StateMachine.java revision 0c71404e772f96927668ee9f52f789ca209fa979
1/**
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package com.android.internal.util;
18
19import android.os.Handler;
20import android.os.HandlerThread;
21import android.os.Looper;
22import android.os.Message;
23import android.text.TextUtils;
24import android.util.Log;
25
26import java.io.FileDescriptor;
27import java.io.PrintWriter;
28import java.io.StringWriter;
29import java.util.ArrayList;
30import java.util.Calendar;
31import java.util.Collection;
32import java.util.Iterator;
33import java.util.HashMap;
34import java.util.Vector;
35
36/**
37 * {@hide}
38 *
39 * <p>The state machine defined here is a hierarchical state machine which processes messages
40 * and can have states arranged hierarchically.</p>
41 *
42 * <p>A state is a <code>State</code> object and must implement
43 * <code>processMessage</code> and optionally <code>enter/exit/getName</code>.
44 * The enter/exit methods are equivalent to the construction and destruction
45 * in Object Oriented programming and are used to perform initialization and
46 * cleanup of the state respectively. The <code>getName</code> method returns the
47 * name of the state; the default implementation returns the class name. It may be
48 * desirable to have <code>getName</code> return the the state instance name instead,
49 * in particular if a particular state class has multiple instances.</p>
50 *
51 * <p>When a state machine is created, <code>addState</code> is used to build the
52 * hierarchy and <code>setInitialState</code> is used to identify which of these
53 * is the initial state. After construction the programmer calls <code>start</code>
54 * which initializes and starts the state machine. The first action the StateMachine
55 * is to the invoke <code>enter</code> for all of the initial state's hierarchy,
56 * starting at its eldest parent. The calls to enter will be done in the context
57 * of the StateMachine's Handler, not in the context of the call to start, and they
58 * will be invoked before any messages are processed. For example, given the simple
59 * state machine below, mP1.enter will be invoked and then mS1.enter. Finally,
60 * messages sent to the state machine will be processed by the current state;
61 * in our simple state machine below that would initially be mS1.processMessage.</p>
62<pre>
63        mP1
64       /   \
65      mS2   mS1 ----&gt; initial state
66</pre>
67 * <p>After the state machine is created and started, messages are sent to a state
68 * machine using <code>sendMessage</code> and the messages are created using
69 * <code>obtainMessage</code>. When the state machine receives a message the
70 * current state's <code>processMessage</code> is invoked. In the above example
71 * mS1.processMessage will be invoked first. The state may use <code>transitionTo</code>
72 * to change the current state to a new state.</p>
73 *
74 * <p>Each state in the state machine may have a zero or one parent states. If
75 * a child state is unable to handle a message it may have the message processed
76 * by its parent by returning false or NOT_HANDLED. If a message is not handled by
77 * a child state or any of its ancestors, <code>unhandledMessage</code> will be invoked
78 * to give one last chance for the state machine to process the message.</p>
79 *
80 * <p>When all processing is completed a state machine may choose to call
81 * <code>transitionToHaltingState</code>. When the current <code>processingMessage</code>
82 * returns the state machine will transfer to an internal <code>HaltingState</code>
83 * and invoke <code>halting</code>. Any message subsequently received by the state
84 * machine will cause <code>haltedProcessMessage</code> to be invoked.</p>
85 *
86 * <p>If it is desirable to completely stop the state machine call <code>quit</code> or
87 * <code>quitNow</code>. These will call <code>exit</code> of the current state and its parents,
88 * call <code>onQuitting</code> and then exit Thread/Loopers.</p>
89 *
90 * <p>In addition to <code>processMessage</code> each <code>State</code> has
91 * an <code>enter</code> method and <code>exit</code> method which may be overridden.</p>
92 *
93 * <p>Since the states are arranged in a hierarchy transitioning to a new state
94 * causes current states to be exited and new states to be entered. To determine
95 * the list of states to be entered/exited the common parent closest to
96 * the current state is found. We then exit from the current state and its
97 * parent's up to but not including the common parent state and then enter all
98 * of the new states below the common parent down to the destination state.
99 * If there is no common parent all states are exited and then the new states
100 * are entered.</p>
101 *
102 * <p>Two other methods that states can use are <code>deferMessage</code> and
103 * <code>sendMessageAtFrontOfQueue</code>. The <code>sendMessageAtFrontOfQueue</code> sends
104 * a message but places it on the front of the queue rather than the back. The
105 * <code>deferMessage</code> causes the message to be saved on a list until a
106 * transition is made to a new state. At which time all of the deferred messages
107 * will be put on the front of the state machine queue with the oldest message
108 * at the front. These will then be processed by the new current state before
109 * any other messages that are on the queue or might be added later. Both of
110 * these are protected and may only be invoked from within a state machine.</p>
111 *
112 * <p>To illustrate some of these properties we'll use state machine with an 8
113 * state hierarchy:</p>
114<pre>
115          mP0
116         /   \
117        mP1   mS0
118       /   \
119      mS2   mS1
120     /  \    \
121    mS3  mS4  mS5  ---&gt; initial state
122</pre>
123 * <p>After starting mS5 the list of active states is mP0, mP1, mS1 and mS5.
