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE);
1903            if (chain != 0) {
1904                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1905                        "AUDIO_OUTPUT_FLAG_RAW denied: post processing effect present");
1906                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1907            }
1908            // Do not accept FAST flag if software global effects are present
1909            chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
1910            if (chain != 0) {
1911                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1912                        "AUDIO_OUTPUT_FLAG_RAW denied: global effect present");
1913                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1914                if (chain->hasSoftwareEffect()) {
1915                    ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software global effect present");
1916                    *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1917                }
1918            }
1919            // Do not accept FAST flag if the session has software effects
1920            chain = getEffectChain_l(sessionId);
1921            if (chain != 0) {
1922                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1923                        "AUDIO_OUTPUT_FLAG_RAW denied: effect present on session");
1924                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1925                if (chain->hasSoftwareEffect()) {
1926                    ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software effect present on session");
1927                    *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1928                }
1929            }
1930        }
1931        ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1932                 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1933                 frameCount, mFrameCount);
1934      } else {
1935        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1936                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1937                "sampleRate=%u mSampleRate=%u "
1938                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1939                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1940                audio_is_linear_pcm(format),
1941                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1942        *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1943      }
1944    }
1945    // For normal PCM streaming tracks, update minimum frame count.
1946    // For compatibility with AudioTrack calculation, buffer depth is forced
1947    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1948    // This is probably too conservative, but legacy application code may depend on it.
1949    // If you change this calculation, also review the start threshold which is related.
1950    if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1951            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1952        // this must match AudioTrack.cpp calculateMinFrameCount().
1953        // TODO: Move to a common library
1954        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1955        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1956        if (minBufCount < 2) {
1957            minBufCount = 2;
1958        }
1959        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1960        // or the client should compute and pass in a larger buffer request.
1961        size_t minFrameCount =
1962                minBufCount * sourceFramesNeededWithTimestretch(
1963                        sampleRate, mNormalFrameCount,
1964                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1965        if (frameCount < minFrameCount) { // including frameCount == 0
1966            frameCount = minFrameCount;
1967        }
1968    }
1969    *pFrameCount = frameCount;
1970
1971    switch (mType) {
1972
1973    case DIRECT:
1974        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1975            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1976                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1977                        "for output %p with format %#x",
1978                        sampleRate, format, channelMask, mOutput, mFormat);
1979                lStatus = BAD_VALUE;
1980                goto Exit;
1981            }
1982        }
1983        break;
1984
1985    case OFFLOAD:
1986        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1987            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1988                    "for output %p with format %#x",
1989                    sampleRate, format, channelMask, mOutput, mFormat);
1990            lStatus = BAD_VALUE;
1991            goto Exit;
1992        }
1993        break;
1994
1995    default:
1996        if (!audio_is_linear_pcm(format)) {
1997                ALOGE("createTrack_l() Bad parameter: format %#x \""
1998                        "for output %p with format %#x",
1999                        format, mOutput, mFormat);
2000                lStatus = BAD_VALUE;
2001                goto Exit;
2002        }
2003        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2004            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2005            lStatus = BAD_VALUE;
2006            goto Exit;
2007        }
2008        break;
2009
2010    }
2011
2012    lStatus = initCheck();
2013    if (lStatus != NO_ERROR) {
2014        ALOGE("createTrack_l() audio driver not initialized");
2015        goto Exit;
2016    }
2017
2018    { // scope for mLock
2019        Mutex::Autolock _l(mLock);
2020
2021        // all tracks in same audio session must share the same routing strategy otherwise
2022        // conflicts will happen when tracks are moved from one output to another by audio policy
2023        // manager
2024        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2025        for (size_t i = 0; i < mTracks.size(); ++i) {
2026            sp<Track> t = mTracks[i];
2027            if (t != 0 && t->isExternalTrack()) {
2028                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2029                if (sessionId == t->sessionId() && strategy != actual) {
2030                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2031                            strategy, actual);
2032                    lStatus = BAD_VALUE;
2033                    goto Exit;
2034                }
2035            }
2036        }
2037
2038        track = new Track(this, client, streamType, sampleRate, format,
2039                          channelMask, frameCount, NULL, sharedBuffer,
2040                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
2041
2042        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2043        if (lStatus != NO_ERROR) {
2044            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2045            // track must be cleared from the caller as the caller has the AF lock
2046            goto Exit;
2047        }
2048        mTracks.add(track);
2049
2050        sp<EffectChain> chain = getEffectChain_l(sessionId);
2051        if (chain != 0) {
2052            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2053            track->setMainBuffer(chain->inBuffer());
2054            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2055            chain->incTrackCnt();
2056        }
2057
2058        if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2059            pid_t callingPid = IPCThreadState::self()->getCallingPid();
2060            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2061            // so ask activity manager to do this on our behalf
2062            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
2063        }
2064    }
2065
2066    lStatus = NO_ERROR;
2067
2068Exit:
2069    *status = lStatus;
2070    return track;
2071}
2072
2073uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2074{
2075    return latency;
2076}
2077
2078uint32_t AudioFlinger::PlaybackThread::latency() const
2079{
2080    Mutex::Autolock _l(mLock);
2081    return latency_l();
2082}
2083uint32_t AudioFlinger::PlaybackThread::latency_l() const
2084{
2085    if (initCheck() == NO_ERROR) {
2086        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
2087    } else {
2088        return 0;
2089    }
2090}
2091
2092void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2093{
2094    Mutex::Autolock _l(mLock);
2095    // Don't apply master volume in SW if our HAL can do it for us.
2096    if (mOutput && mOutput->audioHwDev &&
2097        mOutput->audioHwDev->canSetMasterVolume()) {
2098        mMasterVolume = 1.0;
2099    } else {
2100        mMasterVolume = value;
2101    }
2102}
2103
2104void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2105{
2106    Mutex::Autolock _l(mLock);
2107    // Don't apply master mute in SW if our HAL can do it for us.
2108    if (mOutput && mOutput->audioHwDev &&
2109        mOutput->audioHwDev->canSetMasterMute()) {
2110        mMasterMute = false;
2111    } else {
2112        mMasterMute = muted;
2113    }
2114}
2115
2116void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2117{
2118    Mutex::Autolock _l(mLock);
2119    mStreamTypes[stream].volume = value;
2120    broadcast_l();
2121}
2122
2123void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2124{
2125    Mutex::Autolock _l(mLock);
2126    mStreamTypes[stream].mute = muted;
2127    broadcast_l();
2128}
2129
2130float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2131{
2132    Mutex::Autolock _l(mLock);
2133    return mStreamTypes[stream].volume;
2134}
2135
2136// addTrack_l() must be called with ThreadBase::mLock held
2137status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2138{
2139    status_t status = ALREADY_EXISTS;
2140
2141    if (mActiveTracks.indexOf(track) < 0) {
2142        // the track is newly added, make sure it fills up all its
2143        // buffers before playing. This is to ensure the client will
2144        // effectively get the latency it requested.
2145        if (track->isExternalTrack()) {
2146            TrackBase::track_state state = track->mState;
2147            mLock.unlock();
2148            status = AudioSystem::startOutput(mId, track->streamType(),
2149                                              track->sessionId());
2150            mLock.lock();
2151            // abort track was stopped/paused while we released the lock
2152            if (state != track->mState) {
2153                if (status == NO_ERROR) {
2154                    mLock.unlock();
2155                    AudioSystem::stopOutput(mId, track->streamType(),
2156                                            track->sessionId());
2157                    mLock.lock();
2158                }
2159                return INVALID_OPERATION;
2160            }
2161            // abort if start is rejected by audio policy manager
2162            if (status != NO_ERROR) {
2163                return PERMISSION_DENIED;
2164            }
2165#ifdef ADD_BATTERY_DATA
2166            // to track the speaker usage
2167            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2168#endif
2169        }
2170
2171        // set retry count for buffer fill
2172        if (track->isOffloaded()) {
2173            if (track->isStopping_1()) {
2174                track->mRetryCount = kMaxTrackStopRetriesOffload;
2175            } else {
2176                track->mRetryCount = kMaxTrackStartupRetriesOffload;
2177            }
2178            track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2179        } else {
2180            track->mRetryCount = kMaxTrackStartupRetries;
2181            track->mFillingUpStatus =
2182                    track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2183        }
2184
2185        track->mResetDone = false;
2186        track->mPresentationCompleteFrames = 0;
2187        mActiveTracks.add(track);
2188        mWakeLockUids.add(track->uid());
2189        mActiveTracksGeneration++;
2190        mLatestActiveTrack = track;
2191        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2192        if (chain != 0) {
2193            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2194                    track->sessionId());
2195            chain->incActiveTrackCnt();
2196        }
2197
2198        status = NO_ERROR;
2199    }
2200
2201    onAddNewTrack_l();
2202    return status;
2203}
2204
2205bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2206{
2207    track->terminate();
2208    // active tracks are removed by threadLoop()
2209    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2210    track->mState = TrackBase::STOPPED;
2211    if (!trackActive) {
2212        removeTrack_l(track);
2213    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2214        track->mState = TrackBase::STOPPING_1;
2215    }
2216
2217    return trackActive;
2218}
2219
2220void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2221{
2222    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2223    mTracks.remove(track);
2224    deleteTrackName_l(track->name());
2225    // redundant as track is about to be destroyed, for dumpsys only
2226    track->mName = -1;
2227    if (track->isFastTrack()) {
2228        int index = track->mFastIndex;
2229        ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2230        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2231        mFastTrackAvailMask |= 1 << index;
2232        // redundant as track is about to be destroyed, for dumpsys only
2233        track->mFastIndex = -1;
2234    }
2235    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2236    if (chain != 0) {
2237        chain->decTrackCnt();
2238    }
2239}
2240
2241void AudioFlinger::PlaybackThread::broadcast_l()
2242{
2243    // Thread could be blocked waiting for async
2244    // so signal it to handle state changes immediately
2245    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2246    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2247    mSignalPending = true;
2248    mWaitWorkCV.broadcast();
2249}
2250
2251String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2252{
2253    Mutex::Autolock _l(mLock);
2254    if (initCheck() != NO_ERROR) {
2255        return String8();
2256    }
2257
2258    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2259    const String8 out_s8(s);
2260    free(s);
2261    return out_s8;
2262}
2263
2264void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2265    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2266    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2267
2268    desc->mIoHandle = mId;
2269
2270    switch (event) {
2271    case AUDIO_OUTPUT_OPENED:
2272    case AUDIO_OUTPUT_CONFIG_CHANGED:
2273        desc->mPatch = mPatch;
2274        desc->mChannelMask = mChannelMask;
2275        desc->mSamplingRate = mSampleRate;
2276        desc->mFormat = mFormat;
2277        desc->mFrameCount = mNormalFrameCount; // FIXME see
2278                                             // AudioFlinger::frameCount(audio_io_handle_t)
2279        desc->mFrameCountHAL = mFrameCount;
2280        desc->mLatency = latency_l();
2281        break;
2282
2283    case AUDIO_OUTPUT_CLOSED:
2284    default:
2285        break;
2286    }
2287    mAudioFlinger->ioConfigChanged(event, desc, pid);
2288}
2289
2290void AudioFlinger::PlaybackThread::writeCallback()
2291{
2292    ALOG_ASSERT(mCallbackThread != 0);
2293    mCallbackThread->resetWriteBlocked();
2294}
2295
2296void AudioFlinger::PlaybackThread::drainCallback()
2297{
2298    ALOG_ASSERT(mCallbackThread != 0);
2299    mCallbackThread->resetDraining();
2300}
2301
2302void AudioFlinger::PlaybackThread::errorCallback()
2303{
2304    ALOG_ASSERT(mCallbackThread != 0);
2305    mCallbackThread->setAsyncError();
2306}
2307
2308void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2309{
2310    Mutex::Autolock _l(mLock);
2311    // reject out of sequence requests
2312    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2313        mWriteAckSequence &= ~1;
2314        mWaitWorkCV.signal();
2315    }
2316}
2317
2318void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2319{
2320    Mutex::Autolock _l(mLock);
2321    // reject out of sequence requests
2322    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2323        mDrainSequence &= ~1;
2324        mWaitWorkCV.signal();
2325    }
2326}
2327
2328// static
2329int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2330                                                void *param __unused,
2331                                                void *cookie)
2332{
2333    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2334    ALOGV("asyncCallback() event %d", event);
2335    switch (event) {
2336    case STREAM_CBK_EVENT_WRITE_READY:
2337        me->writeCallback();
2338        break;
2339    case STREAM_CBK_EVENT_DRAIN_READY:
2340        me->drainCallback();
2341        break;
2342    case STREAM_CBK_EVENT_ERROR:
2343        me->errorCallback();
2344        break;
2345    default:
2346        ALOGW("asyncCallback() unknown event %d", event);
2347        break;
2348    }
2349    return 0;
2350}
2351
2352void AudioFlinger::PlaybackThread::readOutputParameters_l()
2353{
2354    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2355    mSampleRate = mOutput->getSampleRate();
2356    mChannelMask = mOutput->getChannelMask();
2357    if (!audio_is_output_channel(mChannelMask)) {
2358        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2359    }
2360    if ((mType == MIXER || mType == DUPLICATING)
2361            && !isValidPcmSinkChannelMask(mChannelMask)) {
2362        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2363                mChannelMask);
2364    }
2365    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2366
2367    // Get actual HAL format.
2368    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2369    // Get format from the shim, which will be different than the HAL format
2370    // if playing compressed audio over HDMI passthrough.
2371    mFormat = mOutput->getFormat();
2372    if (!audio_is_valid_format(mFormat)) {
2373        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2374    }
2375    if ((mType == MIXER || mType == DUPLICATING)
2376            && !isValidPcmSinkFormat(mFormat)) {
2377        LOG_FATAL("HAL format %#x not supported for mixed output",
2378                mFormat);
2379    }
2380    mFrameSize = mOutput->getFrameSize();
2381    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2382    mFrameCount = mBufferSize / mFrameSize;
2383    if (mFrameCount & 15) {
2384        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2385                mFrameCount);
2386    }
2387
2388    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2389            (mOutput->stream->set_callback != NULL)) {
2390        if (mOutput->stream->set_callback(mOutput->stream,
2391                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2392            mUseAsyncWrite = true;
2393            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2394        }
2395    }
2396
2397    mHwSupportsPause = false;
2398    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2399        if (mOutput->stream->pause != NULL) {
2400            if (mOutput->stream->resume != NULL) {
2401                mHwSupportsPause = true;
2402            } else {
2403                ALOGW("direct output implements pause but not resume");
2404            }
2405        } else if (mOutput->stream->resume != NULL) {
2406            ALOGW("direct output implements resume but not pause");
2407        }
2408    }
2409    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2410        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2411    }
2412
2413    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2414        // For best precision, we use float instead of the associated output
2415        // device format (typically PCM 16 bit).
2416
2417        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2418        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2419        mBufferSize = mFrameSize * mFrameCount;
2420
2421        // TODO: We currently use the associated output device channel mask and sample rate.
2422        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2423        // (if a valid mask) to avoid premature downmix.
2424        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2425        // instead of the output device sample rate to avoid loss of high frequency information.
2426        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2427    }
2428
2429    // Calculate size of normal sink buffer relative to the HAL output buffer size
2430    double multiplier = 1.0;
2431    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2432            kUseFastMixer == FastMixer_Dynamic)) {
2433        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2434        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2435
2436        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2437        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2438        maxNormalFrameCount = maxNormalFrameCount & ~15;
2439        if (maxNormalFrameCount < minNormalFrameCount) {
2440            maxNormalFrameCount = minNormalFrameCount;
2441        }
2442        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2443        if (multiplier <= 1.0) {
2444            multiplier = 1.0;
2445        } else if (multiplier <= 2.0) {
2446            if (2 * mFrameCount <= maxNormalFrameCount) {
2447                multiplier = 2.0;
2448            } else {
2449                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2450            }
2451        } else {
2452            multiplier = floor(multiplier);
2453        }
2454    }
2455    mNormalFrameCount = multiplier * mFrameCount;
2456    // round up to nearest 16 frames to satisfy AudioMixer
2457    if (mType == MIXER || mType == DUPLICATING) {
2458        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2459    }
2460    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2461            mNormalFrameCount);
2462
2463    // Check if we want to throttle the processing to no more than 2x normal rate
2464    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2465    mThreadThrottleTimeMs = 0;
2466    mThreadThrottleEndMs = 0;
2467    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2468
2469    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2470    // Originally this was int16_t[] array, need to remove legacy implications.
2471    free(mSinkBuffer);
2472    mSinkBuffer = NULL;
2473    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2474    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2475    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2476    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2477
2478    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2479    // drives the output.
2480    free(mMixerBuffer);
2481    mMixerBuffer = NULL;
2482    if (mMixerBufferEnabled) {
2483        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2484        mMixerBufferSize = mNormalFrameCount * mChannelCount
2485                * audio_bytes_per_sample(mMixerBufferFormat);
2486        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2487    }
2488    free(mEffectBuffer);
2489    mEffectBuffer = NULL;
2490    if (mEffectBufferEnabled) {
2491        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2492        mEffectBufferSize = mNormalFrameCount * mChannelCount
2493                * audio_bytes_per_sample(mEffectBufferFormat);
2494        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2495    }
2496
2497    // force reconfiguration of effect chains and engines to take new buffer size and audio
2498    // parameters into account
2499    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2500    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2501    // matter.
2502    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2503    Vector< sp<EffectChain> > effectChains = mEffectChains;
2504    for (size_t i = 0; i < effectChains.size(); i ++) {
2505        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2506    }
2507}
2508
2509
2510status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2511{
2512    if (halFrames == NULL || dspFrames == NULL) {
2513        return BAD_VALUE;
2514    }
2515    Mutex::Autolock _l(mLock);
2516    if (initCheck() != NO_ERROR) {
2517        return INVALID_OPERATION;
2518    }
2519    int64_t framesWritten = mBytesWritten / mFrameSize;
2520    *halFrames = framesWritten;
2521
2522    if (isSuspended()) {
2523        // return an estimation of rendered frames when the output is suspended
2524        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2525        *dspFrames = (uint32_t)
2526                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2527        return NO_ERROR;
2528    } else {
2529        status_t status;
2530        uint32_t frames;
2531        status = mOutput->getRenderPosition(&frames);
2532        *dspFrames = (size_t)frames;
2533        return status;
2534    }
2535}
2536
2537// hasAudioSession_l() must be called with ThreadBase::mLock held
2538uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2539{
2540    uint32_t result = 0;
2541    if (getEffectChain_l(sessionId) != 0) {
2542        result = EFFECT_SESSION;
2543    }
2544
2545    for (size_t i = 0; i < mTracks.size(); ++i) {
2546        sp<Track> track = mTracks[i];
2547        if (sessionId == track->sessionId() && !track->isInvalid()) {
2548            result |= TRACK_SESSION;
2549            if (track->isFastTrack()) {
2550                result |= FAST_SESSION;
2551            }
2552            break;
2553        }
2554    }
2555
2556    return result;
2557}
2558
2559uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2560{
2561    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2562    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2563    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2564        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2565    }
2566    for (size_t i = 0; i < mTracks.size(); i++) {
2567        sp<Track> track = mTracks[i];
2568        if (sessionId == track->sessionId() && !track->isInvalid()) {
2569            return AudioSystem::getStrategyForStream(track->streamType());
2570        }
2571    }
2572    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2573}
2574
2575
2576AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2577{
2578    Mutex::Autolock _l(mLock);
2579    return mOutput;
2580}
2581
2582AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2583{
2584    Mutex::Autolock _l(mLock);
2585    AudioStreamOut *output = mOutput;
2586    mOutput = NULL;
2587    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2588    //       must push a NULL and wait for ack
2589    mOutputSink.clear();
2590    mPipeSink.clear();
2591    mNormalSink.clear();
2592    return output;
2593}
2594
2595// this method must always be called either with ThreadBase mLock held or inside the thread loop
2596audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2597{
2598    if (mOutput == NULL) {
2599        return NULL;
2600    }
2601    return &mOutput->stream->common;
2602}
2603
2604uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2605{
2606    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2607}
2608
2609status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2610{
2611    if (!isValidSyncEvent(event)) {
2612        return BAD_VALUE;
2613    }
2614
2615    Mutex::Autolock _l(mLock);
2616
2617    for (size_t i = 0; i < mTracks.size(); ++i) {
2618        sp<Track> track = mTracks[i];
2619        if (event->triggerSession() == track->sessionId()) {
2620            (void) track->setSyncEvent(event);
2621            return NO_ERROR;
2622        }
2623    }
2624
2625    return NAME_NOT_FOUND;
2626}
2627
2628bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2629{
2630    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2631}
2632
2633void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2634        const Vector< sp<Track> >& tracksToRemove)
2635{
2636    size_t count = tracksToRemove.size();
2637    if (count > 0) {
2638        for (size_t i = 0 ; i < count ; i++) {
2639            const sp<Track>& track = tracksToRemove.itemAt(i);
2640            if (track->isExternalTrack()) {
2641                AudioSystem::stopOutput(mId, track->streamType(),
2642                                        track->sessionId());
2643#ifdef ADD_BATTERY_DATA
2644                // to track the speaker usage
2645                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2646#endif
2647                if (track->isTerminated()) {
2648                    AudioSystem::releaseOutput(mId, track->streamType(),
2649                                               track->sessionId());
2650                }
2651            }
2652        }
2653    }
2654}
2655
2656void AudioFlinger::PlaybackThread::checkSilentMode_l()
2657{
2658    if (!mMasterMute) {
2659        char value[PROPERTY_VALUE_MAX];
2660        if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2661            ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2662            return;
2663        }
2664        if (property_get("ro.audio.silent", value, "0") > 0) {
2665            char *endptr;
2666            unsigned long ul = strtoul(value, &endptr, 0);
2667            if (*endptr == '\0' && ul != 0) {
2668                ALOGD("Silence is golden");
2669                // The setprop command will not allow a property to be changed after
2670                // the first time it is set, so we don't have to worry about un-muting.
