Threads.cpp revision e964d4e421e2d1ca937227a580c0c837091a11e3
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74#include "AutoPark.h"
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113
114
115
116// don't warn about blocked writes or record buffer overflows more often than this
117static const nsecs_t kWarningThrottleNs = seconds(5);
118
119// RecordThread loop sleep time upon application overrun or audio HAL read error
120static const int kRecordThreadSleepUs = 5000;
121
122// maximum time to wait in sendConfigEvent_l() for a status to be received
123static const nsecs_t kConfigEventTimeoutNs = seconds(2);
124
125// minimum sleep time for the mixer thread loop when tracks are active but in underrun
126static const uint32_t kMinThreadSleepTimeUs = 5000;
127// maximum divider applied to the active sleep time in the mixer thread loop
128static const uint32_t kMaxThreadSleepTimeShift = 2;
129
130// minimum normal sink buffer size, expressed in milliseconds rather than frames
131// FIXME This should be based on experimentally observed scheduling jitter
132static const uint32_t kMinNormalSinkBufferSizeMs = 20;
133// maximum normal sink buffer size
134static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
135
136// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
137// FIXME This should be based on experimentally observed scheduling jitter
138static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
139
140// Offloaded output thread standby delay: allows track transition without going to standby
141static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
142
143// Direct output thread minimum sleep time in idle or active(underrun) state
144static const nsecs_t kDirectMinSleepTimeUs = 10000;
145
146
147// Whether to use fast mixer
148static const enum {
149    FastMixer_Never,    // never initialize or use: for debugging only
150    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
151                        // normal mixer multiplier is 1
152    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
153                        // multiplier is calculated based on min & max normal mixer buffer size
154    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
155                        // multiplier is calculated based on min & max normal mixer buffer size
156    // FIXME for FastMixer_Dynamic:
157    //  Supporting this option will require fixing HALs that can't handle large writes.
158    //  For example, one HAL implementation returns an error from a large write,
159    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
160    //  We could either fix the HAL implementations, or provide a wrapper that breaks
161    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
162} kUseFastMixer = FastMixer_Static;
163
164// Whether to use fast capture
165static const enum {
166    FastCapture_Never,  // never initialize or use: for debugging only
167    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
168    FastCapture_Static, // initialize if needed, then use all the time if initialized
169} kUseFastCapture = FastCapture_Static;
170
171// Priorities for requestPriority
172static const int kPriorityAudioApp = 2;
173static const int kPriorityFastMixer = 3;
174static const int kPriorityFastCapture = 3;
175
176// IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
177// track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
178// AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
179
180// This is the default value, if not specified by property.
181static const int kFastTrackMultiplier = 2;
182
183// The minimum and maximum allowed values
184static const int kFastTrackMultiplierMin = 1;
185static const int kFastTrackMultiplierMax = 2;
186
187// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
188static int sFastTrackMultiplier = kFastTrackMultiplier;
189
190// See Thread::readOnlyHeap().
191// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
192// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
193// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
194static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
195
196// ----------------------------------------------------------------------------
197
198static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
199
200static void sFastTrackMultiplierInit()
201{
202    char value[PROPERTY_VALUE_MAX];
203    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
204        char *endptr;
205        unsigned long ul = strtoul(value, &endptr, 0);
206        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
207            sFastTrackMultiplier = (int) ul;
208        }
209    }
210}
211
212// ----------------------------------------------------------------------------
213
214#ifdef ADD_BATTERY_DATA
215// To collect the amplifier usage
216static void addBatteryData(uint32_t params) {
217    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
218    if (service == NULL) {
219        // it already logged
220        return;
221    }
222
223    service->addBatteryData(params);
224}
225#endif
226
227// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
228struct {
229    // call when you acquire a partial wakelock
230    void acquire(const sp<IBinder> &wakeLockToken) {
231        pthread_mutex_lock(&mLock);
232        if (wakeLockToken.get() == nullptr) {
233            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
234        } else {
235            if (mCount == 0) {
236                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
237            }
238            ++mCount;
239        }
240        pthread_mutex_unlock(&mLock);
241    }
242
243    // call when you release a partial wakelock.
244    void release(const sp<IBinder> &wakeLockToken) {
245        if (wakeLockToken.get() == nullptr) {
246            return;
247        }
248        pthread_mutex_lock(&mLock);
249        if (--mCount < 0) {
250            ALOGE("negative wakelock count");
251            mCount = 0;
252        }
253        pthread_mutex_unlock(&mLock);
254    }
255
256    // retrieves the boottime timebase offset from monotonic.
257    int64_t getBoottimeOffset() {
258        pthread_mutex_lock(&mLock);
259        int64_t boottimeOffset = mBoottimeOffset;
260        pthread_mutex_unlock(&mLock);
261        return boottimeOffset;
262    }
263
264    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
265    // and the selected timebase.
266    // Currently only TIMEBASE_BOOTTIME is allowed.
267    //
268    // This only needs to be called upon acquiring the first partial wakelock
269    // after all other partial wakelocks are released.
270    //
271    // We do an empirical measurement of the offset rather than parsing
272    // /proc/timer_list since the latter is not a formal kernel ABI.
273    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
274        int clockbase;
275        switch (timebase) {
276        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
277            clockbase = SYSTEM_TIME_BOOTTIME;
278            break;
279        default:
280            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
281            break;
282        }
283        // try three times to get the clock offset, choose the one
284        // with the minimum gap in measurements.
285        const int tries = 3;
286        nsecs_t bestGap, measured;
287        for (int i = 0; i < tries; ++i) {
288            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
289            const nsecs_t tbase = systemTime(clockbase);
290            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
291            const nsecs_t gap = tmono2 - tmono;
292            if (i == 0 || gap < bestGap) {
293                bestGap = gap;
294                measured = tbase - ((tmono + tmono2) >> 1);
295            }
296        }
297
298        // to avoid micro-adjusting, we don't change the timebase
299        // unless it is significantly different.
300        //
301        // Assumption: It probably takes more than toleranceNs to
302        // suspend and resume the device.
303        static int64_t toleranceNs = 10000; // 10 us
304        if (llabs(*offset - measured) > toleranceNs) {
305            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
306                    (long long)*offset, (long long)measured);
307            *offset = measured;
308        }
309    }
310
311    pthread_mutex_t mLock;
312    int32_t mCount;
313    int64_t mBoottimeOffset;
314} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
315
316// ----------------------------------------------------------------------------
317//      CPU Stats
318// ----------------------------------------------------------------------------
319
320class CpuStats {
321public:
322    CpuStats();
323    void sample(const String8 &title);
324#ifdef DEBUG_CPU_USAGE
325private:
326    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
327    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
328
329    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
330
331    int mCpuNum;                        // thread's current CPU number
332    int mCpukHz;                        // frequency of thread's current CPU in kHz
333#endif
334};
335
336CpuStats::CpuStats()
337#ifdef DEBUG_CPU_USAGE
338    : mCpuNum(-1), mCpukHz(-1)
339#endif
340{
341}
342
343void CpuStats::sample(const String8 &title
344#ifndef DEBUG_CPU_USAGE
345                __unused
346#endif
347        ) {
348#ifdef DEBUG_CPU_USAGE
349    // get current thread's delta CPU time in wall clock ns
350    double wcNs;
351    bool valid = mCpuUsage.sampleAndEnable(wcNs);
352
353    // record sample for wall clock statistics
354    if (valid) {
355        mWcStats.sample(wcNs);
356    }
357
358    // get the current CPU number
359    int cpuNum = sched_getcpu();
360
361    // get the current CPU frequency in kHz
362    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
363
364    // check if either CPU number or frequency changed
365    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
366        mCpuNum = cpuNum;
367        mCpukHz = cpukHz;
368        // ignore sample for purposes of cycles
369        valid = false;
370    }
371
372    // if no change in CPU number or frequency, then record sample for cycle statistics
373    if (valid && mCpukHz > 0) {
374        double cycles = wcNs * cpukHz * 0.000001;
375        mHzStats.sample(cycles);
376    }
377
378    unsigned n = mWcStats.n();
379    // mCpuUsage.elapsed() is expensive, so don't call it every loop
380    if ((n & 127) == 1) {
381        long long elapsed = mCpuUsage.elapsed();
382        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
383            double perLoop = elapsed / (double) n;
384            double perLoop100 = perLoop * 0.01;
385            double perLoop1k = perLoop * 0.001;
386            double mean = mWcStats.mean();
387            double stddev = mWcStats.stddev();
388            double minimum = mWcStats.minimum();
389            double maximum = mWcStats.maximum();
390            double meanCycles = mHzStats.mean();
391            double stddevCycles = mHzStats.stddev();
392            double minCycles = mHzStats.minimum();
393            double maxCycles = mHzStats.maximum();
394            mCpuUsage.resetElapsed();
395            mWcStats.reset();
396            mHzStats.reset();
397            ALOGD("CPU usage for %s over past %.1f secs\n"
398                "  (%u mixer loops at %.1f mean ms per loop):\n"
399                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
400                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
401                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
402                    title.string(),
403                    elapsed * .000000001, n, perLoop * .000001,
404                    mean * .001,
405                    stddev * .001,
406                    minimum * .001,
407                    maximum * .001,
408                    mean / perLoop100,
409                    stddev / perLoop100,
410                    minimum / perLoop100,
411                    maximum / perLoop100,
412                    meanCycles / perLoop1k,
413                    stddevCycles / perLoop1k,
414                    minCycles / perLoop1k,
415                    maxCycles / perLoop1k);
416
417        }
418    }
419#endif
420};
421
422// ----------------------------------------------------------------------------
423//      ThreadBase
424// ----------------------------------------------------------------------------
425
426// static
427const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
428{
429    switch (type) {
430    case MIXER:
431        return "MIXER";
432    case DIRECT:
433        return "DIRECT";
434    case DUPLICATING:
435        return "DUPLICATING";
436    case RECORD:
437        return "RECORD";
438    case OFFLOAD:
439        return "OFFLOAD";
440    default:
441        return "unknown";
442    }
443}
444
445String8 devicesToString(audio_devices_t devices)
446{
447    static const struct mapping {
448        audio_devices_t mDevices;
449        const char *    mString;
450    } mappingsOut[] = {
451        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
452        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
453        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
454        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
455        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
456        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
457        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
458        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
459        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
460        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
461        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
462        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
463        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
464        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
465        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
466        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
467        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
468        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
469        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
470        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
471        {AUDIO_DEVICE_OUT_FM,               "FM"},
472        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
473        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
474        {AUDIO_DEVICE_OUT_IP,               "IP"},
475        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
476        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
477    }, mappingsIn[] = {
478        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
479        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
480        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
481        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
482        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
483        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
484        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
485        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
486        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
487        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
488        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
489        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
490        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
491        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
492        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
493        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
494        {AUDIO_DEVICE_IN_LINE,              "LINE"},
495        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
496        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
497        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
498        {AUDIO_DEVICE_IN_IP,                "IP"},
499        {AUDIO_DEVICE_IN_BUS,               "BUS"},
500        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
501    };
502    String8 result;
503    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
504    const mapping *entry;
505    if (devices & AUDIO_DEVICE_BIT_IN) {
506        devices &= ~AUDIO_DEVICE_BIT_IN;
507        entry = mappingsIn;
508    } else {
509        entry = mappingsOut;
510    }
511    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
512        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
513        if (devices & entry->mDevices) {
514            if (!result.isEmpty()) {
515                result.append("|");
516            }
517            result.append(entry->mString);
518        }
519    }
520    if (devices & ~allDevices) {
521        if (!result.isEmpty()) {
522            result.append("|");
523        }
524        result.appendFormat("0x%X", devices & ~allDevices);
525    }
526    if (result.isEmpty()) {
527        result.append(entry->mString);
528    }
529    return result;
530}
531
532String8 inputFlagsToString(audio_input_flags_t flags)
533{
534    static const struct mapping {
535        audio_input_flags_t     mFlag;
536        const char *            mString;
537    } mappings[] = {
538        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
539        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
540        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
541        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
542        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
543    };
544    String8 result;
545    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
546    const mapping *entry;
547    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
548        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
549        if (flags & entry->mFlag) {
550            if (!result.isEmpty()) {
551                result.append("|");
552            }
553            result.append(entry->mString);
554        }
555    }
556    if (flags & ~allFlags) {
557        if (!result.isEmpty()) {
558            result.append("|");
559        }
560        result.appendFormat("0x%X", flags & ~allFlags);
561    }
562    if (result.isEmpty()) {
563        result.append(entry->mString);
564    }
565    return result;
566}
567
568String8 outputFlagsToString(audio_output_flags_t flags)
569{
570    static const struct mapping {
571        audio_output_flags_t    mFlag;
572        const char *            mString;
573    } mappings[] = {
574        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
575        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
576        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
577        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
578        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
579        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
580        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
581        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
582        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
583        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
584        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
585    };
586    String8 result;
587    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
588    const mapping *entry;
589    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
590        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
591        if (flags & entry->mFlag) {
592            if (!result.isEmpty()) {
593                result.append("|");
594            }
595            result.append(entry->mString);
596        }
597    }
598    if (flags & ~allFlags) {
599        if (!result.isEmpty()) {
600            result.append("|");
601        }
602        result.appendFormat("0x%X", flags & ~allFlags);
603    }
604    if (result.isEmpty()) {
605        result.append(entry->mString);
606    }
607    return result;
608}
609
610const char *sourceToString(audio_source_t source)
611{
612    switch (source) {
613    case AUDIO_SOURCE_DEFAULT:              return "default";
614    case AUDIO_SOURCE_MIC:                  return "mic";
615    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
616    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
617    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
618    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
619    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
620    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
621    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
622    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
623    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
624    case AUDIO_SOURCE_HOTWORD:              return "hotword";
625    default:                                return "unknown";
626    }
627}
628
629AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
630        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
631    :   Thread(false /*canCallJava*/),
632        mType(type),
633        mAudioFlinger(audioFlinger),
634        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
635        // are set by PlaybackThread::readOutputParameters_l() or
636        // RecordThread::readInputParameters_l()
637        //FIXME: mStandby should be true here. Is this some kind of hack?
638        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
639        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
640        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
641        // mName will be set by concrete (non-virtual) subclass
642        mDeathRecipient(new PMDeathRecipient(this)),
643        mSystemReady(systemReady),
644        mNotifiedBatteryStart(false)
645{
646    memset(&mPatch, 0, sizeof(struct audio_patch));
647}
648
649AudioFlinger::ThreadBase::~ThreadBase()
650{
651    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
652    mConfigEvents.clear();
653
654    // do not lock the mutex in destructor
655    releaseWakeLock_l();
656    if (mPowerManager != 0) {
657        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
658        binder->unlinkToDeath(mDeathRecipient);
659    }
660}
661
662status_t AudioFlinger::ThreadBase::readyToRun()
663{
664    status_t status = initCheck();
665    if (status == NO_ERROR) {
666        ALOGI("AudioFlinger's thread %p ready to run", this);
667    } else {
668        ALOGE("No working audio driver found.");
669    }
670    return status;
671}
672
673void AudioFlinger::ThreadBase::exit()
674{
675    ALOGV("ThreadBase::exit");
676    // do any cleanup required for exit to succeed
677    preExit();
678    {
679        // This lock prevents the following race in thread (uniprocessor for illustration):
680        //  if (!exitPending()) {
681        //      // context switch from here to exit()
682        //      // exit() calls requestExit(), what exitPending() observes
683        //      // exit() calls signal(), which is dropped since no waiters
684        //      // context switch back from exit() to here
685        //      mWaitWorkCV.wait(...);
686        //      // now thread is hung
687        //  }
688        AutoMutex lock(mLock);
689        requestExit();
690        mWaitWorkCV.broadcast();
691    }
692    // When Thread::requestExitAndWait is made virtual and this method is renamed to
693    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
694    requestExitAndWait();
695}
696
697status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
698{
699    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
700    Mutex::Autolock _l(mLock);
701
702    return sendSetParameterConfigEvent_l(keyValuePairs);
703}
704
705// sendConfigEvent_l() must be called with ThreadBase::mLock held
706// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
707status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
708{
709    status_t status = NO_ERROR;
710
711    if (event->mRequiresSystemReady && !mSystemReady) {
712        event->mWaitStatus = false;
713        mPendingConfigEvents.add(event);
714        return status;
715    }
716    mConfigEvents.add(event);
717    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
718    mWaitWorkCV.signal();
719    mLock.unlock();
720    {
721        Mutex::Autolock _l(event->mLock);
722        while (event->mWaitStatus) {
723            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
724                event->mStatus = TIMED_OUT;
725                event->mWaitStatus = false;
726            }
727        }
728        status = event->mStatus;
729    }
730    mLock.lock();
731    return status;
732}
733
734void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
735{
736    Mutex::Autolock _l(mLock);
737    sendIoConfigEvent_l(event, pid);
738}
739
740// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
741void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
742{
743    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
744    sendConfigEvent_l(configEvent);
745}
746
747void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
748{
749    Mutex::Autolock _l(mLock);
750    sendPrioConfigEvent_l(pid, tid, prio);
751}
752
753// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
754void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
755{
756    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
757    sendConfigEvent_l(configEvent);
758}
759
760// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
761status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
762{
763    sp<ConfigEvent> configEvent;
764    AudioParameter param(keyValuePair);
765    int value;
766    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
767        setMasterMono_l(value != 0);
768        if (param.size() == 1) {
769            return NO_ERROR; // should be a solo parameter - we don't pass down
770        }
771        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
772        configEvent = new SetParameterConfigEvent(param.toString());
773    } else {
774        configEvent = new SetParameterConfigEvent(keyValuePair);
775    }
776    return sendConfigEvent_l(configEvent);
777}
778
779status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
780                                                        const struct audio_patch *patch,
781                                                        audio_patch_handle_t *handle)
782{
783    Mutex::Autolock _l(mLock);
784    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
785    status_t status = sendConfigEvent_l(configEvent);
786    if (status == NO_ERROR) {
787        CreateAudioPatchConfigEventData *data =
788                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
789        *handle = data->mHandle;
790    }
791    return status;
792}
793
794status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
795                                                                const audio_patch_handle_t handle)
796{
797    Mutex::Autolock _l(mLock);
798    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
799    return sendConfigEvent_l(configEvent);
800}
801
802
803// post condition: mConfigEvents.isEmpty()
804void AudioFlinger::ThreadBase::processConfigEvents_l()
805{
806    bool configChanged = false;
807
808    while (!mConfigEvents.isEmpty()) {
809        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
810        sp<ConfigEvent> event = mConfigEvents[0];
811        mConfigEvents.removeAt(0);
812        switch (event->mType) {
813        case CFG_EVENT_PRIO: {
814            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
815            // FIXME Need to understand why this has to be done asynchronously
816            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
817                    true /*asynchronous*/);
818            if (err != 0) {
819                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
820                      data->mPrio, data->mPid, data->mTid, err);
821            }
822        } break;
823        case CFG_EVENT_IO: {
824            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
825            ioConfigChanged(data->mEvent, data->mPid);
826        } break;
827        case CFG_EVENT_SET_PARAMETER: {
828            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
829            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
830                configChanged = true;
831            }
832        } break;
833        case CFG_EVENT_CREATE_AUDIO_PATCH: {
834            CreateAudioPatchConfigEventData *data =
835                                            (CreateAudioPatchConfigEventData *)event->mData.get();
836            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
837        } break;
838        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
839            ReleaseAudioPatchConfigEventData *data =
840                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
841            event->mStatus = releaseAudioPatch_l(data->mHandle);
842        } break;
843        default:
844            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
845            break;
846        }
847        {
848            Mutex::Autolock _l(event->mLock);
849            if (event->mWaitStatus) {
850                event->mWaitStatus = false;
851                event->mCond.signal();
852            }
853        }
854        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
855    }
856
857    if (configChanged) {
858        cacheParameters_l();
859    }
860}
861
862String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
863    String8 s;
864    const audio_channel_representation_t representation =
865            audio_channel_mask_get_representation(mask);
866
867    switch (representation) {
868    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
869        if (output) {
870            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
871            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
872            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
873            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
874            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
875            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
876            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
877            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
878            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
879            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
880            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
881            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
882            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
883            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
884            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
885            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
886            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
887            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
888            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
889        } else {
890            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
891            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
892            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
893            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
894            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
895            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
896            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
897            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
898            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
899            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
900            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
901            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
902            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
903            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
904            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
905        }
906        const int len = s.length();
907        if (len > 2) {
908            (void) s.lockBuffer(len);      // needed?
909            s.unlockBuffer(len - 2);       // remove trailing ", "
910        }
911        return s;
912    }
913    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
914        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
915        return s;
916    default:
917        s.appendFormat("unknown mask, representation:%d  bits:%#x",
918                representation, audio_channel_mask_get_bits(mask));
919        return s;
920    }
921}
922
923void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
924{
925    const size_t SIZE = 256;
926    char buffer[SIZE];
927    String8 result;
928
929    bool locked = AudioFlinger::dumpTryLock(mLock);
930    if (!locked) {
931        dprintf(fd, "thread %p may be deadlocked\n", this);
932    }
933
934    dprintf(fd, "  Thread name: %s\n", mThreadName);
935    dprintf(fd, "  I/O handle: %d\n", mId);
936    dprintf(fd, "  TID: %d\n", getTid());
937    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
938    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
939    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
940    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
941    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
942    dprintf(fd, "  Channel count: %u\n", mChannelCount);
943    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
944            channelMaskToString(mChannelMask, mType != RECORD).string());
945    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
946    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
947    dprintf(fd, "  Pending config events:");
948    size_t numConfig = mConfigEvents.size();
949    if (numConfig) {
950        for (size_t i = 0; i < numConfig; i++) {
951            mConfigEvents[i]->dump(buffer, SIZE);
952            dprintf(fd, "\n    %s", buffer);
953        }
954        dprintf(fd, "\n");
955    } else {
956        dprintf(fd, " none\n");
957    }
958    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
959    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
960    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
961
962    if (locked) {
963        mLock.unlock();
964    }
965}
966
967void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
968{
969    const size_t SIZE = 256;
970    char buffer[SIZE];
971    String8 result;
972
973    size_t numEffectChains = mEffectChains.size();
974    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
975    write(fd, buffer, strlen(buffer));
976
977    for (size_t i = 0; i < numEffectChains; ++i) {
978        sp<EffectChain> chain = mEffectChains[i];
979        if (chain != 0) {
980            chain->dump(fd, args);
981        }
982    }
983}
984
985void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
986{
987    Mutex::Autolock _l(mLock);
988    acquireWakeLock_l(uid);
989}
990
991String16 AudioFlinger::ThreadBase::getWakeLockTag()
992{
993    switch (mType) {
994    case MIXER:
995        return String16("AudioMix");
996    case DIRECT:
997        return String16("AudioDirectOut");
998    case DUPLICATING:
999        return String16("AudioDup");
1000    case RECORD:
1001        return String16("AudioIn");
1002    case OFFLOAD:
1003        return String16("AudioOffload");
1004    default:
1005        ALOG_ASSERT(false);
1006        return String16("AudioUnknown");
1007    }
1008}
1009
1010void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1011{
1012    getPowerManager_l();
1013    if (mPowerManager != 0) {
1014        sp<IBinder> binder = new BBinder();
1015        status_t status;
1016        if (uid >= 0) {
1017            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1018                    binder,
1019                    getWakeLockTag(),
1020                    String16("audioserver"),
1021                    uid,
1022                    true /* FIXME force oneway contrary to .aidl */);
1023        } else {
1024            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1025                    binder,
1026                    getWakeLockTag(),
1027                    String16("audioserver"),
1028                    true /* FIXME force oneway contrary to .aidl */);
1029        }
1030        if (status == NO_ERROR) {
1031            mWakeLockToken = binder;
1032        }
1033        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1034    }
1035
1036    if (!mNotifiedBatteryStart) {
1037        BatteryNotifier::getInstance().noteStartAudio();
1038        mNotifiedBatteryStart = true;
1039    }
1040    gBoottime.acquire(mWakeLockToken);
1041    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1042            gBoottime.getBoottimeOffset();
1043}
1044
1045void AudioFlinger::ThreadBase::releaseWakeLock()
1046{
1047    Mutex::Autolock _l(mLock);
1048    releaseWakeLock_l();
1049}
1050
1051void AudioFlinger::ThreadBase::releaseWakeLock_l()
1052{
1053    gBoottime.release(mWakeLockToken);
1054    if (mWakeLockToken != 0) {
1055        ALOGV("releaseWakeLock_l() %s", mThreadName);
1056        if (mPowerManager != 0) {
1057            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1058                    true /* FIXME force oneway contrary to .aidl */);
1059        }
1060        mWakeLockToken.clear();
1061    }
1062
1063    if (mNotifiedBatteryStart) {
1064        BatteryNotifier::getInstance().noteStopAudio();
1065        mNotifiedBatteryStart = false;
1066    }
1067}
1068
1069void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1070    Mutex::Autolock _l(mLock);
1071    updateWakeLockUids_l(uids);
1072}
1073
1074void AudioFlinger::ThreadBase::getPowerManager_l() {
1075    if (mSystemReady && mPowerManager == 0) {
1076        // use checkService() to avoid blocking if power service is not up yet
1077        sp<IBinder> binder =
1078            defaultServiceManager()->checkService(String16("power"));
1079        if (binder == 0) {
1080            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1081        } else {
1082            mPowerManager = interface_cast<IPowerManager>(binder);
1083            binder->linkToDeath(mDeathRecipient);
1084        }
1085    }
1086}
1087
1088void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1089    getPowerManager_l();
1090    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1091        if (mSystemReady) {
1092            ALOGE("no wake lock to update, but system ready!");
1093        } else {
1094            ALOGW("no wake lock to update, system not ready yet");
1095        }
1096        return;
1097    }
1098    if (mPowerManager != 0) {
1099        sp<IBinder> binder = new BBinder();
1100        status_t status;
1101        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1102                    true /* FIXME force oneway contrary to .aidl */);
1103        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1104    }
1105}
1106
1107void AudioFlinger::ThreadBase::clearPowerManager()
1108{
1109    Mutex::Autolock _l(mLock);
1110    releaseWakeLock_l();
1111    mPowerManager.clear();
1112}
1113
1114void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1115{
1116    sp<ThreadBase> thread = mThread.promote();
1117    if (thread != 0) {
1118        thread->clearPowerManager();
1119    }
1120    ALOGW("power manager service died !!!");
1121}
1122
1123void AudioFlinger::ThreadBase::setEffectSuspended(
1124        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1125{
1126    Mutex::Autolock _l(mLock);
1127    setEffectSuspended_l(type, suspend, sessionId);
1128}
1129
1130void AudioFlinger::ThreadBase::setEffectSuspended_l(
1131        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1132{
1133    sp<EffectChain> chain = getEffectChain_l(sessionId);
1134    if (chain != 0) {
1135        if (type != NULL) {
1136            chain->setEffectSuspended_l(type, suspend);
1137        } else {
1138            chain->setEffectSuspendedAll_l(suspend);
1139        }
1140    }
1141
1142    updateSuspendedSessions_l(type, suspend, sessionId);
1143}
1144
1145void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1146{
1147    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1148    if (index < 0) {
1149        return;
1150    }
1151
1152    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1153            mSuspendedSessions.valueAt(index);
1154
1155    for (size_t i = 0; i < sessionEffects.size(); i++) {
1156        const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1157        for (int j = 0; j < desc->mRefCount; j++) {
1158            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1159                chain->setEffectSuspendedAll_l(true);
1160            } else {
1161                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1162                    desc->mType.timeLow);
1163                chain->setEffectSuspended_l(&desc->mType, true);
1164            }
1165        }
1166    }
1167}
1168
1169void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1170                                                         bool suspend,
1171                                                         audio_session_t sessionId)
1172{
1173    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1174
1175    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1176
1177    if (suspend) {
1178        if (index >= 0) {
1179            sessionEffects = mSuspendedSessions.valueAt(index);
1180        } else {
1181            mSuspendedSessions.add(sessionId, sessionEffects);
1182        }
1183    } else {
1184        if (index < 0) {
1185            return;
1186        }
1187        sessionEffects = mSuspendedSessions.valueAt(index);
1188    }
1189
1190
1191    int key = EffectChain::kKeyForSuspendAll;
1192    if (type != NULL) {
1193        key = type->timeLow;
1194    }
1195    index = sessionEffects.indexOfKey(key);
1196
1197    sp<SuspendedSessionDesc> desc;
1198    if (suspend) {
1199        if (index >= 0) {
1200            desc = sessionEffects.valueAt(index);
1201        } else {
1202            desc = new SuspendedSessionDesc();
1203            if (type != NULL) {
1204                desc->mType = *type;
1205            }
1206            sessionEffects.add(key, desc);
1207            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1208        }
1209        desc->mRefCount++;
1210    } else {
1211        if (index < 0) {
1212            return;
1213        }
1214        desc = sessionEffects.valueAt(index);
1215        if (--desc->mRefCount == 0) {
1216            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1217            sessionEffects.removeItemsAt(index);
1218            if (sessionEffects.isEmpty()) {
1219                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1220                                 sessionId);
1221                mSuspendedSessions.removeItem(sessionId);
1222            }
1223        }
1224    }
1225    if (!sessionEffects.isEmpty()) {
1226        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1227    }
1228}
1229
1230void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1231                                                            bool enabled,
1232                                                            audio_session_t sessionId)
1233{
1234    Mutex::Autolock _l(mLock);
1235    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1236}
1237
1238void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1239                                                            bool enabled,
1240                                                            audio_session_t sessionId)
1241{
1242    if (mType != RECORD) {
1243        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1244        // another session. This gives the priority to well behaved effect control panels
1245        // and applications not using global effects.
