StateMachine.java revision 009ae995828c8951242533b20e5f7d6e514a8c1a
1/**
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package com.android.internal.util;
18
19import android.os.Handler;
20import android.os.HandlerThread;
21import android.os.Looper;
22import android.os.Message;
23import android.text.TextUtils;
24import android.util.Log;
25
26import java.io.FileDescriptor;
27import java.io.PrintWriter;
28import java.io.StringWriter;
29import java.util.ArrayList;
30import java.util.Calendar;
31import java.util.Collection;
32import java.util.HashMap;
33import java.util.Iterator;
34import java.util.Vector;
35
36/**
37 * {@hide}
38 *
39 * <p>The state machine defined here is a hierarchical state machine which processes messages
40 * and can have states arranged hierarchically.</p>
41 *
42 * <p>A state is a <code>State</code> object and must implement
43 * <code>processMessage</code> and optionally <code>enter/exit/getName</code>.
44 * The enter/exit methods are equivalent to the construction and destruction
45 * in Object Oriented programming and are used to perform initialization and
46 * cleanup of the state respectively. The <code>getName</code> method returns the
47 * name of the state; the default implementation returns the class name. It may be
48 * desirable to have <code>getName</code> return the the state instance name instead,
49 * in particular if a particular state class has multiple instances.</p>
50 *
51 * <p>When a state machine is created, <code>addState</code> is used to build the
52 * hierarchy and <code>setInitialState</code> is used to identify which of these
53 * is the initial state. After construction the programmer calls <code>start</code>
54 * which initializes and starts the state machine. The first action the StateMachine
55 * is to the invoke <code>enter</code> for all of the initial state's hierarchy,
56 * starting at its eldest parent. The calls to enter will be done in the context
57 * of the StateMachine's Handler, not in the context of the call to start, and they
58 * will be invoked before any messages are processed. For example, given the simple
59 * state machine below, mP1.enter will be invoked and then mS1.enter. Finally,
60 * messages sent to the state machine will be processed by the current state;
61 * in our simple state machine below that would initially be mS1.processMessage.</p>
62<pre>
63        mP1
64       /   \
65      mS2   mS1 ----&gt; initial state
66</pre>
67 * <p>After the state machine is created and started, messages are sent to a state
68 * machine using <code>sendMessage</code> and the messages are created using
69 * <code>obtainMessage</code>. When the state machine receives a message the
70 * current state's <code>processMessage</code> is invoked. In the above example
71 * mS1.processMessage will be invoked first. The state may use <code>transitionTo</code>
72 * to change the current state to a new state.</p>
73 *
74 * <p>Each state in the state machine may have a zero or one parent states. If
75 * a child state is unable to handle a message it may have the message processed
76 * by its parent by returning false or NOT_HANDLED. If a message is not handled by
77 * a child state or any of its ancestors, <code>unhandledMessage</code> will be invoked
78 * to give one last chance for the state machine to process the message.</p>
79 *
80 * <p>When all processing is completed a state machine may choose to call
81 * <code>transitionToHaltingState</code>. When the current <code>processingMessage</code>
82 * returns the state machine will transfer to an internal <code>HaltingState</code>
83 * and invoke <code>halting</code>. Any message subsequently received by the state
84 * machine will cause <code>haltedProcessMessage</code> to be invoked.</p>
85 *
86 * <p>If it is desirable to completely stop the state machine call <code>quit</code> or
87 * <code>quitNow</code>. These will call <code>exit</code> of the current state and its parents,
88 * call <code>onQuitting</code> and then exit Thread/Loopers.</p>
89 *
90 * <p>In addition to <code>processMessage</code> each <code>State</code> has
91 * an <code>enter</code> method and <code>exit</code> method which may be overridden.</p>
92 *
93 * <p>Since the states are arranged in a hierarchy transitioning to a new state
94 * causes current states to be exited and new states to be entered. To determine
95 * the list of states to be entered/exited the common parent closest to
96 * the current state is found. We then exit from the current state and its
97 * parent's up to but not including the common parent state and then enter all
98 * of the new states below the common parent down to the destination state.
99 * If there is no common parent all states are exited and then the new states
100 * are entered.</p>
101 *
102 * <p>Two other methods that states can use are <code>deferMessage</code> and
103 * <code>sendMessageAtFrontOfQueue</code>. The <code>sendMessageAtFrontOfQueue</code> sends
104 * a message but places it on the front of the queue rather than the back. The
105 * <code>deferMessage</code> causes the message to be saved on a list until a
106 * transition is made to a new state. At which time all of the deferred messages
107 * will be put on the front of the state machine queue with the oldest message
108 * at the front. These will then be processed by the new current state before
109 * any other messages that are on the queue or might be added later. Both of
110 * these are protected and may only be invoked from within a state machine.</p>
111 *
112 * <p>To illustrate some of these properties we'll use state machine with an 8
113 * state hierarchy:</p>
114<pre>
115          mP0
116         /   \
117        mP1   mS0
118       /   \
119      mS2   mS1
120     /  \    \
121    mS3  mS4  mS5  ---&gt; initial state
122</pre>
123 * <p>After starting mS5 the list of active states is mP0, mP1, mS1 and mS5.
124 * So the order of calling processMessage when a message is received is mS5,
125 * mS1, mP1, mP0 assuming each processMessage indicates it can't handle this
126 * message by returning false or NOT_HANDLED.</p>
127 *
128 * <p>Now assume mS5.processMessage receives a message it can handle, and during
129 * the handling determines the machine should change states. It could call
130 * transitionTo(mS4) and return true or HANDLED. Immediately after returning from
131 * processMessage the state machine runtime will find the common parent,
132 * which is mP1. It will then call mS5.exit, mS1.exit, mS2.enter and then
133 * mS4.enter. The new list of active states is mP0, mP1, mS2 and mS4. So
134 * when the next message is received mS4.processMessage will be invoked.</p>
135 *
136 * <p>Now for some concrete examples, here is the canonical HelloWorld as a state machine.
137 * It responds with "Hello World" being printed to the log for every message.</p>
138<pre>
139class HelloWorld extends StateMachine {
140    HelloWorld(String name) {
141        super(name);
142        addState(mState1);
143        setInitialState(mState1);
144    }
145
146    public static HelloWorld makeHelloWorld() {
147        HelloWorld hw = new HelloWorld("hw");
148        hw.start();
149        return hw;
150    }
151
152    class State1 extends State {
153        &#64;Override public boolean processMessage(Message message) {
154            log("Hello World");
155            return HANDLED;
156        }
157    }
158    State1 mState1 = new State1();
159}
160
161void testHelloWorld() {
162    HelloWorld hw = makeHelloWorld();
163    hw.sendMessage(hw.obtainMessage());
164}
165</pre>
166 * <p>A more interesting state machine is one with four states
167 * with two independent parent states.</p>
168<pre>
169        mP1      mP2
170       /   \
171      mS2   mS1
172</pre>
173 * <p>Here is a description of this state machine using pseudo code.</p>
174 <pre>
175state mP1 {
176     enter { log("mP1.enter"); }
177     exit { log("mP1.exit");  }
178     on msg {
179         CMD_2 {
180             send(CMD_3);
181             defer(msg);
182             transitionTo(mS2);
183             return HANDLED;
184         }
185         return NOT_HANDLED;
186     }
187}
188
189INITIAL
190state mS1 parent mP1 {
191     enter { log("mS1.enter"); }
192     exit  { log("mS1.exit");  }
193     on msg {
194         CMD_1 {
195             transitionTo(mS1);
196             return HANDLED;
197         }
198         return NOT_HANDLED;
199     }
200}
201
202state mS2 parent mP1 {
203     enter { log("mS2.enter"); }
204     exit  { log("mS2.exit");  }
205     on msg {
206         CMD_2 {
207             send(CMD_4);
208             return HANDLED;
209         }
210         CMD_3 {
211             defer(msg);
212             transitionTo(mP2);
213             return HANDLED;
214         }
215         return NOT_HANDLED;
216     }
217}
218
219state mP2 {
220     enter {
221         log("mP2.enter");
222         send(CMD_5);
223     }
224     exit { log("mP2.exit"); }
225     on msg {
226         CMD_3, CMD_4 { return HANDLED; }
227         CMD_5 {
228             transitionTo(HaltingState);
229             return HANDLED;
230         }
231         return NOT_HANDLED;
232     }
233}
234</pre>
235 * <p>The implementation is below and also in StateMachineTest:</p>
236<pre>