2671                setMasterMute_l(true);
2672            }
2673        }
2674    }
2675}
2676
2677// shared by MIXER and DIRECT, overridden by DUPLICATING
2678ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2679{
2680    mInWrite = true;
2681    ssize_t bytesWritten;
2682    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2683
2684    // If an NBAIO sink is present, use it to write the normal mixer's submix
2685    if (mNormalSink != 0) {
2686
2687        const size_t count = mBytesRemaining / mFrameSize;
2688
2689        ATRACE_BEGIN("write");
2690        // update the setpoint when AudioFlinger::mScreenState changes
2691        uint32_t screenState = AudioFlinger::mScreenState;
2692        if (screenState != mScreenState) {
2693            mScreenState = screenState;
2694            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2695            if (pipe != NULL) {
2696                pipe->setAvgFrames((mScreenState & 1) ?
2697                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2698            }
2699        }
2700        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2701        ATRACE_END();
2702        if (framesWritten > 0) {
2703            bytesWritten = framesWritten * mFrameSize;
2704        } else {
2705            bytesWritten = framesWritten;
2706        }
2707    // otherwise use the HAL / AudioStreamOut directly
2708    } else {
2709        // Direct output and offload threads
2710
2711        if (mUseAsyncWrite) {
2712            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2713            mWriteAckSequence += 2;
2714            mWriteAckSequence |= 1;
2715            ALOG_ASSERT(mCallbackThread != 0);
2716            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2717        }
2718        // FIXME We should have an implementation of timestamps for direct output threads.
2719        // They are used e.g for multichannel PCM playback over HDMI.
2720        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2721
2722        if (mUseAsyncWrite &&
2723                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2724            // do not wait for async callback in case of error of full write
2725            mWriteAckSequence &= ~1;
2726            ALOG_ASSERT(mCallbackThread != 0);
2727            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2728        }
2729    }
2730
2731    mNumWrites++;
2732    mInWrite = false;
2733    mStandby = false;
2734    return bytesWritten;
2735}
2736
2737void AudioFlinger::PlaybackThread::threadLoop_drain()
2738{
2739    if (mOutput->stream->drain) {
2740        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2741        if (mUseAsyncWrite) {
2742            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2743            mDrainSequence |= 1;
2744            ALOG_ASSERT(mCallbackThread != 0);
2745            mCallbackThread->setDraining(mDrainSequence);
2746        }
2747        mOutput->stream->drain(mOutput->stream,
2748            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2749                                                : AUDIO_DRAIN_ALL);
2750    }
2751}
2752
2753void AudioFlinger::PlaybackThread::threadLoop_exit()
2754{
2755    {
2756        Mutex::Autolock _l(mLock);
2757        for (size_t i = 0; i < mTracks.size(); i++) {
2758            sp<Track> track = mTracks[i];
2759            track->invalidate();
2760        }
2761    }
2762}
2763
2764/*
2765The derived values that are cached:
2766 - mSinkBufferSize from frame count * frame size
2767 - mActiveSleepTimeUs from activeSleepTimeUs()
2768 - mIdleSleepTimeUs from idleSleepTimeUs()
2769 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2770   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2771 - maxPeriod from frame count and sample rate (MIXER only)
2772
2773The parameters that affect these derived values are:
2774 - frame count
2775 - frame size
2776 - sample rate
2777 - device type: A2DP or not
2778 - device latency
2779 - format: PCM or not
2780 - active sleep time
2781 - idle sleep time
2782*/
2783
2784void AudioFlinger::PlaybackThread::cacheParameters_l()
2785{
2786    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2787    mActiveSleepTimeUs = activeSleepTimeUs();
2788    mIdleSleepTimeUs = idleSleepTimeUs();
2789
2790    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2791    // truncating audio when going to standby.
2792    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2793    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2794        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2795            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2796        }
2797    }
2798}
2799
2800bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2801{
2802    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2803            this,  streamType, mTracks.size());
2804    bool trackMatch = false;
2805    size_t size = mTracks.size();
2806    for (size_t i = 0; i < size; i++) {
2807        sp<Track> t = mTracks[i];
2808        if (t->streamType() == streamType && t->isExternalTrack()) {
2809            t->invalidate();
2810            trackMatch = true;
2811        }
2812    }
2813    return trackMatch;
2814}
2815
2816void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2817{
2818    Mutex::Autolock _l(mLock);
2819    invalidateTracks_l(streamType);
2820}
2821
2822status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2823{
2824    audio_session_t session = chain->sessionId();
2825    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2826            ? mEffectBuffer : mSinkBuffer);
2827    bool ownsBuffer = false;
2828
2829    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2830    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2831        // Only one effect chain can be present in direct output thread and it uses
2832        // the sink buffer as input
2833        if (mType != DIRECT) {
2834            size_t numSamples = mNormalFrameCount * mChannelCount;
2835            buffer = new int16_t[numSamples];
2836            memset(buffer, 0, numSamples * sizeof(int16_t));
2837            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2838            ownsBuffer = true;
2839        }
2840
2841        // Attach all tracks with same session ID to this chain.
2842        for (size_t i = 0; i < mTracks.size(); ++i) {
2843            sp<Track> track = mTracks[i];
2844            if (session == track->sessionId()) {
2845                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2846                        buffer);
2847                track->setMainBuffer(buffer);
2848                chain->incTrackCnt();
2849            }
2850        }
2851
2852        // indicate all active tracks in the chain
2853        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2854            sp<Track> track = mActiveTracks[i].promote();
2855            if (track == 0) {
2856                continue;
2857            }
2858            if (session == track->sessionId()) {
2859                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2860                chain->incActiveTrackCnt();
2861            }
2862        }
2863    }
2864    chain->setThread(this);
2865    chain->setInBuffer(buffer, ownsBuffer);
2866    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2867            ? mEffectBuffer : mSinkBuffer));
2868    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2869    // chains list in order to be processed last as it contains output stage effects.
2870    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2871    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2872    // after track specific effects and before output stage.
2873    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2874    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2875    // Effect chain for other sessions are inserted at beginning of effect
2876    // chains list to be processed before output mix effects. Relative order between other
2877    // sessions is not important.
2878    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2879            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2880            "audio_session_t constants misdefined");
2881    size_t size = mEffectChains.size();
2882    size_t i = 0;
2883    for (i = 0; i < size; i++) {
2884        if (mEffectChains[i]->sessionId() < session) {
2885            break;
2886        }
2887    }
2888    mEffectChains.insertAt(chain, i);
2889    checkSuspendOnAddEffectChain_l(chain);
2890
2891    return NO_ERROR;
2892}
2893
2894size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2895{
2896    audio_session_t session = chain->sessionId();
2897
2898    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2899
2900    for (size_t i = 0; i < mEffectChains.size(); i++) {
2901        if (chain == mEffectChains[i]) {
2902            mEffectChains.removeAt(i);
2903            // detach all active tracks from the chain
2904            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2905                sp<Track> track = mActiveTracks[i].promote();
2906                if (track == 0) {
2907                    continue;
2908                }
2909                if (session == track->sessionId()) {
2910                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2911                            chain.get(), session);
2912                    chain->decActiveTrackCnt();
2913                }
2914            }
2915
2916            // detach all tracks with same session ID from this chain
2917            for (size_t i = 0; i < mTracks.size(); ++i) {
2918                sp<Track> track = mTracks[i];
2919                if (session == track->sessionId()) {
2920                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2921                    chain->decTrackCnt();
2922                }
2923            }
2924            break;
2925        }
2926    }
2927    return mEffectChains.size();
2928}
2929
2930status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2931        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2932{
2933    Mutex::Autolock _l(mLock);
2934    return attachAuxEffect_l(track, EffectId);
2935}
2936
2937status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2938        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2939{
2940    status_t status = NO_ERROR;
2941
2942    if (EffectId == 0) {
2943        track->setAuxBuffer(0, NULL);
2944    } else {
2945        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2946        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2947        if (effect != 0) {
2948            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2949                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2950            } else {
2951                status = INVALID_OPERATION;
2952            }
2953        } else {
2954            status = BAD_VALUE;
2955        }
2956    }
2957    return status;
2958}
2959
2960void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2961{
2962    for (size_t i = 0; i < mTracks.size(); ++i) {
2963        sp<Track> track = mTracks[i];
2964        if (track->auxEffectId() == effectId) {
2965            attachAuxEffect_l(track, 0);
2966        }
2967    }
2968}
2969
2970bool AudioFlinger::PlaybackThread::threadLoop()
2971{
2972    Vector< sp<Track> > tracksToRemove;
2973
2974    mStandbyTimeNs = systemTime();
2975    nsecs_t lastWriteFinished = -1; // time last server write completed
2976    int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2977
2978    // MIXER
2979    nsecs_t lastWarning = 0;
2980
2981    // DUPLICATING
2982    // FIXME could this be made local to while loop?
2983    writeFrames = 0;
2984
2985    int lastGeneration = 0;
2986
2987    cacheParameters_l();
2988    mSleepTimeUs = mIdleSleepTimeUs;
2989
2990    if (mType == MIXER) {
2991        sleepTimeShift = 0;
2992    }
2993
2994    CpuStats cpuStats;
2995    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2996
2997    acquireWakeLock();
2998
2999    // mNBLogWriter->log can only be called while thread mutex mLock is held.
3000    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3001    // and then that string will be logged at the next convenient opportunity.
3002    const char *logString = NULL;
3003
3004    checkSilentMode_l();
3005
3006    while (!exitPending())
3007    {
3008        cpuStats.sample(myName);
3009
3010        Vector< sp<EffectChain> > effectChains;
3011
3012        { // scope for mLock
3013
3014            Mutex::Autolock _l(mLock);
3015
3016            processConfigEvents_l();
3017
3018            if (logString != NULL) {
3019                mNBLogWriter->logTimestamp();
3020                mNBLogWriter->log(logString);
3021                logString = NULL;
3022            }
3023
3024            // Gather the framesReleased counters for all active tracks,
3025            // and associate with the sink frames written out.  We need
3026            // this to convert the sink timestamp to the track timestamp.
3027            bool kernelLocationUpdate = false;
3028            if (mNormalSink != 0) {
3029                // Note: The DuplicatingThread may not have a mNormalSink.
3030                // We always fetch the timestamp here because often the downstream
3031                // sink will block while writing.
3032                ExtendedTimestamp timestamp; // use private copy to fetch
3033                (void) mNormalSink->getTimestamp(timestamp);
3034
3035                // We keep track of the last valid kernel position in case we are in underrun
3036                // and the normal mixer period is the same as the fast mixer period, or there
3037                // is some error from the HAL.
3038                if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3039                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3040                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3041                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3042                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3043
3044                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3045                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3046                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3047                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3048                }
3049
3050                if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3051                    kernelLocationUpdate = true;
3052                } else {
3053                    ALOGVV("getTimestamp error - no valid kernel position");
3054                }
3055
3056                // copy over kernel info
3057                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3058                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3059                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3060                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3061            }
3062            // mFramesWritten for non-offloaded tracks are contiguous
3063            // even after standby() is called. This is useful for the track frame
3064            // to sink frame mapping.
3065            bool serverLocationUpdate = false;
3066            if (mFramesWritten != lastFramesWritten) {
3067                serverLocationUpdate = true;
3068                lastFramesWritten = mFramesWritten;
3069            }
3070            // Only update timestamps if there is a meaningful change.
3071            // Either the kernel timestamp must be valid or we have written something.
3072            if (kernelLocationUpdate || serverLocationUpdate) {
3073                if (serverLocationUpdate) {
3074                    // use the time before we called the HAL write - it is a bit more accurate
3075                    // to when the server last read data than the current time here.
3076                    //
3077                    // If we haven't written anything, mLastWriteTime will be -1
3078                    // and we use systemTime().
3079                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3080                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3081                            ? systemTime() : mLastWriteTime;
3082                }
3083                const size_t size = mActiveTracks.size();
3084                for (size_t i = 0; i < size; ++i) {
3085                    sp<Track> t = mActiveTracks[i].promote();
3086                    if (t != 0 && !t->isFastTrack()) {
3087                        t->updateTrackFrameInfo(
3088                                t->mAudioTrackServerProxy->framesReleased(),
3089                                mFramesWritten,
3090                                mTimestamp);
3091                    }
3092                }
3093            }
3094
3095            saveOutputTracks();
3096            if (mSignalPending) {
3097                // A signal was raised while we were unlocked
3098                mSignalPending = false;
3099            } else if (waitingAsyncCallback_l()) {
3100                if (exitPending()) {
3101                    break;
3102                }
3103                bool released = false;
3104                if (!keepWakeLock()) {
3105                    releaseWakeLock_l();
3106                    released = true;
3107                }
3108                mWakeLockUids.clear();
3109                mActiveTracksGeneration++;
3110                ALOGV("wait async completion");
3111                mWaitWorkCV.wait(mLock);
3112                ALOGV("async completion/wake");
3113                if (released) {
3114                    acquireWakeLock_l();
3115                }
3116                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3117                mSleepTimeUs = 0;
3118
3119                continue;
3120            }
3121            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3122                                   isSuspended()) {
3123                // put audio hardware into standby after short delay
3124                if (shouldStandby_l()) {
3125
3126                    threadLoop_standby();
3127
3128                    mStandby = true;
3129                }
3130
3131                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3132                    // we're about to wait, flush the binder command buffer
3133                    IPCThreadState::self()->flushCommands();
3134
3135                    clearOutputTracks();
3136
3137                    if (exitPending()) {
3138                        break;
3139                    }
3140
3141                    releaseWakeLock_l();
3142                    mWakeLockUids.clear();
3143                    mActiveTracksGeneration++;
3144                    // wait until we have something to do...
3145                    ALOGV("%s going to sleep", myName.string());
3146                    mWaitWorkCV.wait(mLock);
3147                    ALOGV("%s waking up", myName.string());
3148                    acquireWakeLock_l();
3149
3150                    mMixerStatus = MIXER_IDLE;
3151                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3152                    mBytesWritten = 0;
3153                    mBytesRemaining = 0;
3154                    checkSilentMode_l();
3155
3156                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3157                    mSleepTimeUs = mIdleSleepTimeUs;
3158                    if (mType == MIXER) {
3159                        sleepTimeShift = 0;
3160                    }
3161
3162                    continue;
3163                }
3164            }
3165            // mMixerStatusIgnoringFastTracks is also updated internally
3166            mMixerStatus = prepareTracks_l(&tracksToRemove);
3167
3168            // compare with previously applied list
3169            if (lastGeneration != mActiveTracksGeneration) {
3170                // update wakelock
3171                updateWakeLockUids_l(mWakeLockUids);
3172                lastGeneration = mActiveTracksGeneration;
3173            }
3174
3175            // prevent any changes in effect chain list and in each effect chain
3176            // during mixing and effect process as the audio buffers could be deleted
3177            // or modified if an effect is created or deleted
3178            lockEffectChains_l(effectChains);
3179        } // mLock scope ends
3180
3181        if (mBytesRemaining == 0) {
3182            mCurrentWriteLength = 0;
3183            if (mMixerStatus == MIXER_TRACKS_READY) {
3184                // threadLoop_mix() sets mCurrentWriteLength
3185                threadLoop_mix();
3186            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3187                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3188                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3189                // must be written to HAL
3190                threadLoop_sleepTime();
3191                if (mSleepTimeUs == 0) {
3192                    mCurrentWriteLength = mSinkBufferSize;
3193                }
3194            }
3195            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3196            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3197            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3198            // or mSinkBuffer (if there are no effects).
3199            //
3200            // This is done pre-effects computation; if effects change to
3201            // support higher precision, this needs to move.
3202            //
3203            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3204            // TODO use mSleepTimeUs == 0 as an additional condition.
3205            if (mMixerBufferValid) {
3206                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3207                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3208
3209                // mono blend occurs for mixer threads only (not direct or offloaded)
3210                // and is handled here if we're going directly to the sink.
3211                if (requireMonoBlend() && !mEffectBufferValid) {
3212                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3213                               true /*limit*/);
3214                }
3215
3216                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3217                        mNormalFrameCount * mChannelCount);
3218            }
3219
3220            mBytesRemaining = mCurrentWriteLength;
3221            if (isSuspended()) {
3222                mSleepTimeUs = suspendSleepTimeUs();
3223                // simulate write to HAL when suspended
3224                mBytesWritten += mSinkBufferSize;
3225                mFramesWritten += mSinkBufferSize / mFrameSize;
3226                mBytesRemaining = 0;
3227            }
3228
3229            // only process effects if we're going to write
3230            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3231                for (size_t i = 0; i < effectChains.size(); i ++) {
3232                    effectChains[i]->process_l();
3233                }
3234            }
3235        }
3236        // Process effect chains for offloaded thread even if no audio
3237        // was read from audio track: process only updates effect state
3238        // and thus does have to be synchronized with audio writes but may have
3239        // to be called while waiting for async write callback
3240        if (mType == OFFLOAD) {
3241            for (size_t i = 0; i < effectChains.size(); i ++) {
3242                effectChains[i]->process_l();
3243            }
3244        }
3245
3246        // Only if the Effects buffer is enabled and there is data in the
3247        // Effects buffer (buffer valid), we need to
3248        // copy into the sink buffer.
3249        // TODO use mSleepTimeUs == 0 as an additional condition.
3250        if (mEffectBufferValid) {
3251            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3252
3253            if (requireMonoBlend()) {
3254                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3255                           true /*limit*/);
3256            }
3257
3258            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3259                    mNormalFrameCount * mChannelCount);
3260        }
3261
3262        // enable changes in effect chain
3263        unlockEffectChains(effectChains);
3264
3265        if (!waitingAsyncCallback()) {
3266            // mSleepTimeUs == 0 means we must write to audio hardware
3267            if (mSleepTimeUs == 0) {
3268                ssize_t ret = 0;
3269                // We save lastWriteFinished here, as previousLastWriteFinished,
3270                // for throttling. On thread start, previousLastWriteFinished will be
3271                // set to -1, which properly results in no throttling after the first write.
3272                nsecs_t previousLastWriteFinished = lastWriteFinished;
3273                nsecs_t delta = 0;
3274                if (mBytesRemaining) {
3275                    // FIXME rewrite to reduce number of system calls
3276                    mLastWriteTime = systemTime();  // also used for dumpsys
3277                    ret = threadLoop_write();
3278                    lastWriteFinished = systemTime();
3279                    delta = lastWriteFinished - mLastWriteTime;
3280                    if (ret < 0) {
3281                        mBytesRemaining = 0;
3282                    } else {
3283                        mBytesWritten += ret;
3284                        mBytesRemaining -= ret;
3285                        mFramesWritten += ret / mFrameSize;
3286                    }
3287                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3288                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3289                    threadLoop_drain();
3290                }
3291                if (mType == MIXER && !mStandby) {
3292                    // write blocked detection
3293                    if (delta > maxPeriod) {
3294                        mNumDelayedWrites++;
3295                        if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3296                            ATRACE_NAME("underrun");
3297                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3298                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3299                            lastWarning = lastWriteFinished;
3300                        }
3301                    }
3302
3303                    if (mThreadThrottle
3304                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3305                            && ret > 0) {                         // we wrote something
3306                        // Limit MixerThread data processing to no more than twice the
3307                        // expected processing rate.
3308                        //
3309                        // This helps prevent underruns with NuPlayer and other applications
3310                        // which may set up buffers that are close to the minimum size, or use
3311                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3312                        //
3313                        // The throttle smooths out sudden large data drains from the device,
3314                        // e.g. when it comes out of standby, which often causes problems with
3315                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3316                        // (2) minimum buffer sized tracks (even if the track is full,
3317                        //     the app won't fill fast enough to handle the sudden draw).
3318                        //
3319                        // Total time spent in last processing cycle equals time spent in
3320                        // 1. threadLoop_write, as well as time spent in
3321                        // 2. threadLoop_mix (significant for heavy mixing, especially
3322                        //                    on low tier processors)
3323
3324                        // it's OK if deltaMs is an overestimate.
3325                        const int32_t deltaMs =
3326                                (lastWriteFinished - previousLastWriteFinished) / 1000000;
3327                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3328                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3329                            usleep(throttleMs * 1000);
3330                            // notify of throttle start on verbose log
3331                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3332                                    "mixer(%p) throttle begin:"
3333                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3334                                    this, ret, deltaMs, throttleMs);
3335                            mThreadThrottleTimeMs += throttleMs;
3336                            // Throttle must be attributed to the previous mixer loop's write time
3337                            // to allow back-to-back throttling.
3338                            lastWriteFinished += throttleMs * 1000000;
3339                        } else {
3340                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3341                            if (diff > 0) {
3342                                // notify of throttle end on debug log
3343                                // but prevent spamming for bluetooth
3344                                ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3345                                        "mixer(%p) throttle end: throttle time(%u)", this, diff);
3346                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3347                            }
3348                        }
3349                    }
3350                }
3351
3352            } else {
3353                ATRACE_BEGIN("sleep");
3354                Mutex::Autolock _l(mLock);
3355                if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3356                    mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3357                }
3358                ATRACE_END();
3359            }
3360        }
3361
3362        // Finally let go of removed track(s), without the lock held
3363        // since we can't guarantee the destructors won't acquire that
3364        // same lock.  This will also mutate and push a new fast mixer state.
