Threads.cpp revision ec6a70345fc99cd9f8461749a7656b8240874a62
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74// ----------------------------------------------------------------------------
75
76// Note: the following macro is used for extremely verbose logging message.  In
77// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
78// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
79// are so verbose that we want to suppress them even when we have ALOG_ASSERT
80// turned on.  Do not uncomment the #def below unless you really know what you
81// are doing and want to see all of the extremely verbose messages.
82//#define VERY_VERY_VERBOSE_LOGGING
83#ifdef VERY_VERY_VERBOSE_LOGGING
84#define ALOGVV ALOGV
85#else
86#define ALOGVV(a...) do { } while(0)
87#endif
88
89// TODO: Move these macro/inlines to a header file.
90#define max(a, b) ((a) > (b) ? (a) : (b))
91template <typename T>
92static inline T min(const T& a, const T& b)
93{
94    return a < b ? a : b;
95}
96
97#ifndef ARRAY_SIZE
98#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
99#endif
100
101namespace android {
102
103// retry counts for buffer fill timeout
104// 50 * ~20msecs = 1 second
105static const int8_t kMaxTrackRetries = 50;
106static const int8_t kMaxTrackStartupRetries = 50;
107// allow less retry attempts on direct output thread.
108// direct outputs can be a scarce resource in audio hardware and should
109// be released as quickly as possible.
110static const int8_t kMaxTrackRetriesDirect = 2;
111// retry count before removing active track in case of underrun on offloaded thread:
112// we need to make sure that AudioTrack client has enough time to send large buffers
113//FIXME may be more appropriate if expressed in time units. Need to revise how underrun is handled
114// for offloaded tracks
115static const int8_t kMaxTrackRetriesOffload = 10;
116static const int8_t kMaxTrackStartupRetriesOffload = 100;
117
118
119// don't warn about blocked writes or record buffer overflows more often than this
120static const nsecs_t kWarningThrottleNs = seconds(5);
121
122// RecordThread loop sleep time upon application overrun or audio HAL read error
123static const int kRecordThreadSleepUs = 5000;
124
125// maximum time to wait in sendConfigEvent_l() for a status to be received
126static const nsecs_t kConfigEventTimeoutNs = seconds(2);
127
128// minimum sleep time for the mixer thread loop when tracks are active but in underrun
129static const uint32_t kMinThreadSleepTimeUs = 5000;
130// maximum divider applied to the active sleep time in the mixer thread loop
131static const uint32_t kMaxThreadSleepTimeShift = 2;
132
133// minimum normal sink buffer size, expressed in milliseconds rather than frames
134// FIXME This should be based on experimentally observed scheduling jitter
135static const uint32_t kMinNormalSinkBufferSizeMs = 20;
136// maximum normal sink buffer size
137static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
138
139// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
140// FIXME This should be based on experimentally observed scheduling jitter
141static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
142
143// Offloaded output thread standby delay: allows track transition without going to standby
144static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
145
146// Direct output thread minimum sleep time in idle or active(underrun) state
147static const nsecs_t kDirectMinSleepTimeUs = 10000;
148
149// Offloaded output bit rate in bits per second when unknown.
150// Used for sleep time calculation, so use a high default bitrate to be conservative on sleep time.
151static const uint32_t kOffloadDefaultBitRateBps = 1500000;
152
153
154// Whether to use fast mixer
155static const enum {
156    FastMixer_Never,    // never initialize or use: for debugging only
157    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
158                        // normal mixer multiplier is 1
159    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
160                        // multiplier is calculated based on min & max normal mixer buffer size
161    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
162                        // multiplier is calculated based on min & max normal mixer buffer size
163    // FIXME for FastMixer_Dynamic:
164    //  Supporting this option will require fixing HALs that can't handle large writes.
165    //  For example, one HAL implementation returns an error from a large write,
166    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
167    //  We could either fix the HAL implementations, or provide a wrapper that breaks
168    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
169} kUseFastMixer = FastMixer_Static;
170
171// Whether to use fast capture
172static const enum {
173    FastCapture_Never,  // never initialize or use: for debugging only
174    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
175    FastCapture_Static, // initialize if needed, then use all the time if initialized
176} kUseFastCapture = FastCapture_Static;
177
178// Priorities for requestPriority
179static const int kPriorityAudioApp = 2;
180static const int kPriorityFastMixer = 3;
181static const int kPriorityFastCapture = 3;
182
183// IAudioFlinger::createTrack() reports back to client the total size of shared memory area
184// for the track.  The client then sub-divides this into smaller buffers for its use.
185// Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
186// So for now we just assume that client is double-buffered for fast tracks.
187// FIXME It would be better for client to tell AudioFlinger the value of N,
188// so AudioFlinger could allocate the right amount of memory.
189// See the client's minBufCount and mNotificationFramesAct calculations for details.
190
191// This is the default value, if not specified by property.
192static const int kFastTrackMultiplier = 2;
193
194// The minimum and maximum allowed values
195static const int kFastTrackMultiplierMin = 1;
196static const int kFastTrackMultiplierMax = 2;
197
198// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
199static int sFastTrackMultiplier = kFastTrackMultiplier;
200
201// See Thread::readOnlyHeap().
202// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
203// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
204// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
205static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
206
207// ----------------------------------------------------------------------------
208
209static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
210
211static void sFastTrackMultiplierInit()
212{
213    char value[PROPERTY_VALUE_MAX];
214    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
215        char *endptr;
216        unsigned long ul = strtoul(value, &endptr, 0);
217        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
218            sFastTrackMultiplier = (int) ul;
219        }
220    }
221}
222
223// ----------------------------------------------------------------------------
224
225#ifdef ADD_BATTERY_DATA
226// To collect the amplifier usage
227static void addBatteryData(uint32_t params) {
228    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
229    if (service == NULL) {
230        // it already logged
231        return;
232    }
233
234    service->addBatteryData(params);
235}
236#endif
237
238// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
239struct {
240    // call when you acquire a partial wakelock
241    void acquire(const sp<IBinder> &wakeLockToken) {
242        pthread_mutex_lock(&mLock);
243        if (wakeLockToken.get() == nullptr) {
244            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
245        } else {
246            if (mCount == 0) {
247                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
248            }
249            ++mCount;
250        }
251        pthread_mutex_unlock(&mLock);
252    }
253
254    // call when you release a partial wakelock.
255    void release(const sp<IBinder> &wakeLockToken) {
256        if (wakeLockToken.get() == nullptr) {
257            return;
258        }
259        pthread_mutex_lock(&mLock);
260        if (--mCount < 0) {
261            ALOGE("negative wakelock count");
262            mCount = 0;
263        }
264        pthread_mutex_unlock(&mLock);
265    }
266
267    // retrieves the boottime timebase offset from monotonic.
268    int64_t getBoottimeOffset() {
269        pthread_mutex_lock(&mLock);
270        int64_t boottimeOffset = mBoottimeOffset;
271        pthread_mutex_unlock(&mLock);
272        return boottimeOffset;
273    }
274
275    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
276    // and the selected timebase.
277    // Currently only TIMEBASE_BOOTTIME is allowed.
278    //
279    // This only needs to be called upon acquiring the first partial wakelock
280    // after all other partial wakelocks are released.
281    //
282    // We do an empirical measurement of the offset rather than parsing
283    // /proc/timer_list since the latter is not a formal kernel ABI.
284    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
285        int clockbase;
286        switch (timebase) {
287        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
288            clockbase = SYSTEM_TIME_BOOTTIME;
289            break;
290        default:
291            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
292            break;
293        }
294        // try three times to get the clock offset, choose the one
295        // with the minimum gap in measurements.
296        const int tries = 3;
297        nsecs_t bestGap, measured;
298        for (int i = 0; i < tries; ++i) {
299            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
300            const nsecs_t tbase = systemTime(clockbase);
301            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
302            const nsecs_t gap = tmono2 - tmono;
303            if (i == 0 || gap < bestGap) {
304                bestGap = gap;
305                measured = tbase - ((tmono + tmono2) >> 1);
306            }
307        }
308
309        // to avoid micro-adjusting, we don't change the timebase
310        // unless it is significantly different.
311        //
312        // Assumption: It probably takes more than toleranceNs to
313        // suspend and resume the device.
314        static int64_t toleranceNs = 10000; // 10 us
315        if (llabs(*offset - measured) > toleranceNs) {
316            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
317                    (long long)*offset, (long long)measured);
318            *offset = measured;
319        }
320    }
321
322    pthread_mutex_t mLock;
323    int32_t mCount;
324    int64_t mBoottimeOffset;
325} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
326
327// ----------------------------------------------------------------------------
328//      CPU Stats
329// ----------------------------------------------------------------------------
330
331class CpuStats {
332public:
333    CpuStats();
334    void sample(const String8 &title);
335#ifdef DEBUG_CPU_USAGE
336private:
337    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
338    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
339
340    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
341
342    int mCpuNum;                        // thread's current CPU number
343    int mCpukHz;                        // frequency of thread's current CPU in kHz
344#endif
345};
346
347CpuStats::CpuStats()
348#ifdef DEBUG_CPU_USAGE
349    : mCpuNum(-1), mCpukHz(-1)
350#endif
351{
352}
353
354void CpuStats::sample(const String8 &title
355#ifndef DEBUG_CPU_USAGE
356                __unused
357#endif
358        ) {
359#ifdef DEBUG_CPU_USAGE
360    // get current thread's delta CPU time in wall clock ns
361    double wcNs;
362    bool valid = mCpuUsage.sampleAndEnable(wcNs);
363
364    // record sample for wall clock statistics
365    if (valid) {
366        mWcStats.sample(wcNs);
367    }
368
369    // get the current CPU number
370    int cpuNum = sched_getcpu();
371
372    // get the current CPU frequency in kHz
373    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
374
375    // check if either CPU number or frequency changed
376    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
377        mCpuNum = cpuNum;
378        mCpukHz = cpukHz;
379        // ignore sample for purposes of cycles
380        valid = false;
381    }
382
383    // if no change in CPU number or frequency, then record sample for cycle statistics
384    if (valid && mCpukHz > 0) {
385        double cycles = wcNs * cpukHz * 0.000001;
386        mHzStats.sample(cycles);
387    }
388
389    unsigned n = mWcStats.n();
390    // mCpuUsage.elapsed() is expensive, so don't call it every loop
391    if ((n & 127) == 1) {
392        long long elapsed = mCpuUsage.elapsed();
393        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
394            double perLoop = elapsed / (double) n;
395            double perLoop100 = perLoop * 0.01;
396            double perLoop1k = perLoop * 0.001;
397            double mean = mWcStats.mean();
398            double stddev = mWcStats.stddev();
399            double minimum = mWcStats.minimum();
400            double maximum = mWcStats.maximum();
401            double meanCycles = mHzStats.mean();
402            double stddevCycles = mHzStats.stddev();
403            double minCycles = mHzStats.minimum();
404            double maxCycles = mHzStats.maximum();
405            mCpuUsage.resetElapsed();
406            mWcStats.reset();
407            mHzStats.reset();
408            ALOGD("CPU usage for %s over past %.1f secs\n"
409                "  (%u mixer loops at %.1f mean ms per loop):\n"
410                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
411                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
412                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
413                    title.string(),
414                    elapsed * .000000001, n, perLoop * .000001,
415                    mean * .001,
416                    stddev * .001,
417                    minimum * .001,
418                    maximum * .001,
419                    mean / perLoop100,
420                    stddev / perLoop100,
421                    minimum / perLoop100,
422                    maximum / perLoop100,
423                    meanCycles / perLoop1k,
424                    stddevCycles / perLoop1k,
425                    minCycles / perLoop1k,
426                    maxCycles / perLoop1k);
427
428        }
429    }
430#endif
431};
432
433// ----------------------------------------------------------------------------
434//      ThreadBase
435// ----------------------------------------------------------------------------
436
437// static
438const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
439{
440    switch (type) {
441    case MIXER:
442        return "MIXER";
443    case DIRECT:
444        return "DIRECT";
445    case DUPLICATING:
446        return "DUPLICATING";
447    case RECORD:
448        return "RECORD";
449    case OFFLOAD:
450        return "OFFLOAD";
451    default:
452        return "unknown";
453    }
454}
455
456String8 devicesToString(audio_devices_t devices)
457{
458    static const struct mapping {
459        audio_devices_t mDevices;
460        const char *    mString;
461    } mappingsOut[] = {
462        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
463        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
464        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
465        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
466        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
467        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
468        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
469        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
470        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
471        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
472        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
473        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
474        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
475        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
476        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
477        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
478        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
479        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
480        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
481        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
482        {AUDIO_DEVICE_OUT_FM,               "FM"},
483        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
484        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
485        {AUDIO_DEVICE_OUT_IP,               "IP"},
486        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
487        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
488    }, mappingsIn[] = {
489        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
490        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
491        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
492        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
493        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
494        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
495        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
496        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
497        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
498        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
499        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
500        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
501        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
502        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
503        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
504        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
505        {AUDIO_DEVICE_IN_LINE,              "LINE"},
506        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
507        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
508        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
509        {AUDIO_DEVICE_IN_IP,                "IP"},
510        {AUDIO_DEVICE_IN_BUS,               "BUS"},
511        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
512    };
513    String8 result;
514    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
515    const mapping *entry;
516    if (devices & AUDIO_DEVICE_BIT_IN) {
517        devices &= ~AUDIO_DEVICE_BIT_IN;
518        entry = mappingsIn;
519    } else {
520        entry = mappingsOut;
521    }
522    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
523        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
524        if (devices & entry->mDevices) {
525            if (!result.isEmpty()) {
526                result.append("|");
527            }
528            result.append(entry->mString);
529        }
530    }
531    if (devices & ~allDevices) {
532        if (!result.isEmpty()) {
533            result.append("|");
534        }
535        result.appendFormat("0x%X", devices & ~allDevices);
536    }
537    if (result.isEmpty()) {
538        result.append(entry->mString);
539    }
540    return result;
541}
542
543String8 inputFlagsToString(audio_input_flags_t flags)
544{
545    static const struct mapping {
546        audio_input_flags_t     mFlag;
547        const char *            mString;
548    } mappings[] = {
549        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
550        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
551        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
552        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
553        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
554    };
555    String8 result;
556    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
557    const mapping *entry;
558    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
559        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
560        if (flags & entry->mFlag) {
561            if (!result.isEmpty()) {
562                result.append("|");
563            }
564            result.append(entry->mString);
565        }
566    }
567    if (flags & ~allFlags) {
568        if (!result.isEmpty()) {
569            result.append("|");
570        }
571        result.appendFormat("0x%X", flags & ~allFlags);
572    }
573    if (result.isEmpty()) {
574        result.append(entry->mString);
575    }
576    return result;
577}
578
579String8 outputFlagsToString(audio_output_flags_t flags)
580{
581    static const struct mapping {
582        audio_output_flags_t    mFlag;
583        const char *            mString;
584    } mappings[] = {
585        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
586        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
587        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
588        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
589        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
590        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
591        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
592        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
593        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
594        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
595        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
596    };
597    String8 result;
598    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
599    const mapping *entry;
600    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
601        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
602        if (flags & entry->mFlag) {
603            if (!result.isEmpty()) {
604                result.append("|");
605            }
606            result.append(entry->mString);
607        }
608    }
609    if (flags & ~allFlags) {
610        if (!result.isEmpty()) {
611            result.append("|");
612        }
613        result.appendFormat("0x%X", flags & ~allFlags);
614    }
615    if (result.isEmpty()) {
616        result.append(entry->mString);
617    }
618    return result;
619}
620
621const char *sourceToString(audio_source_t source)
622{
623    switch (source) {
624    case AUDIO_SOURCE_DEFAULT:              return "default";
625    case AUDIO_SOURCE_MIC:                  return "mic";
626    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
627    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
628    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
629    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
630    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
631    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
632    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
633    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
634    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
635    case AUDIO_SOURCE_HOTWORD:              return "hotword";
636    default:                                return "unknown";
637    }
638}
639
640AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
641        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
642    :   Thread(false /*canCallJava*/),
643        mType(type),
644        mAudioFlinger(audioFlinger),
645        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
646        // are set by PlaybackThread::readOutputParameters_l() or
647        // RecordThread::readInputParameters_l()
648        //FIXME: mStandby should be true here. Is this some kind of hack?
649        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
650        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
651        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
652        // mName will be set by concrete (non-virtual) subclass
653        mDeathRecipient(new PMDeathRecipient(this)),
654        mSystemReady(systemReady),
655        mNotifiedBatteryStart(false)
656{
657    memset(&mPatch, 0, sizeof(struct audio_patch));
658}
659
660AudioFlinger::ThreadBase::~ThreadBase()
661{
662    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
663    mConfigEvents.clear();
664
665    // do not lock the mutex in destructor
666    releaseWakeLock_l();
667    if (mPowerManager != 0) {
668        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
669        binder->unlinkToDeath(mDeathRecipient);
670    }
671}
672
673status_t AudioFlinger::ThreadBase::readyToRun()
674{
675    status_t status = initCheck();
676    if (status == NO_ERROR) {
677        ALOGI("AudioFlinger's thread %p ready to run", this);
678    } else {
679        ALOGE("No working audio driver found.");
680    }
681    return status;
682}
683
684void AudioFlinger::ThreadBase::exit()
685{
686    ALOGV("ThreadBase::exit");
687    // do any cleanup required for exit to succeed
688    preExit();
689    {
690        // This lock prevents the following race in thread (uniprocessor for illustration):
691        //  if (!exitPending()) {
692        //      // context switch from here to exit()
693        //      // exit() calls requestExit(), what exitPending() observes
694        //      // exit() calls signal(), which is dropped since no waiters
695        //      // context switch back from exit() to here
696        //      mWaitWorkCV.wait(...);
697        //      // now thread is hung
698        //  }
699        AutoMutex lock(mLock);
700        requestExit();
701        mWaitWorkCV.broadcast();
702    }
703    // When Thread::requestExitAndWait is made virtual and this method is renamed to
704    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
705    requestExitAndWait();
706}
707
708status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
709{
710    status_t status;
711
712    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
713    Mutex::Autolock _l(mLock);
714
715    return sendSetParameterConfigEvent_l(keyValuePairs);
716}
717
718// sendConfigEvent_l() must be called with ThreadBase::mLock held
719// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
720status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
721{
722    status_t status = NO_ERROR;
723
724    if (event->mRequiresSystemReady && !mSystemReady) {
725        event->mWaitStatus = false;
726        mPendingConfigEvents.add(event);
727        return status;
728    }
729    mConfigEvents.add(event);
730    ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType);
731    mWaitWorkCV.signal();
732    mLock.unlock();
733    {
734        Mutex::Autolock _l(event->mLock);
735        while (event->mWaitStatus) {
736            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
737                event->mStatus = TIMED_OUT;
738                event->mWaitStatus = false;
739            }
740        }
741        status = event->mStatus;
742    }
743    mLock.lock();
744    return status;
745}
746
747void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
748{
749    Mutex::Autolock _l(mLock);
750    sendIoConfigEvent_l(event, pid);
751}
752
753// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
754void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
755{
756    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
757    sendConfigEvent_l(configEvent);
758}
759
760void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
761{
762    Mutex::Autolock _l(mLock);
763    sendPrioConfigEvent_l(pid, tid, prio);
764}
765
766// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
767void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
768{
769    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
770    sendConfigEvent_l(configEvent);
771}
772
773// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
774status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
775{
776    sp<ConfigEvent> configEvent;
777    AudioParameter param(keyValuePair);
778    int value;
779    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
780        setMasterMono_l(value != 0);
781        if (param.size() == 1) {
782            return NO_ERROR; // should be a solo parameter - we don't pass down
783        }
784        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
785        configEvent = new SetParameterConfigEvent(param.toString());
786    } else {
787        configEvent = new SetParameterConfigEvent(keyValuePair);
788    }
789    return sendConfigEvent_l(configEvent);
790}
791
792status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
793                                                        const struct audio_patch *patch,
794                                                        audio_patch_handle_t *handle)
795{
796    Mutex::Autolock _l(mLock);
797    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
798    status_t status = sendConfigEvent_l(configEvent);
799    if (status == NO_ERROR) {
800        CreateAudioPatchConfigEventData *data =
801                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
802        *handle = data->mHandle;
803    }
804    return status;
805}
806
807status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
808                                                                const audio_patch_handle_t handle)
809{
810    Mutex::Autolock _l(mLock);
811    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
812    return sendConfigEvent_l(configEvent);
813}
814
815
816// post condition: mConfigEvents.isEmpty()
817void AudioFlinger::ThreadBase::processConfigEvents_l()
818{
819    bool configChanged = false;
820
821    while (!mConfigEvents.isEmpty()) {
822        ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
823        sp<ConfigEvent> event = mConfigEvents[0];
824        mConfigEvents.removeAt(0);
825        switch (event->mType) {
826        case CFG_EVENT_PRIO: {
827            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
828            // FIXME Need to understand why this has to be done asynchronously
829            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
830                    true /*asynchronous*/);
831            if (err != 0) {
832                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
833                      data->mPrio, data->mPid, data->mTid, err);
834            }
835        } break;
836        case CFG_EVENT_IO: {
837            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
838            ioConfigChanged(data->mEvent, data->mPid);
839        } break;
840        case CFG_EVENT_SET_PARAMETER: {
841            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
842            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
843                configChanged = true;
844            }
845        } break;
846        case CFG_EVENT_CREATE_AUDIO_PATCH: {
847            CreateAudioPatchConfigEventData *data =
848                                            (CreateAudioPatchConfigEventData *)event->mData.get();
849            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
850        } break;
851        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
852            ReleaseAudioPatchConfigEventData *data =
853                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
854            event->mStatus = releaseAudioPatch_l(data->mHandle);
855        } break;
856        default:
857            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
858            break;
859        }
860        {
861            Mutex::Autolock _l(event->mLock);
862            if (event->mWaitStatus) {
863                event->mWaitStatus = false;
864                event->mCond.signal();
865            }
866        }
867        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
868    }
869
870    if (configChanged) {
871        cacheParameters_l();
872    }
873}
874
875String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
876    String8 s;
877    const audio_channel_representation_t representation =
878            audio_channel_mask_get_representation(mask);
879
880    switch (representation) {
881    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
882        if (output) {
883            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
884            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
885            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
886            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
887            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
888            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
889            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
890            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
891            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
892            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
893            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
894            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
895            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
896            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
897            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
898            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
899            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
900            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
901            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
902        } else {
903            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
904            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
905            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
906            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
907            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
908            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
909            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
910            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
911            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
912            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
913            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
914            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
915            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
916            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
917            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
918        }
919        const int len = s.length();
920        if (len > 2) {
921            char *str = s.lockBuffer(len); // needed?
