ValueAnimator.java revision 0a815bb94fa2aad016a10fe23633efc5682d2a7c
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.animation;
18
19import android.annotation.CallSuper;
20import android.annotation.IntDef;
21import android.annotation.TestApi;
22import android.os.Looper;
23import android.os.Trace;
24import android.util.AndroidRuntimeException;
25import android.util.Log;
26import android.view.animation.AccelerateDecelerateInterpolator;
27import android.view.animation.AnimationUtils;
28import android.view.animation.LinearInterpolator;
29
30import java.lang.annotation.Retention;
31import java.lang.annotation.RetentionPolicy;
32import java.util.ArrayList;
33import java.util.HashMap;
34
35/**
36 * This class provides a simple timing engine for running animations
37 * which calculate animated values and set them on target objects.
38 *
39 * <p>There is a single timing pulse that all animations use. It runs in a
40 * custom handler to ensure that property changes happen on the UI thread.</p>
41 *
42 * <p>By default, ValueAnimator uses non-linear time interpolation, via the
43 * {@link AccelerateDecelerateInterpolator} class, which accelerates into and decelerates
44 * out of an animation. This behavior can be changed by calling
45 * {@link ValueAnimator#setInterpolator(TimeInterpolator)}.</p>
46 *
47 * <p>Animators can be created from either code or resource files. Here is an example
48 * of a ValueAnimator resource file:</p>
49 *
50 * {@sample development/samples/ApiDemos/res/anim/animator.xml ValueAnimatorResources}
51 *
52 * <p>It is also possible to use a combination of {@link PropertyValuesHolder} and
53 * {@link Keyframe} resource tags to create a multi-step animation.
54 * Note that you can specify explicit fractional values (from 0 to 1) for
55 * each keyframe to determine when, in the overall duration, the animation should arrive at that
56 * value. Alternatively, you can leave the fractions off and the keyframes will be equally
57 * distributed within the total duration:</p>
58 *
59 * {@sample development/samples/ApiDemos/res/anim/value_animator_pvh_kf.xml
60 * ValueAnimatorKeyframeResources}
61 *
62 * <div class="special reference">
63 * <h3>Developer Guides</h3>
64 * <p>For more information about animating with {@code ValueAnimator}, read the
65 * <a href="{@docRoot}guide/topics/graphics/prop-animation.html#value-animator">Property
66 * Animation</a> developer guide.</p>
67 * </div>
68 */
69@SuppressWarnings("unchecked")
70public class ValueAnimator extends Animator implements AnimationHandler.AnimationFrameCallback {
71    private static final String TAG = "ValueAnimator";
72    private static final boolean DEBUG = false;
73
74    /**
75     * Internal constants
76     */
77    private static float sDurationScale = 1.0f;
78
79    /**
80     * Internal variables
81     * NOTE: This object implements the clone() method, making a deep copy of any referenced
82     * objects. As other non-trivial fields are added to this class, make sure to add logic
83     * to clone() to make deep copies of them.
84     */
85
86    /**
87     * The first time that the animation's animateFrame() method is called. This time is used to
88     * determine elapsed time (and therefore the elapsed fraction) in subsequent calls
89     * to animateFrame().
90     *
91     * Whenever mStartTime is set, you must also update mStartTimeCommitted.
92     */
93    long mStartTime;
94
95    /**
96     * When true, the start time has been firmly committed as a chosen reference point in
97     * time by which the progress of the animation will be evaluated.  When false, the
98     * start time may be updated when the first animation frame is committed so as
99     * to compensate for jank that may have occurred between when the start time was
100     * initialized and when the frame was actually drawn.
101     *
102     * This flag is generally set to false during the first frame of the animation
103     * when the animation playing state transitions from STOPPED to RUNNING or
104     * resumes after having been paused.  This flag is set to true when the start time
105     * is firmly committed and should not be further compensated for jank.
106     */
107    boolean mStartTimeCommitted;
108
109    /**
110     * Set when setCurrentPlayTime() is called. If negative, animation is not currently seeked
111     * to a value.
112     */
113    float mSeekFraction = -1;
114
115    /**
116     * Set on the next frame after pause() is called, used to calculate a new startTime
117     * or delayStartTime which allows the animator to continue from the point at which
118     * it was paused. If negative, has not yet been set.
119     */
120    private long mPauseTime;
121
122    /**
123     * Set when an animator is resumed. This triggers logic in the next frame which
124     * actually resumes the animator.
125     */
126    private boolean mResumed = false;
127
128    // The time interpolator to be used if none is set on the animation
129    private static final TimeInterpolator sDefaultInterpolator =
130            new AccelerateDecelerateInterpolator();
131
132    /**
133     * Flag to indicate whether this animator is playing in reverse mode, specifically
134     * by being started or interrupted by a call to reverse(). This flag is different than
135     * mPlayingBackwards, which indicates merely whether the current iteration of the
136     * animator is playing in reverse. It is used in corner cases to determine proper end
137     * behavior.
138     */
139    private boolean mReversing;
140
141    /**
142     * Tracks the overall fraction of the animation, ranging from 0 to mRepeatCount + 1
143     */
144    private float mOverallFraction = 0f;
145
146    /**
147     * Tracks current elapsed/eased fraction, for querying in getAnimatedFraction().
148     * This is calculated by interpolating the fraction (range: [0, 1]) in the current iteration.
149     */
150    private float mCurrentFraction = 0f;
151
152    /**
153     * Tracks the time (in milliseconds) when the last frame arrived.
154     */
155    private long mLastFrameTime = 0;
156
157    /**
158     * Additional playing state to indicate whether an animator has been start()'d. There is
159     * some lag between a call to start() and the first animation frame. We should still note
160     * that the animation has been started, even if it's first animation frame has not yet
161     * happened, and reflect that state in isRunning().
162     * Note that delayed animations are different: they are not started until their first
163     * animation frame, which occurs after their delay elapses.
164     */
165    private boolean mRunning = false;
166
167    /**
168     * Additional playing state to indicate whether an animator has been start()'d, whether or
169     * not there is a nonzero startDelay.
170     */
171    private boolean mStarted = false;
172
173    /**
174     * Tracks whether we've notified listeners of the onAnimationStart() event. This can be
175     * complex to keep track of since we notify listeners at different times depending on
176     * startDelay and whether start() was called before end().
177     */
178    private boolean mStartListenersCalled = false;
179
180    /**
181     * Flag that denotes whether the animation is set up and ready to go. Used to
182     * set up animation that has not yet been started.
183     */
184    boolean mInitialized = false;
185
186    /**
187     * Flag that tracks whether animation has been requested to end.
188     */
189    private boolean mAnimationEndRequested = false;
190
191    //
192    // Backing variables
193    //
194
195    // How long the animation should last in ms
196    private long mDuration = 300;
197
198    // The amount of time in ms to delay starting the animation after start() is called. Note
199    // that this start delay is unscaled. When there is a duration scale set on the animator, the
200    // scaling factor will be applied to this delay.
