Parcel.java revision e628b7d446484bbcf467536769a301760eeb097b
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.annotation.IntegerRes;
20import android.annotation.Nullable;
21import android.text.TextUtils;
22import android.util.ArrayMap;
23import android.util.ArraySet;
24import android.util.Log;
25import android.util.Size;
26import android.util.SizeF;
27import android.util.SparseArray;
28import android.util.SparseBooleanArray;
29
30import libcore.util.SneakyThrow;
31
32import java.io.ByteArrayInputStream;
33import java.io.ByteArrayOutputStream;
34import java.io.FileDescriptor;
35import java.io.FileNotFoundException;
36import java.io.IOException;
37import java.io.ObjectInputStream;
38import java.io.ObjectOutputStream;
39import java.io.ObjectStreamClass;
40import java.io.Serializable;
41import java.lang.reflect.Array;
42import java.lang.reflect.Field;
43import java.lang.reflect.Modifier;
44import java.util.ArrayList;
45import java.util.Arrays;
46import java.util.HashMap;
47import java.util.List;
48import java.util.Map;
49import java.util.Set;
50
51import dalvik.system.VMRuntime;
52
53/**
54 * Container for a message (data and object references) that can
55 * be sent through an IBinder.  A Parcel can contain both flattened data
56 * that will be unflattened on the other side of the IPC (using the various
57 * methods here for writing specific types, or the general
58 * {@link Parcelable} interface), and references to live {@link IBinder}
59 * objects that will result in the other side receiving a proxy IBinder
60 * connected with the original IBinder in the Parcel.
61 *
62 * <p class="note">Parcel is <strong>not</strong> a general-purpose
63 * serialization mechanism.  This class (and the corresponding
64 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
65 * designed as a high-performance IPC transport.  As such, it is not
66 * appropriate to place any Parcel data in to persistent storage: changes
67 * in the underlying implementation of any of the data in the Parcel can
68 * render older data unreadable.</p>
69 *
70 * <p>The bulk of the Parcel API revolves around reading and writing data
71 * of various types.  There are six major classes of such functions available.</p>
72 *
73 * <h3>Primitives</h3>
74 *
75 * <p>The most basic data functions are for writing and reading primitive
76 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
77 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
78 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
79 * {@link #writeString}, {@link #readString}.  Most other
80 * data operations are built on top of these.  The given data is written and
81 * read using the endianess of the host CPU.</p>
82 *
83 * <h3>Primitive Arrays</h3>
84 *
85 * <p>There are a variety of methods for reading and writing raw arrays
86 * of primitive objects, which generally result in writing a 4-byte length
87 * followed by the primitive data items.  The methods for reading can either
88 * read the data into an existing array, or create and return a new array.
89 * These available types are:</p>
90 *
91 * <ul>
92 * <li> {@link #writeBooleanArray(boolean[])},
93 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
94 * <li> {@link #writeByteArray(byte[])},
95 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
96 * {@link #createByteArray()}
97 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
98 * {@link #createCharArray()}
99 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
100 * {@link #createDoubleArray()}
101 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
102 * {@link #createFloatArray()}
103 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
104 * {@link #createIntArray()}
105 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
106 * {@link #createLongArray()}
107 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
108 * {@link #createStringArray()}.
109 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
110 * {@link #readSparseBooleanArray()}.
111 * </ul>
112 *
113 * <h3>Parcelables</h3>
114 *
115 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
116 * low-level) protocol for objects to write and read themselves from Parcels.
117 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
118 * and {@link #readParcelable(ClassLoader)} or
119 * {@link #writeParcelableArray} and
120 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
121 * methods write both the class type and its data to the Parcel, allowing
122 * that class to be reconstructed from the appropriate class loader when
123 * later reading.</p>
124 *
125 * <p>There are also some methods that provide a more efficient way to work
126 * with Parcelables: {@link #writeTypedObject}, {@link #writeTypedArray},
127 * {@link #writeTypedList}, {@link #readTypedObject},
128 * {@link #createTypedArray} and {@link #createTypedArrayList}.  These methods
129 * do not write the class information of the original object: instead, the
130 * caller of the read function must know what type to expect and pass in the
131 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
132 * properly construct the new object and read its data.  (To more efficient
133 * write and read a single Parceable object that is not null, you can directly
134 * call {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
135 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
136 * yourself.)</p>
137 *
138 * <h3>Bundles</h3>
139 *
140 * <p>A special type-safe container, called {@link Bundle}, is available
141 * for key/value maps of heterogeneous values.  This has many optimizations
142 * for improved performance when reading and writing data, and its type-safe
143 * API avoids difficult to debug type errors when finally marshalling the
144 * data contents into a Parcel.  The methods to use are
145 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
146 * {@link #readBundle(ClassLoader)}.
147 *
148 * <h3>Active Objects</h3>
149 *
150 * <p>An unusual feature of Parcel is the ability to read and write active
151 * objects.  For these objects the actual contents of the object is not
152 * written, rather a special token referencing the object is written.  When
153 * reading the object back from the Parcel, you do not get a new instance of
154 * the object, but rather a handle that operates on the exact same object that
155 * was originally written.  There are two forms of active objects available.</p>
156 *
157 * <p>{@link Binder} objects are a core facility of Android's general cross-process
158 * communication system.  The {@link IBinder} interface describes an abstract
159 * protocol with a Binder object.  Any such interface can be written in to
160 * a Parcel, and upon reading you will receive either the original object
161 * implementing that interface or a special proxy implementation
162 * that communicates calls back to the original object.  The methods to use are
163 * {@link #writeStrongBinder(IBinder)},
164 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
165 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
166 * {@link #createBinderArray()},
167 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
168 * {@link #createBinderArrayList()}.</p>
169 *
170 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
171 * can be written and {@link ParcelFileDescriptor} objects returned to operate
172 * on the original file descriptor.  The returned file descriptor is a dup
173 * of the original file descriptor: the object and fd is different, but
174 * operating on the same underlying file stream, with the same position, etc.
175 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
176 * {@link #readFileDescriptor()}.
177 *
178 * <h3>Untyped Containers</h3>
179 *
180 * <p>A final class of methods are for writing and reading standard Java
181 * containers of arbitrary types.  These all revolve around the
182 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
183 * which define the types of objects allowed.  The container methods are
184 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
185 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
186 * {@link #readArrayList(ClassLoader)},
187 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
188 * {@link #writeSparseArray(SparseArray)},
189 * {@link #readSparseArray(ClassLoader)}.
190 */
191public final class Parcel {
192    private static final boolean DEBUG_RECYCLE = false;
193    private static final boolean DEBUG_ARRAY_MAP = false;
194    private static final String TAG = "Parcel";
195
196    @SuppressWarnings({"UnusedDeclaration"})
197    private long mNativePtr; // used by native code
198
199    /**
200     * Flag indicating if {@link #mNativePtr} was allocated by this object,
201     * indicating that we're responsible for its lifecycle.
202     */
203    private boolean mOwnsNativeParcelObject;
204    private long mNativeSize;
205
206    private RuntimeException mStack;
207
208    private static final int POOL_SIZE = 6;
209    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
210    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
211
212    // Keep in sync with frameworks/native/libs/binder/PersistableBundle.cpp.
213    private static final int VAL_NULL = -1;
214    private static final int VAL_STRING = 0;
215    private static final int VAL_INTEGER = 1;
216    private static final int VAL_MAP = 2;
217    private static final int VAL_BUNDLE = 3;
218    private static final int VAL_PARCELABLE = 4;
219    private static final int VAL_SHORT = 5;
220    private static final int VAL_LONG = 6;
221    private static final int VAL_FLOAT = 7;
222    private static final int VAL_DOUBLE = 8;
223    private static final int VAL_BOOLEAN = 9;
224    private static final int VAL_CHARSEQUENCE = 10;
225    private static final int VAL_LIST  = 11;
226    private static final int VAL_SPARSEARRAY = 12;
227    private static final int VAL_BYTEARRAY = 13;
228    private static final int VAL_STRINGARRAY = 14;
229    private static final int VAL_IBINDER = 15;
230    private static final int VAL_PARCELABLEARRAY = 16;
231    private static final int VAL_OBJECTARRAY = 17;
232    private static final int VAL_INTARRAY = 18;
233    private static final int VAL_LONGARRAY = 19;
234    private static final int VAL_BYTE = 20;
235    private static final int VAL_SERIALIZABLE = 21;
236    private static final int VAL_SPARSEBOOLEANARRAY = 22;
237    private static final int VAL_BOOLEANARRAY = 23;
238    private static final int VAL_CHARSEQUENCEARRAY = 24;
239    private static final int VAL_PERSISTABLEBUNDLE = 25;
240    private static final int VAL_SIZE = 26;
241    private static final int VAL_SIZEF = 27;
242    private static final int VAL_DOUBLEARRAY = 28;
243
244    // The initial int32 in a Binder call's reply Parcel header:
245    // Keep these in sync with libbinder's binder/Status.h.
246    private static final int EX_SECURITY = -1;
247    private static final int EX_BAD_PARCELABLE = -2;
248    private static final int EX_ILLEGAL_ARGUMENT = -3;
249    private static final int EX_NULL_POINTER = -4;
250    private static final int EX_ILLEGAL_STATE = -5;
251    private static final int EX_NETWORK_MAIN_THREAD = -6;
252    private static final int EX_UNSUPPORTED_OPERATION = -7;
253    private static final int EX_SERVICE_SPECIFIC = -8;
254    private static final int EX_PARCELABLE = -9;
255    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
256    // EX_TRANSACTION_FAILED is used exclusively in native code.
257    // see libbinder's binder/Status.h
258    private static final int EX_TRANSACTION_FAILED = -129;
259
260    private static native int nativeDataSize(long nativePtr);
261    private static native int nativeDataAvail(long nativePtr);
262    private static native int nativeDataPosition(long nativePtr);
263    private static native int nativeDataCapacity(long nativePtr);
264    private static native long nativeSetDataSize(long nativePtr, int size);
265    private static native void nativeSetDataPosition(long nativePtr, int pos);
266    private static native void nativeSetDataCapacity(long nativePtr, int size);
267
268    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
269    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
270
271    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
272    private static native void nativeWriteBlob(long nativePtr, byte[] b, int offset, int len);
273    private static native void nativeWriteInt(long nativePtr, int val);
274    private static native void nativeWriteLong(long nativePtr, long val);
275    private static native void nativeWriteFloat(long nativePtr, float val);
276    private static native void nativeWriteDouble(long nativePtr, double val);
277    private static native void nativeWriteString(long nativePtr, String val);
278    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
279    private static native long nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
280
281    private static native byte[] nativeCreateByteArray(long nativePtr);
282    private static native byte[] nativeReadBlob(long nativePtr);
283    private static native int nativeReadInt(long nativePtr);
284    private static native long nativeReadLong(long nativePtr);
285    private static native float nativeReadFloat(long nativePtr);
286    private static native double nativeReadDouble(long nativePtr);
287    private static native String nativeReadString(long nativePtr);
288    private static native IBinder nativeReadStrongBinder(long nativePtr);
289    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
290
291    private static native long nativeCreate();
292    private static native long nativeFreeBuffer(long nativePtr);
293    private static native void nativeDestroy(long nativePtr);
294
295    private static native byte[] nativeMarshall(long nativePtr);
296    private static native long nativeUnmarshall(
297            long nativePtr, byte[] data, int offset, int length);
298    private static native long nativeAppendFrom(
299            long thisNativePtr, long otherNativePtr, int offset, int length);
300    private static native boolean nativeHasFileDescriptors(long nativePtr);
301    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
302    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
303
304    private static native long nativeGetBlobAshmemSize(long nativePtr);
305
306    public final static Parcelable.Creator<String> STRING_CREATOR
307             = new Parcelable.Creator<String>() {
308        public String createFromParcel(Parcel source) {
309            return source.readString();
310        }
311        public String[] newArray(int size) {
312            return new String[size];
313        }
314    };
315
316    /**
317     * Retrieve a new Parcel object from the pool.