124 * So the order of calling processMessage when a message is received is mS5,
125 * mS1, mP1, mP0 assuming each processMessage indicates it can't handle this
126 * message by returning false or NOT_HANDLED.</p>
127 *
128 * <p>Now assume mS5.processMessage receives a message it can handle, and during
129 * the handling determines the machine should change states. It could call
130 * transitionTo(mS4) and return true or HANDLED. Immediately after returning from
131 * processMessage the state machine runtime will find the common parent,
132 * which is mP1. It will then call mS5.exit, mS1.exit, mS2.enter and then
133 * mS4.enter. The new list of active states is mP0, mP1, mS2 and mS4. So
134 * when the next message is received mS4.processMessage will be invoked.</p>
135 *
136 * <p>Now for some concrete examples, here is the canonical HelloWorld as a state machine.
137 * It responds with "Hello World" being printed to the log for every message.</p>
138<pre>
139class HelloWorld extends StateMachine {
140    HelloWorld(String name) {
141        super(name);
142        addState(mState1);
143        setInitialState(mState1);
144    }
145
146    public static HelloWorld makeHelloWorld() {
147        HelloWorld hw = new HelloWorld("hw");
148        hw.start();
149        return hw;
150    }
151
152    class State1 extends State {
153        &#64;Override public boolean processMessage(Message message) {
154            log("Hello World");
155            return HANDLED;
156        }
157    }
158    State1 mState1 = new State1();
159}
160
161void testHelloWorld() {
162    HelloWorld hw = makeHelloWorld();
163    hw.sendMessage(hw.obtainMessage());
164}
165</pre>
166 * <p>A more interesting state machine is one with four states
167 * with two independent parent states.</p>
168<pre>
169        mP1      mP2
170       /   \
171      mS2   mS1
172</pre>
173 * <p>Here is a description of this state machine using pseudo code.</p>
174 <pre>
175state mP1 {
176     enter { log("mP1.enter"); }
177     exit { log("mP1.exit");  }
178     on msg {
179         CMD_2 {
180             send(CMD_3);
181             defer(msg);
182             transitionTo(mS2);
183             return HANDLED;
184         }
185         return NOT_HANDLED;
186     }
187}
188
189INITIAL
190state mS1 parent mP1 {
191     enter { log("mS1.enter"); }
192     exit  { log("mS1.exit");  }
193     on msg {
194         CMD_1 {
195             transitionTo(mS1);
196             return HANDLED;
197         }
198         return NOT_HANDLED;
199     }
200}
201
202state mS2 parent mP1 {
203     enter { log("mS2.enter"); }
204     exit  { log("mS2.exit");  }
205     on msg {
206         CMD_2 {
207             send(CMD_4);
208             return HANDLED;
209         }
210         CMD_3 {
211             defer(msg);
212             transitionTo(mP2);
213             return HANDLED;
214         }
215         return NOT_HANDLED;
216     }
217}
218
219state mP2 {
220     enter {
221         log("mP2.enter");
222         send(CMD_5);
223     }
224     exit { log("mP2.exit"); }
225     on msg {
226         CMD_3, CMD_4 { return HANDLED; }
227         CMD_5 {
228             transitionTo(HaltingState);
229             return HANDLED;
230         }
231         return NOT_HANDLED;
232     }
233}
234</pre>
235 * <p>The implementation is below and also in StateMachineTest:</p>
236<pre>
237class Hsm1 extends StateMachine {
238    public static final int CMD_1 = 1;
239    public static final int CMD_2 = 2;
240    public static final int CMD_3 = 3;
241    public static final int CMD_4 = 4;
242    public static final int CMD_5 = 5;
243
244    public static Hsm1 makeHsm1() {
245        log("makeHsm1 E");
246        Hsm1 sm = new Hsm1("hsm1");
247        sm.start();
248        log("makeHsm1 X");
249        return sm;
250    }
251
252    Hsm1(String name) {
253        super(name);
254        log("ctor E");
255
256        // Add states, use indentation to show hierarchy
257        addState(mP1);
258            addState(mS1, mP1);
259            addState(mS2, mP1);
260        addState(mP2);
261
262        // Set the initial state
263        setInitialState(mS1);
264        log("ctor X");
265    }
266
267    class P1 extends State {
268        &#64;Override public void enter() {
269            log("mP1.enter");
270        }
271        &#64;Override public boolean processMessage(Message message) {
272            boolean retVal;
273            log("mP1.processMessage what=" + message.what);
274            switch(message.what) {
275            case CMD_2:
276                // CMD_2 will arrive in mS2 before CMD_3
277                sendMessage(obtainMessage(CMD_3));
278                deferMessage(message);
279                transitionTo(mS2);
280                retVal = HANDLED;
281                break;
282            default:
283                // Any message we don't understand in this state invokes unhandledMessage
284                retVal = NOT_HANDLED;
285                break;
286            }
287            return retVal;
288        }