201    private long mStartDelay = 0;
202
203    // The number of times the animation will repeat. The default is 0, which means the animation
204    // will play only once
205    private int mRepeatCount = 0;
206
207    /**
208     * The type of repetition that will occur when repeatMode is nonzero. RESTART means the
209     * animation will start from the beginning on every new cycle. REVERSE means the animation
210     * will reverse directions on each iteration.
211     */
212    private int mRepeatMode = RESTART;
213
214    /**
215     * The time interpolator to be used. The elapsed fraction of the animation will be passed
216     * through this interpolator to calculate the interpolated fraction, which is then used to
217     * calculate the animated values.
218     */
219    private TimeInterpolator mInterpolator = sDefaultInterpolator;
220
221    /**
222     * The set of listeners to be sent events through the life of an animation.
223     */
224    ArrayList<AnimatorUpdateListener> mUpdateListeners = null;
225
226    /**
227     * The property/value sets being animated.
228     */
229    PropertyValuesHolder[] mValues;
230
231    /**
232     * A hashmap of the PropertyValuesHolder objects. This map is used to lookup animated values
233     * by property name during calls to getAnimatedValue(String).
234     */
235    HashMap<String, PropertyValuesHolder> mValuesMap;
236
237    /**
238     * Public constants
239     */
240
241    /** @hide */
242    @IntDef({RESTART, REVERSE})
243    @Retention(RetentionPolicy.SOURCE)
244    public @interface RepeatMode {}
245
246    /**
247     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
248     * or a positive value, the animation restarts from the beginning.
249     */
250    public static final int RESTART = 1;
251    /**
252     * When the animation reaches the end and <code>repeatCount</code> is INFINITE
253     * or a positive value, the animation reverses direction on every iteration.
254     */
255    public static final int REVERSE = 2;
256    /**
257     * This value used used with the {@link #setRepeatCount(int)} property to repeat
258     * the animation indefinitely.
259     */
260    public static final int INFINITE = -1;
261
262    /**
263     * @hide
264     */
265    @TestApi
266    public static void setDurationScale(float durationScale) {
267        sDurationScale = durationScale;
268    }
269
270    /**
271     * @hide
272     */
273    @TestApi
274    public static float getDurationScale() {
275        return sDurationScale;
276    }
277
278    /**
279     * Creates a new ValueAnimator object. This default constructor is primarily for
280     * use internally; the factory methods which take parameters are more generally
281     * useful.
282     */
283    public ValueAnimator() {
284    }
285
286    /**
287     * Constructs and returns a ValueAnimator that animates between int values. A single
288     * value implies that that value is the one being animated to. However, this is not typically
289     * useful in a ValueAnimator object because there is no way for the object to determine the
290     * starting value for the animation (unlike ObjectAnimator, which can derive that value
291     * from the target object and property being animated). Therefore, there should typically
292     * be two or more values.
293     *
294     * @param values A set of values that the animation will animate between over time.
295     * @return A ValueAnimator object that is set up to animate between the given values.
296     */
297    public static ValueAnimator ofInt(int... values) {
298        ValueAnimator anim = new ValueAnimator();
299        anim.setIntValues(values);
300        return anim;
301    }
302
303    /**
304     * Constructs and returns a ValueAnimator that animates between color values. A single
305     * value implies that that value is the one being animated to. However, this is not typically
306     * useful in a ValueAnimator object because there is no way for the object to determine the
307     * starting value for the animation (unlike ObjectAnimator, which can derive that value
308     * from the target object and property being animated). Therefore, there should typically
309     * be two or more values.
310     *
311     * @param values A set of values that the animation will animate between over time.
312     * @return A ValueAnimator object that is set up to animate between the given values.
313     */
314    public static ValueAnimator ofArgb(int... values) {
315        ValueAnimator anim = new ValueAnimator();
316        anim.setIntValues(values);
317        anim.setEvaluator(ArgbEvaluator.getInstance());
318        return anim;
319    }
320
321    /**
322     * Constructs and returns a ValueAnimator that animates between float values. A single
323     * value implies that that value is the one being animated to. However, this is not typically
324     * useful in a ValueAnimator object because there is no way for the object to determine the
325     * starting value for the animation (unlike ObjectAnimator, which can derive that value
326     * from the target object and property being animated). Therefore, there should typically
327     * be two or more values.
328     *
329     * @param values A set of values that the animation will animate between over time.
330     * @return A ValueAnimator object that is set up to animate between the given values.
331     */
332    public static ValueAnimator ofFloat(float... values) {
333        ValueAnimator anim = new ValueAnimator();
334        anim.setFloatValues(values);
335        return anim;
336    }
337
338    /**
339     * Constructs and returns a ValueAnimator that animates between the values
340     * specified in the PropertyValuesHolder objects.
341     *
342     * @param values A set of PropertyValuesHolder objects whose values will be animated
343     * between over time.
344     * @return A ValueAnimator object that is set up to animate between the given values.
345     */
346    public static ValueAnimator ofPropertyValuesHolder(PropertyValuesHolder... values) {
347        ValueAnimator anim = new ValueAnimator();
348        anim.setValues(values);
349        return anim;
350    }
351    /**
352     * Constructs and returns a ValueAnimator that animates between Object values. A single
353     * value implies that that value is the one being animated to. However, this is not typically
354     * useful in a ValueAnimator object because there is no way for the object to determine the
355     * starting value for the animation (unlike ObjectAnimator, which can derive that value
356     * from the target object and property being animated). Therefore, there should typically
357     * be two or more values.
358     *
359     * <p><strong>Note:</strong> The Object values are stored as references to the original
360     * objects, which means that changes to those objects after this method is called will
361     * affect the values on the animator. If the objects will be mutated externally after
362     * this method is called, callers should pass a copy of those objects instead.
363     *
364     * <p>Since ValueAnimator does not know how to animate between arbitrary Objects, this
365     * factory method also takes a TypeEvaluator object that the ValueAnimator will use
366     * to perform that interpolation.
367     *
368     * @param evaluator A TypeEvaluator that will be called on each animation frame to
369     * provide the ncessry interpolation between the Object values to derive the animated
370     * value.
371     * @param values A set of values that the animation will animate between over time.
372     * @return A ValueAnimator object that is set up to animate between the given values.
373     */
374    public static ValueAnimator ofObject(TypeEvaluator evaluator, Object... values) {
375        ValueAnimator anim = new ValueAnimator();
376        anim.setObjectValues(values);
377        anim.setEvaluator(evaluator);
378        return anim;
379    }
380
381    /**
382     * Sets int values that will be animated between. A single
383     * value implies that that value is the one being animated to. However, this is not typically
384     * useful in a ValueAnimator object because there is no way for the object to determine the
385     * starting value for the animation (unlike ObjectAnimator, which can derive that value
386     * from the target object and property being animated). Therefore, there should typically
387     * be two or more values.