318     */
319    public static Parcel obtain() {
320        final Parcel[] pool = sOwnedPool;
321        synchronized (pool) {
322            Parcel p;
323            for (int i=0; i<POOL_SIZE; i++) {
324                p = pool[i];
325                if (p != null) {
326                    pool[i] = null;
327                    if (DEBUG_RECYCLE) {
328                        p.mStack = new RuntimeException();
329                    }
330                    return p;
331                }
332            }
333        }
334        return new Parcel(0);
335    }
336
337    /**
338     * Put a Parcel object back into the pool.  You must not touch
339     * the object after this call.
340     */
341    public final void recycle() {
342        if (DEBUG_RECYCLE) mStack = null;
343        freeBuffer();
344
345        final Parcel[] pool;
346        if (mOwnsNativeParcelObject) {
347            pool = sOwnedPool;
348        } else {
349            mNativePtr = 0;
350            pool = sHolderPool;
351        }
352
353        synchronized (pool) {
354            for (int i=0; i<POOL_SIZE; i++) {
355                if (pool[i] == null) {
356                    pool[i] = this;
357                    return;
358                }
359            }
360        }
361    }
362
363    /** @hide */
364    public static native long getGlobalAllocSize();
365
366    /** @hide */
367    public static native long getGlobalAllocCount();
368
369    /**
370     * Returns the total amount of data contained in the parcel.
371     */
372    public final int dataSize() {
373        return nativeDataSize(mNativePtr);
374    }
375
376    /**
377     * Returns the amount of data remaining to be read from the
378     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
379     */
380    public final int dataAvail() {
381        return nativeDataAvail(mNativePtr);
382    }
383
384    /**
385     * Returns the current position in the parcel data.  Never
386     * more than {@link #dataSize}.
387     */
388    public final int dataPosition() {
389        return nativeDataPosition(mNativePtr);
390    }
391
392    /**
393     * Returns the total amount of space in the parcel.  This is always
394     * >= {@link #dataSize}.  The difference between it and dataSize() is the
395     * amount of room left until the parcel needs to re-allocate its
396     * data buffer.
397     */
398    public final int dataCapacity() {
399        return nativeDataCapacity(mNativePtr);
400    }
401
402    /**
403     * Change the amount of data in the parcel.  Can be either smaller or
404     * larger than the current size.  If larger than the current capacity,
405     * more memory will be allocated.
406     *
407     * @param size The new number of bytes in the Parcel.
408     */
409    public final void setDataSize(int size) {
410        updateNativeSize(nativeSetDataSize(mNativePtr, size));
411    }
412
413    /**
414     * Move the current read/write position in the parcel.
415     * @param pos New offset in the parcel; must be between 0 and
416     * {@link #dataSize}.
417     */
418    public final void setDataPosition(int pos) {
419        nativeSetDataPosition(mNativePtr, pos);
420    }
421
422    /**
423     * Change the capacity (current available space) of the parcel.
424     *
425     * @param size The new capacity of the parcel, in bytes.  Can not be
426     * less than {@link #dataSize} -- that is, you can not drop existing data
427     * with this method.
428     */
429    public final void setDataCapacity(int size) {
430        nativeSetDataCapacity(mNativePtr, size);
431    }
432
433    /** @hide */
434    public final boolean pushAllowFds(boolean allowFds) {
435        return nativePushAllowFds(mNativePtr, allowFds);
436    }
437
438    /** @hide */
439    public final void restoreAllowFds(boolean lastValue) {
440        nativeRestoreAllowFds(mNativePtr, lastValue);
441    }
442
443    /**
444     * Returns the raw bytes of the parcel.
445     *
446     * <p class="note">The data you retrieve here <strong>must not</strong>
447     * be placed in any kind of persistent storage (on local disk, across
448     * a network, etc).  For that, you should use standard serialization
449     * or another kind of general serialization mechanism.  The Parcel
450     * marshalled representation is highly optimized for local IPC, and as
451     * such does not attempt to maintain compatibility with data created
452     * in different versions of the platform.
453     */
454    public final byte[] marshall() {
455        return nativeMarshall(mNativePtr);
456    }
457
458    /**
459     * Set the bytes in data to be the raw bytes of this Parcel.
460     */
461    public final void unmarshall(byte[] data, int offset, int length) {
462        updateNativeSize(nativeUnmarshall(mNativePtr, data, offset, length));
463    }
464
465    public final void appendFrom(Parcel parcel, int offset, int length) {
466        updateNativeSize(nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length));
467    }
468
469    /**
470     * Report whether the parcel contains any marshalled file descriptors.
471     */
472    public final boolean hasFileDescriptors() {
473        return nativeHasFileDescriptors(mNativePtr);
474    }
475
476    /**
477     * Store or read an IBinder interface token in the parcel at the current
478     * {@link #dataPosition}.  This is used to validate that the marshalled
479     * transaction is intended for the target interface.
480     */
481    public final void writeInterfaceToken(String interfaceName) {
482        nativeWriteInterfaceToken(mNativePtr, interfaceName);
483    }
484
485    public final void enforceInterface(String interfaceName) {
486        nativeEnforceInterface(mNativePtr, interfaceName);
487    }
488
489    /**
490     * Write a byte array into the parcel at the current {@link #dataPosition},
491     * growing {@link #dataCapacity} if needed.
492     * @param b Bytes to place into the parcel.
493     */
494    public final void writeByteArray(byte[] b) {
495        writeByteArray(b, 0, (b != null) ? b.length : 0);
496    }
497
498    /**
499     * Write a byte array into the parcel at the current {@link #dataPosition},
500     * growing {@link #dataCapacity} if needed.
501     * @param b Bytes to place into the parcel.
502     * @param offset Index of first byte to be written.
503     * @param len Number of bytes to write.
504     */
505    public final void writeByteArray(byte[] b, int offset, int len) {
506        if (b == null) {
507            writeInt(-1);
508            return;
509        }
510        Arrays.checkOffsetAndCount(b.length, offset, len);
511        nativeWriteByteArray(mNativePtr, b, offset, len);
512    }
513
514    /**
515     * Write a blob of data into the parcel at the current {@link #dataPosition},
516     * growing {@link #dataCapacity} if needed.
517     * @param b Bytes to place into the parcel.
518     * {@hide}
519     * {@SystemApi}
520     */
521    public final void writeBlob(byte[] b) {
522        writeBlob(b, 0, (b != null) ? b.length : 0);
523    }
524
525    /**
526     * Write a blob of data into the parcel at the current {@link #dataPosition},
527     * growing {@link #dataCapacity} if needed.
528     * @param b Bytes to place into the parcel.
529     * @param offset Index of first byte to be written.
530     * @param len Number of bytes to write.
531     * {@hide}
532     * {@SystemApi}
533     */
534    public final void writeBlob(byte[] b, int offset, int len) {
535        if (b == null) {
536            writeInt(-1);
537            return;
538        }
539        Arrays.checkOffsetAndCount(b.length, offset, len);
540        nativeWriteBlob(mNativePtr, b, offset, len);
541    }
542
543    /**
544     * Write an integer value into the parcel at the current dataPosition(),
545     * growing dataCapacity() if needed.
546     */
547    public final void writeInt(int val) {
548        nativeWriteInt(mNativePtr, val);
549    }
550
551    /**
552     * Write a long integer value into the parcel at the current dataPosition(),
553     * growing dataCapacity() if needed.
554     */
555    public final void writeLong(long val) {
556        nativeWriteLong(mNativePtr, val);
557    }
558
559    /**
560     * Write a floating point value into the parcel at the current
561     * dataPosition(), growing dataCapacity() if needed.
562     */
563    public final void writeFloat(float val) {
564        nativeWriteFloat(mNativePtr, val);
565    }
566
567    /**
568     * Write a double precision floating point value into the parcel at the
569     * current dataPosition(), growing dataCapacity() if needed.
570     */
571    public final void writeDouble(double val) {
572        nativeWriteDouble(mNativePtr, val);
573    }
574
575    /**
576     * Write a string value into the parcel at the current dataPosition(),
577     * growing dataCapacity() if needed.
578     */
579    public final void writeString(String val) {
580        nativeWriteString(mNativePtr, val);
581    }
582
583    /**
584     * Write a CharSequence value into the parcel at the current dataPosition(),
585     * growing dataCapacity() if needed.
586     * @hide
587     */
588    public final void writeCharSequence(CharSequence val) {
589        TextUtils.writeToParcel(val, this, 0);
590    }
591
592    /**
593     * Write an object into the parcel at the current dataPosition(),
594     * growing dataCapacity() if needed.
595     */
596    public final void writeStrongBinder(IBinder val) {
597        nativeWriteStrongBinder(mNativePtr, val);
598    }
599
600    /**
601     * Write an object into the parcel at the current dataPosition(),
602     * growing dataCapacity() if needed.
603     */
604    public final void writeStrongInterface(IInterface val) {
605        writeStrongBinder(val == null ? null : val.asBinder());
606    }
607
608    /**
609     * Write a FileDescriptor into the parcel at the current dataPosition(),
610     * growing dataCapacity() if needed.
611     *
612     * <p class="caution">The file descriptor will not be closed, which may
613     * result in file descriptor leaks when objects are returned from Binder
614     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
615     * accepts contextual flags and will close the original file descriptor
616     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
617     */
618    public final void writeFileDescriptor(FileDescriptor val) {
619        updateNativeSize(nativeWriteFileDescriptor(mNativePtr, val));
620    }
621
622    private void updateNativeSize(long newNativeSize) {
623        if (mOwnsNativeParcelObject) {
624            if (newNativeSize > Integer.MAX_VALUE) {
625                newNativeSize = Integer.MAX_VALUE;
626            }
627            if (newNativeSize != mNativeSize) {
628                int delta = (int) (newNativeSize - mNativeSize);
629                if (delta > 0) {
630                    VMRuntime.getRuntime().registerNativeAllocation(delta);
631                } else {
632                    VMRuntime.getRuntime().registerNativeFree(-delta);
633                }
634                mNativeSize = newNativeSize;
635            }
636        }
637    }
638
639    /**
640     * {@hide}
641     * This will be the new name for writeFileDescriptor, for consistency.
642     **/
643    public final void writeRawFileDescriptor(FileDescriptor val) {
644        nativeWriteFileDescriptor(mNativePtr, val);
645    }
646
647    /**
648     * {@hide}
649     * Write an array of FileDescriptor objects into the Parcel.
650     *
651     * @param value The array of objects to be written.
652     */
653    public final void writeRawFileDescriptorArray(FileDescriptor[] value) {
654        if (value != null) {
655            int N = value.length;
656            writeInt(N);
657            for (int i=0; i<N; i++) {
658                writeRawFileDescriptor(value[i]);
659            }
660        } else {
661            writeInt(-1);
662        }
663    }
664
665    /**
666     * Write a byte value into the parcel at the current dataPosition(),
667     * growing dataCapacity() if needed.