1246        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1247        // global effects
1248        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1249            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1250        }
1251    }
1252
1253    sp<EffectChain> chain = getEffectChain_l(sessionId);
1254    if (chain != 0) {
1255        chain->checkSuspendOnEffectEnabled(effect, enabled);
1256    }
1257}
1258
1259// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1260status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1261        const effect_descriptor_t *desc, audio_session_t sessionId)
1262{
1263    // No global effect sessions on record threads
1264    if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1265        ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1266                desc->name, mThreadName);
1267        return BAD_VALUE;
1268    }
1269    // only pre processing effects on record thread
1270    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1271        ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1272                desc->name, mThreadName);
1273        return BAD_VALUE;
1274    }
1275    audio_input_flags_t flags = mInput->flags;
1276    if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1277        if (flags & AUDIO_INPUT_FLAG_RAW) {
1278            ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1279                  desc->name, mThreadName);
1280            return BAD_VALUE;
1281        }
1282        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1283            ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1284                  desc->name, mThreadName);
1285            return BAD_VALUE;
1286        }
1287    }
1288    return NO_ERROR;
1289}
1290
1291// checkEffectCompatibility_l() must be called with ThreadBase::mLock held
1292status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1293        const effect_descriptor_t *desc, audio_session_t sessionId)
1294{
1295    // no preprocessing on playback threads
1296    if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1297        ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1298                " thread %s", desc->name, mThreadName);
1299        return BAD_VALUE;
1300    }
1301
1302    switch (mType) {
1303    case MIXER: {
1304        // Reject any effect on mixer multichannel sinks.
1305        // TODO: fix both format and multichannel issues with effects.
1306        if (mChannelCount != FCC_2) {
1307            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1308                    " thread %s", desc->name, mChannelCount, mThreadName);
1309            return BAD_VALUE;
1310        }
1311        audio_output_flags_t flags = mOutput->flags;
1312        if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1313            if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1314                // global effects are applied only to non fast tracks if they are SW
1315                if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1316                    break;
1317                }
1318            } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1319                // only post processing on output stage session
1320                if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1321                    ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1322                            " on output stage session", desc->name);
1323                    return BAD_VALUE;
1324                }
1325            } else {
1326                // no restriction on effects applied on non fast tracks
1327                if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1328                    break;
1329                }
1330            }
1331            if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1332                ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1333                      desc->name);
1334                return BAD_VALUE;
1335            }
1336            if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1337                ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1338                        " in fast mode", desc->name);
1339                return BAD_VALUE;
1340            }
1341        }
1342    } break;
1343    case OFFLOAD:
1344        // nothing actionable on offload threads, if the effect:
1345        //   - is offloadable: the effect can be created
1346        //   - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1347        //     will take care of invalidating the tracks of the thread
1348        break;
1349    case DIRECT:
1350        // Reject any effect on Direct output threads for now, since the format of
1351        // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1352        ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1353                desc->name, mThreadName);
1354        return BAD_VALUE;
1355    case DUPLICATING:
1356        // Reject any effect on mixer multichannel sinks.
1357        // TODO: fix both format and multichannel issues with effects.
1358        if (mChannelCount != FCC_2) {
1359            ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1360                    " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1361            return BAD_VALUE;
1362        }
1363        if ((sessionId == AUDIO_SESSION_OUTPUT_STAGE) || (sessionId == AUDIO_SESSION_OUTPUT_MIX)) {
1364            ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1365                    " thread %s", desc->name, mThreadName);
1366            return BAD_VALUE;
1367        }
1368        if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1369            ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1370                    " DUPLICATING thread %s", desc->name, mThreadName);
1371            return BAD_VALUE;
1372        }
1373        if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1374            ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1375                    " DUPLICATING thread %s", desc->name, mThreadName);
1376            return BAD_VALUE;
1377        }
1378        break;
1379    default:
1380        LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1381    }
1382
1383    return NO_ERROR;
1384}
1385
1386// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1387sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1388        const sp<AudioFlinger::Client>& client,
1389        const sp<IEffectClient>& effectClient,
1390        int32_t priority,
1391        audio_session_t sessionId,
1392        effect_descriptor_t *desc,
1393        int *enabled,
1394        status_t *status)
1395{
1396    sp<EffectModule> effect;
1397    sp<EffectHandle> handle;
1398    status_t lStatus;
1399    sp<EffectChain> chain;
1400    bool chainCreated = false;
1401    bool effectCreated = false;
1402    bool effectRegistered = false;
1403
1404    lStatus = initCheck();
1405    if (lStatus != NO_ERROR) {
1406        ALOGW("createEffect_l() Audio driver not initialized.");
1407        goto Exit;
1408    }
1409
1410    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1411
1412    { // scope for mLock
1413        Mutex::Autolock _l(mLock);
1414
1415        lStatus = checkEffectCompatibility_l(desc, sessionId);
1416        if (lStatus != NO_ERROR) {
1417            goto Exit;
1418        }
1419
1420        // check for existing effect chain with the requested audio session
1421        chain = getEffectChain_l(sessionId);
1422        if (chain == 0) {
1423            // create a new chain for this session
1424            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1425            chain = new EffectChain(this, sessionId);
1426            addEffectChain_l(chain);
1427            chain->setStrategy(getStrategyForSession_l(sessionId));
1428            chainCreated = true;
1429        } else {
1430            effect = chain->getEffectFromDesc_l(desc);
1431        }
1432
1433        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1434
1435        if (effect == 0) {
1436            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1437            // Check CPU and memory usage
1438            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1439            if (lStatus != NO_ERROR) {
1440                goto Exit;
1441            }
1442            effectRegistered = true;
1443            // create a new effect module if none present in the chain
1444            effect = new EffectModule(this, chain, desc, id, sessionId);
1445            lStatus = effect->status();
1446            if (lStatus != NO_ERROR) {
1447                goto Exit;
1448            }
1449            effect->setOffloaded(mType == OFFLOAD, mId);
1450
1451            lStatus = chain->addEffect_l(effect);
1452            if (lStatus != NO_ERROR) {
1453                goto Exit;
1454            }
1455            effectCreated = true;
1456
1457            effect->setDevice(mOutDevice);
1458            effect->setDevice(mInDevice);
1459            effect->setMode(mAudioFlinger->getMode());
1460            effect->setAudioSource(mAudioSource);
1461        }
1462        // create effect handle and connect it to effect module
1463        handle = new EffectHandle(effect, client, effectClient, priority);
1464        lStatus = handle->initCheck();
1465        if (lStatus == OK) {
1466            lStatus = effect->addHandle(handle.get());
1467        }
1468        if (enabled != NULL) {
1469            *enabled = (int)effect->isEnabled();
1470        }
1471    }
1472
1473Exit:
1474    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1475        Mutex::Autolock _l(mLock);
1476        if (effectCreated) {
1477            chain->removeEffect_l(effect);
1478        }
1479        if (effectRegistered) {
1480            AudioSystem::unregisterEffect(effect->id());
1481        }
1482        if (chainCreated) {
1483            removeEffectChain_l(chain);
1484        }
1485        handle.clear();
1486    }
1487
1488    *status = lStatus;
1489    return handle;
1490}
1491
1492sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1493        int effectId)
1494{
1495    Mutex::Autolock _l(mLock);
1496    return getEffect_l(sessionId, effectId);
1497}
1498
1499sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1500        int effectId)
1501{
1502    sp<EffectChain> chain = getEffectChain_l(sessionId);
1503    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1504}
1505
1506// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1507// PlaybackThread::mLock held
1508status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1509{
1510    // check for existing effect chain with the requested audio session
1511    audio_session_t sessionId = effect->sessionId();
1512    sp<EffectChain> chain = getEffectChain_l(sessionId);
1513    bool chainCreated = false;
1514
1515    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1516             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1517                    this, effect->desc().name, effect->desc().flags);
1518
1519    if (chain == 0) {
1520        // create a new chain for this session
1521        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1522        chain = new EffectChain(this, sessionId);
1523        addEffectChain_l(chain);
1524        chain->setStrategy(getStrategyForSession_l(sessionId));
1525        chainCreated = true;
1526    }
1527    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1528
1529    if (chain->getEffectFromId_l(effect->id()) != 0) {
1530        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1531                this, effect->desc().name, chain.get());
1532        return BAD_VALUE;
1533    }
1534
1535    effect->setOffloaded(mType == OFFLOAD, mId);
1536
1537    status_t status = chain->addEffect_l(effect);
1538    if (status != NO_ERROR) {
1539        if (chainCreated) {
1540            removeEffectChain_l(chain);
1541        }
1542        return status;
1543    }
1544
1545    effect->setDevice(mOutDevice);
1546    effect->setDevice(mInDevice);
1547    effect->setMode(mAudioFlinger->getMode());
1548    effect->setAudioSource(mAudioSource);
1549    return NO_ERROR;
1550}
1551
1552void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1553
1554    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1555    effect_descriptor_t desc = effect->desc();
1556    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1557        detachAuxEffect_l(effect->id());
1558    }
1559
1560    sp<EffectChain> chain = effect->chain().promote();
1561    if (chain != 0) {
1562        // remove effect chain if removing last effect
1563        if (chain->removeEffect_l(effect) == 0) {
1564            removeEffectChain_l(chain);
1565        }
1566    } else {
1567        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1568    }
1569}
1570
1571void AudioFlinger::ThreadBase::lockEffectChains_l(
1572        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1573{
1574    effectChains = mEffectChains;
1575    for (size_t i = 0; i < mEffectChains.size(); i++) {
1576        mEffectChains[i]->lock();
1577    }
1578}
1579
1580void AudioFlinger::ThreadBase::unlockEffectChains(
1581        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1582{
1583    for (size_t i = 0; i < effectChains.size(); i++) {
1584        effectChains[i]->unlock();
1585    }
1586}
1587
1588sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1589{
1590    Mutex::Autolock _l(mLock);
1591    return getEffectChain_l(sessionId);
1592}
1593
1594sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1595        const
1596{
1597    size_t size = mEffectChains.size();
1598    for (size_t i = 0; i < size; i++) {
1599        if (mEffectChains[i]->sessionId() == sessionId) {
1600            return mEffectChains[i];
1601        }
1602    }
1603    return 0;
1604}
1605
1606void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1607{
1608    Mutex::Autolock _l(mLock);
1609    size_t size = mEffectChains.size();
1610    for (size_t i = 0; i < size; i++) {
1611        mEffectChains[i]->setMode_l(mode);
1612    }
1613}
1614
1615void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1616{
1617    config->type = AUDIO_PORT_TYPE_MIX;
1618    config->ext.mix.handle = mId;
1619    config->sample_rate = mSampleRate;
1620    config->format = mFormat;
1621    config->channel_mask = mChannelMask;
1622    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1623                            AUDIO_PORT_CONFIG_FORMAT;
1624}
1625
1626void AudioFlinger::ThreadBase::systemReady()
1627{
1628    Mutex::Autolock _l(mLock);
1629    if (mSystemReady) {
1630        return;
1631    }
1632    mSystemReady = true;
1633
1634    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1635        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1636    }
1637    mPendingConfigEvents.clear();
1638}
1639
1640
1641// ----------------------------------------------------------------------------
1642//      Playback
1643// ----------------------------------------------------------------------------
1644
1645AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1646                                             AudioStreamOut* output,
1647                                             audio_io_handle_t id,
1648                                             audio_devices_t device,
1649                                             type_t type,
1650                                             bool systemReady)
1651    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1652        mNormalFrameCount(0), mSinkBuffer(NULL),
1653        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1654        mMixerBuffer(NULL),
1655        mMixerBufferSize(0),
1656        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1657        mMixerBufferValid(false),
1658        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1659        mEffectBuffer(NULL),
1660        mEffectBufferSize(0),
1661        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1662        mEffectBufferValid(false),
1663        mSuspended(0), mBytesWritten(0),
1664        mFramesWritten(0),
1665        mSuspendedFrames(0),
1666        mActiveTracksGeneration(0),
1667        // mStreamTypes[] initialized in constructor body
1668        mOutput(output),
1669        mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1670        mMixerStatus(MIXER_IDLE),
1671        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1672        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1673        mBytesRemaining(0),
1674        mCurrentWriteLength(0),
1675        mUseAsyncWrite(false),
1676        mWriteAckSequence(0),
1677        mDrainSequence(0),
1678        mSignalPending(false),
1679        mScreenState(AudioFlinger::mScreenState),
1680        // index 0 is reserved for normal mixer's submix
1681        mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1682        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1683{
1684    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1685    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1686
1687    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1688    // it would be safer to explicitly pass initial masterVolume/masterMute as
1689    // parameter.
1690    //
1691    // If the HAL we are using has support for master volume or master mute,
1692    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1693    // and the mute set to false).
1694    mMasterVolume = audioFlinger->masterVolume_l();
1695    mMasterMute = audioFlinger->masterMute_l();
1696    if (mOutput && mOutput->audioHwDev) {
1697        if (mOutput->audioHwDev->canSetMasterVolume()) {
1698            mMasterVolume = 1.0;
1699        }
1700
1701        if (mOutput->audioHwDev->canSetMasterMute()) {
1702            mMasterMute = false;
1703        }
1704    }
1705
1706    readOutputParameters_l();
1707
1708    // ++ operator does not compile
1709    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1710            stream = (audio_stream_type_t) (stream + 1)) {
1711        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1712        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1713    }
1714}
1715
1716AudioFlinger::PlaybackThread::~PlaybackThread()
1717{
1718    mAudioFlinger->unregisterWriter(mNBLogWriter);
1719    free(mSinkBuffer);
1720    free(mMixerBuffer);
1721    free(mEffectBuffer);
1722}
1723
1724void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1725{
1726    dumpInternals(fd, args);
1727    dumpTracks(fd, args);
1728    dumpEffectChains(fd, args);
1729}
1730
1731void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1732{
1733    const size_t SIZE = 256;
1734    char buffer[SIZE];
1735    String8 result;
1736
1737    result.appendFormat("  Stream volumes in dB: ");
1738    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1739        const stream_type_t *st = &mStreamTypes[i];
1740        if (i > 0) {
1741            result.appendFormat(", ");
1742        }
1743        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1744        if (st->mute) {
1745            result.append("M");
1746        }
1747    }
1748    result.append("\n");
1749    write(fd, result.string(), result.length());
1750    result.clear();
1751
1752    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1753    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1754    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1755            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1756
1757    size_t numtracks = mTracks.size();
1758    size_t numactive = mActiveTracks.size();
1759    dprintf(fd, "  %zu Tracks", numtracks);
1760    size_t numactiveseen = 0;
1761    if (numtracks) {
1762        dprintf(fd, " of which %zu are active\n", numactive);
1763        Track::appendDumpHeader(result);
1764        for (size_t i = 0; i < numtracks; ++i) {
1765            sp<Track> track = mTracks[i];
1766            if (track != 0) {
1767                bool active = mActiveTracks.indexOf(track) >= 0;
1768                if (active) {
1769                    numactiveseen++;
1770                }
1771                track->dump(buffer, SIZE, active);
1772                result.append(buffer);
1773            }
1774        }
1775    } else {
1776        result.append("\n");
1777    }
1778    if (numactiveseen != numactive) {
1779        // some tracks in the active list were not in the tracks list
1780        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1781                " not in the track list\n");
1782        result.append(buffer);
1783        Track::appendDumpHeader(result);
1784        for (size_t i = 0; i < numactive; ++i) {
1785            sp<Track> track = mActiveTracks[i].promote();
1786            if (track != 0 && mTracks.indexOf(track) < 0) {
1787                track->dump(buffer, SIZE, true);
1788                result.append(buffer);
1789            }
1790        }
1791    }
1792
1793    write(fd, result.string(), result.size());
1794}
1795
1796void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1797{
1798    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1799
1800    dumpBase(fd, args);
1801
1802    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1803    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1804            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1805    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1806    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1807    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1808    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1809    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1810    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1811    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1812    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1813    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1814    AudioStreamOut *output = mOutput;
1815    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1816    String8 flagsAsString = outputFlagsToString(flags);
1817    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1818}
1819
1820// Thread virtuals
1821
1822void AudioFlinger::PlaybackThread::onFirstRef()
1823{
1824    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1825}
1826
1827// ThreadBase virtuals
1828void AudioFlinger::PlaybackThread::preExit()
1829{
1830    ALOGV("  preExit()");
1831    // FIXME this is using hard-coded strings but in the future, this functionality will be
1832    //       converted to use audio HAL extensions required to support tunneling
1833    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1834}
1835
1836// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1837sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1838        const sp<AudioFlinger::Client>& client,
1839        audio_stream_type_t streamType,
1840        uint32_t sampleRate,
1841        audio_format_t format,
1842        audio_channel_mask_t channelMask,
1843        size_t *pFrameCount,
1844        const sp<IMemory>& sharedBuffer,
1845        audio_session_t sessionId,
1846        audio_output_flags_t *flags,
1847        pid_t tid,
1848        int uid,
1849        status_t *status)
1850{
1851    size_t frameCount = *pFrameCount;
1852    sp<Track> track;
1853    status_t lStatus;
1854    audio_output_flags_t outputFlags = mOutput->flags;
1855
1856    // special case for FAST flag considered OK if fast mixer is present
1857    if (hasFastMixer()) {
1858        outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
1859    }
1860
1861    // Check if requested flags are compatible with output stream flags
1862    if ((*flags & outputFlags) != *flags) {
1863        ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
1864              *flags, outputFlags);
1865        *flags = (audio_output_flags_t)(*flags & outputFlags);
1866    }
1867
1868    // client expresses a preference for FAST, but we get the final say
1869    if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
1870      if (
1871            // PCM data
1872            audio_is_linear_pcm(format) &&
1873            // TODO: extract as a data library function that checks that a computationally
1874            // expensive downmixer is not required: isFastOutputChannelConversion()
1875            (channelMask == mChannelMask ||
1876                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1877                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1878                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1879            // hardware sample rate
1880            (sampleRate == mSampleRate) &&
1881            // normal mixer has an associated fast mixer
1882            hasFastMixer() &&
1883            // there are sufficient fast track slots available
1884            (mFastTrackAvailMask != 0)
1885            // FIXME test that MixerThread for this fast track has a capable output HAL
1886            // FIXME add a permission test also?
1887        ) {
1888        // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1889        if (sharedBuffer == 0) {
1890            // read the fast track multiplier property the first time it is needed
1891            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1892            if (ok != 0) {
1893                ALOGE("%s pthread_once failed: %d", __func__, ok);
1894            }
1895            frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1896        }
1897
1898        // check compatibility with audio effects.
1899        { // scope for mLock
1900            Mutex::Autolock _l(mLock);
1901            // do not accept RAW flag if post processing are present. Note that post processing on
1902            // a fast mixer are necessarily hardware
1903            sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE);
1904            if (chain != 0) {
1905                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1906                        "AUDIO_OUTPUT_FLAG_RAW denied: post processing effect present");
1907                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1908            }
1909            // Do not accept FAST flag if software global effects are present
1910            chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
1911            if (chain != 0) {
1912                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1913                        "AUDIO_OUTPUT_FLAG_RAW denied: global effect present");
1914                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1915                if (chain->hasSoftwareEffect()) {
1916                    ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software global effect present");
1917                    *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1918                }
1919            }
1920            // Do not accept FAST flag if the session has software effects
1921            chain = getEffectChain_l(sessionId);
1922            if (chain != 0) {
1923                ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_RAW) != 0,
1924                        "AUDIO_OUTPUT_FLAG_RAW denied: effect present on session");
1925                *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_RAW);
1926                if (chain->hasSoftwareEffect()) {
1927                    ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: software effect present on session");
1928                    *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1929                }
1930            }
1931        }
1932        ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
1933                 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1934                 frameCount, mFrameCount);
1935      } else {
1936        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1937                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1938                "sampleRate=%u mSampleRate=%u "
1939                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1940                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1941                audio_is_linear_pcm(format),
1942                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1943        *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
1944      }
1945    }
1946    // For normal PCM streaming tracks, update minimum frame count.
1947    // For compatibility with AudioTrack calculation, buffer depth is forced
1948    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1949    // This is probably too conservative, but legacy application code may depend on it.
1950    // If you change this calculation, also review the start threshold which is related.
1951    if (!(*flags & AUDIO_OUTPUT_FLAG_FAST)
1952            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1953        // this must match AudioTrack.cpp calculateMinFrameCount().
1954        // TODO: Move to a common library
1955        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1956        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1957        if (minBufCount < 2) {
1958            minBufCount = 2;
1959        }
1960        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1961        // or the client should compute and pass in a larger buffer request.
1962        size_t minFrameCount =
1963                minBufCount * sourceFramesNeededWithTimestretch(
1964                        sampleRate, mNormalFrameCount,
1965                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1966        if (frameCount < minFrameCount) { // including frameCount == 0
1967            frameCount = minFrameCount;
1968        }
1969    }
1970    *pFrameCount = frameCount;
1971
1972    switch (mType) {
1973
1974    case DIRECT:
1975        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1976            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1977                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1978                        "for output %p with format %#x",
1979                        sampleRate, format, channelMask, mOutput, mFormat);
1980                lStatus = BAD_VALUE;
1981                goto Exit;
1982            }
1983        }
1984        break;
1985
1986    case OFFLOAD:
1987        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1988            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1989                    "for output %p with format %#x",
1990                    sampleRate, format, channelMask, mOutput, mFormat);
1991            lStatus = BAD_VALUE;
1992            goto Exit;
1993        }
1994        break;
1995
1996    default:
1997        if (!audio_is_linear_pcm(format)) {
1998                ALOGE("createTrack_l() Bad parameter: format %#x \""
1999                        "for output %p with format %#x",
2000                        format, mOutput, mFormat);
2001                lStatus = BAD_VALUE;
2002                goto Exit;
2003        }
2004        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2005            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2006            lStatus = BAD_VALUE;
2007            goto Exit;
2008        }
2009        break;
2010
2011    }
2012
2013    lStatus = initCheck();
2014    if (lStatus != NO_ERROR) {
2015        ALOGE("createTrack_l() audio driver not initialized");
2016        goto Exit;
2017    }
2018
2019    { // scope for mLock
2020        Mutex::Autolock _l(mLock);
2021
2022        // all tracks in same audio session must share the same routing strategy otherwise
2023        // conflicts will happen when tracks are moved from one output to another by audio policy
2024        // manager
2025        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2026        for (size_t i = 0; i < mTracks.size(); ++i) {
2027            sp<Track> t = mTracks[i];
2028            if (t != 0 && t->isExternalTrack()) {
2029                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2030                if (sessionId == t->sessionId() && strategy != actual) {
2031                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2032                            strategy, actual);
2033                    lStatus = BAD_VALUE;
2034                    goto Exit;
2035                }
2036            }
2037        }
2038
2039        track = new Track(this, client, streamType, sampleRate, format,
2040                          channelMask, frameCount, NULL, sharedBuffer,
2041                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
2042
2043        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2044        if (lStatus != NO_ERROR) {
2045            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2046            // track must be cleared from the caller as the caller has the AF lock
2047            goto Exit;
2048        }
2049        mTracks.add(track);
2050
2051        sp<EffectChain> chain = getEffectChain_l(sessionId);
2052        if (chain != 0) {
2053            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2054            track->setMainBuffer(chain->inBuffer());
2055            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2056            chain->incTrackCnt();
2057        }
2058
2059        if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2060            pid_t callingPid = IPCThreadState::self()->getCallingPid();
2061            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2062            // so ask activity manager to do this on our behalf
2063            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
2064        }
2065    }
2066
2067    lStatus = NO_ERROR;
2068
2069Exit:
2070    *status = lStatus;
2071    return track;
2072}
2073
2074uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2075{
2076    return latency;
2077}
2078
2079uint32_t AudioFlinger::PlaybackThread::latency() const
2080{
2081    Mutex::Autolock _l(mLock);
2082    return latency_l();
2083}
2084uint32_t AudioFlinger::PlaybackThread::latency_l() const
2085{
2086    if (initCheck() == NO_ERROR) {
2087        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
2088    } else {
2089        return 0;
2090    }
2091}
2092
2093void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2094{
2095    Mutex::Autolock _l(mLock);
2096    // Don't apply master volume in SW if our HAL can do it for us.
2097    if (mOutput && mOutput->audioHwDev &&
2098        mOutput->audioHwDev->canSetMasterVolume()) {
2099        mMasterVolume = 1.0;
2100    } else {
2101        mMasterVolume = value;
2102    }
2103}
2104
2105void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2106{
2107    Mutex::Autolock _l(mLock);
2108    // Don't apply master mute in SW if our HAL can do it for us.
2109    if (mOutput && mOutput->audioHwDev &&
2110        mOutput->audioHwDev->canSetMasterMute()) {
2111        mMasterMute = false;
2112    } else {
2113        mMasterMute = muted;
2114    }
2115}
2116
2117void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2118{
2119    Mutex::Autolock _l(mLock);
2120    mStreamTypes[stream].volume = value;
2121    broadcast_l();
2122}
2123
2124void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2125{
2126    Mutex::Autolock _l(mLock);
2127    mStreamTypes[stream].mute = muted;
2128    broadcast_l();
2129}
2130
2131float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2132{
2133    Mutex::Autolock _l(mLock);
2134    return mStreamTypes[stream].volume;
2135}
2136
2137// addTrack_l() must be called with ThreadBase::mLock held
2138status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2139{
2140    status_t status = ALREADY_EXISTS;
2141
2142    if (mActiveTracks.indexOf(track) < 0) {
2143        // the track is newly added, make sure it fills up all its
2144        // buffers before playing. This is to ensure the client will
2145        // effectively get the latency it requested.