388     *
389     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
390     * than one PropertyValuesHolder object, this method will set the values for the first
391     * of those objects.</p>
392     *
393     * @param values A set of values that the animation will animate between over time.
394     */
395    public void setIntValues(int... values) {
396        if (values == null || values.length == 0) {
397            return;
398        }
399        if (mValues == null || mValues.length == 0) {
400            setValues(PropertyValuesHolder.ofInt("", values));
401        } else {
402            PropertyValuesHolder valuesHolder = mValues[0];
403            valuesHolder.setIntValues(values);
404        }
405        // New property/values/target should cause re-initialization prior to starting
406        mInitialized = false;
407    }
408
409    /**
410     * Sets float values that will be animated between. A single
411     * value implies that that value is the one being animated to. However, this is not typically
412     * useful in a ValueAnimator object because there is no way for the object to determine the
413     * starting value for the animation (unlike ObjectAnimator, which can derive that value
414     * from the target object and property being animated). Therefore, there should typically
415     * be two or more values.
416     *
417     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
418     * than one PropertyValuesHolder object, this method will set the values for the first
419     * of those objects.</p>
420     *
421     * @param values A set of values that the animation will animate between over time.
422     */
423    public void setFloatValues(float... values) {
424        if (values == null || values.length == 0) {
425            return;
426        }
427        if (mValues == null || mValues.length == 0) {
428            setValues(PropertyValuesHolder.ofFloat("", values));
429        } else {
430            PropertyValuesHolder valuesHolder = mValues[0];
431            valuesHolder.setFloatValues(values);
432        }
433        // New property/values/target should cause re-initialization prior to starting
434        mInitialized = false;
435    }
436
437    /**
438     * Sets the values to animate between for this animation. A single
439     * value implies that that value is the one being animated to. However, this is not typically
440     * useful in a ValueAnimator object because there is no way for the object to determine the
441     * starting value for the animation (unlike ObjectAnimator, which can derive that value
442     * from the target object and property being animated). Therefore, there should typically
443     * be two or more values.
444     *
445     * <p><strong>Note:</strong> The Object values are stored as references to the original
446     * objects, which means that changes to those objects after this method is called will
447     * affect the values on the animator. If the objects will be mutated externally after
448     * this method is called, callers should pass a copy of those objects instead.
449     *
450     * <p>If there are already multiple sets of values defined for this ValueAnimator via more
451     * than one PropertyValuesHolder object, this method will set the values for the first
452     * of those objects.</p>
453     *
454     * <p>There should be a TypeEvaluator set on the ValueAnimator that knows how to interpolate
455     * between these value objects. ValueAnimator only knows how to interpolate between the
456     * primitive types specified in the other setValues() methods.</p>
457     *
458     * @param values The set of values to animate between.
459     */
460    public void setObjectValues(Object... values) {
461        if (values == null || values.length == 0) {
462            return;
463        }
464        if (mValues == null || mValues.length == 0) {
465            setValues(PropertyValuesHolder.ofObject("", null, values));
466        } else {
467            PropertyValuesHolder valuesHolder = mValues[0];
468            valuesHolder.setObjectValues(values);
469        }
470        // New property/values/target should cause re-initialization prior to starting
471        mInitialized = false;
472    }
473
474    /**
475     * Sets the values, per property, being animated between. This function is called internally
476     * by the constructors of ValueAnimator that take a list of values. But a ValueAnimator can
477     * be constructed without values and this method can be called to set the values manually
478     * instead.
479     *
480     * @param values The set of values, per property, being animated between.
481     */
482    public void setValues(PropertyValuesHolder... values) {
483        int numValues = values.length;
484        mValues = values;
485        mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
486        for (int i = 0; i < numValues; ++i) {
487            PropertyValuesHolder valuesHolder = values[i];
488            mValuesMap.put(valuesHolder.getPropertyName(), valuesHolder);
489        }
490        // New property/values/target should cause re-initialization prior to starting
491        mInitialized = false;
492    }
493
494    /**
495     * Returns the values that this ValueAnimator animates between. These values are stored in
496     * PropertyValuesHolder objects, even if the ValueAnimator was created with a simple list
497     * of value objects instead.
498     *
499     * @return PropertyValuesHolder[] An array of PropertyValuesHolder objects which hold the
500     * values, per property, that define the animation.
501     */
502    public PropertyValuesHolder[] getValues() {
503        return mValues;
504    }
505
506    /**
507     * This function is called immediately before processing the first animation
508     * frame of an animation. If there is a nonzero <code>startDelay</code>, the
509     * function is called after that delay ends.
510     * It takes care of the final initialization steps for the
511     * animation.
512     *
513     *  <p>Overrides of this method should call the superclass method to ensure
514     *  that internal mechanisms for the animation are set up correctly.</p>
515     */
516    @CallSuper
517    void initAnimation() {
518        if (!mInitialized) {
519            int numValues = mValues.length;
520            for (int i = 0; i < numValues; ++i) {
521                mValues[i].init();
522            }
523            mInitialized = true;
524        }
525    }
526
527    /**
528     * Sets the length of the animation. The default duration is 300 milliseconds.
529     *
530     * @param duration The length of the animation, in milliseconds. This value cannot
531     * be negative.
532     * @return ValueAnimator The object called with setDuration(). This return
533     * value makes it easier to compose statements together that construct and then set the
534     * duration, as in <code>ValueAnimator.ofInt(0, 10).setDuration(500).start()</code>.
535     */
536    @Override
537    public ValueAnimator setDuration(long duration) {
538        if (duration < 0) {
539            throw new IllegalArgumentException("Animators cannot have negative duration: " +
540                    duration);
541        }
542        mDuration = duration;
543        return this;
544    }
545
546    private long getScaledDuration() {
547        return (long)(mDuration * sDurationScale);
548    }
549
550    /**
551     * Gets the length of the animation. The default duration is 300 milliseconds.
552     *
553     * @return The length of the animation, in milliseconds.
554     */
555    @Override
556    public long getDuration() {
557        return mDuration;
558    }
559
560    @Override
561    public long getTotalDuration() {
562        if (mRepeatCount == INFINITE) {
563            return DURATION_INFINITE;
564        } else {
565            return mStartDelay + (mDuration * (mRepeatCount + 1));
566        }
567    }
568
569    /**
570     * Sets the position of the animation to the specified point in time. This time should
571     * be between 0 and the total duration of the animation, including any repetition. If
572     * the animation has not yet been started, then it will not advance forward after it is
573     * set to this time; it will simply set the time to this value and perform any appropriate
574     * actions based on that time. If the animation is already running, then setCurrentPlayTime()
575     * will set the current playing time to this value and continue playing from that point.