237class Hsm1 extends StateMachine {
238    public static final int CMD_1 = 1;
239    public static final int CMD_2 = 2;
240    public static final int CMD_3 = 3;
241    public static final int CMD_4 = 4;
242    public static final int CMD_5 = 5;
243
244    public static Hsm1 makeHsm1() {
245        log("makeHsm1 E");
246        Hsm1 sm = new Hsm1("hsm1");
247        sm.start();
248        log("makeHsm1 X");
249        return sm;
250    }
251
252    Hsm1(String name) {
253        super(name);
254        log("ctor E");
255
256        // Add states, use indentation to show hierarchy
257        addState(mP1);
258            addState(mS1, mP1);
259            addState(mS2, mP1);
260        addState(mP2);
261
262        // Set the initial state
263        setInitialState(mS1);
264        log("ctor X");
265    }
266
267    class P1 extends State {
268        &#64;Override public void enter() {
269            log("mP1.enter");
270        }
271        &#64;Override public boolean processMessage(Message message) {
272            boolean retVal;
273            log("mP1.processMessage what=" + message.what);
274            switch(message.what) {
275            case CMD_2:
276                // CMD_2 will arrive in mS2 before CMD_3
277                sendMessage(obtainMessage(CMD_3));
278                deferMessage(message);
279                transitionTo(mS2);
280                retVal = HANDLED;
281                break;
282            default:
283                // Any message we don't understand in this state invokes unhandledMessage
284                retVal = NOT_HANDLED;
285                break;
286            }
287            return retVal;
288        }
289        &#64;Override public void exit() {
290            log("mP1.exit");
291        }
292    }
293
294    class S1 extends State {
295        &#64;Override public void enter() {
296            log("mS1.enter");
297        }
298        &#64;Override public boolean processMessage(Message message) {
299            log("S1.processMessage what=" + message.what);
300            if (message.what == CMD_1) {
301                // Transition to ourself to show that enter/exit is called
302                transitionTo(mS1);
303                return HANDLED;
304            } else {
305                // Let parent process all other messages
306                return NOT_HANDLED;
307            }
308        }
309        &#64;Override public void exit() {
310            log("mS1.exit");
311        }
312    }
313
314    class S2 extends State {
315        &#64;Override public void enter() {
316            log("mS2.enter");
317        }
318        &#64;Override public boolean processMessage(Message message) {
319            boolean retVal;
320            log("mS2.processMessage what=" + message.what);
321            switch(message.what) {
322            case(CMD_2):
323                sendMessage(obtainMessage(CMD_4));
324                retVal = HANDLED;
325                break;
326            case(CMD_3):
327                deferMessage(message);
328                transitionTo(mP2);
329                retVal = HANDLED;
330                break;
331            default:
332                retVal = NOT_HANDLED;
333                break;
334            }
335            return retVal;
336        }
337        &#64;Override public void exit() {
338            log("mS2.exit");
339        }
340    }
341
342    class P2 extends State {
343        &#64;Override public void enter() {
344            log("mP2.enter");
345            sendMessage(obtainMessage(CMD_5));
346        }
347        &#64;Override public boolean processMessage(Message message) {
348            log("P2.processMessage what=" + message.what);
349            switch(message.what) {
350            case(CMD_3):
351                break;
352            case(CMD_4):
353                break;
354            case(CMD_5):
355                transitionToHaltingState();
356                break;
357            }
358            return HANDLED;
359        }
360        &#64;Override public void exit() {
361            log("mP2.exit");
362        }
363    }
364
365    &#64;Override
366    void onHalting() {
367        log("halting");
368        synchronized (this) {
369            this.notifyAll();
370        }
371    }
372
373    P1 mP1 = new P1();
374    S1 mS1 = new S1();
375    S2 mS2 = new S2();
376    P2 mP2 = new P2();
377}
378</pre>
379 * <p>If this is executed by sending two messages CMD_1 and CMD_2
380 * (Note the synchronize is only needed because we use hsm.wait())</p>
381<pre>
382Hsm1 hsm = makeHsm1();
383synchronize(hsm) {
384     hsm.sendMessage(obtainMessage(hsm.CMD_1));
385     hsm.sendMessage(obtainMessage(hsm.CMD_2));
386     try {
387          // wait for the messages to be handled
388          hsm.wait();
389     } catch (InterruptedException e) {
390          loge("exception while waiting " + e.getMessage());
391     }
392}
393</pre>
394 * <p>The output is:</p>
395<pre>
396D/hsm1    ( 1999): makeHsm1 E
397D/hsm1    ( 1999): ctor E
398D/hsm1    ( 1999): ctor X
399D/hsm1    ( 1999): mP1.enter
400D/hsm1    ( 1999): mS1.enter
401D/hsm1    ( 1999): makeHsm1 X
402D/hsm1    ( 1999): mS1.processMessage what=1
403D/hsm1    ( 1999): mS1.exit
404D/hsm1    ( 1999): mS1.enter
405D/hsm1    ( 1999): mS1.processMessage what=2
406D/hsm1    ( 1999): mP1.processMessage what=2
407D/hsm1    ( 1999): mS1.exit
408D/hsm1    ( 1999): mS2.enter
409D/hsm1    ( 1999): mS2.processMessage what=2
410D/hsm1    ( 1999): mS2.processMessage what=3
411D/hsm1    ( 1999): mS2.exit
412D/hsm1    ( 1999): mP1.exit
413D/hsm1    ( 1999): mP2.enter
414D/hsm1    ( 1999): mP2.processMessage what=3
415D/hsm1    ( 1999): mP2.processMessage what=4
416D/hsm1    ( 1999): mP2.processMessage what=5
417D/hsm1    ( 1999): mP2.exit
418D/hsm1    ( 1999): halting
419</pre>
420 */
421public class StateMachine {
422    // Name of the state machine and used as logging tag
423    private String mName;
424
425    /** Message.what value when quitting */
426    private static final int SM_QUIT_CMD = -1;
427
428    /** Message.what value when initializing */
429    private static final int SM_INIT_CMD = -2;
430
431    /**
432     * Convenience constant that maybe returned by processMessage
433     * to indicate the the message was processed and is not to be
434     * processed by parent states
435     */
436    public static final boolean HANDLED = true;
437
438    /**
439     * Convenience constant that maybe returned by processMessage
440     * to indicate the the message was NOT processed and is to be
441     * processed by parent states
442     */
443    public static final boolean NOT_HANDLED = false;
444
445    /**
446     * StateMachine logging record.
447     * {@hide}
448     */
449    public static class LogRec {
450        private StateMachine mSm;
451        private long mTime;
452        private int mWhat;
453        private String mInfo;
454        private IState mState;
455        private IState mOrgState;
456        private IState mDstState;
457
458        /**
459         * Constructor
460         *
461         * @param msg
462         * @param state the state which handled the message
463         * @param orgState is the first state the received the message but
464         * did not processes the message.
465         * @param transToState is the state that was transitioned to after the message was
466         * processed.
467         */
468        LogRec(StateMachine sm, Message msg, String info, IState state, IState orgState,
469                IState transToState) {
470            update(sm, msg, info, state, orgState, transToState);
471        }
472
473        /**
474         * Update the information in the record.
475         * @param state that handled the message
476         * @param orgState is the first state the received the message
477         * @param dstState is the state that was the transition target when logging
478         */
479        public void update(StateMachine sm, Message msg, String info, IState state, IState orgState,
480                IState dstState) {
481            mSm = sm;
482            mTime = System.currentTimeMillis();
483            mWhat = (msg != null) ? msg.what : 0;
484            mInfo = info;
485            mState = state;
486            mOrgState = orgState;
487            mDstState = dstState;
488        }
489
490        /**
491         * @return time stamp
492         */
493        public long getTime() {
494            return mTime;
495        }
496
497        /**
498         * @return msg.what
499         */
500        public long getWhat() {
501            return mWhat;
502        }
503
504        /**
505         * @return the command that was executing
506         */
507        public String getInfo() {
508            return mInfo;
509        }
510
511        /**
512         * @return the state that handled this message
513         */
514        public IState getState() {
515            return mState;
516        }
517
518        /**
519         * @return the state destination state if a transition is occurring or null if none.
520         */
521        public IState getDestState() {
522            return mDstState;
523        }
524
525        /**
526         * @return the original state that received the message.