289        &#64;Override public void exit() {
290            log("mP1.exit");
291        }
292    }
293
294    class S1 extends State {
295        &#64;Override public void enter() {
296            log("mS1.enter");
297        }
298        &#64;Override public boolean processMessage(Message message) {
299            log("S1.processMessage what=" + message.what);
300            if (message.what == CMD_1) {
301                // Transition to ourself to show that enter/exit is called
302                transitionTo(mS1);
303                return HANDLED;
304            } else {
305                // Let parent process all other messages
306                return NOT_HANDLED;
307            }
308        }
309        &#64;Override public void exit() {
310            log("mS1.exit");
311        }
312    }
313
314    class S2 extends State {
315        &#64;Override public void enter() {
316            log("mS2.enter");
317        }
318        &#64;Override public boolean processMessage(Message message) {
319            boolean retVal;
320            log("mS2.processMessage what=" + message.what);
321            switch(message.what) {
322            case(CMD_2):
323                sendMessage(obtainMessage(CMD_4));
324                retVal = HANDLED;
325                break;
326            case(CMD_3):
327                deferMessage(message);
328                transitionTo(mP2);
329                retVal = HANDLED;
330                break;
331            default:
332                retVal = NOT_HANDLED;
333                break;
334            }
335            return retVal;
336        }
337        &#64;Override public void exit() {
338            log("mS2.exit");
339        }
340    }
341
342    class P2 extends State {
343        &#64;Override public void enter() {
344            log("mP2.enter");
345            sendMessage(obtainMessage(CMD_5));
346        }
347        &#64;Override public boolean processMessage(Message message) {
348            log("P2.processMessage what=" + message.what);
349            switch(message.what) {
350            case(CMD_3):
351                break;
352            case(CMD_4):
353                break;
354            case(CMD_5):
355                transitionToHaltingState();
356                break;
357            }
358            return HANDLED;
359        }
360        &#64;Override public void exit() {
361            log("mP2.exit");
362        }
363    }
364
365    &#64;Override
366    void onHalting() {
367        log("halting");
368        synchronized (this) {
369            this.notifyAll();
370        }
371    }
372
373    P1 mP1 = new P1();
374    S1 mS1 = new S1();
375    S2 mS2 = new S2();
376    P2 mP2 = new P2();
377}
378</pre>
379 * <p>If this is executed by sending two messages CMD_1 and CMD_2
380 * (Note the synchronize is only needed because we use hsm.wait())</p>
381<pre>
382Hsm1 hsm = makeHsm1();
383synchronize(hsm) {
384     hsm.sendMessage(obtainMessage(hsm.CMD_1));
385     hsm.sendMessage(obtainMessage(hsm.CMD_2));
386     try {
387          // wait for the messages to be handled
388          hsm.wait();
389     } catch (InterruptedException e) {
390          loge("exception while waiting " + e.getMessage());
391     }
392}
393</pre>
394 * <p>The output is:</p>
395<pre>
396D/hsm1    ( 1999): makeHsm1 E
397D/hsm1    ( 1999): ctor E
398D/hsm1    ( 1999): ctor X
399D/hsm1    ( 1999): mP1.enter
400D/hsm1    ( 1999): mS1.enter
401D/hsm1    ( 1999): makeHsm1 X
402D/hsm1    ( 1999): mS1.processMessage what=1
403D/hsm1    ( 1999): mS1.exit
404D/hsm1    ( 1999): mS1.enter
405D/hsm1    ( 1999): mS1.processMessage what=2
406D/hsm1    ( 1999): mP1.processMessage what=2
407D/hsm1    ( 1999): mS1.exit
408D/hsm1    ( 1999): mS2.enter
409D/hsm1    ( 1999): mS2.processMessage what=2
410D/hsm1    ( 1999): mS2.processMessage what=3
411D/hsm1    ( 1999): mS2.exit
412D/hsm1    ( 1999): mP1.exit
413D/hsm1    ( 1999): mP2.enter
414D/hsm1    ( 1999): mP2.processMessage what=3
415D/hsm1    ( 1999): mP2.processMessage what=4
416D/hsm1    ( 1999): mP2.processMessage what=5
417D/hsm1    ( 1999): mP2.exit
418D/hsm1    ( 1999): halting
419</pre>
420 */
421public class StateMachine {
422    // Name of the state machine and used as logging tag
423    private String mName;
424
425    /** Message.what value when quitting */
426    private static final int SM_QUIT_CMD = -1;
427
428    /** Message.what value when initializing */
429    private static final int SM_INIT_CMD = -2;
430
431    /**
432     * Convenience constant that maybe returned by processMessage
433     * to indicate the the message was processed and is not to be
434     * processed by parent states
435     */
436    public static final boolean HANDLED = true;
437
438    /**
439     * Convenience constant that maybe returned by processMessage
440     * to indicate the the message was NOT processed and is to be
441     * processed by parent states
442     */
443    public static final boolean NOT_HANDLED = false;
444
445    /**
446     * StateMachine logging record.