3365        threadLoop_removeTracks(tracksToRemove);
3366        tracksToRemove.clear();
3367
3368        // FIXME I don't understand the need for this here;
3369        //       it was in the original code but maybe the
3370        //       assignment in saveOutputTracks() makes this unnecessary?
3371        clearOutputTracks();
3372
3373        // Effect chains will be actually deleted here if they were removed from
3374        // mEffectChains list during mixing or effects processing
3375        effectChains.clear();
3376
3377        // FIXME Note that the above .clear() is no longer necessary since effectChains
3378        // is now local to this block, but will keep it for now (at least until merge done).
3379    }
3380
3381    threadLoop_exit();
3382
3383    if (!mStandby) {
3384        threadLoop_standby();
3385        mStandby = true;
3386    }
3387
3388    releaseWakeLock();
3389    mWakeLockUids.clear();
3390    mActiveTracksGeneration++;
3391
3392    ALOGV("Thread %p type %d exiting", this, mType);
3393    return false;
3394}
3395
3396// removeTracks_l() must be called with ThreadBase::mLock held
3397void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3398{
3399    size_t count = tracksToRemove.size();
3400    if (count > 0) {
3401        for (size_t i=0 ; i<count ; i++) {
3402            const sp<Track>& track = tracksToRemove.itemAt(i);
3403            mActiveTracks.remove(track);
3404            mWakeLockUids.remove(track->uid());
3405            mActiveTracksGeneration++;
3406            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3407            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3408            if (chain != 0) {
3409                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3410                        track->sessionId());
3411                chain->decActiveTrackCnt();
3412            }
3413            if (track->isTerminated()) {
3414                removeTrack_l(track);
3415            }
3416        }
3417    }
3418
3419}
3420
3421status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3422{
3423    if (mNormalSink != 0) {
3424        ExtendedTimestamp ets;
3425        status_t status = mNormalSink->getTimestamp(ets);
3426        if (status == NO_ERROR) {
3427            status = ets.getBestTimestamp(&timestamp);
3428        }
3429        return status;
3430    }
3431    if ((mType == OFFLOAD || mType == DIRECT)
3432            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3433        uint64_t position64;
3434        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3435        if (ret == 0) {
3436            timestamp.mPosition = (uint32_t)position64;
3437            return NO_ERROR;
3438        }
3439    }
3440    return INVALID_OPERATION;
3441}
3442
3443status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3444                                                          audio_patch_handle_t *handle)
3445{
3446    AutoPark<FastMixer> park(mFastMixer);
3447
3448    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3449
3450    return status;
3451}
3452
3453status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3454                                                          audio_patch_handle_t *handle)
3455{
3456    status_t status = NO_ERROR;
3457
3458    // store new device and send to effects
3459    audio_devices_t type = AUDIO_DEVICE_NONE;
3460    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3461        type |= patch->sinks[i].ext.device.type;
3462    }
3463
3464#ifdef ADD_BATTERY_DATA
3465    // when changing the audio output device, call addBatteryData to notify
3466    // the change
3467    if (mOutDevice != type) {
3468        uint32_t params = 0;
3469        // check whether speaker is on
3470        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3471            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3472        }
3473
3474        audio_devices_t deviceWithoutSpeaker
3475            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3476        // check if any other device (except speaker) is on
3477        if (type & deviceWithoutSpeaker) {
3478            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3479        }
3480
3481        if (params != 0) {
3482            addBatteryData(params);
3483        }
3484    }
3485#endif
3486
3487    for (size_t i = 0; i < mEffectChains.size(); i++) {
3488        mEffectChains[i]->setDevice_l(type);
3489    }
3490
3491    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3492    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3493    bool configChanged = mPrevOutDevice != type;
3494    mOutDevice = type;
3495    mPatch = *patch;
3496
3497    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3498        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3499        status = hwDevice->create_audio_patch(hwDevice,
3500                                               patch->num_sources,
3501                                               patch->sources,
3502                                               patch->num_sinks,
3503                                               patch->sinks,
3504                                               handle);
3505    } else {
3506        char *address;
3507        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3508            //FIXME: we only support address on first sink with HAL version < 3.0
3509            address = audio_device_address_to_parameter(
3510                                                        patch->sinks[0].ext.device.type,
3511                                                        patch->sinks[0].ext.device.address);
3512        } else {
3513            address = (char *)calloc(1, 1);
3514        }
3515        AudioParameter param = AudioParameter(String8(address));
3516        free(address);
3517        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3518        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3519                param.toString().string());
3520        *handle = AUDIO_PATCH_HANDLE_NONE;
3521    }
3522    if (configChanged) {
3523        mPrevOutDevice = type;
3524        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3525    }
3526    return status;
3527}
3528
3529status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3530{
3531    AutoPark<FastMixer> park(mFastMixer);
3532
3533    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3534
3535    return status;
3536}
3537
3538status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3539{
3540    status_t status = NO_ERROR;
3541
3542    mOutDevice = AUDIO_DEVICE_NONE;
3543
3544    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3545        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3546        status = hwDevice->release_audio_patch(hwDevice, handle);
3547    } else {
3548        AudioParameter param;
3549        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3550        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3551                param.toString().string());
3552    }
3553    return status;
3554}
3555
3556void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3557{
3558    Mutex::Autolock _l(mLock);
3559    mTracks.add(track);
3560}
3561
3562void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3563{
3564    Mutex::Autolock _l(mLock);
3565    destroyTrack_l(track);
3566}
3567
3568void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3569{
3570    ThreadBase::getAudioPortConfig(config);
3571    config->role = AUDIO_PORT_ROLE_SOURCE;
3572    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3573    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3574}
3575
3576// ----------------------------------------------------------------------------
3577
3578AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3579        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3580    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3581        // mAudioMixer below
3582        // mFastMixer below
3583        mFastMixerFutex(0),
3584        mMasterMono(false)
3585        // mOutputSink below
3586        // mPipeSink below
3587        // mNormalSink below
3588{
3589    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3590    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3591            "mFrameCount=%zu, mNormalFrameCount=%zu",
3592            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3593            mNormalFrameCount);
3594    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3595
3596    if (type == DUPLICATING) {
3597        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3598        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3599        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3600        return;
3601    }
3602    // create an NBAIO sink for the HAL output stream, and negotiate
3603    mOutputSink = new AudioStreamOutSink(output->stream);
3604    size_t numCounterOffers = 0;
3605    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3606#if !LOG_NDEBUG
3607    ssize_t index =
3608#else
3609    (void)
3610#endif
3611            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3612    ALOG_ASSERT(index == 0);
3613
3614    // initialize fast mixer depending on configuration
3615    bool initFastMixer;
3616    switch (kUseFastMixer) {
3617    case FastMixer_Never:
3618        initFastMixer = false;
3619        break;
3620    case FastMixer_Always:
3621        initFastMixer = true;
3622        break;
3623    case FastMixer_Static:
3624    case FastMixer_Dynamic:
3625        initFastMixer = mFrameCount < mNormalFrameCount;
3626        break;
3627    }
3628    if (initFastMixer) {
3629        audio_format_t fastMixerFormat;
3630        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3631            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3632        } else {
3633            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3634        }
3635        if (mFormat != fastMixerFormat) {
3636            // change our Sink format to accept our intermediate precision
3637            mFormat = fastMixerFormat;
3638            free(mSinkBuffer);
3639            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3640            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3641            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3642        }
3643
3644        // create a MonoPipe to connect our submix to FastMixer
3645        NBAIO_Format format = mOutputSink->format();
3646#ifdef TEE_SINK
3647        NBAIO_Format origformat = format;
3648#endif
3649        // adjust format to match that of the Fast Mixer
3650        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3651        format.mFormat = fastMixerFormat;
3652        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3653
3654        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3655        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3656        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3657        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3658        const NBAIO_Format offers[1] = {format};
3659        size_t numCounterOffers = 0;
3660#if !LOG_NDEBUG || defined(TEE_SINK)
3661        ssize_t index =
3662#else
3663        (void)
3664#endif
3665                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3666        ALOG_ASSERT(index == 0);
3667        monoPipe->setAvgFrames((mScreenState & 1) ?
3668                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3669        mPipeSink = monoPipe;
3670
3671#ifdef TEE_SINK
3672        if (mTeeSinkOutputEnabled) {
3673            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3674            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3675            const NBAIO_Format offers2[1] = {origformat};
3676            numCounterOffers = 0;
3677            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3678            ALOG_ASSERT(index == 0);
3679            mTeeSink = teeSink;
3680            PipeReader *teeSource = new PipeReader(*teeSink);
3681            numCounterOffers = 0;
3682            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3683            ALOG_ASSERT(index == 0);
3684            mTeeSource = teeSource;
3685        }
3686#endif
3687
3688        // create fast mixer and configure it initially with just one fast track for our submix
3689        mFastMixer = new FastMixer();
3690        FastMixerStateQueue *sq = mFastMixer->sq();
3691#ifdef STATE_QUEUE_DUMP
3692        sq->setObserverDump(&mStateQueueObserverDump);
3693        sq->setMutatorDump(&mStateQueueMutatorDump);
3694#endif
3695        FastMixerState *state = sq->begin();
3696        FastTrack *fastTrack = &state->mFastTracks[0];
3697        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3698        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3699        fastTrack->mVolumeProvider = NULL;
3700        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3701        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3702        fastTrack->mGeneration++;
3703        state->mFastTracksGen++;
3704        state->mTrackMask = 1;
3705        // fast mixer will use the HAL output sink
3706        state->mOutputSink = mOutputSink.get();
3707        state->mOutputSinkGen++;
3708        state->mFrameCount = mFrameCount;
3709        state->mCommand = FastMixerState::COLD_IDLE;
3710        // already done in constructor initialization list
3711        //mFastMixerFutex = 0;
3712        state->mColdFutexAddr = &mFastMixerFutex;
3713        state->mColdGen++;
3714        state->mDumpState = &mFastMixerDumpState;
3715#ifdef TEE_SINK
3716        state->mTeeSink = mTeeSink.get();
3717#endif
3718        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3719        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3720        sq->end();
3721        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3722
3723        // start the fast mixer
3724        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3725        pid_t tid = mFastMixer->getTid();
3726        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3727
3728#ifdef AUDIO_WATCHDOG
3729        // create and start the watchdog
3730        mAudioWatchdog = new AudioWatchdog();
3731        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3732        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3733        tid = mAudioWatchdog->getTid();
3734        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3735#endif
3736
3737    }
3738
3739    switch (kUseFastMixer) {
3740    case FastMixer_Never:
3741    case FastMixer_Dynamic:
3742        mNormalSink = mOutputSink;
3743        break;
3744    case FastMixer_Always:
3745        mNormalSink = mPipeSink;
3746        break;
3747    case FastMixer_Static:
3748        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3749        break;
3750    }
3751}
3752
3753AudioFlinger::MixerThread::~MixerThread()
3754{
3755    if (mFastMixer != 0) {
3756        FastMixerStateQueue *sq = mFastMixer->sq();
3757        FastMixerState *state = sq->begin();
3758        if (state->mCommand == FastMixerState::COLD_IDLE) {
3759            int32_t old = android_atomic_inc(&mFastMixerFutex);
3760            if (old == -1) {
3761                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3762            }
3763        }
3764        state->mCommand = FastMixerState::EXIT;
3765        sq->end();
3766        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3767        mFastMixer->join();
3768        // Though the fast mixer thread has exited, it's state queue is still valid.
3769        // We'll use that extract the final state which contains one remaining fast track
3770        // corresponding to our sub-mix.
3771        state = sq->begin();
3772        ALOG_ASSERT(state->mTrackMask == 1);
3773        FastTrack *fastTrack = &state->mFastTracks[0];
3774        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3775        delete fastTrack->mBufferProvider;
3776        sq->end(false /*didModify*/);
3777        mFastMixer.clear();
3778#ifdef AUDIO_WATCHDOG
3779        if (mAudioWatchdog != 0) {
3780            mAudioWatchdog->requestExit();
3781            mAudioWatchdog->requestExitAndWait();
3782            mAudioWatchdog.clear();
3783        }
3784#endif
3785    }
3786    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3787    delete mAudioMixer;
3788}
3789
3790
3791uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3792{
3793    if (mFastMixer != 0) {
3794        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3795        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3796    }
3797    return latency;
3798}
3799
3800
3801void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3802{
3803    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3804}
3805
3806ssize_t AudioFlinger::MixerThread::threadLoop_write()
3807{
3808    // FIXME we should only do one push per cycle; confirm this is true
3809    // Start the fast mixer if it's not already running
3810    if (mFastMixer != 0) {
3811        FastMixerStateQueue *sq = mFastMixer->sq();
3812        FastMixerState *state = sq->begin();
3813        if (state->mCommand != FastMixerState::MIX_WRITE &&
3814                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3815            if (state->mCommand == FastMixerState::COLD_IDLE) {
3816
3817                // FIXME workaround for first HAL write being CPU bound on some devices
3818                ATRACE_BEGIN("write");
3819                mOutput->write((char *)mSinkBuffer, 0);
3820                ATRACE_END();
3821
3822                int32_t old = android_atomic_inc(&mFastMixerFutex);
3823                if (old == -1) {
3824                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3825                }
3826#ifdef AUDIO_WATCHDOG
3827                if (mAudioWatchdog != 0) {
3828                    mAudioWatchdog->resume();
3829                }
3830#endif
3831            }
3832            state->mCommand = FastMixerState::MIX_WRITE;
3833#ifdef FAST_THREAD_STATISTICS
3834            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3835                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3836#endif
3837            sq->end();
3838            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3839            if (kUseFastMixer == FastMixer_Dynamic) {
3840                mNormalSink = mPipeSink;
3841            }
3842        } else {
3843            sq->end(false /*didModify*/);
3844        }
3845    }
3846    return PlaybackThread::threadLoop_write();
3847}
3848
3849void AudioFlinger::MixerThread::threadLoop_standby()
3850{
3851    // Idle the fast mixer if it's currently running
3852    if (mFastMixer != 0) {
3853        FastMixerStateQueue *sq = mFastMixer->sq();
3854        FastMixerState *state = sq->begin();
3855        if (!(state->mCommand & FastMixerState::IDLE)) {
3856            state->mCommand = FastMixerState::COLD_IDLE;
3857            state->mColdFutexAddr = &mFastMixerFutex;
3858            state->mColdGen++;
3859            mFastMixerFutex = 0;
3860            sq->end();
3861            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3862            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3863            if (kUseFastMixer == FastMixer_Dynamic) {
3864                mNormalSink = mOutputSink;
3865            }
3866#ifdef AUDIO_WATCHDOG
3867            if (mAudioWatchdog != 0) {
3868                mAudioWatchdog->pause();
3869            }
3870#endif
3871        } else {
3872            sq->end(false /*didModify*/);
3873        }
3874    }
3875    PlaybackThread::threadLoop_standby();
3876}
3877
3878bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3879{
3880    return false;
3881}
3882
3883bool AudioFlinger::PlaybackThread::shouldStandby_l()
3884{
3885    return !mStandby;
3886}
3887
3888bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3889{
3890    Mutex::Autolock _l(mLock);
3891    return waitingAsyncCallback_l();
3892}
3893
3894// shared by MIXER and DIRECT, overridden by DUPLICATING
3895void AudioFlinger::PlaybackThread::threadLoop_standby()
3896{
3897    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3898    mOutput->standby();
3899    if (mUseAsyncWrite != 0) {
3900        // discard any pending drain or write ack by incrementing sequence
3901        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3902        mDrainSequence = (mDrainSequence + 2) & ~1;
3903        ALOG_ASSERT(mCallbackThread != 0);
3904        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3905        mCallbackThread->setDraining(mDrainSequence);
3906    }
3907    mHwPaused = false;
3908}
3909
3910void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3911{
3912    ALOGV("signal playback thread");
3913    broadcast_l();
3914}
3915
3916void AudioFlinger::PlaybackThread::onAsyncError()
3917{
3918    for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
3919        invalidateTracks((audio_stream_type_t)i);
3920    }
3921}
3922
3923void AudioFlinger::MixerThread::threadLoop_mix()
3924{
3925    // mix buffers...
3926    mAudioMixer->process();
3927    mCurrentWriteLength = mSinkBufferSize;
3928    // increase sleep time progressively when application underrun condition clears.
3929    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3930    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3931    // such that we would underrun the audio HAL.
3932    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3933        sleepTimeShift--;
3934    }
3935    mSleepTimeUs = 0;
3936    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3937    //TODO: delay standby when effects have a tail
3938
3939}
3940
3941void AudioFlinger::MixerThread::threadLoop_sleepTime()
3942{
3943    // If no tracks are ready, sleep once for the duration of an output
3944    // buffer size, then write 0s to the output
3945    if (mSleepTimeUs == 0) {
3946        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3947            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3948            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3949                mSleepTimeUs = kMinThreadSleepTimeUs;
3950            }
3951            // reduce sleep time in case of consecutive application underruns to avoid
3952            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3953            // duration we would end up writing less data than needed by the audio HAL if
3954            // the condition persists.
3955            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3956                sleepTimeShift++;
3957            }
3958        } else {
3959            mSleepTimeUs = mIdleSleepTimeUs;
3960        }
3961    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3962        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3963        // before effects processing or output.
3964        if (mMixerBufferValid) {
3965            memset(mMixerBuffer, 0, mMixerBufferSize);
3966        } else {
3967            memset(mSinkBuffer, 0, mSinkBufferSize);
3968        }
3969        mSleepTimeUs = 0;
3970        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3971                "anticipated start");
3972    }
3973    // TODO add standby time extension fct of effect tail
3974}
3975
3976// prepareTracks_l() must be called with ThreadBase::mLock held
3977AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3978        Vector< sp<Track> > *tracksToRemove)
3979{
3980
3981    mixer_state mixerStatus = MIXER_IDLE;
3982    // find out which tracks need to be processed
3983    size_t count = mActiveTracks.size();
3984    size_t mixedTracks = 0;
3985    size_t tracksWithEffect = 0;
3986    // counts only _active_ fast tracks
3987    size_t fastTracks = 0;
3988    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3989
3990    float masterVolume = mMasterVolume;
3991    bool masterMute = mMasterMute;
3992
3993    if (masterMute) {
3994        masterVolume = 0;
3995    }
3996    // Delegate master volume control to effect in output mix effect chain if needed
3997    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3998    if (chain != 0) {
3999        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4000        chain->setVolume_l(&v, &v);
4001        masterVolume = (float)((v + (1 << 23)) >> 24);
4002        chain.clear();
4003    }
4004
4005    // prepare a new state to push
4006    FastMixerStateQueue *sq = NULL;
4007    FastMixerState *state = NULL;
4008    bool didModify = false;
4009    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4010    if (mFastMixer != 0) {
4011        sq = mFastMixer->sq();
4012        state = sq->begin();
4013    }
4014
4015    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
4016    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4017
4018    for (size_t i=0 ; i<count ; i++) {
4019        const sp<Track> t = mActiveTracks[i].promote();
4020        if (t == 0) {
4021            continue;
4022        }
4023
4024        // this const just means the local variable doesn't change
4025        Track* const track = t.get();
4026
4027        // process fast tracks
4028        if (track->isFastTrack()) {
4029
4030            // It's theoretically possible (though unlikely) for a fast track to be created
4031            // and then removed within the same normal mix cycle.  This is not a problem, as
4032            // the track never becomes active so it's fast mixer slot is never touched.
4033            // The converse, of removing an (active) track and then creating a new track
4034            // at the identical fast mixer slot within the same normal mix cycle,
4035            // is impossible because the slot isn't marked available until the end of each cycle.
4036            int j = track->mFastIndex;
4037            ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4038            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4039            FastTrack *fastTrack = &state->mFastTracks[j];
4040
4041            // Determine whether the track is currently in underrun condition,
4042            // and whether it had a recent underrun.
4043            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4044            FastTrackUnderruns underruns = ftDump->mUnderruns;
4045            uint32_t recentFull = (underruns.mBitFields.mFull -
4046                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4047            uint32_t recentPartial = (underruns.mBitFields.mPartial -
4048                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4049            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4050                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4051            uint32_t recentUnderruns = recentPartial + recentEmpty;
4052            track->mObservedUnderruns = underruns;
4053            // don't count underruns that occur while stopping or pausing
4054            // or stopped which can occur when flush() is called while active
4055            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4056                    recentUnderruns > 0) {
4057                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4058                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4059            } else {
4060                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4061            }
4062
4063            // This is similar to the state machine for normal tracks,
4064            // with a few modifications for fast tracks.
4065            bool isActive = true;
4066            switch (track->mState) {
4067            case TrackBase::STOPPING_1:
4068                // track stays active in STOPPING_1 state until first underrun
4069                if (recentUnderruns > 0 || track->isTerminated()) {
4070                    track->mState = TrackBase::STOPPING_2;
4071                }
4072                break;
4073            case TrackBase::PAUSING:
4074                // ramp down is not yet implemented
4075                track->setPaused();
4076                break;
4077            case TrackBase::RESUMING:
4078                // ramp up is not yet implemented
4079                track->mState = TrackBase::ACTIVE;
4080                break;
4081            case TrackBase::ACTIVE:
4082                if (recentFull > 0 || recentPartial > 0) {
4083                    // track has provided at least some frames recently: reset retry count
4084                    track->mRetryCount = kMaxTrackRetries;
4085                }
4086                if (recentUnderruns == 0) {
4087                    // no recent underruns: stay active
4088                    break;
4089                }
4090                // there has recently been an underrun of some kind
4091                if (track->sharedBuffer() == 0) {
4092                    // were any of the recent underruns "empty" (no frames available)?