576     *
577     * @param playTime The time, in milliseconds, to which the animation is advanced or rewound.
578     */
579    public void setCurrentPlayTime(long playTime) {
580        float fraction = mDuration > 0 ? (float) playTime / mDuration : 1;
581        setCurrentFraction(fraction);
582    }
583
584    /**
585     * Sets the position of the animation to the specified fraction. This fraction should
586     * be between 0 and the total fraction of the animation, including any repetition. That is,
587     * a fraction of 0 will position the animation at the beginning, a value of 1 at the end,
588     * and a value of 2 at the end of a reversing animator that repeats once. If
589     * the animation has not yet been started, then it will not advance forward after it is
590     * set to this fraction; it will simply set the fraction to this value and perform any
591     * appropriate actions based on that fraction. If the animation is already running, then
592     * setCurrentFraction() will set the current fraction to this value and continue
593     * playing from that point. {@link Animator.AnimatorListener} events are not called
594     * due to changing the fraction; those events are only processed while the animation
595     * is running.
596     *
597     * @param fraction The fraction to which the animation is advanced or rewound. Values
598     * outside the range of 0 to the maximum fraction for the animator will be clamped to
599     * the correct range.
600     */
601    public void setCurrentFraction(float fraction) {
602        initAnimation();
603        fraction = clampFraction(fraction);
604        long seekTime = (long) (getScaledDuration() * fraction);
605        long currentTime = AnimationUtils.currentAnimationTimeMillis();
606        mStartTime = currentTime - seekTime;
607        mStartTimeCommitted = true; // do not allow start time to be compensated for jank
608        if (!isPulsingInternal()) {
609            // If the animation loop hasn't started, the startTime will be adjusted in the first
610            // frame based on seek fraction.
611            mSeekFraction = fraction;
612        }
613        mOverallFraction = fraction;
614        final float currentIterationFraction = getCurrentIterationFraction(fraction);
615        animateValue(currentIterationFraction);
616    }
617
618    /**
619     * Calculates current iteration based on the overall fraction. The overall fraction will be
620     * in the range of [0, mRepeatCount + 1]. Both current iteration and fraction in the current
621     * iteration can be derived from it.
622     */
623    private int getCurrentIteration(float fraction) {
624        fraction = clampFraction(fraction);
625        // If the overall fraction is a positive integer, we consider the current iteration to be
626        // complete. In other words, the fraction for the current iteration would be 1, and the
627        // current iteration would be overall fraction - 1.
628        double iteration = Math.floor(fraction);
629        if (fraction == iteration && fraction > 0) {
630            iteration--;
631        }
632        return (int) iteration;
633    }
634
635    /**
636     * Calculates the fraction of the current iteration, taking into account whether the animation
637     * should be played backwards. E.g. When the animation is played backwards in an iteration,
638     * the fraction for that iteration will go from 1f to 0f.
639     */
640    private float getCurrentIterationFraction(float fraction) {
641        fraction = clampFraction(fraction);
642        int iteration = getCurrentIteration(fraction);
643        float currentFraction = fraction - iteration;
644        return shouldPlayBackward(iteration) ? 1f - currentFraction : currentFraction;
645    }
646
647    /**
648     * Clamps fraction into the correct range: [0, mRepeatCount + 1]. If repeat count is infinite,
649     * no upper bound will be set for the fraction.
650     *
651     * @param fraction fraction to be clamped
652     * @return fraction clamped into the range of [0, mRepeatCount + 1]
653     */
654    private float clampFraction(float fraction) {
655        if (fraction < 0) {
656            fraction = 0;
657        } else if (mRepeatCount != INFINITE) {
658            fraction = Math.min(fraction, mRepeatCount + 1);
659        }
660        return fraction;
661    }
662
663    /**
664     * Calculates the direction of animation playing (i.e. forward or backward), based on 1)
665     * whether the entire animation is being reversed, 2) repeat mode applied to the current
666     * iteration.
667     */
668    private boolean shouldPlayBackward(int iteration) {
669        if (iteration > 0 && mRepeatMode == REVERSE &&
670                (iteration < (mRepeatCount + 1) || mRepeatCount == INFINITE)) {
671            // if we were seeked to some other iteration in a reversing animator,
672            // figure out the correct direction to start playing based on the iteration
673            if (mReversing) {
674                return (iteration % 2) == 0;
675            } else {
676                return (iteration % 2) != 0;
677            }
678        } else {
679            return mReversing;
680        }
681    }
682
683    /**
684     * Gets the current position of the animation in time, which is equal to the current
685     * time minus the time that the animation started. An animation that is not yet started will
686     * return a value of zero, unless the animation has has its play time set via
687     * {@link #setCurrentPlayTime(long)} or {@link #setCurrentFraction(float)}, in which case
688     * it will return the time that was set.
689     *
690     * @return The current position in time of the animation.
691     */
692    public long getCurrentPlayTime() {
693        if (!mInitialized || (!mStarted && mSeekFraction < 0)) {
694            return 0;
695        }
696        if (mSeekFraction >= 0) {
697            return (long) (mDuration * mSeekFraction);
698        }
699        float durationScale = sDurationScale == 0 ? 1 : sDurationScale;
700        return (long) ((AnimationUtils.currentAnimationTimeMillis() - mStartTime) / durationScale);
701    }
702
703    /**
704     * The amount of time, in milliseconds, to delay starting the animation after
705     * {@link #start()} is called.
706     *
707     * @return the number of milliseconds to delay running the animation
708     */
709    @Override
710    public long getStartDelay() {
711        return mStartDelay;
712    }
713
714    /**
715     * The amount of time, in milliseconds, to delay starting the animation after
716     * {@link #start()} is called. Note that the start delay should always be non-negative. Any
717     * negative start delay will be clamped to 0 on N and above.
718     *
719     * @param startDelay The amount of the delay, in milliseconds
720     */
721    @Override
722    public void setStartDelay(long startDelay) {
723        // Clamp start delay to non-negative range.
724        if (startDelay < 0) {
725            Log.w(TAG, "Start delay should always be non-negative");
726            startDelay = 0;
727        }
728        mStartDelay = startDelay;
729    }
730
731    /**
732     * The amount of time, in milliseconds, between each frame of the animation. This is a
733     * requested time that the animation will attempt to honor, but the actual delay between
734     * frames may be different, depending on system load and capabilities. This is a static
735     * function because the same delay will be applied to all animations, since they are all
736     * run off of a single timing loop.
737     *
738     * The frame delay may be ignored when the animation system uses an external timing
739     * source, such as the display refresh rate (vsync), to govern animations.
740     *
741     * Note that this method should be called from the same thread that {@link #start()} is
742     * called in order to check the frame delay for that animation. A runtime exception will be
743     * thrown if the calling thread does not have a Looper.