922            s.unlockBuffer(len - 2);       // remove trailing ", "
923        }
924        return s;
925    }
926    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
927        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
928        return s;
929    default:
930        s.appendFormat("unknown mask, representation:%d  bits:%#x",
931                representation, audio_channel_mask_get_bits(mask));
932        return s;
933    }
934}
935
936void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
937{
938    const size_t SIZE = 256;
939    char buffer[SIZE];
940    String8 result;
941
942    bool locked = AudioFlinger::dumpTryLock(mLock);
943    if (!locked) {
944        dprintf(fd, "thread %p may be deadlocked\n", this);
945    }
946
947    dprintf(fd, "  Thread name: %s\n", mThreadName);
948    dprintf(fd, "  I/O handle: %d\n", mId);
949    dprintf(fd, "  TID: %d\n", getTid());
950    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
951    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
952    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
953    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
954    dprintf(fd, "  HAL buffer size: %u bytes\n", mBufferSize);
955    dprintf(fd, "  Channel count: %u\n", mChannelCount);
956    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
957            channelMaskToString(mChannelMask, mType != RECORD).string());
958    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
959    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
960    dprintf(fd, "  Pending config events:");
961    size_t numConfig = mConfigEvents.size();
962    if (numConfig) {
963        for (size_t i = 0; i < numConfig; i++) {
964            mConfigEvents[i]->dump(buffer, SIZE);
965            dprintf(fd, "\n    %s", buffer);
966        }
967        dprintf(fd, "\n");
968    } else {
969        dprintf(fd, " none\n");
970    }
971    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
972    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
973    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
974
975    if (locked) {
976        mLock.unlock();
977    }
978}
979
980void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
981{
982    const size_t SIZE = 256;
983    char buffer[SIZE];
984    String8 result;
985
986    size_t numEffectChains = mEffectChains.size();
987    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
988    write(fd, buffer, strlen(buffer));
989
990    for (size_t i = 0; i < numEffectChains; ++i) {
991        sp<EffectChain> chain = mEffectChains[i];
992        if (chain != 0) {
993            chain->dump(fd, args);
994        }
995    }
996}
997
998void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
999{
1000    Mutex::Autolock _l(mLock);
1001    acquireWakeLock_l(uid);
1002}
1003
1004String16 AudioFlinger::ThreadBase::getWakeLockTag()
1005{
1006    switch (mType) {
1007    case MIXER:
1008        return String16("AudioMix");
1009    case DIRECT:
1010        return String16("AudioDirectOut");
1011    case DUPLICATING:
1012        return String16("AudioDup");
1013    case RECORD:
1014        return String16("AudioIn");
1015    case OFFLOAD:
1016        return String16("AudioOffload");
1017    default:
1018        ALOG_ASSERT(false);
1019        return String16("AudioUnknown");
1020    }
1021}
1022
1023void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1024{
1025    getPowerManager_l();
1026    if (mPowerManager != 0) {
1027        sp<IBinder> binder = new BBinder();
1028        status_t status;
1029        if (uid >= 0) {
1030            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1031                    binder,
1032                    getWakeLockTag(),
1033                    String16("audioserver"),
1034                    uid,
1035                    true /* FIXME force oneway contrary to .aidl */);
1036        } else {
1037            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1038                    binder,
1039                    getWakeLockTag(),
1040                    String16("audioserver"),
1041                    true /* FIXME force oneway contrary to .aidl */);
1042        }
1043        if (status == NO_ERROR) {
1044            mWakeLockToken = binder;
1045        }
1046        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1047    }
1048
1049    if (!mNotifiedBatteryStart) {
1050        BatteryNotifier::getInstance().noteStartAudio();
1051        mNotifiedBatteryStart = true;
1052    }
1053    gBoottime.acquire(mWakeLockToken);
1054    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1055            gBoottime.getBoottimeOffset();
1056}
1057
1058void AudioFlinger::ThreadBase::releaseWakeLock()
1059{
1060    Mutex::Autolock _l(mLock);
1061    releaseWakeLock_l();
1062}
1063
1064void AudioFlinger::ThreadBase::releaseWakeLock_l()
1065{
1066    gBoottime.release(mWakeLockToken);
1067    if (mWakeLockToken != 0) {
1068        ALOGV("releaseWakeLock_l() %s", mThreadName);
1069        if (mPowerManager != 0) {
1070            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1071                    true /* FIXME force oneway contrary to .aidl */);
1072        }
1073        mWakeLockToken.clear();
1074    }
1075
1076    if (mNotifiedBatteryStart) {
1077        BatteryNotifier::getInstance().noteStopAudio();
1078        mNotifiedBatteryStart = false;
1079    }
1080}
1081
1082void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1083    Mutex::Autolock _l(mLock);
1084    updateWakeLockUids_l(uids);
1085}
1086
1087void AudioFlinger::ThreadBase::getPowerManager_l() {
1088    if (mSystemReady && mPowerManager == 0) {
1089        // use checkService() to avoid blocking if power service is not up yet
1090        sp<IBinder> binder =
1091            defaultServiceManager()->checkService(String16("power"));
1092        if (binder == 0) {
1093            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1094        } else {
1095            mPowerManager = interface_cast<IPowerManager>(binder);
1096            binder->linkToDeath(mDeathRecipient);
1097        }
1098    }
1099}
1100
1101void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1102    getPowerManager_l();
1103    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1104        if (mSystemReady) {
1105            ALOGE("no wake lock to update, but system ready!");
1106        } else {
1107            ALOGW("no wake lock to update, system not ready yet");
1108        }
1109        return;
1110    }
1111    if (mPowerManager != 0) {
1112        sp<IBinder> binder = new BBinder();
1113        status_t status;
1114        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1115                    true /* FIXME force oneway contrary to .aidl */);
1116        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1117    }
1118}
1119
1120void AudioFlinger::ThreadBase::clearPowerManager()
1121{
1122    Mutex::Autolock _l(mLock);
1123    releaseWakeLock_l();
1124    mPowerManager.clear();
1125}
1126
1127void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1128{
1129    sp<ThreadBase> thread = mThread.promote();
1130    if (thread != 0) {
1131        thread->clearPowerManager();
1132    }
1133    ALOGW("power manager service died !!!");
1134}
1135
1136void AudioFlinger::ThreadBase::setEffectSuspended(
1137        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1138{
1139    Mutex::Autolock _l(mLock);
1140    setEffectSuspended_l(type, suspend, sessionId);
1141}
1142
1143void AudioFlinger::ThreadBase::setEffectSuspended_l(
1144        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1145{
1146    sp<EffectChain> chain = getEffectChain_l(sessionId);
1147    if (chain != 0) {
1148        if (type != NULL) {
1149            chain->setEffectSuspended_l(type, suspend);
1150        } else {
1151            chain->setEffectSuspendedAll_l(suspend);
1152        }
1153    }
1154
1155    updateSuspendedSessions_l(type, suspend, sessionId);
1156}
1157
1158void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1159{
1160    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1161    if (index < 0) {
1162        return;
1163    }
1164
1165    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1166            mSuspendedSessions.valueAt(index);
1167
1168    for (size_t i = 0; i < sessionEffects.size(); i++) {
1169        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1170        for (int j = 0; j < desc->mRefCount; j++) {
1171            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1172                chain->setEffectSuspendedAll_l(true);
1173            } else {
1174                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1175                    desc->mType.timeLow);
1176                chain->setEffectSuspended_l(&desc->mType, true);
1177            }
1178        }
1179    }
1180}
1181
1182void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1183                                                         bool suspend,
1184                                                         audio_session_t sessionId)
1185{
1186    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1187
1188    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1189
1190    if (suspend) {
1191        if (index >= 0) {
1192            sessionEffects = mSuspendedSessions.valueAt(index);
1193        } else {
1194            mSuspendedSessions.add(sessionId, sessionEffects);
1195        }
1196    } else {
1197        if (index < 0) {
1198            return;
1199        }
1200        sessionEffects = mSuspendedSessions.valueAt(index);
1201    }
1202
1203
1204    int key = EffectChain::kKeyForSuspendAll;
1205    if (type != NULL) {
1206        key = type->timeLow;
1207    }
1208    index = sessionEffects.indexOfKey(key);
1209
1210    sp<SuspendedSessionDesc> desc;
1211    if (suspend) {
1212        if (index >= 0) {
1213            desc = sessionEffects.valueAt(index);
1214        } else {
1215            desc = new SuspendedSessionDesc();
1216            if (type != NULL) {
1217                desc->mType = *type;
1218            }
1219            sessionEffects.add(key, desc);
1220            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1221        }
1222        desc->mRefCount++;
1223    } else {
1224        if (index < 0) {
1225            return;
1226        }
1227        desc = sessionEffects.valueAt(index);
1228        if (--desc->mRefCount == 0) {
1229            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1230            sessionEffects.removeItemsAt(index);
1231            if (sessionEffects.isEmpty()) {
1232                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1233                                 sessionId);
1234                mSuspendedSessions.removeItem(sessionId);
1235            }
1236        }
1237    }
1238    if (!sessionEffects.isEmpty()) {
1239        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1240    }
1241}
1242
1243void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1244                                                            bool enabled,
1245                                                            audio_session_t sessionId)
1246{
1247    Mutex::Autolock _l(mLock);
1248    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1249}
1250
1251void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1252                                                            bool enabled,
1253                                                            audio_session_t sessionId)
1254{
1255    if (mType != RECORD) {
1256        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1257        // another session. This gives the priority to well behaved effect control panels
1258        // and applications not using global effects.
1259        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1260        // global effects
1261        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1262            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1263        }
1264    }
1265
1266    sp<EffectChain> chain = getEffectChain_l(sessionId);
1267    if (chain != 0) {
1268        chain->checkSuspendOnEffectEnabled(effect, enabled);
1269    }
1270}
1271
1272// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1273sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1274        const sp<AudioFlinger::Client>& client,
1275        const sp<IEffectClient>& effectClient,
1276        int32_t priority,
1277        audio_session_t sessionId,
1278        effect_descriptor_t *desc,
1279        int *enabled,
1280        status_t *status)
1281{
1282    sp<EffectModule> effect;
1283    sp<EffectHandle> handle;
1284    status_t lStatus;
1285    sp<EffectChain> chain;
1286    bool chainCreated = false;
1287    bool effectCreated = false;
1288    bool effectRegistered = false;
1289
1290    lStatus = initCheck();
1291    if (lStatus != NO_ERROR) {
1292        ALOGW("createEffect_l() Audio driver not initialized.");
1293        goto Exit;
1294    }
1295
1296    // Reject any effect on Direct output threads for now, since the format of
1297    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1298    if (mType == DIRECT) {
1299        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1300                desc->name, mThreadName);
1301        lStatus = BAD_VALUE;
1302        goto Exit;
1303    }
1304
1305    // Reject any effect on mixer or duplicating multichannel sinks.
1306    // TODO: fix both format and multichannel issues with effects.
1307    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1308        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1309                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1310        lStatus = BAD_VALUE;
1311        goto Exit;
1312    }
1313
1314    // Allow global effects only on offloaded and mixer threads
1315    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1316        switch (mType) {
1317        case MIXER:
1318        case OFFLOAD:
1319            break;
1320        case DIRECT:
1321        case DUPLICATING:
1322        case RECORD:
1323        default:
1324            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1325                    desc->name, mThreadName);
1326            lStatus = BAD_VALUE;
1327            goto Exit;
1328        }
1329    }
1330
1331    // Only Pre processor effects are allowed on input threads and only on input threads
1332    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1333        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1334                desc->name, desc->flags, mType);
1335        lStatus = BAD_VALUE;
1336        goto Exit;
1337    }
1338
1339    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1340
1341    { // scope for mLock
1342        Mutex::Autolock _l(mLock);
1343
1344        // check for existing effect chain with the requested audio session
1345        chain = getEffectChain_l(sessionId);
1346        if (chain == 0) {
1347            // create a new chain for this session
1348            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1349            chain = new EffectChain(this, sessionId);
1350            addEffectChain_l(chain);
1351            chain->setStrategy(getStrategyForSession_l(sessionId));
1352            chainCreated = true;
1353        } else {
1354            effect = chain->getEffectFromDesc_l(desc);
1355        }
1356
1357        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1358
1359        if (effect == 0) {
1360            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1361            // Check CPU and memory usage
1362            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1363            if (lStatus != NO_ERROR) {
1364                goto Exit;
1365            }
1366            effectRegistered = true;
1367            // create a new effect module if none present in the chain
1368            effect = new EffectModule(this, chain, desc, id, sessionId);
1369            lStatus = effect->status();
1370            if (lStatus != NO_ERROR) {
1371                goto Exit;
1372            }
1373            effect->setOffloaded(mType == OFFLOAD, mId);
1374
1375            lStatus = chain->addEffect_l(effect);
1376            if (lStatus != NO_ERROR) {
1377                goto Exit;
1378            }
1379            effectCreated = true;
1380
1381            effect->setDevice(mOutDevice);
1382            effect->setDevice(mInDevice);
1383            effect->setMode(mAudioFlinger->getMode());
1384            effect->setAudioSource(mAudioSource);
1385        }
1386        // create effect handle and connect it to effect module
1387        handle = new EffectHandle(effect, client, effectClient, priority);
1388        lStatus = handle->initCheck();
1389        if (lStatus == OK) {
1390            lStatus = effect->addHandle(handle.get());
1391        }
1392        if (enabled != NULL) {
1393            *enabled = (int)effect->isEnabled();
1394        }
1395    }
1396
1397Exit:
1398    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1399        Mutex::Autolock _l(mLock);
1400        if (effectCreated) {
1401            chain->removeEffect_l(effect);
1402        }
1403        if (effectRegistered) {
1404            AudioSystem::unregisterEffect(effect->id());
1405        }
1406        if (chainCreated) {
1407            removeEffectChain_l(chain);
1408        }
1409        handle.clear();
1410    }
1411
1412    *status = lStatus;
1413    return handle;
1414}
1415
1416sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1417        int effectId)
1418{
1419    Mutex::Autolock _l(mLock);
1420    return getEffect_l(sessionId, effectId);
1421}
1422
1423sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1424        int effectId)
1425{
1426    sp<EffectChain> chain = getEffectChain_l(sessionId);
1427    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1428}
1429
1430// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1431// PlaybackThread::mLock held
1432status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1433{
1434    // check for existing effect chain with the requested audio session
1435    audio_session_t sessionId = effect->sessionId();
1436    sp<EffectChain> chain = getEffectChain_l(sessionId);
1437    bool chainCreated = false;
1438
1439    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1440             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1441                    this, effect->desc().name, effect->desc().flags);
1442
1443    if (chain == 0) {
1444        // create a new chain for this session
1445        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1446        chain = new EffectChain(this, sessionId);
1447        addEffectChain_l(chain);
1448        chain->setStrategy(getStrategyForSession_l(sessionId));
1449        chainCreated = true;
1450    }
1451    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1452
1453    if (chain->getEffectFromId_l(effect->id()) != 0) {
1454        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1455                this, effect->desc().name, chain.get());
1456        return BAD_VALUE;
1457    }
1458
1459    effect->setOffloaded(mType == OFFLOAD, mId);
1460
1461    status_t status = chain->addEffect_l(effect);
1462    if (status != NO_ERROR) {
1463        if (chainCreated) {
1464            removeEffectChain_l(chain);
1465        }
1466        return status;
1467    }
1468
1469    effect->setDevice(mOutDevice);
1470    effect->setDevice(mInDevice);
1471    effect->setMode(mAudioFlinger->getMode());
1472    effect->setAudioSource(mAudioSource);
1473    return NO_ERROR;
1474}
1475
1476void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1477
1478    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1479    effect_descriptor_t desc = effect->desc();
1480    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1481        detachAuxEffect_l(effect->id());
1482    }
1483
1484    sp<EffectChain> chain = effect->chain().promote();
1485    if (chain != 0) {
1486        // remove effect chain if removing last effect
1487        if (chain->removeEffect_l(effect) == 0) {
1488            removeEffectChain_l(chain);
1489        }
1490    } else {
1491        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1492    }
1493}
1494
1495void AudioFlinger::ThreadBase::lockEffectChains_l(
1496        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1497{
1498    effectChains = mEffectChains;
1499    for (size_t i = 0; i < mEffectChains.size(); i++) {
1500        mEffectChains[i]->lock();
1501    }
1502}
1503
1504void AudioFlinger::ThreadBase::unlockEffectChains(
1505        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1506{
1507    for (size_t i = 0; i < effectChains.size(); i++) {
1508        effectChains[i]->unlock();
1509    }
1510}
1511
1512sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1513{
1514    Mutex::Autolock _l(mLock);
1515    return getEffectChain_l(sessionId);
1516}
1517
1518sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1519        const
1520{
1521    size_t size = mEffectChains.size();
1522    for (size_t i = 0; i < size; i++) {
1523        if (mEffectChains[i]->sessionId() == sessionId) {
1524            return mEffectChains[i];
1525        }
1526    }
1527    return 0;
1528}
1529
1530void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1531{
1532    Mutex::Autolock _l(mLock);
1533    size_t size = mEffectChains.size();
1534    for (size_t i = 0; i < size; i++) {
1535        mEffectChains[i]->setMode_l(mode);
1536    }
1537}
1538
1539void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1540{
1541    config->type = AUDIO_PORT_TYPE_MIX;
1542    config->ext.mix.handle = mId;
1543    config->sample_rate = mSampleRate;
1544    config->format = mFormat;
1545    config->channel_mask = mChannelMask;
1546    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1547                            AUDIO_PORT_CONFIG_FORMAT;
1548}
1549
1550void AudioFlinger::ThreadBase::systemReady()
1551{
1552    Mutex::Autolock _l(mLock);
1553    if (mSystemReady) {
1554        return;
1555    }
1556    mSystemReady = true;
1557
1558    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1559        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1560    }
1561    mPendingConfigEvents.clear();
1562}
1563
1564
1565// ----------------------------------------------------------------------------
1566//      Playback
1567// ----------------------------------------------------------------------------
1568
1569AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1570                                             AudioStreamOut* output,
1571                                             audio_io_handle_t id,
1572                                             audio_devices_t device,
1573                                             type_t type,
1574                                             bool systemReady,
1575                                             uint32_t bitRate)
1576    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1577        mNormalFrameCount(0), mSinkBuffer(NULL),
1578        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1579        mMixerBuffer(NULL),
1580        mMixerBufferSize(0),
1581        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1582        mMixerBufferValid(false),
1583        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1584        mEffectBuffer(NULL),
1585        mEffectBufferSize(0),
1586        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1587        mEffectBufferValid(false),
1588        mSuspended(0), mBytesWritten(0),
1589        mFramesWritten(0),
1590        mActiveTracksGeneration(0),
1591        // mStreamTypes[] initialized in constructor body
1592        mOutput(output),
1593        mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1594        mMixerStatus(MIXER_IDLE),
1595        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1596        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1597        mBytesRemaining(0),
1598        mCurrentWriteLength(0),
1599        mUseAsyncWrite(false),
1600        mWriteAckSequence(0),
1601        mDrainSequence(0),
1602        mSignalPending(false),
1603        mScreenState(AudioFlinger::mScreenState),
1604        // index 0 is reserved for normal mixer's submix
1605        mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1606        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1607{
1608    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1609    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1610
1611    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1612    // it would be safer to explicitly pass initial masterVolume/masterMute as
1613    // parameter.
1614    //
1615    // If the HAL we are using has support for master volume or master mute,
1616    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1617    // and the mute set to false).
1618    mMasterVolume = audioFlinger->masterVolume_l();
1619    mMasterMute = audioFlinger->masterMute_l();
1620    if (mOutput && mOutput->audioHwDev) {
1621        if (mOutput->audioHwDev->canSetMasterVolume()) {
1622            mMasterVolume = 1.0;
1623        }
1624
1625        if (mOutput->audioHwDev->canSetMasterMute()) {
1626            mMasterMute = false;
1627        }
1628    }
1629
1630    readOutputParameters_l();
1631
1632    // ++ operator does not compile
1633    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1634            stream = (audio_stream_type_t) (stream + 1)) {
1635        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1636        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1637    }
1638
1639    if (audio_has_proportional_frames(mFormat)) {
1640        mBufferDurationUs = (uint32_t)((mNormalFrameCount * 1000000LL) / mSampleRate);
1641    } else {
1642        bitRate = bitRate != 0 ? bitRate : kOffloadDefaultBitRateBps;
1643        mBufferDurationUs = (uint32_t)((mBufferSize * 8 * 1000000LL) / bitRate);
1644    }
1645}
1646
1647AudioFlinger::PlaybackThread::~PlaybackThread()
1648{
1649    mAudioFlinger->unregisterWriter(mNBLogWriter);
1650    free(mSinkBuffer);
1651    free(mMixerBuffer);
1652    free(mEffectBuffer);
1653}
1654
1655void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1656{
1657    dumpInternals(fd, args);
1658    dumpTracks(fd, args);
1659    dumpEffectChains(fd, args);
1660}
1661
1662void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1663{
1664    const size_t SIZE = 256;
1665    char buffer[SIZE];
1666    String8 result;
1667
1668    result.appendFormat("  Stream volumes in dB: ");
1669    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1670        const stream_type_t *st = &mStreamTypes[i];
1671        if (i > 0) {
1672            result.appendFormat(", ");
1673        }
1674        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1675        if (st->mute) {
1676            result.append("M");
1677        }
1678    }
1679    result.append("\n");
1680    write(fd, result.string(), result.length());
1681    result.clear();
1682
1683    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1684    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1685    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1686            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1687
1688    size_t numtracks = mTracks.size();
1689    size_t numactive = mActiveTracks.size();
1690    dprintf(fd, "  %d Tracks", numtracks);
1691    size_t numactiveseen = 0;
1692    if (numtracks) {
1693        dprintf(fd, " of which %d are active\n", numactive);
1694        Track::appendDumpHeader(result);
1695        for (size_t i = 0; i < numtracks; ++i) {
1696            sp<Track> track = mTracks[i];
1697            if (track != 0) {
1698                bool active = mActiveTracks.indexOf(track) >= 0;
1699                if (active) {
1700                    numactiveseen++;
1701                }
1702                track->dump(buffer, SIZE, active);
1703                result.append(buffer);
1704            }
1705        }
1706    } else {
1707        result.append("\n");
1708    }
1709    if (numactiveseen != numactive) {
1710        // some tracks in the active list were not in the tracks list
1711        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1712                " not in the track list\n");
1713        result.append(buffer);
1714        Track::appendDumpHeader(result);
1715        for (size_t i = 0; i < numactive; ++i) {
1716            sp<Track> track = mActiveTracks[i].promote();
1717            if (track != 0 && mTracks.indexOf(track) < 0) {
1718                track->dump(buffer, SIZE, true);
1719                result.append(buffer);
1720            }
1721        }
1722    }
1723
1724    write(fd, result.string(), result.size());
1725}
1726
1727void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1728{
1729    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1730
1731    dumpBase(fd, args);
1732
1733    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1734    dprintf(fd, "  Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime));
1735    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1736    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1737    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1738    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1739    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1740    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1741    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1742    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1743    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1744    AudioStreamOut *output = mOutput;
1745    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1746    String8 flagsAsString = outputFlagsToString(flags);
1747    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1748}
1749
1750// Thread virtuals
1751
1752void AudioFlinger::PlaybackThread::onFirstRef()
1753{
1754    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1755}
1756
1757// ThreadBase virtuals
1758void AudioFlinger::PlaybackThread::preExit()
1759{
1760    ALOGV("  preExit()");
1761    // FIXME this is using hard-coded strings but in the future, this functionality will be
1762    //       converted to use audio HAL extensions required to support tunneling
1763    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1764}
1765
1766// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1767sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1768        const sp<AudioFlinger::Client>& client,
1769        audio_stream_type_t streamType,
1770        uint32_t sampleRate,
1771        audio_format_t format,
1772        audio_channel_mask_t channelMask,
1773        size_t *pFrameCount,
1774        const sp<IMemory>& sharedBuffer,
1775        audio_session_t sessionId,
1776        IAudioFlinger::track_flags_t *flags,
1777        pid_t tid,
1778        int uid,
1779        status_t *status)
1780{
1781    size_t frameCount = *pFrameCount;
1782    sp<Track> track;
1783    status_t lStatus;
1784
1785    // client expresses a preference for FAST, but we get the final say
1786    if (*flags & IAudioFlinger::TRACK_FAST) {
1787      if (
1788            // either of these use cases:
1789            (
1790              // use case 1: shared buffer with any frame count
1791              (
1792                (sharedBuffer != 0)
1793              ) ||
1794              // use case 2: frame count is default or at least as large as HAL
1795              (
1796                // we formerly checked for a callback handler (non-0 tid),
1797                // but that is no longer required for TRANSFER_OBTAIN mode
1798                ((frameCount == 0) ||
1799                (frameCount >= mFrameCount))
1800              )
1801            ) &&
1802            // PCM data
1803            audio_is_linear_pcm(format) &&
1804            // TODO: extract as a data library function that checks that a computationally
1805            // expensive downmixer is not required: isFastOutputChannelConversion()
1806            (channelMask == mChannelMask ||
1807                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1808                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1809                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1810            // hardware sample rate
1811            (sampleRate == mSampleRate) &&
1812            // normal mixer has an associated fast mixer
1813            hasFastMixer() &&
1814            // there are sufficient fast track slots available
1815            (mFastTrackAvailMask != 0)
1816            // FIXME test that MixerThread for this fast track has a capable output HAL
1817            // FIXME add a permission test also?
1818        ) {
1819        // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1820        if (frameCount == 0) {
1821            // read the fast track multiplier property the first time it is needed
1822            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1823            if (ok != 0) {
1824                ALOGE("%s pthread_once failed: %d", __func__, ok);
1825            }
1826            frameCount = mFrameCount * sFastTrackMultiplier;
1827        }
1828        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1829                frameCount, mFrameCount);
1830      } else {
1831        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%d "
1832                "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1833                "sampleRate=%u mSampleRate=%u "
1834                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1835                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1836                audio_is_linear_pcm(format),
1837                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1838        *flags &= ~IAudioFlinger::TRACK_FAST;
1839      }
1840    }
1841    // For normal PCM streaming tracks, update minimum frame count.
1842    // For compatibility with AudioTrack calculation, buffer depth is forced
1843    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1844    // This is probably too conservative, but legacy application code may depend on it.
1845    // If you change this calculation, also review the start threshold which is related.
1846    if (!(*flags & IAudioFlinger::TRACK_FAST)
1847            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1848        // this must match AudioTrack.cpp calculateMinFrameCount().
1849        // TODO: Move to a common library
1850        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1851        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1852        if (minBufCount < 2) {
1853            minBufCount = 2;
1854        }
1855        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1856        // or the client should compute and pass in a larger buffer request.
1857        size_t minFrameCount =
1858                minBufCount * sourceFramesNeededWithTimestretch(
1859                        sampleRate, mNormalFrameCount,
1860                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1861        if (frameCount < minFrameCount) { // including frameCount == 0
1862            frameCount = minFrameCount;
1863        }
1864    }
1865    *pFrameCount = frameCount;
1866
1867    switch (mType) {
1868
1869    case DIRECT:
1870        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1871            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1872                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1873                        "for output %p with format %#x",
1874                        sampleRate, format, channelMask, mOutput, mFormat);
1875                lStatus = BAD_VALUE;
1876                goto Exit;
1877            }
1878        }
1879        break;
1880
1881    case OFFLOAD:
1882        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1883            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1884                    "for output %p with format %#x",
1885                    sampleRate, format, channelMask, mOutput, mFormat);
1886            lStatus = BAD_VALUE;
1887            goto Exit;
1888        }
1889        break;
1890
1891    default:
1892        if (!audio_is_linear_pcm(format)) {
1893                ALOGE("createTrack_l() Bad parameter: format %#x \""
1894                        "for output %p with format %#x",
1895                        format, mOutput, mFormat);
1896                lStatus = BAD_VALUE;
1897                goto Exit;
1898        }
1899        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1900            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1901            lStatus = BAD_VALUE;
1902            goto Exit;
1903        }
1904        break;
1905
1906    }
1907
1908    lStatus = initCheck();
1909    if (lStatus != NO_ERROR) {
1910        ALOGE("createTrack_l() audio driver not initialized");
1911        goto Exit;
1912    }
1913
1914    { // scope for mLock
1915        Mutex::Autolock _l(mLock);
1916
1917        // all tracks in same audio session must share the same routing strategy otherwise
1918        // conflicts will happen when tracks are moved from one output to another by audio policy
1919        // manager
1920        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1921        for (size_t i = 0; i < mTracks.size(); ++i) {
1922            sp<Track> t = mTracks[i];
1923            if (t != 0 && t->isExternalTrack()) {
1924                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1925                if (sessionId == t->sessionId() && strategy != actual) {
1926                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1927                            strategy, actual);
1928                    lStatus = BAD_VALUE;
1929                    goto Exit;
1930                }
1931            }
1932        }
1933
1934        track = new Track(this, client, streamType, sampleRate, format,
1935                          channelMask, frameCount, NULL, sharedBuffer,
1936                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1937
1938        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1939        if (lStatus != NO_ERROR) {
1940            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1941            // track must be cleared from the caller as the caller has the AF lock
1942            goto Exit;
1943        }
1944        mTracks.add(track);
1945
1946        sp<EffectChain> chain = getEffectChain_l(sessionId);
1947        if (chain != 0) {
1948            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1949            track->setMainBuffer(chain->inBuffer());
1950            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1951            chain->incTrackCnt();
1952        }
1953
1954        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1955            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1956            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1957            // so ask activity manager to do this on our behalf
1958            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1959        }
1960    }
1961
1962    lStatus = NO_ERROR;
1963
1964Exit:
1965    *status = lStatus;
1966    return track;
1967}
1968
1969uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1970{
1971    return latency;
1972}
1973
1974uint32_t AudioFlinger::PlaybackThread::latency() const
1975{
1976    Mutex::Autolock _l(mLock);
1977    return latency_l();
1978}
1979uint32_t AudioFlinger::PlaybackThread::latency_l() const
1980{
1981    if (initCheck() == NO_ERROR) {
1982        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1983    } else {
1984        return 0;
1985    }
1986}
1987
1988void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1989{
1990    Mutex::Autolock _l(mLock);
1991    // Don't apply master volume in SW if our HAL can do it for us.
1992    if (mOutput && mOutput->audioHwDev &&
1993        mOutput->audioHwDev->canSetMasterVolume()) {
1994        mMasterVolume = 1.0;
1995    } else {
1996        mMasterVolume = value;
1997    }
1998}
1999
2000void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2001{
2002    Mutex::Autolock _l(mLock);
2003    // Don't apply master mute in SW if our HAL can do it for us.
2004    if (mOutput && mOutput->audioHwDev &&
2005        mOutput->audioHwDev->canSetMasterMute()) {
2006        mMasterMute = false;
2007    } else {
2008        mMasterMute = muted;
2009    }
2010}
2011
2012void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2013{
2014    Mutex::Autolock _l(mLock);
2015    mStreamTypes[stream].volume = value;
2016    broadcast_l();
2017}
2018
2019void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2020{
2021    Mutex::Autolock _l(mLock);
2022    mStreamTypes[stream].mute = muted;
2023    broadcast_l();
2024}
2025
2026float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2027{
2028    Mutex::Autolock _l(mLock);
2029    return mStreamTypes[stream].volume;
2030}
2031
2032// addTrack_l() must be called with ThreadBase::mLock held
2033status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2034{
2035    status_t status = ALREADY_EXISTS;
2036
2037    if (mActiveTracks.indexOf(track) < 0) {
2038        // the track is newly added, make sure it fills up all its
2039        // buffers before playing. This is to ensure the client will
2040        // effectively get the latency it requested.