447     * {@hide}
448     */
449    public static class LogRec {
450        private StateMachine mSm;
451        private long mTime;
452        private int mWhat;
453        private String mInfo;
454        private IState mState;
455        private IState mOrgState;
456        private IState mDstState;
457
458        /**
459         * Constructor
460         *
461         * @param msg
462         * @param state the state which handled the message
463         * @param orgState is the first state the received the message but
464         * did not processes the message.
465         * @param transToState is the state that was transitioned to after the message was
466         * processed.
467         */
468        LogRec(StateMachine sm, Message msg, String info, IState state, IState orgState,
469                IState transToState) {
470            update(sm, msg, info, state, orgState, transToState);
471        }
472
473        /**
474         * Update the information in the record.
475         * @param state that handled the message
476         * @param orgState is the first state the received the message
477         * @param dstState is the state that was the transition target when logging
478         */
479        public void update(StateMachine sm, Message msg, String info, IState state, IState orgState,
480                IState dstState) {
481            mSm = sm;
482            mTime = System.currentTimeMillis();
483            mWhat = (msg != null) ? msg.what : 0;
484            mInfo = info;
485            mState = state;
486            mOrgState = orgState;
487            mDstState = dstState;
488        }
489
490        /**
491         * @return time stamp
492         */
493        public long getTime() {
494            return mTime;
495        }
496
497        /**
498         * @return msg.what
499         */
500        public long getWhat() {
501            return mWhat;
502        }
503
504        /**
505         * @return the command that was executing
506         */
507        public String getInfo() {
508            return mInfo;
509        }
510
511        /**
512         * @return the state that handled this message
513         */
514        public IState getState() {
515            return mState;
516        }
517
518        /**
519         * @return the state destination state if a transition is occurring or null if none.
520         */
521        public IState getDestState() {
522            return mDstState;
523        }
524
525        /**
526         * @return the original state that received the message.
527         */
528        public IState getOriginalState() {
529            return mOrgState;
530        }
531
532        @Override
533        public String toString() {
534            StringBuilder sb = new StringBuilder();
535            sb.append("time=");
536            Calendar c = Calendar.getInstance();
537            c.setTimeInMillis(mTime);
538            sb.append(String.format("%tm-%td %tH:%tM:%tS.%tL", c, c, c, c, c, c));
539            sb.append(" processed=");
540            sb.append(mState == null ? "<null>" : mState.getName());
541            sb.append(" org=");
542            sb.append(mOrgState == null ? "<null>" : mOrgState.getName());
543            sb.append(" dest=");
544            sb.append(mDstState == null ? "<null>" : mDstState.getName());
545            sb.append(" what=");
546            String what = mSm != null ? mSm.getWhatToString(mWhat) : "";
547            if (TextUtils.isEmpty(what)) {
548                sb.append(mWhat);
549                sb.append("(0x");
550                sb.append(Integer.toHexString(mWhat));
551                sb.append(")");
552            } else {
553                sb.append(what);
554            }
555            if (!TextUtils.isEmpty(mInfo)) {
556                sb.append(" ");
557                sb.append(mInfo);
558            }
559            return sb.toString();
560        }
561    }
562
563    /**
564     * A list of log records including messages recently processed by the state machine.
565     *
566     * The class maintains a list of log records including messages
567     * recently processed. The list is finite and may be set in the
568     * constructor or by calling setSize. The public interface also
569     * includes size which returns the number of recent records,
570     * count which is the number of records processed since the
571     * the last setSize, get which returns a record and
572     * add which adds a record.
573     */
574    private static class LogRecords {
575
576        private static final int DEFAULT_SIZE = 20;
577
578        private Vector<LogRec> mLogRecVector = new Vector<LogRec>();
579        private int mMaxSize = DEFAULT_SIZE;
580        private int mOldestIndex = 0;
581        private int mCount = 0;
582        private boolean mLogOnlyTransitions = false;
583
584        /**
585         * private constructor use add
586         */
587        private LogRecords() {
588        }
589
590        /**
591         * Set size of messages to maintain and clears all current records.
592         *
593         * @param maxSize number of records to maintain at anyone time.