744     *
745     * @return the requested time between frames, in milliseconds
746     */
747    public static long getFrameDelay() {
748        return AnimationHandler.getInstance().getFrameDelay();
749    }
750
751    /**
752     * The amount of time, in milliseconds, between each frame of the animation. This is a
753     * requested time that the animation will attempt to honor, but the actual delay between
754     * frames may be different, depending on system load and capabilities. This is a static
755     * function because the same delay will be applied to all animations, since they are all
756     * run off of a single timing loop.
757     *
758     * The frame delay may be ignored when the animation system uses an external timing
759     * source, such as the display refresh rate (vsync), to govern animations.
760     *
761     * Note that this method should be called from the same thread that {@link #start()} is
762     * called in order to have the new frame delay take effect on that animation. A runtime
763     * exception will be thrown if the calling thread does not have a Looper.
764     *
765     * @param frameDelay the requested time between frames, in milliseconds
766     */
767    public static void setFrameDelay(long frameDelay) {
768        AnimationHandler.getInstance().setFrameDelay(frameDelay);
769    }
770
771    /**
772     * The most recent value calculated by this <code>ValueAnimator</code> when there is just one
773     * property being animated. This value is only sensible while the animation is running. The main
774     * purpose for this read-only property is to retrieve the value from the <code>ValueAnimator</code>
775     * during a call to {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
776     * is called during each animation frame, immediately after the value is calculated.
777     *
778     * @return animatedValue The value most recently calculated by this <code>ValueAnimator</code> for
779     * the single property being animated. If there are several properties being animated
780     * (specified by several PropertyValuesHolder objects in the constructor), this function
781     * returns the animated value for the first of those objects.
782     */
783    public Object getAnimatedValue() {
784        if (mValues != null && mValues.length > 0) {
785            return mValues[0].getAnimatedValue();
786        }
787        // Shouldn't get here; should always have values unless ValueAnimator was set up wrong
788        return null;
789    }
790
791    /**
792     * The most recent value calculated by this <code>ValueAnimator</code> for <code>propertyName</code>.
793     * The main purpose for this read-only property is to retrieve the value from the
794     * <code>ValueAnimator</code> during a call to
795     * {@link AnimatorUpdateListener#onAnimationUpdate(ValueAnimator)}, which
796     * is called during each animation frame, immediately after the value is calculated.
797     *
798     * @return animatedValue The value most recently calculated for the named property
799     * by this <code>ValueAnimator</code>.
800     */
801    public Object getAnimatedValue(String propertyName) {
802        PropertyValuesHolder valuesHolder = mValuesMap.get(propertyName);
803        if (valuesHolder != null) {
804            return valuesHolder.getAnimatedValue();
805        } else {
806            // At least avoid crashing if called with bogus propertyName
807            return null;
808        }
809    }
810
811    /**
812     * Sets how many times the animation should be repeated. If the repeat
813     * count is 0, the animation is never repeated. If the repeat count is
814     * greater than 0 or {@link #INFINITE}, the repeat mode will be taken
815     * into account. The repeat count is 0 by default.
816     *
817     * @param value the number of times the animation should be repeated
818     */
819    public void setRepeatCount(int value) {
820        mRepeatCount = value;
821    }
822    /**
823     * Defines how many times the animation should repeat. The default value
824     * is 0.
825     *
826     * @return the number of times the animation should repeat, or {@link #INFINITE}
827     */
828    public int getRepeatCount() {
829        return mRepeatCount;
830    }
831
832    /**
833     * Defines what this animation should do when it reaches the end. This
834     * setting is applied only when the repeat count is either greater than
835     * 0 or {@link #INFINITE}. Defaults to {@link #RESTART}.
836     *
837     * @param value {@link #RESTART} or {@link #REVERSE}
838     */
839    public void setRepeatMode(@RepeatMode int value) {
840        mRepeatMode = value;
841    }
842
843    /**
844     * Defines what this animation should do when it reaches the end.
845     *
846     * @return either one of {@link #REVERSE} or {@link #RESTART}
847     */
848    @RepeatMode
849    public int getRepeatMode() {
850        return mRepeatMode;
851    }
852
853    /**
854     * Adds a listener to the set of listeners that are sent update events through the life of
855     * an animation. This method is called on all listeners for every frame of the animation,
856     * after the values for the animation have been calculated.
857     *
858     * @param listener the listener to be added to the current set of listeners for this animation.
859     */
860    public void addUpdateListener(AnimatorUpdateListener listener) {
861        if (mUpdateListeners == null) {
862            mUpdateListeners = new ArrayList<AnimatorUpdateListener>();
863        }
864        mUpdateListeners.add(listener);
865    }
866
867    /**
868     * Removes all listeners from the set listening to frame updates for this animation.
869     */
870    public void removeAllUpdateListeners() {
871        if (mUpdateListeners == null) {
872            return;
873        }
874        mUpdateListeners.clear();
875        mUpdateListeners = null;
876    }
877
878    /**
879     * Removes a listener from the set listening to frame updates for this animation.
880     *
881     * @param listener the listener to be removed from the current set of update listeners
882     * for this animation.
883     */
884    public void removeUpdateListener(AnimatorUpdateListener listener) {
885        if (mUpdateListeners == null) {
886            return;
887        }
888        mUpdateListeners.remove(listener);
889        if (mUpdateListeners.size() == 0) {
890            mUpdateListeners = null;
891        }
892    }
893
894
895    /**
896     * The time interpolator used in calculating the elapsed fraction of this animation. The
897     * interpolator determines whether the animation runs with linear or non-linear motion,
898     * such as acceleration and deceleration. The default value is
899     * {@link android.view.animation.AccelerateDecelerateInterpolator}
900     *
901     * @param value the interpolator to be used by this animation. A value of <code>null</code>
902     * will result in linear interpolation.
903     */
904    @Override
905    public void setInterpolator(TimeInterpolator value) {
906        if (value != null) {
907            mInterpolator = value;
908        } else {
909            mInterpolator = new LinearInterpolator();
910        }
911    }
912
913    /**
914     * Returns the timing interpolator that this ValueAnimator uses.
915     *
916     * @return The timing interpolator for this ValueAnimator.
917     */
918    @Override
919    public TimeInterpolator getInterpolator() {
920        return mInterpolator;
921    }
922
923    /**
924     * The type evaluator to be used when calculating the animated values of this animation.
925     * The system will automatically assign a float or int evaluator based on the type
926     * of <code>startValue</code> and <code>endValue</code> in the constructor. But if these values
927     * are not one of these primitive types, or if different evaluation is desired (such as is
928     * necessary with int values that represent colors), a custom evaluator needs to be assigned.
929     * For example, when running an animation on color values, the {@link ArgbEvaluator}
930     * should be used to get correct RGB color interpolation.