2041        if (track->isExternalTrack()) {
2042            TrackBase::track_state state = track->mState;
2043            mLock.unlock();
2044            status = AudioSystem::startOutput(mId, track->streamType(),
2045                                              track->sessionId());
2046            mLock.lock();
2047            // abort track was stopped/paused while we released the lock
2048            if (state != track->mState) {
2049                if (status == NO_ERROR) {
2050                    mLock.unlock();
2051                    AudioSystem::stopOutput(mId, track->streamType(),
2052                                            track->sessionId());
2053                    mLock.lock();
2054                }
2055                return INVALID_OPERATION;
2056            }
2057            // abort if start is rejected by audio policy manager
2058            if (status != NO_ERROR) {
2059                return PERMISSION_DENIED;
2060            }
2061#ifdef ADD_BATTERY_DATA
2062            // to track the speaker usage
2063            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2064#endif
2065        }
2066
2067        // set retry count for buffer fill
2068        if (track->isOffloaded()) {
2069            track->mRetryCount = kMaxTrackStartupRetriesOffload;
2070        } else {
2071            track->mRetryCount = kMaxTrackStartupRetries;
2072        }
2073
2074        track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2075        track->mResetDone = false;
2076        track->mPresentationCompleteFrames = 0;
2077        mActiveTracks.add(track);
2078        mWakeLockUids.add(track->uid());
2079        mActiveTracksGeneration++;
2080        mLatestActiveTrack = track;
2081        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2082        if (chain != 0) {
2083            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2084                    track->sessionId());
2085            chain->incActiveTrackCnt();
2086        }
2087
2088        status = NO_ERROR;
2089    }
2090
2091    onAddNewTrack_l();
2092    return status;
2093}
2094
2095bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2096{
2097    track->terminate();
2098    // active tracks are removed by threadLoop()
2099    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2100    track->mState = TrackBase::STOPPED;
2101    if (!trackActive) {
2102        removeTrack_l(track);
2103    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2104        track->mState = TrackBase::STOPPING_1;
2105    }
2106
2107    return trackActive;
2108}
2109
2110void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2111{
2112    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2113    mTracks.remove(track);
2114    deleteTrackName_l(track->name());
2115    // redundant as track is about to be destroyed, for dumpsys only
2116    track->mName = -1;
2117    if (track->isFastTrack()) {
2118        int index = track->mFastIndex;
2119        ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
2120        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2121        mFastTrackAvailMask |= 1 << index;
2122        // redundant as track is about to be destroyed, for dumpsys only
2123        track->mFastIndex = -1;
2124    }
2125    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2126    if (chain != 0) {
2127        chain->decTrackCnt();
2128    }
2129}
2130
2131void AudioFlinger::PlaybackThread::broadcast_l()
2132{
2133    // Thread could be blocked waiting for async
2134    // so signal it to handle state changes immediately
2135    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2136    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2137    mSignalPending = true;
2138    mWaitWorkCV.broadcast();
2139}
2140
2141String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2142{
2143    Mutex::Autolock _l(mLock);
2144    if (initCheck() != NO_ERROR) {
2145        return String8();
2146    }
2147
2148    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2149    const String8 out_s8(s);
2150    free(s);
2151    return out_s8;
2152}
2153
2154void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2155    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2156    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2157
2158    desc->mIoHandle = mId;
2159
2160    switch (event) {
2161    case AUDIO_OUTPUT_OPENED:
2162    case AUDIO_OUTPUT_CONFIG_CHANGED:
2163        desc->mPatch = mPatch;
2164        desc->mChannelMask = mChannelMask;
2165        desc->mSamplingRate = mSampleRate;
2166        desc->mFormat = mFormat;
2167        desc->mFrameCount = mNormalFrameCount; // FIXME see
2168                                             // AudioFlinger::frameCount(audio_io_handle_t)
2169        desc->mLatency = latency_l();
2170        break;
2171
2172    case AUDIO_OUTPUT_CLOSED:
2173    default:
2174        break;
2175    }
2176    mAudioFlinger->ioConfigChanged(event, desc, pid);
2177}
2178
2179void AudioFlinger::PlaybackThread::writeCallback()
2180{
2181    ALOG_ASSERT(mCallbackThread != 0);
2182    mCallbackThread->resetWriteBlocked();
2183}
2184
2185void AudioFlinger::PlaybackThread::drainCallback()
2186{
2187    ALOG_ASSERT(mCallbackThread != 0);
2188    mCallbackThread->resetDraining();
2189}
2190
2191void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2192{
2193    Mutex::Autolock _l(mLock);
2194    // reject out of sequence requests
2195    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2196        mWriteAckSequence &= ~1;
2197        mWaitWorkCV.signal();
2198    }
2199}
2200
2201void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2202{
2203    Mutex::Autolock _l(mLock);
2204    // reject out of sequence requests
2205    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2206        mDrainSequence &= ~1;
2207        mWaitWorkCV.signal();
2208    }
2209}
2210
2211// static
2212int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2213                                                void *param __unused,
2214                                                void *cookie)
2215{
2216    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2217    ALOGV("asyncCallback() event %d", event);
2218    switch (event) {
2219    case STREAM_CBK_EVENT_WRITE_READY:
2220        me->writeCallback();
2221        break;
2222    case STREAM_CBK_EVENT_DRAIN_READY:
2223        me->drainCallback();
2224        break;
2225    default:
2226        ALOGW("asyncCallback() unknown event %d", event);
2227        break;
2228    }
2229    return 0;
2230}
2231
2232void AudioFlinger::PlaybackThread::readOutputParameters_l()
2233{
2234    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2235    mSampleRate = mOutput->getSampleRate();
2236    mChannelMask = mOutput->getChannelMask();
2237    if (!audio_is_output_channel(mChannelMask)) {
2238        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2239    }
2240    if ((mType == MIXER || mType == DUPLICATING)
2241            && !isValidPcmSinkChannelMask(mChannelMask)) {
2242        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2243                mChannelMask);
2244    }
2245    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2246
2247    // Get actual HAL format.
2248    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2249    // Get format from the shim, which will be different than the HAL format
2250    // if playing compressed audio over HDMI passthrough.
2251    mFormat = mOutput->getFormat();
2252    if (!audio_is_valid_format(mFormat)) {
2253        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2254    }
2255    if ((mType == MIXER || mType == DUPLICATING)
2256            && !isValidPcmSinkFormat(mFormat)) {
2257        LOG_FATAL("HAL format %#x not supported for mixed output",
2258                mFormat);
2259    }
2260    mFrameSize = mOutput->getFrameSize();
2261    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2262    mFrameCount = mBufferSize / mFrameSize;
2263    if (mFrameCount & 15) {
2264        ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
2265                mFrameCount);
2266    }
2267
2268    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2269            (mOutput->stream->set_callback != NULL)) {
2270        if (mOutput->stream->set_callback(mOutput->stream,
2271                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2272            mUseAsyncWrite = true;
2273            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2274        }
2275    }
2276
2277    mHwSupportsPause = false;
2278    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2279        if (mOutput->stream->pause != NULL) {
2280            if (mOutput->stream->resume != NULL) {
2281                mHwSupportsPause = true;
2282            } else {
2283                ALOGW("direct output implements pause but not resume");
2284            }
2285        } else if (mOutput->stream->resume != NULL) {
2286            ALOGW("direct output implements resume but not pause");
2287        }
2288    }
2289    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2290        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2291    }
2292
2293    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2294        // For best precision, we use float instead of the associated output
2295        // device format (typically PCM 16 bit).
2296
2297        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2298        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2299        mBufferSize = mFrameSize * mFrameCount;
2300
2301        // TODO: We currently use the associated output device channel mask and sample rate.
2302        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2303        // (if a valid mask) to avoid premature downmix.
2304        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2305        // instead of the output device sample rate to avoid loss of high frequency information.
2306        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2307    }
2308
2309    // Calculate size of normal sink buffer relative to the HAL output buffer size
2310    double multiplier = 1.0;
2311    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2312            kUseFastMixer == FastMixer_Dynamic)) {
2313        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2314        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2315        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2316        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2317        maxNormalFrameCount = maxNormalFrameCount & ~15;
2318        if (maxNormalFrameCount < minNormalFrameCount) {
2319            maxNormalFrameCount = minNormalFrameCount;
2320        }
2321        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2322        if (multiplier <= 1.0) {
2323            multiplier = 1.0;
2324        } else if (multiplier <= 2.0) {
2325            if (2 * mFrameCount <= maxNormalFrameCount) {
2326                multiplier = 2.0;
2327            } else {
2328                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2329            }
2330        } else {
2331            // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
2332            // SRC (it would be unusual for the normal sink buffer size to not be a multiple of fast
2333            // track, but we sometimes have to do this to satisfy the maximum frame count
2334            // constraint)
2335            // FIXME this rounding up should not be done if no HAL SRC
2336            uint32_t truncMult = (uint32_t) multiplier;
2337            if ((truncMult & 1)) {
2338                if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
2339                    ++truncMult;
2340                }
2341            }
2342            multiplier = (double) truncMult;
2343        }
2344    }
2345    mNormalFrameCount = multiplier * mFrameCount;
2346    // round up to nearest 16 frames to satisfy AudioMixer
2347    if (mType == MIXER || mType == DUPLICATING) {
2348        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2349    }
2350    ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount,
2351            mNormalFrameCount);
2352
2353    // Check if we want to throttle the processing to no more than 2x normal rate
2354    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2355    mThreadThrottleTimeMs = 0;
2356    mThreadThrottleEndMs = 0;
2357    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2358
2359    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2360    // Originally this was int16_t[] array, need to remove legacy implications.
2361    free(mSinkBuffer);
2362    mSinkBuffer = NULL;
2363    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2364    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2365    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2366    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2367
2368    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2369    // drives the output.
2370    free(mMixerBuffer);
2371    mMixerBuffer = NULL;
2372    if (mMixerBufferEnabled) {
2373        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2374        mMixerBufferSize = mNormalFrameCount * mChannelCount
2375                * audio_bytes_per_sample(mMixerBufferFormat);
2376        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2377    }
2378    free(mEffectBuffer);
2379    mEffectBuffer = NULL;
2380    if (mEffectBufferEnabled) {
2381        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2382        mEffectBufferSize = mNormalFrameCount * mChannelCount
2383                * audio_bytes_per_sample(mEffectBufferFormat);
2384        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2385    }
2386
2387    // force reconfiguration of effect chains and engines to take new buffer size and audio
2388    // parameters into account
2389    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2390    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2391    // matter.
2392    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2393    Vector< sp<EffectChain> > effectChains = mEffectChains;
2394    for (size_t i = 0; i < effectChains.size(); i ++) {
2395        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2396    }
2397}
2398
2399
2400status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2401{
2402    if (halFrames == NULL || dspFrames == NULL) {
2403        return BAD_VALUE;
2404    }
2405    Mutex::Autolock _l(mLock);
2406    if (initCheck() != NO_ERROR) {
2407        return INVALID_OPERATION;
2408    }
2409    int64_t framesWritten = mBytesWritten / mFrameSize;
2410    *halFrames = framesWritten;
2411
2412    if (isSuspended()) {
2413        // return an estimation of rendered frames when the output is suspended
2414        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2415        *dspFrames = (uint32_t)
2416                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2417        return NO_ERROR;
2418    } else {
2419        status_t status;
2420        uint32_t frames;
2421        status = mOutput->getRenderPosition(&frames);
2422        *dspFrames = (size_t)frames;
2423        return status;
2424    }
2425}
2426
2427uint32_t AudioFlinger::PlaybackThread::hasAudioSession(audio_session_t sessionId) const
2428{
2429    Mutex::Autolock _l(mLock);
2430    uint32_t result = 0;
2431    if (getEffectChain_l(sessionId) != 0) {
2432        result = EFFECT_SESSION;
2433    }
2434
2435    for (size_t i = 0; i < mTracks.size(); ++i) {
2436        sp<Track> track = mTracks[i];
2437        if (sessionId == track->sessionId() && !track->isInvalid()) {
2438            result |= TRACK_SESSION;
2439            break;
2440        }
2441    }
2442
2443    return result;
2444}
2445
2446uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2447{
2448    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2449    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2450    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2451        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2452    }
2453    for (size_t i = 0; i < mTracks.size(); i++) {
2454        sp<Track> track = mTracks[i];
2455        if (sessionId == track->sessionId() && !track->isInvalid()) {
2456            return AudioSystem::getStrategyForStream(track->streamType());
2457        }
2458    }
2459    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2460}
2461
2462
2463AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2464{
2465    Mutex::Autolock _l(mLock);
2466    return mOutput;
2467}
2468
2469AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2470{
2471    Mutex::Autolock _l(mLock);
2472    AudioStreamOut *output = mOutput;
2473    mOutput = NULL;
2474    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2475    //       must push a NULL and wait for ack
2476    mOutputSink.clear();
2477    mPipeSink.clear();
2478    mNormalSink.clear();
2479    return output;
2480}
2481
2482// this method must always be called either with ThreadBase mLock held or inside the thread loop
2483audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2484{
2485    if (mOutput == NULL) {
2486        return NULL;
2487    }
2488    return &mOutput->stream->common;
2489}
2490
2491uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2492{
2493    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2494}
2495
2496status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2497{
2498    if (!isValidSyncEvent(event)) {
2499        return BAD_VALUE;
2500    }
2501
2502    Mutex::Autolock _l(mLock);
2503
2504    for (size_t i = 0; i < mTracks.size(); ++i) {
2505        sp<Track> track = mTracks[i];
2506        if (event->triggerSession() == track->sessionId()) {
2507            (void) track->setSyncEvent(event);
2508            return NO_ERROR;
2509        }
2510    }
2511
2512    return NAME_NOT_FOUND;
2513}
2514
2515bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2516{
2517    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2518}
2519
2520void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2521        const Vector< sp<Track> >& tracksToRemove)
2522{
2523    size_t count = tracksToRemove.size();
2524    if (count > 0) {
2525        for (size_t i = 0 ; i < count ; i++) {
2526            const sp<Track>& track = tracksToRemove.itemAt(i);
2527            if (track->isExternalTrack()) {
2528                AudioSystem::stopOutput(mId, track->streamType(),
2529                                        track->sessionId());
2530#ifdef ADD_BATTERY_DATA
2531                // to track the speaker usage
2532                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2533#endif
2534                if (track->isTerminated()) {
2535                    AudioSystem::releaseOutput(mId, track->streamType(),
2536                                               track->sessionId());
2537                }
2538            }
2539        }
2540    }
2541}
2542
2543void AudioFlinger::PlaybackThread::checkSilentMode_l()
2544{
2545    if (!mMasterMute) {
2546        char value[PROPERTY_VALUE_MAX];
2547        if (property_get("ro.audio.silent", value, "0") > 0) {
2548            char *endptr;
2549            unsigned long ul = strtoul(value, &endptr, 0);
2550            if (*endptr == '\0' && ul != 0) {
2551                ALOGD("Silence is golden");
2552                // The setprop command will not allow a property to be changed after
2553                // the first time it is set, so we don't have to worry about un-muting.
2554                setMasterMute_l(true);
2555            }
2556        }
2557    }
2558}
2559
2560// shared by MIXER and DIRECT, overridden by DUPLICATING
2561ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2562{
2563    // FIXME rewrite to reduce number of system calls
2564    mLastWriteTime = systemTime();
2565    mInWrite = true;
2566    ssize_t bytesWritten;
2567    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2568
2569    // If an NBAIO sink is present, use it to write the normal mixer's submix
2570    if (mNormalSink != 0) {
2571
2572        const size_t count = mBytesRemaining / mFrameSize;
2573
2574        ATRACE_BEGIN("write");
2575        // update the setpoint when AudioFlinger::mScreenState changes
2576        uint32_t screenState = AudioFlinger::mScreenState;
2577        if (screenState != mScreenState) {
2578            mScreenState = screenState;
2579            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2580            if (pipe != NULL) {
2581                pipe->setAvgFrames((mScreenState & 1) ?
2582                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2583            }
2584        }
2585        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2586        ATRACE_END();
2587        if (framesWritten > 0) {
2588            bytesWritten = framesWritten * mFrameSize;
2589        } else {
2590            bytesWritten = framesWritten;
2591        }
2592    // otherwise use the HAL / AudioStreamOut directly
2593    } else {
2594        // Direct output and offload threads
2595
2596        if (mUseAsyncWrite) {
2597            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2598            mWriteAckSequence += 2;
2599            mWriteAckSequence |= 1;
2600            ALOG_ASSERT(mCallbackThread != 0);
2601            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2602        }
2603        // FIXME We should have an implementation of timestamps for direct output threads.
2604        // They are used e.g for multichannel PCM playback over HDMI.
2605        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2606
2607        if (mUseAsyncWrite &&
2608                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2609            // do not wait for async callback in case of error of full write
2610            mWriteAckSequence &= ~1;
2611            ALOG_ASSERT(mCallbackThread != 0);
2612            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2613        }
2614    }
2615
2616    mNumWrites++;
2617    mInWrite = false;
2618    mStandby = false;
2619    return bytesWritten;
2620}
2621
2622void AudioFlinger::PlaybackThread::threadLoop_drain()
2623{
2624    if (mOutput->stream->drain) {
2625        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2626        if (mUseAsyncWrite) {
2627            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2628            mDrainSequence |= 1;
2629            ALOG_ASSERT(mCallbackThread != 0);
2630            mCallbackThread->setDraining(mDrainSequence);
2631        }
2632        mOutput->stream->drain(mOutput->stream,
2633            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2634                                                : AUDIO_DRAIN_ALL);
2635    }
2636}
2637
2638void AudioFlinger::PlaybackThread::threadLoop_exit()
2639{
2640    {
2641        Mutex::Autolock _l(mLock);
2642        for (size_t i = 0; i < mTracks.size(); i++) {
2643            sp<Track> track = mTracks[i];
2644            track->invalidate();
2645        }
2646    }
2647}
2648
2649/*
2650The derived values that are cached:
2651 - mSinkBufferSize from frame count * frame size
2652 - mActiveSleepTimeUs from activeSleepTimeUs()
2653 - mIdleSleepTimeUs from idleSleepTimeUs()
2654 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2655   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2656 - maxPeriod from frame count and sample rate (MIXER only)
2657
2658The parameters that affect these derived values are:
2659 - frame count
2660 - frame size
2661 - sample rate
2662 - device type: A2DP or not
2663 - device latency
2664 - format: PCM or not
2665 - active sleep time
2666 - idle sleep time
2667*/
2668
2669void AudioFlinger::PlaybackThread::cacheParameters_l()
2670{
2671    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2672    mActiveSleepTimeUs = activeSleepTimeUs();
2673    mIdleSleepTimeUs = idleSleepTimeUs();
2674
2675    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2676    // truncating audio when going to standby.
2677    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2678    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2679        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2680            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2681        }
2682    }
2683}
2684
2685void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2686{
2687    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
2688            this,  streamType, mTracks.size());
2689    Mutex::Autolock _l(mLock);
2690
2691    size_t size = mTracks.size();
2692    for (size_t i = 0; i < size; i++) {
2693        sp<Track> t = mTracks[i];
2694        if (t->streamType() == streamType && t->isExternalTrack()) {
2695            t->invalidate();
2696        }
2697    }
2698}
2699
2700status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2701{
2702    audio_session_t session = chain->sessionId();
2703    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2704            ? mEffectBuffer : mSinkBuffer);
2705    bool ownsBuffer = false;
2706
2707    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2708    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2709        // Only one effect chain can be present in direct output thread and it uses
2710        // the sink buffer as input
2711        if (mType != DIRECT) {
2712            size_t numSamples = mNormalFrameCount * mChannelCount;
2713            buffer = new int16_t[numSamples];
2714            memset(buffer, 0, numSamples * sizeof(int16_t));
2715            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2716            ownsBuffer = true;
2717        }
2718
2719        // Attach all tracks with same session ID to this chain.
2720        for (size_t i = 0; i < mTracks.size(); ++i) {
2721            sp<Track> track = mTracks[i];
2722            if (session == track->sessionId()) {
2723                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2724                        buffer);
2725                track->setMainBuffer(buffer);
2726                chain->incTrackCnt();
2727            }
2728        }
2729
2730        // indicate all active tracks in the chain
2731        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2732            sp<Track> track = mActiveTracks[i].promote();
2733            if (track == 0) {
2734                continue;
2735            }
2736            if (session == track->sessionId()) {
2737                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2738                chain->incActiveTrackCnt();
2739            }
2740        }
2741    }
2742    chain->setThread(this);
2743    chain->setInBuffer(buffer, ownsBuffer);
2744    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2745            ? mEffectBuffer : mSinkBuffer));
2746    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2747    // chains list in order to be processed last as it contains output stage effects.
2748    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2749    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2750    // after track specific effects and before output stage.
2751    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2752    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2753    // Effect chain for other sessions are inserted at beginning of effect
2754    // chains list to be processed before output mix effects. Relative order between other
2755    // sessions is not important.
2756    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2757            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2758            "audio_session_t constants misdefined");
2759    size_t size = mEffectChains.size();
2760    size_t i = 0;
2761    for (i = 0; i < size; i++) {
2762        if (mEffectChains[i]->sessionId() < session) {
2763            break;
2764        }
2765    }
2766    mEffectChains.insertAt(chain, i);
2767    checkSuspendOnAddEffectChain_l(chain);
2768
2769    return NO_ERROR;
2770}
2771
2772size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2773{
2774    audio_session_t session = chain->sessionId();
2775
2776    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2777
2778    for (size_t i = 0; i < mEffectChains.size(); i++) {
2779        if (chain == mEffectChains[i]) {
2780            mEffectChains.removeAt(i);
2781            // detach all active tracks from the chain
2782            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2783                sp<Track> track = mActiveTracks[i].promote();
2784                if (track == 0) {
2785                    continue;
2786                }
2787                if (session == track->sessionId()) {
2788                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2789                            chain.get(), session);
2790                    chain->decActiveTrackCnt();
2791                }
2792            }
2793
2794            // detach all tracks with same session ID from this chain
2795            for (size_t i = 0; i < mTracks.size(); ++i) {
2796                sp<Track> track = mTracks[i];
2797                if (session == track->sessionId()) {
2798                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2799                    chain->decTrackCnt();
2800                }
2801            }
2802            break;
2803        }
2804    }
2805    return mEffectChains.size();
2806}
2807
2808status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2809        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2810{
2811    Mutex::Autolock _l(mLock);
2812    return attachAuxEffect_l(track, EffectId);
2813}
2814
2815status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2816        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2817{
2818    status_t status = NO_ERROR;
2819
2820    if (EffectId == 0) {
2821        track->setAuxBuffer(0, NULL);
2822    } else {
2823        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2824        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2825        if (effect != 0) {
2826            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2827                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2828            } else {
2829                status = INVALID_OPERATION;
2830            }
2831        } else {
2832            status = BAD_VALUE;
2833        }
2834    }
2835    return status;
2836}
2837
2838void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2839{
2840    for (size_t i = 0; i < mTracks.size(); ++i) {
2841        sp<Track> track = mTracks[i];
2842        if (track->auxEffectId() == effectId) {
2843            attachAuxEffect_l(track, 0);
2844        }
2845    }
2846}
2847
2848bool AudioFlinger::PlaybackThread::threadLoop()
2849{
2850    Vector< sp<Track> > tracksToRemove;
2851
2852    mStandbyTimeNs = systemTime();
2853
2854    // MIXER
2855    nsecs_t lastWarning = 0;
2856
2857    // DUPLICATING
2858    // FIXME could this be made local to while loop?
2859    writeFrames = 0;
2860
2861    int lastGeneration = 0;
2862
2863    cacheParameters_l();
2864    mSleepTimeUs = mIdleSleepTimeUs;
2865
2866    if (mType == MIXER) {
2867        sleepTimeShift = 0;
2868    }
2869
2870    CpuStats cpuStats;
2871    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2872
2873    acquireWakeLock();
2874
2875    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2876    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2877    // and then that string will be logged at the next convenient opportunity.
2878    const char *logString = NULL;
2879
2880    checkSilentMode_l();
2881
2882    while (!exitPending())
2883    {
2884        cpuStats.sample(myName);
2885
2886        Vector< sp<EffectChain> > effectChains;
2887
2888        { // scope for mLock
2889
2890            Mutex::Autolock _l(mLock);
2891
2892            processConfigEvents_l();
2893
2894            if (logString != NULL) {
2895                mNBLogWriter->logTimestamp();
2896                mNBLogWriter->log(logString);
2897                logString = NULL;
2898            }
2899
2900            // Gather the framesReleased counters for all active tracks,
2901            // and associate with the sink frames written out.  We need
2902            // this to convert the sink timestamp to the track timestamp.
2903            if (mNormalSink != 0) {
2904                // Note: The DuplicatingThread may not have a mNormalSink.
2905                // We always fetch the timestamp here because often the downstream
2906                // sink will block whie writing.
2907                ExtendedTimestamp timestamp; // use private copy to fetch
2908                (void) mNormalSink->getTimestamp(timestamp);
2909                // copy over kernel info
2910                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
2911                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
2912                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
2913                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
2914            }
2915            // mFramesWritten for non-offloaded tracks are contiguous
2916            // even after standby() is called. This is useful for the track frame
2917            // to sink frame mapping.
2918            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
2919            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
2920            const size_t size = mActiveTracks.size();
2921            for (size_t i = 0; i < size; ++i) {
2922                sp<Track> t = mActiveTracks[i].promote();
2923                if (t != 0 && !t->isFastTrack()) {
2924                    t->updateTrackFrameInfo(
2925                            t->mAudioTrackServerProxy->framesReleased(),
2926                            mFramesWritten,
2927                            mTimestamp);
2928                }
2929            }
2930
2931            saveOutputTracks();
2932            if (mSignalPending) {
2933                // A signal was raised while we were unlocked
2934                mSignalPending = false;
2935            } else if (waitingAsyncCallback_l()) {
2936                if (exitPending()) {
2937                    break;
2938                }
2939                bool released = false;
2940                // The following works around a bug in the offload driver. Ideally we would release
2941                // the wake lock every time, but that causes the last offload buffer(s) to be
2942                // dropped while the device is on battery, so we need to hold a wake lock during
2943                // the drain phase.
2944                if (mBytesRemaining && !(mDrainSequence & 1)) {
2945                    releaseWakeLock_l();
2946                    released = true;
2947                }
2948                mWakeLockUids.clear();
2949                mActiveTracksGeneration++;
2950                ALOGV("wait async completion");
2951                mWaitWorkCV.wait(mLock);
2952                ALOGV("async completion/wake");
2953                if (released) {
2954                    acquireWakeLock_l();
2955                }
2956                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2957                mSleepTimeUs = 0;
2958
2959                continue;
2960            }
2961            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2962                                   isSuspended()) {
2963                // put audio hardware into standby after short delay
2964                if (shouldStandby_l()) {
2965
2966                    threadLoop_standby();
2967
2968                    mStandby = true;
2969                }
2970
2971                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2972                    // we're about to wait, flush the binder command buffer
2973                    IPCThreadState::self()->flushCommands();
2974
2975                    clearOutputTracks();
2976
2977                    if (exitPending()) {
2978                        break;
2979                    }
2980
2981                    releaseWakeLock_l();
2982                    mWakeLockUids.clear();
2983                    mActiveTracksGeneration++;
2984                    // wait until we have something to do...