527         */
528        public IState getOriginalState() {
529            return mOrgState;
530        }
531
532        @Override
533        public String toString() {
534            StringBuilder sb = new StringBuilder();
535            sb.append("time=");
536            Calendar c = Calendar.getInstance();
537            c.setTimeInMillis(mTime);
538            sb.append(String.format("%tm-%td %tH:%tM:%tS.%tL", c, c, c, c, c, c));
539            sb.append(" processed=");
540            sb.append(mState == null ? "<null>" : mState.getName());
541            sb.append(" org=");
542            sb.append(mOrgState == null ? "<null>" : mOrgState.getName());
543            sb.append(" dest=");
544            sb.append(mDstState == null ? "<null>" : mDstState.getName());
545            sb.append(" what=");
546            String what = mSm != null ? mSm.getWhatToString(mWhat) : "";
547            if (TextUtils.isEmpty(what)) {
548                sb.append(mWhat);
549                sb.append("(0x");
550                sb.append(Integer.toHexString(mWhat));
551                sb.append(")");
552            } else {
553                sb.append(what);
554            }
555            if (!TextUtils.isEmpty(mInfo)) {
556                sb.append(" ");
557                sb.append(mInfo);
558            }
559            return sb.toString();
560        }
561    }
562
563    /**
564     * A list of log records including messages recently processed by the state machine.
565     *
566     * The class maintains a list of log records including messages
567     * recently processed. The list is finite and may be set in the
568     * constructor or by calling setSize. The public interface also
569     * includes size which returns the number of recent records,
570     * count which is the number of records processed since the
571     * the last setSize, get which returns a record and
572     * add which adds a record.
573     */
574    private static class LogRecords {
575
576        private static final int DEFAULT_SIZE = 20;
577
578        private Vector<LogRec> mLogRecVector = new Vector<LogRec>();
579        private int mMaxSize = DEFAULT_SIZE;
580        private int mOldestIndex = 0;
581        private int mCount = 0;
582        private boolean mLogOnlyTransitions = false;
583
584        /**
585         * private constructor use add
586         */
587        private LogRecords() {
588        }
589
590        /**
591         * Set size of messages to maintain and clears all current records.
592         *
593         * @param maxSize number of records to maintain at anyone time.
594        */
595        synchronized void setSize(int maxSize) {
596            // TODO: once b/28217358 is fixed, add unit tests  to verify that these variables are
597            // cleared after calling this method, and that subsequent calls to get() function as
598            // expected.
599            mMaxSize = maxSize;
600            mOldestIndex = 0;
601            mCount = 0;
602            mLogRecVector.clear();
603        }
604
605        synchronized void setLogOnlyTransitions(boolean enable) {
606            mLogOnlyTransitions = enable;
607        }
608
609        synchronized boolean logOnlyTransitions() {
610            return mLogOnlyTransitions;
611        }
612
613        /**
614         * @return the number of recent records.
615         */
616        synchronized int size() {
617            return mLogRecVector.size();
618        }
619
620        /**
621         * @return the total number of records processed since size was set.
622         */
623        synchronized int count() {
624            return mCount;
625        }
626
627        /**
628         * Clear the list of records.
629         */
630        synchronized void cleanup() {
631            mLogRecVector.clear();
632        }
633
634        /**
635         * @return the information on a particular record. 0 is the oldest
636         * record and size()-1 is the newest record. If the index is to
637         * large null is returned.
638         */
639        synchronized LogRec get(int index) {
640            int nextIndex = mOldestIndex + index;
641            if (nextIndex >= mMaxSize) {
642                nextIndex -= mMaxSize;
643            }
644            if (nextIndex >= size()) {
645                return null;
646            } else {
647                return mLogRecVector.get(nextIndex);
648            }
649        }
650
651        /**
652         * Add a processed message.
653         *
654         * @param msg
655         * @param messageInfo to be stored
656         * @param state that handled the message
657         * @param orgState is the first state the received the message but
658         * did not processes the message.
659         * @param transToState is the state that was transitioned to after the message was
660         * processed.
661         *
662         */
663        synchronized void add(StateMachine sm, Message msg, String messageInfo, IState state,
664                IState orgState, IState transToState) {
665            mCount += 1;
666            if (mLogRecVector.size() < mMaxSize) {
667                mLogRecVector.add(new LogRec(sm, msg, messageInfo, state, orgState, transToState));
668            } else {
669                LogRec pmi = mLogRecVector.get(mOldestIndex);
670                mOldestIndex += 1;
671                if (mOldestIndex >= mMaxSize) {
672                    mOldestIndex = 0;
673                }
674                pmi.update(sm, msg, messageInfo, state, orgState, transToState);
675            }
676        }
677    }
678
679    private static class SmHandler extends Handler {
680
681        /** true if StateMachine has quit */
682        private boolean mHasQuit = false;
683
684        /** The debug flag */
685        private boolean mDbg = false;
686
687        /** The SmHandler object, identifies that message is internal */
688        private static final Object mSmHandlerObj = new Object();
689
690        /** The current message */
691        private Message mMsg;
692
693        /** A list of log records including messages this state machine has processed */
694        private LogRecords mLogRecords = new LogRecords();
695
696        /** true if construction of the state machine has not been completed */
697        private boolean mIsConstructionCompleted;
698
699        /** Stack used to manage the current hierarchy of states */
700        private StateInfo mStateStack[];
701
702        /** Top of mStateStack */
703        private int mStateStackTopIndex = -1;
704
705        /** A temporary stack used to manage the state stack */
706        private StateInfo mTempStateStack[];
707
708        /** The top of the mTempStateStack */
709        private int mTempStateStackCount;
710
711        /** State used when state machine is halted */
712        private HaltingState mHaltingState = new HaltingState();
713
714        /** State used when state machine is quitting */
715        private QuittingState mQuittingState = new QuittingState();
716
717        /** Reference to the StateMachine */
718        private StateMachine mSm;
719
720        /**
721         * Information about a state.
722         * Used to maintain the hierarchy.
723         */
724        private class StateInfo {
725            /** The state */
726            State state;
727
728            /** The parent of this state, null if there is no parent */
729            StateInfo parentStateInfo;
730
731            /** True when the state has been entered and on the stack */
732            boolean active;
733
734            /**
735             * Convert StateInfo to string
736             */
737            @Override
738            public String toString() {
739                return "state=" + state.getName() + ",active=" + active + ",parent="
740                        + ((parentStateInfo == null) ? "null" : parentStateInfo.state.getName());
741            }
742        }
743
744        /** The map of all of the states in the state machine */
745        private HashMap<State, StateInfo> mStateInfo = new HashMap<State, StateInfo>();
746
747        /** The initial state that will process the first message */
748        private State mInitialState;
749
750        /** The destination state when transitionTo has been invoked */
751        private State mDestState;
752
753        /** The list of deferred messages */
754        private ArrayList<Message> mDeferredMessages = new ArrayList<Message>();
755
756        /**
757         * State entered when transitionToHaltingState is called.
758         */
759        private class HaltingState extends State {
760            @Override
761            public boolean processMessage(Message msg) {
762                mSm.haltedProcessMessage(msg);
763                return true;
764            }
765        }
766
767        /**
768         * State entered when a valid quit message is handled.
769         */
770        private class QuittingState extends State {
771            @Override
772            public boolean processMessage(Message msg) {
773                return NOT_HANDLED;
774            }
775        }
776
777        /**
778         * Handle messages sent to the state machine by calling
779         * the current state's processMessage. It also handles
780         * the enter/exit calls and placing any deferred messages
781         * back onto the queue when transitioning to a new state.
782         */
783        @Override
784        public final void handleMessage(Message msg) {
785            if (!mHasQuit) {
786                if (mSm != null && msg.what != SM_INIT_CMD && msg.what != SM_QUIT_CMD) {
787                    mSm.onPreHandleMessage(msg);
788                }
789
790                if (mDbg) mSm.log("handleMessage: E msg.what=" + msg.what);
791
792                /** Save the current message */
793                mMsg = msg;
794
795                /** State that processed the message */
796                State msgProcessedState = null;
797                if (mIsConstructionCompleted) {
798                    /** Normal path */
799                    msgProcessedState = processMsg(msg);
800                } else if (!mIsConstructionCompleted && (mMsg.what == SM_INIT_CMD)
801                        && (mMsg.obj == mSmHandlerObj)) {
802                    /** Initial one time path. */
803                    mIsConstructionCompleted = true;
804                    invokeEnterMethods(0);
805                } else {
806                    throw new RuntimeException("StateMachine.handleMessage: "
807                            + "The start method not called, received msg: " + msg);
808                }
809                performTransitions(msgProcessedState, msg);
810
811                // We need to check if mSm == null here as we could be quitting.
812                if (mDbg && mSm != null) mSm.log("handleMessage: X");
813
814                if (mSm != null && msg.what != SM_INIT_CMD && msg.what != SM_QUIT_CMD) {
815                    mSm.onPostHandleMessage(msg);
816                }
817            }
818        }
819
820        /**
821         * Do any transitions
822         * @param msgProcessedState is the state that processed the message
823         */
824        private void performTransitions(State msgProcessedState, Message msg) {
825            /**
826             * If transitionTo has been called, exit and then enter
827             * the appropriate states. We loop on this to allow
828             * enter and exit methods to use transitionTo.