931     *
932     * <p>If this ValueAnimator has only one set of values being animated between, this evaluator
933     * will be used for that set. If there are several sets of values being animated, which is
934     * the case if PropertyValuesHolder objects were set on the ValueAnimator, then the evaluator
935     * is assigned just to the first PropertyValuesHolder object.</p>
936     *
937     * @param value the evaluator to be used this animation
938     */
939    public void setEvaluator(TypeEvaluator value) {
940        if (value != null && mValues != null && mValues.length > 0) {
941            mValues[0].setEvaluator(value);
942        }
943    }
944
945    private void notifyStartListeners() {
946        if (mListeners != null && !mStartListenersCalled) {
947            ArrayList<AnimatorListener> tmpListeners =
948                    (ArrayList<AnimatorListener>) mListeners.clone();
949            int numListeners = tmpListeners.size();
950            for (int i = 0; i < numListeners; ++i) {
951                tmpListeners.get(i).onAnimationStart(this);
952            }
953        }
954        mStartListenersCalled = true;
955    }
956
957    /**
958     * Start the animation playing. This version of start() takes a boolean flag that indicates
959     * whether the animation should play in reverse. The flag is usually false, but may be set
960     * to true if called from the reverse() method.
961     *
962     * <p>The animation started by calling this method will be run on the thread that called
963     * this method. This thread should have a Looper on it (a runtime exception will be thrown if
964     * this is not the case). Also, if the animation will animate
965     * properties of objects in the view hierarchy, then the calling thread should be the UI
966     * thread for that view hierarchy.</p>
967     *
968     * @param playBackwards Whether the ValueAnimator should start playing in reverse.
969     */
970    private void start(boolean playBackwards) {
971        if (Looper.myLooper() == null) {
972            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
973        }
974        mReversing = playBackwards;
975        // Special case: reversing from seek-to-0 should act as if not seeked at all.
976        if (playBackwards && mSeekFraction != -1 && mSeekFraction != 0) {
977            if (mRepeatCount == INFINITE) {
978                // Calculate the fraction of the current iteration.
979                float fraction = (float) (mSeekFraction - Math.floor(mSeekFraction));
980                mSeekFraction = 1 - fraction;
981            } else {
982                mSeekFraction = 1 + mRepeatCount - mSeekFraction;
983            }
984        }
985        mStarted = true;
986        mPaused = false;
987        mRunning = false;
988        mAnimationEndRequested = false;
989        // Resets mLastFrameTime when start() is called, so that if the animation was running,
990        // calling start() would put the animation in the
991        // started-but-not-yet-reached-the-first-frame phase.
992        mLastFrameTime = 0;
993        AnimationHandler animationHandler = AnimationHandler.getInstance();
994        animationHandler.addAnimationFrameCallback(this, (long) (mStartDelay * sDurationScale));
995
996        if (mStartDelay == 0 || mSeekFraction >= 0) {
997            // If there's no start delay, init the animation and notify start listeners right away
998            // to be consistent with the previous behavior. Otherwise, postpone this until the first
999            // frame after the start delay.
1000            startAnimation();
1001            if (mSeekFraction == -1) {
1002                // No seek, start at play time 0. Note that the reason we are not using fraction 0
1003                // is because for animations with 0 duration, we want to be consistent with pre-N
1004                // behavior: skip to the final value immediately.
1005                setCurrentPlayTime(0);
1006            } else {
1007                setCurrentFraction(mSeekFraction);
1008            }
1009        }
1010    }
1011
1012    @Override
1013    public void start() {
1014        start(false);
1015    }
1016
1017    @Override
1018    public void cancel() {
1019        if (Looper.myLooper() == null) {
1020            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1021        }
1022
1023        // If end has already been requested, through a previous end() or cancel() call, no-op
1024        // until animation starts again.
1025        if (mAnimationEndRequested) {
1026            return;
1027        }
1028
1029        // Only cancel if the animation is actually running or has been started and is about
1030        // to run
1031        // Only notify listeners if the animator has actually started
1032        if ((mStarted || mRunning) && mListeners != null) {
1033            if (!mRunning) {
1034                // If it's not yet running, then start listeners weren't called. Call them now.
1035                notifyStartListeners();
1036            }
1037            ArrayList<AnimatorListener> tmpListeners =
1038                    (ArrayList<AnimatorListener>) mListeners.clone();
1039            for (AnimatorListener listener : tmpListeners) {
1040                listener.onAnimationCancel(this);
1041            }
1042        }
1043        endAnimation();
1044
1045    }
1046
1047    @Override
1048    public void end() {
1049        if (Looper.myLooper() == null) {
1050            throw new AndroidRuntimeException("Animators may only be run on Looper threads");
1051        }
1052        if (!mRunning) {
1053            // Special case if the animation has not yet started; get it ready for ending
1054            startAnimation();
1055            mStarted = true;
1056        } else if (!mInitialized) {
1057            initAnimation();
1058        }
1059        animateValue(shouldPlayBackward(mRepeatCount) ? 0f : 1f);
1060        endAnimation();
1061    }
1062
1063    @Override
1064    public void resume() {
1065        if (Looper.myLooper() == null) {
1066            throw new AndroidRuntimeException("Animators may only be resumed from the same " +
1067                    "thread that the animator was started on");
1068        }
1069        if (mPaused && !mResumed) {
1070            mResumed = true;
1071            if (mPauseTime > 0) {
1072                AnimationHandler handler = AnimationHandler.getInstance();
1073                handler.addAnimationFrameCallback(this, 0);
1074            }
1075        }
1076        super.resume();
1077    }
1078
1079    @Override
1080    public void pause() {
1081        boolean previouslyPaused = mPaused;
1082        super.pause();
1083        if (!previouslyPaused && mPaused) {
1084            mPauseTime = -1;
1085            mResumed = false;
1086        }
1087    }
1088
1089    @Override
1090    public boolean isRunning() {
1091        return mRunning;
1092    }
1093
1094    @Override
1095    public boolean isStarted() {
1096        return mStarted;
1097    }
1098
1099    /**
1100     * Plays the ValueAnimator in reverse. If the animation is already running,
1101     * it will stop itself and play backwards from the point reached when reverse was called.
1102     * If the animation is not currently running, then it will start from the end and
1103     * play backwards. This behavior is only set for the current animation; future playing
1104     * of the animation will use the default behavior of playing forward.
1105     */
1106    @Override
1107    public void reverse() {
1108        if (isPulsingInternal()) {
1109            long currentTime = AnimationUtils.currentAnimationTimeMillis();
1110            long currentPlayTime = currentTime - mStartTime;
1111            long timeLeft = getScaledDuration() - currentPlayTime;
1112            mStartTime = currentTime - timeLeft;
1113            mStartTimeCommitted = true; // do not allow start time to be compensated for jank
1114            mReversing = !mReversing;
1115        } else if (mStarted) {
1116            mReversing = !mReversing;
1117            end();
1118        } else {
1119            start(true);
1120        }
1121    }
1122
1123    /**
1124     * @hide
1125     */
1126    @Override
1127    public boolean canReverse() {
1128        return true;
1129    }
1130
1131    /**
1132     * Called internally to end an animation by removing it from the animations list. Must be
1133     * called on the UI thread.