668     */
669    public final void writeByte(byte val) {
670        writeInt(val);
671    }
672
673    /**
674     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
675     * at the current dataPosition(),
676     * growing dataCapacity() if needed.  The Map keys must be String objects.
677     * The Map values are written using {@link #writeValue} and must follow
678     * the specification there.
679     *
680     * <p>It is strongly recommended to use {@link #writeBundle} instead of
681     * this method, since the Bundle class provides a type-safe API that
682     * allows you to avoid mysterious type errors at the point of marshalling.
683     */
684    public final void writeMap(Map val) {
685        writeMapInternal((Map<String, Object>) val);
686    }
687
688    /**
689     * Flatten a Map into the parcel at the current dataPosition(),
690     * growing dataCapacity() if needed.  The Map keys must be String objects.
691     */
692    /* package */ void writeMapInternal(Map<String,Object> val) {
693        if (val == null) {
694            writeInt(-1);
695            return;
696        }
697        Set<Map.Entry<String,Object>> entries = val.entrySet();
698        writeInt(entries.size());
699        for (Map.Entry<String,Object> e : entries) {
700            writeValue(e.getKey());
701            writeValue(e.getValue());
702        }
703    }
704
705    /**
706     * Flatten an ArrayMap into the parcel at the current dataPosition(),
707     * growing dataCapacity() if needed.  The Map keys must be String objects.
708     */
709    /* package */ void writeArrayMapInternal(ArrayMap<String, Object> val) {
710        if (val == null) {
711            writeInt(-1);
712            return;
713        }
714        // Keep the format of this Parcel in sync with writeToParcelInner() in
715        // frameworks/native/libs/binder/PersistableBundle.cpp.
716        final int N = val.size();
717        writeInt(N);
718        if (DEBUG_ARRAY_MAP) {
719            RuntimeException here =  new RuntimeException("here");
720            here.fillInStackTrace();
721            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
722        }
723        int startPos;
724        for (int i=0; i<N; i++) {
725            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
726            writeString(val.keyAt(i));
727            writeValue(val.valueAt(i));
728            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
729                    + (dataPosition()-startPos) + " bytes: key=0x"
730                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
731                    + " " + val.keyAt(i));
732        }
733    }
734
735    /**
736     * @hide For testing only.
737     */
738    public void writeArrayMap(ArrayMap<String, Object> val) {
739        writeArrayMapInternal(val);
740    }
741
742    /**
743     * Write an array set to the parcel.
744     *
745     * @param val The array set to write.
746     *
747     * @hide
748     */
749    public void writeArraySet(@Nullable ArraySet<? extends Object> val) {
750        final int size = (val != null) ? val.size() : -1;
751        writeInt(size);
752        for (int i = 0; i < size; i++) {
753            writeValue(val.valueAt(i));
754        }
755    }
756
757    /**
758     * Flatten a Bundle into the parcel at the current dataPosition(),
759     * growing dataCapacity() if needed.
760     */
761    public final void writeBundle(Bundle val) {
762        if (val == null) {
763            writeInt(-1);
764            return;
765        }
766
767        val.writeToParcel(this, 0);
768    }
769
770    /**
771     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
772     * growing dataCapacity() if needed.
773     */
774    public final void writePersistableBundle(PersistableBundle val) {
775        if (val == null) {
776            writeInt(-1);
777            return;
778        }
779
780        val.writeToParcel(this, 0);
781    }
782
783    /**
784     * Flatten a Size into the parcel at the current dataPosition(),
785     * growing dataCapacity() if needed.
786     */
787    public final void writeSize(Size val) {
788        writeInt(val.getWidth());
789        writeInt(val.getHeight());
790    }
791
792    /**
793     * Flatten a SizeF into the parcel at the current dataPosition(),
794     * growing dataCapacity() if needed.
795     */
796    public final void writeSizeF(SizeF val) {
797        writeFloat(val.getWidth());
798        writeFloat(val.getHeight());
799    }
800
801    /**
802     * Flatten a List into the parcel at the current dataPosition(), growing
803     * dataCapacity() if needed.  The List values are written using
804     * {@link #writeValue} and must follow the specification there.
805     */
806    public final void writeList(List val) {
807        if (val == null) {
808            writeInt(-1);
809            return;
810        }
811        int N = val.size();
812        int i=0;
813        writeInt(N);
814        while (i < N) {
815            writeValue(val.get(i));
816            i++;
817        }
818    }
819
820    /**
821     * Flatten an Object array into the parcel at the current dataPosition(),
822     * growing dataCapacity() if needed.  The array values are written using
823     * {@link #writeValue} and must follow the specification there.
824     */
825    public final void writeArray(Object[] val) {
826        if (val == null) {
827            writeInt(-1);
828            return;
829        }
830        int N = val.length;
831        int i=0;
832        writeInt(N);
833        while (i < N) {
834            writeValue(val[i]);
835            i++;
836        }
837    }
838
839    /**
840     * Flatten a generic SparseArray into the parcel at the current
841     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
842     * values are written using {@link #writeValue} and must follow the
843     * specification there.
844     */
845    public final void writeSparseArray(SparseArray<Object> val) {
846        if (val == null) {
847            writeInt(-1);
848            return;
849        }
850        int N = val.size();
851        writeInt(N);
852        int i=0;
853        while (i < N) {
854            writeInt(val.keyAt(i));
855            writeValue(val.valueAt(i));
856            i++;
857        }
858    }
859
860    public final void writeSparseBooleanArray(SparseBooleanArray val) {
861        if (val == null) {
862            writeInt(-1);
863            return;
864        }
865        int N = val.size();
866        writeInt(N);
867        int i=0;
868        while (i < N) {
869            writeInt(val.keyAt(i));
870            writeByte((byte)(val.valueAt(i) ? 1 : 0));
871            i++;
872        }
873    }
874
875    public final void writeBooleanArray(boolean[] val) {
876        if (val != null) {
877            int N = val.length;
878            writeInt(N);
879            for (int i=0; i<N; i++) {
880                writeInt(val[i] ? 1 : 0);
881            }
882        } else {
883            writeInt(-1);
884        }
885    }
886
887    public final boolean[] createBooleanArray() {
888        int N = readInt();
889        // >>2 as a fast divide-by-4 works in the create*Array() functions
890        // because dataAvail() will never return a negative number.  4 is
891        // the size of a stored boolean in the stream.
892        if (N >= 0 && N <= (dataAvail() >> 2)) {
893            boolean[] val = new boolean[N];
894            for (int i=0; i<N; i++) {
895                val[i] = readInt() != 0;
896            }
897            return val;
898        } else {
899            return null;
900        }
901    }
902
903    public final void readBooleanArray(boolean[] val) {
904        int N = readInt();
905        if (N == val.length) {
906            for (int i=0; i<N; i++) {
907                val[i] = readInt() != 0;
908            }
909        } else {
910            throw new RuntimeException("bad array lengths");
911        }
912    }
913
914    public final void writeCharArray(char[] val) {
915        if (val != null) {
916            int N = val.length;
917            writeInt(N);
918            for (int i=0; i<N; i++) {
919                writeInt((int)val[i]);
920            }
921        } else {
922            writeInt(-1);
923        }
924    }
925
926    public final char[] createCharArray() {
927        int N = readInt();
928        if (N >= 0 && N <= (dataAvail() >> 2)) {
929            char[] val = new char[N];
930            for (int i=0; i<N; i++) {
931                val[i] = (char)readInt();
932            }
933            return val;
934        } else {
935            return null;
936        }
937    }
938
939    public final void readCharArray(char[] val) {
940        int N = readInt();
941        if (N == val.length) {
942            for (int i=0; i<N; i++) {
943                val[i] = (char)readInt();
944            }
945        } else {
946            throw new RuntimeException("bad array lengths");
947        }
948    }
949
950    public final void writeIntArray(int[] val) {
951        if (val != null) {
952            int N = val.length;
953            writeInt(N);
954            for (int i=0; i<N; i++) {
955                writeInt(val[i]);
956            }
957        } else {
958            writeInt(-1);
959        }
960    }
961
962    public final int[] createIntArray() {
963        int N = readInt();
964        if (N >= 0 && N <= (dataAvail() >> 2)) {
965            int[] val = new int[N];
966            for (int i=0; i<N; i++) {
967                val[i] = readInt();
968            }
969            return val;
970        } else {
971            return null;
972        }
973    }
974
975    public final void readIntArray(int[] val) {
976        int N = readInt();
977        if (N == val.length) {
978            for (int i=0; i<N; i++) {
979                val[i] = readInt();
980            }
981        } else {
982            throw new RuntimeException("bad array lengths");
983        }
984    }
985
986    public final void writeLongArray(long[] val) {
987        if (val != null) {
988            int N = val.length;
989            writeInt(N);
990            for (int i=0; i<N; i++) {
991                writeLong(val[i]);
992            }
993        } else {
994            writeInt(-1);
995        }
996    }
997
998    public final long[] createLongArray() {
999        int N = readInt();
1000        // >>3 because stored longs are 64 bits
1001        if (N >= 0 && N <= (dataAvail() >> 3)) {
1002            long[] val = new long[N];
1003            for (int i=0; i<N; i++) {
1004                val[i] = readLong();
1005            }
1006            return val;
1007        } else {
1008            return null;
1009        }
1010    }
1011
1012    public final void readLongArray(long[] val) {
1013        int N = readInt();
1014        if (N == val.length) {
1015            for (int i=0; i<N; i++) {
1016                val[i] = readLong();
1017            }
1018        } else {
1019            throw new RuntimeException("bad array lengths");
1020        }
1021    }
1022
1023    public final void writeFloatArray(float[] val) {
1024        if (val != null) {
1025            int N = val.length;
1026            writeInt(N);
1027            for (int i=0; i<N; i++) {
1028                writeFloat(val[i]);
1029            }
1030        } else {
1031            writeInt(-1);
1032        }
1033    }
1034
1035    public final float[] createFloatArray() {
1036        int N = readInt();
1037        // >>2 because stored floats are 4 bytes
1038        if (N >= 0 && N <= (dataAvail() >> 2)) {
1039            float[] val = new float[N];
1040            for (int i=0; i<N; i++) {
1041                val[i] = readFloat();
1042            }
1043            return val;
1044        } else {
1045            return null;
1046        }
1047    }
1048
1049    public final void readFloatArray(float[] val) {
1050        int N = readInt();
1051        if (N == val.length) {
1052            for (int i=0; i<N; i++) {
1053                val[i] = readFloat();
1054            }
1055        } else {
1056            throw new RuntimeException("bad array lengths");
1057        }
1058    }
1059
1060    public final void writeDoubleArray(double[] val) {
1061        if (val != null) {
1062            int N = val.length;
1063            writeInt(N);
1064            for (int i=0; i<N; i++) {
1065                writeDouble(val[i]);
1066            }
1067        } else {
1068            writeInt(-1);
1069        }
1070    }
1071
1072    public final double[] createDoubleArray() {
1073        int N = readInt();
1074        // >>3 because stored doubles are 8 bytes
1075        if (N >= 0 && N <= (dataAvail() >> 3)) {
1076            double[] val = new double[N];
1077            for (int i=0; i<N; i++) {
1078                val[i] = readDouble();
1079            }
1080            return val;
1081        } else {
1082            return null;
1083        }
1084    }
1085
1086    public final void readDoubleArray(double[] val) {
1087        int N = readInt();
1088        if (N == val.length) {
1089            for (int i=0; i<N; i++) {
1090                val[i] = readDouble();
1091            }
1092        } else {
1093            throw new RuntimeException("bad array lengths");
1094        }
1095    }
1096
1097    public final void writeStringArray(String[] val) {
1098        if (val != null) {
1099            int N = val.length;
1100            writeInt(N);
1101            for (int i=0; i<N; i++) {
1102                writeString(val[i]);
1103            }
1104        } else {
1105            writeInt(-1);
1106        }
1107    }
1108
1109    public final String[] createStringArray() {
1110        int N = readInt();
1111        if (N >= 0) {
1112            String[] val = new String[N];
1113            for (int i=0; i<N; i++) {
1114                val[i] = readString();
1115            }
1116            return val;
1117        } else {
1118            return null;
1119        }
1120    }
1121
1122    public final void readStringArray(String[] val) {
1123        int N = readInt();
1124        if (N == val.length) {
1125            for (int i=0; i<N; i++) {
1126                val[i] = readString();
1127            }
1128        } else {
1129            throw new RuntimeException("bad array lengths");
1130        }
1131    }
1132
1133    public final void writeBinderArray(IBinder[] val) {
1134        if (val != null) {
1135            int N = val.length;
1136            writeInt(N);
1137            for (int i=0; i<N; i++) {
1138                writeStrongBinder(val[i]);
1139            }
1140        } else {
1141            writeInt(-1);
1142        }
1143    }
1144
1145    /**
1146     * @hide
1147     */
1148    public final void writeCharSequenceArray(CharSequence[] val) {
1149        if (val != null) {
1150            int N = val.length;
1151            writeInt(N);
1152            for (int i=0; i<N; i++) {
1153                writeCharSequence(val[i]);
1154            }
1155        } else {
1156            writeInt(-1);
1157        }
1158    }
1159
1160    /**
1161     * @hide
1162     */
1163    public final void writeCharSequenceList(ArrayList<CharSequence> val) {
1164        if (val != null) {
1165            int N = val.size();
1166            writeInt(N);
1167            for (int i=0; i<N; i++) {
1168                writeCharSequence(val.get(i));
1169            }
1170        } else {
1171            writeInt(-1);
1172        }
1173    }
1174
1175    public final IBinder[] createBinderArray() {
1176        int N = readInt();
1177        if (N >= 0) {
1178            IBinder[] val = new IBinder[N];
1179            for (int i=0; i<N; i++) {
1180                val[i] = readStrongBinder();
1181            }
1182            return val;
1183        } else {
1184            return null;
1185        }
1186    }
1187
1188    public final void readBinderArray(IBinder[] val) {
1189        int N = readInt();
1190        if (N == val.length) {
1191            for (int i=0; i<N; i++) {
1192                val[i] = readStrongBinder();
1193            }
1194        } else {
1195            throw new RuntimeException("bad array lengths");
1196        }
1197    }
1198
1199    /**
1200     * Flatten a List containing a particular object type into the parcel, at
1201     * the current dataPosition() and growing dataCapacity() if needed.  The
1202     * type of the objects in the list must be one that implements Parcelable.