829             */
830            State orgState = mStateStack[mStateStackTopIndex].state;
831
832            /**
833             * Record whether message needs to be logged before we transition and
834             * and we won't log special messages SM_INIT_CMD or SM_QUIT_CMD which
835             * always set msg.obj to the handler.
836             */
837            boolean recordLogMsg = mSm.recordLogRec(mMsg) && (msg.obj != mSmHandlerObj);
838
839            if (mLogRecords.logOnlyTransitions()) {
840                /** Record only if there is a transition */
841                if (mDestState != null) {
842                    mLogRecords.add(mSm, mMsg, mSm.getLogRecString(mMsg), msgProcessedState,
843                            orgState, mDestState);
844                }
845            } else if (recordLogMsg) {
846                /** Record message */
847                mLogRecords.add(mSm, mMsg, mSm.getLogRecString(mMsg), msgProcessedState, orgState,
848                        mDestState);
849            }
850
851            State destState = mDestState;
852            if (destState != null) {
853                /**
854                 * Process the transitions including transitions in the enter/exit methods
855                 */
856                while (true) {
857                    if (mDbg) mSm.log("handleMessage: new destination call exit/enter");
858
859                    /**
860                     * Determine the states to exit and enter and return the
861                     * common ancestor state of the enter/exit states. Then
862                     * invoke the exit methods then the enter methods.
863                     */
864                    StateInfo commonStateInfo = setupTempStateStackWithStatesToEnter(destState);
865                    invokeExitMethods(commonStateInfo);
866                    int stateStackEnteringIndex = moveTempStateStackToStateStack();
867                    invokeEnterMethods(stateStackEnteringIndex);
868
869                    /**
870                     * Since we have transitioned to a new state we need to have
871                     * any deferred messages moved to the front of the message queue
872                     * so they will be processed before any other messages in the
873                     * message queue.
874                     */
875                    moveDeferredMessageAtFrontOfQueue();
876
877                    if (destState != mDestState) {
878                        // A new mDestState so continue looping
879                        destState = mDestState;
880                    } else {
881                        // No change in mDestState so we're done
882                        break;
883                    }
884                }
885                mDestState = null;
886            }
887
888            /**
889             * After processing all transitions check and
890             * see if the last transition was to quit or halt.
891             */
892            if (destState != null) {
893                if (destState == mQuittingState) {
894                    /**
895                     * Call onQuitting to let subclasses cleanup.
896                     */
897                    mSm.onQuitting();
898                    cleanupAfterQuitting();
899                } else if (destState == mHaltingState) {
900                    /**
901                     * Call onHalting() if we've transitioned to the halting
902                     * state. All subsequent messages will be processed in
903                     * in the halting state which invokes haltedProcessMessage(msg);
904                     */
905                    mSm.onHalting();
906                }
907            }
908        }
909
910        /**
911         * Cleanup all the static variables and the looper after the SM has been quit.
912         */
913        private final void cleanupAfterQuitting() {
914            if (mSm.mSmThread != null) {
915                // If we made the thread then quit looper which stops the thread.
916                getLooper().quit();
917                mSm.mSmThread = null;
918            }
919
920            mSm.mSmHandler = null;
921            mSm = null;
922            mMsg = null;
923            mLogRecords.cleanup();
924            mStateStack = null;
925            mTempStateStack = null;
926            mStateInfo.clear();
927            mInitialState = null;
928            mDestState = null;
929            mDeferredMessages.clear();
930            mHasQuit = true;
931        }
932
933        /**
934         * Complete the construction of the state machine.
935         */
936        private final void completeConstruction() {
937            if (mDbg) mSm.log("completeConstruction: E");
938
939            /**
940             * Determine the maximum depth of the state hierarchy
941             * so we can allocate the state stacks.
942             */
943            int maxDepth = 0;
944            for (StateInfo si : mStateInfo.values()) {
945                int depth = 0;
946                for (StateInfo i = si; i != null; depth++) {
947                    i = i.parentStateInfo;
948                }
949                if (maxDepth < depth) {
950                    maxDepth = depth;
951                }
952            }
953            if (mDbg) mSm.log("completeConstruction: maxDepth=" + maxDepth);
954
955            mStateStack = new StateInfo[maxDepth];
956            mTempStateStack = new StateInfo[maxDepth];
957            setupInitialStateStack();
958
959            /** Sending SM_INIT_CMD message to invoke enter methods asynchronously */
960            sendMessageAtFrontOfQueue(obtainMessage(SM_INIT_CMD, mSmHandlerObj));
961
962            if (mDbg) mSm.log("completeConstruction: X");
963        }
964
965        /**
966         * Process the message. If the current state doesn't handle
967         * it, call the states parent and so on. If it is never handled then
968         * call the state machines unhandledMessage method.
969         * @return the state that processed the message
970         */
971        private final State processMsg(Message msg) {
972            StateInfo curStateInfo = mStateStack[mStateStackTopIndex];
973            if (mDbg) {
974                mSm.log("processMsg: " + curStateInfo.state.getName());
975            }
976
977            if (isQuit(msg)) {
978                transitionTo(mQuittingState);
979            } else {
980                while (!curStateInfo.state.processMessage(msg)) {
981                    /**
982                     * Not processed
983                     */
984                    curStateInfo = curStateInfo.parentStateInfo;
985                    if (curStateInfo == null) {
986                        /**
987                         * No parents left so it's not handled
988                         */
989                        mSm.unhandledMessage(msg);
990                        break;
991                    }
992                    if (mDbg) {
993                        mSm.log("processMsg: " + curStateInfo.state.getName());
994                    }
995                }
996            }
997            return (curStateInfo != null) ? curStateInfo.state : null;
998        }
999
1000        /**
1001         * Call the exit method for each state from the top of stack
1002         * up to the common ancestor state.
1003         */
1004        private final void invokeExitMethods(StateInfo commonStateInfo) {
1005            while ((mStateStackTopIndex >= 0)
1006                    && (mStateStack[mStateStackTopIndex] != commonStateInfo)) {
1007                State curState = mStateStack[mStateStackTopIndex].state;
1008                if (mDbg) mSm.log("invokeExitMethods: " + curState.getName());
1009                curState.exit();
1010                mStateStack[mStateStackTopIndex].active = false;
1011                mStateStackTopIndex -= 1;
1012            }
1013        }
1014
1015        /**
1016         * Invoke the enter method starting at the entering index to top of state stack
1017         */
1018        private final void invokeEnterMethods(int stateStackEnteringIndex) {
1019            for (int i = stateStackEnteringIndex; i <= mStateStackTopIndex; i++) {
1020                if (mDbg) mSm.log("invokeEnterMethods: " + mStateStack[i].state.getName());
1021                mStateStack[i].state.enter();
1022                mStateStack[i].active = true;
1023            }
1024        }
1025
1026        /**
1027         * Move the deferred message to the front of the message queue.
1028         */
1029        private final void moveDeferredMessageAtFrontOfQueue() {
1030            /**
1031             * The oldest messages on the deferred list must be at
1032             * the front of the queue so start at the back, which
1033             * as the most resent message and end with the oldest
1034             * messages at the front of the queue.
1035             */
1036            for (int i = mDeferredMessages.size() - 1; i >= 0; i--) {
1037                Message curMsg = mDeferredMessages.get(i);
1038                if (mDbg) mSm.log("moveDeferredMessageAtFrontOfQueue; what=" + curMsg.what);
1039                sendMessageAtFrontOfQueue(curMsg);
1040            }
1041            mDeferredMessages.clear();
1042        }
1043
1044        /**
1045         * Move the contents of the temporary stack to the state stack
1046         * reversing the order of the items on the temporary stack as
1047         * they are moved.
1048         *
1049         * @return index into mStateStack where entering needs to start
1050         */
1051        private final int moveTempStateStackToStateStack() {
1052            int startingIndex = mStateStackTopIndex + 1;
1053            int i = mTempStateStackCount - 1;
1054            int j = startingIndex;
1055            while (i >= 0) {
1056                if (mDbg) mSm.log("moveTempStackToStateStack: i=" + i + ",j=" + j);
1057                mStateStack[j] = mTempStateStack[i];
1058                j += 1;
1059                i -= 1;
1060            }
1061
1062            mStateStackTopIndex = j - 1;
1063            if (mDbg) {
1064                mSm.log("moveTempStackToStateStack: X mStateStackTop=" + mStateStackTopIndex
1065                        + ",startingIndex=" + startingIndex + ",Top="
1066                        + mStateStack[mStateStackTopIndex].state.getName());
1067            }
1068            return startingIndex;
1069        }
1070
1071        /**
1072         * Setup the mTempStateStack with the states we are going to enter.