2146        if (track->isExternalTrack()) {
2147            TrackBase::track_state state = track->mState;
2148            mLock.unlock();
2149            status = AudioSystem::startOutput(mId, track->streamType(),
2150                                              track->sessionId());
2151            mLock.lock();
2152            // abort track was stopped/paused while we released the lock
2153            if (state != track->mState) {
2154                if (status == NO_ERROR) {
2155                    mLock.unlock();
2156                    AudioSystem::stopOutput(mId, track->streamType(),
2157                                            track->sessionId());
2158                    mLock.lock();
2159                }
2160                return INVALID_OPERATION;
2161            }
2162            // abort if start is rejected by audio policy manager
2163            if (status != NO_ERROR) {
2164                return PERMISSION_DENIED;
2165            }
2166#ifdef ADD_BATTERY_DATA
2167            // to track the speaker usage
2168            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2169#endif
2170        }
2171
2172        // set retry count for buffer fill
2173        if (track->isOffloaded()) {
2174            if (track->isStopping_1()) {
2175                track->mRetryCount = kMaxTrackStopRetriesOffload;
2176            } else {
2177                track->mRetryCount = kMaxTrackStartupRetriesOffload;
2178            }
2179            track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2180        } else {
2181            track->mRetryCount = kMaxTrackStartupRetries;
2182            track->mFillingUpStatus =
2183                    track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2184        }
2185
2186        track->mResetDone = false;
2187        track->mPresentationCompleteFrames = 0;
2188        mActiveTracks.add(track);
2189        mWakeLockUids.add(track->uid());
2190        mActiveTracksGeneration++;
2191        mLatestActiveTrack = track;
2192        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2193        if (chain != 0) {
2194            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2195                    track->sessionId());
2196            chain->incActiveTrackCnt();
2197        }
2198
2199        status = NO_ERROR;
2200    }
2201
2202    onAddNewTrack_l();
2203    return status;
2204}
2205
2206bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2207{
2208    track->terminate();
2209    // active tracks are removed by threadLoop()
2210    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2211    track->mState = TrackBase::STOPPED;
2212    if (!trackActive) {
2213        removeTrack_l(track);
2214    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2215        track->mState = TrackBase::STOPPING_1;
2216    }
2217
2218    return trackActive;
2219}
2220
2221void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2222{
2223    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2224    mTracks.remove(track);
2225    deleteTrackName_l(track->name());
2226    // redundant as track is about to be destroyed, for dumpsys only
2227    track->mName = -1;
2228    if (track->isFastTrack()) {
2229        int index = track->mFastIndex;
2230        ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2231        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2232        mFastTrackAvailMask |= 1 << index;
2233        // redundant as track is about to be destroyed, for dumpsys only
2234        track->mFastIndex = -1;
2235    }
2236    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2237    if (chain != 0) {
2238        chain->decTrackCnt();
2239    }
2240}
2241
2242void AudioFlinger::PlaybackThread::broadcast_l()
2243{
2244    // Thread could be blocked waiting for async
2245    // so signal it to handle state changes immediately
2246    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2247    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2248    mSignalPending = true;
2249    mWaitWorkCV.broadcast();
2250}
2251
2252String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2253{
2254    Mutex::Autolock _l(mLock);
2255    if (initCheck() != NO_ERROR) {
2256        return String8();
2257    }
2258
2259    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2260    const String8 out_s8(s);
2261    free(s);
2262    return out_s8;
2263}
2264
2265void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2266    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2267    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2268
2269    desc->mIoHandle = mId;
2270
2271    switch (event) {
2272    case AUDIO_OUTPUT_OPENED:
2273    case AUDIO_OUTPUT_CONFIG_CHANGED:
2274        desc->mPatch = mPatch;
2275        desc->mChannelMask = mChannelMask;
2276        desc->mSamplingRate = mSampleRate;
2277        desc->mFormat = mFormat;
2278        desc->mFrameCount = mNormalFrameCount; // FIXME see
2279                                             // AudioFlinger::frameCount(audio_io_handle_t)
2280        desc->mFrameCountHAL = mFrameCount;
2281        desc->mLatency = latency_l();
2282        break;
2283
2284    case AUDIO_OUTPUT_CLOSED:
2285    default:
2286        break;
2287    }
2288    mAudioFlinger->ioConfigChanged(event, desc, pid);
2289}
2290
2291void AudioFlinger::PlaybackThread::writeCallback()
2292{
2293    ALOG_ASSERT(mCallbackThread != 0);
2294    mCallbackThread->resetWriteBlocked();
2295}
2296
2297void AudioFlinger::PlaybackThread::drainCallback()
2298{
2299    ALOG_ASSERT(mCallbackThread != 0);
2300    mCallbackThread->resetDraining();
2301}
2302
2303void AudioFlinger::PlaybackThread::errorCallback()
2304{
2305    ALOG_ASSERT(mCallbackThread != 0);
2306    mCallbackThread->setAsyncError();
2307}
2308
2309void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2310{
2311    Mutex::Autolock _l(mLock);
2312    // reject out of sequence requests
2313    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2314        mWriteAckSequence &= ~1;
2315        mWaitWorkCV.signal();
2316    }
2317}
2318
2319void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2320{
2321    Mutex::Autolock _l(mLock);
2322    // reject out of sequence requests
2323    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2324        mDrainSequence &= ~1;
2325        mWaitWorkCV.signal();
2326    }
2327}
2328
2329// static
2330int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2331                                                void *param __unused,
2332                                                void *cookie)
2333{
2334    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2335    ALOGV("asyncCallback() event %d", event);
2336    switch (event) {
2337    case STREAM_CBK_EVENT_WRITE_READY:
2338        me->writeCallback();
2339        break;
2340    case STREAM_CBK_EVENT_DRAIN_READY:
2341        me->drainCallback();
2342        break;
2343    case STREAM_CBK_EVENT_ERROR:
2344        me->errorCallback();
2345        break;
2346    default:
2347        ALOGW("asyncCallback() unknown event %d", event);
2348        break;
2349    }
2350    return 0;
2351}
2352
2353void AudioFlinger::PlaybackThread::readOutputParameters_l()
2354{
2355    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2356    mSampleRate = mOutput->getSampleRate();
2357    mChannelMask = mOutput->getChannelMask();
2358    if (!audio_is_output_channel(mChannelMask)) {
2359        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2360    }
2361    if ((mType == MIXER || mType == DUPLICATING)
2362            && !isValidPcmSinkChannelMask(mChannelMask)) {
2363        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2364                mChannelMask);
2365    }
2366    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2367
2368    // Get actual HAL format.
2369    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2370    // Get format from the shim, which will be different than the HAL format
2371    // if playing compressed audio over HDMI passthrough.
2372    mFormat = mOutput->getFormat();
2373    if (!audio_is_valid_format(mFormat)) {
2374        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2375    }
2376    if ((mType == MIXER || mType == DUPLICATING)
2377            && !isValidPcmSinkFormat(mFormat)) {
2378        LOG_FATAL("HAL format %#x not supported for mixed output",
2379                mFormat);
2380    }
2381    mFrameSize = mOutput->getFrameSize();
2382    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2383    mFrameCount = mBufferSize / mFrameSize;
2384    if (mFrameCount & 15) {
2385        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2386                mFrameCount);
2387    }
2388
2389    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2390            (mOutput->stream->set_callback != NULL)) {
2391        if (mOutput->stream->set_callback(mOutput->stream,
2392                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2393            mUseAsyncWrite = true;
2394            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2395        }
2396    }
2397
2398    mHwSupportsPause = false;
2399    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2400        if (mOutput->stream->pause != NULL) {
2401            if (mOutput->stream->resume != NULL) {
2402                mHwSupportsPause = true;
2403            } else {
2404                ALOGW("direct output implements pause but not resume");
2405            }
2406        } else if (mOutput->stream->resume != NULL) {
2407            ALOGW("direct output implements resume but not pause");
2408        }
2409    }
2410    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2411        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2412    }
2413
2414    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2415        // For best precision, we use float instead of the associated output
2416        // device format (typically PCM 16 bit).
2417
2418        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2419        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2420        mBufferSize = mFrameSize * mFrameCount;
2421
2422        // TODO: We currently use the associated output device channel mask and sample rate.
2423        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2424        // (if a valid mask) to avoid premature downmix.
2425        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2426        // instead of the output device sample rate to avoid loss of high frequency information.
2427        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2428    }
2429
2430    // Calculate size of normal sink buffer relative to the HAL output buffer size
2431    double multiplier = 1.0;
2432    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2433            kUseFastMixer == FastMixer_Dynamic)) {
2434        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2435        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2436
2437        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2438        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2439        maxNormalFrameCount = maxNormalFrameCount & ~15;
2440        if (maxNormalFrameCount < minNormalFrameCount) {
2441            maxNormalFrameCount = minNormalFrameCount;
2442        }
2443        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2444        if (multiplier <= 1.0) {
2445            multiplier = 1.0;
2446        } else if (multiplier <= 2.0) {
2447            if (2 * mFrameCount <= maxNormalFrameCount) {
2448                multiplier = 2.0;
2449            } else {
2450                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2451            }
2452        } else {
2453            multiplier = floor(multiplier);
2454        }
2455    }
2456    mNormalFrameCount = multiplier * mFrameCount;
2457    // round up to nearest 16 frames to satisfy AudioMixer
2458    if (mType == MIXER || mType == DUPLICATING) {
2459        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2460    }
2461    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2462            mNormalFrameCount);
2463
2464    // Check if we want to throttle the processing to no more than 2x normal rate
2465    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2466    mThreadThrottleTimeMs = 0;
2467    mThreadThrottleEndMs = 0;
2468    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2469
2470    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2471    // Originally this was int16_t[] array, need to remove legacy implications.
2472    free(mSinkBuffer);
2473    mSinkBuffer = NULL;
2474    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2475    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2476    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2477    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2478
2479    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2480    // drives the output.
2481    free(mMixerBuffer);
2482    mMixerBuffer = NULL;
2483    if (mMixerBufferEnabled) {
2484        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2485        mMixerBufferSize = mNormalFrameCount * mChannelCount
2486                * audio_bytes_per_sample(mMixerBufferFormat);
2487        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2488    }
2489    free(mEffectBuffer);
2490    mEffectBuffer = NULL;
2491    if (mEffectBufferEnabled) {
2492        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2493        mEffectBufferSize = mNormalFrameCount * mChannelCount
2494                * audio_bytes_per_sample(mEffectBufferFormat);
2495        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2496    }
2497
2498    // force reconfiguration of effect chains and engines to take new buffer size and audio
2499    // parameters into account
2500    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2501    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2502    // matter.
2503    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2504    Vector< sp<EffectChain> > effectChains = mEffectChains;
2505    for (size_t i = 0; i < effectChains.size(); i ++) {
2506        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2507    }
2508}
2509
2510
2511status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2512{
2513    if (halFrames == NULL || dspFrames == NULL) {
2514        return BAD_VALUE;
2515    }
2516    Mutex::Autolock _l(mLock);
2517    if (initCheck() != NO_ERROR) {
2518        return INVALID_OPERATION;
2519    }
2520    int64_t framesWritten = mBytesWritten / mFrameSize;
2521    *halFrames = framesWritten;
2522
2523    if (isSuspended()) {
2524        // return an estimation of rendered frames when the output is suspended
2525        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2526        *dspFrames = (uint32_t)
2527                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2528        return NO_ERROR;
2529    } else {
2530        status_t status;
2531        uint32_t frames;
2532        status = mOutput->getRenderPosition(&frames);
2533        *dspFrames = (size_t)frames;
2534        return status;
2535    }
2536}
2537
2538// hasAudioSession_l() must be called with ThreadBase::mLock held
2539uint32_t AudioFlinger::PlaybackThread::hasAudioSession_l(audio_session_t sessionId) const
2540{
2541    uint32_t result = 0;
2542    if (getEffectChain_l(sessionId) != 0) {
2543        result = EFFECT_SESSION;
2544    }
2545
2546    for (size_t i = 0; i < mTracks.size(); ++i) {
2547        sp<Track> track = mTracks[i];
2548        if (sessionId == track->sessionId() && !track->isInvalid()) {
2549            result |= TRACK_SESSION;
2550            if (track->isFastTrack()) {
2551                result |= FAST_SESSION;
2552            }
2553            break;
2554        }
2555    }
2556
2557    return result;
2558}
2559
2560uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2561{
2562    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2563    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2564    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2565        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2566    }
2567    for (size_t i = 0; i < mTracks.size(); i++) {
2568        sp<Track> track = mTracks[i];
2569        if (sessionId == track->sessionId() && !track->isInvalid()) {
2570            return AudioSystem::getStrategyForStream(track->streamType());
2571        }
2572    }
2573    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2574}
2575
2576
2577AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2578{
2579    Mutex::Autolock _l(mLock);
2580    return mOutput;
2581}
2582
2583AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2584{
2585    Mutex::Autolock _l(mLock);
2586    AudioStreamOut *output = mOutput;
2587    mOutput = NULL;
2588    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2589    //       must push a NULL and wait for ack
2590    mOutputSink.clear();
2591    mPipeSink.clear();
2592    mNormalSink.clear();
2593    return output;
2594}
2595
2596// this method must always be called either with ThreadBase mLock held or inside the thread loop
2597audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2598{
2599    if (mOutput == NULL) {
2600        return NULL;
2601    }
2602    return &mOutput->stream->common;
2603}
2604
2605uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2606{
2607    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2608}
2609
2610status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2611{
2612    if (!isValidSyncEvent(event)) {
2613        return BAD_VALUE;
2614    }
2615
2616    Mutex::Autolock _l(mLock);
2617
2618    for (size_t i = 0; i < mTracks.size(); ++i) {
2619        sp<Track> track = mTracks[i];
2620        if (event->triggerSession() == track->sessionId()) {
2621            (void) track->setSyncEvent(event);
2622            return NO_ERROR;
2623        }
2624    }
2625
2626    return NAME_NOT_FOUND;
2627}
2628
2629bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2630{
2631    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2632}
2633
2634void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2635        const Vector< sp<Track> >& tracksToRemove)
2636{
2637    size_t count = tracksToRemove.size();
2638    if (count > 0) {
2639        for (size_t i = 0 ; i < count ; i++) {
2640            const sp<Track>& track = tracksToRemove.itemAt(i);
2641            if (track->isExternalTrack()) {
2642                AudioSystem::stopOutput(mId, track->streamType(),
2643                                        track->sessionId());
2644#ifdef ADD_BATTERY_DATA
2645                // to track the speaker usage
2646                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2647#endif
2648                if (track->isTerminated()) {
2649                    AudioSystem::releaseOutput(mId, track->streamType(),
2650                                               track->sessionId());
2651                }
2652            }
2653        }
2654    }
2655}
2656
2657void AudioFlinger::PlaybackThread::checkSilentMode_l()
2658{
2659    if (!mMasterMute) {
2660        char value[PROPERTY_VALUE_MAX];
2661        if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2662            ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2663            return;
2664        }
2665        if (property_get("ro.audio.silent", value, "0") > 0) {
2666            char *endptr;
2667            unsigned long ul = strtoul(value, &endptr, 0);
2668            if (*endptr == '\0' && ul != 0) {
2669                ALOGD("Silence is golden");
2670                // The setprop command will not allow a property to be changed after
2671                // the first time it is set, so we don't have to worry about un-muting.
2672                setMasterMute_l(true);
2673            }
2674        }
2675    }
2676}
2677
2678// shared by MIXER and DIRECT, overridden by DUPLICATING
2679ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2680{
2681    mInWrite = true;
2682    ssize_t bytesWritten;
2683    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2684
2685    // If an NBAIO sink is present, use it to write the normal mixer's submix
2686    if (mNormalSink != 0) {
2687
2688        const size_t count = mBytesRemaining / mFrameSize;
2689
2690        ATRACE_BEGIN("write");
2691        // update the setpoint when AudioFlinger::mScreenState changes
2692        uint32_t screenState = AudioFlinger::mScreenState;
2693        if (screenState != mScreenState) {
2694            mScreenState = screenState;
2695            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2696            if (pipe != NULL) {
2697                pipe->setAvgFrames((mScreenState & 1) ?
2698                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2699            }
2700        }
2701        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2702        ATRACE_END();
2703        if (framesWritten > 0) {
2704            bytesWritten = framesWritten * mFrameSize;
2705        } else {
2706            bytesWritten = framesWritten;
2707        }
2708    // otherwise use the HAL / AudioStreamOut directly
2709    } else {
2710        // Direct output and offload threads
2711
2712        if (mUseAsyncWrite) {
2713            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2714            mWriteAckSequence += 2;
2715            mWriteAckSequence |= 1;
2716            ALOG_ASSERT(mCallbackThread != 0);
2717            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2718        }
2719        // FIXME We should have an implementation of timestamps for direct output threads.
2720        // They are used e.g for multichannel PCM playback over HDMI.
2721        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2722
2723        if (mUseAsyncWrite &&
2724                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2725            // do not wait for async callback in case of error of full write
2726            mWriteAckSequence &= ~1;
2727            ALOG_ASSERT(mCallbackThread != 0);
2728            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2729        }
2730    }
2731
2732    mNumWrites++;
2733    mInWrite = false;
2734    mStandby = false;
2735    return bytesWritten;
2736}
2737
2738void AudioFlinger::PlaybackThread::threadLoop_drain()
2739{
2740    if (mOutput->stream->drain) {
2741        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2742        if (mUseAsyncWrite) {
2743            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2744            mDrainSequence |= 1;
2745            ALOG_ASSERT(mCallbackThread != 0);
2746            mCallbackThread->setDraining(mDrainSequence);
2747        }
2748        mOutput->stream->drain(mOutput->stream,
2749            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2750                                                : AUDIO_DRAIN_ALL);
2751    }
2752}
2753
2754void AudioFlinger::PlaybackThread::threadLoop_exit()
2755{
2756    {
2757        Mutex::Autolock _l(mLock);
2758        for (size_t i = 0; i < mTracks.size(); i++) {
2759            sp<Track> track = mTracks[i];
2760            track->invalidate();
2761        }
2762    }
2763}
2764
2765/*
2766The derived values that are cached:
2767 - mSinkBufferSize from frame count * frame size
2768 - mActiveSleepTimeUs from activeSleepTimeUs()
2769 - mIdleSleepTimeUs from idleSleepTimeUs()
2770 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2771   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2772 - maxPeriod from frame count and sample rate (MIXER only)
2773
2774The parameters that affect these derived values are:
2775 - frame count
2776 - frame size
2777 - sample rate
2778 - device type: A2DP or not
2779 - device latency
2780 - format: PCM or not
2781 - active sleep time
2782 - idle sleep time
2783*/
2784
2785void AudioFlinger::PlaybackThread::cacheParameters_l()
2786{
2787    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2788    mActiveSleepTimeUs = activeSleepTimeUs();
2789    mIdleSleepTimeUs = idleSleepTimeUs();
2790
2791    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2792    // truncating audio when going to standby.
2793    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2794    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2795        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2796            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2797        }
2798    }
2799}
2800
2801bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2802{
2803    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2804            this,  streamType, mTracks.size());
2805    bool trackMatch = false;
2806    size_t size = mTracks.size();
2807    for (size_t i = 0; i < size; i++) {
2808        sp<Track> t = mTracks[i];
2809        if (t->streamType() == streamType && t->isExternalTrack()) {
2810            t->invalidate();
2811            trackMatch = true;
2812        }
2813    }
2814    return trackMatch;
2815}
2816
2817void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2818{
2819    Mutex::Autolock _l(mLock);
2820    invalidateTracks_l(streamType);
2821}
2822
2823status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2824{
2825    audio_session_t session = chain->sessionId();
2826    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2827            ? mEffectBuffer : mSinkBuffer);
2828    bool ownsBuffer = false;
2829
2830    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2831    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2832        // Only one effect chain can be present in direct output thread and it uses
2833        // the sink buffer as input
2834        if (mType != DIRECT) {
2835            size_t numSamples = mNormalFrameCount * mChannelCount;
2836            buffer = new int16_t[numSamples];
2837            memset(buffer, 0, numSamples * sizeof(int16_t));
2838            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2839            ownsBuffer = true;
2840        }
2841
2842        // Attach all tracks with same session ID to this chain.
2843        for (size_t i = 0; i < mTracks.size(); ++i) {
2844            sp<Track> track = mTracks[i];
2845            if (session == track->sessionId()) {
2846                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2847                        buffer);
2848                track->setMainBuffer(buffer);
2849                chain->incTrackCnt();
2850            }
2851        }
2852
2853        // indicate all active tracks in the chain
2854        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2855            sp<Track> track = mActiveTracks[i].promote();
2856            if (track == 0) {
2857                continue;
2858            }
2859            if (session == track->sessionId()) {
2860                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2861                chain->incActiveTrackCnt();
2862            }
2863        }
2864    }
2865    chain->setThread(this);
2866    chain->setInBuffer(buffer, ownsBuffer);
2867    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2868            ? mEffectBuffer : mSinkBuffer));
2869    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2870    // chains list in order to be processed last as it contains output stage effects.
2871    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2872    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2873    // after track specific effects and before output stage.
2874    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2875    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2876    // Effect chain for other sessions are inserted at beginning of effect
2877    // chains list to be processed before output mix effects. Relative order between other
2878    // sessions is not important.
2879    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2880            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2881            "audio_session_t constants misdefined");
2882    size_t size = mEffectChains.size();
2883    size_t i = 0;
2884    for (i = 0; i < size; i++) {
2885        if (mEffectChains[i]->sessionId() < session) {
2886            break;
2887        }
2888    }
2889    mEffectChains.insertAt(chain, i);
2890    checkSuspendOnAddEffectChain_l(chain);
2891
2892    return NO_ERROR;
2893}
2894
2895size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2896{
2897    audio_session_t session = chain->sessionId();
2898
2899    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2900
2901    for (size_t i = 0; i < mEffectChains.size(); i++) {
2902        if (chain == mEffectChains[i]) {
2903            mEffectChains.removeAt(i);
2904            // detach all active tracks from the chain
2905            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2906                sp<Track> track = mActiveTracks[i].promote();
2907                if (track == 0) {
2908                    continue;
2909                }
2910                if (session == track->sessionId()) {
2911                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2912                            chain.get(), session);
2913                    chain->decActiveTrackCnt();
2914                }
2915            }
2916
2917            // detach all tracks with same session ID from this chain
2918            for (size_t i = 0; i < mTracks.size(); ++i) {
2919                sp<Track> track = mTracks[i];
2920                if (session == track->sessionId()) {
2921                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2922                    chain->decTrackCnt();
2923                }
2924            }
2925            break;
2926        }
2927    }
2928    return mEffectChains.size();
2929}
2930
2931status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2932        const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2933{
2934    Mutex::Autolock _l(mLock);
2935    return attachAuxEffect_l(track, EffectId);
2936}
2937
2938status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2939        const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
2940{
2941    status_t status = NO_ERROR;
2942
2943    if (EffectId == 0) {
2944        track->setAuxBuffer(0, NULL);
2945    } else {
2946        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2947        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2948        if (effect != 0) {
2949            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2950                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2951            } else {
2952                status = INVALID_OPERATION;
2953            }
2954        } else {
2955            status = BAD_VALUE;
2956        }
2957    }
2958    return status;
2959}
2960
2961void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2962{
2963    for (size_t i = 0; i < mTracks.size(); ++i) {
2964        sp<Track> track = mTracks[i];
2965        if (track->auxEffectId() == effectId) {
2966            attachAuxEffect_l(track, 0);
2967        }
2968    }
2969}
2970
2971bool AudioFlinger::PlaybackThread::threadLoop()
2972{
2973    Vector< sp<Track> > tracksToRemove;
2974
2975    mStandbyTimeNs = systemTime();
2976    nsecs_t lastWriteFinished = -1; // time last server write completed
2977    int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2978
2979    // MIXER
2980    nsecs_t lastWarning = 0;
2981
2982    // DUPLICATING
2983    // FIXME could this be made local to while loop?
2984    writeFrames = 0;
2985
2986    int lastGeneration = 0;
2987
2988    cacheParameters_l();
2989    mSleepTimeUs = mIdleSleepTimeUs;
2990
2991    if (mType == MIXER) {
2992        sleepTimeShift = 0;
2993    }
2994
2995    CpuStats cpuStats;
2996    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2997
2998    acquireWakeLock();
2999
3000    // mNBLogWriter->log can only be called while thread mutex mLock is held.
3001    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3002    // and then that string will be logged at the next convenient opportunity.
3003    const char *logString = NULL;
3004
3005    checkSilentMode_l();
3006
3007    while (!exitPending())
3008    {
3009        cpuStats.sample(myName);
3010
3011        Vector< sp<EffectChain> > effectChains;
3012
3013        { // scope for mLock
3014
3015            Mutex::Autolock _l(mLock);
3016
3017            processConfigEvents_l();
3018
3019            if (logString != NULL) {
3020                mNBLogWriter->logTimestamp();
3021                mNBLogWriter->log(logString);
3022                logString = NULL;
3023            }
3024
3025            // Gather the framesReleased counters for all active tracks,
3026            // and associate with the sink frames written out.  We need
3027            // this to convert the sink timestamp to the track timestamp.
3028            bool kernelLocationUpdate = false;
3029            if (mNormalSink != 0) {
3030                // Note: The DuplicatingThread may not have a mNormalSink.
3031                // We always fetch the timestamp here because often the downstream
3032                // sink will block while writing.
3033                ExtendedTimestamp timestamp; // use private copy to fetch
3034                (void) mNormalSink->getTimestamp(timestamp);
3035
3036                // We keep track of the last valid kernel position in case we are in underrun
3037                // and the normal mixer period is the same as the fast mixer period, or there
3038                // is some error from the HAL.
3039                if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3040                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3041                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3042                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3043                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3044
3045                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3046                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3047                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3048                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3049                }
3050
3051                if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3052                    kernelLocationUpdate = true;
3053                } else {
3054                    ALOGVV("getTimestamp error - no valid kernel position");
3055                }
3056
3057                // copy over kernel info
3058                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3059                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3060                        + mSuspendedFrames; // add frames discarded when suspended
3061                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3062                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3063            }
3064            // mFramesWritten for non-offloaded tracks are contiguous
3065            // even after standby() is called. This is useful for the track frame
3066            // to sink frame mapping.
3067            bool serverLocationUpdate = false;
3068            if (mFramesWritten != lastFramesWritten) {
3069                serverLocationUpdate = true;
3070                lastFramesWritten = mFramesWritten;
3071            }
3072            // Only update timestamps if there is a meaningful change.
3073            // Either the kernel timestamp must be valid or we have written something.
3074            if (kernelLocationUpdate || serverLocationUpdate) {
3075                if (serverLocationUpdate) {
3076                    // use the time before we called the HAL write - it is a bit more accurate
3077                    // to when the server last read data than the current time here.
3078                    //
3079                    // If we haven't written anything, mLastWriteTime will be -1
3080                    // and we use systemTime().
3081                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3082                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
3083                            ? systemTime() : mLastWriteTime;
3084                }
3085                const size_t size = mActiveTracks.size();
3086                for (size_t i = 0; i < size; ++i) {
3087                    sp<Track> t = mActiveTracks[i].promote();
3088                    if (t != 0 && !t->isFastTrack()) {
3089                        t->updateTrackFrameInfo(
3090                                t->mAudioTrackServerProxy->framesReleased(),
3091                                mFramesWritten,
3092                                mTimestamp);
3093                    }
3094                }
3095            }
3096
3097            saveOutputTracks();
3098            if (mSignalPending) {
3099                // A signal was raised while we were unlocked
3100                mSignalPending = false;
3101            } else if (waitingAsyncCallback_l()) {
3102                if (exitPending()) {
3103                    break;
3104                }
3105                bool released = false;
3106                if (!keepWakeLock()) {
3107                    releaseWakeLock_l();
3108                    released = true;
3109                }
3110                mWakeLockUids.clear();
3111                mActiveTracksGeneration++;
3112                ALOGV("wait async completion");
3113                mWaitWorkCV.wait(mLock);
3114                ALOGV("async completion/wake");
3115                if (released) {
3116                    acquireWakeLock_l();
3117                }
3118                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3119                mSleepTimeUs = 0;
3120
3121                continue;
3122            }
3123            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
3124                                   isSuspended()) {
3125                // put audio hardware into standby after short delay
3126                if (shouldStandby_l()) {
3127
3128                    threadLoop_standby();
3129
3130                    mStandby = true;
3131                }
3132
3133                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
3134                    // we're about to wait, flush the binder command buffer
3135                    IPCThreadState::self()->flushCommands();
3136
3137                    clearOutputTracks();
3138
3139                    if (exitPending()) {
3140                        break;
3141                    }
3142
3143                    releaseWakeLock_l();
3144                    mWakeLockUids.clear();
3145                    mActiveTracksGeneration++;
3146                    // wait until we have something to do...