1203     * Unlike the generic writeList() method, however, only the raw data of the
1204     * objects is written and not their type, so you must use the corresponding
1205     * readTypedList() to unmarshall them.
1206     *
1207     * @param val The list of objects to be written.
1208     *
1209     * @see #createTypedArrayList
1210     * @see #readTypedList
1211     * @see Parcelable
1212     */
1213    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1214        if (val == null) {
1215            writeInt(-1);
1216            return;
1217        }
1218        int N = val.size();
1219        int i=0;
1220        writeInt(N);
1221        while (i < N) {
1222            T item = val.get(i);
1223            if (item != null) {
1224                writeInt(1);
1225                item.writeToParcel(this, 0);
1226            } else {
1227                writeInt(0);
1228            }
1229            i++;
1230        }
1231    }
1232
1233    /**
1234     * Flatten a List containing String objects into the parcel, at
1235     * the current dataPosition() and growing dataCapacity() if needed.  They
1236     * can later be retrieved with {@link #createStringArrayList} or
1237     * {@link #readStringList}.
1238     *
1239     * @param val The list of strings to be written.
1240     *
1241     * @see #createStringArrayList
1242     * @see #readStringList
1243     */
1244    public final void writeStringList(List<String> val) {
1245        if (val == null) {
1246            writeInt(-1);
1247            return;
1248        }
1249        int N = val.size();
1250        int i=0;
1251        writeInt(N);
1252        while (i < N) {
1253            writeString(val.get(i));
1254            i++;
1255        }
1256    }
1257
1258    /**
1259     * Flatten a List containing IBinder objects into the parcel, at
1260     * the current dataPosition() and growing dataCapacity() if needed.  They
1261     * can later be retrieved with {@link #createBinderArrayList} or
1262     * {@link #readBinderList}.
1263     *
1264     * @param val The list of strings to be written.
1265     *
1266     * @see #createBinderArrayList
1267     * @see #readBinderList
1268     */
1269    public final void writeBinderList(List<IBinder> val) {
1270        if (val == null) {
1271            writeInt(-1);
1272            return;
1273        }
1274        int N = val.size();
1275        int i=0;
1276        writeInt(N);
1277        while (i < N) {
1278            writeStrongBinder(val.get(i));
1279            i++;
1280        }
1281    }
1282
1283    /**
1284     * Flatten a heterogeneous array containing a particular object type into
1285     * the parcel, at
1286     * the current dataPosition() and growing dataCapacity() if needed.  The
1287     * type of the objects in the array must be one that implements Parcelable.
1288     * Unlike the {@link #writeParcelableArray} method, however, only the
1289     * raw data of the objects is written and not their type, so you must use
1290     * {@link #readTypedArray} with the correct corresponding
1291     * {@link Parcelable.Creator} implementation to unmarshall them.
1292     *
1293     * @param val The array of objects to be written.
1294     * @param parcelableFlags Contextual flags as per
1295     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1296     *
1297     * @see #readTypedArray
1298     * @see #writeParcelableArray
1299     * @see Parcelable.Creator
1300     */
1301    public final <T extends Parcelable> void writeTypedArray(T[] val,
1302            int parcelableFlags) {
1303        if (val != null) {
1304            int N = val.length;
1305            writeInt(N);
1306            for (int i=0; i<N; i++) {
1307                T item = val[i];
1308                if (item != null) {
1309                    writeInt(1);
1310                    item.writeToParcel(this, parcelableFlags);
1311                } else {
1312                    writeInt(0);
1313                }
1314            }
1315        } else {
1316            writeInt(-1);
1317        }
1318    }
1319
1320    /**
1321     * Flatten the Parcelable object into the parcel.
1322     *
1323     * @param val The Parcelable object to be written.
1324     * @param parcelableFlags Contextual flags as per
1325     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1326     *
1327     * @see #readTypedObject
1328     */
1329    public final <T extends Parcelable> void writeTypedObject(T val, int parcelableFlags) {
1330        if (val != null) {
1331            writeInt(1);
1332            val.writeToParcel(this, parcelableFlags);
1333        } else {
1334            writeInt(0);
1335        }
1336    }
1337
1338    /**
1339     * Flatten a generic object in to a parcel.  The given Object value may
1340     * currently be one of the following types:
1341     *
1342     * <ul>
1343     * <li> null
1344     * <li> String
1345     * <li> Byte
1346     * <li> Short
1347     * <li> Integer
1348     * <li> Long
1349     * <li> Float
1350     * <li> Double
1351     * <li> Boolean
1352     * <li> String[]
1353     * <li> boolean[]
1354     * <li> byte[]
1355     * <li> int[]
1356     * <li> long[]
1357     * <li> Object[] (supporting objects of the same type defined here).
1358     * <li> {@link Bundle}
1359     * <li> Map (as supported by {@link #writeMap}).
1360     * <li> Any object that implements the {@link Parcelable} protocol.
1361     * <li> Parcelable[]
1362     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1363     * <li> List (as supported by {@link #writeList}).
1364     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1365     * <li> {@link IBinder}
1366     * <li> Any object that implements Serializable (but see
1367     *      {@link #writeSerializable} for caveats).  Note that all of the
1368     *      previous types have relatively efficient implementations for
1369     *      writing to a Parcel; having to rely on the generic serialization
1370     *      approach is much less efficient and should be avoided whenever
1371     *      possible.
1372     * </ul>
1373     *
1374     * <p class="caution">{@link Parcelable} objects are written with
1375     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1376     * serializing objects containing {@link ParcelFileDescriptor}s,
1377     * this may result in file descriptor leaks when they are returned from
1378     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1379     * should be used).</p>
1380     */
1381    public final void writeValue(Object v) {
1382        if (v == null) {
1383            writeInt(VAL_NULL);
1384        } else if (v instanceof String) {
1385            writeInt(VAL_STRING);
1386            writeString((String) v);
1387        } else if (v instanceof Integer) {
1388            writeInt(VAL_INTEGER);
1389            writeInt((Integer) v);
1390        } else if (v instanceof Map) {
1391            writeInt(VAL_MAP);
1392            writeMap((Map) v);
1393        } else if (v instanceof Bundle) {
1394            // Must be before Parcelable
1395            writeInt(VAL_BUNDLE);
1396            writeBundle((Bundle) v);
1397        } else if (v instanceof PersistableBundle) {
1398            writeInt(VAL_PERSISTABLEBUNDLE);
1399            writePersistableBundle((PersistableBundle) v);
1400        } else if (v instanceof Parcelable) {
1401            // IMPOTANT: cases for classes that implement Parcelable must
1402            // come before the Parcelable case, so that their specific VAL_*
1403            // types will be written.