594        */
595        synchronized void setSize(int maxSize) {
596            mMaxSize = maxSize;
597            mCount = 0;
598            mLogRecVector.clear();
599        }
600
601        synchronized void setLogOnlyTransitions(boolean enable) {
602            mLogOnlyTransitions = enable;
603        }
604
605        synchronized boolean logOnlyTransitions() {
606            return mLogOnlyTransitions;
607        }
608
609        /**
610         * @return the number of recent records.
611         */
612        synchronized int size() {
613            return mLogRecVector.size();
614        }
615
616        /**
617         * @return the total number of records processed since size was set.
618         */
619        synchronized int count() {
620            return mCount;
621        }
622
623        /**
624         * Clear the list of records.
625         */
626        synchronized void cleanup() {
627            mLogRecVector.clear();
628        }
629
630        /**
631         * @return the information on a particular record. 0 is the oldest
632         * record and size()-1 is the newest record. If the index is to
633         * large null is returned.
634         */
635        synchronized LogRec get(int index) {
636            int nextIndex = mOldestIndex + index;
637            if (nextIndex >= mMaxSize) {
638                nextIndex -= mMaxSize;
639            }
640            if (nextIndex >= size()) {
641                return null;
642            } else {
643                return mLogRecVector.get(nextIndex);
644            }
645        }
646
647        /**
648         * Add a processed message.
649         *
650         * @param msg
651         * @param messageInfo to be stored
652         * @param state that handled the message
653         * @param orgState is the first state the received the message but
654         * did not processes the message.
655         * @param transToState is the state that was transitioned to after the message was
656         * processed.
657         *
658         */
659        synchronized void add(StateMachine sm, Message msg, String messageInfo, IState state,
660                IState orgState, IState transToState) {
661            mCount += 1;
662            if (mLogRecVector.size() < mMaxSize) {
663                mLogRecVector.add(new LogRec(sm, msg, messageInfo, state, orgState, transToState));
664            } else {
665                LogRec pmi = mLogRecVector.get(mOldestIndex);
666                mOldestIndex += 1;
667                if (mOldestIndex >= mMaxSize) {
668                    mOldestIndex = 0;
669                }
670                pmi.update(sm, msg, messageInfo, state, orgState, transToState);
671            }
672        }
673    }
674
675    private static class SmHandler extends Handler {
676
677        /** true if StateMachine has quit */
678        private boolean mHasQuit = false;
679
680        /** The debug flag */
681        private boolean mDbg = false;
682
683        /** The SmHandler object, identifies that message is internal */
684        private static final Object mSmHandlerObj = new Object();
685
686        /** The current message */
687        private Message mMsg;
688
689        /** A list of log records including messages this state machine has processed */
690        private LogRecords mLogRecords = new LogRecords();
691
692        /** true if construction of the state machine has not been completed */
693        private boolean mIsConstructionCompleted;
694
695        /** Stack used to manage the current hierarchy of states */
696        private StateInfo mStateStack[];
697
698        /** Top of mStateStack */
699        private int mStateStackTopIndex = -1;
700
701        /** A temporary stack used to manage the state stack */
702        private StateInfo mTempStateStack[];
703
704        /** The top of the mTempStateStack */
705        private int mTempStateStackCount;
706
707        /** State used when state machine is halted */
708        private HaltingState mHaltingState = new HaltingState();
709
710        /** State used when state machine is quitting */
711        private QuittingState mQuittingState = new QuittingState();
712
713        /** Reference to the StateMachine */
714        private StateMachine mSm;
715
716        /**
717         * Information about a state.
718         * Used to maintain the hierarchy.
719         */
720        private class StateInfo {
721            /** The state */
722            State state;
723
724            /** The parent of this state, null if there is no parent */
725            StateInfo parentStateInfo;
726
727            /** True when the state has been entered and on the stack */
728            boolean active;
729
730            /**
731             * Convert StateInfo to string
732             */
733            @Override
734            public String toString() {
735                return "state=" + state.getName() + ",active=" + active + ",parent="
736                        + ((parentStateInfo == null) ? "null" : parentStateInfo.state.getName());
737            }
738        }
739
740        /** The map of all of the states in the state machine */
741        private HashMap<State, StateInfo> mStateInfo = new HashMap<State, StateInfo>();
742
743        /** The initial state that will process the first message */
744        private State mInitialState;
745
746        /** The destination state when transitionTo has been invoked */
747        private State mDestState;
748
749        /** The list of deferred messages */
750        private ArrayList<Message> mDeferredMessages = new ArrayList<Message>();
751
752        /**
753         * State entered when transitionToHaltingState is called.
754         */
755        private class HaltingState extends State {
756            @Override
757            public boolean processMessage(Message msg) {
758                mSm.haltedProcessMessage(msg);
759                return true;
760            }
761        }
762
763        /**
764         * State entered when a valid quit message is handled.