3147                    ALOGV("%s going to sleep", myName.string());
3148                    mWaitWorkCV.wait(mLock);
3149                    ALOGV("%s waking up", myName.string());
3150                    acquireWakeLock_l();
3151
3152                    mMixerStatus = MIXER_IDLE;
3153                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3154                    mBytesWritten = 0;
3155                    mBytesRemaining = 0;
3156                    checkSilentMode_l();
3157
3158                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3159                    mSleepTimeUs = mIdleSleepTimeUs;
3160                    if (mType == MIXER) {
3161                        sleepTimeShift = 0;
3162                    }
3163
3164                    continue;
3165                }
3166            }
3167            // mMixerStatusIgnoringFastTracks is also updated internally
3168            mMixerStatus = prepareTracks_l(&tracksToRemove);
3169
3170            // compare with previously applied list
3171            if (lastGeneration != mActiveTracksGeneration) {
3172                // update wakelock
3173                updateWakeLockUids_l(mWakeLockUids);
3174                lastGeneration = mActiveTracksGeneration;
3175            }
3176
3177            // prevent any changes in effect chain list and in each effect chain
3178            // during mixing and effect process as the audio buffers could be deleted
3179            // or modified if an effect is created or deleted
3180            lockEffectChains_l(effectChains);
3181        } // mLock scope ends
3182
3183        if (mBytesRemaining == 0) {
3184            mCurrentWriteLength = 0;
3185            if (mMixerStatus == MIXER_TRACKS_READY) {
3186                // threadLoop_mix() sets mCurrentWriteLength
3187                threadLoop_mix();
3188            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3189                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3190                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3191                // must be written to HAL
3192                threadLoop_sleepTime();
3193                if (mSleepTimeUs == 0) {
3194                    mCurrentWriteLength = mSinkBufferSize;
3195                }
3196            }
3197            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3198            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3199            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3200            // or mSinkBuffer (if there are no effects).
3201            //
3202            // This is done pre-effects computation; if effects change to
3203            // support higher precision, this needs to move.
3204            //
3205            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3206            // TODO use mSleepTimeUs == 0 as an additional condition.
3207            if (mMixerBufferValid) {
3208                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3209                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3210
3211                // mono blend occurs for mixer threads only (not direct or offloaded)
3212                // and is handled here if we're going directly to the sink.
3213                if (requireMonoBlend() && !mEffectBufferValid) {
3214                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3215                               true /*limit*/);
3216                }
3217
3218                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3219                        mNormalFrameCount * mChannelCount);
3220            }
3221
3222            mBytesRemaining = mCurrentWriteLength;
3223            if (isSuspended()) {
3224                // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3225                mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3226                const size_t framesRemaining = mBytesRemaining / mFrameSize;
3227                mBytesWritten += mBytesRemaining;
3228                mFramesWritten += framesRemaining;
3229                mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3230                mBytesRemaining = 0;
3231            }
3232
3233            // only process effects if we're going to write
3234            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3235                for (size_t i = 0; i < effectChains.size(); i ++) {
3236                    effectChains[i]->process_l();
3237                }
3238            }
3239        }
3240        // Process effect chains for offloaded thread even if no audio
3241        // was read from audio track: process only updates effect state
3242        // and thus does have to be synchronized with audio writes but may have
3243        // to be called while waiting for async write callback
3244        if (mType == OFFLOAD) {
3245            for (size_t i = 0; i < effectChains.size(); i ++) {
3246                effectChains[i]->process_l();
3247            }
3248        }
3249
3250        // Only if the Effects buffer is enabled and there is data in the
3251        // Effects buffer (buffer valid), we need to
3252        // copy into the sink buffer.
3253        // TODO use mSleepTimeUs == 0 as an additional condition.
3254        if (mEffectBufferValid) {
3255            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3256
3257            if (requireMonoBlend()) {
3258                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3259                           true /*limit*/);
3260            }
3261
3262            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3263                    mNormalFrameCount * mChannelCount);
3264        }
3265
3266        // enable changes in effect chain
3267        unlockEffectChains(effectChains);
3268
3269        if (!waitingAsyncCallback()) {
3270            // mSleepTimeUs == 0 means we must write to audio hardware
3271            if (mSleepTimeUs == 0) {
3272                ssize_t ret = 0;
3273                // We save lastWriteFinished here, as previousLastWriteFinished,
3274                // for throttling. On thread start, previousLastWriteFinished will be
3275                // set to -1, which properly results in no throttling after the first write.
3276                nsecs_t previousLastWriteFinished = lastWriteFinished;
3277                nsecs_t delta = 0;
3278                if (mBytesRemaining) {
3279                    // FIXME rewrite to reduce number of system calls
3280                    mLastWriteTime = systemTime();  // also used for dumpsys
3281                    ret = threadLoop_write();
3282                    lastWriteFinished = systemTime();
3283                    delta = lastWriteFinished - mLastWriteTime;
3284                    if (ret < 0) {
3285                        mBytesRemaining = 0;
3286                    } else {
3287                        mBytesWritten += ret;
3288                        mBytesRemaining -= ret;
3289                        mFramesWritten += ret / mFrameSize;
3290                    }
3291                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3292                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3293                    threadLoop_drain();
3294                }
3295                if (mType == MIXER && !mStandby) {
3296                    // write blocked detection
3297                    if (delta > maxPeriod) {
3298                        mNumDelayedWrites++;
3299                        if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3300                            ATRACE_NAME("underrun");
3301                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3302                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3303                            lastWarning = lastWriteFinished;
3304                        }
3305                    }
3306
3307                    if (mThreadThrottle
3308                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3309                            && ret > 0) {                         // we wrote something
3310                        // Limit MixerThread data processing to no more than twice the
3311                        // expected processing rate.
3312                        //
3313                        // This helps prevent underruns with NuPlayer and other applications
3314                        // which may set up buffers that are close to the minimum size, or use
3315                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3316                        //
3317                        // The throttle smooths out sudden large data drains from the device,
3318                        // e.g. when it comes out of standby, which often causes problems with
3319                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3320                        // (2) minimum buffer sized tracks (even if the track is full,
3321                        //     the app won't fill fast enough to handle the sudden draw).
3322                        //
3323                        // Total time spent in last processing cycle equals time spent in
3324                        // 1. threadLoop_write, as well as time spent in
3325                        // 2. threadLoop_mix (significant for heavy mixing, especially
3326                        //                    on low tier processors)
3327
3328                        // it's OK if deltaMs is an overestimate.
3329                        const int32_t deltaMs =
3330                                (lastWriteFinished - previousLastWriteFinished) / 1000000;
3331                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3332                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3333                            usleep(throttleMs * 1000);
3334                            // notify of throttle start on verbose log
3335                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3336                                    "mixer(%p) throttle begin:"
3337                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3338                                    this, ret, deltaMs, throttleMs);
3339                            mThreadThrottleTimeMs += throttleMs;
3340                            // Throttle must be attributed to the previous mixer loop's write time
3341                            // to allow back-to-back throttling.
3342                            lastWriteFinished += throttleMs * 1000000;
3343                        } else {
3344                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3345                            if (diff > 0) {
3346                                // notify of throttle end on debug log
3347                                // but prevent spamming for bluetooth
3348                                ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3349                                        "mixer(%p) throttle end: throttle time(%u)", this, diff);
3350                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3351                            }
3352                        }
3353                    }
3354                }
3355
3356            } else {
3357                ATRACE_BEGIN("sleep");
3358                Mutex::Autolock _l(mLock);
3359                if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3360                    mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3361                }
3362                ATRACE_END();
3363            }
3364        }
3365
3366        // Finally let go of removed track(s), without the lock held
3367        // since we can't guarantee the destructors won't acquire that
3368        // same lock.  This will also mutate and push a new fast mixer state.
3369        threadLoop_removeTracks(tracksToRemove);
3370        tracksToRemove.clear();
3371
3372        // FIXME I don't understand the need for this here;
3373        //       it was in the original code but maybe the
3374        //       assignment in saveOutputTracks() makes this unnecessary?
3375        clearOutputTracks();
3376
3377        // Effect chains will be actually deleted here if they were removed from
3378        // mEffectChains list during mixing or effects processing
3379        effectChains.clear();
3380
3381        // FIXME Note that the above .clear() is no longer necessary since effectChains
3382        // is now local to this block, but will keep it for now (at least until merge done).
3383    }
3384
3385    threadLoop_exit();
3386
3387    if (!mStandby) {
3388        threadLoop_standby();
3389        mStandby = true;
3390    }
3391
3392    releaseWakeLock();
3393    mWakeLockUids.clear();
3394    mActiveTracksGeneration++;
3395
3396    ALOGV("Thread %p type %d exiting", this, mType);
3397    return false;
3398}
3399
3400// removeTracks_l() must be called with ThreadBase::mLock held
3401void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3402{
3403    size_t count = tracksToRemove.size();
3404    if (count > 0) {
3405        for (size_t i=0 ; i<count ; i++) {
3406            const sp<Track>& track = tracksToRemove.itemAt(i);
3407            mActiveTracks.remove(track);
3408            mWakeLockUids.remove(track->uid());
3409            mActiveTracksGeneration++;
3410            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3411            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3412            if (chain != 0) {
3413                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3414                        track->sessionId());
3415                chain->decActiveTrackCnt();
3416            }
3417            if (track->isTerminated()) {
3418                removeTrack_l(track);
3419            }
3420        }
3421    }
3422
3423}
3424
3425status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3426{
3427    if (mNormalSink != 0) {
3428        ExtendedTimestamp ets;
3429        status_t status = mNormalSink->getTimestamp(ets);
3430        if (status == NO_ERROR) {
3431            status = ets.getBestTimestamp(&timestamp);
3432        }
3433        return status;
3434    }
3435    if ((mType == OFFLOAD || mType == DIRECT)
3436            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3437        uint64_t position64;
3438        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3439        if (ret == 0) {
3440            timestamp.mPosition = (uint32_t)position64;
3441            return NO_ERROR;
3442        }
3443    }
3444    return INVALID_OPERATION;
3445}
3446
3447status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3448                                                          audio_patch_handle_t *handle)
3449{
3450    AutoPark<FastMixer> park(mFastMixer);
3451
3452    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3453
3454    return status;
3455}
3456
3457status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3458                                                          audio_patch_handle_t *handle)
3459{
3460    status_t status = NO_ERROR;
3461
3462    // store new device and send to effects
3463    audio_devices_t type = AUDIO_DEVICE_NONE;
3464    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3465        type |= patch->sinks[i].ext.device.type;
3466    }
3467
3468#ifdef ADD_BATTERY_DATA
3469    // when changing the audio output device, call addBatteryData to notify
3470    // the change
3471    if (mOutDevice != type) {
3472        uint32_t params = 0;
3473        // check whether speaker is on
3474        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3475            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3476        }
3477
3478        audio_devices_t deviceWithoutSpeaker
3479            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3480        // check if any other device (except speaker) is on
3481        if (type & deviceWithoutSpeaker) {
3482            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3483        }
3484
3485        if (params != 0) {
3486            addBatteryData(params);
3487        }
3488    }
3489#endif
3490
3491    for (size_t i = 0; i < mEffectChains.size(); i++) {
3492        mEffectChains[i]->setDevice_l(type);
3493    }
3494
3495    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3496    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3497    bool configChanged = mPrevOutDevice != type;
3498    mOutDevice = type;
3499    mPatch = *patch;
3500
3501    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3502        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3503        status = hwDevice->create_audio_patch(hwDevice,
3504                                               patch->num_sources,
3505                                               patch->sources,
3506                                               patch->num_sinks,
3507                                               patch->sinks,
3508                                               handle);
3509    } else {
3510        char *address;
3511        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3512            //FIXME: we only support address on first sink with HAL version < 3.0
3513            address = audio_device_address_to_parameter(
3514                                                        patch->sinks[0].ext.device.type,
3515                                                        patch->sinks[0].ext.device.address);
3516        } else {
3517            address = (char *)calloc(1, 1);
3518        }
3519        AudioParameter param = AudioParameter(String8(address));
3520        free(address);
3521        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3522        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3523                param.toString().string());
3524        *handle = AUDIO_PATCH_HANDLE_NONE;
3525    }
3526    if (configChanged) {
3527        mPrevOutDevice = type;
3528        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3529    }
3530    return status;
3531}
3532
3533status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3534{
3535    AutoPark<FastMixer> park(mFastMixer);
3536
3537    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3538
3539    return status;
3540}
3541
3542status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3543{
3544    status_t status = NO_ERROR;
3545
3546    mOutDevice = AUDIO_DEVICE_NONE;
3547
3548    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3549        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3550        status = hwDevice->release_audio_patch(hwDevice, handle);
3551    } else {
3552        AudioParameter param;
3553        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3554        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3555                param.toString().string());
3556    }
3557    return status;
3558}
3559
3560void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3561{
3562    Mutex::Autolock _l(mLock);
3563    mTracks.add(track);
3564}
3565
3566void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3567{
3568    Mutex::Autolock _l(mLock);
3569    destroyTrack_l(track);
3570}
3571
3572void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3573{
3574    ThreadBase::getAudioPortConfig(config);
3575    config->role = AUDIO_PORT_ROLE_SOURCE;
3576    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3577    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3578}
3579
3580// ----------------------------------------------------------------------------
3581
3582AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3583        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3584    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3585        // mAudioMixer below
3586        // mFastMixer below
3587        mFastMixerFutex(0),
3588        mMasterMono(false)
3589        // mOutputSink below
3590        // mPipeSink below
3591        // mNormalSink below
3592{
3593    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3594    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3595            "mFrameCount=%zu, mNormalFrameCount=%zu",
3596            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3597            mNormalFrameCount);
3598    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3599
3600    if (type == DUPLICATING) {
3601        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3602        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3603        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3604        return;
3605    }
3606    // create an NBAIO sink for the HAL output stream, and negotiate
3607    mOutputSink = new AudioStreamOutSink(output->stream);
3608    size_t numCounterOffers = 0;
3609    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3610#if !LOG_NDEBUG
3611    ssize_t index =
3612#else
3613    (void)
3614#endif
3615            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3616    ALOG_ASSERT(index == 0);
3617
3618    // initialize fast mixer depending on configuration
3619    bool initFastMixer;
3620    switch (kUseFastMixer) {
3621    case FastMixer_Never:
3622        initFastMixer = false;
3623        break;
3624    case FastMixer_Always:
3625        initFastMixer = true;
3626        break;
3627    case FastMixer_Static:
3628    case FastMixer_Dynamic:
3629        initFastMixer = mFrameCount < mNormalFrameCount;
3630        break;
3631    }
3632    if (initFastMixer) {
3633        audio_format_t fastMixerFormat;
3634        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3635            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3636        } else {
3637            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3638        }
3639        if (mFormat != fastMixerFormat) {
3640            // change our Sink format to accept our intermediate precision
3641            mFormat = fastMixerFormat;
3642            free(mSinkBuffer);
3643            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3644            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3645            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3646        }
3647
3648        // create a MonoPipe to connect our submix to FastMixer
3649        NBAIO_Format format = mOutputSink->format();
3650#ifdef TEE_SINK
3651        NBAIO_Format origformat = format;
3652#endif
3653        // adjust format to match that of the Fast Mixer
3654        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3655        format.mFormat = fastMixerFormat;
3656        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3657
3658        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3659        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3660        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3661        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3662        const NBAIO_Format offers[1] = {format};
3663        size_t numCounterOffers = 0;
3664#if !LOG_NDEBUG || defined(TEE_SINK)
3665        ssize_t index =
3666#else
3667        (void)
3668#endif
3669                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3670        ALOG_ASSERT(index == 0);
3671        monoPipe->setAvgFrames((mScreenState & 1) ?
3672                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3673        mPipeSink = monoPipe;
3674
3675#ifdef TEE_SINK
3676        if (mTeeSinkOutputEnabled) {
3677            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3678            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3679            const NBAIO_Format offers2[1] = {origformat};
3680            numCounterOffers = 0;
3681            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3682            ALOG_ASSERT(index == 0);
3683            mTeeSink = teeSink;
3684            PipeReader *teeSource = new PipeReader(*teeSink);
3685            numCounterOffers = 0;
3686            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3687            ALOG_ASSERT(index == 0);
3688            mTeeSource = teeSource;
3689        }
3690#endif
3691
3692        // create fast mixer and configure it initially with just one fast track for our submix
3693        mFastMixer = new FastMixer();
3694        FastMixerStateQueue *sq = mFastMixer->sq();
3695#ifdef STATE_QUEUE_DUMP
3696        sq->setObserverDump(&mStateQueueObserverDump);
3697        sq->setMutatorDump(&mStateQueueMutatorDump);
3698#endif
3699        FastMixerState *state = sq->begin();
3700        FastTrack *fastTrack = &state->mFastTracks[0];
3701        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3702        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3703        fastTrack->mVolumeProvider = NULL;
3704        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3705        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3706        fastTrack->mGeneration++;
3707        state->mFastTracksGen++;
3708        state->mTrackMask = 1;
3709        // fast mixer will use the HAL output sink
3710        state->mOutputSink = mOutputSink.get();
3711        state->mOutputSinkGen++;
3712        state->mFrameCount = mFrameCount;
3713        state->mCommand = FastMixerState::COLD_IDLE;
3714        // already done in constructor initialization list
3715        //mFastMixerFutex = 0;
3716        state->mColdFutexAddr = &mFastMixerFutex;
3717        state->mColdGen++;
3718        state->mDumpState = &mFastMixerDumpState;
3719#ifdef TEE_SINK
3720        state->mTeeSink = mTeeSink.get();
3721#endif
3722        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3723        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3724        sq->end();
3725        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3726
3727        // start the fast mixer
3728        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3729        pid_t tid = mFastMixer->getTid();
3730        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3731
3732#ifdef AUDIO_WATCHDOG
3733        // create and start the watchdog
3734        mAudioWatchdog = new AudioWatchdog();
3735        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3736        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3737        tid = mAudioWatchdog->getTid();
3738        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3739#endif
3740
3741    }
3742
3743    switch (kUseFastMixer) {
3744    case FastMixer_Never:
3745    case FastMixer_Dynamic:
3746        mNormalSink = mOutputSink;
3747        break;
3748    case FastMixer_Always:
3749        mNormalSink = mPipeSink;
3750        break;
3751    case FastMixer_Static:
3752        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3753        break;
3754    }
3755}
3756
3757AudioFlinger::MixerThread::~MixerThread()
3758{
3759    if (mFastMixer != 0) {
3760        FastMixerStateQueue *sq = mFastMixer->sq();
3761        FastMixerState *state = sq->begin();
3762        if (state->mCommand == FastMixerState::COLD_IDLE) {
3763            int32_t old = android_atomic_inc(&mFastMixerFutex);
3764            if (old == -1) {
3765                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3766            }
3767        }
3768        state->mCommand = FastMixerState::EXIT;
3769        sq->end();
3770        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3771        mFastMixer->join();
3772        // Though the fast mixer thread has exited, it's state queue is still valid.
3773        // We'll use that extract the final state which contains one remaining fast track
3774        // corresponding to our sub-mix.
3775        state = sq->begin();
3776        ALOG_ASSERT(state->mTrackMask == 1);
3777        FastTrack *fastTrack = &state->mFastTracks[0];
3778        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3779        delete fastTrack->mBufferProvider;
3780        sq->end(false /*didModify*/);
3781        mFastMixer.clear();
3782#ifdef AUDIO_WATCHDOG
3783        if (mAudioWatchdog != 0) {
3784            mAudioWatchdog->requestExit();
3785            mAudioWatchdog->requestExitAndWait();
3786            mAudioWatchdog.clear();
3787        }
3788#endif
3789    }
3790    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3791    delete mAudioMixer;
3792}
3793
3794
3795uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3796{
3797    if (mFastMixer != 0) {
3798        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3799        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3800    }
3801    return latency;
3802}
3803
3804
3805void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3806{
3807    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3808}
3809
3810ssize_t AudioFlinger::MixerThread::threadLoop_write()
3811{
3812    // FIXME we should only do one push per cycle; confirm this is true
3813    // Start the fast mixer if it's not already running
3814    if (mFastMixer != 0) {
3815        FastMixerStateQueue *sq = mFastMixer->sq();
3816        FastMixerState *state = sq->begin();
3817        if (state->mCommand != FastMixerState::MIX_WRITE &&
3818                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3819            if (state->mCommand == FastMixerState::COLD_IDLE) {
3820
3821                // FIXME workaround for first HAL write being CPU bound on some devices
3822                ATRACE_BEGIN("write");
3823                mOutput->write((char *)mSinkBuffer, 0);
3824                ATRACE_END();
3825
3826                int32_t old = android_atomic_inc(&mFastMixerFutex);
3827                if (old == -1) {
3828                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3829                }
3830#ifdef AUDIO_WATCHDOG
3831                if (mAudioWatchdog != 0) {
3832                    mAudioWatchdog->resume();
3833                }
3834#endif
3835            }
3836            state->mCommand = FastMixerState::MIX_WRITE;
3837#ifdef FAST_THREAD_STATISTICS
3838            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3839                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3840#endif
3841            sq->end();
3842            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3843            if (kUseFastMixer == FastMixer_Dynamic) {
3844                mNormalSink = mPipeSink;
3845            }
3846        } else {
3847            sq->end(false /*didModify*/);
3848        }
3849    }
3850    return PlaybackThread::threadLoop_write();
3851}
3852
3853void AudioFlinger::MixerThread::threadLoop_standby()
3854{
3855    // Idle the fast mixer if it's currently running
3856    if (mFastMixer != 0) {
3857        FastMixerStateQueue *sq = mFastMixer->sq();
3858        FastMixerState *state = sq->begin();
3859        if (!(state->mCommand & FastMixerState::IDLE)) {
3860            state->mCommand = FastMixerState::COLD_IDLE;
3861            state->mColdFutexAddr = &mFastMixerFutex;
3862            state->mColdGen++;
3863            mFastMixerFutex = 0;
3864            sq->end();
3865            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3866            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3867            if (kUseFastMixer == FastMixer_Dynamic) {
3868                mNormalSink = mOutputSink;
3869            }
3870#ifdef AUDIO_WATCHDOG
3871            if (mAudioWatchdog != 0) {
3872                mAudioWatchdog->pause();
3873            }
3874#endif
3875        } else {
3876            sq->end(false /*didModify*/);
3877        }
3878    }
3879    PlaybackThread::threadLoop_standby();
3880}
3881
3882bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3883{
3884    return false;
3885}
3886
3887bool AudioFlinger::PlaybackThread::shouldStandby_l()
3888{
3889    return !mStandby;
3890}
3891
3892bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3893{
3894    Mutex::Autolock _l(mLock);
3895    return waitingAsyncCallback_l();
3896}
3897
3898// shared by MIXER and DIRECT, overridden by DUPLICATING
3899void AudioFlinger::PlaybackThread::threadLoop_standby()
3900{
3901    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3902    mOutput->standby();
3903    if (mUseAsyncWrite != 0) {
3904        // discard any pending drain or write ack by incrementing sequence
3905        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3906        mDrainSequence = (mDrainSequence + 2) & ~1;
3907        ALOG_ASSERT(mCallbackThread != 0);
3908        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3909        mCallbackThread->setDraining(mDrainSequence);
3910    }
3911    mHwPaused = false;
3912}
3913
3914void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3915{
3916    ALOGV("signal playback thread");
3917    broadcast_l();
3918}
3919
3920void AudioFlinger::PlaybackThread::onAsyncError()
3921{
3922    for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
3923        invalidateTracks((audio_stream_type_t)i);
3924    }
3925}
3926
3927void AudioFlinger::MixerThread::threadLoop_mix()
3928{
3929    // mix buffers...
3930    mAudioMixer->process();
3931    mCurrentWriteLength = mSinkBufferSize;
3932    // increase sleep time progressively when application underrun condition clears.
3933    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3934    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3935    // such that we would underrun the audio HAL.
3936    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3937        sleepTimeShift--;
3938    }
3939    mSleepTimeUs = 0;
3940    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3941    //TODO: delay standby when effects have a tail
3942
3943}
3944
3945void AudioFlinger::MixerThread::threadLoop_sleepTime()
3946{
3947    // If no tracks are ready, sleep once for the duration of an output
3948    // buffer size, then write 0s to the output
3949    if (mSleepTimeUs == 0) {
3950        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3951            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3952            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3953                mSleepTimeUs = kMinThreadSleepTimeUs;
3954            }
3955            // reduce sleep time in case of consecutive application underruns to avoid
3956            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3957            // duration we would end up writing less data than needed by the audio HAL if
3958            // the condition persists.
3959            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3960                sleepTimeShift++;
3961            }
3962        } else {
3963            mSleepTimeUs = mIdleSleepTimeUs;
3964        }
3965    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3966        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3967        // before effects processing or output.
3968        if (mMixerBufferValid) {
3969            memset(mMixerBuffer, 0, mMixerBufferSize);
3970        } else {
3971            memset(mSinkBuffer, 0, mSinkBufferSize);
3972        }
3973        mSleepTimeUs = 0;
3974        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3975                "anticipated start");
3976    }
3977    // TODO add standby time extension fct of effect tail
3978}
3979
3980// prepareTracks_l() must be called with ThreadBase::mLock held
3981AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3982        Vector< sp<Track> > *tracksToRemove)
3983{
3984
3985    mixer_state mixerStatus = MIXER_IDLE;
3986    // find out which tracks need to be processed
3987    size_t count = mActiveTracks.size();
3988    size_t mixedTracks = 0;
3989    size_t tracksWithEffect = 0;
3990    // counts only _active_ fast tracks
3991    size_t fastTracks = 0;
3992    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3993
3994    float masterVolume = mMasterVolume;
3995    bool masterMute = mMasterMute;
3996
3997    if (masterMute) {
3998        masterVolume = 0;
3999    }
4000    // Delegate master volume control to effect in output mix effect chain if needed
4001    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4002    if (chain != 0) {
4003        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4004        chain->setVolume_l(&v, &v);
4005        masterVolume = (float)((v + (1 << 23)) >> 24);
4006        chain.clear();
4007    }
4008
4009    // prepare a new state to push
4010    FastMixerStateQueue *sq = NULL;
4011    FastMixerState *state = NULL;
4012    bool didModify = false;
4013    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4014    if (mFastMixer != 0) {
4015        sq = mFastMixer->sq();
4016        state = sq->begin();
4017    }
4018
4019    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
4020    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4021
4022    for (size_t i=0 ; i<count ; i++) {
4023        const sp<Track> t = mActiveTracks[i].promote();
4024        if (t == 0) {
4025            continue;
4026        }
4027
4028        // this const just means the local variable doesn't change
4029        Track* const track = t.get();
4030
4031        // process fast tracks
4032        if (track->isFastTrack()) {
4033
4034            // It's theoretically possible (though unlikely) for a fast track to be created
4035            // and then removed within the same normal mix cycle.  This is not a problem, as
4036            // the track never becomes active so it's fast mixer slot is never touched.
4037            // The converse, of removing an (active) track and then creating a new track
4038            // at the identical fast mixer slot within the same normal mix cycle,
4039            // is impossible because the slot isn't marked available until the end of each cycle.
4040            int j = track->mFastIndex;
4041            ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4042            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4043            FastTrack *fastTrack = &state->mFastTracks[j];
4044
4045            // Determine whether the track is currently in underrun condition,
4046            // and whether it had a recent underrun.