1404            writeInt(VAL_PARCELABLE);
1405            writeParcelable((Parcelable) v, 0);
1406        } else if (v instanceof Short) {
1407            writeInt(VAL_SHORT);
1408            writeInt(((Short) v).intValue());
1409        } else if (v instanceof Long) {
1410            writeInt(VAL_LONG);
1411            writeLong((Long) v);
1412        } else if (v instanceof Float) {
1413            writeInt(VAL_FLOAT);
1414            writeFloat((Float) v);
1415        } else if (v instanceof Double) {
1416            writeInt(VAL_DOUBLE);
1417            writeDouble((Double) v);
1418        } else if (v instanceof Boolean) {
1419            writeInt(VAL_BOOLEAN);
1420            writeInt((Boolean) v ? 1 : 0);
1421        } else if (v instanceof CharSequence) {
1422            // Must be after String
1423            writeInt(VAL_CHARSEQUENCE);
1424            writeCharSequence((CharSequence) v);
1425        } else if (v instanceof List) {
1426            writeInt(VAL_LIST);
1427            writeList((List) v);
1428        } else if (v instanceof SparseArray) {
1429            writeInt(VAL_SPARSEARRAY);
1430            writeSparseArray((SparseArray) v);
1431        } else if (v instanceof boolean[]) {
1432            writeInt(VAL_BOOLEANARRAY);
1433            writeBooleanArray((boolean[]) v);
1434        } else if (v instanceof byte[]) {
1435            writeInt(VAL_BYTEARRAY);
1436            writeByteArray((byte[]) v);
1437        } else if (v instanceof String[]) {
1438            writeInt(VAL_STRINGARRAY);
1439            writeStringArray((String[]) v);
1440        } else if (v instanceof CharSequence[]) {
1441            // Must be after String[] and before Object[]
1442            writeInt(VAL_CHARSEQUENCEARRAY);
1443            writeCharSequenceArray((CharSequence[]) v);
1444        } else if (v instanceof IBinder) {
1445            writeInt(VAL_IBINDER);
1446            writeStrongBinder((IBinder) v);
1447        } else if (v instanceof Parcelable[]) {
1448            writeInt(VAL_PARCELABLEARRAY);
1449            writeParcelableArray((Parcelable[]) v, 0);
1450        } else if (v instanceof int[]) {
1451            writeInt(VAL_INTARRAY);
1452            writeIntArray((int[]) v);
1453        } else if (v instanceof long[]) {
1454            writeInt(VAL_LONGARRAY);
1455            writeLongArray((long[]) v);
1456        } else if (v instanceof Byte) {
1457            writeInt(VAL_BYTE);
1458            writeInt((Byte) v);
1459        } else if (v instanceof Size) {
1460            writeInt(VAL_SIZE);
1461            writeSize((Size) v);
1462        } else if (v instanceof SizeF) {
1463            writeInt(VAL_SIZEF);
1464            writeSizeF((SizeF) v);
1465        } else if (v instanceof double[]) {
1466            writeInt(VAL_DOUBLEARRAY);
1467            writeDoubleArray((double[]) v);
1468        } else {
1469            Class<?> clazz = v.getClass();
1470            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1471                // Only pure Object[] are written here, Other arrays of non-primitive types are
1472                // handled by serialization as this does not record the component type.
1473                writeInt(VAL_OBJECTARRAY);
1474                writeArray((Object[]) v);
1475            } else if (v instanceof Serializable) {
1476                // Must be last
1477                writeInt(VAL_SERIALIZABLE);
1478                writeSerializable((Serializable) v);
1479            } else {
1480                throw new RuntimeException("Parcel: unable to marshal value " + v);
1481            }
1482        }
1483    }
1484
1485    /**
1486     * Flatten the name of the class of the Parcelable and its contents
1487     * into the parcel.
1488     *
1489     * @param p The Parcelable object to be written.
1490     * @param parcelableFlags Contextual flags as per
1491     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1492     */
1493    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1494        if (p == null) {
1495            writeString(null);
1496            return;
1497        }
1498        writeParcelableCreator(p);
1499        p.writeToParcel(this, parcelableFlags);
1500    }
1501
1502    /** @hide */
1503    public final void writeParcelableCreator(Parcelable p) {
1504        String name = p.getClass().getName();
1505        writeString(name);
1506    }
1507
1508    /**
1509     * Write a generic serializable object in to a Parcel.  It is strongly
1510     * recommended that this method be avoided, since the serialization
1511     * overhead is extremely large, and this approach will be much slower than
1512     * using the other approaches to writing data in to a Parcel.
1513     */
1514    public final void writeSerializable(Serializable s) {
1515        if (s == null) {
1516            writeString(null);
1517            return;
1518        }
1519        String name = s.getClass().getName();
1520        writeString(name);
1521
1522        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1523        try {
1524            ObjectOutputStream oos = new ObjectOutputStream(baos);
1525            oos.writeObject(s);
1526            oos.close();
1527
1528            writeByteArray(baos.toByteArray());
1529        } catch (IOException ioe) {
1530            throw new RuntimeException("Parcelable encountered " +
1531                "IOException writing serializable object (name = " + name +
1532                ")", ioe);
1533        }
1534    }
1535
1536    /**
1537     * Special function for writing an exception result at the header of
1538     * a parcel, to be used when returning an exception from a transaction.
1539     * Note that this currently only supports a few exception types; any other
1540     * exception will be re-thrown by this function as a RuntimeException
1541     * (to be caught by the system's last-resort exception handling when
1542     * dispatching a transaction).
1543     *
1544     * <p>The supported exception types are:
1545     * <ul>
1546     * <li>{@link BadParcelableException}
1547     * <li>{@link IllegalArgumentException}
1548     * <li>{@link IllegalStateException}
1549     * <li>{@link NullPointerException}
1550     * <li>{@link SecurityException}
1551     * <li>{@link NetworkOnMainThreadException}
1552     * </ul>
1553     *
1554     * @param e The Exception to be written.
1555     *
1556     * @see #writeNoException
1557     * @see #readException
1558     */
1559    public final void writeException(Exception e) {
1560        int code = 0;
1561        if (e instanceof Parcelable
1562                && (e.getClass().getClassLoader() == Parcelable.class.getClassLoader())) {
1563            // We only send Parcelable exceptions that are in the
1564            // BootClassLoader to ensure that the receiver can unpack them
1565            code = EX_PARCELABLE;
1566        } else if (e instanceof SecurityException) {
1567            code = EX_SECURITY;
1568        } else if (e instanceof BadParcelableException) {
1569            code = EX_BAD_PARCELABLE;
1570        } else if (e instanceof IllegalArgumentException) {
1571            code = EX_ILLEGAL_ARGUMENT;
1572        } else if (e instanceof NullPointerException) {
1573            code = EX_NULL_POINTER;
1574        } else if (e instanceof IllegalStateException) {
1575            code = EX_ILLEGAL_STATE;
1576        } else if (e instanceof NetworkOnMainThreadException) {
1577            code = EX_NETWORK_MAIN_THREAD;
1578        } else if (e instanceof UnsupportedOperationException) {
1579            code = EX_UNSUPPORTED_OPERATION;
1580        } else if (e instanceof ServiceSpecificException) {
1581            code = EX_SERVICE_SPECIFIC;
1582        }
1583        writeInt(code);
1584        StrictMode.clearGatheredViolations();
1585        if (code == 0) {
1586            if (e instanceof RuntimeException) {
1587                throw (RuntimeException) e;
1588            }
1589            throw new RuntimeException(e);
1590        }
1591        writeString(e.getMessage());
1592        switch (code) {
1593            case EX_SERVICE_SPECIFIC:
1594                writeInt(((ServiceSpecificException) e).errorCode);
1595                break;
1596            case EX_PARCELABLE:
1597                // Write parceled exception prefixed by length
1598                final int sizePosition = dataPosition();
1599                writeInt(0);
1600                writeParcelable((Parcelable) e, Parcelable.PARCELABLE_WRITE_RETURN_VALUE);
1601                final int payloadPosition = dataPosition();
1602                setDataPosition(sizePosition);
1603                writeInt(payloadPosition - sizePosition);
1604                setDataPosition(payloadPosition);
1605                break;
1606        }
1607    }
1608
1609    /**
1610     * Special function for writing information at the front of the Parcel
1611     * indicating that no exception occurred.
1612     *
1613     * @see #writeException
1614     * @see #readException
1615     */
1616    public final void writeNoException() {
1617        // Despite the name of this function ("write no exception"),
1618        // it should instead be thought of as "write the RPC response
1619        // header", but because this function name is written out by
1620        // the AIDL compiler, we're not going to rename it.
1621        //
1622        // The response header, in the non-exception case (see also
1623        // writeException above, also called by the AIDL compiler), is
1624        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1625        // StrictMode has gathered up violations that have occurred
1626        // during a Binder call, in which case we write out the number
1627        // of violations and their details, serialized, before the
1628        // actual RPC respons data.  The receiving end of this is
1629        // readException(), below.
1630        if (StrictMode.hasGatheredViolations()) {
1631            writeInt(EX_HAS_REPLY_HEADER);
1632            final int sizePosition = dataPosition();
1633            writeInt(0);  // total size of fat header, to be filled in later
1634            StrictMode.writeGatheredViolationsToParcel(this);
1635            final int payloadPosition = dataPosition();
1636            setDataPosition(sizePosition);
1637            writeInt(payloadPosition - sizePosition);  // header size
1638            setDataPosition(payloadPosition);
1639        } else {
1640            writeInt(0);
1641        }
1642    }
1643
1644    /**
1645     * Special function for reading an exception result from the header of
1646     * a parcel, to be used after receiving the result of a transaction.  This
1647     * will throw the exception for you if it had been written to the Parcel,
1648     * otherwise return and let you read the normal result data from the Parcel.
1649     *
1650     * @see #writeException
1651     * @see #writeNoException
1652     */
1653    public final void readException() {
1654        int code = readExceptionCode();
1655        if (code != 0) {
1656            String msg = readString();
1657            readException(code, msg);
1658        }
1659    }
1660
1661    /**
1662     * Parses the header of a Binder call's response Parcel and
1663     * returns the exception code.  Deals with lite or fat headers.
1664     * In the common successful case, this header is generally zero.
1665     * In less common cases, it's a small negative number and will be
1666     * followed by an error string.
1667     *
1668     * This exists purely for android.database.DatabaseUtils and
1669     * insulating it from having to handle fat headers as returned by
1670     * e.g. StrictMode-induced RPC responses.
1671     *
1672     * @hide
1673     */
1674    public final int readExceptionCode() {
1675        int code = readInt();
1676        if (code == EX_HAS_REPLY_HEADER) {
1677            int headerSize = readInt();
1678            if (headerSize == 0) {
1679                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1680            } else {
1681                // Currently the only thing in the header is StrictMode stacks,
1682                // but discussions around event/RPC tracing suggest we might
1683                // put that here too.  If so, switch on sub-header tags here.
1684                // But for now, just parse out the StrictMode stuff.
1685                StrictMode.readAndHandleBinderCallViolations(this);
1686            }
1687            // And fat response headers are currently only used when
1688            // there are no exceptions, so return no error:
1689            return 0;
1690        }
1691        return code;
1692    }
1693
1694    /**
1695     * Throw an exception with the given message. Not intended for use
1696     * outside the Parcel class.
1697     *
1698     * @param code Used to determine which exception class to throw.
1699     * @param msg The exception message.
1700     */
1701    public final void readException(int code, String msg) {
1702        switch (code) {
1703            case EX_PARCELABLE:
1704                if (readInt() > 0) {
1705                    SneakyThrow.sneakyThrow(
1706                            (Exception) readParcelable(Parcelable.class.getClassLoader()));
1707                } else {
1708                    throw new RuntimeException(msg + " [missing Parcelable]");
1709                }
1710            case EX_SECURITY:
1711                throw new SecurityException(msg);
1712            case EX_BAD_PARCELABLE:
1713                throw new BadParcelableException(msg);
1714            case EX_ILLEGAL_ARGUMENT:
1715                throw new IllegalArgumentException(msg);
1716            case EX_NULL_POINTER:
1717                throw new NullPointerException(msg);
1718            case EX_ILLEGAL_STATE:
1719                throw new IllegalStateException(msg);
1720            case EX_NETWORK_MAIN_THREAD:
1721                throw new NetworkOnMainThreadException();
1722            case EX_UNSUPPORTED_OPERATION:
1723                throw new UnsupportedOperationException(msg);
1724            case EX_SERVICE_SPECIFIC:
1725                throw new ServiceSpecificException(readInt(), msg);
1726        }
1727        throw new RuntimeException("Unknown exception code: " + code
1728                + " msg " + msg);
1729    }
1730
1731    /**
1732     * Read an integer value from the parcel at the current dataPosition().