4093                    if (recentEmpty == 0) {
4094                        // no, then ignore the partial underruns as they are allowed indefinitely
4095                        break;
4096                    }
4097                    // there has recently been an "empty" underrun: decrement the retry counter
4098                    if (--(track->mRetryCount) > 0) {
4099                        break;
4100                    }
4101                    // indicate to client process that the track was disabled because of underrun;
4102                    // it will then automatically call start() when data is available
4103                    track->disable();
4104                    // remove from active list, but state remains ACTIVE [confusing but true]
4105                    isActive = false;
4106                    break;
4107                }
4108                // fall through
4109            case TrackBase::STOPPING_2:
4110            case TrackBase::PAUSED:
4111            case TrackBase::STOPPED:
4112            case TrackBase::FLUSHED:   // flush() while active
4113                // Check for presentation complete if track is inactive
4114                // We have consumed all the buffers of this track.
4115                // This would be incomplete if we auto-paused on underrun
4116                {
4117                    size_t audioHALFrames =
4118                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4119                    int64_t framesWritten = mBytesWritten / mFrameSize;
4120                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4121                        // track stays in active list until presentation is complete
4122                        break;
4123                    }
4124                }
4125                if (track->isStopping_2()) {
4126                    track->mState = TrackBase::STOPPED;
4127                }
4128                if (track->isStopped()) {
4129                    // Can't reset directly, as fast mixer is still polling this track
4130                    //   track->reset();
4131                    // So instead mark this track as needing to be reset after push with ack
4132                    resetMask |= 1 << i;
4133                }
4134                isActive = false;
4135                break;
4136            case TrackBase::IDLE:
4137            default:
4138                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4139            }
4140
4141            if (isActive) {
4142                // was it previously inactive?
4143                if (!(state->mTrackMask & (1 << j))) {
4144                    ExtendedAudioBufferProvider *eabp = track;
4145                    VolumeProvider *vp = track;
4146                    fastTrack->mBufferProvider = eabp;
4147                    fastTrack->mVolumeProvider = vp;
4148                    fastTrack->mChannelMask = track->mChannelMask;
4149                    fastTrack->mFormat = track->mFormat;
4150                    fastTrack->mGeneration++;
4151                    state->mTrackMask |= 1 << j;
4152                    didModify = true;
4153                    // no acknowledgement required for newly active tracks
4154                }
4155                // cache the combined master volume and stream type volume for fast mixer; this
4156                // lacks any synchronization or barrier so VolumeProvider may read a stale value
4157                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4158                ++fastTracks;
4159            } else {
4160                // was it previously active?
4161                if (state->mTrackMask & (1 << j)) {
4162                    fastTrack->mBufferProvider = NULL;
4163                    fastTrack->mGeneration++;
4164                    state->mTrackMask &= ~(1 << j);
4165                    didModify = true;
4166                    // If any fast tracks were removed, we must wait for acknowledgement
4167                    // because we're about to decrement the last sp<> on those tracks.
4168                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4169                } else {
4170                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
4171                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4172                            j, track->mState, state->mTrackMask, recentUnderruns,
4173                            track->sharedBuffer() != 0);
4174                }
4175                tracksToRemove->add(track);
4176                // Avoids a misleading display in dumpsys
4177                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4178            }
4179            continue;
4180        }
4181
4182        {   // local variable scope to avoid goto warning
4183
4184        audio_track_cblk_t* cblk = track->cblk();
4185
4186        // The first time a track is added we wait
4187        // for all its buffers to be filled before processing it
4188        int name = track->name();
4189        // make sure that we have enough frames to mix one full buffer.
4190        // enforce this condition only once to enable draining the buffer in case the client
4191        // app does not call stop() and relies on underrun to stop:
4192        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4193        // during last round
4194        size_t desiredFrames;
4195        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4196        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4197
4198        desiredFrames = sourceFramesNeededWithTimestretch(
4199                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4200        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4201        // add frames already consumed but not yet released by the resampler
4202        // because mAudioTrackServerProxy->framesReady() will include these frames
4203        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4204
4205        uint32_t minFrames = 1;
4206        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4207                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4208            minFrames = desiredFrames;
4209        }
4210
4211        size_t framesReady = track->framesReady();
4212        if (ATRACE_ENABLED()) {
4213            // I wish we had formatted trace names
4214            char traceName[16];
4215            strcpy(traceName, "nRdy");
4216            int name = track->name();
4217            if (AudioMixer::TRACK0 <= name &&
4218                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4219                name -= AudioMixer::TRACK0;
4220                traceName[4] = (name / 10) + '0';
4221                traceName[5] = (name % 10) + '0';
4222            } else {
4223                traceName[4] = '?';
4224                traceName[5] = '?';
4225            }
4226            traceName[6] = '\0';
4227            ATRACE_INT(traceName, framesReady);
4228        }
4229        if ((framesReady >= minFrames) && track->isReady() &&
4230                !track->isPaused() && !track->isTerminated())
4231        {
4232            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4233
4234            mixedTracks++;
4235
4236            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4237            // there is an effect chain connected to the track
4238            chain.clear();
4239            if (track->mainBuffer() != mSinkBuffer &&
4240                    track->mainBuffer() != mMixerBuffer) {
4241                if (mEffectBufferEnabled) {
4242                    mEffectBufferValid = true; // Later can set directly.
4243                }
4244                chain = getEffectChain_l(track->sessionId());
4245                // Delegate volume control to effect in track effect chain if needed
4246                if (chain != 0) {
4247                    tracksWithEffect++;
4248                } else {
4249                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4250                            "session %d",
4251                            name, track->sessionId());
4252                }
4253            }
4254
4255
4256            int param = AudioMixer::VOLUME;
4257            if (track->mFillingUpStatus == Track::FS_FILLED) {
4258                // no ramp for the first volume setting
4259                track->mFillingUpStatus = Track::FS_ACTIVE;
4260                if (track->mState == TrackBase::RESUMING) {
4261                    track->mState = TrackBase::ACTIVE;
4262                    param = AudioMixer::RAMP_VOLUME;
4263                }
4264                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4265            // FIXME should not make a decision based on mServer
4266            } else if (cblk->mServer != 0) {
4267                // If the track is stopped before the first frame was mixed,
4268                // do not apply ramp
4269                param = AudioMixer::RAMP_VOLUME;
4270            }
4271
4272            // compute volume for this track
4273            uint32_t vl, vr;       // in U8.24 integer format
4274            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4275            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4276                vl = vr = 0;
4277                vlf = vrf = vaf = 0.;
4278                if (track->isPausing()) {
4279                    track->setPaused();
4280                }
4281            } else {
4282
4283                // read original volumes with volume control
4284                float typeVolume = mStreamTypes[track->streamType()].volume;
4285                float v = masterVolume * typeVolume;
4286                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4287                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4288                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4289                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4290                // track volumes come from shared memory, so can't be trusted and must be clamped
4291                if (vlf > GAIN_FLOAT_UNITY) {
4292                    ALOGV("Track left volume out of range: %.3g", vlf);
4293                    vlf = GAIN_FLOAT_UNITY;
4294                }
4295                if (vrf > GAIN_FLOAT_UNITY) {
4296                    ALOGV("Track right volume out of range: %.3g", vrf);
4297                    vrf = GAIN_FLOAT_UNITY;
4298                }
4299                // now apply the master volume and stream type volume
4300                vlf *= v;
4301                vrf *= v;
4302                // assuming master volume and stream type volume each go up to 1.0,
4303                // then derive vl and vr as U8.24 versions for the effect chain
4304                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4305                vl = (uint32_t) (scaleto8_24 * vlf);
4306                vr = (uint32_t) (scaleto8_24 * vrf);
4307                // vl and vr are now in U8.24 format
4308                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4309                // send level comes from shared memory and so may be corrupt
4310                if (sendLevel > MAX_GAIN_INT) {
4311                    ALOGV("Track send level out of range: %04X", sendLevel);
4312                    sendLevel = MAX_GAIN_INT;
4313                }
4314                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4315                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4316            }
4317
4318            // Delegate volume control to effect in track effect chain if needed
4319            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4320                // Do not ramp volume if volume is controlled by effect
4321                param = AudioMixer::VOLUME;
4322                // Update remaining floating point volume levels
4323                vlf = (float)vl / (1 << 24);
4324                vrf = (float)vr / (1 << 24);
4325                track->mHasVolumeController = true;
4326            } else {
4327                // force no volume ramp when volume controller was just disabled or removed
4328                // from effect chain to avoid volume spike
4329                if (track->mHasVolumeController) {
4330                    param = AudioMixer::VOLUME;
4331                }
4332                track->mHasVolumeController = false;
4333            }
4334
4335            // XXX: these things DON'T need to be done each time
4336            mAudioMixer->setBufferProvider(name, track);
4337            mAudioMixer->enable(name);
4338
4339            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4340            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4341            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4342            mAudioMixer->setParameter(
4343                name,
4344                AudioMixer::TRACK,
4345                AudioMixer::FORMAT, (void *)track->format());
4346            mAudioMixer->setParameter(
4347                name,
4348                AudioMixer::TRACK,
4349                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4350            mAudioMixer->setParameter(
4351                name,
4352                AudioMixer::TRACK,
4353                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4354            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4355            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4356            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4357            if (reqSampleRate == 0) {
4358                reqSampleRate = mSampleRate;
4359            } else if (reqSampleRate > maxSampleRate) {
4360                reqSampleRate = maxSampleRate;
4361            }
4362            mAudioMixer->setParameter(
4363                name,
4364                AudioMixer::RESAMPLE,
4365                AudioMixer::SAMPLE_RATE,
4366                (void *)(uintptr_t)reqSampleRate);
4367
4368            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4369            mAudioMixer->setParameter(
4370                name,
4371                AudioMixer::TIMESTRETCH,
4372                AudioMixer::PLAYBACK_RATE,
4373                &playbackRate);
4374
4375            /*
4376             * Select the appropriate output buffer for the track.
4377             *
4378             * Tracks with effects go into their own effects chain buffer
4379             * and from there into either mEffectBuffer or mSinkBuffer.
4380             *
4381             * Other tracks can use mMixerBuffer for higher precision
4382             * channel accumulation.  If this buffer is enabled
4383             * (mMixerBufferEnabled true), then selected tracks will accumulate
4384             * into it.
4385             *
4386             */
4387            if (mMixerBufferEnabled
4388                    && (track->mainBuffer() == mSinkBuffer
4389                            || track->mainBuffer() == mMixerBuffer)) {
4390                mAudioMixer->setParameter(
4391                        name,
4392                        AudioMixer::TRACK,
4393                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4394                mAudioMixer->setParameter(
4395                        name,
4396                        AudioMixer::TRACK,
4397                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4398                // TODO: override track->mainBuffer()?
4399                mMixerBufferValid = true;
4400            } else {
4401                mAudioMixer->setParameter(
4402                        name,
4403                        AudioMixer::TRACK,
4404                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4405                mAudioMixer->setParameter(
4406                        name,
4407                        AudioMixer::TRACK,
4408                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4409            }
4410            mAudioMixer->setParameter(
4411                name,
4412                AudioMixer::TRACK,
4413                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4414
4415            // reset retry count
4416            track->mRetryCount = kMaxTrackRetries;
4417
4418            // If one track is ready, set the mixer ready if:
4419            //  - the mixer was not ready during previous round OR
4420            //  - no other track is not ready
4421            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4422                    mixerStatus != MIXER_TRACKS_ENABLED) {
4423                mixerStatus = MIXER_TRACKS_READY;
4424            }
4425        } else {
4426            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4427                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4428                        track, framesReady, desiredFrames);
4429                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4430            } else {
4431                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4432            }
4433
4434            // clear effect chain input buffer if an active track underruns to avoid sending
4435            // previous audio buffer again to effects
4436            chain = getEffectChain_l(track->sessionId());
4437            if (chain != 0) {
4438                chain->clearInputBuffer();
4439            }
4440
4441            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4442            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4443                    track->isStopped() || track->isPaused()) {
4444                // We have consumed all the buffers of this track.
4445                // Remove it from the list of active tracks.
4446                // TODO: use actual buffer filling status instead of latency when available from
4447                // audio HAL
4448                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4449                int64_t framesWritten = mBytesWritten / mFrameSize;
4450                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4451                    if (track->isStopped()) {
4452                        track->reset();
4453                    }
4454                    tracksToRemove->add(track);
4455                }
4456            } else {
4457                // No buffers for this track. Give it a few chances to
4458                // fill a buffer, then remove it from active list.
4459                if (--(track->mRetryCount) <= 0) {
4460                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4461                    tracksToRemove->add(track);
4462                    // indicate to client process that the track was disabled because of underrun;
4463                    // it will then automatically call start() when data is available
4464                    track->disable();
4465                // If one track is not ready, mark the mixer also not ready if:
4466                //  - the mixer was ready during previous round OR
4467                //  - no other track is ready
4468                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4469                                mixerStatus != MIXER_TRACKS_READY) {
4470                    mixerStatus = MIXER_TRACKS_ENABLED;
4471                }
4472            }
4473            mAudioMixer->disable(name);
4474        }
4475
4476        }   // local variable scope to avoid goto warning
4477
4478    }
4479
4480    // Push the new FastMixer state if necessary
4481    bool pauseAudioWatchdog = false;
4482    if (didModify) {
4483        state->mFastTracksGen++;
4484        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4485        if (kUseFastMixer == FastMixer_Dynamic &&
4486                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4487            state->mCommand = FastMixerState::COLD_IDLE;
4488            state->mColdFutexAddr = &mFastMixerFutex;
4489            state->mColdGen++;
4490            mFastMixerFutex = 0;
4491            if (kUseFastMixer == FastMixer_Dynamic) {
4492                mNormalSink = mOutputSink;
4493            }
4494            // If we go into cold idle, need to wait for acknowledgement
4495            // so that fast mixer stops doing I/O.
4496            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4497            pauseAudioWatchdog = true;
4498        }
4499    }
4500    if (sq != NULL) {
4501        sq->end(didModify);
4502        sq->push(block);
4503    }
4504#ifdef AUDIO_WATCHDOG
4505    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4506        mAudioWatchdog->pause();
4507    }
4508#endif
4509
4510    // Now perform the deferred reset on fast tracks that have stopped
4511    while (resetMask != 0) {
4512        size_t i = __builtin_ctz(resetMask);
4513        ALOG_ASSERT(i < count);
4514        resetMask &= ~(1 << i);
4515        sp<Track> t = mActiveTracks[i].promote();
4516        if (t == 0) {
4517            continue;
4518        }
4519        Track* track = t.get();
4520        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4521        track->reset();
4522    }
4523
4524    // remove all the tracks that need to be...
4525    removeTracks_l(*tracksToRemove);
4526
4527    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4528        mEffectBufferValid = true;
4529    }
4530
4531    if (mEffectBufferValid) {
4532        // as long as there are effects we should clear the effects buffer, to avoid
4533        // passing a non-clean buffer to the effect chain
4534        memset(mEffectBuffer, 0, mEffectBufferSize);
4535    }
4536    // sink or mix buffer must be cleared if all tracks are connected to an
4537    // effect chain as in this case the mixer will not write to the sink or mix buffer
4538    // and track effects will accumulate into it
4539    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4540            (mixedTracks == 0 && fastTracks > 0))) {
4541        // FIXME as a performance optimization, should remember previous zero status
4542        if (mMixerBufferValid) {
4543            memset(mMixerBuffer, 0, mMixerBufferSize);
4544            // TODO: In testing, mSinkBuffer below need not be cleared because
4545            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4546            // after mixing.
4547            //
4548            // To enforce this guarantee:
4549            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4550            // (mixedTracks == 0 && fastTracks > 0))
4551            // must imply MIXER_TRACKS_READY.
4552            // Later, we may clear buffers regardless, and skip much of this logic.
4553        }
4554        // FIXME as a performance optimization, should remember previous zero status
4555        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4556    }
4557
4558    // if any fast tracks, then status is ready
4559    mMixerStatusIgnoringFastTracks = mixerStatus;
4560    if (fastTracks > 0) {
4561        mixerStatus = MIXER_TRACKS_READY;
4562    }
4563    return mixerStatus;
4564}
4565
4566// getTrackName_l() must be called with ThreadBase::mLock held
4567int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4568        audio_format_t format, audio_session_t sessionId)
4569{
4570    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4571}
4572
4573// deleteTrackName_l() must be called with ThreadBase::mLock held
4574void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4575{
4576    ALOGV("remove track (%d) and delete from mixer", name);
4577    mAudioMixer->deleteTrackName(name);
4578}
4579
4580// checkForNewParameter_l() must be called with ThreadBase::mLock held
4581bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4582                                                       status_t& status)
4583{
4584    bool reconfig = false;
4585    bool a2dpDeviceChanged = false;
4586
4587    status = NO_ERROR;
4588
4589    AutoPark<FastMixer> park(mFastMixer);
4590
4591    AudioParameter param = AudioParameter(keyValuePair);
4592    int value;
4593    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4594        reconfig = true;
4595    }
4596    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4597        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4598            status = BAD_VALUE;
4599        } else {
4600            // no need to save value, since it's constant
4601            reconfig = true;
4602        }
4603    }
4604    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4605        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4606            status = BAD_VALUE;
4607        } else {
4608            // no need to save value, since it's constant
4609            reconfig = true;
4610        }
4611    }
4612    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4613        // do not accept frame count changes if tracks are open as the track buffer
4614        // size depends on frame count and correct behavior would not be guaranteed
4615        // if frame count is changed after track creation
4616        if (!mTracks.isEmpty()) {
4617            status = INVALID_OPERATION;
4618        } else {
4619            reconfig = true;
4620        }
4621    }
4622    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4623#ifdef ADD_BATTERY_DATA
4624        // when changing the audio output device, call addBatteryData to notify
4625        // the change
4626        if (mOutDevice != value) {
4627            uint32_t params = 0;
4628            // check whether speaker is on
4629            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4630                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4631            }
4632
4633            audio_devices_t deviceWithoutSpeaker
4634                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4635            // check if any other device (except speaker) is on
4636            if (value & deviceWithoutSpeaker) {
4637                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4638            }
4639
4640            if (params != 0) {
4641                addBatteryData(params);
4642            }
4643        }
4644#endif
4645
4646        // forward device change to effects that have requested to be
4647        // aware of attached audio device.
4648        if (value != AUDIO_DEVICE_NONE) {
4649            a2dpDeviceChanged =
4650                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4651            mOutDevice = value;
4652            for (size_t i = 0; i < mEffectChains.size(); i++) {
4653                mEffectChains[i]->setDevice_l(mOutDevice);
4654            }
4655        }
4656    }
4657
4658    if (status == NO_ERROR) {
4659        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4660                                                keyValuePair.string());
4661        if (!mStandby && status == INVALID_OPERATION) {
4662            mOutput->standby();
4663            mStandby = true;
4664            mBytesWritten = 0;
4665            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4666                                                   keyValuePair.string());
4667        }
4668        if (status == NO_ERROR && reconfig) {
4669            readOutputParameters_l();
4670            delete mAudioMixer;
4671            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4672            for (size_t i = 0; i < mTracks.size() ; i++) {
4673                int name = getTrackName_l(mTracks[i]->mChannelMask,
4674                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4675                if (name < 0) {
4676                    break;
4677                }
4678                mTracks[i]->mName = name;
4679            }
4680            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4681        }
4682    }
4683
4684    return reconfig || a2dpDeviceChanged;
4685}
4686
4687
4688void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4689{
4690    PlaybackThread::dumpInternals(fd, args);
4691    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4692    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4693    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4694
4695    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4696    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4697    // This is a large object so we place it on the heap.
4698    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4699    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4700    copy->dump(fd);
4701    delete copy;
4702
4703#ifdef STATE_QUEUE_DUMP
4704    // Similar for state queue
4705    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4706    observerCopy.dump(fd);
4707    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4708    mutatorCopy.dump(fd);
4709#endif
4710
4711#ifdef TEE_SINK
4712    // Write the tee output to a .wav file
4713    dumpTee(fd, mTeeSource, mId);
4714#endif
4715
4716#ifdef AUDIO_WATCHDOG
4717    if (mAudioWatchdog != 0) {
4718        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4719        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4720        wdCopy.dump(fd);
4721    }
4722#endif
4723}
4724
4725uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4726{
4727    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4728}
4729
4730uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4731{
4732    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4733}
4734
4735void AudioFlinger::MixerThread::cacheParameters_l()
4736{
4737    PlaybackThread::cacheParameters_l();
4738
4739    // FIXME: Relaxed timing because of a certain device that can't meet latency
4740    // Should be reduced to 2x after the vendor fixes the driver issue
4741    // increase threshold again due to low power audio mode. The way this warning
4742    // threshold is calculated and its usefulness should be reconsidered anyway.