4047            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4048            FastTrackUnderruns underruns = ftDump->mUnderruns;
4049            uint32_t recentFull = (underruns.mBitFields.mFull -
4050                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4051            uint32_t recentPartial = (underruns.mBitFields.mPartial -
4052                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4053            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4054                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4055            uint32_t recentUnderruns = recentPartial + recentEmpty;
4056            track->mObservedUnderruns = underruns;
4057            // don't count underruns that occur while stopping or pausing
4058            // or stopped which can occur when flush() is called while active
4059            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4060                    recentUnderruns > 0) {
4061                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4062                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
4063            } else {
4064                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4065            }
4066
4067            // This is similar to the state machine for normal tracks,
4068            // with a few modifications for fast tracks.
4069            bool isActive = true;
4070            switch (track->mState) {
4071            case TrackBase::STOPPING_1:
4072                // track stays active in STOPPING_1 state until first underrun
4073                if (recentUnderruns > 0 || track->isTerminated()) {
4074                    track->mState = TrackBase::STOPPING_2;
4075                }
4076                break;
4077            case TrackBase::PAUSING:
4078                // ramp down is not yet implemented
4079                track->setPaused();
4080                break;
4081            case TrackBase::RESUMING:
4082                // ramp up is not yet implemented
4083                track->mState = TrackBase::ACTIVE;
4084                break;
4085            case TrackBase::ACTIVE:
4086                if (recentFull > 0 || recentPartial > 0) {
4087                    // track has provided at least some frames recently: reset retry count
4088                    track->mRetryCount = kMaxTrackRetries;
4089                }
4090                if (recentUnderruns == 0) {
4091                    // no recent underruns: stay active
4092                    break;
4093                }
4094                // there has recently been an underrun of some kind
4095                if (track->sharedBuffer() == 0) {
4096                    // were any of the recent underruns "empty" (no frames available)?
4097                    if (recentEmpty == 0) {
4098                        // no, then ignore the partial underruns as they are allowed indefinitely
4099                        break;
4100                    }
4101                    // there has recently been an "empty" underrun: decrement the retry counter
4102                    if (--(track->mRetryCount) > 0) {
4103                        break;
4104                    }
4105                    // indicate to client process that the track was disabled because of underrun;
4106                    // it will then automatically call start() when data is available
4107                    track->disable();
4108                    // remove from active list, but state remains ACTIVE [confusing but true]
4109                    isActive = false;
4110                    break;
4111                }
4112                // fall through
4113            case TrackBase::STOPPING_2:
4114            case TrackBase::PAUSED:
4115            case TrackBase::STOPPED:
4116            case TrackBase::FLUSHED:   // flush() while active
4117                // Check for presentation complete if track is inactive
4118                // We have consumed all the buffers of this track.
4119                // This would be incomplete if we auto-paused on underrun
4120                {
4121                    size_t audioHALFrames =
4122                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4123                    int64_t framesWritten = mBytesWritten / mFrameSize;
4124                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4125                        // track stays in active list until presentation is complete
4126                        break;
4127                    }
4128                }
4129                if (track->isStopping_2()) {
4130                    track->mState = TrackBase::STOPPED;
4131                }
4132                if (track->isStopped()) {
4133                    // Can't reset directly, as fast mixer is still polling this track
4134                    //   track->reset();
4135                    // So instead mark this track as needing to be reset after push with ack
4136                    resetMask |= 1 << i;
4137                }
4138                isActive = false;
4139                break;
4140            case TrackBase::IDLE:
4141            default:
4142                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4143            }
4144
4145            if (isActive) {
4146                // was it previously inactive?
4147                if (!(state->mTrackMask & (1 << j))) {
4148                    ExtendedAudioBufferProvider *eabp = track;
4149                    VolumeProvider *vp = track;
4150                    fastTrack->mBufferProvider = eabp;
4151                    fastTrack->mVolumeProvider = vp;
4152                    fastTrack->mChannelMask = track->mChannelMask;
4153                    fastTrack->mFormat = track->mFormat;
4154                    fastTrack->mGeneration++;
4155                    state->mTrackMask |= 1 << j;
4156                    didModify = true;
4157                    // no acknowledgement required for newly active tracks
4158                }
4159                // cache the combined master volume and stream type volume for fast mixer; this
4160                // lacks any synchronization or barrier so VolumeProvider may read a stale value
4161                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4162                ++fastTracks;
4163            } else {
4164                // was it previously active?
4165                if (state->mTrackMask & (1 << j)) {
4166                    fastTrack->mBufferProvider = NULL;
4167                    fastTrack->mGeneration++;
4168                    state->mTrackMask &= ~(1 << j);
4169                    didModify = true;
4170                    // If any fast tracks were removed, we must wait for acknowledgement
4171                    // because we're about to decrement the last sp<> on those tracks.
4172                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4173                } else {
4174                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
4175                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4176                            j, track->mState, state->mTrackMask, recentUnderruns,
4177                            track->sharedBuffer() != 0);
4178                }
4179                tracksToRemove->add(track);
4180                // Avoids a misleading display in dumpsys
4181                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4182            }
4183            continue;
4184        }
4185
4186        {   // local variable scope to avoid goto warning
4187
4188        audio_track_cblk_t* cblk = track->cblk();
4189
4190        // The first time a track is added we wait
4191        // for all its buffers to be filled before processing it
4192        int name = track->name();
4193        // make sure that we have enough frames to mix one full buffer.
4194        // enforce this condition only once to enable draining the buffer in case the client
4195        // app does not call stop() and relies on underrun to stop:
4196        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4197        // during last round
4198        size_t desiredFrames;
4199        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4200        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4201
4202        desiredFrames = sourceFramesNeededWithTimestretch(
4203                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4204        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4205        // add frames already consumed but not yet released by the resampler
4206        // because mAudioTrackServerProxy->framesReady() will include these frames
4207        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4208
4209        uint32_t minFrames = 1;
4210        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4211                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4212            minFrames = desiredFrames;
4213        }
4214
4215        size_t framesReady = track->framesReady();
4216        if (ATRACE_ENABLED()) {
4217            // I wish we had formatted trace names
4218            char traceName[16];
4219            strcpy(traceName, "nRdy");
4220            int name = track->name();
4221            if (AudioMixer::TRACK0 <= name &&
4222                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4223                name -= AudioMixer::TRACK0;
4224                traceName[4] = (name / 10) + '0';
4225                traceName[5] = (name % 10) + '0';
4226            } else {
4227                traceName[4] = '?';
4228                traceName[5] = '?';
4229            }
4230            traceName[6] = '\0';
4231            ATRACE_INT(traceName, framesReady);
4232        }
4233        if ((framesReady >= minFrames) && track->isReady() &&
4234                !track->isPaused() && !track->isTerminated())
4235        {
4236            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4237
4238            mixedTracks++;
4239
4240            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4241            // there is an effect chain connected to the track
4242            chain.clear();
4243            if (track->mainBuffer() != mSinkBuffer &&
4244                    track->mainBuffer() != mMixerBuffer) {
4245                if (mEffectBufferEnabled) {
4246                    mEffectBufferValid = true; // Later can set directly.
4247                }
4248                chain = getEffectChain_l(track->sessionId());
4249                // Delegate volume control to effect in track effect chain if needed
4250                if (chain != 0) {
4251                    tracksWithEffect++;
4252                } else {
4253                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4254                            "session %d",
4255                            name, track->sessionId());
4256                }
4257            }
4258
4259
4260            int param = AudioMixer::VOLUME;
4261            if (track->mFillingUpStatus == Track::FS_FILLED) {
4262                // no ramp for the first volume setting
4263                track->mFillingUpStatus = Track::FS_ACTIVE;
4264                if (track->mState == TrackBase::RESUMING) {
4265                    track->mState = TrackBase::ACTIVE;
4266                    param = AudioMixer::RAMP_VOLUME;
4267                }
4268                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4269            // FIXME should not make a decision based on mServer
4270            } else if (cblk->mServer != 0) {
4271                // If the track is stopped before the first frame was mixed,
4272                // do not apply ramp
4273                param = AudioMixer::RAMP_VOLUME;
4274            }
4275
4276            // compute volume for this track
4277            uint32_t vl, vr;       // in U8.24 integer format
4278            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4279            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4280                vl = vr = 0;
4281                vlf = vrf = vaf = 0.;
4282                if (track->isPausing()) {
4283                    track->setPaused();
4284                }
4285            } else {
4286
4287                // read original volumes with volume control
4288                float typeVolume = mStreamTypes[track->streamType()].volume;
4289                float v = masterVolume * typeVolume;
4290                sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4291                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4292                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4293                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4294                // track volumes come from shared memory, so can't be trusted and must be clamped
4295                if (vlf > GAIN_FLOAT_UNITY) {
4296                    ALOGV("Track left volume out of range: %.3g", vlf);
4297                    vlf = GAIN_FLOAT_UNITY;
4298                }
4299                if (vrf > GAIN_FLOAT_UNITY) {
4300                    ALOGV("Track right volume out of range: %.3g", vrf);
4301                    vrf = GAIN_FLOAT_UNITY;
4302                }
4303                // now apply the master volume and stream type volume
4304                vlf *= v;
4305                vrf *= v;
4306                // assuming master volume and stream type volume each go up to 1.0,
4307                // then derive vl and vr as U8.24 versions for the effect chain
4308                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4309                vl = (uint32_t) (scaleto8_24 * vlf);
4310                vr = (uint32_t) (scaleto8_24 * vrf);
4311                // vl and vr are now in U8.24 format
4312                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4313                // send level comes from shared memory and so may be corrupt
4314                if (sendLevel > MAX_GAIN_INT) {
4315                    ALOGV("Track send level out of range: %04X", sendLevel);
4316                    sendLevel = MAX_GAIN_INT;
4317                }
4318                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4319                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4320            }
4321
4322            // Delegate volume control to effect in track effect chain if needed
4323            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4324                // Do not ramp volume if volume is controlled by effect
4325                param = AudioMixer::VOLUME;
4326                // Update remaining floating point volume levels
4327                vlf = (float)vl / (1 << 24);
4328                vrf = (float)vr / (1 << 24);
4329                track->mHasVolumeController = true;
4330            } else {
4331                // force no volume ramp when volume controller was just disabled or removed
4332                // from effect chain to avoid volume spike
4333                if (track->mHasVolumeController) {
4334                    param = AudioMixer::VOLUME;
4335                }
4336                track->mHasVolumeController = false;
4337            }
4338
4339            // XXX: these things DON'T need to be done each time
4340            mAudioMixer->setBufferProvider(name, track);
4341            mAudioMixer->enable(name);
4342
4343            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4344            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4345            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4346            mAudioMixer->setParameter(
4347                name,
4348                AudioMixer::TRACK,
4349                AudioMixer::FORMAT, (void *)track->format());
4350            mAudioMixer->setParameter(
4351                name,
4352                AudioMixer::TRACK,
4353                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4354            mAudioMixer->setParameter(
4355                name,
4356                AudioMixer::TRACK,
4357                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4358            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4359            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4360            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4361            if (reqSampleRate == 0) {
4362                reqSampleRate = mSampleRate;
4363            } else if (reqSampleRate > maxSampleRate) {
4364                reqSampleRate = maxSampleRate;
4365            }
4366            mAudioMixer->setParameter(
4367                name,
4368                AudioMixer::RESAMPLE,
4369                AudioMixer::SAMPLE_RATE,
4370                (void *)(uintptr_t)reqSampleRate);
4371
4372            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4373            mAudioMixer->setParameter(
4374                name,
4375                AudioMixer::TIMESTRETCH,
4376                AudioMixer::PLAYBACK_RATE,
4377                &playbackRate);
4378
4379            /*
4380             * Select the appropriate output buffer for the track.
4381             *
4382             * Tracks with effects go into their own effects chain buffer
4383             * and from there into either mEffectBuffer or mSinkBuffer.
4384             *
4385             * Other tracks can use mMixerBuffer for higher precision
4386             * channel accumulation.  If this buffer is enabled
4387             * (mMixerBufferEnabled true), then selected tracks will accumulate
4388             * into it.
4389             *
4390             */
4391            if (mMixerBufferEnabled
4392                    && (track->mainBuffer() == mSinkBuffer
4393                            || track->mainBuffer() == mMixerBuffer)) {
4394                mAudioMixer->setParameter(
4395                        name,
4396                        AudioMixer::TRACK,
4397                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4398                mAudioMixer->setParameter(
4399                        name,
4400                        AudioMixer::TRACK,
4401                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4402                // TODO: override track->mainBuffer()?
4403                mMixerBufferValid = true;
4404            } else {
4405                mAudioMixer->setParameter(
4406                        name,
4407                        AudioMixer::TRACK,
4408                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4409                mAudioMixer->setParameter(
4410                        name,
4411                        AudioMixer::TRACK,
4412                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4413            }
4414            mAudioMixer->setParameter(
4415                name,
4416                AudioMixer::TRACK,
4417                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4418
4419            // reset retry count
4420            track->mRetryCount = kMaxTrackRetries;
4421
4422            // If one track is ready, set the mixer ready if:
4423            //  - the mixer was not ready during previous round OR
4424            //  - no other track is not ready
4425            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4426                    mixerStatus != MIXER_TRACKS_ENABLED) {
4427                mixerStatus = MIXER_TRACKS_READY;
4428            }
4429        } else {
4430            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4431                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4432                        track, framesReady, desiredFrames);
4433                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4434            } else {
4435                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4436            }
4437
4438            // clear effect chain input buffer if an active track underruns to avoid sending
4439            // previous audio buffer again to effects
4440            chain = getEffectChain_l(track->sessionId());
4441            if (chain != 0) {
4442                chain->clearInputBuffer();
4443            }
4444
4445            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4446            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4447                    track->isStopped() || track->isPaused()) {
4448                // We have consumed all the buffers of this track.
4449                // Remove it from the list of active tracks.
4450                // TODO: use actual buffer filling status instead of latency when available from
4451                // audio HAL
4452                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4453                int64_t framesWritten = mBytesWritten / mFrameSize;
4454                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4455                    if (track->isStopped()) {
4456                        track->reset();
4457                    }
4458                    tracksToRemove->add(track);
4459                }
4460            } else {
4461                // No buffers for this track. Give it a few chances to
4462                // fill a buffer, then remove it from active list.
4463                if (--(track->mRetryCount) <= 0) {
4464                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4465                    tracksToRemove->add(track);
4466                    // indicate to client process that the track was disabled because of underrun;
4467                    // it will then automatically call start() when data is available
4468                    track->disable();
4469                // If one track is not ready, mark the mixer also not ready if:
4470                //  - the mixer was ready during previous round OR
4471                //  - no other track is ready
4472                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4473                                mixerStatus != MIXER_TRACKS_READY) {
4474                    mixerStatus = MIXER_TRACKS_ENABLED;
4475                }
4476            }
4477            mAudioMixer->disable(name);
4478        }
4479
4480        }   // local variable scope to avoid goto warning
4481
4482    }
4483
4484    // Push the new FastMixer state if necessary
4485    bool pauseAudioWatchdog = false;
4486    if (didModify) {
4487        state->mFastTracksGen++;
4488        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4489        if (kUseFastMixer == FastMixer_Dynamic &&
4490                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4491            state->mCommand = FastMixerState::COLD_IDLE;
4492            state->mColdFutexAddr = &mFastMixerFutex;
4493            state->mColdGen++;
4494            mFastMixerFutex = 0;
4495            if (kUseFastMixer == FastMixer_Dynamic) {
4496                mNormalSink = mOutputSink;
4497            }
4498            // If we go into cold idle, need to wait for acknowledgement
4499            // so that fast mixer stops doing I/O.
4500            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4501            pauseAudioWatchdog = true;
4502        }
4503    }
4504    if (sq != NULL) {
4505        sq->end(didModify);
4506        sq->push(block);
4507    }
4508#ifdef AUDIO_WATCHDOG
4509    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4510        mAudioWatchdog->pause();
4511    }
4512#endif
4513
4514    // Now perform the deferred reset on fast tracks that have stopped
4515    while (resetMask != 0) {
4516        size_t i = __builtin_ctz(resetMask);
4517        ALOG_ASSERT(i < count);
4518        resetMask &= ~(1 << i);
4519        sp<Track> t = mActiveTracks[i].promote();
4520        if (t == 0) {
4521            continue;
4522        }
4523        Track* track = t.get();
4524        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4525        track->reset();
4526    }
4527
4528    // remove all the tracks that need to be...
4529    removeTracks_l(*tracksToRemove);
4530
4531    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4532        mEffectBufferValid = true;
4533    }
4534
4535    if (mEffectBufferValid) {
4536        // as long as there are effects we should clear the effects buffer, to avoid
4537        // passing a non-clean buffer to the effect chain
4538        memset(mEffectBuffer, 0, mEffectBufferSize);
4539    }
4540    // sink or mix buffer must be cleared if all tracks are connected to an
4541    // effect chain as in this case the mixer will not write to the sink or mix buffer
4542    // and track effects will accumulate into it
4543    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4544            (mixedTracks == 0 && fastTracks > 0))) {
4545        // FIXME as a performance optimization, should remember previous zero status
4546        if (mMixerBufferValid) {
4547            memset(mMixerBuffer, 0, mMixerBufferSize);
4548            // TODO: In testing, mSinkBuffer below need not be cleared because
4549            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4550            // after mixing.
4551            //
4552            // To enforce this guarantee:
4553            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4554            // (mixedTracks == 0 && fastTracks > 0))
4555            // must imply MIXER_TRACKS_READY.
4556            // Later, we may clear buffers regardless, and skip much of this logic.
4557        }
4558        // FIXME as a performance optimization, should remember previous zero status
4559        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4560    }
4561
4562    // if any fast tracks, then status is ready
4563    mMixerStatusIgnoringFastTracks = mixerStatus;
4564    if (fastTracks > 0) {
4565        mixerStatus = MIXER_TRACKS_READY;
4566    }
4567    return mixerStatus;
4568}
4569
4570// getTrackName_l() must be called with ThreadBase::mLock held
4571int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4572        audio_format_t format, audio_session_t sessionId)
4573{
4574    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4575}
4576
4577// deleteTrackName_l() must be called with ThreadBase::mLock held
4578void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4579{
4580    ALOGV("remove track (%d) and delete from mixer", name);
4581    mAudioMixer->deleteTrackName(name);
4582}
4583
4584// checkForNewParameter_l() must be called with ThreadBase::mLock held
4585bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4586                                                       status_t& status)
4587{
4588    bool reconfig = false;
4589    bool a2dpDeviceChanged = false;
4590
4591    status = NO_ERROR;
4592
4593    AutoPark<FastMixer> park(mFastMixer);
4594
4595    AudioParameter param = AudioParameter(keyValuePair);
4596    int value;
4597    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4598        reconfig = true;
4599    }
4600    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4601        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4602            status = BAD_VALUE;
4603        } else {
4604            // no need to save value, since it's constant
4605            reconfig = true;
4606        }
4607    }
4608    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4609        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4610            status = BAD_VALUE;
4611        } else {
4612            // no need to save value, since it's constant
4613            reconfig = true;
4614        }
4615    }
4616    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4617        // do not accept frame count changes if tracks are open as the track buffer
4618        // size depends on frame count and correct behavior would not be guaranteed
4619        // if frame count is changed after track creation
4620        if (!mTracks.isEmpty()) {
4621            status = INVALID_OPERATION;
4622        } else {
4623            reconfig = true;
4624        }
4625    }
4626    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4627#ifdef ADD_BATTERY_DATA
4628        // when changing the audio output device, call addBatteryData to notify
4629        // the change
4630        if (mOutDevice != value) {
4631            uint32_t params = 0;
4632            // check whether speaker is on
4633            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4634                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4635            }
4636
4637            audio_devices_t deviceWithoutSpeaker
4638                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4639            // check if any other device (except speaker) is on
4640            if (value & deviceWithoutSpeaker) {
4641                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4642            }
4643
4644            if (params != 0) {
4645                addBatteryData(params);
4646            }
4647        }
4648#endif
4649
4650        // forward device change to effects that have requested to be
4651        // aware of attached audio device.
4652        if (value != AUDIO_DEVICE_NONE) {
4653            a2dpDeviceChanged =
4654                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4655            mOutDevice = value;
4656            for (size_t i = 0; i < mEffectChains.size(); i++) {
4657                mEffectChains[i]->setDevice_l(mOutDevice);
4658            }
4659        }
4660    }
4661
4662    if (status == NO_ERROR) {
4663        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4664                                                keyValuePair.string());
4665        if (!mStandby && status == INVALID_OPERATION) {
4666            mOutput->standby();
4667            mStandby = true;
4668            mBytesWritten = 0;
4669            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4670                                                   keyValuePair.string());
4671        }
4672        if (status == NO_ERROR && reconfig) {
4673            readOutputParameters_l();
4674            delete mAudioMixer;
4675            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4676            for (size_t i = 0; i < mTracks.size() ; i++) {
4677                int name = getTrackName_l(mTracks[i]->mChannelMask,
4678                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4679                if (name < 0) {
4680                    break;
4681                }
4682                mTracks[i]->mName = name;
4683            }
4684            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4685        }
4686    }
4687
4688    return reconfig || a2dpDeviceChanged;
4689}
4690
4691
4692void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4693{
4694    PlaybackThread::dumpInternals(fd, args);
4695    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4696    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4697    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4698
4699    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4700    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4701    // This is a large object so we place it on the heap.
4702    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4703    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4704    copy->dump(fd);
4705    delete copy;
4706
4707#ifdef STATE_QUEUE_DUMP
4708    // Similar for state queue
4709    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4710    observerCopy.dump(fd);
4711    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4712    mutatorCopy.dump(fd);
4713#endif
4714
4715#ifdef TEE_SINK
4716    // Write the tee output to a .wav file
4717    dumpTee(fd, mTeeSource, mId);
4718#endif
4719
4720#ifdef AUDIO_WATCHDOG
4721    if (mAudioWatchdog != 0) {
4722        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4723        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4724        wdCopy.dump(fd);
4725    }
4726#endif
4727}
4728
4729uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4730{
4731    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4732}
4733
4734uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4735{
4736    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4737}
4738
4739void AudioFlinger::MixerThread::cacheParameters_l()
4740{
4741    PlaybackThread::cacheParameters_l();
4742
4743    // FIXME: Relaxed timing because of a certain device that can't meet latency
4744    // Should be reduced to 2x after the vendor fixes the driver issue
4745    // increase threshold again due to low power audio mode. The way this warning
4746    // threshold is calculated and its usefulness should be reconsidered anyway.
4747    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4748}
4749
4750// ----------------------------------------------------------------------------
4751
4752AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4753        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4754    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4755        // mLeftVolFloat, mRightVolFloat
4756{
4757}
4758
4759AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4760        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4761        ThreadBase::type_t type, bool systemReady)
4762    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4763        // mLeftVolFloat, mRightVolFloat
4764{
4765}
4766
4767AudioFlinger::DirectOutputThread::~DirectOutputThread()
4768{
4769}
4770
4771void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4772{
4773    float left, right;
4774
4775    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4776        left = right = 0;
4777    } else {
4778        float typeVolume = mStreamTypes[track->streamType()].volume;
4779        float v = mMasterVolume * typeVolume;
4780        sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4781        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4782        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4783        if (left > GAIN_FLOAT_UNITY) {
4784            left = GAIN_FLOAT_UNITY;
4785        }
4786        left *= v;
4787        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4788        if (right > GAIN_FLOAT_UNITY) {
4789            right = GAIN_FLOAT_UNITY;
4790        }
4791        right *= v;
4792    }
4793
4794    if (lastTrack) {
4795        if (left != mLeftVolFloat || right != mRightVolFloat) {
4796            mLeftVolFloat = left;
4797            mRightVolFloat = right;
4798
4799            // Convert volumes from float to 8.24
4800            uint32_t vl = (uint32_t)(left * (1 << 24));
4801            uint32_t vr = (uint32_t)(right * (1 << 24));
4802
4803            // Delegate volume control to effect in track effect chain if needed
4804            // only one effect chain can be present on DirectOutputThread, so if
4805            // there is one, the track is connected to it
4806            if (!mEffectChains.isEmpty()) {
4807                mEffectChains[0]->setVolume_l(&vl, &vr);
4808                left = (float)vl / (1 << 24);
4809                right = (float)vr / (1 << 24);
4810            }
4811            if (mOutput->stream->set_volume) {
4812                mOutput->stream->set_volume(mOutput->stream, left, right);
4813            }
4814        }
4815    }
4816}
4817
4818void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4819{
4820    sp<Track> previousTrack = mPreviousTrack.promote();
4821    sp<Track> latestTrack = mLatestActiveTrack.promote();
4822
4823    if (previousTrack != 0 && latestTrack != 0) {
4824        if (mType == DIRECT) {
4825            if (previousTrack.get() != latestTrack.get()) {
4826                mFlushPending = true;
4827            }
4828        } else /* mType == OFFLOAD */ {
4829            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4830                mFlushPending = true;
4831            }
4832        }
4833    }
4834    PlaybackThread::onAddNewTrack_l();
4835}
4836
4837AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4838    Vector< sp<Track> > *tracksToRemove
4839)
4840{
4841    size_t count = mActiveTracks.size();
4842    mixer_state mixerStatus = MIXER_IDLE;
4843    bool doHwPause = false;
4844    bool doHwResume = false;
4845
4846    // find out which tracks need to be processed
4847    for (size_t i = 0; i < count; i++) {
4848        sp<Track> t = mActiveTracks[i].promote();
4849        // The track died recently
4850        if (t == 0) {
4851            continue;
4852        }
4853
4854        if (t->isInvalid()) {
4855            ALOGW("An invalidated track shouldn't be in active list");
4856            tracksToRemove->add(t);
4857            continue;
4858        }
4859
4860        Track* const track = t.get();
4861#ifdef VERY_VERY_VERBOSE_LOGGING
4862        audio_track_cblk_t* cblk = track->cblk();
4863#endif
4864        // Only consider last track started for volume and mixer state control.
4865        // In theory an older track could underrun and restart after the new one starts
4866        // but as we only care about the transition phase between two tracks on a
4867        // direct output, it is not a problem to ignore the underrun case.
4868        sp<Track> l = mLatestActiveTrack.promote();
4869        bool last = l.get() == track;
4870
4871        if (track->isPausing()) {
4872            track->setPaused();
4873            if (mHwSupportsPause && last && !mHwPaused) {
4874                doHwPause = true;
4875                mHwPaused = true;
4876            }
4877            tracksToRemove->add(track);
4878        } else if (track->isFlushPending()) {
4879            track->flushAck();
4880            if (last) {
4881                mFlushPending = true;
4882            }
4883        } else if (track->isResumePending()) {
4884            track->resumeAck();
4885            if (last) {
4886                mLeftVolFloat = mRightVolFloat = -1.0;
4887                if (mHwPaused) {
4888                    doHwResume = true;
4889                    mHwPaused = false;
4890                }
4891            }
4892        }
4893
4894        // The first time a track is added we wait
4895        // for all its buffers to be filled before processing it.
4896        // Allow draining the buffer in case the client
4897        // app does not call stop() and relies on underrun to stop:
4898        // hence the test on (track->mRetryCount > 1).
4899        // If retryCount<=1 then track is about to underrun and be removed.
4900        // Do not use a high threshold for compressed audio.