1073         *
1074         * This is found by searching up the destState's ancestors for a
1075         * state that is already active i.e. StateInfo.active == true.
1076         * The destStae and all of its inactive parents will be on the
1077         * TempStateStack as the list of states to enter.
1078         *
1079         * @return StateInfo of the common ancestor for the destState and
1080         * current state or null if there is no common parent.
1081         */
1082        private final StateInfo setupTempStateStackWithStatesToEnter(State destState) {
1083            /**
1084             * Search up the parent list of the destination state for an active
1085             * state. Use a do while() loop as the destState must always be entered
1086             * even if it is active. This can happen if we are exiting/entering
1087             * the current state.
1088             */
1089            mTempStateStackCount = 0;
1090            StateInfo curStateInfo = mStateInfo.get(destState);
1091            do {
1092                mTempStateStack[mTempStateStackCount++] = curStateInfo;
1093                curStateInfo = curStateInfo.parentStateInfo;
1094            } while ((curStateInfo != null) && !curStateInfo.active);
1095
1096            if (mDbg) {
1097                mSm.log("setupTempStateStackWithStatesToEnter: X mTempStateStackCount="
1098                        + mTempStateStackCount + ",curStateInfo: " + curStateInfo);
1099            }
1100            return curStateInfo;
1101        }
1102
1103        /**
1104         * Initialize StateStack to mInitialState.
1105         */
1106        private final void setupInitialStateStack() {
1107            if (mDbg) {
1108                mSm.log("setupInitialStateStack: E mInitialState=" + mInitialState.getName());
1109            }
1110
1111            StateInfo curStateInfo = mStateInfo.get(mInitialState);
1112            for (mTempStateStackCount = 0; curStateInfo != null; mTempStateStackCount++) {
1113                mTempStateStack[mTempStateStackCount] = curStateInfo;
1114                curStateInfo = curStateInfo.parentStateInfo;
1115            }
1116
1117            // Empty the StateStack
1118            mStateStackTopIndex = -1;
1119
1120            moveTempStateStackToStateStack();
1121        }
1122
1123        /**
1124         * @return current message
1125         */
1126        private final Message getCurrentMessage() {
1127            return mMsg;
1128        }
1129
1130        /**
1131         * @return current state
1132         */
1133        private final IState getCurrentState() {
1134            return mStateStack[mStateStackTopIndex].state;
1135        }
1136
1137        /**
1138         * Add a new state to the state machine. Bottom up addition
1139         * of states is allowed but the same state may only exist
1140         * in one hierarchy.
1141         *
1142         * @param state the state to add
1143         * @param parent the parent of state
1144         * @return stateInfo for this state
1145         */
1146        private final StateInfo addState(State state, State parent) {
1147            if (mDbg) {
1148                mSm.log("addStateInternal: E state=" + state.getName() + ",parent="
1149                        + ((parent == null) ? "" : parent.getName()));
1150            }
1151            StateInfo parentStateInfo = null;
1152            if (parent != null) {
1153                parentStateInfo = mStateInfo.get(parent);
1154                if (parentStateInfo == null) {
1155                    // Recursively add our parent as it's not been added yet.
1156                    parentStateInfo = addState(parent, null);
1157                }
1158            }
1159            StateInfo stateInfo = mStateInfo.get(state);
1160            if (stateInfo == null) {
1161                stateInfo = new StateInfo();
1162                mStateInfo.put(state, stateInfo);
1163            }
1164
1165            // Validate that we aren't adding the same state in two different hierarchies.
1166            if ((stateInfo.parentStateInfo != null)
1167                    && (stateInfo.parentStateInfo != parentStateInfo)) {
1168                throw new RuntimeException("state already added");
1169            }
1170            stateInfo.state = state;
1171            stateInfo.parentStateInfo = parentStateInfo;
1172            stateInfo.active = false;
1173            if (mDbg) mSm.log("addStateInternal: X stateInfo: " + stateInfo);
1174            return stateInfo;
1175        }
1176
1177        /**
1178         * Constructor
1179         *
1180         * @param looper for dispatching messages
1181         * @param sm the hierarchical state machine
1182         */
1183        private SmHandler(Looper looper, StateMachine sm) {
1184            super(looper);
1185            mSm = sm;
1186
1187            addState(mHaltingState, null);
1188            addState(mQuittingState, null);
1189        }
1190
1191        /** @see StateMachine#setInitialState(State) */
1192        private final void setInitialState(State initialState) {
1193            if (mDbg) mSm.log("setInitialState: initialState=" + initialState.getName());
1194            mInitialState = initialState;
1195        }
1196
1197        /** @see StateMachine#transitionTo(IState) */
1198        private final void transitionTo(IState destState) {
1199            mDestState = (State) destState;
1200            if (mDbg) mSm.log("transitionTo: destState=" + mDestState.getName());
1201        }
1202
1203        /** @see StateMachine#deferMessage(Message) */
1204        private final void deferMessage(Message msg) {
1205            if (mDbg) mSm.log("deferMessage: msg=" + msg.what);
1206
1207            /* Copy the "msg" to "newMsg" as "msg" will be recycled */
1208            Message newMsg = obtainMessage();
1209            newMsg.copyFrom(msg);
1210
1211            mDeferredMessages.add(newMsg);
1212        }
1213
1214        /** @see StateMachine#quit() */
1215        private final void quit() {
1216            if (mDbg) mSm.log("quit:");
1217            sendMessage(obtainMessage(SM_QUIT_CMD, mSmHandlerObj));
1218        }
1219
1220        /** @see StateMachine#quitNow() */
1221        private final void quitNow() {
1222            if (mDbg) mSm.log("quitNow:");
1223            sendMessageAtFrontOfQueue(obtainMessage(SM_QUIT_CMD, mSmHandlerObj));
1224        }
1225
1226        /** Validate that the message was sent by quit or quitNow. */
1227        private final boolean isQuit(Message msg) {
1228            return (msg.what == SM_QUIT_CMD) && (msg.obj == mSmHandlerObj);
1229        }
1230
1231        /** @see StateMachine#isDbg() */
1232        private final boolean isDbg() {
1233            return mDbg;
1234        }
1235
1236        /** @see StateMachine#setDbg(boolean) */
1237        private final void setDbg(boolean dbg) {
1238            mDbg = dbg;
1239        }
1240
1241    }
1242
1243    private SmHandler mSmHandler;
1244    private HandlerThread mSmThread;
1245
1246    /**
1247     * Initialize.
1248     *
1249     * @param looper for this state machine
1250     * @param name of the state machine
1251     */
1252    private void initStateMachine(String name, Looper looper) {
1253        mName = name;
1254        mSmHandler = new SmHandler(looper, this);
1255    }
1256
1257    /**
1258     * Constructor creates a StateMachine with its own thread.
1259     *
1260     * @param name of the state machine
1261     */
1262    protected StateMachine(String name) {
1263        mSmThread = new HandlerThread(name);
1264        mSmThread.start();
1265        Looper looper = mSmThread.getLooper();
1266
1267        initStateMachine(name, looper);
1268    }
1269
1270    /**
1271     * Constructor creates a StateMachine using the looper.
1272     *
1273     * @param name of the state machine
1274     */
1275    protected StateMachine(String name, Looper looper) {
1276        initStateMachine(name, looper);
1277    }
1278
1279    /**
1280     * Constructor creates a StateMachine using the handler.
1281     *
1282     * @param name of the state machine
1283     */
1284    protected StateMachine(String name, Handler handler) {
1285        initStateMachine(name, handler.getLooper());
1286    }
1287
1288    /**
1289     * Notifies subclass that the StateMachine handler is about to process the Message msg
1290     * @param msg The message that is being handled
1291     */
1292    protected void onPreHandleMessage(Message msg) {
1293    }
1294
1295    /**
1296     * Notifies subclass that the StateMachine handler has finished processing the Message msg and
1297     * has possibly transitioned to a new state.
1298     * @param msg The message that is being handled
1299     */
1300    protected void onPostHandleMessage(Message msg) {
1301    }
1302
1303    /**
1304     * Add a new state to the state machine
1305     * @param state the state to add
1306     * @param parent the parent of state
1307     */
1308    public final void addState(State state, State parent) {
1309        mSmHandler.addState(state, parent);
1310    }
1311
1312    /**
1313     * Add a new state to the state machine, parent will be null
1314     * @param state to add
1315     */
1316    public final void addState(State state) {
1317        mSmHandler.addState(state, null);
1318    }
1319
1320    /**
1321     * Set the initial state. This must be invoked before
1322     * and messages are sent to the state machine.