2985                    ALOGV("%s going to sleep", myName.string());
2986                    mWaitWorkCV.wait(mLock);
2987                    ALOGV("%s waking up", myName.string());
2988                    acquireWakeLock_l();
2989
2990                    mMixerStatus = MIXER_IDLE;
2991                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2992                    mBytesWritten = 0;
2993                    mBytesRemaining = 0;
2994                    checkSilentMode_l();
2995
2996                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2997                    mSleepTimeUs = mIdleSleepTimeUs;
2998                    if (mType == MIXER) {
2999                        sleepTimeShift = 0;
3000                    }
3001
3002                    continue;
3003                }
3004            }
3005            // mMixerStatusIgnoringFastTracks is also updated internally
3006            mMixerStatus = prepareTracks_l(&tracksToRemove);
3007
3008            // compare with previously applied list
3009            if (lastGeneration != mActiveTracksGeneration) {
3010                // update wakelock
3011                updateWakeLockUids_l(mWakeLockUids);
3012                lastGeneration = mActiveTracksGeneration;
3013            }
3014
3015            // prevent any changes in effect chain list and in each effect chain
3016            // during mixing and effect process as the audio buffers could be deleted
3017            // or modified if an effect is created or deleted
3018            lockEffectChains_l(effectChains);
3019        } // mLock scope ends
3020
3021        if (mBytesRemaining == 0) {
3022            mCurrentWriteLength = 0;
3023            if (mMixerStatus == MIXER_TRACKS_READY) {
3024                // threadLoop_mix() sets mCurrentWriteLength
3025                threadLoop_mix();
3026            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3027                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3028                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3029                // must be written to HAL
3030                threadLoop_sleepTime();
3031                if (mSleepTimeUs == 0) {
3032                    mCurrentWriteLength = mSinkBufferSize;
3033                }
3034            }
3035            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3036            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3037            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3038            // or mSinkBuffer (if there are no effects).
3039            //
3040            // This is done pre-effects computation; if effects change to
3041            // support higher precision, this needs to move.
3042            //
3043            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3044            // TODO use mSleepTimeUs == 0 as an additional condition.
3045            if (mMixerBufferValid) {
3046                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3047                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3048
3049                // mono blend occurs for mixer threads only (not direct or offloaded)
3050                // and is handled here if we're going directly to the sink.
3051                if (requireMonoBlend() && !mEffectBufferValid) {
3052                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3053                               true /*limit*/);
3054                }
3055
3056                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3057                        mNormalFrameCount * mChannelCount);
3058            }
3059
3060            mBytesRemaining = mCurrentWriteLength;
3061            if (isSuspended()) {
3062                mSleepTimeUs = suspendSleepTimeUs();
3063                // simulate write to HAL when suspended
3064                mBytesWritten += mSinkBufferSize;
3065                mFramesWritten += mSinkBufferSize / mFrameSize;
3066                mBytesRemaining = 0;
3067            }
3068
3069            // only process effects if we're going to write
3070            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3071                for (size_t i = 0; i < effectChains.size(); i ++) {
3072                    effectChains[i]->process_l();
3073                }
3074            }
3075        }
3076        // Process effect chains for offloaded thread even if no audio
3077        // was read from audio track: process only updates effect state
3078        // and thus does have to be synchronized with audio writes but may have
3079        // to be called while waiting for async write callback
3080        if (mType == OFFLOAD) {
3081            for (size_t i = 0; i < effectChains.size(); i ++) {
3082                effectChains[i]->process_l();
3083            }
3084        }
3085
3086        // Only if the Effects buffer is enabled and there is data in the
3087        // Effects buffer (buffer valid), we need to
3088        // copy into the sink buffer.
3089        // TODO use mSleepTimeUs == 0 as an additional condition.
3090        if (mEffectBufferValid) {
3091            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3092
3093            if (requireMonoBlend()) {
3094                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3095                           true /*limit*/);
3096            }
3097
3098            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3099                    mNormalFrameCount * mChannelCount);
3100        }
3101
3102        // enable changes in effect chain
3103        unlockEffectChains(effectChains);
3104
3105        if (!waitingAsyncCallback()) {
3106            // mSleepTimeUs == 0 means we must write to audio hardware
3107            if (mSleepTimeUs == 0) {
3108                ssize_t ret = 0;
3109                if (mBytesRemaining) {
3110                    ret = threadLoop_write();
3111                    if (ret < 0) {
3112                        mBytesRemaining = 0;
3113                    } else {
3114                        mBytesWritten += ret;
3115                        mBytesRemaining -= ret;
3116                        mFramesWritten += ret / mFrameSize;
3117                    }
3118                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3119                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3120                    threadLoop_drain();
3121                }
3122                if (mType == MIXER && !mStandby) {
3123                    // write blocked detection
3124                    nsecs_t now = systemTime();
3125                    nsecs_t delta = now - mLastWriteTime;
3126                    if (delta > maxPeriod) {
3127                        mNumDelayedWrites++;
3128                        if ((now - lastWarning) > kWarningThrottleNs) {
3129                            ATRACE_NAME("underrun");
3130                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3131                                    ns2ms(delta), mNumDelayedWrites, this);
3132                            lastWarning = now;
3133                        }
3134                    }
3135
3136                    if (mThreadThrottle
3137                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3138                            && ret > 0) {                         // we wrote something
3139                        // Limit MixerThread data processing to no more than twice the
3140                        // expected processing rate.
3141                        //
3142                        // This helps prevent underruns with NuPlayer and other applications
3143                        // which may set up buffers that are close to the minimum size, or use
3144                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3145                        //
3146                        // The throttle smooths out sudden large data drains from the device,
3147                        // e.g. when it comes out of standby, which often causes problems with
3148                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3149                        // (2) minimum buffer sized tracks (even if the track is full,
3150                        //     the app won't fill fast enough to handle the sudden draw).
3151
3152                        const int32_t deltaMs = delta / 1000000;
3153                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3154                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3155                            usleep(throttleMs * 1000);
3156                            // notify of throttle start on verbose log
3157                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3158                                    "mixer(%p) throttle begin:"
3159                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3160                                    this, ret, deltaMs, throttleMs);
3161                            mThreadThrottleTimeMs += throttleMs;
3162                        } else {
3163                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3164                            if (diff > 0) {
3165                                // notify of throttle end on debug log
3166                                ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff);
3167                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3168                            }
3169                        }
3170                    }
3171                }
3172
3173            } else {
3174                ATRACE_BEGIN("sleep");
3175                if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
3176                    Mutex::Autolock _l(mLock);
3177                    if (!mSignalPending && !exitPending()) {
3178                        // Do not sleep more than one buffer duration since last write and not
3179                        // less than kDirectMinSleepTimeUs
3180                        // Wake up if a command is received
3181                        nsecs_t now = systemTime();
3182                        uint32_t deltaUs = (uint32_t)((now - mLastWriteTime) / 1000);
3183                        uint32_t timeoutUs = mSleepTimeUs;
3184                        if (timeoutUs + deltaUs > mBufferDurationUs) {
3185                            if (mBufferDurationUs > deltaUs) {
3186                                timeoutUs = mBufferDurationUs - deltaUs;
3187                                if (timeoutUs < kDirectMinSleepTimeUs) {
3188                                    timeoutUs = kDirectMinSleepTimeUs;
3189                                }
3190                            } else {
3191                                timeoutUs = kDirectMinSleepTimeUs;
3192                            }
3193                        }
3194                        mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)timeoutUs));
3195                    }
3196                } else {
3197                    usleep(mSleepTimeUs);
3198                }
3199                ATRACE_END();
3200            }
3201        }
3202
3203        // Finally let go of removed track(s), without the lock held
3204        // since we can't guarantee the destructors won't acquire that
3205        // same lock.  This will also mutate and push a new fast mixer state.
3206        threadLoop_removeTracks(tracksToRemove);
3207        tracksToRemove.clear();
3208
3209        // FIXME I don't understand the need for this here;
3210        //       it was in the original code but maybe the
3211        //       assignment in saveOutputTracks() makes this unnecessary?
3212        clearOutputTracks();
3213
3214        // Effect chains will be actually deleted here if they were removed from
3215        // mEffectChains list during mixing or effects processing
3216        effectChains.clear();
3217
3218        // FIXME Note that the above .clear() is no longer necessary since effectChains
3219        // is now local to this block, but will keep it for now (at least until merge done).
3220    }
3221
3222    threadLoop_exit();
3223
3224    if (!mStandby) {
3225        threadLoop_standby();
3226        mStandby = true;
3227    }
3228
3229    releaseWakeLock();
3230    mWakeLockUids.clear();
3231    mActiveTracksGeneration++;
3232
3233    ALOGV("Thread %p type %d exiting", this, mType);
3234    return false;
3235}
3236
3237// removeTracks_l() must be called with ThreadBase::mLock held
3238void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3239{
3240    size_t count = tracksToRemove.size();
3241    if (count > 0) {
3242        for (size_t i=0 ; i<count ; i++) {
3243            const sp<Track>& track = tracksToRemove.itemAt(i);
3244            mActiveTracks.remove(track);
3245            mWakeLockUids.remove(track->uid());
3246            mActiveTracksGeneration++;
3247            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3248            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3249            if (chain != 0) {
3250                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3251                        track->sessionId());
3252                chain->decActiveTrackCnt();
3253            }
3254            if (track->isTerminated()) {
3255                removeTrack_l(track);
3256            }
3257        }
3258    }
3259
3260}
3261
3262status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3263{
3264    if (mNormalSink != 0) {
3265        ExtendedTimestamp ets;
3266        status_t status = mNormalSink->getTimestamp(ets);
3267        if (status == NO_ERROR) {
3268            status = ets.getBestTimestamp(&timestamp);
3269        }
3270        return status;
3271    }
3272    if ((mType == OFFLOAD || mType == DIRECT)
3273            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3274        uint64_t position64;
3275        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3276        if (ret == 0) {
3277            timestamp.mPosition = (uint32_t)position64;
3278            return NO_ERROR;
3279        }
3280    }
3281    return INVALID_OPERATION;
3282}
3283
3284status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3285                                                          audio_patch_handle_t *handle)
3286{
3287    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3288    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3289    if (mFastMixer != 0) {
3290        FastMixerStateQueue *sq = mFastMixer->sq();
3291        FastMixerState *state = sq->begin();
3292        if (!(state->mCommand & FastMixerState::IDLE)) {
3293            previousCommand = state->mCommand;
3294            state->mCommand = FastMixerState::HOT_IDLE;
3295            sq->end();
3296            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3297        } else {
3298            sq->end(false /*didModify*/);
3299        }
3300    }
3301    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3302
3303    if (!(previousCommand & FastMixerState::IDLE)) {
3304        ALOG_ASSERT(mFastMixer != 0);
3305        FastMixerStateQueue *sq = mFastMixer->sq();
3306        FastMixerState *state = sq->begin();
3307        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3308        state->mCommand = previousCommand;
3309        sq->end();
3310        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3311    }
3312
3313    return status;
3314}
3315
3316status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3317                                                          audio_patch_handle_t *handle)
3318{
3319    status_t status = NO_ERROR;
3320
3321    // store new device and send to effects
3322    audio_devices_t type = AUDIO_DEVICE_NONE;
3323    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3324        type |= patch->sinks[i].ext.device.type;
3325    }
3326
3327#ifdef ADD_BATTERY_DATA
3328    // when changing the audio output device, call addBatteryData to notify
3329    // the change
3330    if (mOutDevice != type) {
3331        uint32_t params = 0;
3332        // check whether speaker is on
3333        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3334            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3335        }
3336
3337        audio_devices_t deviceWithoutSpeaker
3338            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3339        // check if any other device (except speaker) is on
3340        if (type & deviceWithoutSpeaker) {
3341            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3342        }
3343
3344        if (params != 0) {
3345            addBatteryData(params);
3346        }
3347    }
3348#endif
3349
3350    for (size_t i = 0; i < mEffectChains.size(); i++) {
3351        mEffectChains[i]->setDevice_l(type);
3352    }
3353
3354    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3355    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3356    bool configChanged = mPrevOutDevice != type;
3357    mOutDevice = type;
3358    mPatch = *patch;
3359
3360    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3361        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3362        status = hwDevice->create_audio_patch(hwDevice,
3363                                               patch->num_sources,
3364                                               patch->sources,
3365                                               patch->num_sinks,
3366                                               patch->sinks,
3367                                               handle);
3368    } else {
3369        char *address;
3370        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3371            //FIXME: we only support address on first sink with HAL version < 3.0
3372            address = audio_device_address_to_parameter(
3373                                                        patch->sinks[0].ext.device.type,
3374                                                        patch->sinks[0].ext.device.address);
3375        } else {
3376            address = (char *)calloc(1, 1);
3377        }
3378        AudioParameter param = AudioParameter(String8(address));
3379        free(address);
3380        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3381        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3382                param.toString().string());
3383        *handle = AUDIO_PATCH_HANDLE_NONE;
3384    }
3385    if (configChanged) {
3386        mPrevOutDevice = type;
3387        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3388    }
3389    return status;
3390}
3391
3392status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3393{
3394    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3395    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3396    if (mFastMixer != 0) {
3397        FastMixerStateQueue *sq = mFastMixer->sq();
3398        FastMixerState *state = sq->begin();
3399        if (!(state->mCommand & FastMixerState::IDLE)) {
3400            previousCommand = state->mCommand;
3401            state->mCommand = FastMixerState::HOT_IDLE;
3402            sq->end();
3403            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3404        } else {
3405            sq->end(false /*didModify*/);
3406        }
3407    }
3408
3409    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3410
3411    if (!(previousCommand & FastMixerState::IDLE)) {
3412        ALOG_ASSERT(mFastMixer != 0);
3413        FastMixerStateQueue *sq = mFastMixer->sq();
3414        FastMixerState *state = sq->begin();
3415        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3416        state->mCommand = previousCommand;
3417        sq->end();
3418        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3419    }
3420
3421    return status;
3422}
3423
3424status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3425{
3426    status_t status = NO_ERROR;
3427
3428    mOutDevice = AUDIO_DEVICE_NONE;
3429
3430    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3431        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3432        status = hwDevice->release_audio_patch(hwDevice, handle);
3433    } else {
3434        AudioParameter param;
3435        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3436        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3437                param.toString().string());
3438    }
3439    return status;
3440}
3441
3442void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3443{
3444    Mutex::Autolock _l(mLock);
3445    mTracks.add(track);
3446}
3447
3448void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3449{
3450    Mutex::Autolock _l(mLock);
3451    destroyTrack_l(track);
3452}
3453
3454void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3455{
3456    ThreadBase::getAudioPortConfig(config);
3457    config->role = AUDIO_PORT_ROLE_SOURCE;
3458    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3459    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3460}
3461
3462// ----------------------------------------------------------------------------
3463
3464AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3465        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3466    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3467        // mAudioMixer below
3468        // mFastMixer below
3469        mFastMixerFutex(0),
3470        mMasterMono(false)
3471        // mOutputSink below
3472        // mPipeSink below
3473        // mNormalSink below
3474{
3475    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3476    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
3477            "mFrameCount=%d, mNormalFrameCount=%d",
3478            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3479            mNormalFrameCount);
3480    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3481
3482    if (type == DUPLICATING) {
3483        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3484        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3485        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3486        return;
3487    }
3488    // create an NBAIO sink for the HAL output stream, and negotiate
3489    mOutputSink = new AudioStreamOutSink(output->stream);
3490    size_t numCounterOffers = 0;
3491    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3492    ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3493    ALOG_ASSERT(index == 0);
3494
3495    // initialize fast mixer depending on configuration
3496    bool initFastMixer;
3497    switch (kUseFastMixer) {
3498    case FastMixer_Never:
3499        initFastMixer = false;
3500        break;
3501    case FastMixer_Always:
3502        initFastMixer = true;
3503        break;
3504    case FastMixer_Static:
3505    case FastMixer_Dynamic:
3506        initFastMixer = mFrameCount < mNormalFrameCount;
3507        break;
3508    }
3509    if (initFastMixer) {
3510        audio_format_t fastMixerFormat;
3511        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3512            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3513        } else {
3514            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3515        }
3516        if (mFormat != fastMixerFormat) {
3517            // change our Sink format to accept our intermediate precision
3518            mFormat = fastMixerFormat;
3519            free(mSinkBuffer);
3520            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3521            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3522            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3523        }
3524
3525        // create a MonoPipe to connect our submix to FastMixer
3526        NBAIO_Format format = mOutputSink->format();
3527        NBAIO_Format origformat = format;
3528        // adjust format to match that of the Fast Mixer
3529        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3530        format.mFormat = fastMixerFormat;
3531        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3532
3533        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3534        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3535        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3536        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3537        const NBAIO_Format offers[1] = {format};
3538        size_t numCounterOffers = 0;
3539        ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3540        ALOG_ASSERT(index == 0);
3541        monoPipe->setAvgFrames((mScreenState & 1) ?
3542                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3543        mPipeSink = monoPipe;
3544
3545#ifdef TEE_SINK
3546        if (mTeeSinkOutputEnabled) {
3547            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3548            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3549            const NBAIO_Format offers2[1] = {origformat};
3550            numCounterOffers = 0;
3551            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3552            ALOG_ASSERT(index == 0);
3553            mTeeSink = teeSink;
3554            PipeReader *teeSource = new PipeReader(*teeSink);
3555            numCounterOffers = 0;
3556            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3557            ALOG_ASSERT(index == 0);
3558            mTeeSource = teeSource;
3559        }
3560#endif
3561
3562        // create fast mixer and configure it initially with just one fast track for our submix
3563        mFastMixer = new FastMixer();
3564        FastMixerStateQueue *sq = mFastMixer->sq();
3565#ifdef STATE_QUEUE_DUMP
3566        sq->setObserverDump(&mStateQueueObserverDump);
3567        sq->setMutatorDump(&mStateQueueMutatorDump);
3568#endif
3569        FastMixerState *state = sq->begin();
3570        FastTrack *fastTrack = &state->mFastTracks[0];
3571        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3572        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3573        fastTrack->mVolumeProvider = NULL;
3574        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3575        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3576        fastTrack->mGeneration++;
3577        state->mFastTracksGen++;
3578        state->mTrackMask = 1;
3579        // fast mixer will use the HAL output sink
3580        state->mOutputSink = mOutputSink.get();
3581        state->mOutputSinkGen++;
3582        state->mFrameCount = mFrameCount;
3583        state->mCommand = FastMixerState::COLD_IDLE;
3584        // already done in constructor initialization list
3585        //mFastMixerFutex = 0;
3586        state->mColdFutexAddr = &mFastMixerFutex;
3587        state->mColdGen++;
3588        state->mDumpState = &mFastMixerDumpState;
3589#ifdef TEE_SINK
3590        state->mTeeSink = mTeeSink.get();
3591#endif
3592        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3593        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3594        sq->end();
3595        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3596
3597        // start the fast mixer
3598        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3599        pid_t tid = mFastMixer->getTid();
3600        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3601
3602#ifdef AUDIO_WATCHDOG
3603        // create and start the watchdog
3604        mAudioWatchdog = new AudioWatchdog();
3605        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3606        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3607        tid = mAudioWatchdog->getTid();
3608        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3609#endif
3610
3611    }
3612
3613    switch (kUseFastMixer) {
3614    case FastMixer_Never:
3615    case FastMixer_Dynamic:
3616        mNormalSink = mOutputSink;
3617        break;
3618    case FastMixer_Always:
3619        mNormalSink = mPipeSink;
3620        break;
3621    case FastMixer_Static:
3622        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3623        break;
3624    }
3625}
3626
3627AudioFlinger::MixerThread::~MixerThread()
3628{
3629    if (mFastMixer != 0) {
3630        FastMixerStateQueue *sq = mFastMixer->sq();
3631        FastMixerState *state = sq->begin();
3632        if (state->mCommand == FastMixerState::COLD_IDLE) {
3633            int32_t old = android_atomic_inc(&mFastMixerFutex);
3634            if (old == -1) {
3635                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3636            }
3637        }
3638        state->mCommand = FastMixerState::EXIT;
3639        sq->end();
3640        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3641        mFastMixer->join();
3642        // Though the fast mixer thread has exited, it's state queue is still valid.
3643        // We'll use that extract the final state which contains one remaining fast track
3644        // corresponding to our sub-mix.
3645        state = sq->begin();
3646        ALOG_ASSERT(state->mTrackMask == 1);
3647        FastTrack *fastTrack = &state->mFastTracks[0];
3648        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3649        delete fastTrack->mBufferProvider;
3650        sq->end(false /*didModify*/);
3651        mFastMixer.clear();
3652#ifdef AUDIO_WATCHDOG
3653        if (mAudioWatchdog != 0) {
3654            mAudioWatchdog->requestExit();
3655            mAudioWatchdog->requestExitAndWait();
3656            mAudioWatchdog.clear();
3657        }
3658#endif
3659    }
3660    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3661    delete mAudioMixer;
3662}
3663
3664
3665uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3666{
3667    if (mFastMixer != 0) {
3668        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3669        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3670    }
3671    return latency;
3672}
3673
3674
3675void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3676{
3677    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3678}
3679
3680ssize_t AudioFlinger::MixerThread::threadLoop_write()
3681{
3682    // FIXME we should only do one push per cycle; confirm this is true
3683    // Start the fast mixer if it's not already running
3684    if (mFastMixer != 0) {
3685        FastMixerStateQueue *sq = mFastMixer->sq();
3686        FastMixerState *state = sq->begin();
3687        if (state->mCommand != FastMixerState::MIX_WRITE &&
3688                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3689            if (state->mCommand == FastMixerState::COLD_IDLE) {
3690
3691                // FIXME workaround for first HAL write being CPU bound on some devices
3692                ATRACE_BEGIN("write");
3693                mOutput->write((char *)mSinkBuffer, 0);
3694                ATRACE_END();
3695
3696                int32_t old = android_atomic_inc(&mFastMixerFutex);
3697                if (old == -1) {
3698                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3699                }
3700#ifdef AUDIO_WATCHDOG
3701                if (mAudioWatchdog != 0) {
3702                    mAudioWatchdog->resume();
3703                }
3704#endif
3705            }
3706            state->mCommand = FastMixerState::MIX_WRITE;
3707#ifdef FAST_THREAD_STATISTICS
3708            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3709                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3710#endif
3711            sq->end();
3712            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3713            if (kUseFastMixer == FastMixer_Dynamic) {
3714                mNormalSink = mPipeSink;
3715            }
3716        } else {
3717            sq->end(false /*didModify*/);
3718        }
3719    }
3720    return PlaybackThread::threadLoop_write();
3721}
3722
3723void AudioFlinger::MixerThread::threadLoop_standby()
3724{
3725    // Idle the fast mixer if it's currently running
3726    if (mFastMixer != 0) {
3727        FastMixerStateQueue *sq = mFastMixer->sq();
3728        FastMixerState *state = sq->begin();
3729        if (!(state->mCommand & FastMixerState::IDLE)) {
3730            state->mCommand = FastMixerState::COLD_IDLE;
3731            state->mColdFutexAddr = &mFastMixerFutex;
3732            state->mColdGen++;
3733            mFastMixerFutex = 0;
3734            sq->end();
3735            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3736            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3737            if (kUseFastMixer == FastMixer_Dynamic) {
3738                mNormalSink = mOutputSink;
3739            }
3740#ifdef AUDIO_WATCHDOG
3741            if (mAudioWatchdog != 0) {
3742                mAudioWatchdog->pause();
3743            }
3744#endif
3745        } else {
3746            sq->end(false /*didModify*/);
3747        }
3748    }
3749    PlaybackThread::threadLoop_standby();
3750}
3751
3752bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3753{
3754    return false;
3755}
3756
3757bool AudioFlinger::PlaybackThread::shouldStandby_l()
3758{
3759    return !mStandby;
3760}
3761
3762bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3763{
3764    Mutex::Autolock _l(mLock);
3765    return waitingAsyncCallback_l();
3766}
3767
3768// shared by MIXER and DIRECT, overridden by DUPLICATING
3769void AudioFlinger::PlaybackThread::threadLoop_standby()
3770{
3771    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3772    mOutput->standby();
3773    if (mUseAsyncWrite != 0) {
3774        // discard any pending drain or write ack by incrementing sequence
3775        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3776        mDrainSequence = (mDrainSequence + 2) & ~1;
3777        ALOG_ASSERT(mCallbackThread != 0);
3778        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3779        mCallbackThread->setDraining(mDrainSequence);
3780    }
3781    mHwPaused = false;
3782}
3783
3784void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3785{
3786    ALOGV("signal playback thread");
3787    broadcast_l();
3788}
3789
3790void AudioFlinger::MixerThread::threadLoop_mix()
3791{
3792    // mix buffers...
3793    mAudioMixer->process();
3794    mCurrentWriteLength = mSinkBufferSize;
3795    // increase sleep time progressively when application underrun condition clears.
3796    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3797    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3798    // such that we would underrun the audio HAL.
3799    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3800        sleepTimeShift--;
3801    }
3802    mSleepTimeUs = 0;
3803    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3804    //TODO: delay standby when effects have a tail
3805
3806}
3807
3808void AudioFlinger::MixerThread::threadLoop_sleepTime()
3809{
3810    // If no tracks are ready, sleep once for the duration of an output
3811    // buffer size, then write 0s to the output
3812    if (mSleepTimeUs == 0) {
3813        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3814            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3815            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3816                mSleepTimeUs = kMinThreadSleepTimeUs;
3817            }
3818            // reduce sleep time in case of consecutive application underruns to avoid
3819            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3820            // duration we would end up writing less data than needed by the audio HAL if
3821            // the condition persists.
3822            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3823                sleepTimeShift++;
3824            }
3825        } else {
3826            mSleepTimeUs = mIdleSleepTimeUs;
3827        }
3828    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3829        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3830        // before effects processing or output.
3831        if (mMixerBufferValid) {
3832            memset(mMixerBuffer, 0, mMixerBufferSize);
3833        } else {
3834            memset(mSinkBuffer, 0, mSinkBufferSize);
3835        }
3836        mSleepTimeUs = 0;
3837        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3838                "anticipated start");
3839    }
3840    // TODO add standby time extension fct of effect tail
3841}
3842
3843// prepareTracks_l() must be called with ThreadBase::mLock held
3844AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3845        Vector< sp<Track> > *tracksToRemove)
3846{
3847
3848    mixer_state mixerStatus = MIXER_IDLE;
3849    // find out which tracks need to be processed
3850    size_t count = mActiveTracks.size();
3851    size_t mixedTracks = 0;
3852    size_t tracksWithEffect = 0;
3853    // counts only _active_ fast tracks
3854    size_t fastTracks = 0;
3855    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3856
3857    float masterVolume = mMasterVolume;
3858    bool masterMute = mMasterMute;
3859
3860    if (masterMute) {
3861        masterVolume = 0;
3862    }
3863    // Delegate master volume control to effect in output mix effect chain if needed
3864    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3865    if (chain != 0) {
3866        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3867        chain->setVolume_l(&v, &v);
3868        masterVolume = (float)((v + (1 << 23)) >> 24);
3869        chain.clear();
3870    }
3871
3872    // prepare a new state to push
3873    FastMixerStateQueue *sq = NULL;
3874    FastMixerState *state = NULL;
3875    bool didModify = false;
3876    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3877    if (mFastMixer != 0) {
3878        sq = mFastMixer->sq();
3879        state = sq->begin();
3880    }
3881
3882    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3883    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3884
3885    for (size_t i=0 ; i<count ; i++) {
3886        const sp<Track> t = mActiveTracks[i].promote();
3887        if (t == 0) {
3888            continue;
3889        }
3890
3891        // this const just means the local variable doesn't change
3892        Track* const track = t.get();
3893
3894        // process fast tracks
3895        if (track->isFastTrack()) {
3896
3897            // It's theoretically possible (though unlikely) for a fast track to be created
3898            // and then removed within the same normal mix cycle.  This is not a problem, as
3899            // the track never becomes active so it's fast mixer slot is never touched.