4901        uint32_t minFrames;
4902        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4903            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4904            minFrames = mNormalFrameCount;
4905        } else {
4906            minFrames = 1;
4907        }
4908
4909        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4910                !track->isStopping_2() && !track->isStopped())
4911        {
4912            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4913
4914            if (track->mFillingUpStatus == Track::FS_FILLED) {
4915                track->mFillingUpStatus = Track::FS_ACTIVE;
4916                if (last) {
4917                    // make sure processVolume_l() will apply new volume even if 0
4918                    mLeftVolFloat = mRightVolFloat = -1.0;
4919                }
4920                if (!mHwSupportsPause) {
4921                    track->resumeAck();
4922                }
4923            }
4924
4925            // compute volume for this track
4926            processVolume_l(track, last);
4927            if (last) {
4928                sp<Track> previousTrack = mPreviousTrack.promote();
4929                if (previousTrack != 0) {
4930                    if (track != previousTrack.get()) {
4931                        // Flush any data still being written from last track
4932                        mBytesRemaining = 0;
4933                        // Invalidate previous track to force a seek when resuming.
4934                        previousTrack->invalidate();
4935                    }
4936                }
4937                mPreviousTrack = track;
4938
4939                // reset retry count
4940                track->mRetryCount = kMaxTrackRetriesDirect;
4941                mActiveTrack = t;
4942                mixerStatus = MIXER_TRACKS_READY;
4943                if (mHwPaused) {
4944                    doHwResume = true;
4945                    mHwPaused = false;
4946                }
4947            }
4948        } else {
4949            // clear effect chain input buffer if the last active track started underruns
4950            // to avoid sending previous audio buffer again to effects
4951            if (!mEffectChains.isEmpty() && last) {
4952                mEffectChains[0]->clearInputBuffer();
4953            }
4954            if (track->isStopping_1()) {
4955                track->mState = TrackBase::STOPPING_2;
4956                if (last && mHwPaused) {
4957                     doHwResume = true;
4958                     mHwPaused = false;
4959                 }
4960            }
4961            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4962                    track->isStopping_2() || track->isPaused()) {
4963                // We have consumed all the buffers of this track.
4964                // Remove it from the list of active tracks.
4965                size_t audioHALFrames;
4966                if (audio_has_proportional_frames(mFormat)) {
4967                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4968                } else {
4969                    audioHALFrames = 0;
4970                }
4971
4972                int64_t framesWritten = mBytesWritten / mFrameSize;
4973                if (mStandby || !last ||
4974                        track->presentationComplete(framesWritten, audioHALFrames)) {
4975                    if (track->isStopping_2()) {
4976                        track->mState = TrackBase::STOPPED;
4977                    }
4978                    if (track->isStopped()) {
4979                        track->reset();
4980                    }
4981                    tracksToRemove->add(track);
4982                }
4983            } else {
4984                // No buffers for this track. Give it a few chances to
4985                // fill a buffer, then remove it from active list.
4986                // Only consider last track started for mixer state control
4987                if (--(track->mRetryCount) <= 0) {
4988                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4989                    tracksToRemove->add(track);
4990                    // indicate to client process that the track was disabled because of underrun;
4991                    // it will then automatically call start() when data is available
4992                    track->disable();
4993                } else if (last) {
4994                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4995                            "minFrames = %u, mFormat = %#x",
4996                            track->framesReady(), minFrames, mFormat);
4997                    mixerStatus = MIXER_TRACKS_ENABLED;
4998                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4999                        doHwPause = true;
5000                        mHwPaused = true;
5001                    }
5002                }
5003            }
5004        }
5005    }
5006
5007    // if an active track did not command a flush, check for pending flush on stopped tracks
5008    if (!mFlushPending) {
5009        for (size_t i = 0; i < mTracks.size(); i++) {
5010            if (mTracks[i]->isFlushPending()) {
5011                mTracks[i]->flushAck();
5012                mFlushPending = true;
5013            }
5014        }
5015    }
5016
5017    // make sure the pause/flush/resume sequence is executed in the right order.
5018    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5019    // before flush and then resume HW. This can happen in case of pause/flush/resume
5020    // if resume is received before pause is executed.
5021    if (mHwSupportsPause && !mStandby &&
5022            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5023        mOutput->stream->pause(mOutput->stream);
5024    }
5025    if (mFlushPending) {
5026        flushHw_l();
5027    }
5028    if (mHwSupportsPause && !mStandby && doHwResume) {
5029        mOutput->stream->resume(mOutput->stream);
5030    }
5031    // remove all the tracks that need to be...
5032    removeTracks_l(*tracksToRemove);
5033
5034    return mixerStatus;
5035}
5036
5037void AudioFlinger::DirectOutputThread::threadLoop_mix()
5038{
5039    size_t frameCount = mFrameCount;
5040    int8_t *curBuf = (int8_t *)mSinkBuffer;
5041    // output audio to hardware
5042    while (frameCount) {
5043        AudioBufferProvider::Buffer buffer;
5044        buffer.frameCount = frameCount;
5045        status_t status = mActiveTrack->getNextBuffer(&buffer);
5046        if (status != NO_ERROR || buffer.raw == NULL) {
5047            // no need to pad with 0 for compressed audio
5048            if (audio_has_proportional_frames(mFormat)) {
5049                memset(curBuf, 0, frameCount * mFrameSize);
5050            }
5051            break;
5052        }
5053        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5054        frameCount -= buffer.frameCount;
5055        curBuf += buffer.frameCount * mFrameSize;
5056        mActiveTrack->releaseBuffer(&buffer);
5057    }
5058    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5059    mSleepTimeUs = 0;
5060    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5061    mActiveTrack.clear();
5062}
5063
5064void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5065{
5066    // do not write to HAL when paused
5067    if (mHwPaused || (usesHwAvSync() && mStandby)) {
5068        mSleepTimeUs = mIdleSleepTimeUs;
5069        return;
5070    }
5071    if (mSleepTimeUs == 0) {
5072        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5073            mSleepTimeUs = mActiveSleepTimeUs;
5074        } else {
5075            mSleepTimeUs = mIdleSleepTimeUs;
5076        }
5077    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5078        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5079        mSleepTimeUs = 0;
5080    }
5081}
5082
5083void AudioFlinger::DirectOutputThread::threadLoop_exit()
5084{
5085    {
5086        Mutex::Autolock _l(mLock);
5087        for (size_t i = 0; i < mTracks.size(); i++) {
5088            if (mTracks[i]->isFlushPending()) {
5089                mTracks[i]->flushAck();
5090                mFlushPending = true;
5091            }
5092        }
5093        if (mFlushPending) {
5094            flushHw_l();
5095        }
5096    }
5097    PlaybackThread::threadLoop_exit();
5098}
5099
5100// must be called with thread mutex locked
5101bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5102{
5103    bool trackPaused = false;
5104    bool trackStopped = false;
5105
5106    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5107        return !mStandby;
5108    }
5109
5110    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5111    // after a timeout and we will enter standby then.
5112    if (mTracks.size() > 0) {
5113        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5114        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5115                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5116    }
5117
5118    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5119}
5120
5121// getTrackName_l() must be called with ThreadBase::mLock held
5122int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5123        audio_format_t format __unused, audio_session_t sessionId __unused)
5124{
5125    return 0;
5126}
5127
5128// deleteTrackName_l() must be called with ThreadBase::mLock held
5129void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5130{
5131}
5132
5133// checkForNewParameter_l() must be called with ThreadBase::mLock held
5134bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5135                                                              status_t& status)
5136{
5137    bool reconfig = false;
5138    bool a2dpDeviceChanged = false;
5139
5140    status = NO_ERROR;
5141
5142    AudioParameter param = AudioParameter(keyValuePair);
5143    int value;
5144    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5145        // forward device change to effects that have requested to be
5146        // aware of attached audio device.
5147        if (value != AUDIO_DEVICE_NONE) {
5148            a2dpDeviceChanged =
5149                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5150            mOutDevice = value;
5151            for (size_t i = 0; i < mEffectChains.size(); i++) {
5152                mEffectChains[i]->setDevice_l(mOutDevice);
5153            }
5154        }
5155    }
5156    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5157        // do not accept frame count changes if tracks are open as the track buffer
5158        // size depends on frame count and correct behavior would not be garantied
5159        // if frame count is changed after track creation
5160        if (!mTracks.isEmpty()) {
5161            status = INVALID_OPERATION;
5162        } else {
5163            reconfig = true;
5164        }
5165    }
5166    if (status == NO_ERROR) {
5167        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5168                                                keyValuePair.string());
5169        if (!mStandby && status == INVALID_OPERATION) {
5170            mOutput->standby();
5171            mStandby = true;
5172            mBytesWritten = 0;
5173            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5174                                                   keyValuePair.string());
5175        }
5176        if (status == NO_ERROR && reconfig) {
5177            readOutputParameters_l();
5178            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5179        }
5180    }
5181
5182    return reconfig || a2dpDeviceChanged;
5183}
5184
5185uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5186{
5187    uint32_t time;
5188    if (audio_has_proportional_frames(mFormat)) {
5189        time = PlaybackThread::activeSleepTimeUs();
5190    } else {
5191        time = kDirectMinSleepTimeUs;
5192    }
5193    return time;
5194}
5195
5196uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5197{
5198    uint32_t time;
5199    if (audio_has_proportional_frames(mFormat)) {
5200        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5201    } else {
5202        time = kDirectMinSleepTimeUs;
5203    }
5204    return time;
5205}
5206
5207uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5208{
5209    uint32_t time;
5210    if (audio_has_proportional_frames(mFormat)) {
5211        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5212    } else {
5213        time = kDirectMinSleepTimeUs;
5214    }
5215    return time;
5216}
5217
5218void AudioFlinger::DirectOutputThread::cacheParameters_l()
5219{
5220    PlaybackThread::cacheParameters_l();
5221
5222    // use shorter standby delay as on normal output to release
5223    // hardware resources as soon as possible
5224    // no delay on outputs with HW A/V sync
5225    if (usesHwAvSync()) {
5226        mStandbyDelayNs = 0;
5227    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5228        mStandbyDelayNs = kOffloadStandbyDelayNs;
5229    } else {
5230        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5231    }
5232}
5233
5234void AudioFlinger::DirectOutputThread::flushHw_l()
5235{
5236    mOutput->flush();
5237    mHwPaused = false;
5238    mFlushPending = false;
5239}
5240
5241// ----------------------------------------------------------------------------
5242
5243AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5244        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5245    :   Thread(false /*canCallJava*/),
5246        mPlaybackThread(playbackThread),
5247        mWriteAckSequence(0),
5248        mDrainSequence(0),
5249        mAsyncError(false)
5250{
5251}
5252
5253AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5254{
5255}
5256
5257void AudioFlinger::AsyncCallbackThread::onFirstRef()
5258{
5259    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5260}
5261
5262bool AudioFlinger::AsyncCallbackThread::threadLoop()
5263{
5264    while (!exitPending()) {
5265        uint32_t writeAckSequence;
5266        uint32_t drainSequence;
5267        bool asyncError;
5268
5269        {
5270            Mutex::Autolock _l(mLock);
5271            while (!((mWriteAckSequence & 1) ||
5272                     (mDrainSequence & 1) ||
5273                     mAsyncError ||
5274                     exitPending())) {
5275                mWaitWorkCV.wait(mLock);
5276            }
5277
5278            if (exitPending()) {
5279                break;
5280            }
5281            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5282                  mWriteAckSequence, mDrainSequence);
5283            writeAckSequence = mWriteAckSequence;
5284            mWriteAckSequence &= ~1;
5285            drainSequence = mDrainSequence;
5286            mDrainSequence &= ~1;
5287            asyncError = mAsyncError;
5288            mAsyncError = false;
5289        }
5290        {
5291            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5292            if (playbackThread != 0) {
5293                if (writeAckSequence & 1) {
5294                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5295                }
5296                if (drainSequence & 1) {
5297                    playbackThread->resetDraining(drainSequence >> 1);
5298                }
5299                if (asyncError) {
5300                    playbackThread->onAsyncError();
5301                }
5302            }
5303        }
5304    }
5305    return false;
5306}
5307
5308void AudioFlinger::AsyncCallbackThread::exit()
5309{
5310    ALOGV("AsyncCallbackThread::exit");
5311    Mutex::Autolock _l(mLock);
5312    requestExit();
5313    mWaitWorkCV.broadcast();
5314}
5315
5316void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5317{
5318    Mutex::Autolock _l(mLock);
5319    // bit 0 is cleared
5320    mWriteAckSequence = sequence << 1;
5321}
5322
5323void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5324{
5325    Mutex::Autolock _l(mLock);
5326    // ignore unexpected callbacks
5327    if (mWriteAckSequence & 2) {
5328        mWriteAckSequence |= 1;
5329        mWaitWorkCV.signal();
5330    }
5331}
5332
5333void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5334{
5335    Mutex::Autolock _l(mLock);
5336    // bit 0 is cleared
5337    mDrainSequence = sequence << 1;
5338}
5339
5340void AudioFlinger::AsyncCallbackThread::resetDraining()
5341{
5342    Mutex::Autolock _l(mLock);
5343    // ignore unexpected callbacks
5344    if (mDrainSequence & 2) {
5345        mDrainSequence |= 1;
5346        mWaitWorkCV.signal();
5347    }
5348}
5349
5350void AudioFlinger::AsyncCallbackThread::setAsyncError()
5351{
5352    Mutex::Autolock _l(mLock);
5353    mAsyncError = true;
5354    mWaitWorkCV.signal();
5355}
5356
5357
5358// ----------------------------------------------------------------------------
5359AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5360        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5361    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5362        mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
5363        mOffloadUnderrunPosition(~0LL)
5364{
5365    //FIXME: mStandby should be set to true by ThreadBase constructor
5366    mStandby = true;
5367    mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5368}
5369
5370void AudioFlinger::OffloadThread::threadLoop_exit()
5371{
5372    if (mFlushPending || mHwPaused) {
5373        // If a flush is pending or track was paused, just discard buffered data
5374        flushHw_l();
5375    } else {
5376        mMixerStatus = MIXER_DRAIN_ALL;
5377        threadLoop_drain();
5378    }
5379    if (mUseAsyncWrite) {
5380        ALOG_ASSERT(mCallbackThread != 0);
5381        mCallbackThread->exit();
5382    }
5383    PlaybackThread::threadLoop_exit();
5384}
5385
5386AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5387    Vector< sp<Track> > *tracksToRemove
5388)
5389{
5390    size_t count = mActiveTracks.size();
5391
5392    mixer_state mixerStatus = MIXER_IDLE;
5393    bool doHwPause = false;
5394    bool doHwResume = false;
5395
5396    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5397
5398    // find out which tracks need to be processed
5399    for (size_t i = 0; i < count; i++) {
5400        sp<Track> t = mActiveTracks[i].promote();
5401        // The track died recently
5402        if (t == 0) {
5403            continue;
5404        }
5405        Track* const track = t.get();
5406#ifdef VERY_VERY_VERBOSE_LOGGING
5407        audio_track_cblk_t* cblk = track->cblk();
5408#endif
5409        // Only consider last track started for volume and mixer state control.
5410        // In theory an older track could underrun and restart after the new one starts
5411        // but as we only care about the transition phase between two tracks on a
5412        // direct output, it is not a problem to ignore the underrun case.
5413        sp<Track> l = mLatestActiveTrack.promote();
5414        bool last = l.get() == track;
5415
5416        if (track->isInvalid()) {
5417            ALOGW("An invalidated track shouldn't be in active list");
5418            tracksToRemove->add(track);
5419            continue;
5420        }
5421
5422        if (track->mState == TrackBase::IDLE) {
5423            ALOGW("An idle track shouldn't be in active list");
5424            continue;
5425        }
5426
5427        if (track->isPausing()) {
5428            track->setPaused();
5429            if (last) {
5430                if (mHwSupportsPause && !mHwPaused) {
5431                    doHwPause = true;
5432                    mHwPaused = true;
5433                }
5434                // If we were part way through writing the mixbuffer to
5435                // the HAL we must save this until we resume
5436                // BUG - this will be wrong if a different track is made active,
5437                // in that case we want to discard the pending data in the
5438                // mixbuffer and tell the client to present it again when the
5439                // track is resumed
5440                mPausedWriteLength = mCurrentWriteLength;
5441                mPausedBytesRemaining = mBytesRemaining;
5442                mBytesRemaining = 0;    // stop writing
5443            }
5444            tracksToRemove->add(track);
5445        } else if (track->isFlushPending()) {
5446            if (track->isStopping_1()) {
5447                track->mRetryCount = kMaxTrackStopRetriesOffload;
5448            } else {
5449                track->mRetryCount = kMaxTrackRetriesOffload;
5450            }
5451            track->flushAck();
5452            if (last) {
5453                mFlushPending = true;
5454            }
5455        } else if (track->isResumePending()){
5456            track->resumeAck();
5457            if (last) {
5458                if (mPausedBytesRemaining) {
5459                    // Need to continue write that was interrupted
5460                    mCurrentWriteLength = mPausedWriteLength;
5461                    mBytesRemaining = mPausedBytesRemaining;
5462                    mPausedBytesRemaining = 0;
5463                }
5464                if (mHwPaused) {
5465                    doHwResume = true;
5466                    mHwPaused = false;
5467                    // threadLoop_mix() will handle the case that we need to
5468                    // resume an interrupted write
5469                }
5470                // enable write to audio HAL
5471                mSleepTimeUs = 0;
5472
5473                mLeftVolFloat = mRightVolFloat = -1.0;
5474
5475                // Do not handle new data in this iteration even if track->framesReady()
5476                mixerStatus = MIXER_TRACKS_ENABLED;
5477            }
5478        }  else if (track->framesReady() && track->isReady() &&
5479                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5480            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5481            if (track->mFillingUpStatus == Track::FS_FILLED) {
5482                track->mFillingUpStatus = Track::FS_ACTIVE;
5483                if (last) {
5484                    // make sure processVolume_l() will apply new volume even if 0
5485                    mLeftVolFloat = mRightVolFloat = -1.0;
5486                }
5487            }
5488
5489            if (last) {
5490                sp<Track> previousTrack = mPreviousTrack.promote();
5491                if (previousTrack != 0) {
5492                    if (track != previousTrack.get()) {
5493                        // Flush any data still being written from last track
5494                        mBytesRemaining = 0;
5495                        if (mPausedBytesRemaining) {
5496                            // Last track was paused so we also need to flush saved
5497                            // mixbuffer state and invalidate track so that it will
5498                            // re-submit that unwritten data when it is next resumed
5499                            mPausedBytesRemaining = 0;
5500                            // Invalidate is a bit drastic - would be more efficient
5501                            // to have a flag to tell client that some of the
5502                            // previously written data was lost
5503                            previousTrack->invalidate();
5504                        }
5505                        // flush data already sent to the DSP if changing audio session as audio
5506                        // comes from a different source. Also invalidate previous track to force a
5507                        // seek when resuming.
5508                        if (previousTrack->sessionId() != track->sessionId()) {
5509                            previousTrack->invalidate();
5510                        }
5511                    }
5512                }
5513                mPreviousTrack = track;
5514                // reset retry count
5515                if (track->isStopping_1()) {
5516                    track->mRetryCount = kMaxTrackStopRetriesOffload;
5517                } else {
5518                    track->mRetryCount = kMaxTrackRetriesOffload;
5519                }
5520                mActiveTrack = t;
5521                mixerStatus = MIXER_TRACKS_READY;
5522            }
5523        } else {
5524            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5525            if (track->isStopping_1()) {
5526                if (--(track->mRetryCount) <= 0) {
5527                    // Hardware buffer can hold a large amount of audio so we must
5528                    // wait for all current track's data to drain before we say
5529                    // that the track is stopped.
5530                    if (mBytesRemaining == 0) {
5531                        // Only start draining when all data in mixbuffer
5532                        // has been written
5533                        ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5534                        track->mState = TrackBase::STOPPING_2; // so presentation completes after
5535                        // drain do not drain if no data was ever sent to HAL (mStandby == true)
5536                        if (last && !mStandby) {
5537                            // do not modify drain sequence if we are already draining. This happens
5538                            // when resuming from pause after drain.
5539                            if ((mDrainSequence & 1) == 0) {
5540                                mSleepTimeUs = 0;
5541                                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5542                                mixerStatus = MIXER_DRAIN_TRACK;
5543                                mDrainSequence += 2;
5544                            }
5545                            if (mHwPaused) {
5546                                // It is possible to move from PAUSED to STOPPING_1 without
5547                                // a resume so we must ensure hardware is running
5548                                doHwResume = true;
5549                                mHwPaused = false;
5550                            }
5551                        }
5552                    }
5553                } else if (last) {
5554                    ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5555                    mixerStatus = MIXER_TRACKS_ENABLED;
5556                }
5557            } else if (track->isStopping_2()) {
5558                // Drain has completed or we are in standby, signal presentation complete
5559                if (!(mDrainSequence & 1) || !last || mStandby) {
5560                    track->mState = TrackBase::STOPPED;
5561                    size_t audioHALFrames =
5562                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5563                    int64_t framesWritten =
5564                            mBytesWritten / mOutput->getFrameSize();
5565                    track->presentationComplete(framesWritten, audioHALFrames);
5566                    track->reset();
5567                    tracksToRemove->add(track);
5568                }
5569            } else {
5570                // No buffers for this track. Give it a few chances to
5571                // fill a buffer, then remove it from active list.
5572                if (--(track->mRetryCount) <= 0) {
5573                    bool running = false;
5574                    if (mOutput->stream->get_presentation_position != nullptr) {
5575                        uint64_t position = 0;
5576                        struct timespec unused;
5577                        // The running check restarts the retry counter at least once.
5578                        int ret = mOutput->stream->get_presentation_position(
5579                                mOutput->stream, &position, &unused);
5580                        if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
5581                            running = true;
5582                            mOffloadUnderrunPosition = position;
5583                        }
5584                        ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
5585                                (long long)position, (long long)mOffloadUnderrunPosition);
5586                    }
5587                    if (running) { // still running, give us more time.
5588                        track->mRetryCount = kMaxTrackRetriesOffload;
5589                    } else {
5590                        ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5591                                track->name());
5592                        tracksToRemove->add(track);
5593                        // indicate to client process that the track was disabled because of underrun;
5594                        // it will then automatically call start() when data is available
5595                        track->disable();
5596                    }
5597                } else if (last){
5598                    mixerStatus = MIXER_TRACKS_ENABLED;
5599                }
5600            }
5601        }
5602        // compute volume for this track
5603        processVolume_l(track, last);
5604    }
5605
5606    // make sure the pause/flush/resume sequence is executed in the right order.
5607    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5608    // before flush and then resume HW. This can happen in case of pause/flush/resume
5609    // if resume is received before pause is executed.
5610    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5611        mOutput->stream->pause(mOutput->stream);
5612    }
5613    if (mFlushPending) {
5614        flushHw_l();
5615    }
5616    if (!mStandby && doHwResume) {
5617        mOutput->stream->resume(mOutput->stream);
5618    }
5619
5620    // remove all the tracks that need to be...
5621    removeTracks_l(*tracksToRemove);
5622
5623    return mixerStatus;
5624}
5625
5626// must be called with thread mutex locked
5627bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5628{
5629    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5630          mWriteAckSequence, mDrainSequence);
5631    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5632        return true;
5633    }
5634    return false;
5635}
5636
5637bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5638{
5639    Mutex::Autolock _l(mLock);
5640    return waitingAsyncCallback_l();
5641}
5642
5643void AudioFlinger::OffloadThread::flushHw_l()
5644{
5645    DirectOutputThread::flushHw_l();
5646    // Flush anything still waiting in the mixbuffer
5647    mCurrentWriteLength = 0;
5648    mBytesRemaining = 0;
5649    mPausedWriteLength = 0;
5650    mPausedBytesRemaining = 0;
5651    // reset bytes written count to reflect that DSP buffers are empty after flush.
5652    mBytesWritten = 0;
5653    mOffloadUnderrunPosition = ~0LL;
5654
5655    if (mUseAsyncWrite) {
5656        // discard any pending drain or write ack by incrementing sequence
5657        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5658        mDrainSequence = (mDrainSequence + 2) & ~1;
5659        ALOG_ASSERT(mCallbackThread != 0);
5660        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5661        mCallbackThread->setDraining(mDrainSequence);
5662    }
5663}
5664
5665void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5666{
5667    Mutex::Autolock _l(mLock);
5668    if (PlaybackThread::invalidateTracks_l(streamType)) {
5669        mFlushPending = true;
5670    }
5671}
5672
5673// ----------------------------------------------------------------------------
5674
5675AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5676        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5677    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5678                    systemReady, DUPLICATING),
5679        mWaitTimeMs(UINT_MAX)
5680{
5681    addOutputTrack(mainThread);
5682}
5683
5684AudioFlinger::DuplicatingThread::~DuplicatingThread()
5685{
5686    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5687        mOutputTracks[i]->destroy();
5688    }
5689}
5690
5691void AudioFlinger::DuplicatingThread::threadLoop_mix()
5692{
5693    // mix buffers...
5694    if (outputsReady(outputTracks)) {
5695        mAudioMixer->process();
5696    } else {
5697        if (mMixerBufferValid) {
5698            memset(mMixerBuffer, 0, mMixerBufferSize);
5699        } else {
5700            memset(mSinkBuffer, 0, mSinkBufferSize);
5701        }
5702    }
5703    mSleepTimeUs = 0;
5704    writeFrames = mNormalFrameCount;
5705    mCurrentWriteLength = mSinkBufferSize;
5706    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5707}
5708
5709void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5710{
5711    if (mSleepTimeUs == 0) {
5712        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5713            mSleepTimeUs = mActiveSleepTimeUs;
5714        } else {
5715            mSleepTimeUs = mIdleSleepTimeUs;
5716        }
5717    } else if (mBytesWritten != 0) {
5718        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5719            writeFrames = mNormalFrameCount;
5720            memset(mSinkBuffer, 0, mSinkBufferSize);
5721        } else {
5722            // flush remaining overflow buffers in output tracks
5723            writeFrames = 0;
5724        }
5725        mSleepTimeUs = 0;
5726    }
5727}
5728
5729ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5730{
5731    for (size_t i = 0; i < outputTracks.size(); i++) {
5732        outputTracks[i]->write(mSinkBuffer, writeFrames);
5733    }
5734    mStandby = false;
5735    return (ssize_t)mSinkBufferSize;
5736}
5737
5738void AudioFlinger::DuplicatingThread::threadLoop_standby()
5739{
5740    // DuplicatingThread implements standby by stopping all tracks
5741    for (size_t i = 0; i < outputTracks.size(); i++) {
5742        outputTracks[i]->stop();
5743    }
5744}
5745
5746void AudioFlinger::DuplicatingThread::saveOutputTracks()
5747{
5748    outputTracks = mOutputTracks;
5749}
5750
5751void AudioFlinger::DuplicatingThread::clearOutputTracks()
5752{
5753    outputTracks.clear();
5754}
5755
5756void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5757{
5758    Mutex::Autolock _l(mLock);
5759    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5760    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5761    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5762    const size_t frameCount =
5763            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5764    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5765    // from different OutputTracks and their associated MixerThreads (e.g. one may
5766    // nearly empty and the other may be dropping data).