1323     *
1324     * @param initialState is the state which will receive the first message.
1325     */
1326    public final void setInitialState(State initialState) {
1327        mSmHandler.setInitialState(initialState);
1328    }
1329
1330    /**
1331     * @return current message
1332     */
1333    public final Message getCurrentMessage() {
1334        // mSmHandler can be null if the state machine has quit.
1335        SmHandler smh = mSmHandler;
1336        if (smh == null) return null;
1337        return smh.getCurrentMessage();
1338    }
1339
1340    /**
1341     * @return current state
1342     */
1343    public final IState getCurrentState() {
1344        // mSmHandler can be null if the state machine has quit.
1345        SmHandler smh = mSmHandler;
1346        if (smh == null) return null;
1347        return smh.getCurrentState();
1348    }
1349
1350    /**
1351     * transition to destination state. Upon returning
1352     * from processMessage the current state's exit will
1353     * be executed and upon the next message arriving
1354     * destState.enter will be invoked.
1355     *
1356     * this function can also be called inside the enter function of the
1357     * previous transition target, but the behavior is undefined when it is
1358     * called mid-way through a previous transition (for example, calling this
1359     * in the enter() routine of a intermediate node when the current transition
1360     * target is one of the nodes descendants).
1361     *
1362     * @param destState will be the state that receives the next message.
1363     */
1364    public final void transitionTo(IState destState) {
1365        mSmHandler.transitionTo(destState);
1366    }
1367
1368    /**
1369     * transition to halt state. Upon returning
1370     * from processMessage we will exit all current
1371     * states, execute the onHalting() method and then
1372     * for all subsequent messages haltedProcessMessage
1373     * will be called.
1374     */
1375    public final void transitionToHaltingState() {
1376        mSmHandler.transitionTo(mSmHandler.mHaltingState);
1377    }
1378
1379    /**
1380     * Defer this message until next state transition.
1381     * Upon transitioning all deferred messages will be
1382     * placed on the queue and reprocessed in the original
1383     * order. (i.e. The next state the oldest messages will
1384     * be processed first)
1385     *
1386     * @param msg is deferred until the next transition.
1387     */
1388    public final void deferMessage(Message msg) {
1389        mSmHandler.deferMessage(msg);
1390    }
1391
1392    /**
1393     * Called when message wasn't handled
1394     *
1395     * @param msg that couldn't be handled.
1396     */
1397    protected void unhandledMessage(Message msg) {
1398        if (mSmHandler.mDbg) loge(" - unhandledMessage: msg.what=" + msg.what);
1399    }
1400
1401    /**
1402     * Called for any message that is received after
1403     * transitionToHalting is called.
1404     */
1405    protected void haltedProcessMessage(Message msg) {
1406    }
1407
1408    /**
1409     * This will be called once after handling a message that called
1410     * transitionToHalting. All subsequent messages will invoke
1411     * {@link StateMachine#haltedProcessMessage(Message)}
1412     */
1413    protected void onHalting() {
1414    }
1415
1416    /**
1417     * This will be called once after a quit message that was NOT handled by
1418     * the derived StateMachine. The StateMachine will stop and any subsequent messages will be
1419     * ignored. In addition, if this StateMachine created the thread, the thread will
1420     * be stopped after this method returns.
1421     */
1422    protected void onQuitting() {
1423    }
1424
1425    /**
1426     * @return the name
1427     */
1428    public final String getName() {
1429        return mName;
1430    }
1431
1432    /**
1433     * Set number of log records to maintain and clears all current records.
1434     *
1435     * @param maxSize number of messages to maintain at anyone time.
1436     */
1437    public final void setLogRecSize(int maxSize) {
1438        mSmHandler.mLogRecords.setSize(maxSize);
1439    }
1440
1441    /**
1442     * Set to log only messages that cause a state transition
1443     *
1444     * @param enable {@code true} to enable, {@code false} to disable
1445     */
1446    public final void setLogOnlyTransitions(boolean enable) {
1447        mSmHandler.mLogRecords.setLogOnlyTransitions(enable);
1448    }
1449
1450    /**
1451     * @return number of log records
1452     */
1453    public final int getLogRecSize() {
1454        // mSmHandler can be null if the state machine has quit.
1455        SmHandler smh = mSmHandler;
1456        if (smh == null) return 0;
1457        return smh.mLogRecords.size();
1458    }
1459
1460    /**
1461     * @return the total number of records processed
1462     */
1463    public final int getLogRecCount() {
1464        // mSmHandler can be null if the state machine has quit.
1465        SmHandler smh = mSmHandler;
1466        if (smh == null) return 0;
1467        return smh.mLogRecords.count();
1468    }
1469
1470    /**
1471     * @return a log record, or null if index is out of range
1472     */
1473    public final LogRec getLogRec(int index) {
1474        // mSmHandler can be null if the state machine has quit.
1475        SmHandler smh = mSmHandler;
1476        if (smh == null) return null;
1477        return smh.mLogRecords.get(index);
1478    }
1479
1480    /**
1481     * @return a copy of LogRecs as a collection
1482     */
1483    public final Collection<LogRec> copyLogRecs() {
1484        Vector<LogRec> vlr = new Vector<LogRec>();
1485        SmHandler smh = mSmHandler;
1486        if (smh != null) {
1487            for (LogRec lr : smh.mLogRecords.mLogRecVector) {
1488                vlr.add(lr);
1489            }
1490        }
1491        return vlr;
1492    }
1493
1494    /**
1495     * Add the string to LogRecords.
1496     *
1497     * @param string
1498     */
1499    public void addLogRec(String string) {
1500        // mSmHandler can be null if the state machine has quit.
1501        SmHandler smh = mSmHandler;
1502        if (smh == null) return;
1503        smh.mLogRecords.add(this, smh.getCurrentMessage(), string, smh.getCurrentState(),
1504                smh.mStateStack[smh.mStateStackTopIndex].state, smh.mDestState);
1505    }
1506
1507    /**
1508     * @return true if msg should be saved in the log, default is true.
1509     */
1510    protected boolean recordLogRec(Message msg) {
1511        return true;
1512    }
1513
1514    /**
1515     * Return a string to be logged by LogRec, default
1516     * is an empty string. Override if additional information is desired.
1517     *
1518     * @param msg that was processed
1519     * @return information to be logged as a String
1520     */
1521    protected String getLogRecString(Message msg) {
1522        return "";
1523    }
1524
1525    /**
1526     * @return the string for msg.what
1527     */
1528    protected String getWhatToString(int what) {
1529        return null;
1530    }
1531
1532    /**
1533     * @return Handler, maybe null if state machine has quit.
1534     */
1535    public final Handler getHandler() {
1536        return mSmHandler;
1537    }
1538
1539    /**
1540     * Get a message and set Message.target state machine handler.
1541     *
1542     * Note: The handler can be null if the state machine has quit,
1543     * which means target will be null and may cause a AndroidRuntimeException
1544     * in MessageQueue#enqueMessage if sent directly or if sent using
1545     * StateMachine#sendMessage the message will just be ignored.
1546     *
1547     * @return  A Message object from the global pool
1548     */
1549    public final Message obtainMessage() {
1550        return Message.obtain(mSmHandler);
1551    }
1552
1553    /**
1554     * Get a message and set Message.target state machine handler, what.
1555     *
1556     * Note: The handler can be null if the state machine has quit,
1557     * which means target will be null and may cause a AndroidRuntimeException
1558     * in MessageQueue#enqueMessage if sent directly or if sent using
1559     * StateMachine#sendMessage the message will just be ignored.
1560     *
1561     * @param what is the assigned to Message.what.
1562     * @return  A Message object from the global pool
1563     */
1564    public final Message obtainMessage(int what) {
1565        return Message.obtain(mSmHandler, what);
1566    }
1567
1568    /**
1569     * Get a message and set Message.target state machine handler,
1570     * what and obj.
1571     *
1572     * Note: The handler can be null if the state machine has quit,
1573     * which means target will be null and may cause a AndroidRuntimeException
1574     * in MessageQueue#enqueMessage if sent directly or if sent using
1575     * StateMachine#sendMessage the message will just be ignored.
1576     *
1577     * @param what is the assigned to Message.what.
1578     * @param obj is assigned to Message.obj.