4743    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4744}
4745
4746// ----------------------------------------------------------------------------
4747
4748AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4749        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4750    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4751        // mLeftVolFloat, mRightVolFloat
4752{
4753}
4754
4755AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4756        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4757        ThreadBase::type_t type, bool systemReady)
4758    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4759        // mLeftVolFloat, mRightVolFloat
4760{
4761}
4762
4763AudioFlinger::DirectOutputThread::~DirectOutputThread()
4764{
4765}
4766
4767void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4768{
4769    float left, right;
4770
4771    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4772        left = right = 0;
4773    } else {
4774        float typeVolume = mStreamTypes[track->streamType()].volume;
4775        float v = mMasterVolume * typeVolume;
4776        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4777        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4778        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4779        if (left > GAIN_FLOAT_UNITY) {
4780            left = GAIN_FLOAT_UNITY;
4781        }
4782        left *= v;
4783        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4784        if (right > GAIN_FLOAT_UNITY) {
4785            right = GAIN_FLOAT_UNITY;
4786        }
4787        right *= v;
4788    }
4789
4790    if (lastTrack) {
4791        if (left != mLeftVolFloat || right != mRightVolFloat) {
4792            mLeftVolFloat = left;
4793            mRightVolFloat = right;
4794
4795            // Convert volumes from float to 8.24
4796            uint32_t vl = (uint32_t)(left * (1 << 24));
4797            uint32_t vr = (uint32_t)(right * (1 << 24));
4798
4799            // Delegate volume control to effect in track effect chain if needed
4800            // only one effect chain can be present on DirectOutputThread, so if
4801            // there is one, the track is connected to it
4802            if (!mEffectChains.isEmpty()) {
4803                mEffectChains[0]->setVolume_l(&vl, &vr);
4804                left = (float)vl / (1 << 24);
4805                right = (float)vr / (1 << 24);
4806            }
4807            if (mOutput->stream->set_volume) {
4808                mOutput->stream->set_volume(mOutput->stream, left, right);
4809            }
4810        }
4811    }
4812}
4813
4814void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4815{
4816    sp<Track> previousTrack = mPreviousTrack.promote();
4817    sp<Track> latestTrack = mLatestActiveTrack.promote();
4818
4819    if (previousTrack != 0 && latestTrack != 0) {
4820        if (mType == DIRECT) {
4821            if (previousTrack.get() != latestTrack.get()) {
4822                mFlushPending = true;
4823            }
4824        } else /* mType == OFFLOAD */ {
4825            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4826                mFlushPending = true;
4827            }
4828        }
4829    }
4830    PlaybackThread::onAddNewTrack_l();
4831}
4832
4833AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4834    Vector< sp<Track> > *tracksToRemove
4835)
4836{
4837    size_t count = mActiveTracks.size();
4838    mixer_state mixerStatus = MIXER_IDLE;
4839    bool doHwPause = false;
4840    bool doHwResume = false;
4841
4842    // find out which tracks need to be processed
4843    for (size_t i = 0; i < count; i++) {
4844        sp<Track> t = mActiveTracks[i].promote();
4845        // The track died recently
4846        if (t == 0) {
4847            continue;
4848        }
4849
4850        if (t->isInvalid()) {
4851            ALOGW("An invalidated track shouldn't be in active list");
4852            tracksToRemove->add(t);
4853            continue;
4854        }
4855
4856        Track* const track = t.get();
4857#ifdef VERY_VERY_VERBOSE_LOGGING
4858        audio_track_cblk_t* cblk = track->cblk();
4859#endif
4860        // Only consider last track started for volume and mixer state control.
4861        // In theory an older track could underrun and restart after the new one starts
4862        // but as we only care about the transition phase between two tracks on a
4863        // direct output, it is not a problem to ignore the underrun case.
4864        sp<Track> l = mLatestActiveTrack.promote();
4865        bool last = l.get() == track;
4866
4867        if (track->isPausing()) {
4868            track->setPaused();
4869            if (mHwSupportsPause && last && !mHwPaused) {
4870                doHwPause = true;
4871                mHwPaused = true;
4872            }
4873            tracksToRemove->add(track);
4874        } else if (track->isFlushPending()) {
4875            track->flushAck();
4876            if (last) {
4877                mFlushPending = true;
4878            }
4879        } else if (track->isResumePending()) {
4880            track->resumeAck();
4881            if (last) {
4882                mLeftVolFloat = mRightVolFloat = -1.0;
4883                if (mHwPaused) {
4884                    doHwResume = true;
4885                    mHwPaused = false;
4886                }
4887            }
4888        }
4889
4890        // The first time a track is added we wait
4891        // for all its buffers to be filled before processing it.
4892        // Allow draining the buffer in case the client
4893        // app does not call stop() and relies on underrun to stop:
4894        // hence the test on (track->mRetryCount > 1).
4895        // If retryCount<=1 then track is about to underrun and be removed.
4896        // Do not use a high threshold for compressed audio.
4897        uint32_t minFrames;
4898        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4899            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4900            minFrames = mNormalFrameCount;
4901        } else {
4902            minFrames = 1;
4903        }
4904
4905        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4906                !track->isStopping_2() && !track->isStopped())
4907        {
4908            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4909
4910            if (track->mFillingUpStatus == Track::FS_FILLED) {
4911                track->mFillingUpStatus = Track::FS_ACTIVE;
4912                if (last) {
4913                    // make sure processVolume_l() will apply new volume even if 0
4914                    mLeftVolFloat = mRightVolFloat = -1.0;
4915                }
4916                if (!mHwSupportsPause) {
4917                    track->resumeAck();
4918                }
4919            }
4920
4921            // compute volume for this track
4922            processVolume_l(track, last);
4923            if (last) {
4924                sp<Track> previousTrack = mPreviousTrack.promote();
4925                if (previousTrack != 0) {
4926                    if (track != previousTrack.get()) {
4927                        // Flush any data still being written from last track
4928                        mBytesRemaining = 0;
4929                        // Invalidate previous track to force a seek when resuming.
4930                        previousTrack->invalidate();
4931                    }
4932                }
4933                mPreviousTrack = track;
4934
4935                // reset retry count
4936                track->mRetryCount = kMaxTrackRetriesDirect;
4937                mActiveTrack = t;
4938                mixerStatus = MIXER_TRACKS_READY;
4939                if (mHwPaused) {
4940                    doHwResume = true;
4941                    mHwPaused = false;
4942                }
4943            }
4944        } else {
4945            // clear effect chain input buffer if the last active track started underruns
4946            // to avoid sending previous audio buffer again to effects
4947            if (!mEffectChains.isEmpty() && last) {
4948                mEffectChains[0]->clearInputBuffer();
4949            }
4950            if (track->isStopping_1()) {
4951                track->mState = TrackBase::STOPPING_2;
4952                if (last && mHwPaused) {
4953                     doHwResume = true;
4954                     mHwPaused = false;
4955                 }
4956            }
4957            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4958                    track->isStopping_2() || track->isPaused()) {
4959                // We have consumed all the buffers of this track.
4960                // Remove it from the list of active tracks.
4961                size_t audioHALFrames;
4962                if (audio_has_proportional_frames(mFormat)) {
4963                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4964                } else {
4965                    audioHALFrames = 0;
4966                }
4967
4968                int64_t framesWritten = mBytesWritten / mFrameSize;
4969                if (mStandby || !last ||
4970                        track->presentationComplete(framesWritten, audioHALFrames)) {
4971                    if (track->isStopping_2()) {
4972                        track->mState = TrackBase::STOPPED;
4973                    }
4974                    if (track->isStopped()) {
4975                        track->reset();
4976                    }
4977                    tracksToRemove->add(track);
4978                }
4979            } else {
4980                // No buffers for this track. Give it a few chances to
4981                // fill a buffer, then remove it from active list.
4982                // Only consider last track started for mixer state control
4983                if (--(track->mRetryCount) <= 0) {
4984                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4985                    tracksToRemove->add(track);
4986                    // indicate to client process that the track was disabled because of underrun;
4987                    // it will then automatically call start() when data is available
4988                    track->disable();
4989                } else if (last) {
4990                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4991                            "minFrames = %u, mFormat = %#x",
4992                            track->framesReady(), minFrames, mFormat);
4993                    mixerStatus = MIXER_TRACKS_ENABLED;
4994                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4995                        doHwPause = true;
4996                        mHwPaused = true;
4997                    }
4998                }
4999            }
5000        }
5001    }
5002
5003    // if an active track did not command a flush, check for pending flush on stopped tracks
5004    if (!mFlushPending) {
5005        for (size_t i = 0; i < mTracks.size(); i++) {
5006            if (mTracks[i]->isFlushPending()) {
5007                mTracks[i]->flushAck();
5008                mFlushPending = true;
5009            }
5010        }
5011    }
5012
5013    // make sure the pause/flush/resume sequence is executed in the right order.
5014    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5015    // before flush and then resume HW. This can happen in case of pause/flush/resume
5016    // if resume is received before pause is executed.
5017    if (mHwSupportsPause && !mStandby &&
5018            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5019        mOutput->stream->pause(mOutput->stream);
5020    }
5021    if (mFlushPending) {
5022        flushHw_l();
5023    }
5024    if (mHwSupportsPause && !mStandby && doHwResume) {
5025        mOutput->stream->resume(mOutput->stream);
5026    }
5027    // remove all the tracks that need to be...
5028    removeTracks_l(*tracksToRemove);
5029
5030    return mixerStatus;
5031}
5032
5033void AudioFlinger::DirectOutputThread::threadLoop_mix()
5034{
5035    size_t frameCount = mFrameCount;
5036    int8_t *curBuf = (int8_t *)mSinkBuffer;
5037    // output audio to hardware
5038    while (frameCount) {
5039        AudioBufferProvider::Buffer buffer;
5040        buffer.frameCount = frameCount;
5041        status_t status = mActiveTrack->getNextBuffer(&buffer);
5042        if (status != NO_ERROR || buffer.raw == NULL) {
5043            // no need to pad with 0 for compressed audio
5044            if (audio_has_proportional_frames(mFormat)) {
5045                memset(curBuf, 0, frameCount * mFrameSize);
5046            }
5047            break;
5048        }
5049        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5050        frameCount -= buffer.frameCount;
5051        curBuf += buffer.frameCount * mFrameSize;
5052        mActiveTrack->releaseBuffer(&buffer);
5053    }
5054    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5055    mSleepTimeUs = 0;
5056    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5057    mActiveTrack.clear();
5058}
5059
5060void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5061{
5062    // do not write to HAL when paused
5063    if (mHwPaused || (usesHwAvSync() && mStandby)) {
5064        mSleepTimeUs = mIdleSleepTimeUs;
5065        return;
5066    }
5067    if (mSleepTimeUs == 0) {
5068        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5069            mSleepTimeUs = mActiveSleepTimeUs;
5070        } else {
5071            mSleepTimeUs = mIdleSleepTimeUs;
5072        }
5073    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5074        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5075        mSleepTimeUs = 0;
5076    }
5077}
5078
5079void AudioFlinger::DirectOutputThread::threadLoop_exit()
5080{
5081    {
5082        Mutex::Autolock _l(mLock);
5083        for (size_t i = 0; i < mTracks.size(); i++) {
5084            if (mTracks[i]->isFlushPending()) {
5085                mTracks[i]->flushAck();
5086                mFlushPending = true;
5087            }
5088        }
5089        if (mFlushPending) {
5090            flushHw_l();
5091        }
5092    }
5093    PlaybackThread::threadLoop_exit();
5094}
5095
5096// must be called with thread mutex locked
5097bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5098{
5099    bool trackPaused = false;
5100    bool trackStopped = false;
5101
5102    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5103        return !mStandby;
5104    }
5105
5106    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5107    // after a timeout and we will enter standby then.
5108    if (mTracks.size() > 0) {
5109        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5110        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5111                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5112    }
5113
5114    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5115}
5116
5117// getTrackName_l() must be called with ThreadBase::mLock held
5118int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5119        audio_format_t format __unused, audio_session_t sessionId __unused)
5120{
5121    return 0;
5122}
5123
5124// deleteTrackName_l() must be called with ThreadBase::mLock held
5125void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5126{
5127}
5128
5129// checkForNewParameter_l() must be called with ThreadBase::mLock held
5130bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5131                                                              status_t& status)
5132{
5133    bool reconfig = false;
5134    bool a2dpDeviceChanged = false;
5135
5136    status = NO_ERROR;
5137
5138    AudioParameter param = AudioParameter(keyValuePair);
5139    int value;
5140    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5141        // forward device change to effects that have requested to be
5142        // aware of attached audio device.
5143        if (value != AUDIO_DEVICE_NONE) {
5144            a2dpDeviceChanged =
5145                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5146            mOutDevice = value;
5147            for (size_t i = 0; i < mEffectChains.size(); i++) {
5148                mEffectChains[i]->setDevice_l(mOutDevice);
5149            }
5150        }
5151    }
5152    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5153        // do not accept frame count changes if tracks are open as the track buffer
5154        // size depends on frame count and correct behavior would not be garantied
5155        // if frame count is changed after track creation
5156        if (!mTracks.isEmpty()) {
5157            status = INVALID_OPERATION;
5158        } else {
5159            reconfig = true;
5160        }
5161    }
5162    if (status == NO_ERROR) {
5163        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5164                                                keyValuePair.string());
5165        if (!mStandby && status == INVALID_OPERATION) {
5166            mOutput->standby();
5167            mStandby = true;
5168            mBytesWritten = 0;
5169            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5170                                                   keyValuePair.string());
5171        }
5172        if (status == NO_ERROR && reconfig) {
5173            readOutputParameters_l();
5174            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5175        }
5176    }
5177
5178    return reconfig || a2dpDeviceChanged;
5179}
5180
5181uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5182{
5183    uint32_t time;
5184    if (audio_has_proportional_frames(mFormat)) {
5185        time = PlaybackThread::activeSleepTimeUs();
5186    } else {
5187        time = kDirectMinSleepTimeUs;
5188    }
5189    return time;
5190}
5191
5192uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5193{
5194    uint32_t time;
5195    if (audio_has_proportional_frames(mFormat)) {
5196        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5197    } else {
5198        time = kDirectMinSleepTimeUs;
5199    }
5200    return time;
5201}
5202
5203uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5204{
5205    uint32_t time;
5206    if (audio_has_proportional_frames(mFormat)) {
5207        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5208    } else {
5209        time = kDirectMinSleepTimeUs;
5210    }
5211    return time;
5212}
5213
5214void AudioFlinger::DirectOutputThread::cacheParameters_l()
5215{
5216    PlaybackThread::cacheParameters_l();
5217
5218    // use shorter standby delay as on normal output to release
5219    // hardware resources as soon as possible
5220    // no delay on outputs with HW A/V sync
5221    if (usesHwAvSync()) {
5222        mStandbyDelayNs = 0;
5223    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5224        mStandbyDelayNs = kOffloadStandbyDelayNs;
5225    } else {
5226        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5227    }
5228}
5229
5230void AudioFlinger::DirectOutputThread::flushHw_l()
5231{
5232    mOutput->flush();
5233    mHwPaused = false;
5234    mFlushPending = false;
5235}
5236
5237// ----------------------------------------------------------------------------
5238
5239AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5240        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5241    :   Thread(false /*canCallJava*/),
5242        mPlaybackThread(playbackThread),
5243        mWriteAckSequence(0),
5244        mDrainSequence(0),
5245        mAsyncError(false)
5246{
5247}
5248
5249AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5250{
5251}
5252
5253void AudioFlinger::AsyncCallbackThread::onFirstRef()
5254{
5255    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5256}
5257
5258bool AudioFlinger::AsyncCallbackThread::threadLoop()
5259{
5260    while (!exitPending()) {
5261        uint32_t writeAckSequence;
5262        uint32_t drainSequence;
5263        bool asyncError;
5264
5265        {
5266            Mutex::Autolock _l(mLock);
5267            while (!((mWriteAckSequence & 1) ||
5268                     (mDrainSequence & 1) ||
5269                     mAsyncError ||
5270                     exitPending())) {
5271                mWaitWorkCV.wait(mLock);
5272            }
5273
5274            if (exitPending()) {
5275                break;
5276            }
5277            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5278                  mWriteAckSequence, mDrainSequence);
5279            writeAckSequence = mWriteAckSequence;
5280            mWriteAckSequence &= ~1;
5281            drainSequence = mDrainSequence;
5282            mDrainSequence &= ~1;
5283            asyncError = mAsyncError;
5284            mAsyncError = false;
5285        }
5286        {
5287            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5288            if (playbackThread != 0) {
5289                if (writeAckSequence & 1) {
5290                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5291                }
5292                if (drainSequence & 1) {
5293                    playbackThread->resetDraining(drainSequence >> 1);
5294                }
5295                if (asyncError) {
5296                    playbackThread->onAsyncError();
5297                }
5298            }
5299        }
5300    }
5301    return false;
5302}
5303
5304void AudioFlinger::AsyncCallbackThread::exit()
5305{
5306    ALOGV("AsyncCallbackThread::exit");
5307    Mutex::Autolock _l(mLock);
5308    requestExit();
5309    mWaitWorkCV.broadcast();
5310}
5311
5312void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5313{
5314    Mutex::Autolock _l(mLock);
5315    // bit 0 is cleared
5316    mWriteAckSequence = sequence << 1;
5317}
5318
5319void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5320{
5321    Mutex::Autolock _l(mLock);
5322    // ignore unexpected callbacks
5323    if (mWriteAckSequence & 2) {
5324        mWriteAckSequence |= 1;
5325        mWaitWorkCV.signal();
5326    }
5327}
5328
5329void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5330{
5331    Mutex::Autolock _l(mLock);
5332    // bit 0 is cleared
5333    mDrainSequence = sequence << 1;
5334}
5335
5336void AudioFlinger::AsyncCallbackThread::resetDraining()
5337{
5338    Mutex::Autolock _l(mLock);
5339    // ignore unexpected callbacks
5340    if (mDrainSequence & 2) {
5341        mDrainSequence |= 1;
5342        mWaitWorkCV.signal();
5343    }
5344}
5345
5346void AudioFlinger::AsyncCallbackThread::setAsyncError()
5347{
5348    Mutex::Autolock _l(mLock);
5349    mAsyncError = true;
5350    mWaitWorkCV.signal();
5351}
5352
5353
5354// ----------------------------------------------------------------------------
5355AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5356        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5357    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5358        mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true)
5359{
5360    //FIXME: mStandby should be set to true by ThreadBase constructor
5361    mStandby = true;
5362    mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5363}
5364
5365void AudioFlinger::OffloadThread::threadLoop_exit()
5366{
5367    if (mFlushPending || mHwPaused) {
5368        // If a flush is pending or track was paused, just discard buffered data
5369        flushHw_l();
5370    } else {
5371        mMixerStatus = MIXER_DRAIN_ALL;
5372        threadLoop_drain();
5373    }
5374    if (mUseAsyncWrite) {
5375        ALOG_ASSERT(mCallbackThread != 0);
5376        mCallbackThread->exit();
5377    }
5378    PlaybackThread::threadLoop_exit();
5379}
5380
5381AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5382    Vector< sp<Track> > *tracksToRemove
5383)
5384{
5385    size_t count = mActiveTracks.size();
5386
5387    mixer_state mixerStatus = MIXER_IDLE;
5388    bool doHwPause = false;
5389    bool doHwResume = false;
5390
5391    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5392
5393    // find out which tracks need to be processed
5394    for (size_t i = 0; i < count; i++) {
5395        sp<Track> t = mActiveTracks[i].promote();
5396        // The track died recently
5397        if (t == 0) {
5398            continue;
5399        }
5400        Track* const track = t.get();
5401#ifdef VERY_VERY_VERBOSE_LOGGING
5402        audio_track_cblk_t* cblk = track->cblk();
5403#endif
5404        // Only consider last track started for volume and mixer state control.
5405        // In theory an older track could underrun and restart after the new one starts
5406        // but as we only care about the transition phase between two tracks on a
5407        // direct output, it is not a problem to ignore the underrun case.
5408        sp<Track> l = mLatestActiveTrack.promote();
5409        bool last = l.get() == track;
5410
5411        if (track->isInvalid()) {
5412            ALOGW("An invalidated track shouldn't be in active list");
5413            tracksToRemove->add(track);
5414            continue;
5415        }
5416
5417        if (track->mState == TrackBase::IDLE) {
5418            ALOGW("An idle track shouldn't be in active list");
5419            continue;
5420        }
5421
5422        if (track->isPausing()) {
5423            track->setPaused();
5424            if (last) {
5425                if (mHwSupportsPause && !mHwPaused) {
5426                    doHwPause = true;
5427                    mHwPaused = true;
5428                }
5429                // If we were part way through writing the mixbuffer to
5430                // the HAL we must save this until we resume
5431                // BUG - this will be wrong if a different track is made active,
5432                // in that case we want to discard the pending data in the
5433                // mixbuffer and tell the client to present it again when the
5434                // track is resumed
5435                mPausedWriteLength = mCurrentWriteLength;
5436                mPausedBytesRemaining = mBytesRemaining;
5437                mBytesRemaining = 0;    // stop writing
5438            }
5439            tracksToRemove->add(track);
5440        } else if (track->isFlushPending()) {
5441            if (track->isStopping_1()) {
5442                track->mRetryCount = kMaxTrackStopRetriesOffload;
5443            } else {
5444                track->mRetryCount = kMaxTrackRetriesOffload;
5445            }
5446            track->flushAck();
5447            if (last) {
5448                mFlushPending = true;
5449            }
5450        } else if (track->isResumePending()){
5451            track->resumeAck();
5452            if (last) {
5453                if (mPausedBytesRemaining) {
5454                    // Need to continue write that was interrupted
5455                    mCurrentWriteLength = mPausedWriteLength;
5456                    mBytesRemaining = mPausedBytesRemaining;
5457                    mPausedBytesRemaining = 0;
5458                }
5459                if (mHwPaused) {
5460                    doHwResume = true;
5461                    mHwPaused = false;
5462                    // threadLoop_mix() will handle the case that we need to
5463                    // resume an interrupted write
5464                }
5465                // enable write to audio HAL
5466                mSleepTimeUs = 0;
5467
5468                mLeftVolFloat = mRightVolFloat = -1.0;
5469
5470                // Do not handle new data in this iteration even if track->framesReady()
5471                mixerStatus = MIXER_TRACKS_ENABLED;
5472            }
5473        }  else if (track->framesReady() && track->isReady() &&
5474                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5475            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5476            if (track->mFillingUpStatus == Track::FS_FILLED) {
5477                track->mFillingUpStatus = Track::FS_ACTIVE;
5478                if (last) {
5479                    // make sure processVolume_l() will apply new volume even if 0
5480                    mLeftVolFloat = mRightVolFloat = -1.0;
5481                }
5482            }
5483
5484            if (last) {
5485                sp<Track> previousTrack = mPreviousTrack.promote();
5486                if (previousTrack != 0) {
5487                    if (track != previousTrack.get()) {
5488                        // Flush any data still being written from last track
5489                        mBytesRemaining = 0;
5490                        if (mPausedBytesRemaining) {
5491                            // Last track was paused so we also need to flush saved
5492                            // mixbuffer state and invalidate track so that it will
5493                            // re-submit that unwritten data when it is next resumed
5494                            mPausedBytesRemaining = 0;
5495                            // Invalidate is a bit drastic - would be more efficient
5496                            // to have a flag to tell client that some of the
5497                            // previously written data was lost
5498                            previousTrack->invalidate();
5499                        }
5500                        // flush data already sent to the DSP if changing audio session as audio
5501                        // comes from a different source. Also invalidate previous track to force a
5502                        // seek when resuming.