5767
5768    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5769                                            this,
5770                                            mSampleRate,
5771                                            mFormat,
5772                                            mChannelMask,
5773                                            frameCount,
5774                                            IPCThreadState::self()->getCallingUid());
5775    status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
5776    if (status != NO_ERROR) {
5777        ALOGE("addOutputTrack() initCheck failed %d", status);
5778        return;
5779    }
5780    thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5781    mOutputTracks.add(outputTrack);
5782    ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5783    updateWaitTime_l();
5784}
5785
5786void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5787{
5788    Mutex::Autolock _l(mLock);
5789    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5790        if (mOutputTracks[i]->thread() == thread) {
5791            mOutputTracks[i]->destroy();
5792            mOutputTracks.removeAt(i);
5793            updateWaitTime_l();
5794            if (thread->getOutput() == mOutput) {
5795                mOutput = NULL;
5796            }
5797            return;
5798        }
5799    }
5800    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5801}
5802
5803// caller must hold mLock
5804void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5805{
5806    mWaitTimeMs = UINT_MAX;
5807    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5808        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5809        if (strong != 0) {
5810            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5811            if (waitTimeMs < mWaitTimeMs) {
5812                mWaitTimeMs = waitTimeMs;
5813            }
5814        }
5815    }
5816}
5817
5818
5819bool AudioFlinger::DuplicatingThread::outputsReady(
5820        const SortedVector< sp<OutputTrack> > &outputTracks)
5821{
5822    for (size_t i = 0; i < outputTracks.size(); i++) {
5823        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5824        if (thread == 0) {
5825            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5826                    outputTracks[i].get());
5827            return false;
5828        }
5829        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5830        // see note at standby() declaration
5831        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5832            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5833                    thread.get());
5834            return false;
5835        }
5836    }
5837    return true;
5838}
5839
5840uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5841{
5842    return (mWaitTimeMs * 1000) / 2;
5843}
5844
5845void AudioFlinger::DuplicatingThread::cacheParameters_l()
5846{
5847    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5848    updateWaitTime_l();
5849
5850    MixerThread::cacheParameters_l();
5851}
5852
5853// ----------------------------------------------------------------------------
5854//      Record
5855// ----------------------------------------------------------------------------
5856
5857AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5858                                         AudioStreamIn *input,
5859                                         audio_io_handle_t id,
5860                                         audio_devices_t outDevice,
5861                                         audio_devices_t inDevice,
5862                                         bool systemReady
5863#ifdef TEE_SINK
5864                                         , const sp<NBAIO_Sink>& teeSink
5865#endif
5866                                         ) :
5867    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5868    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5869    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5870    mRsmpInRear(0)
5871#ifdef TEE_SINK
5872    , mTeeSink(teeSink)
5873#endif
5874    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5875            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5876    // mFastCapture below
5877    , mFastCaptureFutex(0)
5878    // mInputSource
5879    // mPipeSink
5880    // mPipeSource
5881    , mPipeFramesP2(0)
5882    // mPipeMemory
5883    // mFastCaptureNBLogWriter
5884    , mFastTrackAvail(false)
5885{
5886    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5887    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5888
5889    readInputParameters_l();
5890
5891    // create an NBAIO source for the HAL input stream, and negotiate
5892    mInputSource = new AudioStreamInSource(input->stream);
5893    size_t numCounterOffers = 0;
5894    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5895#if !LOG_NDEBUG
5896    ssize_t index =
5897#else
5898    (void)
5899#endif
5900            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5901    ALOG_ASSERT(index == 0);
5902
5903    // initialize fast capture depending on configuration
5904    bool initFastCapture;
5905    switch (kUseFastCapture) {
5906    case FastCapture_Never:
5907        initFastCapture = false;
5908        break;
5909    case FastCapture_Always:
5910        initFastCapture = true;
5911        break;
5912    case FastCapture_Static:
5913        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5914        break;
5915    // case FastCapture_Dynamic:
5916    }
5917
5918    if (initFastCapture) {
5919        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5920        NBAIO_Format format = mInputSource->format();
5921        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5922        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5923        void *pipeBuffer;
5924        const sp<MemoryDealer> roHeap(readOnlyHeap());
5925        sp<IMemory> pipeMemory;
5926        if ((roHeap == 0) ||
5927                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5928                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5929            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5930            goto failed;
5931        }
5932        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5933        memset(pipeBuffer, 0, pipeSize);
5934        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5935        const NBAIO_Format offers[1] = {format};
5936        size_t numCounterOffers = 0;
5937        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5938        ALOG_ASSERT(index == 0);
5939        mPipeSink = pipe;
5940        PipeReader *pipeReader = new PipeReader(*pipe);
5941        numCounterOffers = 0;
5942        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5943        ALOG_ASSERT(index == 0);
5944        mPipeSource = pipeReader;
5945        mPipeFramesP2 = pipeFramesP2;
5946        mPipeMemory = pipeMemory;
5947
5948        // create fast capture
5949        mFastCapture = new FastCapture();
5950        FastCaptureStateQueue *sq = mFastCapture->sq();
5951#ifdef STATE_QUEUE_DUMP
5952        // FIXME
5953#endif
5954        FastCaptureState *state = sq->begin();
5955        state->mCblk = NULL;
5956        state->mInputSource = mInputSource.get();
5957        state->mInputSourceGen++;
5958        state->mPipeSink = pipe;
5959        state->mPipeSinkGen++;
5960        state->mFrameCount = mFrameCount;
5961        state->mCommand = FastCaptureState::COLD_IDLE;
5962        // already done in constructor initialization list
5963        //mFastCaptureFutex = 0;
5964        state->mColdFutexAddr = &mFastCaptureFutex;
5965        state->mColdGen++;
5966        state->mDumpState = &mFastCaptureDumpState;
5967#ifdef TEE_SINK
5968        // FIXME
5969#endif
5970        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5971        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5972        sq->end();
5973        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5974
5975        // start the fast capture
5976        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5977        pid_t tid = mFastCapture->getTid();
5978        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5979#ifdef AUDIO_WATCHDOG
5980        // FIXME
5981#endif
5982
5983        mFastTrackAvail = true;
5984    }
5985failed: ;
5986
5987    // FIXME mNormalSource
5988}
5989
5990AudioFlinger::RecordThread::~RecordThread()
5991{
5992    if (mFastCapture != 0) {
5993        FastCaptureStateQueue *sq = mFastCapture->sq();
5994        FastCaptureState *state = sq->begin();
5995        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5996            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5997            if (old == -1) {
5998                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5999            }
6000        }
6001        state->mCommand = FastCaptureState::EXIT;
6002        sq->end();
6003        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6004        mFastCapture->join();
6005        mFastCapture.clear();
6006    }
6007    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6008    mAudioFlinger->unregisterWriter(mNBLogWriter);
6009    free(mRsmpInBuffer);
6010}
6011
6012void AudioFlinger::RecordThread::onFirstRef()
6013{
6014    run(mThreadName, PRIORITY_URGENT_AUDIO);
6015}
6016
6017bool AudioFlinger::RecordThread::threadLoop()
6018{
6019    nsecs_t lastWarning = 0;
6020
6021    inputStandBy();
6022
6023reacquire_wakelock:
6024    sp<RecordTrack> activeTrack;
6025    int activeTracksGen;
6026    {
6027        Mutex::Autolock _l(mLock);
6028        size_t size = mActiveTracks.size();
6029        activeTracksGen = mActiveTracksGen;
6030        if (size > 0) {
6031            // FIXME an arbitrary choice
6032            activeTrack = mActiveTracks[0];
6033            acquireWakeLock_l(activeTrack->uid());
6034            if (size > 1) {
6035                SortedVector<int> tmp;
6036                for (size_t i = 0; i < size; i++) {
6037                    tmp.add(mActiveTracks[i]->uid());
6038                }
6039                updateWakeLockUids_l(tmp);
6040            }
6041        } else {
6042            acquireWakeLock_l(-1);
6043        }
6044    }
6045
6046    // used to request a deferred sleep, to be executed later while mutex is unlocked
6047    uint32_t sleepUs = 0;
6048
6049    // loop while there is work to do
6050    for (;;) {
6051        Vector< sp<EffectChain> > effectChains;
6052
6053        // activeTracks accumulates a copy of a subset of mActiveTracks
6054        Vector< sp<RecordTrack> > activeTracks;
6055
6056        // reference to the (first and only) active fast track
6057        sp<RecordTrack> fastTrack;
6058
6059        // reference to a fast track which is about to be removed
6060        sp<RecordTrack> fastTrackToRemove;
6061
6062        { // scope for mLock
6063            Mutex::Autolock _l(mLock);
6064
6065            processConfigEvents_l();
6066
6067            // check exitPending here because checkForNewParameters_l() and
6068            // checkForNewParameters_l() can temporarily release mLock
6069            if (exitPending()) {
6070                break;
6071            }
6072
6073            // sleep with mutex unlocked
6074            if (sleepUs > 0) {
6075                ATRACE_BEGIN("sleepC");
6076                mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6077                ATRACE_END();
6078                sleepUs = 0;
6079                continue;
6080            }
6081
6082            // if no active track(s), then standby and release wakelock
6083            size_t size = mActiveTracks.size();
6084            if (size == 0) {
6085                standbyIfNotAlreadyInStandby();
6086                // exitPending() can't become true here
6087                releaseWakeLock_l();
6088                ALOGV("RecordThread: loop stopping");
6089                // go to sleep
6090                mWaitWorkCV.wait(mLock);
6091                ALOGV("RecordThread: loop starting");
6092                goto reacquire_wakelock;
6093            }
6094
6095            if (mActiveTracksGen != activeTracksGen) {
6096                activeTracksGen = mActiveTracksGen;
6097                SortedVector<int> tmp;
6098                for (size_t i = 0; i < size; i++) {
6099                    tmp.add(mActiveTracks[i]->uid());
6100                }
6101                updateWakeLockUids_l(tmp);
6102            }
6103
6104            bool doBroadcast = false;
6105            bool allStopped = true;
6106            for (size_t i = 0; i < size; ) {
6107
6108                activeTrack = mActiveTracks[i];
6109                if (activeTrack->isTerminated()) {
6110                    if (activeTrack->isFastTrack()) {
6111                        ALOG_ASSERT(fastTrackToRemove == 0);
6112                        fastTrackToRemove = activeTrack;
6113                    }
6114                    removeTrack_l(activeTrack);
6115                    mActiveTracks.remove(activeTrack);
6116                    mActiveTracksGen++;
6117                    size--;
6118                    continue;
6119                }
6120
6121                TrackBase::track_state activeTrackState = activeTrack->mState;
6122                switch (activeTrackState) {
6123
6124                case TrackBase::PAUSING:
6125                    mActiveTracks.remove(activeTrack);
6126                    mActiveTracksGen++;
6127                    doBroadcast = true;
6128                    size--;
6129                    continue;
6130
6131                case TrackBase::STARTING_1:
6132                    sleepUs = 10000;
6133                    i++;
6134                    allStopped = false;
6135                    continue;
6136
6137                case TrackBase::STARTING_2:
6138                    doBroadcast = true;
6139                    mStandby = false;
6140                    activeTrack->mState = TrackBase::ACTIVE;
6141                    allStopped = false;
6142                    break;
6143
6144                case TrackBase::ACTIVE:
6145                    allStopped = false;
6146                    break;
6147
6148                case TrackBase::IDLE:
6149                    i++;
6150                    continue;
6151
6152                default:
6153                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
6154                }
6155
6156                activeTracks.add(activeTrack);
6157                i++;
6158
6159                if (activeTrack->isFastTrack()) {
6160                    ALOG_ASSERT(!mFastTrackAvail);
6161                    ALOG_ASSERT(fastTrack == 0);
6162                    fastTrack = activeTrack;
6163                }
6164            }
6165
6166            if (allStopped) {
6167                standbyIfNotAlreadyInStandby();
6168            }
6169            if (doBroadcast) {
6170                mStartStopCond.broadcast();
6171            }
6172
6173            // sleep if there are no active tracks to process
6174            if (activeTracks.size() == 0) {
6175                if (sleepUs == 0) {
6176                    sleepUs = kRecordThreadSleepUs;
6177                }
6178                continue;
6179            }
6180            sleepUs = 0;
6181
6182            lockEffectChains_l(effectChains);
6183        }
6184
6185        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6186
6187        size_t size = effectChains.size();
6188        for (size_t i = 0; i < size; i++) {
6189            // thread mutex is not locked, but effect chain is locked
6190            effectChains[i]->process_l();
6191        }
6192
6193        // Push a new fast capture state if fast capture is not already running, or cblk change
6194        if (mFastCapture != 0) {
6195            FastCaptureStateQueue *sq = mFastCapture->sq();
6196            FastCaptureState *state = sq->begin();
6197            bool didModify = false;
6198            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6199            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6200                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6201                if (state->mCommand == FastCaptureState::COLD_IDLE) {
6202                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
6203                    if (old == -1) {
6204                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6205                    }
6206                }
6207                state->mCommand = FastCaptureState::READ_WRITE;
6208#if 0   // FIXME
6209                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6210                        FastThreadDumpState::kSamplingNforLowRamDevice :
6211                        FastThreadDumpState::kSamplingN);
6212#endif
6213                didModify = true;
6214            }
6215            audio_track_cblk_t *cblkOld = state->mCblk;
6216            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6217            if (cblkNew != cblkOld) {
6218                state->mCblk = cblkNew;
6219                // block until acked if removing a fast track
6220                if (cblkOld != NULL) {
6221                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6222                }
6223                didModify = true;
6224            }
6225            sq->end(didModify);
6226            if (didModify) {
6227                sq->push(block);
6228#if 0
6229                if (kUseFastCapture == FastCapture_Dynamic) {
6230                    mNormalSource = mPipeSource;
6231                }
6232#endif
6233            }
6234        }
6235
6236        // now run the fast track destructor with thread mutex unlocked
6237        fastTrackToRemove.clear();
6238
6239        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6240        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6241        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6242        // If destination is non-contiguous, first read past the nominal end of buffer, then
6243        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6244
6245        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6246        ssize_t framesRead;
6247
6248        // If an NBAIO source is present, use it to read the normal capture's data
6249        if (mPipeSource != 0) {
6250            size_t framesToRead = mBufferSize / mFrameSize;
6251            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6252                    framesToRead);
6253            if (framesRead == 0) {
6254                // since pipe is non-blocking, simulate blocking input
6255                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6256            }
6257        // otherwise use the HAL / AudioStreamIn directly
6258        } else {
6259            ATRACE_BEGIN("read");
6260            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6261                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6262            ATRACE_END();
6263            if (bytesRead < 0) {
6264                framesRead = bytesRead;
6265            } else {
6266                framesRead = bytesRead / mFrameSize;
6267            }
6268        }
6269
6270        // Update server timestamp with server stats
6271        // systemTime() is optional if the hardware supports timestamps.
6272        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6273        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6274
6275        // Update server timestamp with kernel stats
6276        if (mInput->stream->get_capture_position != nullptr
6277                && mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
6278            int64_t position, time;
6279            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6280            if (ret == NO_ERROR) {
6281                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6282                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6283                // Note: In general record buffers should tend to be empty in
6284                // a properly running pipeline.
6285                //
6286                // Also, it is not advantageous to call get_presentation_position during the read
6287                // as the read obtains a lock, preventing the timestamp call from executing.
6288            }
6289        }
6290        // Use this to track timestamp information
6291        // ALOGD("%s", mTimestamp.toString().c_str());
6292
6293        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6294            ALOGE("read failed: framesRead=%zd", framesRead);
6295            // Force input into standby so that it tries to recover at next read attempt
6296            inputStandBy();
6297            sleepUs = kRecordThreadSleepUs;
6298        }
6299        if (framesRead <= 0) {
6300            goto unlock;
6301        }
6302        ALOG_ASSERT(framesRead > 0);
6303
6304        if (mTeeSink != 0) {
6305            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6306        }
6307        // If destination is non-contiguous, we now correct for reading past end of buffer.
6308        {
6309            size_t part1 = mRsmpInFramesP2 - rear;
6310            if ((size_t) framesRead > part1) {
6311                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6312                        (framesRead - part1) * mFrameSize);
6313            }
6314        }
6315        rear = mRsmpInRear += framesRead;
6316
6317        size = activeTracks.size();
6318        // loop over each active track
6319        for (size_t i = 0; i < size; i++) {
6320            activeTrack = activeTracks[i];
6321
6322            // skip fast tracks, as those are handled directly by FastCapture
6323            if (activeTrack->isFastTrack()) {
6324                continue;
6325            }
6326
6327            // TODO: This code probably should be moved to RecordTrack.
6328            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6329
6330            enum {
6331                OVERRUN_UNKNOWN,
6332                OVERRUN_TRUE,
6333                OVERRUN_FALSE
6334            } overrun = OVERRUN_UNKNOWN;
6335
6336            // loop over getNextBuffer to handle circular sink
6337            for (;;) {
6338
6339                activeTrack->mSink.frameCount = ~0;
6340                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6341                size_t framesOut = activeTrack->mSink.frameCount;
6342                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6343
6344                // check available frames and handle overrun conditions
6345                // if the record track isn't draining fast enough.
6346                bool hasOverrun;
6347                size_t framesIn;
6348                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6349                if (hasOverrun) {
6350                    overrun = OVERRUN_TRUE;
6351                }
6352                if (framesOut == 0 || framesIn == 0) {
6353                    break;
6354                }
6355
6356                // Don't allow framesOut to be larger than what is possible with resampling
6357                // from framesIn.
6358                // This isn't strictly necessary but helps limit buffer resizing in
6359                // RecordBufferConverter.  TODO: remove when no longer needed.
6360                framesOut = min(framesOut,
6361                        destinationFramesPossible(
6362                                framesIn, mSampleRate, activeTrack->mSampleRate));
6363                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6364                framesOut = activeTrack->mRecordBufferConverter->convert(
6365                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6366
6367                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6368                    overrun = OVERRUN_FALSE;
6369                }
6370
6371                if (activeTrack->mFramesToDrop == 0) {
6372                    if (framesOut > 0) {
6373                        activeTrack->mSink.frameCount = framesOut;
6374                        activeTrack->releaseBuffer(&activeTrack->mSink);
6375                    }
6376                } else {
6377                    // FIXME could do a partial drop of framesOut
6378                    if (activeTrack->mFramesToDrop > 0) {
6379                        activeTrack->mFramesToDrop -= framesOut;
6380                        if (activeTrack->mFramesToDrop <= 0) {
6381                            activeTrack->clearSyncStartEvent();
6382                        }
6383                    } else {
6384                        activeTrack->mFramesToDrop += framesOut;
6385                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6386                                activeTrack->mSyncStartEvent->isCancelled()) {
6387                            ALOGW("Synced record %s, session %d, trigger session %d",
6388                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6389                                  activeTrack->sessionId(),
6390                                  (activeTrack->mSyncStartEvent != 0) ?
6391                                          activeTrack->mSyncStartEvent->triggerSession() :
6392                                          AUDIO_SESSION_NONE);
6393                            activeTrack->clearSyncStartEvent();
6394                        }
6395                    }
6396                }
6397
6398                if (framesOut == 0) {
6399                    break;
6400                }
6401            }
6402
6403            switch (overrun) {
6404            case OVERRUN_TRUE:
6405                // client isn't retrieving buffers fast enough
6406                if (!activeTrack->setOverflow()) {
6407                    nsecs_t now = systemTime();
6408                    // FIXME should lastWarning per track?
6409                    if ((now - lastWarning) > kWarningThrottleNs) {
6410                        ALOGW("RecordThread: buffer overflow");
6411                        lastWarning = now;
6412                    }
6413                }
6414                break;
6415            case OVERRUN_FALSE:
6416                activeTrack->clearOverflow();
6417                break;
6418            case OVERRUN_UNKNOWN:
6419                break;
6420            }
6421
6422            // update frame information and push timestamp out
6423            activeTrack->updateTrackFrameInfo(
6424                    activeTrack->mServerProxy->framesReleased(),
6425                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6426                    mSampleRate, mTimestamp);
6427        }
6428
6429unlock:
6430        // enable changes in effect chain
6431        unlockEffectChains(effectChains);
6432        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6433    }
6434
6435    standbyIfNotAlreadyInStandby();
6436
6437    {
6438        Mutex::Autolock _l(mLock);
6439        for (size_t i = 0; i < mTracks.size(); i++) {
6440            sp<RecordTrack> track = mTracks[i];
6441            track->invalidate();
6442        }
6443        mActiveTracks.clear();
6444        mActiveTracksGen++;
6445        mStartStopCond.broadcast();
6446    }
6447
6448    releaseWakeLock();
6449
6450    ALOGV("RecordThread %p exiting", this);
6451    return false;
6452}
6453
6454void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6455{
6456    if (!mStandby) {
6457        inputStandBy();
6458        mStandby = true;
6459    }
6460}
6461
6462void AudioFlinger::RecordThread::inputStandBy()
6463{
6464    // Idle the fast capture if it's currently running
6465    if (mFastCapture != 0) {
6466        FastCaptureStateQueue *sq = mFastCapture->sq();
6467        FastCaptureState *state = sq->begin();
6468        if (!(state->mCommand & FastCaptureState::IDLE)) {
6469            state->mCommand = FastCaptureState::COLD_IDLE;
6470            state->mColdFutexAddr = &mFastCaptureFutex;
6471            state->mColdGen++;
6472            mFastCaptureFutex = 0;
6473            sq->end();
6474            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6475            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6476#if 0
6477            if (kUseFastCapture == FastCapture_Dynamic) {
6478                // FIXME
6479            }
6480#endif
6481#ifdef AUDIO_WATCHDOG
6482            // FIXME
6483#endif
6484        } else {
6485            sq->end(false /*didModify*/);
6486        }
6487    }
6488    mInput->stream->common.standby(&mInput->stream->common);
6489
6490    // If going into standby, flush the pipe source.
6491    if (mPipeSource.get() != nullptr) {
6492        const ssize_t flushed = mPipeSource->flush();
6493        if (flushed > 0) {
6494            ALOGV("Input standby flushed PipeSource %zd frames", flushed);
6495            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
6496            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6497        }
6498    }
6499}
6500
6501// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6502sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6503        const sp<AudioFlinger::Client>& client,
6504        uint32_t sampleRate,
6505        audio_format_t format,
6506        audio_channel_mask_t channelMask,
6507        size_t *pFrameCount,
6508        audio_session_t sessionId,
6509        size_t *notificationFrames,
6510        int uid,
6511        audio_input_flags_t *flags,
6512        pid_t tid,
6513        status_t *status)
6514{
6515    size_t frameCount = *pFrameCount;
6516    sp<RecordTrack> track;
6517    status_t lStatus;
6518    audio_input_flags_t inputFlags = mInput->flags;
6519
6520    // special case for FAST flag considered OK if fast capture is present
6521    if (hasFastCapture()) {
6522        inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
6523    }
6524
6525    // Check if requested flags are compatible with output stream flags
6526    if ((*flags & inputFlags) != *flags) {
6527        ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
6528                " input flags (%08x)",
6529              *flags, inputFlags);
6530        *flags = (audio_input_flags_t)(*flags & inputFlags);
6531    }
6532
6533    // client expresses a preference for FAST, but we get the final say
6534    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6535      if (
6536            // we formerly checked for a callback handler (non-0 tid),
6537            // but that is no longer required for TRANSFER_OBTAIN mode
6538            //
6539            // frame count is not specified, or is exactly the pipe depth
6540            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6541            // PCM data
6542            audio_is_linear_pcm(format) &&
6543            // hardware format
6544            (format == mFormat) &&
6545            // hardware channel mask
6546            (channelMask == mChannelMask) &&
6547            // hardware sample rate
6548            (sampleRate == mSampleRate) &&
6549            // record thread has an associated fast capture
6550            hasFastCapture() &&
6551            // there are sufficient fast track slots available
6552            mFastTrackAvail
6553        ) {
6554          // check compatibility with audio effects.
6555          Mutex::Autolock _l(mLock);
6556          // Do not accept FAST flag if the session has software effects
6557          sp<EffectChain> chain = getEffectChain_l(sessionId);
6558          if (chain != 0) {
6559              ALOGV_IF((*flags & AUDIO_INPUT_FLAG_RAW) != 0,
6560                      "AUDIO_INPUT_FLAG_RAW denied: effect present on session");
6561              *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_RAW);
6562              if (chain->hasSoftwareEffect()) {
6563                  ALOGV("AUDIO_INPUT_FLAG_FAST denied: software effect present on session");
6564                  *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6565              }
6566          }
6567          ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
6568                   "AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6569                   frameCount, mFrameCount);
6570      } else {
6571        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6572                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6573                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6574                frameCount, mFrameCount, mPipeFramesP2,
6575                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6576                hasFastCapture(), tid, mFastTrackAvail);
6577        *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
6578      }
6579    }
6580
6581    // compute track buffer size in frames, and suggest the notification frame count
6582    if (*flags & AUDIO_INPUT_FLAG_FAST) {
6583        // fast track: frame count is exactly the pipe depth
6584        frameCount = mPipeFramesP2;
6585        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6586        *notificationFrames = mFrameCount;
6587    } else {
6588        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6589        //                 or 20 ms if there is a fast capture
6590        // TODO This could be a roundupRatio inline, and const
6591        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6592                * sampleRate + mSampleRate - 1) / mSampleRate;
6593        // minimum number of notification periods is at least kMinNotifications,
6594        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6595        static const size_t kMinNotifications = 3;
6596        static const uint32_t kMinMs = 30;
6597        // TODO This could be a roundupRatio inline
6598        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6599        // TODO This could be a roundupRatio inline
6600        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6601                maxNotificationFrames;
6602        const size_t minFrameCount = maxNotificationFrames *
6603                max(kMinNotifications, minNotificationsByMs);
6604        frameCount = max(frameCount, minFrameCount);
6605        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6606            *notificationFrames = maxNotificationFrames;
6607        }
6608    }
6609    *pFrameCount = frameCount;
6610
6611    lStatus = initCheck();
6612    if (lStatus != NO_ERROR) {
6613        ALOGE("createRecordTrack_l() audio driver not initialized");
6614        goto Exit;
6615    }
6616
6617    { // scope for mLock
6618        Mutex::Autolock _l(mLock);
6619
6620        track = new RecordTrack(this, client, sampleRate,
6621                      format, channelMask, frameCount, NULL, sessionId, uid,
6622                      *flags, TrackBase::TYPE_DEFAULT);
6623
6624        lStatus = track->initCheck();
6625        if (lStatus != NO_ERROR) {
6626            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6627            // track must be cleared from the caller as the caller has the AF lock
6628            goto Exit;
6629        }
6630        mTracks.add(track);
6631
6632        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6633        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6634                        mAudioFlinger->btNrecIsOff();
6635        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6636        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6637
6638        if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
6639            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6640            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6641            // so ask activity manager to do this on our behalf
6642            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6643        }
6644    }
6645
6646    lStatus = NO_ERROR;
6647
6648Exit:
6649    *status = lStatus;
6650    return track;
6651}
6652
6653status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6654                                           AudioSystem::sync_event_t event,
6655                                           audio_session_t triggerSession)
6656{
6657    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6658    sp<ThreadBase> strongMe = this;
6659    status_t status = NO_ERROR;
6660
6661    if (event == AudioSystem::SYNC_EVENT_NONE) {
6662        recordTrack->clearSyncStartEvent();
6663    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6664        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6665                                       triggerSession,
6666                                       recordTrack->sessionId(),
6667                                       syncStartEventCallback,
6668                                       recordTrack);
6669        // Sync event can be cancelled by the trigger session if the track is not in a
6670        // compatible state in which case we start record immediately
6671        if (recordTrack->mSyncStartEvent->isCancelled()) {
6672            recordTrack->clearSyncStartEvent();
6673        } else {
6674            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6675            recordTrack->mFramesToDrop = -
6676                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6677        }
6678    }
6679
6680    {
6681        // This section is a rendezvous between binder thread executing start() and RecordThread
6682        AutoMutex lock(mLock);
6683        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6684            if (recordTrack->mState == TrackBase::PAUSING) {
6685                ALOGV("active record track PAUSING -> ACTIVE");
6686                recordTrack->mState = TrackBase::ACTIVE;
6687            } else {
6688                ALOGV("active record track state %d", recordTrack->mState);
6689            }
6690            return status;
6691        }
6692
6693        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6694        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6695        //      or using a separate command thread
6696        recordTrack->mState = TrackBase::STARTING_1;
6697        mActiveTracks.add(recordTrack);
6698        mActiveTracksGen++;
6699        status_t status = NO_ERROR;
6700        if (recordTrack->isExternalTrack()) {
6701            mLock.unlock();
6702            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6703            mLock.lock();
6704            // FIXME should verify that recordTrack is still in mActiveTracks
6705            if (status != NO_ERROR) {
6706                mActiveTracks.remove(recordTrack);
6707                mActiveTracksGen++;
6708                recordTrack->clearSyncStartEvent();
6709                ALOGV("RecordThread::start error %d", status);
6710                return status;
6711            }
6712        }
6713        // Catch up with current buffer indices if thread is already running.