1579     * @return  A Message object from the global pool
1580     */
1581    public final Message obtainMessage(int what, Object obj) {
1582        return Message.obtain(mSmHandler, what, obj);
1583    }
1584
1585    /**
1586     * Get a message and set Message.target state machine handler,
1587     * what, arg1 and arg2
1588     *
1589     * Note: The handler can be null if the state machine has quit,
1590     * which means target will be null and may cause a AndroidRuntimeException
1591     * in MessageQueue#enqueMessage if sent directly or if sent using
1592     * StateMachine#sendMessage the message will just be ignored.
1593     *
1594     * @param what  is assigned to Message.what
1595     * @param arg1  is assigned to Message.arg1
1596     * @return  A Message object from the global pool
1597     */
1598    public final Message obtainMessage(int what, int arg1) {
1599        // use this obtain so we don't match the obtain(h, what, Object) method
1600        return Message.obtain(mSmHandler, what, arg1, 0);
1601    }
1602
1603    /**
1604     * Get a message and set Message.target state machine handler,
1605     * what, arg1 and arg2
1606     *
1607     * Note: The handler can be null if the state machine has quit,
1608     * which means target will be null and may cause a AndroidRuntimeException
1609     * in MessageQueue#enqueMessage if sent directly or if sent using
1610     * StateMachine#sendMessage the message will just be ignored.
1611     *
1612     * @param what  is assigned to Message.what
1613     * @param arg1  is assigned to Message.arg1
1614     * @param arg2  is assigned to Message.arg2
1615     * @return  A Message object from the global pool
1616     */
1617    public final Message obtainMessage(int what, int arg1, int arg2) {
1618        return Message.obtain(mSmHandler, what, arg1, arg2);
1619    }
1620
1621    /**
1622     * Get a message and set Message.target state machine handler,
1623     * what, arg1, arg2 and obj
1624     *
1625     * Note: The handler can be null if the state machine has quit,
1626     * which means target will be null and may cause a AndroidRuntimeException
1627     * in MessageQueue#enqueMessage if sent directly or if sent using
1628     * StateMachine#sendMessage the message will just be ignored.
1629     *
1630     * @param what  is assigned to Message.what
1631     * @param arg1  is assigned to Message.arg1
1632     * @param arg2  is assigned to Message.arg2
1633     * @param obj is assigned to Message.obj
1634     * @return  A Message object from the global pool
1635     */
1636    public final Message obtainMessage(int what, int arg1, int arg2, Object obj) {
1637        return Message.obtain(mSmHandler, what, arg1, arg2, obj);
1638    }
1639
1640    /**
1641     * Enqueue a message to this state machine.
1642     *
1643     * Message is ignored if state machine has quit.
1644     */
1645    public void sendMessage(int what) {
1646        // mSmHandler can be null if the state machine has quit.
1647        SmHandler smh = mSmHandler;
1648        if (smh == null) return;
1649
1650        smh.sendMessage(obtainMessage(what));
1651    }
1652
1653    /**
1654     * Enqueue a message to this state machine.
1655     *
1656     * Message is ignored if state machine has quit.
1657     */
1658    public void sendMessage(int what, Object obj) {
1659        // mSmHandler can be null if the state machine has quit.
1660        SmHandler smh = mSmHandler;
1661        if (smh == null) return;
1662
1663        smh.sendMessage(obtainMessage(what, obj));
1664    }
1665
1666    /**
1667     * Enqueue a message to this state machine.
1668     *
1669     * Message is ignored if state machine has quit.
1670     */
1671    public void sendMessage(int what, int arg1) {
1672        // mSmHandler can be null if the state machine has quit.
1673        SmHandler smh = mSmHandler;
1674        if (smh == null) return;
1675
1676        smh.sendMessage(obtainMessage(what, arg1));
1677    }
1678
1679    /**
1680     * Enqueue a message to this state machine.
1681     *
1682     * Message is ignored if state machine has quit.
1683     */
1684    public void sendMessage(int what, int arg1, int arg2) {
1685        // mSmHandler can be null if the state machine has quit.
1686        SmHandler smh = mSmHandler;
1687        if (smh == null) return;
1688
1689        smh.sendMessage(obtainMessage(what, arg1, arg2));
1690    }
1691
1692    /**
1693     * Enqueue a message to this state machine.
1694     *
1695     * Message is ignored if state machine has quit.
1696     */
1697    public void sendMessage(int what, int arg1, int arg2, Object obj) {
1698        // mSmHandler can be null if the state machine has quit.
1699        SmHandler smh = mSmHandler;
1700        if (smh == null) return;
1701
1702        smh.sendMessage(obtainMessage(what, arg1, arg2, obj));
1703    }
1704
1705    /**
1706     * Enqueue a message to this state machine.
1707     *
1708     * Message is ignored if state machine has quit.
1709     */
1710    public void sendMessage(Message msg) {
1711        // mSmHandler can be null if the state machine has quit.
1712        SmHandler smh = mSmHandler;
1713        if (smh == null) return;
1714
1715        smh.sendMessage(msg);
1716    }
1717
1718    /**
1719     * Enqueue a message to this state machine after a delay.
1720     *
1721     * Message is ignored if state machine has quit.
1722     */
1723    public void sendMessageDelayed(int what, long delayMillis) {
1724        // mSmHandler can be null if the state machine has quit.
1725        SmHandler smh = mSmHandler;
1726        if (smh == null) return;
1727
1728        smh.sendMessageDelayed(obtainMessage(what), delayMillis);
1729    }
1730
1731    /**
1732     * Enqueue a message to this state machine after a delay.
1733     *
1734     * Message is ignored if state machine has quit.
1735     */
1736    public void sendMessageDelayed(int what, Object obj, long delayMillis) {
1737        // mSmHandler can be null if the state machine has quit.
1738        SmHandler smh = mSmHandler;
1739        if (smh == null) return;
1740
1741        smh.sendMessageDelayed(obtainMessage(what, obj), delayMillis);
1742    }
1743
1744    /**
1745     * Enqueue a message to this state machine after a delay.
1746     *
1747     * Message is ignored if state machine has quit.
1748     */
1749    public void sendMessageDelayed(int what, int arg1, long delayMillis) {
1750        // mSmHandler can be null if the state machine has quit.
1751        SmHandler smh = mSmHandler;
1752        if (smh == null) return;
1753
1754        smh.sendMessageDelayed(obtainMessage(what, arg1), delayMillis);
1755    }
1756
1757    /**
1758     * Enqueue a message to this state machine after a delay.
1759     *
1760     * Message is ignored if state machine has quit.
1761     */
1762    public void sendMessageDelayed(int what, int arg1, int arg2, long delayMillis) {
1763        // mSmHandler can be null if the state machine has quit.
1764        SmHandler smh = mSmHandler;
1765        if (smh == null) return;
1766
1767        smh.sendMessageDelayed(obtainMessage(what, arg1, arg2), delayMillis);
1768    }
1769
1770    /**
1771     * Enqueue a message to this state machine after a delay.
1772     *
1773     * Message is ignored if state machine has quit.
1774     */
1775    public void sendMessageDelayed(int what, int arg1, int arg2, Object obj,
1776            long delayMillis) {
1777        // mSmHandler can be null if the state machine has quit.
1778        SmHandler smh = mSmHandler;
1779        if (smh == null) return;
1780
1781        smh.sendMessageDelayed(obtainMessage(what, arg1, arg2, obj), delayMillis);
1782    }
1783
1784    /**
1785     * Enqueue a message to this state machine after a delay.
1786     *
1787     * Message is ignored if state machine has quit.
1788     */
1789    public void sendMessageDelayed(Message msg, long delayMillis) {
1790        // mSmHandler can be null if the state machine has quit.
1791        SmHandler smh = mSmHandler;
1792        if (smh == null) return;
1793
1794        smh.sendMessageDelayed(msg, delayMillis);
1795    }
1796
1797    /**
1798     * Enqueue a message to the front of the queue for this state machine.
1799     * Protected, may only be called by instances of StateMachine.
1800     *
1801     * Message is ignored if state machine has quit.
1802     */
1803    protected final void sendMessageAtFrontOfQueue(int what) {
1804        // mSmHandler can be null if the state machine has quit.
1805        SmHandler smh = mSmHandler;
1806        if (smh == null) return;
1807
1808        smh.sendMessageAtFrontOfQueue(obtainMessage(what));
1809    }
1810
1811    /**
1812     * Enqueue a message to the front of the queue for this state machine.
1813     * Protected, may only be called by instances of StateMachine.
1814     *
1815     * Message is ignored if state machine has quit.
1816     */
1817    protected final void sendMessageAtFrontOfQueue(int what, Object obj) {
1818        // mSmHandler can be null if the state machine has quit.