1733     */
1734    public final int readInt() {
1735        return nativeReadInt(mNativePtr);
1736    }
1737
1738    /**
1739     * Read a long integer value from the parcel at the current dataPosition().
1740     */
1741    public final long readLong() {
1742        return nativeReadLong(mNativePtr);
1743    }
1744
1745    /**
1746     * Read a floating point value from the parcel at the current
1747     * dataPosition().
1748     */
1749    public final float readFloat() {
1750        return nativeReadFloat(mNativePtr);
1751    }
1752
1753    /**
1754     * Read a double precision floating point value from the parcel at the
1755     * current dataPosition().
1756     */
1757    public final double readDouble() {
1758        return nativeReadDouble(mNativePtr);
1759    }
1760
1761    /**
1762     * Read a string value from the parcel at the current dataPosition().
1763     */
1764    public final String readString() {
1765        return nativeReadString(mNativePtr);
1766    }
1767
1768    /**
1769     * Read a CharSequence value from the parcel at the current dataPosition().
1770     * @hide
1771     */
1772    public final CharSequence readCharSequence() {
1773        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1774    }
1775
1776    /**
1777     * Read an object from the parcel at the current dataPosition().
1778     */
1779    public final IBinder readStrongBinder() {
1780        return nativeReadStrongBinder(mNativePtr);
1781    }
1782
1783    /**
1784     * Read a FileDescriptor from the parcel at the current dataPosition().
1785     */
1786    public final ParcelFileDescriptor readFileDescriptor() {
1787        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1788        return fd != null ? new ParcelFileDescriptor(fd) : null;
1789    }
1790
1791    /** {@hide} */
1792    public final FileDescriptor readRawFileDescriptor() {
1793        return nativeReadFileDescriptor(mNativePtr);
1794    }
1795
1796    /**
1797     * {@hide}
1798     * Read and return a new array of FileDescriptors from the parcel.
1799     * @return the FileDescriptor array, or null if the array is null.
1800     **/
1801    public final FileDescriptor[] createRawFileDescriptorArray() {
1802        int N = readInt();
1803        if (N < 0) {
1804            return null;
1805        }
1806        FileDescriptor[] f = new FileDescriptor[N];
1807        for (int i = 0; i < N; i++) {
1808            f[i] = readRawFileDescriptor();
1809        }
1810        return f;
1811    }
1812
1813    /**
1814     * {@hide}
1815     * Read an array of FileDescriptors from a parcel.
1816     * The passed array must be exactly the length of the array in the parcel.
1817     * @return the FileDescriptor array, or null if the array is null.
1818     **/
1819    public final void readRawFileDescriptorArray(FileDescriptor[] val) {
1820        int N = readInt();
1821        if (N == val.length) {
1822            for (int i=0; i<N; i++) {
1823                val[i] = readRawFileDescriptor();
1824            }
1825        } else {
1826            throw new RuntimeException("bad array lengths");
1827        }
1828    }
1829
1830
1831    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1832            int mode) throws FileNotFoundException;
1833    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1834            throws IOException;
1835    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1836            throws IOException;
1837    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1838
1839    /**
1840     * Read a byte value from the parcel at the current dataPosition().
1841     */
1842    public final byte readByte() {
1843        return (byte)(readInt() & 0xff);
1844    }
1845
1846    /**
1847     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1848     * been written with {@link #writeBundle}.  Read into an existing Map object
1849     * from the parcel at the current dataPosition().
1850     */
1851    public final void readMap(Map outVal, ClassLoader loader) {
1852        int N = readInt();
1853        readMapInternal(outVal, N, loader);
1854    }
1855
1856    /**
1857     * Read into an existing List object from the parcel at the current
1858     * dataPosition(), using the given class loader to load any enclosed
1859     * Parcelables.  If it is null, the default class loader is used.
1860     */
1861    public final void readList(List outVal, ClassLoader loader) {
1862        int N = readInt();
1863        readListInternal(outVal, N, loader);
1864    }
1865
1866    /**
1867     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1868     * been written with {@link #writeBundle}.  Read and return a new HashMap
1869     * object from the parcel at the current dataPosition(), using the given
1870     * class loader to load any enclosed Parcelables.  Returns null if
1871     * the previously written map object was null.
1872     */
1873    public final HashMap readHashMap(ClassLoader loader)
1874    {
1875        int N = readInt();
1876        if (N < 0) {
1877            return null;
1878        }
1879        HashMap m = new HashMap(N);
1880        readMapInternal(m, N, loader);
1881        return m;
1882    }
1883
1884    /**
1885     * Read and return a new Bundle object from the parcel at the current
1886     * dataPosition().  Returns null if the previously written Bundle object was
1887     * null.
1888     */
1889    public final Bundle readBundle() {
1890        return readBundle(null);
1891    }
1892
1893    /**
1894     * Read and return a new Bundle object from the parcel at the current
1895     * dataPosition(), using the given class loader to initialize the class
1896     * loader of the Bundle for later retrieval of Parcelable objects.
1897     * Returns null if the previously written Bundle object was null.
1898     */
1899    public final Bundle readBundle(ClassLoader loader) {
1900        int length = readInt();
1901        if (length < 0) {
1902            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1903            return null;
1904        }
1905
1906        final Bundle bundle = new Bundle(this, length);
1907        if (loader != null) {
1908            bundle.setClassLoader(loader);
1909        }
1910        return bundle;
1911    }
1912
1913    /**
1914     * Read and return a new Bundle object from the parcel at the current
1915     * dataPosition().  Returns null if the previously written Bundle object was
1916     * null.
1917     */
1918    public final PersistableBundle readPersistableBundle() {
1919        return readPersistableBundle(null);
1920    }
1921
1922    /**
1923     * Read and return a new Bundle object from the parcel at the current
1924     * dataPosition(), using the given class loader to initialize the class
1925     * loader of the Bundle for later retrieval of Parcelable objects.
1926     * Returns null if the previously written Bundle object was null.
1927     */
1928    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
1929        int length = readInt();
1930        if (length < 0) {
1931            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1932            return null;
1933        }
1934
1935        final PersistableBundle bundle = new PersistableBundle(this, length);
1936        if (loader != null) {
1937            bundle.setClassLoader(loader);
1938        }
1939        return bundle;
1940    }
1941
1942    /**
1943     * Read a Size from the parcel at the current dataPosition().
1944     */
1945    public final Size readSize() {
1946        final int width = readInt();
1947        final int height = readInt();
1948        return new Size(width, height);
1949    }
1950
1951    /**
1952     * Read a SizeF from the parcel at the current dataPosition().
1953     */
1954    public final SizeF readSizeF() {
1955        final float width = readFloat();
1956        final float height = readFloat();
1957        return new SizeF(width, height);
1958    }
1959
1960    /**
1961     * Read and return a byte[] object from the parcel.
1962     */
1963    public final byte[] createByteArray() {
1964        return nativeCreateByteArray(mNativePtr);
1965    }
1966
1967    /**
1968     * Read a byte[] object from the parcel and copy it into the
1969     * given byte array.
1970     */
1971    public final void readByteArray(byte[] val) {
1972        // TODO: make this a native method to avoid the extra copy.
1973        byte[] ba = createByteArray();
1974        if (ba.length == val.length) {
1975           System.arraycopy(ba, 0, val, 0, ba.length);
1976        } else {
1977            throw new RuntimeException("bad array lengths");
1978        }
1979    }
1980
1981    /**
1982     * Read a blob of data from the parcel and return it as a byte array.
1983     * {@hide}
1984     * {@SystemApi}
1985     */
1986    public final byte[] readBlob() {
1987        return nativeReadBlob(mNativePtr);
1988    }
1989
1990    /**
1991     * Read and return a String[] object from the parcel.
1992     * {@hide}
1993     */
1994    public final String[] readStringArray() {
1995        String[] array = null;
1996
1997        int length = readInt();
1998        if (length >= 0)
1999        {
2000            array = new String[length];
2001
2002            for (int i = 0 ; i < length ; i++)
2003            {
2004                array[i] = readString();
2005            }
2006        }
2007
2008        return array;
2009    }
2010
2011    /**
2012     * Read and return a CharSequence[] object from the parcel.
2013     * {@hide}
2014     */
2015    public final CharSequence[] readCharSequenceArray() {
2016        CharSequence[] array = null;
2017
2018        int length = readInt();
2019        if (length >= 0)
2020        {
2021            array = new CharSequence[length];
2022
2023            for (int i = 0 ; i < length ; i++)
2024            {
2025                array[i] = readCharSequence();
2026            }
2027        }
2028
2029        return array;
2030    }
2031
2032    /**
2033     * Read and return an ArrayList&lt;CharSequence&gt; object from the parcel.
2034     * {@hide}
2035     */
2036    public final ArrayList<CharSequence> readCharSequenceList() {
2037        ArrayList<CharSequence> array = null;
2038
2039        int length = readInt();
2040        if (length >= 0) {
2041            array = new ArrayList<CharSequence>(length);
2042
2043            for (int i = 0 ; i < length ; i++) {
2044                array.add(readCharSequence());
2045            }
2046        }
2047
2048        return array;
2049    }
2050
2051    /**
2052     * Read and return a new ArrayList object from the parcel at the current
2053     * dataPosition().  Returns null if the previously written list object was
2054     * null.  The given class loader will be used to load any enclosed
2055     * Parcelables.
2056     */
2057    public final ArrayList readArrayList(ClassLoader loader) {
2058        int N = readInt();
2059        if (N < 0) {
2060            return null;
2061        }
2062        ArrayList l = new ArrayList(N);
2063        readListInternal(l, N, loader);
2064        return l;
2065    }
2066
2067    /**
2068     * Read and return a new Object array from the parcel at the current
2069     * dataPosition().  Returns null if the previously written array was
2070     * null.  The given class loader will be used to load any enclosed
2071     * Parcelables.
2072     */
2073    public final Object[] readArray(ClassLoader loader) {
2074        int N = readInt();
2075        if (N < 0) {
2076            return null;
2077        }
2078        Object[] l = new Object[N];
2079        readArrayInternal(l, N, loader);
2080        return l;
2081    }
2082
2083    /**
2084     * Read and return a new SparseArray object from the parcel at the current
2085     * dataPosition().  Returns null if the previously written list object was
2086     * null.  The given class loader will be used to load any enclosed
2087     * Parcelables.
2088     */
2089    public final SparseArray readSparseArray(ClassLoader loader) {
2090        int N = readInt();
2091        if (N < 0) {
2092            return null;
2093        }
2094        SparseArray sa = new SparseArray(N);
2095        readSparseArrayInternal(sa, N, loader);
2096        return sa;
2097    }
2098
2099    /**
2100     * Read and return a new SparseBooleanArray object from the parcel at the current
2101     * dataPosition().  Returns null if the previously written list object was
2102     * null.
2103     */
2104    public final SparseBooleanArray readSparseBooleanArray() {
2105        int N = readInt();
2106        if (N < 0) {
2107            return null;
2108        }
2109        SparseBooleanArray sa = new SparseBooleanArray(N);
2110        readSparseBooleanArrayInternal(sa, N);
2111        return sa;
2112    }
2113
2114    /**
2115     * Read and return a new ArrayList containing a particular object type from
2116     * the parcel that was written with {@link #writeTypedList} at the
2117     * current dataPosition().  Returns null if the
2118     * previously written list object was null.  The list <em>must</em> have
2119     * previously been written via {@link #writeTypedList} with the same object
2120     * type.