765         */
766        private class QuittingState extends State {
767            @Override
768            public boolean processMessage(Message msg) {
769                return NOT_HANDLED;
770            }
771        }
772
773        /**
774         * Handle messages sent to the state machine by calling
775         * the current state's processMessage. It also handles
776         * the enter/exit calls and placing any deferred messages
777         * back onto the queue when transitioning to a new state.
778         */
779        @Override
780        public final void handleMessage(Message msg) {
781            mSm.onPreHandleMessage(msg);
782            if (!mHasQuit) {
783                if (mDbg) mSm.log("handleMessage: E msg.what=" + msg.what);
784
785                /** Save the current message */
786                mMsg = msg;
787
788                /** State that processed the message */
789                State msgProcessedState = null;
790                if (mIsConstructionCompleted) {
791                    /** Normal path */
792                    msgProcessedState = processMsg(msg);
793                } else if (!mIsConstructionCompleted && (mMsg.what == SM_INIT_CMD)
794                        && (mMsg.obj == mSmHandlerObj)) {
795                    /** Initial one time path. */
796                    mIsConstructionCompleted = true;
797                    invokeEnterMethods(0);
798                } else {
799                    throw new RuntimeException("StateMachine.handleMessage: "
800                            + "The start method not called, received msg: " + msg);
801                }
802                performTransitions(msgProcessedState, msg);
803
804                // We need to check if mSm == null here as we could be quitting.
805                if (mDbg && mSm != null) mSm.log("handleMessage: X");
806            }
807            mSm.onPostHandleMessage(msg);
808        }
809
810        /**
811         * Do any transitions
812         * @param msgProcessedState is the state that processed the message
813         */
814        private void performTransitions(State msgProcessedState, Message msg) {
815            /**
816             * If transitionTo has been called, exit and then enter
817             * the appropriate states. We loop on this to allow
818             * enter and exit methods to use transitionTo.
819             */
820            State orgState = mStateStack[mStateStackTopIndex].state;
821
822            /**
823             * Record whether message needs to be logged before we transition and
824             * and we won't log special messages SM_INIT_CMD or SM_QUIT_CMD which
825             * always set msg.obj to the handler.
826             */
827            boolean recordLogMsg = mSm.recordLogRec(mMsg) && (msg.obj != mSmHandlerObj);
828
829            if (mLogRecords.logOnlyTransitions()) {
830                /** Record only if there is a transition */
831                if (mDestState != null) {
832                    mLogRecords.add(mSm, mMsg, mSm.getLogRecString(mMsg), msgProcessedState,
833                            orgState, mDestState);
834                }
835            } else if (recordLogMsg) {
836                /** Record message */
837                mLogRecords.add(mSm, mMsg, mSm.getLogRecString(mMsg), msgProcessedState, orgState,
838                        mDestState);
839            }
840
841            State destState = mDestState;
842            if (destState != null) {
843                /**
844                 * Process the transitions including transitions in the enter/exit methods
845                 */
846                while (true) {
847                    if (mDbg) mSm.log("handleMessage: new destination call exit/enter");
848
849                    /**
850                     * Determine the states to exit and enter and return the
851                     * common ancestor state of the enter/exit states. Then
852                     * invoke the exit methods then the enter methods.
853                     */
854                    StateInfo commonStateInfo = setupTempStateStackWithStatesToEnter(destState);
855                    invokeExitMethods(commonStateInfo);
856                    int stateStackEnteringIndex = moveTempStateStackToStateStack();
857                    invokeEnterMethods(stateStackEnteringIndex);
858
859                    /**
860                     * Since we have transitioned to a new state we need to have
861                     * any deferred messages moved to the front of the message queue
862                     * so they will be processed before any other messages in the
863                     * message queue.
864                     */
865                    moveDeferredMessageAtFrontOfQueue();
866
867                    if (destState != mDestState) {
868                        // A new mDestState so continue looping
869                        destState = mDestState;
870                    } else {
871                        // No change in mDestState so we're done
872                        break;
873                    }
874                }
875                mDestState = null;
876            }
877
878            /**
879             * After processing all transitions check and
880             * see if the last transition was to quit or halt.
881             */
882            if (destState != null) {
883                if (destState == mQuittingState) {
884                    /**
885                     * Call onQuitting to let subclasses cleanup.
886                     */
887                    mSm.onQuitting();
888                    cleanupAfterQuitting();
889                } else if (destState == mHaltingState) {
890                    /**
891                     * Call onHalting() if we've transitioned to the halting
892                     * state. All subsequent messages will be processed in
893                     * in the halting state which invokes haltedProcessMessage(msg);
894                     */
895                    mSm.onHalting();
896                }
897            }
898        }
899
900        /**
901         * Cleanup all the static variables and the looper after the SM has been quit.