6714        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6715        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6716        // see previously buffered data before it called start(), but with greater risk of overrun.
6717
6718        recordTrack->mResamplerBufferProvider->reset();
6719        // clear any converter state as new data will be discontinuous
6720        recordTrack->mRecordBufferConverter->reset();
6721        recordTrack->mState = TrackBase::STARTING_2;
6722        // signal thread to start
6723        mWaitWorkCV.broadcast();
6724        if (mActiveTracks.indexOf(recordTrack) < 0) {
6725            ALOGV("Record failed to start");
6726            status = BAD_VALUE;
6727            goto startError;
6728        }
6729        return status;
6730    }
6731
6732startError:
6733    if (recordTrack->isExternalTrack()) {
6734        AudioSystem::stopInput(mId, recordTrack->sessionId());
6735    }
6736    recordTrack->clearSyncStartEvent();
6737    // FIXME I wonder why we do not reset the state here?
6738    return status;
6739}
6740
6741void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6742{
6743    sp<SyncEvent> strongEvent = event.promote();
6744
6745    if (strongEvent != 0) {
6746        sp<RefBase> ptr = strongEvent->cookie().promote();
6747        if (ptr != 0) {
6748            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6749            recordTrack->handleSyncStartEvent(strongEvent);
6750        }
6751    }
6752}
6753
6754bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6755    ALOGV("RecordThread::stop");
6756    AutoMutex _l(mLock);
6757    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6758        return false;
6759    }
6760    // note that threadLoop may still be processing the track at this point [without lock]
6761    recordTrack->mState = TrackBase::PAUSING;
6762    // signal thread to stop
6763    mWaitWorkCV.broadcast();
6764    // do not wait for mStartStopCond if exiting
6765    if (exitPending()) {
6766        return true;
6767    }
6768    // FIXME incorrect usage of wait: no explicit predicate or loop
6769    mStartStopCond.wait(mLock);
6770    // if we have been restarted, recordTrack is in mActiveTracks here
6771    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6772        ALOGV("Record stopped OK");
6773        return true;
6774    }
6775    return false;
6776}
6777
6778bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6779{
6780    return false;
6781}
6782
6783status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6784{
6785#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6786    if (!isValidSyncEvent(event)) {
6787        return BAD_VALUE;
6788    }
6789
6790    audio_session_t eventSession = event->triggerSession();
6791    status_t ret = NAME_NOT_FOUND;
6792
6793    Mutex::Autolock _l(mLock);
6794
6795    for (size_t i = 0; i < mTracks.size(); i++) {
6796        sp<RecordTrack> track = mTracks[i];
6797        if (eventSession == track->sessionId()) {
6798            (void) track->setSyncEvent(event);
6799            ret = NO_ERROR;
6800        }
6801    }
6802    return ret;
6803#else
6804    return BAD_VALUE;
6805#endif
6806}
6807
6808// destroyTrack_l() must be called with ThreadBase::mLock held
6809void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6810{
6811    track->terminate();
6812    track->mState = TrackBase::STOPPED;
6813    // active tracks are removed by threadLoop()
6814    if (mActiveTracks.indexOf(track) < 0) {
6815        removeTrack_l(track);
6816    }
6817}
6818
6819void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6820{
6821    mTracks.remove(track);
6822    // need anything related to effects here?
6823    if (track->isFastTrack()) {
6824        ALOG_ASSERT(!mFastTrackAvail);
6825        mFastTrackAvail = true;
6826    }
6827}
6828
6829void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6830{
6831    dumpInternals(fd, args);
6832    dumpTracks(fd, args);
6833    dumpEffectChains(fd, args);
6834}
6835
6836void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6837{
6838    dprintf(fd, "\nInput thread %p:\n", this);
6839
6840    dumpBase(fd, args);
6841
6842    if (mActiveTracks.size() == 0) {
6843        dprintf(fd, "  No active record clients\n");
6844    }
6845    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6846    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6847
6848    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6849    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6850    // This is a large object so we place it on the heap.
6851    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6852    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6853    copy->dump(fd);
6854    delete copy;
6855}
6856
6857void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6858{
6859    const size_t SIZE = 256;
6860    char buffer[SIZE];
6861    String8 result;
6862
6863    size_t numtracks = mTracks.size();
6864    size_t numactive = mActiveTracks.size();
6865    size_t numactiveseen = 0;
6866    dprintf(fd, "  %zu Tracks", numtracks);
6867    if (numtracks) {
6868        dprintf(fd, " of which %zu are active\n", numactive);
6869        RecordTrack::appendDumpHeader(result);
6870        for (size_t i = 0; i < numtracks ; ++i) {
6871            sp<RecordTrack> track = mTracks[i];
6872            if (track != 0) {
6873                bool active = mActiveTracks.indexOf(track) >= 0;
6874                if (active) {
6875                    numactiveseen++;
6876                }
6877                track->dump(buffer, SIZE, active);
6878                result.append(buffer);
6879            }
6880        }
6881    } else {
6882        dprintf(fd, "\n");
6883    }
6884
6885    if (numactiveseen != numactive) {
6886        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6887                " not in the track list\n");
6888        result.append(buffer);
6889        RecordTrack::appendDumpHeader(result);
6890        for (size_t i = 0; i < numactive; ++i) {
6891            sp<RecordTrack> track = mActiveTracks[i];
6892            if (mTracks.indexOf(track) < 0) {
6893                track->dump(buffer, SIZE, true);
6894                result.append(buffer);
6895            }
6896        }
6897
6898    }
6899    write(fd, result.string(), result.size());
6900}
6901
6902
6903void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6904{
6905    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6906    RecordThread *recordThread = (RecordThread *) threadBase.get();
6907    mRsmpInFront = recordThread->mRsmpInRear;
6908    mRsmpInUnrel = 0;
6909}
6910
6911void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6912        size_t *framesAvailable, bool *hasOverrun)
6913{
6914    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6915    RecordThread *recordThread = (RecordThread *) threadBase.get();
6916    const int32_t rear = recordThread->mRsmpInRear;
6917    const int32_t front = mRsmpInFront;
6918    const ssize_t filled = rear - front;
6919
6920    size_t framesIn;
6921    bool overrun = false;
6922    if (filled < 0) {
6923        // should not happen, but treat like a massive overrun and re-sync
6924        framesIn = 0;
6925        mRsmpInFront = rear;
6926        overrun = true;
6927    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6928        framesIn = (size_t) filled;
6929    } else {
6930        // client is not keeping up with server, but give it latest data
6931        framesIn = recordThread->mRsmpInFrames;
6932        mRsmpInFront = /* front = */ rear - framesIn;
6933        overrun = true;
6934    }
6935    if (framesAvailable != NULL) {
6936        *framesAvailable = framesIn;
6937    }
6938    if (hasOverrun != NULL) {
6939        *hasOverrun = overrun;
6940    }
6941}
6942
6943// AudioBufferProvider interface
6944status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6945        AudioBufferProvider::Buffer* buffer)
6946{
6947    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6948    if (threadBase == 0) {
6949        buffer->frameCount = 0;
6950        buffer->raw = NULL;
6951        return NOT_ENOUGH_DATA;
6952    }
6953    RecordThread *recordThread = (RecordThread *) threadBase.get();
6954    int32_t rear = recordThread->mRsmpInRear;
6955    int32_t front = mRsmpInFront;
6956    ssize_t filled = rear - front;
6957    // FIXME should not be P2 (don't want to increase latency)
6958    // FIXME if client not keeping up, discard
6959    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6960    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6961    front &= recordThread->mRsmpInFramesP2 - 1;
6962    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6963    if (part1 > (size_t) filled) {
6964        part1 = filled;
6965    }
6966    size_t ask = buffer->frameCount;
6967    ALOG_ASSERT(ask > 0);
6968    if (part1 > ask) {
6969        part1 = ask;
6970    }
6971    if (part1 == 0) {
6972        // out of data is fine since the resampler will return a short-count.
6973        buffer->raw = NULL;
6974        buffer->frameCount = 0;
6975        mRsmpInUnrel = 0;
6976        return NOT_ENOUGH_DATA;
6977    }
6978
6979    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6980    buffer->frameCount = part1;
6981    mRsmpInUnrel = part1;
6982    return NO_ERROR;
6983}
6984
6985// AudioBufferProvider interface
6986void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6987        AudioBufferProvider::Buffer* buffer)
6988{
6989    size_t stepCount = buffer->frameCount;
6990    if (stepCount == 0) {
6991        return;
6992    }
6993    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6994    mRsmpInUnrel -= stepCount;
6995    mRsmpInFront += stepCount;
6996    buffer->raw = NULL;
6997    buffer->frameCount = 0;
6998}
6999
7000AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
7001        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7002        uint32_t srcSampleRate,
7003        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7004        uint32_t dstSampleRate) :
7005            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
7006            // mSrcFormat
7007            // mSrcSampleRate
7008            // mDstChannelMask
7009            // mDstFormat
7010            // mDstSampleRate
7011            // mSrcChannelCount
7012            // mDstChannelCount
7013            // mDstFrameSize
7014            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
7015            mResampler(NULL),
7016            mIsLegacyDownmix(false),
7017            mIsLegacyUpmix(false),
7018            mRequiresFloat(false),
7019            mInputConverterProvider(NULL)
7020{
7021    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
7022            dstChannelMask, dstFormat, dstSampleRate);
7023}
7024
7025AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
7026    free(mBuf);
7027    delete mResampler;
7028    delete mInputConverterProvider;
7029}
7030
7031size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
7032        AudioBufferProvider *provider, size_t frames)
7033{
7034    if (mInputConverterProvider != NULL) {
7035        mInputConverterProvider->setBufferProvider(provider);
7036        provider = mInputConverterProvider;
7037    }
7038
7039    if (mResampler == NULL) {
7040        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7041                mSrcSampleRate, mSrcFormat, mDstFormat);
7042
7043        AudioBufferProvider::Buffer buffer;
7044        for (size_t i = frames; i > 0; ) {
7045            buffer.frameCount = i;
7046            status_t status = provider->getNextBuffer(&buffer);
7047            if (status != OK || buffer.frameCount == 0) {
7048                frames -= i; // cannot fill request.
7049                break;
7050            }
7051            // format convert to destination buffer
7052            convertNoResampler(dst, buffer.raw, buffer.frameCount);
7053
7054            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
7055            i -= buffer.frameCount;
7056            provider->releaseBuffer(&buffer);
7057        }
7058    } else {
7059         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
7060                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
7061
7062         // reallocate buffer if needed
7063         if (mBufFrameSize != 0 && mBufFrames < frames) {
7064             free(mBuf);
7065             mBufFrames = frames;
7066             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7067         }
7068        // resampler accumulates, but we only have one source track
7069        memset(mBuf, 0, frames * mBufFrameSize);
7070        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
7071        // format convert to destination buffer
7072        convertResampler(dst, mBuf, frames);
7073    }
7074    return frames;
7075}
7076
7077status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
7078        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
7079        uint32_t srcSampleRate,
7080        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
7081        uint32_t dstSampleRate)
7082{
7083    // quick evaluation if there is any change.
7084    if (mSrcFormat == srcFormat
7085            && mSrcChannelMask == srcChannelMask
7086            && mSrcSampleRate == srcSampleRate
7087            && mDstFormat == dstFormat
7088            && mDstChannelMask == dstChannelMask
7089            && mDstSampleRate == dstSampleRate) {
7090        return NO_ERROR;
7091    }
7092
7093    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
7094            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
7095            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
7096    const bool valid =
7097            audio_is_input_channel(srcChannelMask)
7098            && audio_is_input_channel(dstChannelMask)
7099            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
7100            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
7101            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
7102            ; // no upsampling checks for now
7103    if (!valid) {
7104        return BAD_VALUE;
7105    }
7106
7107    mSrcFormat = srcFormat;
7108    mSrcChannelMask = srcChannelMask;
7109    mSrcSampleRate = srcSampleRate;
7110    mDstFormat = dstFormat;
7111    mDstChannelMask = dstChannelMask;
7112    mDstSampleRate = dstSampleRate;
7113
7114    // compute derived parameters
7115    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
7116    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
7117    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
7118
7119    // do we need to resample?
7120    delete mResampler;
7121    mResampler = NULL;
7122    if (mSrcSampleRate != mDstSampleRate) {
7123        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
7124                mSrcChannelCount, mDstSampleRate);
7125        mResampler->setSampleRate(mSrcSampleRate);
7126        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
7127    }
7128
7129    // are we running legacy channel conversion modes?
7130    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
7131                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
7132                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
7133    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
7134                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
7135                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
7136
7137    // do we need to process in float?
7138    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
7139
7140    // do we need a staging buffer to convert for destination (we can still optimize this)?
7141    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
7142    if (mResampler != NULL) {
7143        mBufFrameSize = max(mSrcChannelCount, FCC_2)
7144                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7145    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
7146        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
7147    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
7148        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
7149    } else {
7150        mBufFrameSize = 0;
7151    }
7152    mBufFrames = 0; // force the buffer to be resized.
7153
7154    // do we need an input converter buffer provider to give us float?
7155    delete mInputConverterProvider;
7156    mInputConverterProvider = NULL;
7157    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
7158        mInputConverterProvider = new ReformatBufferProvider(
7159                audio_channel_count_from_in_mask(mSrcChannelMask),
7160                mSrcFormat,
7161                AUDIO_FORMAT_PCM_FLOAT,
7162                256 /* provider buffer frame count */);
7163    }
7164
7165    // do we need a remixer to do channel mask conversion
7166    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
7167        (void) memcpy_by_index_array_initialization_from_channel_mask(
7168                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
7169    }
7170    return NO_ERROR;
7171}
7172
7173void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
7174        void *dst, const void *src, size_t frames)
7175{
7176    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
7177    if (mBufFrameSize != 0 && mBufFrames < frames) {
7178        free(mBuf);
7179        mBufFrames = frames;
7180        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
7181    }
7182    // do we need to do legacy upmix and downmix?
7183    if (mIsLegacyUpmix || mIsLegacyDownmix) {
7184        void *dstBuf = mBuf != NULL ? mBuf : dst;
7185        if (mIsLegacyUpmix) {
7186            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
7187                    (const float *)src, frames);
7188        } else /*mIsLegacyDownmix */ {
7189            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
7190                    (const float *)src, frames);
7191        }
7192        if (mBuf != NULL) {
7193            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
7194                    frames * mDstChannelCount);
7195        }
7196        return;
7197    }
7198    // do we need to do channel mask conversion?
7199    if (mSrcChannelMask != mDstChannelMask) {
7200        void *dstBuf = mBuf != NULL ? mBuf : dst;
7201        memcpy_by_index_array(dstBuf, mDstChannelCount,
7202                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
7203        if (dstBuf == dst) {
7204            return; // format is the same
7205        }
7206    }
7207    // convert to destination buffer
7208    const void *convertBuf = mBuf != NULL ? mBuf : src;
7209    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
7210            frames * mDstChannelCount);
7211}
7212
7213void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
7214        void *dst, /*not-a-const*/ void *src, size_t frames)
7215{
7216    // src buffer format is ALWAYS float when entering this routine
7217    if (mIsLegacyUpmix) {
7218        ; // mono to stereo already handled by resampler
7219    } else if (mIsLegacyDownmix
7220            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7221        // the resampler outputs stereo for mono input channel (a feature?)
7222        // must convert to mono
7223        downmix_to_mono_float_from_stereo_float((float *)src,
7224                (const float *)src, frames);
7225    } else if (mSrcChannelMask != mDstChannelMask) {
7226        // convert to mono channel again for channel mask conversion (could be skipped
7227        // with further optimization).
7228        if (mSrcChannelCount == 1) {
7229            downmix_to_mono_float_from_stereo_float((float *)src,
7230                (const float *)src, frames);
7231        }
7232        // convert to destination format (in place, OK as float is larger than other types)
7233        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7234            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7235                    frames * mSrcChannelCount);
7236        }
7237        // channel convert and save to dst
7238        memcpy_by_index_array(dst, mDstChannelCount,
7239                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7240        return;
7241    }
7242    // convert to destination format and save to dst
7243    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7244            frames * mDstChannelCount);
7245}
7246
7247bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7248                                                        status_t& status)
7249{
7250    bool reconfig = false;
7251
7252    status = NO_ERROR;
7253
7254    audio_format_t reqFormat = mFormat;
7255    uint32_t samplingRate = mSampleRate;
7256    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7257    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7258
7259    AudioParameter param = AudioParameter(keyValuePair);
7260    int value;
7261
7262    // scope for AutoPark extends to end of method
7263    AutoPark<FastCapture> park(mFastCapture);
7264
7265    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7266    //      channel count change can be requested. Do we mandate the first client defines the
7267    //      HAL sampling rate and channel count or do we allow changes on the fly?
7268    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7269        samplingRate = value;
7270        reconfig = true;
7271    }
7272    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7273        if (!audio_is_linear_pcm((audio_format_t) value)) {
7274            status = BAD_VALUE;
7275        } else {
7276            reqFormat = (audio_format_t) value;
7277            reconfig = true;
7278        }
7279    }
7280    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7281        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7282        if (!audio_is_input_channel(mask) ||
7283                audio_channel_count_from_in_mask(mask) > FCC_8) {
7284            status = BAD_VALUE;
7285        } else {
7286            channelMask = mask;
7287            reconfig = true;
7288        }
7289    }
7290    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7291        // do not accept frame count changes if tracks are open as the track buffer
7292        // size depends on frame count and correct behavior would not be guaranteed
7293        // if frame count is changed after track creation
7294        if (mActiveTracks.size() > 0) {
7295            status = INVALID_OPERATION;
7296        } else {
7297            reconfig = true;
7298        }
7299    }
7300    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7301        // forward device change to effects that have requested to be
7302        // aware of attached audio device.
7303        for (size_t i = 0; i < mEffectChains.size(); i++) {
7304            mEffectChains[i]->setDevice_l(value);
7305        }
7306
7307        // store input device and output device but do not forward output device to audio HAL.
7308        // Note that status is ignored by the caller for output device
7309        // (see AudioFlinger::setParameters()
7310        if (audio_is_output_devices(value)) {
7311            mOutDevice = value;
7312            status = BAD_VALUE;
7313        } else {
7314            mInDevice = value;
7315            if (value != AUDIO_DEVICE_NONE) {
7316                mPrevInDevice = value;
7317            }
7318            // disable AEC and NS if the device is a BT SCO headset supporting those
7319            // pre processings
7320            if (mTracks.size() > 0) {
7321                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7322                                    mAudioFlinger->btNrecIsOff();
7323                for (size_t i = 0; i < mTracks.size(); i++) {
7324                    sp<RecordTrack> track = mTracks[i];
7325                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7326                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7327                }
7328            }
7329        }
7330    }
7331    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7332            mAudioSource != (audio_source_t)value) {
7333        // forward device change to effects that have requested to be
7334        // aware of attached audio device.
7335        for (size_t i = 0; i < mEffectChains.size(); i++) {
7336            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7337        }
7338        mAudioSource = (audio_source_t)value;
7339    }
7340
7341    if (status == NO_ERROR) {
7342        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7343                keyValuePair.string());
7344        if (status == INVALID_OPERATION) {
7345            inputStandBy();
7346            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7347                    keyValuePair.string());
7348        }
7349        if (reconfig) {
7350            if (status == BAD_VALUE &&
7351                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7352                audio_is_linear_pcm(reqFormat) &&
7353                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7354                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7355                audio_channel_count_from_in_mask(
7356                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7357                status = NO_ERROR;
7358            }
7359            if (status == NO_ERROR) {
7360                readInputParameters_l();
7361                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7362            }
7363        }
7364    }
7365
7366    return reconfig;
7367}
7368
7369String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7370{
7371    Mutex::Autolock _l(mLock);
7372    if (initCheck() != NO_ERROR) {
7373        return String8();
7374    }
7375
7376    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7377    const String8 out_s8(s);
7378    free(s);
7379    return out_s8;
7380}
7381
7382void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7383    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7384
7385    desc->mIoHandle = mId;
7386
7387    switch (event) {
7388    case AUDIO_INPUT_OPENED:
7389    case AUDIO_INPUT_CONFIG_CHANGED:
7390        desc->mPatch = mPatch;
7391        desc->mChannelMask = mChannelMask;
7392        desc->mSamplingRate = mSampleRate;
7393        desc->mFormat = mFormat;
7394        desc->mFrameCount = mFrameCount;
7395        desc->mFrameCountHAL = mFrameCount;
7396        desc->mLatency = 0;
7397        break;
7398
7399    case AUDIO_INPUT_CLOSED:
7400    default:
7401        break;
7402    }
7403    mAudioFlinger->ioConfigChanged(event, desc, pid);
7404}
7405
7406void AudioFlinger::RecordThread::readInputParameters_l()
7407{
7408    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7409    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7410    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7411    if (mChannelCount > FCC_8) {
7412        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7413    }
7414    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7415    mFormat = mHALFormat;
7416    if (!audio_is_linear_pcm(mFormat)) {
7417        ALOGE("HAL format %#x is not linear pcm", mFormat);
7418    }
7419    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7420    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7421    mFrameCount = mBufferSize / mFrameSize;
7422    // This is the formula for calculating the temporary buffer size.
7423    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7424    // 1 full output buffer, regardless of the alignment of the available input.
7425    // The value is somewhat arbitrary, and could probably be even larger.
7426    // A larger value should allow more old data to be read after a track calls start(),
7427    // without increasing latency.
7428    //
7429    // Note this is independent of the maximum downsampling ratio permitted for capture.
7430    mRsmpInFrames = mFrameCount * 7;
7431    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7432    free(mRsmpInBuffer);
7433    mRsmpInBuffer = NULL;
7434
7435    // TODO optimize audio capture buffer sizes ...
7436    // Here we calculate the size of the sliding buffer used as a source
7437    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7438    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7439    // be better to have it derived from the pipe depth in the long term.
7440    // The current value is higher than necessary.  However it should not add to latency.
7441
7442    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7443    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7444    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7445    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7446
7447    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7448    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7449}
7450
7451uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7452{
7453    Mutex::Autolock _l(mLock);
7454    if (initCheck() != NO_ERROR) {
7455        return 0;
7456    }
7457
7458    return mInput->stream->get_input_frames_lost(mInput->stream);
7459}
7460
7461// hasAudioSession_l() must be called with ThreadBase::mLock held
7462uint32_t AudioFlinger::RecordThread::hasAudioSession_l(audio_session_t sessionId) const
7463{
7464    uint32_t result = 0;
7465    if (getEffectChain_l(sessionId) != 0) {
7466        result = EFFECT_SESSION;
7467    }
7468
7469    for (size_t i = 0; i < mTracks.size(); ++i) {
7470        if (sessionId == mTracks[i]->sessionId()) {
7471            result |= TRACK_SESSION;
7472            if (mTracks[i]->isFastTrack()) {
7473                result |= FAST_SESSION;
7474            }
7475            break;
7476        }
7477    }
7478
7479    return result;
7480}
7481
7482KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7483{
7484    KeyedVector<audio_session_t, bool> ids;
7485    Mutex::Autolock _l(mLock);
7486    for (size_t j = 0; j < mTracks.size(); ++j) {
7487        sp<RecordThread::RecordTrack> track = mTracks[j];
7488        audio_session_t sessionId = track->sessionId();
7489        if (ids.indexOfKey(sessionId) < 0) {
7490            ids.add(sessionId, true);
7491        }
7492    }
7493    return ids;
7494}
7495
7496AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7497{
7498    Mutex::Autolock _l(mLock);
7499    AudioStreamIn *input = mInput;
7500    mInput = NULL;
7501    return input;
7502}
7503
7504// this method must always be called either with ThreadBase mLock held or inside the thread loop
7505audio_stream_t* AudioFlinger::RecordThread::stream() const
7506{
7507    if (mInput == NULL) {
7508        return NULL;
7509    }
7510    return &mInput->stream->common;
7511}
7512
7513status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7514{
7515    // only one chain per input thread
7516    if (mEffectChains.size() != 0) {
7517        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7518        return INVALID_OPERATION;
7519    }
7520    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7521    chain->setThread(this);
7522    chain->setInBuffer(NULL);
7523    chain->setOutBuffer(NULL);
7524
7525    checkSuspendOnAddEffectChain_l(chain);
7526
7527    // make sure enabled pre processing effects state is communicated to the HAL as we
7528    // just moved them to a new input stream.
7529    chain->syncHalEffectsState();
7530
7531    mEffectChains.add(chain);
7532
7533    return NO_ERROR;
7534}
7535
7536size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7537{
7538    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7539    ALOGW_IF(mEffectChains.size() != 1,
7540            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7541            chain.get(), mEffectChains.size(), this);
7542    if (mEffectChains.size() == 1) {
7543        mEffectChains.removeAt(0);
7544    }
7545    return 0;
7546}
7547
7548status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7549                                                          audio_patch_handle_t *handle)
7550{
7551    status_t status = NO_ERROR;
7552
7553    // store new device and send to effects
7554    mInDevice = patch->sources[0].ext.device.type;
7555    mPatch = *patch;
7556    for (size_t i = 0; i < mEffectChains.size(); i++) {
7557        mEffectChains[i]->setDevice_l(mInDevice);
7558    }
7559
7560    // disable AEC and NS if the device is a BT SCO headset supporting those
7561    // pre processings
7562    if (mTracks.size() > 0) {
7563        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7564                            mAudioFlinger->btNrecIsOff();
7565        for (size_t i = 0; i < mTracks.size(); i++) {
7566            sp<RecordTrack> track = mTracks[i];
7567            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7568            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7569        }
7570    }
7571
7572    // store new source and send to effects
7573    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7574        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7575        for (size_t i = 0; i < mEffectChains.size(); i++) {
7576            mEffectChains[i]->setAudioSource_l(mAudioSource);
7577        }
7578    }
7579
7580    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7581        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7582        status = hwDevice->create_audio_patch(hwDevice,
7583                                               patch->num_sources,
7584                                               patch->sources,
7585                                               patch->num_sinks,
7586                                               patch->sinks,
7587                                               handle);
7588    } else {
7589        char *address;
7590        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7591            address = audio_device_address_to_parameter(
7592                                                patch->sources[0].ext.device.type,
7593                                                patch->sources[0].ext.device.address);
7594        } else {
7595            address = (char *)calloc(1, 1);
7596        }
7597        AudioParameter param = AudioParameter(String8(address));
7598        free(address);
7599        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7600                     (int)patch->sources[0].ext.device.type);
7601        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7602                                         (int)patch->sinks[0].ext.mix.usecase.source);
7603        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7604                param.toString().string());
7605        *handle = AUDIO_PATCH_HANDLE_NONE;
7606    }
7607
7608    if (mInDevice != mPrevInDevice) {
7609        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7610        mPrevInDevice = mInDevice;
7611    }
7612
7613    return status;
7614}
7615
7616status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7617{
7618    status_t status = NO_ERROR;
7619
7620    mInDevice = AUDIO_DEVICE_NONE;
7621
7622    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7623        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7624        status = hwDevice->release_audio_patch(hwDevice, handle);
7625    } else {
7626        AudioParameter param;
7627        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7628        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7629                param.toString().string());
7630    }
7631    return status;
7632}
7633
7634void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7635{
7636    Mutex::Autolock _l(mLock);
7637    mTracks.add(record);
7638}
7639
7640void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7641{
7642    Mutex::Autolock _l(mLock);
7643    destroyTrack_l(record);
7644}
7645
7646void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7647{
7648    ThreadBase::getAudioPortConfig(config);
7649    config->role = AUDIO_PORT_ROLE_SINK;
7650    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7651    config->ext.mix.usecase.source = mAudioSource;
7652}
7653
7654} // namespace android
7655