2121     *
2122     * @return A newly created ArrayList containing objects with the same data
2123     *         as those that were previously written.
2124     *
2125     * @see #writeTypedList
2126     */
2127    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
2128        int N = readInt();
2129        if (N < 0) {
2130            return null;
2131        }
2132        ArrayList<T> l = new ArrayList<T>(N);
2133        while (N > 0) {
2134            if (readInt() != 0) {
2135                l.add(c.createFromParcel(this));
2136            } else {
2137                l.add(null);
2138            }
2139            N--;
2140        }
2141        return l;
2142    }
2143
2144    /**
2145     * Read into the given List items containing a particular object type
2146     * that were written with {@link #writeTypedList} at the
2147     * current dataPosition().  The list <em>must</em> have
2148     * previously been written via {@link #writeTypedList} with the same object
2149     * type.
2150     *
2151     * @return A newly created ArrayList containing objects with the same data
2152     *         as those that were previously written.
2153     *
2154     * @see #writeTypedList
2155     */
2156    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
2157        int M = list.size();
2158        int N = readInt();
2159        int i = 0;
2160        for (; i < M && i < N; i++) {
2161            if (readInt() != 0) {
2162                list.set(i, c.createFromParcel(this));
2163            } else {
2164                list.set(i, null);
2165            }
2166        }
2167        for (; i<N; i++) {
2168            if (readInt() != 0) {
2169                list.add(c.createFromParcel(this));
2170            } else {
2171                list.add(null);
2172            }
2173        }
2174        for (; i<M; i++) {
2175            list.remove(N);
2176        }
2177    }
2178
2179    /**
2180     * Read and return a new ArrayList containing String objects from
2181     * the parcel that was written with {@link #writeStringList} at the
2182     * current dataPosition().  Returns null if the
2183     * previously written list object was null.
2184     *
2185     * @return A newly created ArrayList containing strings with the same data
2186     *         as those that were previously written.
2187     *
2188     * @see #writeStringList
2189     */
2190    public final ArrayList<String> createStringArrayList() {
2191        int N = readInt();
2192        if (N < 0) {
2193            return null;
2194        }
2195        ArrayList<String> l = new ArrayList<String>(N);
2196        while (N > 0) {
2197            l.add(readString());
2198            N--;
2199        }
2200        return l;
2201    }
2202
2203    /**
2204     * Read and return a new ArrayList containing IBinder objects from
2205     * the parcel that was written with {@link #writeBinderList} at the
2206     * current dataPosition().  Returns null if the
2207     * previously written list object was null.
2208     *
2209     * @return A newly created ArrayList containing strings with the same data
2210     *         as those that were previously written.
2211     *
2212     * @see #writeBinderList
2213     */
2214    public final ArrayList<IBinder> createBinderArrayList() {
2215        int N = readInt();
2216        if (N < 0) {
2217            return null;
2218        }
2219        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
2220        while (N > 0) {
2221            l.add(readStrongBinder());
2222            N--;
2223        }
2224        return l;
2225    }
2226
2227    /**
2228     * Read into the given List items String objects that were written with
2229     * {@link #writeStringList} at the current dataPosition().
2230     *
2231     * @return A newly created ArrayList containing strings with the same data
2232     *         as those that were previously written.
2233     *
2234     * @see #writeStringList
2235     */
2236    public final void readStringList(List<String> list) {
2237        int M = list.size();
2238        int N = readInt();
2239        int i = 0;
2240        for (; i < M && i < N; i++) {
2241            list.set(i, readString());
2242        }
2243        for (; i<N; i++) {
2244            list.add(readString());
2245        }
2246        for (; i<M; i++) {
2247            list.remove(N);
2248        }
2249    }
2250
2251    /**
2252     * Read into the given List items IBinder objects that were written with
2253     * {@link #writeBinderList} at the current dataPosition().
2254     *
2255     * @return A newly created ArrayList containing strings with the same data
2256     *         as those that were previously written.
2257     *
2258     * @see #writeBinderList
2259     */
2260    public final void readBinderList(List<IBinder> list) {
2261        int M = list.size();
2262        int N = readInt();
2263        int i = 0;
2264        for (; i < M && i < N; i++) {
2265            list.set(i, readStrongBinder());
2266        }
2267        for (; i<N; i++) {
2268            list.add(readStrongBinder());
2269        }
2270        for (; i<M; i++) {
2271            list.remove(N);
2272        }
2273    }
2274
2275    /**
2276     * Read and return a new array containing a particular object type from
2277     * the parcel at the current dataPosition().  Returns null if the
2278     * previously written array was null.  The array <em>must</em> have
2279     * previously been written via {@link #writeTypedArray} with the same
2280     * object type.
2281     *
2282     * @return A newly created array containing objects with the same data
2283     *         as those that were previously written.
2284     *
2285     * @see #writeTypedArray
2286     */
2287    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
2288        int N = readInt();
2289        if (N < 0) {
2290            return null;
2291        }
2292        T[] l = c.newArray(N);
2293        for (int i=0; i<N; i++) {
2294            if (readInt() != 0) {
2295                l[i] = c.createFromParcel(this);
2296            }
2297        }
2298        return l;
2299    }
2300
2301    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
2302        int N = readInt();
2303        if (N == val.length) {
2304            for (int i=0; i<N; i++) {
2305                if (readInt() != 0) {
2306                    val[i] = c.createFromParcel(this);
2307                } else {
2308                    val[i] = null;
2309                }
2310            }
2311        } else {
2312            throw new RuntimeException("bad array lengths");
2313        }
2314    }
2315
2316    /**
2317     * @deprecated
2318     * @hide
2319     */
2320    @Deprecated
2321    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2322        return createTypedArray(c);
2323    }
2324
2325    /**
2326     * Read and return a typed Parcelable object from a parcel.
2327     * Returns null if the previous written object was null.
2328     * The object <em>must</em> have previous been written via
2329     * {@link #writeTypedObject} with the same object type.
2330     *
2331     * @return A newly created object of the type that was previously
2332     *         written.
2333     *
2334     * @see #writeTypedObject
2335     */
2336    public final <T> T readTypedObject(Parcelable.Creator<T> c) {
2337        if (readInt() != 0) {
2338            return c.createFromParcel(this);
2339        } else {
2340            return null;
2341        }
2342    }
2343
2344    /**
2345     * Write a heterogeneous array of Parcelable objects into the Parcel.
2346     * Each object in the array is written along with its class name, so
2347     * that the correct class can later be instantiated.  As a result, this
2348     * has significantly more overhead than {@link #writeTypedArray}, but will
2349     * correctly handle an array containing more than one type of object.
2350     *
2351     * @param value The array of objects to be written.
2352     * @param parcelableFlags Contextual flags as per
2353     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2354     *
2355     * @see #writeTypedArray
2356     */
2357    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2358            int parcelableFlags) {
2359        if (value != null) {
2360            int N = value.length;
2361            writeInt(N);
2362            for (int i=0; i<N; i++) {
2363                writeParcelable(value[i], parcelableFlags);
2364            }
2365        } else {
2366            writeInt(-1);
2367        }
2368    }
2369
2370    /**
2371     * Read a typed object from a parcel.  The given class loader will be
2372     * used to load any enclosed Parcelables.  If it is null, the default class
2373     * loader will be used.
2374     */
2375    public final Object readValue(ClassLoader loader) {
2376        int type = readInt();
2377
2378        switch (type) {
2379        case VAL_NULL:
2380            return null;
2381
2382        case VAL_STRING:
2383            return readString();
2384
2385        case VAL_INTEGER:
2386            return readInt();
2387
2388        case VAL_MAP:
2389            return readHashMap(loader);
2390
2391        case VAL_PARCELABLE:
2392            return readParcelable(loader);
2393
2394        case VAL_SHORT:
2395            return (short) readInt();
2396
2397        case VAL_LONG:
2398            return readLong();
2399
2400        case VAL_FLOAT:
2401            return readFloat();
2402
2403        case VAL_DOUBLE:
2404            return readDouble();
2405
2406        case VAL_BOOLEAN:
2407            return readInt() == 1;
2408
2409        case VAL_CHARSEQUENCE:
2410            return readCharSequence();
2411
2412        case VAL_LIST:
2413            return readArrayList(loader);
2414
2415        case VAL_BOOLEANARRAY:
2416            return createBooleanArray();
2417
2418        case VAL_BYTEARRAY:
2419            return createByteArray();
2420
2421        case VAL_STRINGARRAY:
2422            return readStringArray();
2423
2424        case VAL_CHARSEQUENCEARRAY:
2425            return readCharSequenceArray();
2426
2427        case VAL_IBINDER:
2428            return readStrongBinder();
2429
2430        case VAL_OBJECTARRAY:
2431            return readArray(loader);
2432
2433        case VAL_INTARRAY:
2434            return createIntArray();
2435
2436        case VAL_LONGARRAY:
2437            return createLongArray();
2438
2439        case VAL_BYTE:
2440            return readByte();
2441
2442        case VAL_SERIALIZABLE:
2443            return readSerializable(loader);
2444
2445        case VAL_PARCELABLEARRAY:
2446            return readParcelableArray(loader);
2447
2448        case VAL_SPARSEARRAY:
2449            return readSparseArray(loader);
2450
2451        case VAL_SPARSEBOOLEANARRAY:
2452            return readSparseBooleanArray();
2453
2454        case VAL_BUNDLE:
2455            return readBundle(loader); // loading will be deferred
2456
2457        case VAL_PERSISTABLEBUNDLE:
2458            return readPersistableBundle(loader);
2459
2460        case VAL_SIZE:
2461            return readSize();
2462
2463        case VAL_SIZEF:
2464            return readSizeF();
2465
2466        case VAL_DOUBLEARRAY:
2467            return createDoubleArray();
2468
2469        default:
2470            int off = dataPosition() - 4;
2471            throw new RuntimeException(
2472                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2473        }
2474    }
2475
2476    /**
2477     * Read and return a new Parcelable from the parcel.  The given class loader
2478     * will be used to load any enclosed Parcelables.  If it is null, the default
2479     * class loader will be used.
2480     * @param loader A ClassLoader from which to instantiate the Parcelable
2481     * object, or null for the default class loader.
2482     * @return Returns the newly created Parcelable, or null if a null
2483     * object has been written.
2484     * @throws BadParcelableException Throws BadParcelableException if there
2485     * was an error trying to instantiate the Parcelable.
2486     */
2487    @SuppressWarnings("unchecked")
2488    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2489        Parcelable.Creator<?> creator = readParcelableCreator(loader);
2490        if (creator == null) {
2491            return null;
2492        }
2493        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2494          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2495              (Parcelable.ClassLoaderCreator<?>) creator;
2496          return (T) classLoaderCreator.createFromParcel(this, loader);
2497        }
2498        return (T) creator.createFromParcel(this);
2499    }
2500
2501    /** @hide */
2502    @SuppressWarnings("unchecked")
2503    public final <T extends Parcelable> T readCreator(Parcelable.Creator<?> creator,
2504            ClassLoader loader) {
2505        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2506          Parcelable.ClassLoaderCreator<?> classLoaderCreator =
2507              (Parcelable.ClassLoaderCreator<?>) creator;
2508          return (T) classLoaderCreator.createFromParcel(this, loader);
2509        }
2510        return (T) creator.createFromParcel(this);
2511    }
2512
2513    /** @hide */
2514    public final Parcelable.Creator<?> readParcelableCreator(ClassLoader loader) {
2515        String name = readString();
2516        if (name == null) {
2517            return null;
2518        }
2519        Parcelable.Creator<?> creator;
2520        synchronized (mCreators) {
2521            HashMap<String,Parcelable.Creator<?>> map = mCreators.get(loader);
2522            if (map == null) {
2523                map = new HashMap<>();
2524                mCreators.put(loader, map);
2525            }
2526            creator = map.get(name);
2527            if (creator == null) {
2528                try {
2529                    // If loader == null, explicitly emulate Class.forName(String) "caller
2530                    // classloader" behavior.