5503                        if (previousTrack->sessionId() != track->sessionId()) {
5504                            previousTrack->invalidate();
5505                        }
5506                    }
5507                }
5508                mPreviousTrack = track;
5509                // reset retry count
5510                if (track->isStopping_1()) {
5511                    track->mRetryCount = kMaxTrackStopRetriesOffload;
5512                } else {
5513                    track->mRetryCount = kMaxTrackRetriesOffload;
5514                }
5515                mActiveTrack = t;
5516                mixerStatus = MIXER_TRACKS_READY;
5517            }
5518        } else {
5519            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5520            if (track->isStopping_1()) {
5521                if (--(track->mRetryCount) <= 0) {
5522                    // Hardware buffer can hold a large amount of audio so we must
5523                    // wait for all current track's data to drain before we say
5524                    // that the track is stopped.
5525                    if (mBytesRemaining == 0) {
5526                        // Only start draining when all data in mixbuffer
5527                        // has been written
5528                        ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5529                        track->mState = TrackBase::STOPPING_2; // so presentation completes after
5530                        // drain do not drain if no data was ever sent to HAL (mStandby == true)
5531                        if (last && !mStandby) {
5532                            // do not modify drain sequence if we are already draining. This happens
5533                            // when resuming from pause after drain.
5534                            if ((mDrainSequence & 1) == 0) {
5535                                mSleepTimeUs = 0;
5536                                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5537                                mixerStatus = MIXER_DRAIN_TRACK;
5538                                mDrainSequence += 2;
5539                            }
5540                            if (mHwPaused) {
5541                                // It is possible to move from PAUSED to STOPPING_1 without
5542                                // a resume so we must ensure hardware is running
5543                                doHwResume = true;
5544                                mHwPaused = false;
5545                            }
5546                        }
5547                    }
5548                } else if (last) {
5549                    ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5550                    mixerStatus = MIXER_TRACKS_ENABLED;
5551                }
5552            } else if (track->isStopping_2()) {
5553                // Drain has completed or we are in standby, signal presentation complete
5554                if (!(mDrainSequence & 1) || !last || mStandby) {
5555                    track->mState = TrackBase::STOPPED;
5556                    size_t audioHALFrames =
5557                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5558                    int64_t framesWritten =
5559                            mBytesWritten / mOutput->getFrameSize();
5560                    track->presentationComplete(framesWritten, audioHALFrames);
5561                    track->reset();
5562                    tracksToRemove->add(track);
5563                }
5564            } else {
5565                // No buffers for this track. Give it a few chances to
5566                // fill a buffer, then remove it from active list.
5567                if (--(track->mRetryCount) <= 0) {
5568                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5569                          track->name());
5570                    tracksToRemove->add(track);
5571                    // indicate to client process that the track was disabled because of underrun;
5572                    // it will then automatically call start() when data is available
5573                    track->disable();
5574                } else if (last){
5575                    mixerStatus = MIXER_TRACKS_ENABLED;
5576                }
5577            }
5578        }
5579        // compute volume for this track
5580        processVolume_l(track, last);
5581    }
5582
5583    // make sure the pause/flush/resume sequence is executed in the right order.
5584    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5585    // before flush and then resume HW. This can happen in case of pause/flush/resume
5586    // if resume is received before pause is executed.
5587    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5588        mOutput->stream->pause(mOutput->stream);
5589    }
5590    if (mFlushPending) {
5591        flushHw_l();
5592    }
5593    if (!mStandby && doHwResume) {
5594        mOutput->stream->resume(mOutput->stream);
5595    }
5596
5597    // remove all the tracks that need to be...
5598    removeTracks_l(*tracksToRemove);
5599
5600    return mixerStatus;
5601}
5602
5603// must be called with thread mutex locked
5604bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5605{
5606    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5607          mWriteAckSequence, mDrainSequence);
5608    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5609        return true;
5610    }
5611    return false;
5612}
5613
5614bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5615{
5616    Mutex::Autolock _l(mLock);
5617    return waitingAsyncCallback_l();
5618}
5619
5620void AudioFlinger::OffloadThread::flushHw_l()
5621{
5622    DirectOutputThread::flushHw_l();
5623    // Flush anything still waiting in the mixbuffer
5624    mCurrentWriteLength = 0;
5625    mBytesRemaining = 0;
5626    mPausedWriteLength = 0;
5627    mPausedBytesRemaining = 0;
5628    // reset bytes written count to reflect that DSP buffers are empty after flush.
5629    mBytesWritten = 0;
5630
5631    if (mUseAsyncWrite) {
5632        // discard any pending drain or write ack by incrementing sequence
5633        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5634        mDrainSequence = (mDrainSequence + 2) & ~1;
5635        ALOG_ASSERT(mCallbackThread != 0);
5636        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5637        mCallbackThread->setDraining(mDrainSequence);
5638    }
5639}
5640
5641void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5642{
5643    Mutex::Autolock _l(mLock);
5644    if (PlaybackThread::invalidateTracks_l(streamType)) {
5645        mFlushPending = true;
5646    }
5647}
5648
5649// ----------------------------------------------------------------------------
5650
5651AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5652        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5653    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5654                    systemReady, DUPLICATING),
5655        mWaitTimeMs(UINT_MAX)
5656{
5657    addOutputTrack(mainThread);
5658}
5659
5660AudioFlinger::DuplicatingThread::~DuplicatingThread()
5661{
5662    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5663        mOutputTracks[i]->destroy();
5664    }
5665}
5666
5667void AudioFlinger::DuplicatingThread::threadLoop_mix()
5668{
5669    // mix buffers...
5670    if (outputsReady(outputTracks)) {
5671        mAudioMixer->process();
5672    } else {
5673        if (mMixerBufferValid) {
5674            memset(mMixerBuffer, 0, mMixerBufferSize);
5675        } else {
5676            memset(mSinkBuffer, 0, mSinkBufferSize);
5677        }
5678    }
5679    mSleepTimeUs = 0;
5680    writeFrames = mNormalFrameCount;
5681    mCurrentWriteLength = mSinkBufferSize;
5682    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5683}
5684
5685void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5686{
5687    if (mSleepTimeUs == 0) {
5688        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5689            mSleepTimeUs = mActiveSleepTimeUs;
5690        } else {
5691            mSleepTimeUs = mIdleSleepTimeUs;
5692        }
5693    } else if (mBytesWritten != 0) {
5694        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5695            writeFrames = mNormalFrameCount;
5696            memset(mSinkBuffer, 0, mSinkBufferSize);
5697        } else {
5698            // flush remaining overflow buffers in output tracks
5699            writeFrames = 0;
5700        }
5701        mSleepTimeUs = 0;
5702    }
5703}
5704
5705ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5706{
5707    for (size_t i = 0; i < outputTracks.size(); i++) {
5708        outputTracks[i]->write(mSinkBuffer, writeFrames);
5709    }
5710    mStandby = false;
5711    return (ssize_t)mSinkBufferSize;
5712}
5713
5714void AudioFlinger::DuplicatingThread::threadLoop_standby()
5715{
5716    // DuplicatingThread implements standby by stopping all tracks
5717    for (size_t i = 0; i < outputTracks.size(); i++) {
5718        outputTracks[i]->stop();
5719    }
5720}
5721
5722void AudioFlinger::DuplicatingThread::saveOutputTracks()
5723{
5724    outputTracks = mOutputTracks;
5725}
5726
5727void AudioFlinger::DuplicatingThread::clearOutputTracks()
5728{
5729    outputTracks.clear();
5730}
5731
5732void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5733{
5734    Mutex::Autolock _l(mLock);
5735    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5736    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5737    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5738    const size_t frameCount =
5739            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5740    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5741    // from different OutputTracks and their associated MixerThreads (e.g. one may
5742    // nearly empty and the other may be dropping data).
5743
5744    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5745                                            this,
5746                                            mSampleRate,
5747                                            mFormat,
5748                                            mChannelMask,
5749                                            frameCount,
5750                                            IPCThreadState::self()->getCallingUid());
5751    if (outputTrack->cblk() != NULL) {
5752        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5753        mOutputTracks.add(outputTrack);
5754        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5755        updateWaitTime_l();
5756    }
5757}
5758
5759void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5760{
5761    Mutex::Autolock _l(mLock);
5762    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5763        if (mOutputTracks[i]->thread() == thread) {
5764            mOutputTracks[i]->destroy();
5765            mOutputTracks.removeAt(i);
5766            updateWaitTime_l();
5767            if (thread->getOutput() == mOutput) {
5768                mOutput = NULL;
5769            }
5770            return;
5771        }
5772    }
5773    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5774}
5775
5776// caller must hold mLock
5777void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5778{
5779    mWaitTimeMs = UINT_MAX;
5780    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5781        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5782        if (strong != 0) {
5783            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5784            if (waitTimeMs < mWaitTimeMs) {
5785                mWaitTimeMs = waitTimeMs;
5786            }
5787        }
5788    }
5789}
5790
5791
5792bool AudioFlinger::DuplicatingThread::outputsReady(
5793        const SortedVector< sp<OutputTrack> > &outputTracks)
5794{
5795    for (size_t i = 0; i < outputTracks.size(); i++) {
5796        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5797        if (thread == 0) {
5798            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5799                    outputTracks[i].get());
5800            return false;
5801        }
5802        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5803        // see note at standby() declaration
5804        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5805            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5806                    thread.get());
5807            return false;
5808        }
5809    }
5810    return true;
5811}
5812
5813uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5814{
5815    return (mWaitTimeMs * 1000) / 2;
5816}
5817
5818void AudioFlinger::DuplicatingThread::cacheParameters_l()
5819{
5820    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5821    updateWaitTime_l();
5822
5823    MixerThread::cacheParameters_l();
5824}
5825
5826// ----------------------------------------------------------------------------
5827//      Record
5828// ----------------------------------------------------------------------------
5829
5830AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5831                                         AudioStreamIn *input,
5832                                         audio_io_handle_t id,
5833                                         audio_devices_t outDevice,
5834                                         audio_devices_t inDevice,
5835                                         bool systemReady
5836#ifdef TEE_SINK
5837                                         , const sp<NBAIO_Sink>& teeSink
5838#endif
5839                                         ) :
5840    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5841    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5842    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5843    mRsmpInRear(0)
5844#ifdef TEE_SINK
5845    , mTeeSink(teeSink)
5846#endif
5847    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5848            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5849    // mFastCapture below
5850    , mFastCaptureFutex(0)
5851    // mInputSource
5852    // mPipeSink
5853    // mPipeSource
5854    , mPipeFramesP2(0)
5855    // mPipeMemory
5856    // mFastCaptureNBLogWriter
5857    , mFastTrackAvail(false)
5858{
5859    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5860    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5861
5862    readInputParameters_l();
5863
5864    // create an NBAIO source for the HAL input stream, and negotiate
5865    mInputSource = new AudioStreamInSource(input->stream);
5866    size_t numCounterOffers = 0;
5867    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5868#if !LOG_NDEBUG
5869    ssize_t index =
5870#else
5871    (void)
5872#endif
5873            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5874    ALOG_ASSERT(index == 0);
5875
5876    // initialize fast capture depending on configuration
5877    bool initFastCapture;
5878    switch (kUseFastCapture) {
5879    case FastCapture_Never:
5880        initFastCapture = false;
5881        break;
5882    case FastCapture_Always:
5883        initFastCapture = true;
5884        break;
5885    case FastCapture_Static:
5886        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5887        break;
5888    // case FastCapture_Dynamic:
5889    }
5890
5891    if (initFastCapture) {
5892        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5893        NBAIO_Format format = mInputSource->format();
5894        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5895        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5896        void *pipeBuffer;
5897        const sp<MemoryDealer> roHeap(readOnlyHeap());
5898        sp<IMemory> pipeMemory;
5899        if ((roHeap == 0) ||
5900                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5901                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5902            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5903            goto failed;
5904        }
5905        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5906        memset(pipeBuffer, 0, pipeSize);
5907        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5908        const NBAIO_Format offers[1] = {format};
5909        size_t numCounterOffers = 0;
5910        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5911        ALOG_ASSERT(index == 0);
5912        mPipeSink = pipe;
5913        PipeReader *pipeReader = new PipeReader(*pipe);
5914        numCounterOffers = 0;
5915        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5916        ALOG_ASSERT(index == 0);
5917        mPipeSource = pipeReader;
5918        mPipeFramesP2 = pipeFramesP2;
5919        mPipeMemory = pipeMemory;
5920
5921        // create fast capture
5922        mFastCapture = new FastCapture();
5923        FastCaptureStateQueue *sq = mFastCapture->sq();
5924#ifdef STATE_QUEUE_DUMP
5925        // FIXME
5926#endif
5927        FastCaptureState *state = sq->begin();
5928        state->mCblk = NULL;
5929        state->mInputSource = mInputSource.get();
5930        state->mInputSourceGen++;
5931        state->mPipeSink = pipe;
5932        state->mPipeSinkGen++;
5933        state->mFrameCount = mFrameCount;
5934        state->mCommand = FastCaptureState::COLD_IDLE;
5935        // already done in constructor initialization list
5936        //mFastCaptureFutex = 0;
5937        state->mColdFutexAddr = &mFastCaptureFutex;
5938        state->mColdGen++;
5939        state->mDumpState = &mFastCaptureDumpState;
5940#ifdef TEE_SINK
5941        // FIXME
5942#endif
5943        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5944        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5945        sq->end();
5946        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5947
5948        // start the fast capture
5949        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5950        pid_t tid = mFastCapture->getTid();
5951        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5952#ifdef AUDIO_WATCHDOG
5953        // FIXME
5954#endif
5955
5956        mFastTrackAvail = true;
5957    }
5958failed: ;
5959
5960    // FIXME mNormalSource
5961}
5962
5963AudioFlinger::RecordThread::~RecordThread()
5964{
5965    if (mFastCapture != 0) {
5966        FastCaptureStateQueue *sq = mFastCapture->sq();
5967        FastCaptureState *state = sq->begin();
5968        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5969            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5970            if (old == -1) {
5971                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5972            }
5973        }
5974        state->mCommand = FastCaptureState::EXIT;
5975        sq->end();
5976        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5977        mFastCapture->join();
5978        mFastCapture.clear();
5979    }
5980    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5981    mAudioFlinger->unregisterWriter(mNBLogWriter);
5982    free(mRsmpInBuffer);
5983}
5984
5985void AudioFlinger::RecordThread::onFirstRef()
5986{
5987    run(mThreadName, PRIORITY_URGENT_AUDIO);
5988}
5989
5990bool AudioFlinger::RecordThread::threadLoop()
5991{
5992    nsecs_t lastWarning = 0;
5993
5994    inputStandBy();
5995
5996reacquire_wakelock:
5997    sp<RecordTrack> activeTrack;
5998    int activeTracksGen;
5999    {
6000        Mutex::Autolock _l(mLock);
6001        size_t size = mActiveTracks.size();
6002        activeTracksGen = mActiveTracksGen;
6003        if (size > 0) {
6004            // FIXME an arbitrary choice
6005            activeTrack = mActiveTracks[0];
6006            acquireWakeLock_l(activeTrack->uid());
6007            if (size > 1) {
6008                SortedVector<int> tmp;
6009                for (size_t i = 0; i < size; i++) {
6010                    tmp.add(mActiveTracks[i]->uid());
6011                }
6012                updateWakeLockUids_l(tmp);
6013            }
6014        } else {
6015            acquireWakeLock_l(-1);
6016        }
6017    }
6018
6019    // used to request a deferred sleep, to be executed later while mutex is unlocked
6020    uint32_t sleepUs = 0;
6021
6022    // loop while there is work to do
6023    for (;;) {
6024        Vector< sp<EffectChain> > effectChains;
6025
6026        // activeTracks accumulates a copy of a subset of mActiveTracks
6027        Vector< sp<RecordTrack> > activeTracks;
6028
6029        // reference to the (first and only) active fast track
6030        sp<RecordTrack> fastTrack;
6031
6032        // reference to a fast track which is about to be removed
6033        sp<RecordTrack> fastTrackToRemove;
6034
6035        { // scope for mLock
6036            Mutex::Autolock _l(mLock);
6037
6038            processConfigEvents_l();
6039
6040            // check exitPending here because checkForNewParameters_l() and
6041            // checkForNewParameters_l() can temporarily release mLock
6042            if (exitPending()) {
6043                break;
6044            }
6045
6046            // sleep with mutex unlocked
6047            if (sleepUs > 0) {
6048                ATRACE_BEGIN("sleepC");
6049                mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6050                ATRACE_END();
6051                sleepUs = 0;
6052                continue;
6053            }
6054
6055            // if no active track(s), then standby and release wakelock
6056            size_t size = mActiveTracks.size();
6057            if (size == 0) {
6058                standbyIfNotAlreadyInStandby();
6059                // exitPending() can't become true here
6060                releaseWakeLock_l();
6061                ALOGV("RecordThread: loop stopping");
6062                // go to sleep
6063                mWaitWorkCV.wait(mLock);
6064                ALOGV("RecordThread: loop starting");
6065                goto reacquire_wakelock;
6066            }
6067
6068            if (mActiveTracksGen != activeTracksGen) {
6069                activeTracksGen = mActiveTracksGen;
6070                SortedVector<int> tmp;
6071                for (size_t i = 0; i < size; i++) {
6072                    tmp.add(mActiveTracks[i]->uid());
6073                }
6074                updateWakeLockUids_l(tmp);
6075            }
6076
6077            bool doBroadcast = false;
6078            bool allStopped = true;
6079            for (size_t i = 0; i < size; ) {
6080
6081                activeTrack = mActiveTracks[i];
6082                if (activeTrack->isTerminated()) {
6083                    if (activeTrack->isFastTrack()) {
6084                        ALOG_ASSERT(fastTrackToRemove == 0);
6085                        fastTrackToRemove = activeTrack;
6086                    }
6087                    removeTrack_l(activeTrack);
6088                    mActiveTracks.remove(activeTrack);
6089                    mActiveTracksGen++;
6090                    size--;
6091                    continue;
6092                }
6093
6094                TrackBase::track_state activeTrackState = activeTrack->mState;
6095                switch (activeTrackState) {
6096
6097                case TrackBase::PAUSING:
6098                    mActiveTracks.remove(activeTrack);
6099                    mActiveTracksGen++;
6100                    doBroadcast = true;
6101                    size--;
6102                    continue;
6103
6104                case TrackBase::STARTING_1:
6105                    sleepUs = 10000;
6106                    i++;
6107                    allStopped = false;
6108                    continue;
6109
6110                case TrackBase::STARTING_2:
6111                    doBroadcast = true;
6112                    mStandby = false;
6113                    activeTrack->mState = TrackBase::ACTIVE;
6114                    allStopped = false;
6115                    break;
6116
6117                case TrackBase::ACTIVE:
6118                    allStopped = false;
6119                    break;
6120
6121                case TrackBase::IDLE:
6122                    i++;
6123                    continue;
6124
6125                default:
6126                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6127                }
6128
6129                activeTracks.add(activeTrack);
6130                i++;
6131
6132                if (activeTrack->isFastTrack()) {
6133                    ALOG_ASSERT(!mFastTrackAvail);
6134                    ALOG_ASSERT(fastTrack == 0);
6135                    fastTrack = activeTrack;
6136                }
6137            }
6138
6139            if (allStopped) {
6140                standbyIfNotAlreadyInStandby();
6141            }
6142            if (doBroadcast) {
6143                mStartStopCond.broadcast();
6144            }
6145
6146            // sleep if there are no active tracks to process
6147            if (activeTracks.size() == 0) {
6148                if (sleepUs == 0) {
6149                    sleepUs = kRecordThreadSleepUs;
6150                }
6151                continue;
6152            }
6153            sleepUs = 0;
6154
6155            lockEffectChains_l(effectChains);
6156        }
6157
6158        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6159
6160        size_t size = effectChains.size();
6161        for (size_t i = 0; i < size; i++) {
6162            // thread mutex is not locked, but effect chain is locked
6163            effectChains[i]->process_l();
6164        }
6165
6166        // Push a new fast capture state if fast capture is not already running, or cblk change
6167        if (mFastCapture != 0) {
6168            FastCaptureStateQueue *sq = mFastCapture->sq();
6169            FastCaptureState *state = sq->begin();
6170            bool didModify = false;
6171            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6172            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6173                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6174                if (state->mCommand == FastCaptureState::COLD_IDLE) {
6175                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
6176                    if (old == -1) {
6177                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6178                    }
6179                }
6180                state->mCommand = FastCaptureState::READ_WRITE;
6181#if 0   // FIXME
6182                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6183                        FastThreadDumpState::kSamplingNforLowRamDevice :
6184                        FastThreadDumpState::kSamplingN);
6185#endif
6186                didModify = true;
6187            }
6188            audio_track_cblk_t *cblkOld = state->mCblk;
6189            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6190            if (cblkNew != cblkOld) {
6191                state->mCblk = cblkNew;
6192                // block until acked if removing a fast track
6193                if (cblkOld != NULL) {
6194                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6195                }
6196                didModify = true;
6197            }
6198            sq->end(didModify);
6199            if (didModify) {
6200                sq->push(block);
6201#if 0
6202                if (kUseFastCapture == FastCapture_Dynamic) {
6203                    mNormalSource = mPipeSource;
6204                }
6205#endif
6206            }
6207        }
6208
6209        // now run the fast track destructor with thread mutex unlocked
6210        fastTrackToRemove.clear();
6211
6212        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6213        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6214        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6215        // If destination is non-contiguous, first read past the nominal end of buffer, then
6216        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6217
6218        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6219        ssize_t framesRead;
6220
6221        // If an NBAIO source is present, use it to read the normal capture's data
6222        if (mPipeSource != 0) {
6223            size_t framesToRead = mBufferSize / mFrameSize;
6224            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6225                    framesToRead);
6226            if (framesRead == 0) {
6227                // since pipe is non-blocking, simulate blocking input
6228                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6229            }
6230        // otherwise use the HAL / AudioStreamIn directly
6231        } else {
6232            ATRACE_BEGIN("read");
6233            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6234                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6235            ATRACE_END();
6236            if (bytesRead < 0) {
6237                framesRead = bytesRead;
6238            } else {
6239                framesRead = bytesRead / mFrameSize;
6240            }
6241        }
6242
6243        // Update server timestamp with server stats
6244        // systemTime() is optional if the hardware supports timestamps.