3900            // The converse, of removing an (active) track and then creating a new track
3901            // at the identical fast mixer slot within the same normal mix cycle,
3902            // is impossible because the slot isn't marked available until the end of each cycle.
3903            int j = track->mFastIndex;
3904            ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
3905            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3906            FastTrack *fastTrack = &state->mFastTracks[j];
3907
3908            // Determine whether the track is currently in underrun condition,
3909            // and whether it had a recent underrun.
3910            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3911            FastTrackUnderruns underruns = ftDump->mUnderruns;
3912            uint32_t recentFull = (underruns.mBitFields.mFull -
3913                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3914            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3915                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3916            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3917                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3918            uint32_t recentUnderruns = recentPartial + recentEmpty;
3919            track->mObservedUnderruns = underruns;
3920            // don't count underruns that occur while stopping or pausing
3921            // or stopped which can occur when flush() is called while active
3922            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3923                    recentUnderruns > 0) {
3924                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3925                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3926            } else {
3927                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
3928            }
3929
3930            // This is similar to the state machine for normal tracks,
3931            // with a few modifications for fast tracks.
3932            bool isActive = true;
3933            switch (track->mState) {
3934            case TrackBase::STOPPING_1:
3935                // track stays active in STOPPING_1 state until first underrun
3936                if (recentUnderruns > 0 || track->isTerminated()) {
3937                    track->mState = TrackBase::STOPPING_2;
3938                }
3939                break;
3940            case TrackBase::PAUSING:
3941                // ramp down is not yet implemented
3942                track->setPaused();
3943                break;
3944            case TrackBase::RESUMING:
3945                // ramp up is not yet implemented
3946                track->mState = TrackBase::ACTIVE;
3947                break;
3948            case TrackBase::ACTIVE:
3949                if (recentFull > 0 || recentPartial > 0) {
3950                    // track has provided at least some frames recently: reset retry count
3951                    track->mRetryCount = kMaxTrackRetries;
3952                }
3953                if (recentUnderruns == 0) {
3954                    // no recent underruns: stay active
3955                    break;
3956                }
3957                // there has recently been an underrun of some kind
3958                if (track->sharedBuffer() == 0) {
3959                    // were any of the recent underruns "empty" (no frames available)?
3960                    if (recentEmpty == 0) {
3961                        // no, then ignore the partial underruns as they are allowed indefinitely
3962                        break;
3963                    }
3964                    // there has recently been an "empty" underrun: decrement the retry counter
3965                    if (--(track->mRetryCount) > 0) {
3966                        break;
3967                    }
3968                    // indicate to client process that the track was disabled because of underrun;
3969                    // it will then automatically call start() when data is available
3970                    track->disable();
3971                    // remove from active list, but state remains ACTIVE [confusing but true]
3972                    isActive = false;
3973                    break;
3974                }
3975                // fall through
3976            case TrackBase::STOPPING_2:
3977            case TrackBase::PAUSED:
3978            case TrackBase::STOPPED:
3979            case TrackBase::FLUSHED:   // flush() while active
3980                // Check for presentation complete if track is inactive
3981                // We have consumed all the buffers of this track.
3982                // This would be incomplete if we auto-paused on underrun
3983                {
3984                    size_t audioHALFrames =
3985                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3986                    int64_t framesWritten = mBytesWritten / mFrameSize;
3987                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3988                        // track stays in active list until presentation is complete
3989                        break;
3990                    }
3991                }
3992                if (track->isStopping_2()) {
3993                    track->mState = TrackBase::STOPPED;
3994                }
3995                if (track->isStopped()) {
3996                    // Can't reset directly, as fast mixer is still polling this track
3997                    //   track->reset();
3998                    // So instead mark this track as needing to be reset after push with ack
3999                    resetMask |= 1 << i;
4000                }
4001                isActive = false;
4002                break;
4003            case TrackBase::IDLE:
4004            default:
4005                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4006            }
4007
4008            if (isActive) {
4009                // was it previously inactive?
4010                if (!(state->mTrackMask & (1 << j))) {
4011                    ExtendedAudioBufferProvider *eabp = track;
4012                    VolumeProvider *vp = track;
4013                    fastTrack->mBufferProvider = eabp;
4014                    fastTrack->mVolumeProvider = vp;
4015                    fastTrack->mChannelMask = track->mChannelMask;
4016                    fastTrack->mFormat = track->mFormat;
4017                    fastTrack->mGeneration++;
4018                    state->mTrackMask |= 1 << j;
4019                    didModify = true;
4020                    // no acknowledgement required for newly active tracks
4021                }
4022                // cache the combined master volume and stream type volume for fast mixer; this
4023                // lacks any synchronization or barrier so VolumeProvider may read a stale value
4024                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
4025                ++fastTracks;
4026            } else {
4027                // was it previously active?
4028                if (state->mTrackMask & (1 << j)) {
4029                    fastTrack->mBufferProvider = NULL;
4030                    fastTrack->mGeneration++;
4031                    state->mTrackMask &= ~(1 << j);
4032                    didModify = true;
4033                    // If any fast tracks were removed, we must wait for acknowledgement
4034                    // because we're about to decrement the last sp<> on those tracks.
4035                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4036                } else {
4037                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
4038                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4039                            j, track->mState, state->mTrackMask, recentUnderruns,
4040                            track->sharedBuffer() != 0);
4041                }
4042                tracksToRemove->add(track);
4043                // Avoids a misleading display in dumpsys
4044                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4045            }
4046            continue;
4047        }
4048
4049        {   // local variable scope to avoid goto warning
4050
4051        audio_track_cblk_t* cblk = track->cblk();
4052
4053        // The first time a track is added we wait
4054        // for all its buffers to be filled before processing it
4055        int name = track->name();
4056        // make sure that we have enough frames to mix one full buffer.
4057        // enforce this condition only once to enable draining the buffer in case the client
4058        // app does not call stop() and relies on underrun to stop:
4059        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4060        // during last round
4061        size_t desiredFrames;
4062        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4063        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4064
4065        desiredFrames = sourceFramesNeededWithTimestretch(
4066                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4067        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4068        // add frames already consumed but not yet released by the resampler
4069        // because mAudioTrackServerProxy->framesReady() will include these frames
4070        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4071
4072        uint32_t minFrames = 1;
4073        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4074                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4075            minFrames = desiredFrames;
4076        }
4077
4078        size_t framesReady = track->framesReady();
4079        if (ATRACE_ENABLED()) {
4080            // I wish we had formatted trace names
4081            char traceName[16];
4082            strcpy(traceName, "nRdy");
4083            int name = track->name();
4084            if (AudioMixer::TRACK0 <= name &&
4085                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4086                name -= AudioMixer::TRACK0;
4087                traceName[4] = (name / 10) + '0';
4088                traceName[5] = (name % 10) + '0';
4089            } else {
4090                traceName[4] = '?';
4091                traceName[5] = '?';
4092            }
4093            traceName[6] = '\0';
4094            ATRACE_INT(traceName, framesReady);
4095        }
4096        if ((framesReady >= minFrames) && track->isReady() &&
4097                !track->isPaused() && !track->isTerminated())
4098        {
4099            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4100
4101            mixedTracks++;
4102
4103            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4104            // there is an effect chain connected to the track
4105            chain.clear();
4106            if (track->mainBuffer() != mSinkBuffer &&
4107                    track->mainBuffer() != mMixerBuffer) {
4108                if (mEffectBufferEnabled) {
4109                    mEffectBufferValid = true; // Later can set directly.
4110                }
4111                chain = getEffectChain_l(track->sessionId());
4112                // Delegate volume control to effect in track effect chain if needed
4113                if (chain != 0) {
4114                    tracksWithEffect++;
4115                } else {
4116                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4117                            "session %d",
4118                            name, track->sessionId());
4119                }
4120            }
4121
4122
4123            int param = AudioMixer::VOLUME;
4124            if (track->mFillingUpStatus == Track::FS_FILLED) {
4125                // no ramp for the first volume setting
4126                track->mFillingUpStatus = Track::FS_ACTIVE;
4127                if (track->mState == TrackBase::RESUMING) {
4128                    track->mState = TrackBase::ACTIVE;
4129                    param = AudioMixer::RAMP_VOLUME;
4130                }
4131                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4132            // FIXME should not make a decision based on mServer
4133            } else if (cblk->mServer != 0) {
4134                // If the track is stopped before the first frame was mixed,
4135                // do not apply ramp
4136                param = AudioMixer::RAMP_VOLUME;
4137            }
4138
4139            // compute volume for this track
4140            uint32_t vl, vr;       // in U8.24 integer format
4141            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4142            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4143                vl = vr = 0;
4144                vlf = vrf = vaf = 0.;
4145                if (track->isPausing()) {
4146                    track->setPaused();
4147                }
4148            } else {
4149
4150                // read original volumes with volume control
4151                float typeVolume = mStreamTypes[track->streamType()].volume;
4152                float v = masterVolume * typeVolume;
4153                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4154                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4155                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4156                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4157                // track volumes come from shared memory, so can't be trusted and must be clamped
4158                if (vlf > GAIN_FLOAT_UNITY) {
4159                    ALOGV("Track left volume out of range: %.3g", vlf);
4160                    vlf = GAIN_FLOAT_UNITY;
4161                }
4162                if (vrf > GAIN_FLOAT_UNITY) {
4163                    ALOGV("Track right volume out of range: %.3g", vrf);
4164                    vrf = GAIN_FLOAT_UNITY;
4165                }
4166                // now apply the master volume and stream type volume
4167                vlf *= v;
4168                vrf *= v;
4169                // assuming master volume and stream type volume each go up to 1.0,
4170                // then derive vl and vr as U8.24 versions for the effect chain
4171                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4172                vl = (uint32_t) (scaleto8_24 * vlf);
4173                vr = (uint32_t) (scaleto8_24 * vrf);
4174                // vl and vr are now in U8.24 format
4175                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4176                // send level comes from shared memory and so may be corrupt
4177                if (sendLevel > MAX_GAIN_INT) {
4178                    ALOGV("Track send level out of range: %04X", sendLevel);
4179                    sendLevel = MAX_GAIN_INT;
4180                }
4181                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4182                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4183            }
4184
4185            // Delegate volume control to effect in track effect chain if needed
4186            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4187                // Do not ramp volume if volume is controlled by effect
4188                param = AudioMixer::VOLUME;
4189                // Update remaining floating point volume levels
4190                vlf = (float)vl / (1 << 24);
4191                vrf = (float)vr / (1 << 24);
4192                track->mHasVolumeController = true;
4193            } else {
4194                // force no volume ramp when volume controller was just disabled or removed
4195                // from effect chain to avoid volume spike
4196                if (track->mHasVolumeController) {
4197                    param = AudioMixer::VOLUME;
4198                }
4199                track->mHasVolumeController = false;
4200            }
4201
4202            // XXX: these things DON'T need to be done each time
4203            mAudioMixer->setBufferProvider(name, track);
4204            mAudioMixer->enable(name);
4205
4206            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4207            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4208            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4209            mAudioMixer->setParameter(
4210                name,
4211                AudioMixer::TRACK,
4212                AudioMixer::FORMAT, (void *)track->format());
4213            mAudioMixer->setParameter(
4214                name,
4215                AudioMixer::TRACK,
4216                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4217            mAudioMixer->setParameter(
4218                name,
4219                AudioMixer::TRACK,
4220                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4221            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4222            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4223            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4224            if (reqSampleRate == 0) {
4225                reqSampleRate = mSampleRate;
4226            } else if (reqSampleRate > maxSampleRate) {
4227                reqSampleRate = maxSampleRate;
4228            }
4229            mAudioMixer->setParameter(
4230                name,
4231                AudioMixer::RESAMPLE,
4232                AudioMixer::SAMPLE_RATE,
4233                (void *)(uintptr_t)reqSampleRate);
4234
4235            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4236            mAudioMixer->setParameter(
4237                name,
4238                AudioMixer::TIMESTRETCH,
4239                AudioMixer::PLAYBACK_RATE,
4240                &playbackRate);
4241
4242            /*
4243             * Select the appropriate output buffer for the track.
4244             *
4245             * Tracks with effects go into their own effects chain buffer
4246             * and from there into either mEffectBuffer or mSinkBuffer.
4247             *
4248             * Other tracks can use mMixerBuffer for higher precision
4249             * channel accumulation.  If this buffer is enabled
4250             * (mMixerBufferEnabled true), then selected tracks will accumulate
4251             * into it.
4252             *
4253             */
4254            if (mMixerBufferEnabled
4255                    && (track->mainBuffer() == mSinkBuffer
4256                            || track->mainBuffer() == mMixerBuffer)) {
4257                mAudioMixer->setParameter(
4258                        name,
4259                        AudioMixer::TRACK,
4260                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4261                mAudioMixer->setParameter(
4262                        name,
4263                        AudioMixer::TRACK,
4264                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4265                // TODO: override track->mainBuffer()?
4266                mMixerBufferValid = true;
4267            } else {
4268                mAudioMixer->setParameter(
4269                        name,
4270                        AudioMixer::TRACK,
4271                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4272                mAudioMixer->setParameter(
4273                        name,
4274                        AudioMixer::TRACK,
4275                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4276            }
4277            mAudioMixer->setParameter(
4278                name,
4279                AudioMixer::TRACK,
4280                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4281
4282            // reset retry count
4283            track->mRetryCount = kMaxTrackRetries;
4284
4285            // If one track is ready, set the mixer ready if:
4286            //  - the mixer was not ready during previous round OR
4287            //  - no other track is not ready
4288            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4289                    mixerStatus != MIXER_TRACKS_ENABLED) {
4290                mixerStatus = MIXER_TRACKS_READY;
4291            }
4292        } else {
4293            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4294                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4295                        track, framesReady, desiredFrames);
4296                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4297            } else {
4298                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4299            }
4300
4301            // clear effect chain input buffer if an active track underruns to avoid sending
4302            // previous audio buffer again to effects
4303            chain = getEffectChain_l(track->sessionId());
4304            if (chain != 0) {
4305                chain->clearInputBuffer();
4306            }
4307
4308            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4309            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4310                    track->isStopped() || track->isPaused()) {
4311                // We have consumed all the buffers of this track.
4312                // Remove it from the list of active tracks.
4313                // TODO: use actual buffer filling status instead of latency when available from
4314                // audio HAL
4315                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4316                int64_t framesWritten = mBytesWritten / mFrameSize;
4317                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4318                    if (track->isStopped()) {
4319                        track->reset();
4320                    }
4321                    tracksToRemove->add(track);
4322                }
4323            } else {
4324                // No buffers for this track. Give it a few chances to
4325                // fill a buffer, then remove it from active list.
4326                if (--(track->mRetryCount) <= 0) {
4327                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4328                    tracksToRemove->add(track);
4329                    // indicate to client process that the track was disabled because of underrun;
4330                    // it will then automatically call start() when data is available
4331                    track->disable();
4332                // If one track is not ready, mark the mixer also not ready if:
4333                //  - the mixer was ready during previous round OR
4334                //  - no other track is ready
4335                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4336                                mixerStatus != MIXER_TRACKS_READY) {
4337                    mixerStatus = MIXER_TRACKS_ENABLED;
4338                }
4339            }
4340            mAudioMixer->disable(name);
4341        }
4342
4343        }   // local variable scope to avoid goto warning
4344track_is_ready: ;
4345
4346    }
4347
4348    // Push the new FastMixer state if necessary
4349    bool pauseAudioWatchdog = false;
4350    if (didModify) {
4351        state->mFastTracksGen++;
4352        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4353        if (kUseFastMixer == FastMixer_Dynamic &&
4354                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4355            state->mCommand = FastMixerState::COLD_IDLE;
4356            state->mColdFutexAddr = &mFastMixerFutex;
4357            state->mColdGen++;
4358            mFastMixerFutex = 0;
4359            if (kUseFastMixer == FastMixer_Dynamic) {
4360                mNormalSink = mOutputSink;
4361            }
4362            // If we go into cold idle, need to wait for acknowledgement
4363            // so that fast mixer stops doing I/O.
4364            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4365            pauseAudioWatchdog = true;
4366        }
4367    }
4368    if (sq != NULL) {
4369        sq->end(didModify);
4370        sq->push(block);
4371    }
4372#ifdef AUDIO_WATCHDOG
4373    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4374        mAudioWatchdog->pause();
4375    }
4376#endif
4377
4378    // Now perform the deferred reset on fast tracks that have stopped
4379    while (resetMask != 0) {
4380        size_t i = __builtin_ctz(resetMask);
4381        ALOG_ASSERT(i < count);
4382        resetMask &= ~(1 << i);
4383        sp<Track> t = mActiveTracks[i].promote();
4384        if (t == 0) {
4385            continue;
4386        }
4387        Track* track = t.get();
4388        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4389        track->reset();
4390    }
4391
4392    // remove all the tracks that need to be...
4393    removeTracks_l(*tracksToRemove);
4394
4395    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4396        mEffectBufferValid = true;
4397    }
4398
4399    if (mEffectBufferValid) {
4400        // as long as there are effects we should clear the effects buffer, to avoid
4401        // passing a non-clean buffer to the effect chain
4402        memset(mEffectBuffer, 0, mEffectBufferSize);
4403    }
4404    // sink or mix buffer must be cleared if all tracks are connected to an
4405    // effect chain as in this case the mixer will not write to the sink or mix buffer
4406    // and track effects will accumulate into it
4407    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4408            (mixedTracks == 0 && fastTracks > 0))) {
4409        // FIXME as a performance optimization, should remember previous zero status
4410        if (mMixerBufferValid) {
4411            memset(mMixerBuffer, 0, mMixerBufferSize);
4412            // TODO: In testing, mSinkBuffer below need not be cleared because
4413            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4414            // after mixing.
4415            //
4416            // To enforce this guarantee:
4417            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4418            // (mixedTracks == 0 && fastTracks > 0))
4419            // must imply MIXER_TRACKS_READY.
4420            // Later, we may clear buffers regardless, and skip much of this logic.
4421        }
4422        // FIXME as a performance optimization, should remember previous zero status
4423        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4424    }
4425
4426    // if any fast tracks, then status is ready
4427    mMixerStatusIgnoringFastTracks = mixerStatus;
4428    if (fastTracks > 0) {
4429        mixerStatus = MIXER_TRACKS_READY;
4430    }
4431    return mixerStatus;
4432}
4433
4434// getTrackName_l() must be called with ThreadBase::mLock held
4435int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4436        audio_format_t format, audio_session_t sessionId)
4437{
4438    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4439}
4440
4441// deleteTrackName_l() must be called with ThreadBase::mLock held
4442void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4443{
4444    ALOGV("remove track (%d) and delete from mixer", name);
4445    mAudioMixer->deleteTrackName(name);
4446}
4447
4448// checkForNewParameter_l() must be called with ThreadBase::mLock held
4449bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4450                                                       status_t& status)
4451{
4452    bool reconfig = false;
4453    bool a2dpDeviceChanged = false;
4454
4455    status = NO_ERROR;
4456
4457    // if !&IDLE, holds the FastMixer state to restore after new parameters processed
4458    FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
4459    if (mFastMixer != 0) {
4460        FastMixerStateQueue *sq = mFastMixer->sq();
4461        FastMixerState *state = sq->begin();
4462        if (!(state->mCommand & FastMixerState::IDLE)) {
4463            previousCommand = state->mCommand;
4464            state->mCommand = FastMixerState::HOT_IDLE;
4465            sq->end();
4466            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4467        } else {
4468            sq->end(false /*didModify*/);
4469        }
4470    }
4471
4472    AudioParameter param = AudioParameter(keyValuePair);
4473    int value;
4474    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4475        reconfig = true;
4476    }
4477    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4478        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4479            status = BAD_VALUE;
4480        } else {
4481            // no need to save value, since it's constant
4482            reconfig = true;
4483        }
4484    }
4485    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4486        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4487            status = BAD_VALUE;
4488        } else {
4489            // no need to save value, since it's constant
4490            reconfig = true;
4491        }
4492    }
4493    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4494        // do not accept frame count changes if tracks are open as the track buffer
4495        // size depends on frame count and correct behavior would not be guaranteed
4496        // if frame count is changed after track creation
4497        if (!mTracks.isEmpty()) {
4498            status = INVALID_OPERATION;
4499        } else {
4500            reconfig = true;
4501        }
4502    }
4503    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4504#ifdef ADD_BATTERY_DATA
4505        // when changing the audio output device, call addBatteryData to notify
4506        // the change
4507        if (mOutDevice != value) {
4508            uint32_t params = 0;
4509            // check whether speaker is on
4510            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4511                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4512            }
4513
4514            audio_devices_t deviceWithoutSpeaker
4515                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4516            // check if any other device (except speaker) is on
4517            if (value & deviceWithoutSpeaker) {
4518                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4519            }
4520
4521            if (params != 0) {
4522                addBatteryData(params);
4523            }
4524        }
4525#endif
4526
4527        // forward device change to effects that have requested to be
4528        // aware of attached audio device.
4529        if (value != AUDIO_DEVICE_NONE) {
4530            a2dpDeviceChanged =
4531                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4532            mOutDevice = value;
4533            for (size_t i = 0; i < mEffectChains.size(); i++) {
4534                mEffectChains[i]->setDevice_l(mOutDevice);
4535            }
4536        }
4537    }
4538
4539    if (status == NO_ERROR) {
4540        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4541                                                keyValuePair.string());
4542        if (!mStandby && status == INVALID_OPERATION) {
4543            mOutput->standby();
4544            mStandby = true;
4545            mBytesWritten = 0;
4546            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4547                                                   keyValuePair.string());
4548        }
4549        if (status == NO_ERROR && reconfig) {
4550            readOutputParameters_l();
4551            delete mAudioMixer;
4552            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4553            for (size_t i = 0; i < mTracks.size() ; i++) {
4554                int name = getTrackName_l(mTracks[i]->mChannelMask,
4555                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4556                if (name < 0) {
4557                    break;
4558                }
4559                mTracks[i]->mName = name;
4560            }
4561            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4562        }
4563    }
4564
4565    if (!(previousCommand & FastMixerState::IDLE)) {
4566        ALOG_ASSERT(mFastMixer != 0);
4567        FastMixerStateQueue *sq = mFastMixer->sq();
4568        FastMixerState *state = sq->begin();
4569        ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
4570        state->mCommand = previousCommand;
4571        sq->end();
4572        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4573    }
4574
4575    return reconfig || a2dpDeviceChanged;
4576}
4577
4578
4579void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4580{
4581    const size_t SIZE = 256;
4582    char buffer[SIZE];
4583    String8 result;
4584
4585    PlaybackThread::dumpInternals(fd, args);
4586    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4587    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4588    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4589
4590    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4591    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4592    // This is a large object so we place it on the heap.
4593    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4594    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4595    copy->dump(fd);
4596    delete copy;
4597
4598#ifdef STATE_QUEUE_DUMP
4599    // Similar for state queue
4600    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4601    observerCopy.dump(fd);
4602    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4603    mutatorCopy.dump(fd);
4604#endif
4605
4606#ifdef TEE_SINK
4607    // Write the tee output to a .wav file
4608    dumpTee(fd, mTeeSource, mId);
4609#endif
4610
4611#ifdef AUDIO_WATCHDOG
4612    if (mAudioWatchdog != 0) {
4613        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4614        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4615        wdCopy.dump(fd);
4616    }
4617#endif
4618}
4619
4620uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4621{
4622    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4623}
4624
4625uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4626{
4627    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4628}
4629
4630void AudioFlinger::MixerThread::cacheParameters_l()
4631{
4632    PlaybackThread::cacheParameters_l();
4633
4634    // FIXME: Relaxed timing because of a certain device that can't meet latency
4635    // Should be reduced to 2x after the vendor fixes the driver issue
4636    // increase threshold again due to low power audio mode. The way this warning
4637    // threshold is calculated and its usefulness should be reconsidered anyway.
4638    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4639}
4640
4641// ----------------------------------------------------------------------------
4642
4643AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4644        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady,
4645        uint32_t bitRate)
4646    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady, bitRate)
4647        // mLeftVolFloat, mRightVolFloat
4648{
4649}
4650
4651AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4652        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4653        ThreadBase::type_t type, bool systemReady, uint32_t bitRate)
4654    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady, bitRate)
4655        // mLeftVolFloat, mRightVolFloat
4656{
4657}
4658
4659AudioFlinger::DirectOutputThread::~DirectOutputThread()
4660{
4661}
4662
4663void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4664{
4665    audio_track_cblk_t* cblk = track->cblk();
4666    float left, right;
4667
4668    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4669        left = right = 0;
4670    } else {
4671        float typeVolume = mStreamTypes[track->streamType()].volume;
4672        float v = mMasterVolume * typeVolume;
4673        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4674        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4675        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4676        if (left > GAIN_FLOAT_UNITY) {
4677            left = GAIN_FLOAT_UNITY;
4678        }
4679        left *= v;
4680        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4681        if (right > GAIN_FLOAT_UNITY) {
4682            right = GAIN_FLOAT_UNITY;
4683        }
4684        right *= v;
4685    }
4686
4687    if (lastTrack) {
4688        if (left != mLeftVolFloat || right != mRightVolFloat) {
4689            mLeftVolFloat = left;
4690            mRightVolFloat = right;
4691
4692            // Convert volumes from float to 8.24
4693            uint32_t vl = (uint32_t)(left * (1 << 24));
4694            uint32_t vr = (uint32_t)(right * (1 << 24));
4695
4696            // Delegate volume control to effect in track effect chain if needed
4697            // only one effect chain can be present on DirectOutputThread, so if
4698            // there is one, the track is connected to it
4699            if (!mEffectChains.isEmpty()) {
4700                mEffectChains[0]->setVolume_l(&vl, &vr);
4701                left = (float)vl / (1 << 24);
4702                right = (float)vr / (1 << 24);
4703            }
4704            if (mOutput->stream->set_volume) {
4705                mOutput->stream->set_volume(mOutput->stream, left, right);
4706            }
4707        }
4708    }
4709}
4710
4711void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4712{
4713    sp<Track> previousTrack = mPreviousTrack.promote();
4714    sp<Track> latestTrack = mLatestActiveTrack.promote();
4715
4716    if (previousTrack != 0 && latestTrack != 0) {
4717        if (mType == DIRECT) {
4718            if (previousTrack.get() != latestTrack.get()) {
4719                mFlushPending = true;
4720            }
4721        } else /* mType == OFFLOAD */ {
4722            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4723                mFlushPending = true;
4724            }
4725        }
4726    }
4727    PlaybackThread::onAddNewTrack_l();
4728}
4729
4730AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4731    Vector< sp<Track> > *tracksToRemove
4732)
4733{
4734    size_t count = mActiveTracks.size();
4735    mixer_state mixerStatus = MIXER_IDLE;
4736    bool doHwPause = false;
4737    bool doHwResume = false;
4738
4739    // find out which tracks need to be processed
4740    for (size_t i = 0; i < count; i++) {
4741        sp<Track> t = mActiveTracks[i].promote();
4742        // The track died recently
4743        if (t == 0) {
4744            continue;
4745        }
4746
4747        if (t->isInvalid()) {
4748            ALOGW("An invalidated track shouldn't be in active list");
4749            tracksToRemove->add(t);
4750            continue;
4751        }
4752
4753        Track* const track = t.get();
4754        audio_track_cblk_t* cblk = track->cblk();
4755        // Only consider last track started for volume and mixer state control.