902         */
903        private final void cleanupAfterQuitting() {
904            if (mSm.mSmThread != null) {
905                // If we made the thread then quit looper which stops the thread.
906                getLooper().quit();
907                mSm.mSmThread = null;
908            }
909
910            mSm.mSmHandler = null;
911            mSm = null;
912            mMsg = null;
913            mLogRecords.cleanup();
914            mStateStack = null;
915            mTempStateStack = null;
916            mStateInfo.clear();
917            mInitialState = null;
918            mDestState = null;
919            mDeferredMessages.clear();
920            mHasQuit = true;
921        }
922
923        /**
924         * Complete the construction of the state machine.
925         */
926        private final void completeConstruction() {
927            if (mDbg) mSm.log("completeConstruction: E");
928
929            /**
930             * Determine the maximum depth of the state hierarchy
931             * so we can allocate the state stacks.
932             */
933            int maxDepth = 0;
934            for (StateInfo si : mStateInfo.values()) {
935                int depth = 0;
936                for (StateInfo i = si; i != null; depth++) {
937                    i = i.parentStateInfo;
938                }
939                if (maxDepth < depth) {
940                    maxDepth = depth;
941                }
942            }
943            if (mDbg) mSm.log("completeConstruction: maxDepth=" + maxDepth);
944
945            mStateStack = new StateInfo[maxDepth];
946            mTempStateStack = new StateInfo[maxDepth];
947            setupInitialStateStack();
948
949            /** Sending SM_INIT_CMD message to invoke enter methods asynchronously */
950            sendMessageAtFrontOfQueue(obtainMessage(SM_INIT_CMD, mSmHandlerObj));
951
952            if (mDbg) mSm.log("completeConstruction: X");
953        }
954
955        /**
956         * Process the message. If the current state doesn't handle
957         * it, call the states parent and so on. If it is never handled then
958         * call the state machines unhandledMessage method.
959         * @return the state that processed the message
960         */
961        private final State processMsg(Message msg) {
962            StateInfo curStateInfo = mStateStack[mStateStackTopIndex];
963            if (mDbg) {
964                mSm.log("processMsg: " + curStateInfo.state.getName());
965            }
966
967            if (isQuit(msg)) {
968                transitionTo(mQuittingState);
969            } else {
970                while (!curStateInfo.state.processMessage(msg)) {
971                    /**
972                     * Not processed
973                     */
974                    curStateInfo = curStateInfo.parentStateInfo;
975                    if (curStateInfo == null) {
976                        /**
977                         * No parents left so it's not handled
978                         */
979                        mSm.unhandledMessage(msg);
980                        break;
981                    }
982                    if (mDbg) {
983                        mSm.log("processMsg: " + curStateInfo.state.getName());
984                    }
985                }
986            }
987            return (curStateInfo != null) ? curStateInfo.state : null;
988        }
989
990        /**
991         * Call the exit method for each state from the top of stack
992         * up to the common ancestor state.
993         */
994        private final void invokeExitMethods(StateInfo commonStateInfo) {
995            while ((mStateStackTopIndex >= 0)
996                    && (mStateStack[mStateStackTopIndex] != commonStateInfo)) {
997                State curState = mStateStack[mStateStackTopIndex].state;
998                if (mDbg) mSm.log("invokeExitMethods: " + curState.getName());
999                curState.exit();
1000                mStateStack[mStateStackTopIndex].active = false;
1001                mStateStackTopIndex -= 1;
1002            }
1003        }
1004
1005        /**
1006         * Invoke the enter method starting at the entering index to top of state stack
1007         */
1008        private final void invokeEnterMethods(int stateStackEnteringIndex) {
1009            for (int i = stateStackEnteringIndex; i <= mStateStackTopIndex; i++) {
1010                if (mDbg) mSm.log("invokeEnterMethods: " + mStateStack[i].state.getName());
1011                mStateStack[i].state.enter();
1012                mStateStack[i].active = true;
1013            }
1014        }
1015
1016        /**
1017         * Move the deferred message to the front of the message queue.
1018         */
1019        private final void moveDeferredMessageAtFrontOfQueue() {
1020            /**
1021             * The oldest messages on the deferred list must be at
1022             * the front of the queue so start at the back, which
1023             * as the most resent message and end with the oldest
1024             * messages at the front of the queue.
1025             */
1026            for (int i = mDeferredMessages.size() - 1; i >= 0; i--) {
1027                Message curMsg = mDeferredMessages.get(i);
1028                if (mDbg) mSm.log("moveDeferredMessageAtFrontOfQueue; what=" + curMsg.what);
1029                sendMessageAtFrontOfQueue(curMsg);
1030            }
1031            mDeferredMessages.clear();
1032        }
1033
1034        /**
1035         * Move the contents of the temporary stack to the state stack
1036         * reversing the order of the items on the temporary stack as
1037         * they are moved.