1819        SmHandler smh = mSmHandler;
1820        if (smh == null) return;
1821
1822        smh.sendMessageAtFrontOfQueue(obtainMessage(what, obj));
1823    }
1824
1825    /**
1826     * Enqueue a message to the front of the queue for this state machine.
1827     * Protected, may only be called by instances of StateMachine.
1828     *
1829     * Message is ignored if state machine has quit.
1830     */
1831    protected final void sendMessageAtFrontOfQueue(int what, int arg1) {
1832        // mSmHandler can be null if the state machine has quit.
1833        SmHandler smh = mSmHandler;
1834        if (smh == null) return;
1835
1836        smh.sendMessageAtFrontOfQueue(obtainMessage(what, arg1));
1837    }
1838
1839
1840    /**
1841     * Enqueue a message to the front of the queue for this state machine.
1842     * Protected, may only be called by instances of StateMachine.
1843     *
1844     * Message is ignored if state machine has quit.
1845     */
1846    protected final void sendMessageAtFrontOfQueue(int what, int arg1, int arg2) {
1847        // mSmHandler can be null if the state machine has quit.
1848        SmHandler smh = mSmHandler;
1849        if (smh == null) return;
1850
1851        smh.sendMessageAtFrontOfQueue(obtainMessage(what, arg1, arg2));
1852    }
1853
1854    /**
1855     * Enqueue a message to the front of the queue for this state machine.
1856     * Protected, may only be called by instances of StateMachine.
1857     *
1858     * Message is ignored if state machine has quit.
1859     */
1860    protected final void sendMessageAtFrontOfQueue(int what, int arg1, int arg2, Object obj) {
1861        // mSmHandler can be null if the state machine has quit.
1862        SmHandler smh = mSmHandler;
1863        if (smh == null) return;
1864
1865        smh.sendMessageAtFrontOfQueue(obtainMessage(what, arg1, arg2, obj));
1866    }
1867
1868    /**
1869     * Enqueue a message to the front of the queue for this state machine.
1870     * Protected, may only be called by instances of StateMachine.
1871     *
1872     * Message is ignored if state machine has quit.
1873     */
1874    protected final void sendMessageAtFrontOfQueue(Message msg) {
1875        // mSmHandler can be null if the state machine has quit.
1876        SmHandler smh = mSmHandler;
1877        if (smh == null) return;
1878
1879        smh.sendMessageAtFrontOfQueue(msg);
1880    }
1881
1882    /**
1883     * Removes a message from the message queue.
1884     * Protected, may only be called by instances of StateMachine.
1885     */
1886    protected final void removeMessages(int what) {
1887        // mSmHandler can be null if the state machine has quit.
1888        SmHandler smh = mSmHandler;
1889        if (smh == null) return;
1890
1891        smh.removeMessages(what);
1892    }
1893
1894    /**
1895     * Removes a message from the deferred messages queue.
1896     */
1897    protected final void removeDeferredMessages(int what) {
1898        SmHandler smh = mSmHandler;
1899        if (smh == null) return;
1900
1901        Iterator<Message> iterator = smh.mDeferredMessages.iterator();
1902        while (iterator.hasNext()) {
1903            Message msg = iterator.next();
1904            if (msg.what == what) iterator.remove();
1905        }
1906    }
1907
1908    /**
1909     * Check if there are any pending messages with code 'what' in deferred messages queue.
1910     */
1911    protected final boolean hasDeferredMessages(int what) {
1912        SmHandler smh = mSmHandler;
1913        if (smh == null) return false;
1914
1915        Iterator<Message> iterator = smh.mDeferredMessages.iterator();
1916        while (iterator.hasNext()) {
1917            Message msg = iterator.next();
1918            if (msg.what == what) return true;
1919        }
1920
1921        return false;
1922    }
1923
1924    /**
1925     * Check if there are any pending posts of messages with code 'what' in
1926     * the message queue. This does NOT check messages in deferred message queue.
1927     */
1928    protected final boolean hasMessages(int what) {
1929        SmHandler smh = mSmHandler;
1930        if (smh == null) return false;
1931
1932        return smh.hasMessages(what);
1933    }
1934
1935    /**
1936     * Validate that the message was sent by
1937     * {@link StateMachine#quit} or {@link StateMachine#quitNow}.
1938     * */
1939    protected final boolean isQuit(Message msg) {
1940        // mSmHandler can be null if the state machine has quit.
1941        SmHandler smh = mSmHandler;
1942        if (smh == null) return msg.what == SM_QUIT_CMD;
1943
1944        return smh.isQuit(msg);
1945    }
1946
1947    /**
1948     * Quit the state machine after all currently queued up messages are processed.
1949     */
1950    public final void quit() {
1951        // mSmHandler can be null if the state machine is already stopped.
1952        SmHandler smh = mSmHandler;
1953        if (smh == null) return;
1954
1955        smh.quit();
1956    }
1957
1958    /**
1959     * Quit the state machine immediately all currently queued messages will be discarded.
1960     */
1961    public final void quitNow() {
1962        // mSmHandler can be null if the state machine is already stopped.
1963        SmHandler smh = mSmHandler;
1964        if (smh == null) return;
1965
1966        smh.quitNow();
1967    }
1968
1969    /**
1970     * @return if debugging is enabled
1971     */
1972    public boolean isDbg() {
1973        // mSmHandler can be null if the state machine has quit.
1974        SmHandler smh = mSmHandler;
1975        if (smh == null) return false;
1976
1977        return smh.isDbg();
1978    }
1979
1980    /**
1981     * Set debug enable/disabled.
1982     *
1983     * @param dbg is true to enable debugging.
1984     */
1985    public void setDbg(boolean dbg) {
1986        // mSmHandler can be null if the state machine has quit.
1987        SmHandler smh = mSmHandler;
1988        if (smh == null) return;
1989
1990        smh.setDbg(dbg);
1991    }
1992
1993    /**
1994     * Start the state machine.
1995     */
1996    public void start() {
1997        // mSmHandler can be null if the state machine has quit.
1998        SmHandler smh = mSmHandler;
1999        if (smh == null) return;
2000
2001        /** Send the complete construction message */
2002        smh.completeConstruction();
2003    }
2004
2005    /**
2006     * Dump the current state.
2007     *
2008     * @param fd
2009     * @param pw
2010     * @param args
2011     */
2012    public void dump(FileDescriptor fd, PrintWriter pw, String[] args) {
2013        // Cannot just invoke pw.println(this.toString()) because if the
2014        // resulting string is to long it won't be displayed.
2015        pw.println(getName() + ":");
2016        pw.println(" total records=" + getLogRecCount());
2017        for (int i = 0; i < getLogRecSize(); i++) {
2018            pw.println(" rec[" + i + "]: " + getLogRec(i).toString());
2019            pw.flush();
2020        }
2021        pw.println("curState=" + getCurrentState().getName());
2022    }
2023
2024    @Override
2025    public String toString() {
2026        StringWriter sr = new StringWriter();
2027        PrintWriter pr = new PrintWriter(sr);
2028        dump(null, pr, null);
2029        pr.flush();
2030        pr.close();
2031        return sr.toString();
2032    }
2033
2034    /**
2035     * Log with debug and add to the LogRecords.
2036     *
2037     * @param s is string log
2038     */
2039    protected void logAndAddLogRec(String s) {
2040        addLogRec(s);
2041        log(s);
2042    }
2043
2044    /**
2045     * Log with debug
2046     *
2047     * @param s is string log
2048     */
2049    protected void log(String s) {
2050        Log.d(mName, s);
2051    }
2052
2053    /**
2054     * Log with debug attribute
2055     *
2056     * @param s is string log
2057     */
2058    protected void logd(String s) {
2059        Log.d(mName, s);
2060    }
2061
2062    /**
2063     * Log with verbose attribute
2064     *
2065     * @param s is string log
2066     */
2067    protected void logv(String s) {
2068        Log.v(mName, s);
2069    }
2070
2071    /**
2072     * Log with info attribute
2073     *
2074     * @param s is string log
2075     */
2076    protected void logi(String s) {
2077        Log.i(mName, s);
2078    }
2079
2080    /**
2081     * Log with warning attribute
2082     *
2083     * @param s is string log
2084     */
2085    protected void logw(String s) {
2086        Log.w(mName, s);
2087    }
2088
2089    /**
2090     * Log with error attribute
2091     *
2092     * @param s is string log
2093     */
2094    protected void loge(String s) {
2095        Log.e(mName, s);
2096    }
2097
2098    /**
2099     * Log with error attribute
2100     *
2101     * @param s is string log
2102     * @param e is a Throwable which logs additional information.
2103     */
2104    protected void loge(String s, Throwable e) {
2105        Log.e(mName, s, e);
2106    }
2107}
2108