1134     */
1135    private void endAnimation() {
1136        if (mAnimationEndRequested) {
1137            return;
1138        }
1139        AnimationHandler handler = AnimationHandler.getInstance();
1140        handler.removeCallback(this);
1141
1142        mAnimationEndRequested = true;
1143        mPaused = false;
1144        if ((mStarted || mRunning) && mListeners != null) {
1145            if (!mRunning) {
1146                // If it's not yet running, then start listeners weren't called. Call them now.
1147                notifyStartListeners();
1148             }
1149            ArrayList<AnimatorListener> tmpListeners =
1150                    (ArrayList<AnimatorListener>) mListeners.clone();
1151            int numListeners = tmpListeners.size();
1152            for (int i = 0; i < numListeners; ++i) {
1153                tmpListeners.get(i).onAnimationEnd(this);
1154            }
1155        }
1156        mRunning = false;
1157        mStarted = false;
1158        mStartListenersCalled = false;
1159        mReversing = false;
1160        mLastFrameTime = 0;
1161        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1162            Trace.asyncTraceEnd(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1163                    System.identityHashCode(this));
1164        }
1165    }
1166
1167    /**
1168     * Called internally to start an animation by adding it to the active animations list. Must be
1169     * called on the UI thread.
1170     */
1171    private void startAnimation() {
1172        if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
1173            Trace.asyncTraceBegin(Trace.TRACE_TAG_VIEW, getNameForTrace(),
1174                    System.identityHashCode(this));
1175        }
1176
1177        mAnimationEndRequested = false;
1178        initAnimation();
1179        mRunning = true;
1180        if (mSeekFraction >= 0) {
1181            mOverallFraction = mSeekFraction;
1182        } else {
1183            mOverallFraction = 0f;
1184        }
1185        if (mListeners != null) {
1186            notifyStartListeners();
1187        }
1188    }
1189
1190    /**
1191     * Internal only: This tracks whether the animation has gotten on the animation loop. Note
1192     * this is different than {@link #isRunning()} in that the latter tracks the time after start()
1193     * is called (or after start delay if any), which may be before the animation loop starts.
1194     */
1195    private boolean isPulsingInternal() {
1196        return mLastFrameTime > 0;
1197    }
1198
1199    /**
1200     * Returns the name of this animator for debugging purposes.
1201     */
1202    String getNameForTrace() {
1203        return "animator";
1204    }
1205
1206    /**
1207     * Applies an adjustment to the animation to compensate for jank between when
1208     * the animation first ran and when the frame was drawn.
1209     * @hide
1210     */
1211    public void commitAnimationFrame(long frameTime) {
1212        if (!mStartTimeCommitted) {
1213            mStartTimeCommitted = true;
1214            long adjustment = frameTime - mLastFrameTime;
1215            if (adjustment > 0) {
1216                mStartTime += adjustment;
1217                if (DEBUG) {
1218                    Log.d(TAG, "Adjusted start time by " + adjustment + " ms: " + toString());
1219                }
1220            }
1221        }
1222    }
1223
1224    /**
1225     * This internal function processes a single animation frame for a given animation. The
1226     * currentTime parameter is the timing pulse sent by the handler, used to calculate the
1227     * elapsed duration, and therefore
1228     * the elapsed fraction, of the animation. The return value indicates whether the animation
1229     * should be ended (which happens when the elapsed time of the animation exceeds the
1230     * animation's duration, including the repeatCount).
1231     *
1232     * @param currentTime The current time, as tracked by the static timing handler
1233     * @return true if the animation's duration, including any repetitions due to
1234     * <code>repeatCount</code> has been exceeded and the animation should be ended.
1235     */
1236    boolean animateBasedOnTime(long currentTime) {
1237        boolean done = false;
1238        if (mRunning) {
1239            final long scaledDuration = getScaledDuration();
1240            final float fraction = scaledDuration > 0 ?
1241                    (float)(currentTime - mStartTime) / scaledDuration : 1f;
1242            final float lastFraction = mOverallFraction;
1243            final boolean newIteration = (int) fraction > (int) lastFraction;
1244            final boolean lastIterationFinished = (fraction >= mRepeatCount + 1) &&
1245                    (mRepeatCount != INFINITE);
1246            if (scaledDuration == 0) {
1247                // 0 duration animator, ignore the repeat count and skip to the end
1248                done = true;
1249            } else if (newIteration && !lastIterationFinished) {
1250                // Time to repeat
1251                if (mListeners != null) {
1252                    int numListeners = mListeners.size();
1253                    for (int i = 0; i < numListeners; ++i) {
1254                        mListeners.get(i).onAnimationRepeat(this);
1255                    }
1256                }
1257            } else if (lastIterationFinished) {
1258                done = true;
1259            }
1260            mOverallFraction = clampFraction(fraction);
1261            float currentIterationFraction = getCurrentIterationFraction(mOverallFraction);
1262            animateValue(currentIterationFraction);
1263        }
1264        return done;
1265    }
1266
1267    /**
1268     * Processes a frame of the animation, adjusting the start time if needed.
1269     *
1270     * @param frameTime The frame time.
1271     * @return true if the animation has ended.
1272     * @hide
1273     */
1274    public final void doAnimationFrame(long frameTime) {
1275        AnimationHandler handler = AnimationHandler.getInstance();
1276        if (mLastFrameTime == 0) {
1277            // First frame
1278            handler.addOneShotCommitCallback(this);
1279            if (mStartDelay > 0) {
1280                startAnimation();
1281            }
1282            if (mSeekFraction < 0) {
1283                mStartTime = frameTime;
1284            } else {
1285                long seekTime = (long) (getScaledDuration() * mSeekFraction);
1286                mStartTime = frameTime - seekTime;
1287                mSeekFraction = -1;
1288            }
1289            mStartTimeCommitted = false; // allow start time to be compensated for jank
1290        }
1291        mLastFrameTime = frameTime;
1292        if (mPaused) {
1293            mPauseTime = frameTime;
1294            handler.removeCallback(this);
1295            return;
1296        } else if (mResumed) {
1297            mResumed = false;
1298            if (mPauseTime > 0) {
1299                // Offset by the duration that the animation was paused
1300                mStartTime += (frameTime - mPauseTime);
1301                mStartTimeCommitted = false; // allow start time to be compensated for jank
1302            }
1303            handler.addOneShotCommitCallback(this);
1304        }
1305        // The frame time might be before the start time during the first frame of
1306        // an animation.  The "current time" must always be on or after the start
1307        // time to avoid animating frames at negative time intervals.  In practice, this
1308        // is very rare and only happens when seeking backwards.