2531                    ClassLoader parcelableClassLoader =
2532                            (loader == null ? getClass().getClassLoader() : loader);
2533                    // Avoid initializing the Parcelable class until we know it implements
2534                    // Parcelable and has the necessary CREATOR field. http://b/1171613.
2535                    Class<?> parcelableClass = Class.forName(name, false /* initialize */,
2536                            parcelableClassLoader);
2537                    if (!Parcelable.class.isAssignableFrom(parcelableClass)) {
2538                        throw new BadParcelableException("Parcelable protocol requires that the "
2539                                + "class implements Parcelable");
2540                    }
2541                    Field f = parcelableClass.getField("CREATOR");
2542                    if ((f.getModifiers() & Modifier.STATIC) == 0) {
2543                        throw new BadParcelableException("Parcelable protocol requires "
2544                                + "the CREATOR object to be static on class " + name);
2545                    }
2546                    Class<?> creatorType = f.getType();
2547                    if (!Parcelable.Creator.class.isAssignableFrom(creatorType)) {
2548                        // Fail before calling Field.get(), not after, to avoid initializing
2549                        // parcelableClass unnecessarily.
2550                        throw new BadParcelableException("Parcelable protocol requires a "
2551                                + "Parcelable.Creator object called "
2552                                + "CREATOR on class " + name);
2553                    }
2554                    creator = (Parcelable.Creator<?>) f.get(null);
2555                }
2556                catch (IllegalAccessException e) {
2557                    Log.e(TAG, "Illegal access when unmarshalling: " + name, e);
2558                    throw new BadParcelableException(
2559                            "IllegalAccessException when unmarshalling: " + name);
2560                }
2561                catch (ClassNotFoundException e) {
2562                    Log.e(TAG, "Class not found when unmarshalling: " + name, e);
2563                    throw new BadParcelableException(
2564                            "ClassNotFoundException when unmarshalling: " + name);
2565                }
2566                catch (NoSuchFieldException e) {
2567                    throw new BadParcelableException("Parcelable protocol requires a "
2568                            + "Parcelable.Creator object called "
2569                            + "CREATOR on class " + name);
2570                }
2571                if (creator == null) {
2572                    throw new BadParcelableException("Parcelable protocol requires a "
2573                            + "non-null Parcelable.Creator object called "
2574                            + "CREATOR on class " + name);
2575                }
2576
2577                map.put(name, creator);
2578            }
2579        }
2580
2581        return creator;
2582    }
2583
2584    /**
2585     * Read and return a new Parcelable array from the parcel.
2586     * The given class loader will be used to load any enclosed
2587     * Parcelables.
2588     * @return the Parcelable array, or null if the array is null
2589     */
2590    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2591        int N = readInt();
2592        if (N < 0) {
2593            return null;
2594        }
2595        Parcelable[] p = new Parcelable[N];
2596        for (int i = 0; i < N; i++) {
2597            p[i] = readParcelable(loader);
2598        }
2599        return p;
2600    }
2601
2602    /** @hide */
2603    public final <T extends Parcelable> T[] readParcelableArray(ClassLoader loader,
2604            Class<T> clazz) {
2605        int N = readInt();
2606        if (N < 0) {
2607            return null;
2608        }
2609        T[] p = (T[]) Array.newInstance(clazz, N);
2610        for (int i = 0; i < N; i++) {
2611            p[i] = readParcelable(loader);
2612        }
2613        return p;
2614    }
2615
2616    /**
2617     * Read and return a new Serializable object from the parcel.
2618     * @return the Serializable object, or null if the Serializable name
2619     * wasn't found in the parcel.
2620     */
2621    public final Serializable readSerializable() {
2622        return readSerializable(null);
2623    }
2624
2625    private final Serializable readSerializable(final ClassLoader loader) {
2626        String name = readString();
2627        if (name == null) {
2628            // For some reason we were unable to read the name of the Serializable (either there
2629            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2630            // return null, which indicates that the name wasn't found in the parcel.
2631            return null;
2632        }
2633
2634        byte[] serializedData = createByteArray();
2635        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2636        try {
2637            ObjectInputStream ois = new ObjectInputStream(bais) {
2638                @Override
2639                protected Class<?> resolveClass(ObjectStreamClass osClass)
2640                        throws IOException, ClassNotFoundException {
2641                    // try the custom classloader if provided
2642                    if (loader != null) {
2643                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2644                        if (c != null) {
2645                            return c;
2646                        }
2647                    }
2648                    return super.resolveClass(osClass);
2649                }
2650            };
2651            return (Serializable) ois.readObject();
2652        } catch (IOException ioe) {
2653            throw new RuntimeException("Parcelable encountered " +
2654                "IOException reading a Serializable object (name = " + name +
2655                ")", ioe);
2656        } catch (ClassNotFoundException cnfe) {
2657            throw new RuntimeException("Parcelable encountered " +
2658                "ClassNotFoundException reading a Serializable object (name = "
2659                + name + ")", cnfe);
2660        }
2661    }
2662
2663    // Cache of previously looked up CREATOR.createFromParcel() methods for
2664    // particular classes.  Keys are the names of the classes, values are
2665    // Method objects.
2666    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator<?>>>
2667        mCreators = new HashMap<>();
2668
2669    /** @hide for internal use only. */
2670    static protected final Parcel obtain(int obj) {
2671        throw new UnsupportedOperationException();
2672    }
2673
2674    /** @hide */
2675    static protected final Parcel obtain(long obj) {
2676        final Parcel[] pool = sHolderPool;
2677        synchronized (pool) {
2678            Parcel p;
2679            for (int i=0; i<POOL_SIZE; i++) {
2680                p = pool[i];
2681                if (p != null) {
2682                    pool[i] = null;
2683                    if (DEBUG_RECYCLE) {
2684                        p.mStack = new RuntimeException();
2685                    }
2686                    p.init(obj);
2687                    return p;
2688                }
2689            }
2690        }
2691        return new Parcel(obj);
2692    }
2693
2694    private Parcel(long nativePtr) {
2695        if (DEBUG_RECYCLE) {
2696            mStack = new RuntimeException();
2697        }
2698        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2699        init(nativePtr);
2700    }
2701
2702    private void init(long nativePtr) {
2703        if (nativePtr != 0) {
2704            mNativePtr = nativePtr;
2705            mOwnsNativeParcelObject = false;
2706        } else {
2707            mNativePtr = nativeCreate();
2708            mOwnsNativeParcelObject = true;
2709        }
2710    }
2711
2712    private void freeBuffer() {
2713        if (mOwnsNativeParcelObject) {
2714            updateNativeSize(nativeFreeBuffer(mNativePtr));
2715        }
2716    }
2717
2718    private void destroy() {
2719        if (mNativePtr != 0) {
2720            if (mOwnsNativeParcelObject) {
2721                nativeDestroy(mNativePtr);
2722                updateNativeSize(0);
2723            }
2724            mNativePtr = 0;
2725        }
2726    }
2727
2728    @Override
2729    protected void finalize() throws Throwable {
2730        if (DEBUG_RECYCLE) {
2731            if (mStack != null) {
2732                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2733            }
2734        }
2735        destroy();
2736    }
2737
2738    /* package */ void readMapInternal(Map outVal, int N,
2739        ClassLoader loader) {
2740        while (N > 0) {
2741            Object key = readValue(loader);
2742            Object value = readValue(loader);
2743            outVal.put(key, value);
2744            N--;
2745        }
2746    }
2747
2748    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2749        ClassLoader loader) {
2750        if (DEBUG_ARRAY_MAP) {
2751            RuntimeException here =  new RuntimeException("here");
2752            here.fillInStackTrace();
2753            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2754        }
2755        int startPos;
2756        while (N > 0) {
2757            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2758            String key = readString();
2759            Object value = readValue(loader);
2760            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2761                    + (dataPosition()-startPos) + " bytes: key=0x"
2762                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2763            outVal.append(key, value);
2764            N--;
2765        }
2766        outVal.validate();
2767    }
2768
2769    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2770        ClassLoader loader) {
2771        if (DEBUG_ARRAY_MAP) {
2772            RuntimeException here =  new RuntimeException("here");
2773            here.fillInStackTrace();
2774            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2775        }
2776        while (N > 0) {
2777            String key = readString();
2778            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2779                    + (key != null ? key.hashCode() : 0) + " " + key);
2780            Object value = readValue(loader);
2781            outVal.put(key, value);
2782            N--;
2783        }
2784    }
2785
2786    /**
2787     * @hide For testing only.
2788     */
2789    public void readArrayMap(ArrayMap outVal, ClassLoader loader) {
2790        final int N = readInt();
2791        if (N < 0) {
2792            return;
2793        }
2794        readArrayMapInternal(outVal, N, loader);
2795    }
2796
2797    /**
2798     * Reads an array set.
2799     *
2800     * @param loader The class loader to use.
2801     *
2802     * @hide
2803     */
2804    public @Nullable ArraySet<? extends Object> readArraySet(ClassLoader loader) {
2805        final int size = readInt();
2806        if (size < 0) {
2807            return null;
2808        }
2809        ArraySet<Object> result = new ArraySet<>(size);
2810        for (int i = 0; i < size; i++) {
2811            Object value = readValue(loader);
2812            result.append(value);
2813        }
2814        return result;
2815    }
2816
2817    private void readListInternal(List outVal, int N,
2818        ClassLoader loader) {
2819        while (N > 0) {
2820            Object value = readValue(loader);
2821            //Log.d(TAG, "Unmarshalling value=" + value);
2822            outVal.add(value);
2823            N--;
2824        }
2825    }
2826
2827    private void readArrayInternal(Object[] outVal, int N,
2828        ClassLoader loader) {
2829        for (int i = 0; i < N; i++) {
2830            Object value = readValue(loader);
2831            //Log.d(TAG, "Unmarshalling value=" + value);
2832            outVal[i] = value;
2833        }
2834    }
2835
2836    private void readSparseArrayInternal(SparseArray outVal, int N,
2837        ClassLoader loader) {
2838        while (N > 0) {
2839            int key = readInt();
2840            Object value = readValue(loader);
2841            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2842            outVal.append(key, value);
2843            N--;
2844        }
2845    }
2846
2847
2848    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2849        while (N > 0) {
2850            int key = readInt();
2851            boolean value = this.readByte() == 1;
2852            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2853            outVal.append(key, value);
2854            N--;
2855        }
2856    }
2857
2858    /**
2859     * @hide For testing
2860     */
2861    public long getBlobAshmemSize() {
2862        return nativeGetBlobAshmemSize(mNativePtr);
2863    }
2864}
2865