4756        // In theory an older track could underrun and restart after the new one starts
4757        // but as we only care about the transition phase between two tracks on a
4758        // direct output, it is not a problem to ignore the underrun case.
4759        sp<Track> l = mLatestActiveTrack.promote();
4760        bool last = l.get() == track;
4761
4762        if (track->isPausing()) {
4763            track->setPaused();
4764            if (mHwSupportsPause && last && !mHwPaused) {
4765                doHwPause = true;
4766                mHwPaused = true;
4767            }
4768            tracksToRemove->add(track);
4769        } else if (track->isFlushPending()) {
4770            track->flushAck();
4771            if (last) {
4772                mFlushPending = true;
4773            }
4774        } else if (track->isResumePending()) {
4775            track->resumeAck();
4776            if (last && mHwPaused) {
4777                doHwResume = true;
4778                mHwPaused = false;
4779            }
4780        }
4781
4782        // The first time a track is added we wait
4783        // for all its buffers to be filled before processing it.
4784        // Allow draining the buffer in case the client
4785        // app does not call stop() and relies on underrun to stop:
4786        // hence the test on (track->mRetryCount > 1).
4787        // If retryCount<=1 then track is about to underrun and be removed.
4788        // Do not use a high threshold for compressed audio.
4789        uint32_t minFrames;
4790        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4791            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4792            minFrames = mNormalFrameCount;
4793        } else {
4794            minFrames = 1;
4795        }
4796
4797        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4798                !track->isStopping_2() && !track->isStopped())
4799        {
4800            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4801
4802            if (track->mFillingUpStatus == Track::FS_FILLED) {
4803                track->mFillingUpStatus = Track::FS_ACTIVE;
4804                // make sure processVolume_l() will apply new volume even if 0
4805                mLeftVolFloat = mRightVolFloat = -1.0;
4806                if (!mHwSupportsPause) {
4807                    track->resumeAck();
4808                }
4809            }
4810
4811            // compute volume for this track
4812            processVolume_l(track, last);
4813            if (last) {
4814                sp<Track> previousTrack = mPreviousTrack.promote();
4815                if (previousTrack != 0) {
4816                    if (track != previousTrack.get()) {
4817                        // Flush any data still being written from last track
4818                        mBytesRemaining = 0;
4819                        // Invalidate previous track to force a seek when resuming.
4820                        previousTrack->invalidate();
4821                    }
4822                }
4823                mPreviousTrack = track;
4824
4825                // reset retry count
4826                track->mRetryCount = kMaxTrackRetriesDirect;
4827                mActiveTrack = t;
4828                mixerStatus = MIXER_TRACKS_READY;
4829                if (mHwPaused) {
4830                    doHwResume = true;
4831                    mHwPaused = false;
4832                }
4833            }
4834        } else {
4835            // clear effect chain input buffer if the last active track started underruns
4836            // to avoid sending previous audio buffer again to effects
4837            if (!mEffectChains.isEmpty() && last) {
4838                mEffectChains[0]->clearInputBuffer();
4839            }
4840            if (track->isStopping_1()) {
4841                track->mState = TrackBase::STOPPING_2;
4842                if (last && mHwPaused) {
4843                     doHwResume = true;
4844                     mHwPaused = false;
4845                 }
4846            }
4847            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4848                    track->isStopping_2() || track->isPaused()) {
4849                // We have consumed all the buffers of this track.
4850                // Remove it from the list of active tracks.
4851                size_t audioHALFrames;
4852                if (audio_has_proportional_frames(mFormat)) {
4853                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4854                } else {
4855                    audioHALFrames = 0;
4856                }
4857
4858                int64_t framesWritten = mBytesWritten / mFrameSize;
4859                if (mStandby || !last ||
4860                        track->presentationComplete(framesWritten, audioHALFrames)) {
4861                    if (track->isStopping_2()) {
4862                        track->mState = TrackBase::STOPPED;
4863                    }
4864                    if (track->isStopped()) {
4865                        track->reset();
4866                    }
4867                    tracksToRemove->add(track);
4868                }
4869            } else {
4870                // No buffers for this track. Give it a few chances to
4871                // fill a buffer, then remove it from active list.
4872                // Only consider last track started for mixer state control
4873                if (--(track->mRetryCount) <= 0) {
4874                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4875                    tracksToRemove->add(track);
4876                    // indicate to client process that the track was disabled because of underrun;
4877                    // it will then automatically call start() when data is available
4878                    track->disable();
4879                } else if (last) {
4880                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4881                            "minFrames = %u, mFormat = %#x",
4882                            track->framesReady(), minFrames, mFormat);
4883                    mixerStatus = MIXER_TRACKS_ENABLED;
4884                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4885                        doHwPause = true;
4886                        mHwPaused = true;
4887                    }
4888                }
4889            }
4890        }
4891    }
4892
4893    // if an active track did not command a flush, check for pending flush on stopped tracks
4894    if (!mFlushPending) {
4895        for (size_t i = 0; i < mTracks.size(); i++) {
4896            if (mTracks[i]->isFlushPending()) {
4897                mTracks[i]->flushAck();
4898                mFlushPending = true;
4899            }
4900        }
4901    }
4902
4903    // make sure the pause/flush/resume sequence is executed in the right order.
4904    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4905    // before flush and then resume HW. This can happen in case of pause/flush/resume
4906    // if resume is received before pause is executed.
4907    if (mHwSupportsPause && !mStandby &&
4908            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4909        mOutput->stream->pause(mOutput->stream);
4910    }
4911    if (mFlushPending) {
4912        flushHw_l();
4913    }
4914    if (mHwSupportsPause && !mStandby && doHwResume) {
4915        mOutput->stream->resume(mOutput->stream);
4916    }
4917    // remove all the tracks that need to be...
4918    removeTracks_l(*tracksToRemove);
4919
4920    return mixerStatus;
4921}
4922
4923void AudioFlinger::DirectOutputThread::threadLoop_mix()
4924{
4925    size_t frameCount = mFrameCount;
4926    int8_t *curBuf = (int8_t *)mSinkBuffer;
4927    // output audio to hardware
4928    while (frameCount) {
4929        AudioBufferProvider::Buffer buffer;
4930        buffer.frameCount = frameCount;
4931        status_t status = mActiveTrack->getNextBuffer(&buffer);
4932        if (status != NO_ERROR || buffer.raw == NULL) {
4933            // no need to pad with 0 for compressed audio
4934            if (audio_has_proportional_frames(mFormat)) {
4935                memset(curBuf, 0, frameCount * mFrameSize);
4936            }
4937            break;
4938        }
4939        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4940        frameCount -= buffer.frameCount;
4941        curBuf += buffer.frameCount * mFrameSize;
4942        mActiveTrack->releaseBuffer(&buffer);
4943    }
4944    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4945    mSleepTimeUs = 0;
4946    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4947    mActiveTrack.clear();
4948}
4949
4950void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4951{
4952    // do not write to HAL when paused
4953    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4954        mSleepTimeUs = mIdleSleepTimeUs;
4955        return;
4956    }
4957    if (mSleepTimeUs == 0) {
4958        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4959            // For compressed offload, use faster sleep time when underruning until more than an
4960            // entire buffer was written to the audio HAL
4961            if (!audio_has_proportional_frames(mFormat) &&
4962                    (mType == OFFLOAD) && (mBytesWritten < mBufferSize)) {
4963                mSleepTimeUs = kDirectMinSleepTimeUs;
4964            } else {
4965                mSleepTimeUs = mActiveSleepTimeUs;
4966            }
4967        } else {
4968            mSleepTimeUs = mIdleSleepTimeUs;
4969        }
4970    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
4971        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4972        mSleepTimeUs = 0;
4973    }
4974}
4975
4976void AudioFlinger::DirectOutputThread::threadLoop_exit()
4977{
4978    {
4979        Mutex::Autolock _l(mLock);
4980        for (size_t i = 0; i < mTracks.size(); i++) {
4981            if (mTracks[i]->isFlushPending()) {
4982                mTracks[i]->flushAck();
4983                mFlushPending = true;
4984            }
4985        }
4986        if (mFlushPending) {
4987            flushHw_l();
4988        }
4989    }
4990    PlaybackThread::threadLoop_exit();
4991}
4992
4993// must be called with thread mutex locked
4994bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4995{
4996    bool trackPaused = false;
4997    bool trackStopped = false;
4998
4999    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5000    // after a timeout and we will enter standby then.
5001    if (mTracks.size() > 0) {
5002        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5003        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5004                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5005    }
5006
5007    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5008}
5009
5010// getTrackName_l() must be called with ThreadBase::mLock held
5011int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
5012        audio_format_t format __unused, audio_session_t sessionId __unused)
5013{
5014    return 0;
5015}
5016
5017// deleteTrackName_l() must be called with ThreadBase::mLock held
5018void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
5019{
5020}
5021
5022// checkForNewParameter_l() must be called with ThreadBase::mLock held
5023bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5024                                                              status_t& status)
5025{
5026    bool reconfig = false;
5027    bool a2dpDeviceChanged = false;
5028
5029    status = NO_ERROR;
5030
5031    AudioParameter param = AudioParameter(keyValuePair);
5032    int value;
5033    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5034        // forward device change to effects that have requested to be
5035        // aware of attached audio device.
5036        if (value != AUDIO_DEVICE_NONE) {
5037            a2dpDeviceChanged =
5038                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
5039            mOutDevice = value;
5040            for (size_t i = 0; i < mEffectChains.size(); i++) {
5041                mEffectChains[i]->setDevice_l(mOutDevice);
5042            }
5043        }
5044    }
5045    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5046        // do not accept frame count changes if tracks are open as the track buffer
5047        // size depends on frame count and correct behavior would not be garantied
5048        // if frame count is changed after track creation
5049        if (!mTracks.isEmpty()) {
5050            status = INVALID_OPERATION;
5051        } else {
5052            reconfig = true;
5053        }
5054    }
5055    if (status == NO_ERROR) {
5056        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5057                                                keyValuePair.string());
5058        if (!mStandby && status == INVALID_OPERATION) {
5059            mOutput->standby();
5060            mStandby = true;
5061            mBytesWritten = 0;
5062            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5063                                                   keyValuePair.string());
5064        }
5065        if (status == NO_ERROR && reconfig) {
5066            readOutputParameters_l();
5067            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5068        }
5069    }
5070
5071    return reconfig || a2dpDeviceChanged;
5072}
5073
5074uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5075{
5076    uint32_t time;
5077    if (audio_has_proportional_frames(mFormat)) {
5078        time = PlaybackThread::activeSleepTimeUs();
5079    } else {
5080        time = kDirectMinSleepTimeUs;
5081    }
5082    return time;
5083}
5084
5085uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5086{
5087    uint32_t time;
5088    if (audio_has_proportional_frames(mFormat)) {
5089        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5090    } else {
5091        time = kDirectMinSleepTimeUs;
5092    }
5093    return time;
5094}
5095
5096uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5097{
5098    uint32_t time;
5099    if (audio_has_proportional_frames(mFormat)) {
5100        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5101    } else {
5102        time = kDirectMinSleepTimeUs;
5103    }
5104    return time;
5105}
5106
5107void AudioFlinger::DirectOutputThread::cacheParameters_l()
5108{
5109    PlaybackThread::cacheParameters_l();
5110
5111    // use shorter standby delay as on normal output to release
5112    // hardware resources as soon as possible
5113    // no delay on outputs with HW A/V sync
5114    if (usesHwAvSync()) {
5115        mStandbyDelayNs = 0;
5116    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5117        mStandbyDelayNs = kOffloadStandbyDelayNs;
5118    } else {
5119        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5120    }
5121}
5122
5123void AudioFlinger::DirectOutputThread::flushHw_l()
5124{
5125    mOutput->flush();
5126    mHwPaused = false;
5127    mFlushPending = false;
5128}
5129
5130// ----------------------------------------------------------------------------
5131
5132AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5133        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5134    :   Thread(false /*canCallJava*/),
5135        mPlaybackThread(playbackThread),
5136        mWriteAckSequence(0),
5137        mDrainSequence(0)
5138{
5139}
5140
5141AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5142{
5143}
5144
5145void AudioFlinger::AsyncCallbackThread::onFirstRef()
5146{
5147    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5148}
5149
5150bool AudioFlinger::AsyncCallbackThread::threadLoop()
5151{
5152    while (!exitPending()) {
5153        uint32_t writeAckSequence;
5154        uint32_t drainSequence;
5155
5156        {
5157            Mutex::Autolock _l(mLock);
5158            while (!((mWriteAckSequence & 1) ||
5159                     (mDrainSequence & 1) ||
5160                     exitPending())) {
5161                mWaitWorkCV.wait(mLock);
5162            }
5163
5164            if (exitPending()) {
5165                break;
5166            }
5167            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5168                  mWriteAckSequence, mDrainSequence);
5169            writeAckSequence = mWriteAckSequence;
5170            mWriteAckSequence &= ~1;
5171            drainSequence = mDrainSequence;
5172            mDrainSequence &= ~1;
5173        }
5174        {
5175            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5176            if (playbackThread != 0) {
5177                if (writeAckSequence & 1) {
5178                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5179                }
5180                if (drainSequence & 1) {
5181                    playbackThread->resetDraining(drainSequence >> 1);
5182                }
5183            }
5184        }
5185    }
5186    return false;
5187}
5188
5189void AudioFlinger::AsyncCallbackThread::exit()
5190{
5191    ALOGV("AsyncCallbackThread::exit");
5192    Mutex::Autolock _l(mLock);
5193    requestExit();
5194    mWaitWorkCV.broadcast();
5195}
5196
5197void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5198{
5199    Mutex::Autolock _l(mLock);
5200    // bit 0 is cleared
5201    mWriteAckSequence = sequence << 1;
5202}
5203
5204void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5205{
5206    Mutex::Autolock _l(mLock);
5207    // ignore unexpected callbacks
5208    if (mWriteAckSequence & 2) {
5209        mWriteAckSequence |= 1;
5210        mWaitWorkCV.signal();
5211    }
5212}
5213
5214void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5215{
5216    Mutex::Autolock _l(mLock);
5217    // bit 0 is cleared
5218    mDrainSequence = sequence << 1;
5219}
5220
5221void AudioFlinger::AsyncCallbackThread::resetDraining()
5222{
5223    Mutex::Autolock _l(mLock);
5224    // ignore unexpected callbacks
5225    if (mDrainSequence & 2) {
5226        mDrainSequence |= 1;
5227        mWaitWorkCV.signal();
5228    }
5229}
5230
5231
5232// ----------------------------------------------------------------------------
5233AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5234        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady,
5235        uint32_t bitRate)
5236    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady, bitRate),
5237        mPausedBytesRemaining(0)
5238{
5239    //FIXME: mStandby should be set to true by ThreadBase constructor
5240    mStandby = true;
5241}
5242
5243void AudioFlinger::OffloadThread::threadLoop_exit()
5244{
5245    if (mFlushPending || mHwPaused) {
5246        // If a flush is pending or track was paused, just discard buffered data
5247        flushHw_l();
5248    } else {
5249        mMixerStatus = MIXER_DRAIN_ALL;
5250        threadLoop_drain();
5251    }
5252    if (mUseAsyncWrite) {
5253        ALOG_ASSERT(mCallbackThread != 0);
5254        mCallbackThread->exit();
5255    }
5256    PlaybackThread::threadLoop_exit();
5257}
5258
5259AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5260    Vector< sp<Track> > *tracksToRemove
5261)
5262{
5263    size_t count = mActiveTracks.size();
5264
5265    mixer_state mixerStatus = MIXER_IDLE;
5266    bool doHwPause = false;
5267    bool doHwResume = false;
5268
5269    ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
5270
5271    // find out which tracks need to be processed
5272    for (size_t i = 0; i < count; i++) {
5273        sp<Track> t = mActiveTracks[i].promote();
5274        // The track died recently
5275        if (t == 0) {
5276            continue;
5277        }
5278        Track* const track = t.get();
5279        audio_track_cblk_t* cblk = track->cblk();
5280        // Only consider last track started for volume and mixer state control.
5281        // In theory an older track could underrun and restart after the new one starts
5282        // but as we only care about the transition phase between two tracks on a
5283        // direct output, it is not a problem to ignore the underrun case.
5284        sp<Track> l = mLatestActiveTrack.promote();
5285        bool last = l.get() == track;
5286
5287        if (track->isInvalid()) {
5288            ALOGW("An invalidated track shouldn't be in active list");
5289            tracksToRemove->add(track);
5290            continue;
5291        }
5292
5293        if (track->mState == TrackBase::IDLE) {
5294            ALOGW("An idle track shouldn't be in active list");
5295            continue;
5296        }
5297
5298        if (track->isPausing()) {
5299            track->setPaused();
5300            if (last) {
5301                if (mHwSupportsPause && !mHwPaused) {
5302                    doHwPause = true;
5303                    mHwPaused = true;
5304                }
5305                // If we were part way through writing the mixbuffer to
5306                // the HAL we must save this until we resume
5307                // BUG - this will be wrong if a different track is made active,
5308                // in that case we want to discard the pending data in the
5309                // mixbuffer and tell the client to present it again when the
5310                // track is resumed
5311                mPausedWriteLength = mCurrentWriteLength;
5312                mPausedBytesRemaining = mBytesRemaining;
5313                mBytesRemaining = 0;    // stop writing
5314            }
5315            tracksToRemove->add(track);
5316        } else if (track->isFlushPending()) {
5317            track->mRetryCount = kMaxTrackRetriesOffload;
5318            track->flushAck();
5319            if (last) {
5320                mFlushPending = true;
5321            }
5322        } else if (track->isResumePending()){
5323            track->resumeAck();
5324            if (last) {
5325                if (mPausedBytesRemaining) {
5326                    // Need to continue write that was interrupted
5327                    mCurrentWriteLength = mPausedWriteLength;
5328                    mBytesRemaining = mPausedBytesRemaining;
5329                    mPausedBytesRemaining = 0;
5330                }
5331                if (mHwPaused) {
5332                    doHwResume = true;
5333                    mHwPaused = false;
5334                    // threadLoop_mix() will handle the case that we need to
5335                    // resume an interrupted write
5336                }
5337                // enable write to audio HAL
5338                mSleepTimeUs = 0;
5339
5340                // Do not handle new data in this iteration even if track->framesReady()
5341                mixerStatus = MIXER_TRACKS_ENABLED;
5342            }
5343        }  else if (track->framesReady() && track->isReady() &&
5344                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5345            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5346            if (track->mFillingUpStatus == Track::FS_FILLED) {
5347                track->mFillingUpStatus = Track::FS_ACTIVE;
5348                // make sure processVolume_l() will apply new volume even if 0
5349                mLeftVolFloat = mRightVolFloat = -1.0;
5350            }
5351
5352            if (last) {
5353                sp<Track> previousTrack = mPreviousTrack.promote();
5354                if (previousTrack != 0) {
5355                    if (track != previousTrack.get()) {
5356                        // Flush any data still being written from last track
5357                        mBytesRemaining = 0;
5358                        if (mPausedBytesRemaining) {
5359                            // Last track was paused so we also need to flush saved
5360                            // mixbuffer state and invalidate track so that it will
5361                            // re-submit that unwritten data when it is next resumed
5362                            mPausedBytesRemaining = 0;
5363                            // Invalidate is a bit drastic - would be more efficient
5364                            // to have a flag to tell client that some of the
5365                            // previously written data was lost
5366                            previousTrack->invalidate();
5367                        }
5368                        // flush data already sent to the DSP if changing audio session as audio
5369                        // comes from a different source. Also invalidate previous track to force a
5370                        // seek when resuming.
5371                        if (previousTrack->sessionId() != track->sessionId()) {
5372                            previousTrack->invalidate();
5373                        }
5374                    }
5375                }
5376                mPreviousTrack = track;
5377                // reset retry count
5378                track->mRetryCount = kMaxTrackRetriesOffload;
5379                mActiveTrack = t;
5380                mixerStatus = MIXER_TRACKS_READY;
5381            }
5382        } else {
5383            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5384            if (track->isStopping_1()) {
5385                // Hardware buffer can hold a large amount of audio so we must
5386                // wait for all current track's data to drain before we say
5387                // that the track is stopped.
5388                if (mBytesRemaining == 0) {
5389                    // Only start draining when all data in mixbuffer
5390                    // has been written
5391                    ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5392                    track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
5393                    // do not drain if no data was ever sent to HAL (mStandby == true)
5394                    if (last && !mStandby) {
5395                        // do not modify drain sequence if we are already draining. This happens
5396                        // when resuming from pause after drain.
5397                        if ((mDrainSequence & 1) == 0) {
5398                            mSleepTimeUs = 0;
5399                            mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5400                            mixerStatus = MIXER_DRAIN_TRACK;
5401                            mDrainSequence += 2;
5402                        }
5403                        if (mHwPaused) {
5404                            // It is possible to move from PAUSED to STOPPING_1 without
5405                            // a resume so we must ensure hardware is running
5406                            doHwResume = true;
5407                            mHwPaused = false;
5408                        }
5409                    }
5410                }
5411            } else if (track->isStopping_2()) {
5412                // Drain has completed or we are in standby, signal presentation complete
5413                if (!(mDrainSequence & 1) || !last || mStandby) {
5414                    track->mState = TrackBase::STOPPED;
5415                    size_t audioHALFrames =
5416                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5417                    int64_t framesWritten =
5418                            mBytesWritten / mOutput->getFrameSize();
5419                    track->presentationComplete(framesWritten, audioHALFrames);
5420                    track->reset();
5421                    tracksToRemove->add(track);
5422                }
5423            } else {
5424                // No buffers for this track. Give it a few chances to
5425                // fill a buffer, then remove it from active list.
5426                if (--(track->mRetryCount) <= 0) {
5427                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5428                          track->name());
5429                    tracksToRemove->add(track);
5430                    // indicate to client process that the track was disabled because of underrun;
5431                    // it will then automatically call start() when data is available
5432                    track->disable();
5433                } else if (last){
5434                    mixerStatus = MIXER_TRACKS_ENABLED;
5435                }
5436            }
5437        }
5438        // compute volume for this track
5439        processVolume_l(track, last);
5440    }
5441
5442    // make sure the pause/flush/resume sequence is executed in the right order.
5443    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5444    // before flush and then resume HW. This can happen in case of pause/flush/resume
5445    // if resume is received before pause is executed.
5446    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5447        mOutput->stream->pause(mOutput->stream);
5448    }
5449    if (mFlushPending) {
5450        flushHw_l();
5451    }
5452    if (!mStandby && doHwResume) {
5453        mOutput->stream->resume(mOutput->stream);
5454    }
5455
5456    // remove all the tracks that need to be...
5457    removeTracks_l(*tracksToRemove);
5458
5459    return mixerStatus;
5460}
5461
5462// must be called with thread mutex locked
5463bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5464{
5465    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5466          mWriteAckSequence, mDrainSequence);
5467    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5468        return true;
5469    }
5470    return false;
5471}
5472
5473bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5474{
5475    Mutex::Autolock _l(mLock);
5476    return waitingAsyncCallback_l();
5477}
5478
5479void AudioFlinger::OffloadThread::flushHw_l()
5480{
5481    DirectOutputThread::flushHw_l();
5482    // Flush anything still waiting in the mixbuffer
5483    mCurrentWriteLength = 0;
5484    mBytesRemaining = 0;
5485    mPausedWriteLength = 0;
5486    mPausedBytesRemaining = 0;
5487
5488    if (mUseAsyncWrite) {
5489        // discard any pending drain or write ack by incrementing sequence
5490        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5491        mDrainSequence = (mDrainSequence + 2) & ~1;
5492        ALOG_ASSERT(mCallbackThread != 0);
5493        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5494        mCallbackThread->setDraining(mDrainSequence);
5495    }
5496}
5497
5498uint32_t AudioFlinger::OffloadThread::activeSleepTimeUs() const
5499{
5500    uint32_t time;
5501    if (audio_has_proportional_frames(mFormat)) {
5502        time = PlaybackThread::activeSleepTimeUs();
5503    } else {
5504        // sleep time is half the duration of an audio HAL buffer.
5505        // Note: This can be problematic in case of underrun with variable bit rate and
5506        // current rate is much less than initial rate.
5507        time = (uint32_t)max(kDirectMinSleepTimeUs, mBufferDurationUs / 2);
5508    }
5509    return time;
5510}
5511
5512// ----------------------------------------------------------------------------
5513
5514AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5515        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5516    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5517                    systemReady, DUPLICATING),
5518        mWaitTimeMs(UINT_MAX)
5519{
5520    addOutputTrack(mainThread);
5521}
5522
5523AudioFlinger::DuplicatingThread::~DuplicatingThread()
5524{
5525    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5526        mOutputTracks[i]->destroy();
5527    }
5528}
5529
5530void AudioFlinger::DuplicatingThread::threadLoop_mix()
5531{
5532    // mix buffers...
5533    if (outputsReady(outputTracks)) {
5534        mAudioMixer->process();
5535    } else {
5536        if (mMixerBufferValid) {
5537            memset(mMixerBuffer, 0, mMixerBufferSize);
5538        } else {
5539            memset(mSinkBuffer, 0, mSinkBufferSize);
5540        }
5541    }
5542    mSleepTimeUs = 0;
5543    writeFrames = mNormalFrameCount;
5544    mCurrentWriteLength = mSinkBufferSize;
5545    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5546}
5547
5548void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5549{
5550    if (mSleepTimeUs == 0) {
5551        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5552            mSleepTimeUs = mActiveSleepTimeUs;
5553        } else {
5554            mSleepTimeUs = mIdleSleepTimeUs;
5555        }
5556    } else if (mBytesWritten != 0) {
5557        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5558            writeFrames = mNormalFrameCount;
5559            memset(mSinkBuffer, 0, mSinkBufferSize);
5560        } else {
5561            // flush remaining overflow buffers in output tracks
5562            writeFrames = 0;
5563        }
5564        mSleepTimeUs = 0;
5565    }
5566}
5567
5568ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5569{
5570    for (size_t i = 0; i < outputTracks.size(); i++) {
5571        outputTracks[i]->write(mSinkBuffer, writeFrames);
5572    }
5573    mStandby = false;
5574    return (ssize_t)mSinkBufferSize;
5575}
5576
5577void AudioFlinger::DuplicatingThread::threadLoop_standby()
5578{
5579    // DuplicatingThread implements standby by stopping all tracks
5580    for (size_t i = 0; i < outputTracks.size(); i++) {
5581        outputTracks[i]->stop();
5582    }
5583}
5584
5585void AudioFlinger::DuplicatingThread::saveOutputTracks()
5586{
5587    outputTracks = mOutputTracks;
5588}
5589
5590void AudioFlinger::DuplicatingThread::clearOutputTracks()
5591{
5592    outputTracks.clear();
5593}
5594
5595void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5596{
5597    Mutex::Autolock _l(mLock);
5598    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5599    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5600    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5601    const size_t frameCount =
5602            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5603    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5604    // from different OutputTracks and their associated MixerThreads (e.g. one may
5605    // nearly empty and the other may be dropping data).