6245        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6246        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6247
6248        // Update server timestamp with kernel stats
6249        if (mInput->stream->get_capture_position != nullptr) {
6250            int64_t position, time;
6251            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6252            if (ret == NO_ERROR) {
6253                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6254                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6255                // Note: In general record buffers should tend to be empty in
6256                // a properly running pipeline.
6257                //
6258                // Also, it is not advantageous to call get_presentation_position during the read
6259                // as the read obtains a lock, preventing the timestamp call from executing.
6260            }
6261        }
6262        // Use this to track timestamp information
6263        // ALOGD("%s", mTimestamp.toString().c_str());
6264
6265        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6266            ALOGE("read failed: framesRead=%zd", framesRead);
6267            // Force input into standby so that it tries to recover at next read attempt
6268            inputStandBy();
6269            sleepUs = kRecordThreadSleepUs;
6270        }
6271        if (framesRead <= 0) {
6272            goto unlock;
6273        }
6274        ALOG_ASSERT(framesRead > 0);
6275
6276        if (mTeeSink != 0) {
6277            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6278        }
6279        // If destination is non-contiguous, we now correct for reading past end of buffer.
6280        {
6281            size_t part1 = mRsmpInFramesP2 - rear;
6282            if ((size_t) framesRead > part1) {
6283                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6284                        (framesRead - part1) * mFrameSize);
6285            }
6286        }
6287        rear = mRsmpInRear += framesRead;
6288
6289        size = activeTracks.size();
6290        // loop over each active track
6291        for (size_t i = 0; i < size; i++) {
6292            activeTrack = activeTracks[i];
6293
6294            // skip fast tracks, as those are handled directly by FastCapture
6295            if (activeTrack->isFastTrack()) {
6296                continue;
6297            }
6298
6299            // TODO: This code probably should be moved to RecordTrack.
6300            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6301
6302            enum {
6303                OVERRUN_UNKNOWN,
6304                OVERRUN_TRUE,
6305                OVERRUN_FALSE
6306            } overrun = OVERRUN_UNKNOWN;
6307
6308            // loop over getNextBuffer to handle circular sink
6309            for (;;) {
6310
6311                activeTrack->mSink.frameCount = ~0;
6312                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6313                size_t framesOut = activeTrack->mSink.frameCount;
6314                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6315
6316                // check available frames and handle overrun conditions
6317                // if the record track isn't draining fast enough.
6318                bool hasOverrun;
6319                size_t framesIn;
6320                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6321                if (hasOverrun) {
6322                    overrun = OVERRUN_TRUE;
6323                }
6324                if (framesOut == 0 || framesIn == 0) {
6325                    break;
6326                }
6327
6328                // Don't allow framesOut to be larger than what is possible with resampling
6329                // from framesIn.
6330                // This isn't strictly necessary but helps limit buffer resizing in
6331                // RecordBufferConverter.  TODO: remove when no longer needed.
6332                framesOut = min(framesOut,
6333                        destinationFramesPossible(
6334                                framesIn, mSampleRate, activeTrack->mSampleRate));
6335                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6336                framesOut = activeTrack->mRecordBufferConverter->convert(
6337                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6338
6339                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6340                    overrun = OVERRUN_FALSE;
6341                }
6342
6343                if (activeTrack->mFramesToDrop == 0) {
6344                    if (framesOut > 0) {
6345                        activeTrack->mSink.frameCount = framesOut;
6346                        activeTrack->releaseBuffer(&activeTrack->mSink);
6347                    }
6348                } else {
6349                    // FIXME could do a partial drop of framesOut
6350                    if (activeTrack->mFramesToDrop > 0) {
6351                        activeTrack->mFramesToDrop -= framesOut;
6352                        if (activeTrack->mFramesToDrop <= 0) {
6353                            activeTrack->clearSyncStartEvent();
6354                        }
6355                    } else {
6356                        activeTrack->mFramesToDrop += framesOut;
6357                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6358                                activeTrack->mSyncStartEvent->isCancelled()) {
6359                            ALOGW("Synced record %s, session %d, trigger session %d",
6360                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6361                                  activeTrack->sessionId(),
6362                                  (activeTrack->mSyncStartEvent != 0) ?
6363                                          activeTrack->mSyncStartEvent->triggerSession() :
6364                                          AUDIO_SESSION_NONE);
6365                            activeTrack->clearSyncStartEvent();
6366                        }
6367                    }
6368                }
6369
6370                if (framesOut == 0) {
6371                    break;
6372                }
6373            }
6374
6375            switch (overrun) {
6376            case OVERRUN_TRUE:
6377                // client isn't retrieving buffers fast enough
6378                if (!activeTrack->setOverflow()) {
6379                    nsecs_t now = systemTime();
6380                    // FIXME should lastWarning per track?
6381                    if ((now - lastWarning) > kWarningThrottleNs) {
6382                        ALOGW("RecordThread: buffer overflow");
6383                        lastWarning = now;
6384                    }
6385                }
6386                break;
6387            case OVERRUN_FALSE:
6388                activeTrack->clearOverflow();
6389                break;
6390            case OVERRUN_UNKNOWN:
6391                break;
6392            }
6393
6394            // update frame information and push timestamp out
6395            activeTrack->updateTrackFrameInfo(
6396                    activeTrack->mServerProxy->framesReleased(),
6397                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6398                    mSampleRate, mTimestamp);
6399        }
6400
6401unlock:
6402        // enable changes in effect chain
6403        unlockEffectChains(effectChains);
6404        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6405    }
6406
6407    standbyIfNotAlreadyInStandby();
6408
6409    {
6410        Mutex::Autolock _l(mLock);
6411        for (size_t i = 0; i < mTracks.size(); i++) {
6412            sp<RecordTrack> track = mTracks[i];
6413            track->invalidate();
6414        }
6415        mActiveTracks.clear();
6416        mActiveTracksGen++;
6417        mStartStopCond.broadcast();
6418    }
6419
6420    releaseWakeLock();
6421
6422    ALOGV("RecordThread %p exiting", this);
6423    return false;
6424}
6425
6426void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6427{
6428    if (!mStandby) {
6429        inputStandBy();
6430        mStandby = true;
6431    }
6432}
6433
6434void AudioFlinger::RecordThread::inputStandBy()
6435{
6436    // Idle the fast capture if it's currently running
6437    if (mFastCapture != 0) {
6438        FastCaptureStateQueue *sq = mFastCapture->sq();
6439        FastCaptureState *state = sq->begin();
6440        if (!(state->mCommand & FastCaptureState::IDLE)) {
6441            state->mCommand = FastCaptureState::COLD_IDLE;
6442            state->mColdFutexAddr = &mFastCaptureFutex;
6443            state->mColdGen++;
6444            mFastCaptureFutex = 0;
6445            sq->end();
6446            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6447            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6448#if 0
6449            if (kUseFastCapture == FastCapture_Dynamic) {
6450                // FIXME
6451            }
6452#endif
6453#ifdef AUDIO_WATCHDOG
6454            // FIXME
6455#endif
6456        } else {
6457            sq->end(false /*didModify*/);
6458        }
6459    }
6460    mInput->stream->common.standby(&mInput->stream->common);
6461}
6462
6463// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6464sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6465        const sp<AudioFlinger::Client>& client,
6466        uint32_t sampleRate,
6467        audio_format_t format,
6468        audio_channel_mask_t channelMask,
6469        size_t *pFrameCount,
6470        audio_session_t sessionId,
6471        size_t *notificationFrames,
6472        int uid,
6473        audio_input_flags_t *flags,
6474        pid_t tid,
6475        status_t *status)
6476{
6477    size_t frameCount = *pFrameCount;
6478    sp<RecordTrack> track;
6479    status_t lStatus;
6480    audio_input_flags_t inputFlags = mInput->flags;
6481
6482    // special case for FAST flag considered OK if fast capture is present
6483    if (hasFastCapture()) {
6484        inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6485    }
6486
6487    // Check if requested flags are compatible with output stream flags
6488    if ((*flags & inputFlags) != *flags) {
6489        ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6490                " input flags (%08x)",
6491              *flags, inputFlags);
6492        *flags = (audio_input_flags_t)(*flags & inputFlags);
6493    }
6494
6495    // client expresses a preference for FAST, but we get the final say
6496    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6497      if (
6498            // we formerly checked for a callback handler (non-0 tid),
6499            // but that is no longer required for TRANSFER_OBTAIN mode
6500            //
6501            // frame count is not specified, or is exactly the pipe depth
6502            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6503            // PCM data
6504            audio_is_linear_pcm(format) &&
6505            // hardware format
6506            (format == mFormat) &&
6507            // hardware channel mask
6508            (channelMask == mChannelMask) &&
6509            // hardware sample rate
6510            (sampleRate == mSampleRate) &&
6511            // record thread has an associated fast capture
6512            hasFastCapture() &&
6513            // there are sufficient fast track slots available
6514            mFastTrackAvail
6515        ) {
6516          // check compatibility with audio effects.
6517          Mutex::Autolock _l(mLock);
6518          // Do not accept FAST flag if the session has software effects
6519          sp<EffectChain> chain = getEffectChain_l(sessionId);
6520          if (chain != 0) {
6521              ALOGV_IF((*flags & AUDIO_INPUT_FLAG_RAW) != 0,
6522                      "AUDIO_INPUT_FLAG_RAW denied: effect present on session");
6523              *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_RAW);
6524              if (chain->hasSoftwareEffect()) {
6525                  ALOGV("AUDIO_INPUT_FLAG_FAST denied: software effect present on session");
6526                  *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6527              }
6528          }
6529          ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6530                   "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6531                   frameCount, mFrameCount);
6532      } else {
6533        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6534                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6535                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6536                frameCount, mFrameCount, mPipeFramesP2,
6537                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6538                hasFastCapture(), tid, mFastTrackAvail);
6539        *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6540      }
6541    }
6542
6543    // compute track buffer size in frames, and suggest the notification frame count
6544    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6545        // fast track: frame count is exactly the pipe depth
6546        frameCount = mPipeFramesP2;
6547        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6548        *notificationFrames = mFrameCount;
6549    } else {
6550        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6551        //                 or 20 ms if there is a fast capture
6552        // TODO This could be a roundupRatio inline, and const
6553        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6554                * sampleRate + mSampleRate - 1) / mSampleRate;
6555        // minimum number of notification periods is at least kMinNotifications,
6556        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6557        static const size_t kMinNotifications = 3;
6558        static const uint32_t kMinMs = 30;
6559        // TODO This could be a roundupRatio inline
6560        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6561        // TODO This could be a roundupRatio inline
6562        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6563                maxNotificationFrames;
6564        const size_t minFrameCount = maxNotificationFrames *
6565                max(kMinNotifications, minNotificationsByMs);
6566        frameCount = max(frameCount, minFrameCount);
6567        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6568            *notificationFrames = maxNotificationFrames;
6569        }
6570    }
6571    *pFrameCount = frameCount;
6572
6573    lStatus = initCheck();
6574    if (lStatus != NO_ERROR) {
6575        ALOGE("createRecordTrack_l() audio driver not initialized");
6576        goto Exit;
6577    }
6578
6579    { // scope for mLock
6580        Mutex::Autolock _l(mLock);
6581
6582        track = new RecordTrack(this, client, sampleRate,
6583                      format, channelMask, frameCount, NULL, sessionId, uid,
6584                      *flags, TrackBase::TYPE_DEFAULT);
6585
6586        lStatus = track->initCheck();
6587        if (lStatus != NO_ERROR) {
6588            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6589            // track must be cleared from the caller as the caller has the AF lock
6590            goto Exit;
6591        }
6592        mTracks.add(track);
6593
6594        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6595        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6596                        mAudioFlinger->btNrecIsOff();
6597        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6598        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6599
6600        if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6601            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6602            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6603            // so ask activity manager to do this on our behalf
6604            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6605        }
6606    }
6607
6608    lStatus = NO_ERROR;
6609
6610Exit:
6611    *status = lStatus;
6612    return track;
6613}
6614
6615status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6616                                           AudioSystem::sync_event_t event,
6617                                           audio_session_t triggerSession)
6618{
6619    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6620    sp<ThreadBase> strongMe = this;
6621    status_t status = NO_ERROR;
6622
6623    if (event == AudioSystem::SYNC_EVENT_NONE) {
6624        recordTrack->clearSyncStartEvent();
6625    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6626        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6627                                       triggerSession,
6628                                       recordTrack->sessionId(),
6629                                       syncStartEventCallback,
6630                                       recordTrack);
6631        // Sync event can be cancelled by the trigger session if the track is not in a
6632        // compatible state in which case we start record immediately
6633        if (recordTrack->mSyncStartEvent->isCancelled()) {
6634            recordTrack->clearSyncStartEvent();
6635        } else {
6636            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6637            recordTrack->mFramesToDrop = -
6638                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6639        }
6640    }
6641
6642    {
6643        // This section is a rendezvous between binder thread executing start() and RecordThread
6644        AutoMutex lock(mLock);
6645        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6646            if (recordTrack->mState == TrackBase::PAUSING) {
6647                ALOGV("active record track PAUSING -> ACTIVE");
6648                recordTrack->mState = TrackBase::ACTIVE;
6649            } else {
6650                ALOGV("active record track state %d", recordTrack->mState);
6651            }
6652            return status;
6653        }
6654
6655        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6656        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6657        //      or using a separate command thread
6658        recordTrack->mState = TrackBase::STARTING_1;
6659        mActiveTracks.add(recordTrack);
6660        mActiveTracksGen++;
6661        status_t status = NO_ERROR;
6662        if (recordTrack->isExternalTrack()) {
6663            mLock.unlock();
6664            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6665            mLock.lock();
6666            // FIXME should verify that recordTrack is still in mActiveTracks
6667            if (status != NO_ERROR) {
6668                mActiveTracks.remove(recordTrack);
6669                mActiveTracksGen++;
6670                recordTrack->clearSyncStartEvent();
6671                ALOGV("RecordThread::start error %d", status);
6672                return status;
6673            }
6674        }
6675        // Catch up with current buffer indices if thread is already running.
6676        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6677        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6678        // see previously buffered data before it called start(), but with greater risk of overrun.
6679
6680        recordTrack->mResamplerBufferProvider->reset();
6681        // clear any converter state as new data will be discontinuous
6682        recordTrack->mRecordBufferConverter->reset();
6683        recordTrack->mState = TrackBase::STARTING_2;
6684        // signal thread to start
6685        mWaitWorkCV.broadcast();
6686        if (mActiveTracks.indexOf(recordTrack) < 0) {
6687            ALOGV("Record failed to start");
6688            status = BAD_VALUE;
6689            goto startError;
6690        }
6691        return status;
6692    }
6693
6694startError:
6695    if (recordTrack->isExternalTrack()) {
6696        AudioSystem::stopInput(mId, recordTrack->sessionId());
6697    }
6698    recordTrack->clearSyncStartEvent();
6699    // FIXME I wonder why we do not reset the state here?
6700    return status;
6701}
6702
6703void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6704{
6705    sp<SyncEvent> strongEvent = event.promote();
6706
6707    if (strongEvent != 0) {
6708        sp<RefBase> ptr = strongEvent->cookie().promote();
6709        if (ptr != 0) {
6710            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6711            recordTrack->handleSyncStartEvent(strongEvent);
6712        }
6713    }
6714}
6715
6716bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6717    ALOGV("RecordThread::stop");
6718    AutoMutex _l(mLock);
6719    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6720        return false;
6721    }
6722    // note that threadLoop may still be processing the track at this point [without lock]
6723    recordTrack->mState = TrackBase::PAUSING;
6724    // signal thread to stop
6725    mWaitWorkCV.broadcast();
6726    // do not wait for mStartStopCond if exiting
6727    if (exitPending()) {
6728        return true;
6729    }
6730    // FIXME incorrect usage of wait: no explicit predicate or loop
6731    mStartStopCond.wait(mLock);
6732    // if we have been restarted, recordTrack is in mActiveTracks here
6733    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6734        ALOGV("Record stopped OK");
6735        return true;
6736    }
6737    return false;
6738}
6739
6740bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6741{
6742    return false;
6743}
6744
6745status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6746{
6747#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6748    if (!isValidSyncEvent(event)) {
6749        return BAD_VALUE;
6750    }
6751
6752    audio_session_t eventSession = event->triggerSession();
6753    status_t ret = NAME_NOT_FOUND;
6754
6755    Mutex::Autolock _l(mLock);
6756
6757    for (size_t i = 0; i < mTracks.size(); i++) {
6758        sp<RecordTrack> track = mTracks[i];
6759        if (eventSession == track->sessionId()) {
6760            (void) track->setSyncEvent(event);
6761            ret = NO_ERROR;
6762        }
6763    }
6764    return ret;
6765#else
6766    return BAD_VALUE;
6767#endif
6768}
6769
6770// destroyTrack_l() must be called with ThreadBase::mLock held
6771void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6772{
6773    track->terminate();
6774    track->mState = TrackBase::STOPPED;
6775    // active tracks are removed by threadLoop()
6776    if (mActiveTracks.indexOf(track) < 0) {
6777        removeTrack_l(track);
6778    }
6779}
6780
6781void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6782{
6783    mTracks.remove(track);
6784    // need anything related to effects here?
6785    if (track->isFastTrack()) {
6786        ALOG_ASSERT(!mFastTrackAvail);
6787        mFastTrackAvail = true;
6788    }
6789}
6790
6791void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6792{
6793    dumpInternals(fd, args);
6794    dumpTracks(fd, args);
6795    dumpEffectChains(fd, args);
6796}
6797
6798void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6799{
6800    dprintf(fd, "\nInput thread %p:\n", this);
6801
6802    dumpBase(fd, args);
6803
6804    if (mActiveTracks.size() == 0) {
6805        dprintf(fd, "  No active record clients\n");
6806    }
6807    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6808    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6809
6810    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6811    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6812    // This is a large object so we place it on the heap.
6813    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6814    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6815    copy->dump(fd);
6816    delete copy;
6817}
6818
6819void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6820{
6821    const size_t SIZE = 256;
6822    char buffer[SIZE];
6823    String8 result;
6824
6825    size_t numtracks = mTracks.size();
6826    size_t numactive = mActiveTracks.size();
6827    size_t numactiveseen = 0;
6828    dprintf(fd, "  %zu Tracks", numtracks);
6829    if (numtracks) {
6830        dprintf(fd, " of which %zu are active\n", numactive);
6831        RecordTrack::appendDumpHeader(result);
6832        for (size_t i = 0; i < numtracks ; ++i) {
6833            sp<RecordTrack> track = mTracks[i];
6834            if (track != 0) {
6835                bool active = mActiveTracks.indexOf(track) >= 0;
6836                if (active) {
6837                    numactiveseen++;
6838                }
6839                track->dump(buffer, SIZE, active);
6840                result.append(buffer);
6841            }
6842        }
6843    } else {
6844        dprintf(fd, "\n");
6845    }
6846
6847    if (numactiveseen != numactive) {
6848        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6849                " not in the track list\n");
6850        result.append(buffer);
6851        RecordTrack::appendDumpHeader(result);
6852        for (size_t i = 0; i < numactive; ++i) {
6853            sp<RecordTrack> track = mActiveTracks[i];
6854            if (mTracks.indexOf(track) < 0) {
6855                track->dump(buffer, SIZE, true);
6856                result.append(buffer);
6857            }
6858        }
6859
6860    }
6861    write(fd, result.string(), result.size());
6862}
6863
6864
6865void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6866{
6867    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6868    RecordThread *recordThread = (RecordThread *) threadBase.get();
6869    mRsmpInFront = recordThread->mRsmpInRear;
6870    mRsmpInUnrel = 0;
6871}
6872
6873void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6874        size_t *framesAvailable, bool *hasOverrun)
6875{
6876    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6877    RecordThread *recordThread = (RecordThread *) threadBase.get();
6878    const int32_t rear = recordThread->mRsmpInRear;
6879    const int32_t front = mRsmpInFront;
6880    const ssize_t filled = rear - front;
6881
6882    size_t framesIn;
6883    bool overrun = false;
6884    if (filled < 0) {
6885        // should not happen, but treat like a massive overrun and re-sync
6886        framesIn = 0;
6887        mRsmpInFront = rear;
6888        overrun = true;
6889    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6890        framesIn = (size_t) filled;
6891    } else {
6892        // client is not keeping up with server, but give it latest data
6893        framesIn = recordThread->mRsmpInFrames;
6894        mRsmpInFront = /* front = */ rear - framesIn;
6895        overrun = true;
6896    }
6897    if (framesAvailable != NULL) {
6898        *framesAvailable = framesIn;
6899    }
6900    if (hasOverrun != NULL) {
6901        *hasOverrun = overrun;
6902    }
6903}
6904
6905// AudioBufferProvider interface
6906status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6907        AudioBufferProvider::Buffer* buffer)
6908{
6909    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6910    if (threadBase == 0) {
6911        buffer->frameCount = 0;
6912        buffer->raw = NULL;
6913        return NOT_ENOUGH_DATA;
6914    }
6915    RecordThread *recordThread = (RecordThread *) threadBase.get();
6916    int32_t rear = recordThread->mRsmpInRear;
6917    int32_t front = mRsmpInFront;
6918    ssize_t filled = rear - front;
6919    // FIXME should not be P2 (don't want to increase latency)
6920    // FIXME if client not keeping up, discard
6921    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6922    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6923    front &= recordThread->mRsmpInFramesP2 - 1;
6924    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6925    if (part1 > (size_t) filled) {
6926        part1 = filled;
6927    }
6928    size_t ask = buffer->frameCount;
6929    ALOG_ASSERT(ask > 0);
6930    if (part1 > ask) {
6931        part1 = ask;
6932    }
6933    if (part1 == 0) {
6934        // out of data is fine since the resampler will return a short-count.