1309        final long currentTime = Math.max(frameTime, mStartTime);
1310        boolean finished = animateBasedOnTime(currentTime);
1311
1312        if (finished) {
1313            endAnimation();
1314        }
1315    }
1316
1317    /**
1318     * Returns the current animation fraction, which is the elapsed/interpolated fraction used in
1319     * the most recent frame update on the animation.
1320     *
1321     * @return Elapsed/interpolated fraction of the animation.
1322     */
1323    public float getAnimatedFraction() {
1324        return mCurrentFraction;
1325    }
1326
1327    /**
1328     * This method is called with the elapsed fraction of the animation during every
1329     * animation frame. This function turns the elapsed fraction into an interpolated fraction
1330     * and then into an animated value (from the evaluator. The function is called mostly during
1331     * animation updates, but it is also called when the <code>end()</code>
1332     * function is called, to set the final value on the property.
1333     *
1334     * <p>Overrides of this method must call the superclass to perform the calculation
1335     * of the animated value.</p>
1336     *
1337     * @param fraction The elapsed fraction of the animation.
1338     */
1339    @CallSuper
1340    void animateValue(float fraction) {
1341        fraction = mInterpolator.getInterpolation(fraction);
1342        mCurrentFraction = fraction;
1343        int numValues = mValues.length;
1344        for (int i = 0; i < numValues; ++i) {
1345            mValues[i].calculateValue(fraction);
1346        }
1347        if (mUpdateListeners != null) {
1348            int numListeners = mUpdateListeners.size();
1349            for (int i = 0; i < numListeners; ++i) {
1350                mUpdateListeners.get(i).onAnimationUpdate(this);
1351            }
1352        }
1353    }
1354
1355    @Override
1356    public ValueAnimator clone() {
1357        final ValueAnimator anim = (ValueAnimator) super.clone();
1358        if (mUpdateListeners != null) {
1359            anim.mUpdateListeners = new ArrayList<AnimatorUpdateListener>(mUpdateListeners);
1360        }
1361        anim.mSeekFraction = -1;
1362        anim.mReversing = false;
1363        anim.mInitialized = false;
1364        anim.mStarted = false;
1365        anim.mRunning = false;
1366        anim.mPaused = false;
1367        anim.mResumed = false;
1368        anim.mStartListenersCalled = false;
1369        anim.mStartTime = 0;
1370        anim.mStartTimeCommitted = false;
1371        anim.mAnimationEndRequested = false;
1372        anim.mPauseTime = 0;
1373        anim.mLastFrameTime = 0;
1374        anim.mOverallFraction = 0;
1375        anim.mCurrentFraction = 0;
1376
1377        PropertyValuesHolder[] oldValues = mValues;
1378        if (oldValues != null) {
1379            int numValues = oldValues.length;
1380            anim.mValues = new PropertyValuesHolder[numValues];
1381            anim.mValuesMap = new HashMap<String, PropertyValuesHolder>(numValues);
1382            for (int i = 0; i < numValues; ++i) {
1383                PropertyValuesHolder newValuesHolder = oldValues[i].clone();
1384                anim.mValues[i] = newValuesHolder;
1385                anim.mValuesMap.put(newValuesHolder.getPropertyName(), newValuesHolder);
1386            }
1387        }
1388        return anim;
1389    }
1390
1391    /**
1392     * Implementors of this interface can add themselves as update listeners
1393     * to an <code>ValueAnimator</code> instance to receive callbacks on every animation
1394     * frame, after the current frame's values have been calculated for that
1395     * <code>ValueAnimator</code>.
1396     */
1397    public static interface AnimatorUpdateListener {
1398        /**
1399         * <p>Notifies the occurrence of another frame of the animation.</p>
1400         *
1401         * @param animation The animation which was repeated.
1402         */
1403        void onAnimationUpdate(ValueAnimator animation);
1404
1405    }
1406
1407    /**
1408     * Return the number of animations currently running.
1409     *
1410     * Used by StrictMode internally to annotate violations.
1411     * May be called on arbitrary threads!
1412     *
1413     * @hide
1414     */
1415    public static int getCurrentAnimationsCount() {
1416        return AnimationHandler.getAnimationCount();
1417    }
1418
1419    @Override
1420    public String toString() {
1421        String returnVal = "ValueAnimator@" + Integer.toHexString(hashCode());
1422        if (mValues != null) {
1423            for (int i = 0; i < mValues.length; ++i) {
1424                returnVal += "\n    " + mValues[i].toString();
1425            }
1426        }
1427        return returnVal;
1428    }
1429
1430    /**
1431     * <p>Whether or not the ValueAnimator is allowed to run asynchronously off of
1432     * the UI thread. This is a hint that informs the ValueAnimator that it is
1433     * OK to run the animation off-thread, however ValueAnimator may decide
1434     * that it must run the animation on the UI thread anyway. For example if there
1435     * is an {@link AnimatorUpdateListener} the animation will run on the UI thread,
1436     * regardless of the value of this hint.</p>
1437     *
1438     * <p>Regardless of whether or not the animation runs asynchronously, all
1439     * listener callbacks will be called on the UI thread.</p>
1440     *
1441     * <p>To be able to use this hint the following must be true:</p>
1442     * <ol>
1443     * <li>{@link #getAnimatedFraction()} is not needed (it will return undefined values).</li>
1444     * <li>The animator is immutable while {@link #isStarted()} is true. Requests
1445     *    to change values, duration, delay, etc... may be ignored.</li>
1446     * <li>Lifecycle callback events may be asynchronous. Events such as
1447     *    {@link Animator.AnimatorListener#onAnimationEnd(Animator)} or
1448     *    {@link Animator.AnimatorListener#onAnimationRepeat(Animator)} may end up delayed
1449     *    as they must be posted back to the UI thread, and any actions performed
1450     *    by those callbacks (such as starting new animations) will not happen
1451     *    in the same frame.</li>
1452     * <li>State change requests ({@link #cancel()}, {@link #end()}, {@link #reverse()}, etc...)
1453     *    may be asynchronous. It is guaranteed that all state changes that are
1454     *    performed on the UI thread in the same frame will be applied as a single
1455     *    atomic update, however that frame may be the current frame,
1456     *    the next frame, or some future frame. This will also impact the observed
1457     *    state of the Animator. For example, {@link #isStarted()} may still return true
1458     *    after a call to {@link #end()}. Using the lifecycle callbacks is preferred over
1459     *    queries to {@link #isStarted()}, {@link #isRunning()}, and {@link #isPaused()}
1460     *    for this reason.</li>
1461     * </ol>
1462     * @hide
1463     */
1464    @Override
1465    public void setAllowRunningAsynchronously(boolean mayRunAsync) {
1466        // It is up to subclasses to support this, if they can.
1467    }
1468}
1469