5606
5607    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5608                                            this,
5609                                            mSampleRate,
5610                                            mFormat,
5611                                            mChannelMask,
5612                                            frameCount,
5613                                            IPCThreadState::self()->getCallingUid());
5614    if (outputTrack->cblk() != NULL) {
5615        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5616        mOutputTracks.add(outputTrack);
5617        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5618        updateWaitTime_l();
5619    }
5620}
5621
5622void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5623{
5624    Mutex::Autolock _l(mLock);
5625    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5626        if (mOutputTracks[i]->thread() == thread) {
5627            mOutputTracks[i]->destroy();
5628            mOutputTracks.removeAt(i);
5629            updateWaitTime_l();
5630            if (thread->getOutput() == mOutput) {
5631                mOutput = NULL;
5632            }
5633            return;
5634        }
5635    }
5636    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5637}
5638
5639// caller must hold mLock
5640void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5641{
5642    mWaitTimeMs = UINT_MAX;
5643    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5644        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5645        if (strong != 0) {
5646            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5647            if (waitTimeMs < mWaitTimeMs) {
5648                mWaitTimeMs = waitTimeMs;
5649            }
5650        }
5651    }
5652}
5653
5654
5655bool AudioFlinger::DuplicatingThread::outputsReady(
5656        const SortedVector< sp<OutputTrack> > &outputTracks)
5657{
5658    for (size_t i = 0; i < outputTracks.size(); i++) {
5659        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5660        if (thread == 0) {
5661            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5662                    outputTracks[i].get());
5663            return false;
5664        }
5665        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5666        // see note at standby() declaration
5667        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5668            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5669                    thread.get());
5670            return false;
5671        }
5672    }
5673    return true;
5674}
5675
5676uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5677{
5678    return (mWaitTimeMs * 1000) / 2;
5679}
5680
5681void AudioFlinger::DuplicatingThread::cacheParameters_l()
5682{
5683    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5684    updateWaitTime_l();
5685
5686    MixerThread::cacheParameters_l();
5687}
5688
5689// ----------------------------------------------------------------------------
5690//      Record
5691// ----------------------------------------------------------------------------
5692
5693AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5694                                         AudioStreamIn *input,
5695                                         audio_io_handle_t id,
5696                                         audio_devices_t outDevice,
5697                                         audio_devices_t inDevice,
5698                                         bool systemReady
5699#ifdef TEE_SINK
5700                                         , const sp<NBAIO_Sink>& teeSink
5701#endif
5702                                         ) :
5703    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5704    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5705    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5706    mRsmpInRear(0)
5707#ifdef TEE_SINK
5708    , mTeeSink(teeSink)
5709#endif
5710    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5711            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5712    // mFastCapture below
5713    , mFastCaptureFutex(0)
5714    // mInputSource
5715    // mPipeSink
5716    // mPipeSource
5717    , mPipeFramesP2(0)
5718    // mPipeMemory
5719    // mFastCaptureNBLogWriter
5720    , mFastTrackAvail(false)
5721{
5722    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5723    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5724
5725    readInputParameters_l();
5726
5727    // create an NBAIO source for the HAL input stream, and negotiate
5728    mInputSource = new AudioStreamInSource(input->stream);
5729    size_t numCounterOffers = 0;
5730    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5731    ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5732    ALOG_ASSERT(index == 0);
5733
5734    // initialize fast capture depending on configuration
5735    bool initFastCapture;
5736    switch (kUseFastCapture) {
5737    case FastCapture_Never:
5738        initFastCapture = false;
5739        break;
5740    case FastCapture_Always:
5741        initFastCapture = true;
5742        break;
5743    case FastCapture_Static:
5744        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5745        break;
5746    // case FastCapture_Dynamic:
5747    }
5748
5749    if (initFastCapture) {
5750        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5751        NBAIO_Format format = mInputSource->format();
5752        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5753        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5754        void *pipeBuffer;
5755        const sp<MemoryDealer> roHeap(readOnlyHeap());
5756        sp<IMemory> pipeMemory;
5757        if ((roHeap == 0) ||
5758                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5759                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5760            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5761            goto failed;
5762        }
5763        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5764        memset(pipeBuffer, 0, pipeSize);
5765        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5766        const NBAIO_Format offers[1] = {format};
5767        size_t numCounterOffers = 0;
5768        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5769        ALOG_ASSERT(index == 0);
5770        mPipeSink = pipe;
5771        PipeReader *pipeReader = new PipeReader(*pipe);
5772        numCounterOffers = 0;
5773        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5774        ALOG_ASSERT(index == 0);
5775        mPipeSource = pipeReader;
5776        mPipeFramesP2 = pipeFramesP2;
5777        mPipeMemory = pipeMemory;
5778
5779        // create fast capture
5780        mFastCapture = new FastCapture();
5781        FastCaptureStateQueue *sq = mFastCapture->sq();
5782#ifdef STATE_QUEUE_DUMP
5783        // FIXME
5784#endif
5785        FastCaptureState *state = sq->begin();
5786        state->mCblk = NULL;
5787        state->mInputSource = mInputSource.get();
5788        state->mInputSourceGen++;
5789        state->mPipeSink = pipe;
5790        state->mPipeSinkGen++;
5791        state->mFrameCount = mFrameCount;
5792        state->mCommand = FastCaptureState::COLD_IDLE;
5793        // already done in constructor initialization list
5794        //mFastCaptureFutex = 0;
5795        state->mColdFutexAddr = &mFastCaptureFutex;
5796        state->mColdGen++;
5797        state->mDumpState = &mFastCaptureDumpState;
5798#ifdef TEE_SINK
5799        // FIXME
5800#endif
5801        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5802        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5803        sq->end();
5804        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5805
5806        // start the fast capture
5807        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5808        pid_t tid = mFastCapture->getTid();
5809        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
5810#ifdef AUDIO_WATCHDOG
5811        // FIXME
5812#endif
5813
5814        mFastTrackAvail = true;
5815    }
5816failed: ;
5817
5818    // FIXME mNormalSource
5819}
5820
5821AudioFlinger::RecordThread::~RecordThread()
5822{
5823    if (mFastCapture != 0) {
5824        FastCaptureStateQueue *sq = mFastCapture->sq();
5825        FastCaptureState *state = sq->begin();
5826        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5827            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5828            if (old == -1) {
5829                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5830            }
5831        }
5832        state->mCommand = FastCaptureState::EXIT;
5833        sq->end();
5834        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5835        mFastCapture->join();
5836        mFastCapture.clear();
5837    }
5838    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5839    mAudioFlinger->unregisterWriter(mNBLogWriter);
5840    free(mRsmpInBuffer);
5841}
5842
5843void AudioFlinger::RecordThread::onFirstRef()
5844{
5845    run(mThreadName, PRIORITY_URGENT_AUDIO);
5846}
5847
5848bool AudioFlinger::RecordThread::threadLoop()
5849{
5850    nsecs_t lastWarning = 0;
5851
5852    inputStandBy();
5853
5854reacquire_wakelock:
5855    sp<RecordTrack> activeTrack;
5856    int activeTracksGen;
5857    {
5858        Mutex::Autolock _l(mLock);
5859        size_t size = mActiveTracks.size();
5860        activeTracksGen = mActiveTracksGen;
5861        if (size > 0) {
5862            // FIXME an arbitrary choice
5863            activeTrack = mActiveTracks[0];
5864            acquireWakeLock_l(activeTrack->uid());
5865            if (size > 1) {
5866                SortedVector<int> tmp;
5867                for (size_t i = 0; i < size; i++) {
5868                    tmp.add(mActiveTracks[i]->uid());
5869                }
5870                updateWakeLockUids_l(tmp);
5871            }
5872        } else {
5873            acquireWakeLock_l(-1);
5874        }
5875    }
5876
5877    // used to request a deferred sleep, to be executed later while mutex is unlocked
5878    uint32_t sleepUs = 0;
5879
5880    // loop while there is work to do
5881    for (;;) {
5882        Vector< sp<EffectChain> > effectChains;
5883
5884        // sleep with mutex unlocked
5885        if (sleepUs > 0) {
5886            ATRACE_BEGIN("sleep");
5887            usleep(sleepUs);
5888            ATRACE_END();
5889            sleepUs = 0;
5890        }
5891
5892        // activeTracks accumulates a copy of a subset of mActiveTracks
5893        Vector< sp<RecordTrack> > activeTracks;
5894
5895        // reference to the (first and only) active fast track
5896        sp<RecordTrack> fastTrack;
5897
5898        // reference to a fast track which is about to be removed
5899        sp<RecordTrack> fastTrackToRemove;
5900
5901        { // scope for mLock
5902            Mutex::Autolock _l(mLock);
5903
5904            processConfigEvents_l();
5905
5906            // check exitPending here because checkForNewParameters_l() and
5907            // checkForNewParameters_l() can temporarily release mLock
5908            if (exitPending()) {
5909                break;
5910            }
5911
5912            // if no active track(s), then standby and release wakelock
5913            size_t size = mActiveTracks.size();
5914            if (size == 0) {
5915                standbyIfNotAlreadyInStandby();
5916                // exitPending() can't become true here
5917                releaseWakeLock_l();
5918                ALOGV("RecordThread: loop stopping");
5919                // go to sleep
5920                mWaitWorkCV.wait(mLock);
5921                ALOGV("RecordThread: loop starting");
5922                goto reacquire_wakelock;
5923            }
5924
5925            if (mActiveTracksGen != activeTracksGen) {
5926                activeTracksGen = mActiveTracksGen;
5927                SortedVector<int> tmp;
5928                for (size_t i = 0; i < size; i++) {
5929                    tmp.add(mActiveTracks[i]->uid());
5930                }
5931                updateWakeLockUids_l(tmp);
5932            }
5933
5934            bool doBroadcast = false;
5935            for (size_t i = 0; i < size; ) {
5936
5937                activeTrack = mActiveTracks[i];
5938                if (activeTrack->isTerminated()) {
5939                    if (activeTrack->isFastTrack()) {
5940                        ALOG_ASSERT(fastTrackToRemove == 0);
5941                        fastTrackToRemove = activeTrack;
5942                    }
5943                    removeTrack_l(activeTrack);
5944                    mActiveTracks.remove(activeTrack);
5945                    mActiveTracksGen++;
5946                    size--;
5947                    continue;
5948                }
5949
5950                TrackBase::track_state activeTrackState = activeTrack->mState;
5951                switch (activeTrackState) {
5952
5953                case TrackBase::PAUSING:
5954                    mActiveTracks.remove(activeTrack);
5955                    mActiveTracksGen++;
5956                    doBroadcast = true;
5957                    size--;
5958                    continue;
5959
5960                case TrackBase::STARTING_1:
5961                    sleepUs = 10000;
5962                    i++;
5963                    continue;
5964
5965                case TrackBase::STARTING_2:
5966                    doBroadcast = true;
5967                    mStandby = false;
5968                    activeTrack->mState = TrackBase::ACTIVE;
5969                    break;
5970
5971                case TrackBase::ACTIVE:
5972                    break;
5973
5974                case TrackBase::IDLE:
5975                    i++;
5976                    continue;
5977
5978                default:
5979                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5980                }
5981
5982                activeTracks.add(activeTrack);
5983                i++;
5984
5985                if (activeTrack->isFastTrack()) {
5986                    ALOG_ASSERT(!mFastTrackAvail);
5987                    ALOG_ASSERT(fastTrack == 0);
5988                    fastTrack = activeTrack;
5989                }
5990            }
5991            if (doBroadcast) {
5992                mStartStopCond.broadcast();
5993            }
5994
5995            // sleep if there are no active tracks to process
5996            if (activeTracks.size() == 0) {
5997                if (sleepUs == 0) {
5998                    sleepUs = kRecordThreadSleepUs;
5999                }
6000                continue;
6001            }
6002            sleepUs = 0;
6003
6004            lockEffectChains_l(effectChains);
6005        }
6006
6007        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
6008
6009        size_t size = effectChains.size();
6010        for (size_t i = 0; i < size; i++) {
6011            // thread mutex is not locked, but effect chain is locked
6012            effectChains[i]->process_l();
6013        }
6014
6015        // Push a new fast capture state if fast capture is not already running, or cblk change
6016        if (mFastCapture != 0) {
6017            FastCaptureStateQueue *sq = mFastCapture->sq();
6018            FastCaptureState *state = sq->begin();
6019            bool didModify = false;
6020            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
6021            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
6022                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
6023                if (state->mCommand == FastCaptureState::COLD_IDLE) {
6024                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
6025                    if (old == -1) {
6026                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6027                    }
6028                }
6029                state->mCommand = FastCaptureState::READ_WRITE;
6030#if 0   // FIXME
6031                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
6032                        FastThreadDumpState::kSamplingNforLowRamDevice :
6033                        FastThreadDumpState::kSamplingN);
6034#endif
6035                didModify = true;
6036            }
6037            audio_track_cblk_t *cblkOld = state->mCblk;
6038            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
6039            if (cblkNew != cblkOld) {
6040                state->mCblk = cblkNew;
6041                // block until acked if removing a fast track
6042                if (cblkOld != NULL) {
6043                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6044                }
6045                didModify = true;
6046            }
6047            sq->end(didModify);
6048            if (didModify) {
6049                sq->push(block);
6050#if 0
6051                if (kUseFastCapture == FastCapture_Dynamic) {
6052                    mNormalSource = mPipeSource;
6053                }
6054#endif
6055            }
6056        }
6057
6058        // now run the fast track destructor with thread mutex unlocked
6059        fastTrackToRemove.clear();
6060
6061        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6062        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6063        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6064        // If destination is non-contiguous, first read past the nominal end of buffer, then
6065        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6066
6067        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6068        ssize_t framesRead;
6069
6070        // If an NBAIO source is present, use it to read the normal capture's data
6071        if (mPipeSource != 0) {
6072            size_t framesToRead = mBufferSize / mFrameSize;
6073            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6074                    framesToRead);
6075            if (framesRead == 0) {
6076                // since pipe is non-blocking, simulate blocking input
6077                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6078            }
6079        // otherwise use the HAL / AudioStreamIn directly
6080        } else {
6081            ATRACE_BEGIN("read");
6082            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6083                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6084            ATRACE_END();
6085            if (bytesRead < 0) {
6086                framesRead = bytesRead;
6087            } else {
6088                framesRead = bytesRead / mFrameSize;
6089            }
6090        }
6091
6092        // Update server timestamp with server stats
6093        // systemTime() is optional if the hardware supports timestamps.
6094        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6095        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6096
6097        // Update server timestamp with kernel stats
6098        if (mInput->stream->get_capture_position != nullptr) {
6099            int64_t position, time;
6100            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6101            if (ret == NO_ERROR) {
6102                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6103                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6104                // Note: In general record buffers should tend to be empty in
6105                // a properly running pipeline.
6106                //
6107                // Also, it is not advantageous to call get_presentation_position during the read
6108                // as the read obtains a lock, preventing the timestamp call from executing.
6109            }
6110        }
6111        // Use this to track timestamp information
6112        // ALOGD("%s", mTimestamp.toString().c_str());
6113
6114        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6115            ALOGE("read failed: framesRead=%d", framesRead);
6116            // Force input into standby so that it tries to recover at next read attempt
6117            inputStandBy();
6118            sleepUs = kRecordThreadSleepUs;
6119        }
6120        if (framesRead <= 0) {
6121            goto unlock;
6122        }
6123        ALOG_ASSERT(framesRead > 0);
6124
6125        if (mTeeSink != 0) {
6126            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6127        }
6128        // If destination is non-contiguous, we now correct for reading past end of buffer.
6129        {
6130            size_t part1 = mRsmpInFramesP2 - rear;
6131            if ((size_t) framesRead > part1) {
6132                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6133                        (framesRead - part1) * mFrameSize);
6134            }
6135        }
6136        rear = mRsmpInRear += framesRead;
6137
6138        size = activeTracks.size();
6139        // loop over each active track
6140        for (size_t i = 0; i < size; i++) {
6141            activeTrack = activeTracks[i];
6142
6143            // skip fast tracks, as those are handled directly by FastCapture
6144            if (activeTrack->isFastTrack()) {
6145                continue;
6146            }
6147
6148            // TODO: This code probably should be moved to RecordTrack.
6149            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6150
6151            enum {
6152                OVERRUN_UNKNOWN,
6153                OVERRUN_TRUE,
6154                OVERRUN_FALSE
6155            } overrun = OVERRUN_UNKNOWN;
6156
6157            // loop over getNextBuffer to handle circular sink
6158            for (;;) {
6159
6160                activeTrack->mSink.frameCount = ~0;
6161                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6162                size_t framesOut = activeTrack->mSink.frameCount;
6163                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6164
6165                // check available frames and handle overrun conditions
6166                // if the record track isn't draining fast enough.
6167                bool hasOverrun;
6168                size_t framesIn;
6169                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6170                if (hasOverrun) {
6171                    overrun = OVERRUN_TRUE;
6172                }
6173                if (framesOut == 0 || framesIn == 0) {
6174                    break;
6175                }
6176
6177                // Don't allow framesOut to be larger than what is possible with resampling
6178                // from framesIn.
6179                // This isn't strictly necessary but helps limit buffer resizing in
6180                // RecordBufferConverter.  TODO: remove when no longer needed.
6181                framesOut = min(framesOut,
6182                        destinationFramesPossible(
6183                                framesIn, mSampleRate, activeTrack->mSampleRate));
6184                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6185                framesOut = activeTrack->mRecordBufferConverter->convert(
6186                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6187
6188                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6189                    overrun = OVERRUN_FALSE;
6190                }
6191
6192                if (activeTrack->mFramesToDrop == 0) {
6193                    if (framesOut > 0) {
6194                        activeTrack->mSink.frameCount = framesOut;
6195                        activeTrack->releaseBuffer(&activeTrack->mSink);
6196                    }
6197                } else {
6198                    // FIXME could do a partial drop of framesOut
6199                    if (activeTrack->mFramesToDrop > 0) {
6200                        activeTrack->mFramesToDrop -= framesOut;
6201                        if (activeTrack->mFramesToDrop <= 0) {
6202                            activeTrack->clearSyncStartEvent();
6203                        }
6204                    } else {
6205                        activeTrack->mFramesToDrop += framesOut;
6206                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6207                                activeTrack->mSyncStartEvent->isCancelled()) {
6208                            ALOGW("Synced record %s, session %d, trigger session %d",
6209                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6210                                  activeTrack->sessionId(),
6211                                  (activeTrack->mSyncStartEvent != 0) ?
6212                                          activeTrack->mSyncStartEvent->triggerSession() :
6213                                          AUDIO_SESSION_NONE);
6214                            activeTrack->clearSyncStartEvent();
6215                        }
6216                    }
6217                }
6218
6219                if (framesOut == 0) {
6220                    break;
6221                }
6222            }
6223
6224            switch (overrun) {
6225            case OVERRUN_TRUE:
6226                // client isn't retrieving buffers fast enough
6227                if (!activeTrack->setOverflow()) {
6228                    nsecs_t now = systemTime();
6229                    // FIXME should lastWarning per track?
6230                    if ((now - lastWarning) > kWarningThrottleNs) {
6231                        ALOGW("RecordThread: buffer overflow");
6232                        lastWarning = now;
6233                    }
6234                }
6235                break;
6236            case OVERRUN_FALSE:
6237                activeTrack->clearOverflow();
6238                break;
6239            case OVERRUN_UNKNOWN:
6240                break;
6241            }
6242
6243            // update frame information and push timestamp out
6244            activeTrack->updateTrackFrameInfo(
6245                    activeTrack->mServerProxy->framesReleased(),
6246                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6247                    mSampleRate, mTimestamp);
6248        }
6249
6250unlock:
6251        // enable changes in effect chain
6252        unlockEffectChains(effectChains);
6253        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6254    }
6255
6256    standbyIfNotAlreadyInStandby();
6257
6258    {
6259        Mutex::Autolock _l(mLock);
6260        for (size_t i = 0; i < mTracks.size(); i++) {
6261            sp<RecordTrack> track = mTracks[i];
6262            track->invalidate();
6263        }
6264        mActiveTracks.clear();
6265        mActiveTracksGen++;
6266        mStartStopCond.broadcast();
6267    }
6268
6269    releaseWakeLock();
6270
6271    ALOGV("RecordThread %p exiting", this);
6272    return false;
6273}
6274
6275void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6276{
6277    if (!mStandby) {
6278        inputStandBy();
6279        mStandby = true;
6280    }
6281}
6282
6283void AudioFlinger::RecordThread::inputStandBy()
6284{
6285    // Idle the fast capture if it's currently running
6286    if (mFastCapture != 0) {
6287        FastCaptureStateQueue *sq = mFastCapture->sq();
6288        FastCaptureState *state = sq->begin();
6289        if (!(state->mCommand & FastCaptureState::IDLE)) {
6290            state->mCommand = FastCaptureState::COLD_IDLE;
6291            state->mColdFutexAddr = &mFastCaptureFutex;
6292            state->mColdGen++;
6293            mFastCaptureFutex = 0;
6294            sq->end();
6295            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6296            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6297#if 0
6298            if (kUseFastCapture == FastCapture_Dynamic) {
6299                // FIXME
6300            }
6301#endif
6302#ifdef AUDIO_WATCHDOG
6303            // FIXME
6304#endif
6305        } else {
6306            sq->end(false /*didModify*/);
6307        }
6308    }
6309    mInput->stream->common.standby(&mInput->stream->common);
6310}
6311
6312// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6313sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6314        const sp<AudioFlinger::Client>& client,
6315        uint32_t sampleRate,
6316        audio_format_t format,
6317        audio_channel_mask_t channelMask,
6318        size_t *pFrameCount,
6319        audio_session_t sessionId,
6320        size_t *notificationFrames,
6321        int uid,
6322        IAudioFlinger::track_flags_t *flags,
6323        pid_t tid,
6324        status_t *status)
6325{
6326    size_t frameCount = *pFrameCount;
6327    sp<RecordTrack> track;
6328    status_t lStatus;
6329
6330    // client expresses a preference for FAST, but we get the final say
6331    if (*flags & IAudioFlinger::TRACK_FAST) {
6332      if (
6333            // we formerly checked for a callback handler (non-0 tid),
6334            // but that is no longer required for TRANSFER_OBTAIN mode
6335            //
6336            // frame count is not specified, or is exactly the pipe depth
6337            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6338            // PCM data
6339            audio_is_linear_pcm(format) &&
6340            // hardware format
6341            (format == mFormat) &&
6342            // hardware channel mask
6343            (channelMask == mChannelMask) &&
6344            // hardware sample rate
6345            (sampleRate == mSampleRate) &&
6346            // record thread has an associated fast capture
6347            hasFastCapture() &&
6348            // there are sufficient fast track slots available
6349            mFastTrackAvail
6350        ) {
6351        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u",
6352                frameCount, mFrameCount);
6353      } else {
6354        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u "
6355                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6356                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6357                frameCount, mFrameCount, mPipeFramesP2,
6358                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6359                hasFastCapture(), tid, mFastTrackAvail);
6360        *flags &= ~IAudioFlinger::TRACK_FAST;
6361      }
6362    }
6363
6364    // compute track buffer size in frames, and suggest the notification frame count
6365    if (*flags & IAudioFlinger::TRACK_FAST) {
6366        // fast track: frame count is exactly the pipe depth
6367        frameCount = mPipeFramesP2;
6368        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6369        *notificationFrames = mFrameCount;
6370    } else {
6371        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6372        //                 or 20 ms if there is a fast capture
6373        // TODO This could be a roundupRatio inline, and const
6374        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6375                * sampleRate + mSampleRate - 1) / mSampleRate;
6376        // minimum number of notification periods is at least kMinNotifications,
6377        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6378        static const size_t kMinNotifications = 3;
6379        static const uint32_t kMinMs = 30;
6380        // TODO This could be a roundupRatio inline
6381        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6382        // TODO This could be a roundupRatio inline
6383        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6384                maxNotificationFrames;
6385        const size_t minFrameCount = maxNotificationFrames *
6386                max(kMinNotifications, minNotificationsByMs);
6387        frameCount = max(frameCount, minFrameCount);
6388        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6389            *notificationFrames = maxNotificationFrames;
6390        }
6391    }
6392    *pFrameCount = frameCount;
6393
6394    lStatus = initCheck();
6395    if (lStatus != NO_ERROR) {
6396        ALOGE("createRecordTrack_l() audio driver not initialized");
6397        goto Exit;
6398    }
6399
6400    { // scope for mLock
6401        Mutex::Autolock _l(mLock);
6402
6403        track = new RecordTrack(this, client, sampleRate,
6404                      format, channelMask, frameCount, NULL, sessionId, uid,
6405                      *flags, TrackBase::TYPE_DEFAULT);
6406
6407        lStatus = track->initCheck();
6408        if (lStatus != NO_ERROR) {
6409            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6410            // track must be cleared from the caller as the caller has the AF lock
6411            goto Exit;
6412        }
6413        mTracks.add(track);
6414
6415        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6416        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6417                        mAudioFlinger->btNrecIsOff();
6418        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6419        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6420
6421        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6422            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6423            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6424            // so ask activity manager to do this on our behalf
6425            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6426        }
6427    }
6428
6429    lStatus = NO_ERROR;
6430
6431Exit:
6432    *status = lStatus;
6433    return track;
6434}
6435
6436status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6437                                           AudioSystem::sync_event_t event,
6438                                           audio_session_t triggerSession)
6439{
6440    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6441    sp<ThreadBase> strongMe = this;
6442    status_t status = NO_ERROR;
6443
6444    if (event == AudioSystem::SYNC_EVENT_NONE) {
6445        recordTrack->clearSyncStartEvent();
6446    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6447        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6448                                       triggerSession,
6449                                       recordTrack->sessionId(),
6450                                       syncStartEventCallback,
6451                                       recordTrack);
6452        // Sync event can be cancelled by the trigger session if the track is not in a
6453        // compatible state in which case we start record immediately
6454        if (recordTrack->mSyncStartEvent->isCancelled()) {
6455            recordTrack->clearSyncStartEvent();
6456        } else {
6457            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6458            recordTrack->mFramesToDrop = -
6459                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6460        }
6461    }
6462
6463    {
6464        // This section is a rendezvous between binder thread executing start() and RecordThread
6465        AutoMutex lock(mLock);
6466        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6467            if (recordTrack->mState == TrackBase::PAUSING) {
6468                ALOGV("active record track PAUSING -> ACTIVE");
6469                recordTrack->mState = TrackBase::ACTIVE;
6470            } else {
6471                ALOGV("active record track state %d", recordTrack->mState);
6472            }
6473            return status;
6474        }
6475
6476        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6477        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6478        //      or using a separate command thread
6479        recordTrack->mState = TrackBase::STARTING_1;
6480        mActiveTracks.add(recordTrack);
6481        mActiveTracksGen++;
6482        status_t status = NO_ERROR;
6483        if (recordTrack->isExternalTrack()) {
6484            mLock.unlock();
6485            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6486            mLock.lock();
6487            // FIXME should verify that recordTrack is still in mActiveTracks
6488            if (status != NO_ERROR) {
6489                mActiveTracks.remove(recordTrack);
6490                mActiveTracksGen++;
6491                recordTrack->clearSyncStartEvent();
6492                ALOGV("RecordThread::start error %d", status);
6493                return status;
6494            }
6495        }
6496        // Catch up with current buffer indices if thread is already running.