6935        buffer->raw = NULL;
6936        buffer->frameCount = 0;
6937        mRsmpInUnrel = 0;
6938        return NOT_ENOUGH_DATA;
6939    }
6940
6941    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6942    buffer->frameCount = part1;
6943    mRsmpInUnrel = part1;
6944    return NO_ERROR;
6945}
6946
6947// AudioBufferProvider interface
6948void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6949        AudioBufferProvider::Buffer* buffer)
6950{
6951    size_t stepCount = buffer->frameCount;
6952    if (stepCount == 0) {
6953        return;
6954    }
6955    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6956    mRsmpInUnrel -= stepCount;
6957    mRsmpInFront += stepCount;
6958    buffer->raw = NULL;
6959    buffer->frameCount = 0;
6960}
6961
6962AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6963        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6964        uint32_t srcSampleRate,
6965        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6966        uint32_t dstSampleRate) :
6967            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6968            // mSrcFormat
6969            // mSrcSampleRate
6970            // mDstChannelMask
6971            // mDstFormat
6972            // mDstSampleRate
6973            // mSrcChannelCount
6974            // mDstChannelCount
6975            // mDstFrameSize
6976            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6977            mResampler(NULL),
6978            mIsLegacyDownmix(false),
6979            mIsLegacyUpmix(false),
6980            mRequiresFloat(false),
6981            mInputConverterProvider(NULL)
6982{
6983    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6984            dstChannelMask, dstFormat, dstSampleRate);
6985}
6986
6987AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6988    free(mBuf);
6989    delete mResampler;
6990    delete mInputConverterProvider;
6991}
6992
6993size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6994        AudioBufferProvider *provider, size_t frames)
6995{
6996    if (mInputConverterProvider != NULL) {
6997        mInputConverterProvider->setBufferProvider(provider);
6998        provider = mInputConverterProvider;
6999    }
7000
7001    if (mResampler == NULL) {
7002        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7003                mSrcSampleRate, mSrcFormat, mDstFormat);
7004
7005        AudioBufferProvider::Buffer buffer;
7006        for (size_t i = frames; i > 0; ) {
7007            buffer.frameCount = i;
7008            status_t status = provider->getNextBuffer(&buffer);
7009            if (status != OK || buffer.frameCount == 0) {
7010                frames -= i; // cannot fill request.
7011                break;
7012            }
7013            // format convert to destination buffer
7014            convertNoResampler(dst, buffer.raw, buffer.frameCount);
7015
7016            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
7017            i -= buffer.frameCount;
7018            provider->releaseBuffer(&buffer);
7019        }
7020    } else {
7021         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7022                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
7023
7024         // reallocate buffer if needed
7025         if (mBufFrameSize != 0 && mBufFrames < frames) {
7026             free(mBuf);
7027             mBufFrames = frames;
7028             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7029         }
7030        // resampler accumulates, but we only have one source track
7031        memset(mBuf, 0, frames * mBufFrameSize);
7032        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
7033        // format convert to destination buffer
7034        convertResampler(dst, mBuf, frames);
7035    }
7036    return frames;
7037}
7038
7039status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
7040        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7041        uint32_t srcSampleRate,
7042        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7043        uint32_t dstSampleRate)
7044{
7045    // quick evaluation if there is any change.
7046    if (mSrcFormat == srcFormat
7047            && mSrcChannelMask == srcChannelMask
7048            && mSrcSampleRate == srcSampleRate
7049            && mDstFormat == dstFormat
7050            && mDstChannelMask == dstChannelMask
7051            && mDstSampleRate == dstSampleRate) {
7052        return NO_ERROR;
7053    }
7054
7055    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
7056            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
7057            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
7058    const bool valid =
7059            audio_is_input_channel(srcChannelMask)
7060            && audio_is_input_channel(dstChannelMask)
7061            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
7062            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
7063            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
7064            ; // no upsampling checks for now
7065    if (!valid) {
7066        return BAD_VALUE;
7067    }
7068
7069    mSrcFormat = srcFormat;
7070    mSrcChannelMask = srcChannelMask;
7071    mSrcSampleRate = srcSampleRate;
7072    mDstFormat = dstFormat;
7073    mDstChannelMask = dstChannelMask;
7074    mDstSampleRate = dstSampleRate;
7075
7076    // compute derived parameters
7077    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
7078    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
7079    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
7080
7081    // do we need to resample?
7082    delete mResampler;
7083    mResampler = NULL;
7084    if (mSrcSampleRate != mDstSampleRate) {
7085        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
7086                mSrcChannelCount, mDstSampleRate);
7087        mResampler->setSampleRate(mSrcSampleRate);
7088        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
7089    }
7090
7091    // are we running legacy channel conversion modes?
7092    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
7093                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
7094                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
7095    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
7096                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
7097                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
7098
7099    // do we need to process in float?
7100    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
7101
7102    // do we need a staging buffer to convert for destination (we can still optimize this)?
7103    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
7104    if (mResampler != NULL) {
7105        mBufFrameSize = max(mSrcChannelCount, FCC_2)
7106                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7107    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
7108        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7109    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
7110        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
7111    } else {
7112        mBufFrameSize = 0;
7113    }
7114    mBufFrames = 0; // force the buffer to be resized.
7115
7116    // do we need an input converter buffer provider to give us float?
7117    delete mInputConverterProvider;
7118    mInputConverterProvider = NULL;
7119    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
7120        mInputConverterProvider = new ReformatBufferProvider(
7121                audio_channel_count_from_in_mask(mSrcChannelMask),
7122                mSrcFormat,
7123                AUDIO_FORMAT_PCM_FLOAT,
7124                256 /* provider buffer frame count */);
7125    }
7126
7127    // do we need a remixer to do channel mask conversion
7128    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
7129        (void) memcpy_by_index_array_initialization_from_channel_mask(
7130                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
7131    }
7132    return NO_ERROR;
7133}
7134
7135void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
7136        void *dst, const void *src, size_t frames)
7137{
7138    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
7139    if (mBufFrameSize != 0 && mBufFrames < frames) {
7140        free(mBuf);
7141        mBufFrames = frames;
7142        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7143    }
7144    // do we need to do legacy upmix and downmix?
7145    if (mIsLegacyUpmix || mIsLegacyDownmix) {
7146        void *dstBuf = mBuf != NULL ? mBuf : dst;
7147        if (mIsLegacyUpmix) {
7148            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
7149                    (const float *)src, frames);
7150        } else /*mIsLegacyDownmix */ {
7151            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
7152                    (const float *)src, frames);
7153        }
7154        if (mBuf != NULL) {
7155            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
7156                    frames * mDstChannelCount);
7157        }
7158        return;
7159    }
7160    // do we need to do channel mask conversion?
7161    if (mSrcChannelMask != mDstChannelMask) {
7162        void *dstBuf = mBuf != NULL ? mBuf : dst;
7163        memcpy_by_index_array(dstBuf, mDstChannelCount,
7164                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
7165        if (dstBuf == dst) {
7166            return; // format is the same
7167        }
7168    }
7169    // convert to destination buffer
7170    const void *convertBuf = mBuf != NULL ? mBuf : src;
7171    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
7172            frames * mDstChannelCount);
7173}
7174
7175void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
7176        void *dst, /*not-a-const*/ void *src, size_t frames)
7177{
7178    // src buffer format is ALWAYS float when entering this routine
7179    if (mIsLegacyUpmix) {
7180        ; // mono to stereo already handled by resampler
7181    } else if (mIsLegacyDownmix
7182            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7183        // the resampler outputs stereo for mono input channel (a feature?)
7184        // must convert to mono
7185        downmix_to_mono_float_from_stereo_float((float *)src,
7186                (const float *)src, frames);
7187    } else if (mSrcChannelMask != mDstChannelMask) {
7188        // convert to mono channel again for channel mask conversion (could be skipped
7189        // with further optimization).
7190        if (mSrcChannelCount == 1) {
7191            downmix_to_mono_float_from_stereo_float((float *)src,
7192                (const float *)src, frames);
7193        }
7194        // convert to destination format (in place, OK as float is larger than other types)
7195        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7196            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7197                    frames * mSrcChannelCount);
7198        }
7199        // channel convert and save to dst
7200        memcpy_by_index_array(dst, mDstChannelCount,
7201                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7202        return;
7203    }
7204    // convert to destination format and save to dst
7205    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7206            frames * mDstChannelCount);
7207}
7208
7209bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7210                                                        status_t& status)
7211{
7212    bool reconfig = false;
7213
7214    status = NO_ERROR;
7215
7216    audio_format_t reqFormat = mFormat;
7217    uint32_t samplingRate = mSampleRate;
7218    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7219    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7220
7221    AudioParameter param = AudioParameter(keyValuePair);
7222    int value;
7223
7224    // scope for AutoPark extends to end of method
7225    AutoPark<FastCapture> park(mFastCapture);
7226
7227    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7228    //      channel count change can be requested. Do we mandate the first client defines the
7229    //      HAL sampling rate and channel count or do we allow changes on the fly?
7230    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7231        samplingRate = value;
7232        reconfig = true;
7233    }
7234    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7235        if (!audio_is_linear_pcm((audio_format_t) value)) {
7236            status = BAD_VALUE;
7237        } else {
7238            reqFormat = (audio_format_t) value;
7239            reconfig = true;
7240        }
7241    }
7242    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7243        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7244        if (!audio_is_input_channel(mask) ||
7245                audio_channel_count_from_in_mask(mask) > FCC_8) {
7246            status = BAD_VALUE;
7247        } else {
7248            channelMask = mask;
7249            reconfig = true;
7250        }
7251    }
7252    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7253        // do not accept frame count changes if tracks are open as the track buffer
7254        // size depends on frame count and correct behavior would not be guaranteed
7255        // if frame count is changed after track creation
7256        if (mActiveTracks.size() > 0) {
7257            status = INVALID_OPERATION;
7258        } else {
7259            reconfig = true;
7260        }
7261    }
7262    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7263        // forward device change to effects that have requested to be
7264        // aware of attached audio device.
7265        for (size_t i = 0; i < mEffectChains.size(); i++) {
7266            mEffectChains[i]->setDevice_l(value);
7267        }
7268
7269        // store input device and output device but do not forward output device to audio HAL.
7270        // Note that status is ignored by the caller for output device
7271        // (see AudioFlinger::setParameters()
7272        if (audio_is_output_devices(value)) {
7273            mOutDevice = value;
7274            status = BAD_VALUE;
7275        } else {
7276            mInDevice = value;
7277            if (value != AUDIO_DEVICE_NONE) {
7278                mPrevInDevice = value;
7279            }
7280            // disable AEC and NS if the device is a BT SCO headset supporting those
7281            // pre processings
7282            if (mTracks.size() > 0) {
7283                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7284                                    mAudioFlinger->btNrecIsOff();
7285                for (size_t i = 0; i < mTracks.size(); i++) {
7286                    sp<RecordTrack> track = mTracks[i];
7287                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7288                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7289                }
7290            }
7291        }
7292    }
7293    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7294            mAudioSource != (audio_source_t)value) {
7295        // forward device change to effects that have requested to be
7296        // aware of attached audio device.
7297        for (size_t i = 0; i < mEffectChains.size(); i++) {
7298            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7299        }
7300        mAudioSource = (audio_source_t)value;
7301    }
7302
7303    if (status == NO_ERROR) {
7304        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7305                keyValuePair.string());
7306        if (status == INVALID_OPERATION) {
7307            inputStandBy();
7308            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7309                    keyValuePair.string());
7310        }
7311        if (reconfig) {
7312            if (status == BAD_VALUE &&
7313                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7314                audio_is_linear_pcm(reqFormat) &&
7315                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7316                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7317                audio_channel_count_from_in_mask(
7318                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7319                status = NO_ERROR;
7320            }
7321            if (status == NO_ERROR) {
7322                readInputParameters_l();
7323                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7324            }
7325        }
7326    }
7327
7328    return reconfig;
7329}
7330
7331String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7332{
7333    Mutex::Autolock _l(mLock);
7334    if (initCheck() != NO_ERROR) {
7335        return String8();
7336    }
7337
7338    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7339    const String8 out_s8(s);
7340    free(s);
7341    return out_s8;
7342}
7343
7344void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7345    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7346
7347    desc->mIoHandle = mId;
7348
7349    switch (event) {
7350    case AUDIO_INPUT_OPENED:
7351    case AUDIO_INPUT_CONFIG_CHANGED:
7352        desc->mPatch = mPatch;
7353        desc->mChannelMask = mChannelMask;
7354        desc->mSamplingRate = mSampleRate;
7355        desc->mFormat = mFormat;
7356        desc->mFrameCount = mFrameCount;
7357        desc->mFrameCountHAL = mFrameCount;
7358        desc->mLatency = 0;
7359        break;
7360
7361    case AUDIO_INPUT_CLOSED:
7362    default:
7363        break;
7364    }
7365    mAudioFlinger->ioConfigChanged(event, desc, pid);
7366}
7367
7368void AudioFlinger::RecordThread::readInputParameters_l()
7369{
7370    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7371    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7372    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7373    if (mChannelCount > FCC_8) {
7374        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7375    }
7376    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7377    mFormat = mHALFormat;
7378    if (!audio_is_linear_pcm(mFormat)) {
7379        ALOGE("HAL format %#x is not linear pcm", mFormat);
7380    }
7381    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7382    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7383    mFrameCount = mBufferSize / mFrameSize;
7384    // This is the formula for calculating the temporary buffer size.
7385    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7386    // 1 full output buffer, regardless of the alignment of the available input.
7387    // The value is somewhat arbitrary, and could probably be even larger.
7388    // A larger value should allow more old data to be read after a track calls start(),
7389    // without increasing latency.
7390    //
7391    // Note this is independent of the maximum downsampling ratio permitted for capture.
7392    mRsmpInFrames = mFrameCount * 7;
7393    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7394    free(mRsmpInBuffer);
7395    mRsmpInBuffer = NULL;
7396
7397    // TODO optimize audio capture buffer sizes ...
7398    // Here we calculate the size of the sliding buffer used as a source
7399    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7400    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7401    // be better to have it derived from the pipe depth in the long term.
7402    // The current value is higher than necessary.  However it should not add to latency.
7403
7404    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7405    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7406    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7407    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7408
7409    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7410    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7411}
7412
7413uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7414{
7415    Mutex::Autolock _l(mLock);
7416    if (initCheck() != NO_ERROR) {
7417        return 0;
7418    }
7419
7420    return mInput->stream->get_input_frames_lost(mInput->stream);
7421}
7422
7423// hasAudioSession_l() must be called with ThreadBase::mLock held
7424uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7425{
7426    uint32_t result = 0;
7427    if (getEffectChain_l(sessionId) != 0) {
7428        result = EFFECT_SESSION;
7429    }
7430
7431    for (size_t i = 0; i < mTracks.size(); ++i) {
7432        if (sessionId == mTracks[i]->sessionId()) {
7433            result |= TRACK_SESSION;
7434            if (mTracks[i]->isFastTrack()) {
7435                result |= FAST_SESSION;
7436            }
7437            break;
7438        }
7439    }
7440
7441    return result;
7442}
7443
7444KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7445{
7446    KeyedVector<audio_session_t, bool> ids;
7447    Mutex::Autolock _l(mLock);
7448    for (size_t j = 0; j < mTracks.size(); ++j) {
7449        sp<RecordThread::RecordTrack> track = mTracks[j];
7450        audio_session_t sessionId = track->sessionId();
7451        if (ids.indexOfKey(sessionId) < 0) {
7452            ids.add(sessionId, true);
7453        }
7454    }
7455    return ids;
7456}
7457
7458AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7459{
7460    Mutex::Autolock _l(mLock);
7461    AudioStreamIn *input = mInput;
7462    mInput = NULL;
7463    return input;
7464}
7465
7466// this method must always be called either with ThreadBase mLock held or inside the thread loop
7467audio_stream_t* AudioFlinger::RecordThread::stream() const
7468{
7469    if (mInput == NULL) {
7470        return NULL;
7471    }
7472    return &mInput->stream->common;
7473}
7474
7475status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7476{
7477    // only one chain per input thread
7478    if (mEffectChains.size() != 0) {
7479        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7480        return INVALID_OPERATION;
7481    }
7482    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7483    chain->setThread(this);
7484    chain->setInBuffer(NULL);
7485    chain->setOutBuffer(NULL);
7486
7487    checkSuspendOnAddEffectChain_l(chain);
7488
7489    // make sure enabled pre processing effects state is communicated to the HAL as we
7490    // just moved them to a new input stream.
7491    chain->syncHalEffectsState();
7492
7493    mEffectChains.add(chain);
7494
7495    return NO_ERROR;
7496}
7497
7498size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7499{
7500    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7501    ALOGW_IF(mEffectChains.size() != 1,
7502            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7503            chain.get(), mEffectChains.size(), this);
7504    if (mEffectChains.size() == 1) {
7505        mEffectChains.removeAt(0);
7506    }
7507    return 0;
7508}
7509
7510status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7511                                                          audio_patch_handle_t *handle)
7512{
7513    status_t status = NO_ERROR;
7514
7515    // store new device and send to effects
7516    mInDevice = patch->sources[0].ext.device.type;
7517    mPatch = *patch;
7518    for (size_t i = 0; i < mEffectChains.size(); i++) {
7519        mEffectChains[i]->setDevice_l(mInDevice);
7520    }
7521
7522    // disable AEC and NS if the device is a BT SCO headset supporting those
7523    // pre processings
7524    if (mTracks.size() > 0) {
7525        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7526                            mAudioFlinger->btNrecIsOff();
7527        for (size_t i = 0; i < mTracks.size(); i++) {
7528            sp<RecordTrack> track = mTracks[i];
7529            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7530            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7531        }
7532    }
7533
7534    // store new source and send to effects
7535    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7536        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7537        for (size_t i = 0; i < mEffectChains.size(); i++) {
7538            mEffectChains[i]->setAudioSource_l(mAudioSource);
7539        }
7540    }
7541
7542    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7543        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7544        status = hwDevice->create_audio_patch(hwDevice,
7545                                               patch->num_sources,
7546                                               patch->sources,
7547                                               patch->num_sinks,
7548                                               patch->sinks,
7549                                               handle);
7550    } else {
7551        char *address;
7552        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7553            address = audio_device_address_to_parameter(
7554                                                patch->sources[0].ext.device.type,
7555                                                patch->sources[0].ext.device.address);
7556        } else {
7557            address = (char *)calloc(1, 1);
7558        }
7559        AudioParameter param = AudioParameter(String8(address));
7560        free(address);
7561        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7562                     (int)patch->sources[0].ext.device.type);
7563        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7564                                         (int)patch->sinks[0].ext.mix.usecase.source);
7565        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7566                param.toString().string());
7567        *handle = AUDIO_PATCH_HANDLE_NONE;
7568    }
7569
7570    if (mInDevice != mPrevInDevice) {
7571        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7572        mPrevInDevice = mInDevice;
7573    }
7574
7575    return status;
7576}
7577
7578status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7579{
7580    status_t status = NO_ERROR;
7581
7582    mInDevice = AUDIO_DEVICE_NONE;
7583
7584    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7585        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7586        status = hwDevice->release_audio_patch(hwDevice, handle);
7587    } else {
7588        AudioParameter param;
7589        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7590        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7591                param.toString().string());
7592    }
7593    return status;
7594}
7595
7596void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7597{
7598    Mutex::Autolock _l(mLock);
7599    mTracks.add(record);
7600}
7601
7602void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7603{
7604    Mutex::Autolock _l(mLock);
7605    destroyTrack_l(record);
7606}
7607
7608void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7609{
7610    ThreadBase::getAudioPortConfig(config);
7611    config->role = AUDIO_PORT_ROLE_SINK;
7612    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7613    config->ext.mix.usecase.source = mAudioSource;
7614}
7615
7616} // namespace android
7617