6497        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6498        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6499        // see previously buffered data before it called start(), but with greater risk of overrun.
6500
6501        recordTrack->mResamplerBufferProvider->reset();
6502        // clear any converter state as new data will be discontinuous
6503        recordTrack->mRecordBufferConverter->reset();
6504        recordTrack->mState = TrackBase::STARTING_2;
6505        // signal thread to start
6506        mWaitWorkCV.broadcast();
6507        if (mActiveTracks.indexOf(recordTrack) < 0) {
6508            ALOGV("Record failed to start");
6509            status = BAD_VALUE;
6510            goto startError;
6511        }
6512        return status;
6513    }
6514
6515startError:
6516    if (recordTrack->isExternalTrack()) {
6517        AudioSystem::stopInput(mId, recordTrack->sessionId());
6518    }
6519    recordTrack->clearSyncStartEvent();
6520    // FIXME I wonder why we do not reset the state here?
6521    return status;
6522}
6523
6524void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6525{
6526    sp<SyncEvent> strongEvent = event.promote();
6527
6528    if (strongEvent != 0) {
6529        sp<RefBase> ptr = strongEvent->cookie().promote();
6530        if (ptr != 0) {
6531            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6532            recordTrack->handleSyncStartEvent(strongEvent);
6533        }
6534    }
6535}
6536
6537bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6538    ALOGV("RecordThread::stop");
6539    AutoMutex _l(mLock);
6540    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6541        return false;
6542    }
6543    // note that threadLoop may still be processing the track at this point [without lock]
6544    recordTrack->mState = TrackBase::PAUSING;
6545    // do not wait for mStartStopCond if exiting
6546    if (exitPending()) {
6547        return true;
6548    }
6549    // FIXME incorrect usage of wait: no explicit predicate or loop
6550    mStartStopCond.wait(mLock);
6551    // if we have been restarted, recordTrack is in mActiveTracks here
6552    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6553        ALOGV("Record stopped OK");
6554        return true;
6555    }
6556    return false;
6557}
6558
6559bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6560{
6561    return false;
6562}
6563
6564status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6565{
6566#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6567    if (!isValidSyncEvent(event)) {
6568        return BAD_VALUE;
6569    }
6570
6571    audio_session_t eventSession = event->triggerSession();
6572    status_t ret = NAME_NOT_FOUND;
6573
6574    Mutex::Autolock _l(mLock);
6575
6576    for (size_t i = 0; i < mTracks.size(); i++) {
6577        sp<RecordTrack> track = mTracks[i];
6578        if (eventSession == track->sessionId()) {
6579            (void) track->setSyncEvent(event);
6580            ret = NO_ERROR;
6581        }
6582    }
6583    return ret;
6584#else
6585    return BAD_VALUE;
6586#endif
6587}
6588
6589// destroyTrack_l() must be called with ThreadBase::mLock held
6590void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6591{
6592    track->terminate();
6593    track->mState = TrackBase::STOPPED;
6594    // active tracks are removed by threadLoop()
6595    if (mActiveTracks.indexOf(track) < 0) {
6596        removeTrack_l(track);
6597    }
6598}
6599
6600void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6601{
6602    mTracks.remove(track);
6603    // need anything related to effects here?
6604    if (track->isFastTrack()) {
6605        ALOG_ASSERT(!mFastTrackAvail);
6606        mFastTrackAvail = true;
6607    }
6608}
6609
6610void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6611{
6612    dumpInternals(fd, args);
6613    dumpTracks(fd, args);
6614    dumpEffectChains(fd, args);
6615}
6616
6617void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6618{
6619    dprintf(fd, "\nInput thread %p:\n", this);
6620
6621    dumpBase(fd, args);
6622
6623    if (mActiveTracks.size() == 0) {
6624        dprintf(fd, "  No active record clients\n");
6625    }
6626    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6627    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6628
6629    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6630    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6631    // This is a large object so we place it on the heap.
6632    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6633    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6634    copy->dump(fd);
6635    delete copy;
6636}
6637
6638void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6639{
6640    const size_t SIZE = 256;
6641    char buffer[SIZE];
6642    String8 result;
6643
6644    size_t numtracks = mTracks.size();
6645    size_t numactive = mActiveTracks.size();
6646    size_t numactiveseen = 0;
6647    dprintf(fd, "  %d Tracks", numtracks);
6648    if (numtracks) {
6649        dprintf(fd, " of which %d are active\n", numactive);
6650        RecordTrack::appendDumpHeader(result);
6651        for (size_t i = 0; i < numtracks ; ++i) {
6652            sp<RecordTrack> track = mTracks[i];
6653            if (track != 0) {
6654                bool active = mActiveTracks.indexOf(track) >= 0;
6655                if (active) {
6656                    numactiveseen++;
6657                }
6658                track->dump(buffer, SIZE, active);
6659                result.append(buffer);
6660            }
6661        }
6662    } else {
6663        dprintf(fd, "\n");
6664    }
6665
6666    if (numactiveseen != numactive) {
6667        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6668                " not in the track list\n");
6669        result.append(buffer);
6670        RecordTrack::appendDumpHeader(result);
6671        for (size_t i = 0; i < numactive; ++i) {
6672            sp<RecordTrack> track = mActiveTracks[i];
6673            if (mTracks.indexOf(track) < 0) {
6674                track->dump(buffer, SIZE, true);
6675                result.append(buffer);
6676            }
6677        }
6678
6679    }
6680    write(fd, result.string(), result.size());
6681}
6682
6683
6684void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6685{
6686    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6687    RecordThread *recordThread = (RecordThread *) threadBase.get();
6688    mRsmpInFront = recordThread->mRsmpInRear;
6689    mRsmpInUnrel = 0;
6690}
6691
6692void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6693        size_t *framesAvailable, bool *hasOverrun)
6694{
6695    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6696    RecordThread *recordThread = (RecordThread *) threadBase.get();
6697    const int32_t rear = recordThread->mRsmpInRear;
6698    const int32_t front = mRsmpInFront;
6699    const ssize_t filled = rear - front;
6700
6701    size_t framesIn;
6702    bool overrun = false;
6703    if (filled < 0) {
6704        // should not happen, but treat like a massive overrun and re-sync
6705        framesIn = 0;
6706        mRsmpInFront = rear;
6707        overrun = true;
6708    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6709        framesIn = (size_t) filled;
6710    } else {
6711        // client is not keeping up with server, but give it latest data
6712        framesIn = recordThread->mRsmpInFrames;
6713        mRsmpInFront = /* front = */ rear - framesIn;
6714        overrun = true;
6715    }
6716    if (framesAvailable != NULL) {
6717        *framesAvailable = framesIn;
6718    }
6719    if (hasOverrun != NULL) {
6720        *hasOverrun = overrun;
6721    }
6722}
6723
6724// AudioBufferProvider interface
6725status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6726        AudioBufferProvider::Buffer* buffer)
6727{
6728    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6729    if (threadBase == 0) {
6730        buffer->frameCount = 0;
6731        buffer->raw = NULL;
6732        return NOT_ENOUGH_DATA;
6733    }
6734    RecordThread *recordThread = (RecordThread *) threadBase.get();
6735    int32_t rear = recordThread->mRsmpInRear;
6736    int32_t front = mRsmpInFront;
6737    ssize_t filled = rear - front;
6738    // FIXME should not be P2 (don't want to increase latency)
6739    // FIXME if client not keeping up, discard
6740    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6741    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6742    front &= recordThread->mRsmpInFramesP2 - 1;
6743    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6744    if (part1 > (size_t) filled) {
6745        part1 = filled;
6746    }
6747    size_t ask = buffer->frameCount;
6748    ALOG_ASSERT(ask > 0);
6749    if (part1 > ask) {
6750        part1 = ask;
6751    }
6752    if (part1 == 0) {
6753        // out of data is fine since the resampler will return a short-count.
6754        buffer->raw = NULL;
6755        buffer->frameCount = 0;
6756        mRsmpInUnrel = 0;
6757        return NOT_ENOUGH_DATA;
6758    }
6759
6760    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6761    buffer->frameCount = part1;
6762    mRsmpInUnrel = part1;
6763    return NO_ERROR;
6764}
6765
6766// AudioBufferProvider interface
6767void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6768        AudioBufferProvider::Buffer* buffer)
6769{
6770    size_t stepCount = buffer->frameCount;
6771    if (stepCount == 0) {
6772        return;
6773    }
6774    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6775    mRsmpInUnrel -= stepCount;
6776    mRsmpInFront += stepCount;
6777    buffer->raw = NULL;
6778    buffer->frameCount = 0;
6779}
6780
6781AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6782        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6783        uint32_t srcSampleRate,
6784        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6785        uint32_t dstSampleRate) :
6786            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6787            // mSrcFormat
6788            // mSrcSampleRate
6789            // mDstChannelMask
6790            // mDstFormat
6791            // mDstSampleRate
6792            // mSrcChannelCount
6793            // mDstChannelCount
6794            // mDstFrameSize
6795            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6796            mResampler(NULL),
6797            mIsLegacyDownmix(false),
6798            mIsLegacyUpmix(false),
6799            mRequiresFloat(false),
6800            mInputConverterProvider(NULL)
6801{
6802    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6803            dstChannelMask, dstFormat, dstSampleRate);
6804}
6805
6806AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6807    free(mBuf);
6808    delete mResampler;
6809    delete mInputConverterProvider;
6810}
6811
6812size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6813        AudioBufferProvider *provider, size_t frames)
6814{
6815    if (mInputConverterProvider != NULL) {
6816        mInputConverterProvider->setBufferProvider(provider);
6817        provider = mInputConverterProvider;
6818    }
6819
6820    if (mResampler == NULL) {
6821        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6822                mSrcSampleRate, mSrcFormat, mDstFormat);
6823
6824        AudioBufferProvider::Buffer buffer;
6825        for (size_t i = frames; i > 0; ) {
6826            buffer.frameCount = i;
6827            status_t status = provider->getNextBuffer(&buffer);
6828            if (status != OK || buffer.frameCount == 0) {
6829                frames -= i; // cannot fill request.
6830                break;
6831            }
6832            // format convert to destination buffer
6833            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6834
6835            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6836            i -= buffer.frameCount;
6837            provider->releaseBuffer(&buffer);
6838        }
6839    } else {
6840         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6841                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6842
6843         // reallocate buffer if needed
6844         if (mBufFrameSize != 0 && mBufFrames < frames) {
6845             free(mBuf);
6846             mBufFrames = frames;
6847             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6848         }
6849        // resampler accumulates, but we only have one source track
6850        memset(mBuf, 0, frames * mBufFrameSize);
6851        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6852        // format convert to destination buffer
6853        convertResampler(dst, mBuf, frames);
6854    }
6855    return frames;
6856}
6857
6858status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6859        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6860        uint32_t srcSampleRate,
6861        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6862        uint32_t dstSampleRate)
6863{
6864    // quick evaluation if there is any change.
6865    if (mSrcFormat == srcFormat
6866            && mSrcChannelMask == srcChannelMask
6867            && mSrcSampleRate == srcSampleRate
6868            && mDstFormat == dstFormat
6869            && mDstChannelMask == dstChannelMask
6870            && mDstSampleRate == dstSampleRate) {
6871        return NO_ERROR;
6872    }
6873
6874    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6875            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6876            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6877    const bool valid =
6878            audio_is_input_channel(srcChannelMask)
6879            && audio_is_input_channel(dstChannelMask)
6880            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6881            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6882            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6883            ; // no upsampling checks for now
6884    if (!valid) {
6885        return BAD_VALUE;
6886    }
6887
6888    mSrcFormat = srcFormat;
6889    mSrcChannelMask = srcChannelMask;
6890    mSrcSampleRate = srcSampleRate;
6891    mDstFormat = dstFormat;
6892    mDstChannelMask = dstChannelMask;
6893    mDstSampleRate = dstSampleRate;
6894
6895    // compute derived parameters
6896    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6897    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6898    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6899
6900    // do we need to resample?
6901    delete mResampler;
6902    mResampler = NULL;
6903    if (mSrcSampleRate != mDstSampleRate) {
6904        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6905                mSrcChannelCount, mDstSampleRate);
6906        mResampler->setSampleRate(mSrcSampleRate);
6907        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6908    }
6909
6910    // are we running legacy channel conversion modes?
6911    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6912                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6913                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6914    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6915                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6916                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6917
6918    // do we need to process in float?
6919    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6920
6921    // do we need a staging buffer to convert for destination (we can still optimize this)?
6922    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6923    if (mResampler != NULL) {
6924        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6925                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6926    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6927        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6928    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6929        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6930    } else {
6931        mBufFrameSize = 0;
6932    }
6933    mBufFrames = 0; // force the buffer to be resized.
6934
6935    // do we need an input converter buffer provider to give us float?
6936    delete mInputConverterProvider;
6937    mInputConverterProvider = NULL;
6938    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6939        mInputConverterProvider = new ReformatBufferProvider(
6940                audio_channel_count_from_in_mask(mSrcChannelMask),
6941                mSrcFormat,
6942                AUDIO_FORMAT_PCM_FLOAT,
6943                256 /* provider buffer frame count */);
6944    }
6945
6946    // do we need a remixer to do channel mask conversion
6947    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6948        (void) memcpy_by_index_array_initialization_from_channel_mask(
6949                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6950    }
6951    return NO_ERROR;
6952}
6953
6954void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6955        void *dst, const void *src, size_t frames)
6956{
6957    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6958    if (mBufFrameSize != 0 && mBufFrames < frames) {
6959        free(mBuf);
6960        mBufFrames = frames;
6961        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6962    }
6963    // do we need to do legacy upmix and downmix?
6964    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6965        void *dstBuf = mBuf != NULL ? mBuf : dst;
6966        if (mIsLegacyUpmix) {
6967            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6968                    (const float *)src, frames);
6969        } else /*mIsLegacyDownmix */ {
6970            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6971                    (const float *)src, frames);
6972        }
6973        if (mBuf != NULL) {
6974            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6975                    frames * mDstChannelCount);
6976        }
6977        return;
6978    }
6979    // do we need to do channel mask conversion?
6980    if (mSrcChannelMask != mDstChannelMask) {
6981        void *dstBuf = mBuf != NULL ? mBuf : dst;
6982        memcpy_by_index_array(dstBuf, mDstChannelCount,
6983                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6984        if (dstBuf == dst) {
6985            return; // format is the same
6986        }
6987    }
6988    // convert to destination buffer
6989    const void *convertBuf = mBuf != NULL ? mBuf : src;
6990    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6991            frames * mDstChannelCount);
6992}
6993
6994void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6995        void *dst, /*not-a-const*/ void *src, size_t frames)
6996{
6997    // src buffer format is ALWAYS float when entering this routine
6998    if (mIsLegacyUpmix) {
6999        ; // mono to stereo already handled by resampler
7000    } else if (mIsLegacyDownmix
7001            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
7002        // the resampler outputs stereo for mono input channel (a feature?)
7003        // must convert to mono
7004        downmix_to_mono_float_from_stereo_float((float *)src,
7005                (const float *)src, frames);
7006    } else if (mSrcChannelMask != mDstChannelMask) {
7007        // convert to mono channel again for channel mask conversion (could be skipped
7008        // with further optimization).
7009        if (mSrcChannelCount == 1) {
7010            downmix_to_mono_float_from_stereo_float((float *)src,
7011                (const float *)src, frames);
7012        }
7013        // convert to destination format (in place, OK as float is larger than other types)
7014        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
7015            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7016                    frames * mSrcChannelCount);
7017        }
7018        // channel convert and save to dst
7019        memcpy_by_index_array(dst, mDstChannelCount,
7020                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
7021        return;
7022    }
7023    // convert to destination format and save to dst
7024    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
7025            frames * mDstChannelCount);
7026}
7027
7028bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
7029                                                        status_t& status)
7030{
7031    bool reconfig = false;
7032
7033    status = NO_ERROR;
7034
7035    audio_format_t reqFormat = mFormat;
7036    uint32_t samplingRate = mSampleRate;
7037    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
7038    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
7039
7040    AudioParameter param = AudioParameter(keyValuePair);
7041    int value;
7042    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7043    //      channel count change can be requested. Do we mandate the first client defines the
7044    //      HAL sampling rate and channel count or do we allow changes on the fly?
7045    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7046        samplingRate = value;
7047        reconfig = true;
7048    }
7049    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7050        if (!audio_is_linear_pcm((audio_format_t) value)) {
7051            status = BAD_VALUE;
7052        } else {
7053            reqFormat = (audio_format_t) value;
7054            reconfig = true;
7055        }
7056    }
7057    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7058        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7059        if (!audio_is_input_channel(mask) ||
7060                audio_channel_count_from_in_mask(mask) > FCC_8) {
7061            status = BAD_VALUE;
7062        } else {
7063            channelMask = mask;
7064            reconfig = true;
7065        }
7066    }
7067    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7068        // do not accept frame count changes if tracks are open as the track buffer
7069        // size depends on frame count and correct behavior would not be guaranteed
7070        // if frame count is changed after track creation
7071        if (mActiveTracks.size() > 0) {
7072            status = INVALID_OPERATION;
7073        } else {
7074            reconfig = true;
7075        }
7076    }
7077    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7078        // forward device change to effects that have requested to be
7079        // aware of attached audio device.
7080        for (size_t i = 0; i < mEffectChains.size(); i++) {
7081            mEffectChains[i]->setDevice_l(value);
7082        }
7083
7084        // store input device and output device but do not forward output device to audio HAL.
7085        // Note that status is ignored by the caller for output device
7086        // (see AudioFlinger::setParameters()
7087        if (audio_is_output_devices(value)) {
7088            mOutDevice = value;
7089            status = BAD_VALUE;
7090        } else {
7091            mInDevice = value;
7092            if (value != AUDIO_DEVICE_NONE) {
7093                mPrevInDevice = value;
7094            }
7095            // disable AEC and NS if the device is a BT SCO headset supporting those
7096            // pre processings
7097            if (mTracks.size() > 0) {
7098                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7099                                    mAudioFlinger->btNrecIsOff();
7100                for (size_t i = 0; i < mTracks.size(); i++) {
7101                    sp<RecordTrack> track = mTracks[i];
7102                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7103                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7104                }
7105            }
7106        }
7107    }
7108    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7109            mAudioSource != (audio_source_t)value) {
7110        // forward device change to effects that have requested to be
7111        // aware of attached audio device.
7112        for (size_t i = 0; i < mEffectChains.size(); i++) {
7113            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7114        }
7115        mAudioSource = (audio_source_t)value;
7116    }
7117
7118    if (status == NO_ERROR) {
7119        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7120                keyValuePair.string());
7121        if (status == INVALID_OPERATION) {
7122            inputStandBy();
7123            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7124                    keyValuePair.string());
7125        }
7126        if (reconfig) {
7127            if (status == BAD_VALUE &&
7128                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7129                audio_is_linear_pcm(reqFormat) &&
7130                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7131                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7132                audio_channel_count_from_in_mask(
7133                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7134                status = NO_ERROR;
7135            }
7136            if (status == NO_ERROR) {
7137                readInputParameters_l();
7138                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7139            }
7140        }
7141    }
7142
7143    return reconfig;
7144}
7145
7146String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7147{
7148    Mutex::Autolock _l(mLock);
7149    if (initCheck() != NO_ERROR) {
7150        return String8();
7151    }
7152
7153    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7154    const String8 out_s8(s);
7155    free(s);
7156    return out_s8;
7157}
7158
7159void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7160    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7161
7162    desc->mIoHandle = mId;
7163
7164    switch (event) {
7165    case AUDIO_INPUT_OPENED:
7166    case AUDIO_INPUT_CONFIG_CHANGED:
7167        desc->mPatch = mPatch;
7168        desc->mChannelMask = mChannelMask;
7169        desc->mSamplingRate = mSampleRate;
7170        desc->mFormat = mFormat;
7171        desc->mFrameCount = mFrameCount;
7172        desc->mLatency = 0;
7173        break;
7174
7175    case AUDIO_INPUT_CLOSED:
7176    default:
7177        break;
7178    }
7179    mAudioFlinger->ioConfigChanged(event, desc, pid);
7180}
7181
7182void AudioFlinger::RecordThread::readInputParameters_l()
7183{
7184    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7185    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7186    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7187    if (mChannelCount > FCC_8) {
7188        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7189    }
7190    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7191    mFormat = mHALFormat;
7192    if (!audio_is_linear_pcm(mFormat)) {
7193        ALOGE("HAL format %#x is not linear pcm", mFormat);
7194    }
7195    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7196    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7197    mFrameCount = mBufferSize / mFrameSize;
7198    // This is the formula for calculating the temporary buffer size.
7199    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7200    // 1 full output buffer, regardless of the alignment of the available input.
7201    // The value is somewhat arbitrary, and could probably be even larger.
7202    // A larger value should allow more old data to be read after a track calls start(),
7203    // without increasing latency.
7204    //
7205    // Note this is independent of the maximum downsampling ratio permitted for capture.
7206    mRsmpInFrames = mFrameCount * 7;
7207    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7208    free(mRsmpInBuffer);
7209    mRsmpInBuffer = NULL;
7210
7211    // TODO optimize audio capture buffer sizes ...
7212    // Here we calculate the size of the sliding buffer used as a source
7213    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7214    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7215    // be better to have it derived from the pipe depth in the long term.
7216    // The current value is higher than necessary.  However it should not add to latency.
7217
7218    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7219    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7220    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7221    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7222
7223    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7224    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7225}
7226
7227uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7228{
7229    Mutex::Autolock _l(mLock);
7230    if (initCheck() != NO_ERROR) {
7231        return 0;
7232    }
7233
7234    return mInput->stream->get_input_frames_lost(mInput->stream);
7235}
7236
7237uint32_t AudioFlinger::RecordThread::hasAudioSession(audio_session_t sessionId) const
7238{
7239    Mutex::Autolock _l(mLock);
7240    uint32_t result = 0;
7241    if (getEffectChain_l(sessionId) != 0) {
7242        result = EFFECT_SESSION;
7243    }
7244
7245    for (size_t i = 0; i < mTracks.size(); ++i) {
7246        if (sessionId == mTracks[i]->sessionId()) {
7247            result |= TRACK_SESSION;
7248            break;
7249        }
7250    }
7251
7252    return result;
7253}
7254
7255KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7256{
7257    KeyedVector<audio_session_t, bool> ids;
7258    Mutex::Autolock _l(mLock);
7259    for (size_t j = 0; j < mTracks.size(); ++j) {
7260        sp<RecordThread::RecordTrack> track = mTracks[j];
7261        audio_session_t sessionId = track->sessionId();
7262        if (ids.indexOfKey(sessionId) < 0) {
7263            ids.add(sessionId, true);
7264        }
7265    }
7266    return ids;
7267}
7268
7269AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7270{
7271    Mutex::Autolock _l(mLock);
7272    AudioStreamIn *input = mInput;
7273    mInput = NULL;
7274    return input;
7275}
7276
7277// this method must always be called either with ThreadBase mLock held or inside the thread loop
7278audio_stream_t* AudioFlinger::RecordThread::stream() const
7279{
7280    if (mInput == NULL) {
7281        return NULL;
7282    }
7283    return &mInput->stream->common;
7284}
7285
7286status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7287{
7288    // only one chain per input thread
7289    if (mEffectChains.size() != 0) {
7290        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7291        return INVALID_OPERATION;
7292    }
7293    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7294    chain->setThread(this);
7295    chain->setInBuffer(NULL);
7296    chain->setOutBuffer(NULL);
7297
7298    checkSuspendOnAddEffectChain_l(chain);
7299
7300    // make sure enabled pre processing effects state is communicated to the HAL as we
7301    // just moved them to a new input stream.
7302    chain->syncHalEffectsState();
7303
7304    mEffectChains.add(chain);
7305
7306    return NO_ERROR;
7307}
7308
7309size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7310{
7311    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7312    ALOGW_IF(mEffectChains.size() != 1,
7313            "removeEffectChain_l() %p invalid chain size %d on thread %p",
7314            chain.get(), mEffectChains.size(), this);
7315    if (mEffectChains.size() == 1) {
7316        mEffectChains.removeAt(0);
7317    }
7318    return 0;
7319}
7320
7321status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7322                                                          audio_patch_handle_t *handle)
7323{
7324    status_t status = NO_ERROR;
7325
7326    // store new device and send to effects
7327    mInDevice = patch->sources[0].ext.device.type;
7328    mPatch = *patch;
7329    for (size_t i = 0; i < mEffectChains.size(); i++) {
7330        mEffectChains[i]->setDevice_l(mInDevice);
7331    }
7332
7333    // disable AEC and NS if the device is a BT SCO headset supporting those
7334    // pre processings
7335    if (mTracks.size() > 0) {
7336        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7337                            mAudioFlinger->btNrecIsOff();
7338        for (size_t i = 0; i < mTracks.size(); i++) {
7339            sp<RecordTrack> track = mTracks[i];
7340            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7341            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7342        }
7343    }
7344
7345    // store new source and send to effects
7346    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7347        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7348        for (size_t i = 0; i < mEffectChains.size(); i++) {
7349            mEffectChains[i]->setAudioSource_l(mAudioSource);
7350        }
7351    }
7352
7353    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7354        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7355        status = hwDevice->create_audio_patch(hwDevice,
7356                                               patch->num_sources,
7357                                               patch->sources,
7358                                               patch->num_sinks,
7359                                               patch->sinks,
7360                                               handle);
7361    } else {
7362        char *address;
7363        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7364            address = audio_device_address_to_parameter(
7365                                                patch->sources[0].ext.device.type,
7366                                                patch->sources[0].ext.device.address);
7367        } else {
7368            address = (char *)calloc(1, 1);
7369        }
7370        AudioParameter param = AudioParameter(String8(address));
7371        free(address);
7372        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7373                     (int)patch->sources[0].ext.device.type);
7374        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7375                                         (int)patch->sinks[0].ext.mix.usecase.source);
7376        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7377                param.toString().string());
7378        *handle = AUDIO_PATCH_HANDLE_NONE;
7379    }
7380
7381    if (mInDevice != mPrevInDevice) {
7382        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7383        mPrevInDevice = mInDevice;
7384    }
7385
7386    return status;
7387}
7388
7389status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7390{
7391    status_t status = NO_ERROR;
7392
7393    mInDevice = AUDIO_DEVICE_NONE;
7394
7395    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7396        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7397        status = hwDevice->release_audio_patch(hwDevice, handle);
7398    } else {
7399        AudioParameter param;
7400        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7401        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7402                param.toString().string());
7403    }
7404    return status;
7405}
7406
7407void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7408{
7409    Mutex::Autolock _l(mLock);
7410    mTracks.add(record);
7411}
7412
7413void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7414{
7415    Mutex::Autolock _l(mLock);
7416    destroyTrack_l(record);
7417}
7418
7419void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7420{
7421    ThreadBase::getAudioPortConfig(config);
7422    config->role = AUDIO_PORT_ROLE_SINK;
7423    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7424    config->ext.mix.usecase.source = mAudioSource;
7425}
7426
7427} // namespace android
7428