1038         *
1039         * @return index into mStateStack where entering needs to start
1040         */
1041        private final int moveTempStateStackToStateStack() {
1042            int startingIndex = mStateStackTopIndex + 1;
1043            int i = mTempStateStackCount - 1;
1044            int j = startingIndex;
1045            while (i >= 0) {
1046                if (mDbg) mSm.log("moveTempStackToStateStack: i=" + i + ",j=" + j);
1047                mStateStack[j] = mTempStateStack[i];
1048                j += 1;
1049                i -= 1;
1050            }
1051
1052            mStateStackTopIndex = j - 1;
1053            if (mDbg) {
1054                mSm.log("moveTempStackToStateStack: X mStateStackTop=" + mStateStackTopIndex
1055                        + ",startingIndex=" + startingIndex + ",Top="
1056                        + mStateStack[mStateStackTopIndex].state.getName());
1057            }
1058            return startingIndex;
1059        }
1060
1061        /**
1062         * Setup the mTempStateStack with the states we are going to enter.
1063         *
1064         * This is found by searching up the destState's ancestors for a
1065         * state that is already active i.e. StateInfo.active == true.
1066         * The destStae and all of its inactive parents will be on the
1067         * TempStateStack as the list of states to enter.
1068         *
1069         * @return StateInfo of the common ancestor for the destState and
1070         * current state or null if there is no common parent.
1071         */
1072        private final StateInfo setupTempStateStackWithStatesToEnter(State destState) {
1073            /**
1074             * Search up the parent list of the destination state for an active
1075             * state. Use a do while() loop as the destState must always be entered
1076             * even if it is active. This can happen if we are exiting/entering
1077             * the current state.
1078             */
1079            mTempStateStackCount = 0;
1080            StateInfo curStateInfo = mStateInfo.get(destState);
1081            do {
1082                mTempStateStack[mTempStateStackCount++] = curStateInfo;
1083                curStateInfo = curStateInfo.parentStateInfo;
1084            } while ((curStateInfo != null) && !curStateInfo.active);
1085
1086            if (mDbg) {
1087                mSm.log("setupTempStateStackWithStatesToEnter: X mTempStateStackCount="
1088                        + mTempStateStackCount + ",curStateInfo: " + curStateInfo);
1089            }
1090            return curStateInfo;
1091        }
1092
1093        /**
1094         * Initialize StateStack to mInitialState.
1095         */
1096        private final void setupInitialStateStack() {
1097            if (mDbg) {
1098                mSm.log("setupInitialStateStack: E mInitialState=" + mInitialState.getName());
1099            }
1100
1101            StateInfo curStateInfo = mStateInfo.get(mInitialState);
1102            for (mTempStateStackCount = 0; curStateInfo != null; mTempStateStackCount++) {
1103                mTempStateStack[mTempStateStackCount] = curStateInfo;
1104                curStateInfo = curStateInfo.parentStateInfo;
1105            }
1106
1107            // Empty the StateStack
1108            mStateStackTopIndex = -1;
1109
1110            moveTempStateStackToStateStack();
1111        }
1112
1113        /**
1114         * @return current message
1115         */
1116        private final Message getCurrentMessage() {
1117            return mMsg;
1118        }
1119
1120        /**
1121         * @return current state
1122         */
1123        private final IState getCurrentState() {
1124            return mStateStack[mStateStackTopIndex].state;
1125        }
1126
1127        /**
1128         * Add a new state to the state machine. Bottom up addition
1129         * of states is allowed but the same state may only exist
1130         * in one hierarchy.
1131         *
1132         * @param state the state to add
1133         * @param parent the parent of state
1134         * @return stateInfo for this state
1135         */
1136        private final StateInfo addState(State state, State parent) {
1137            if (mDbg) {
1138                mSm.log("addStateInternal: E state=" + state.getName() + ",parent="
1139                        + ((parent == null) ? "" : parent.getName()));
1140            }
1141            StateInfo parentStateInfo = null;
1142            if (parent != null) {
1143                parentStateInfo = mStateInfo.get(parent);
1144                if (parentStateInfo == null) {
1145                    // Recursively add our parent as it's not been added yet.
1146                    parentStateInfo = addState(parent, null);
1147                }
1148            }
1149            StateInfo stateInfo = mStateInfo.get(state);
1150            if (stateInfo == null) {
1151                stateInfo = new StateInfo();
1152                mStateInfo.put(state, stateInfo);
1153            }
1154
1155            // Validate that we aren't adding the same state in two different hierarchies.
1156            if ((stateInfo.parentStateInfo != null)
1157                    && (stateInfo.parentStateInfo != parentStateInfo)) {
1158                throw new RuntimeException("state already added");
1159            }
1160            stateInfo.state = state;
1161            stateInfo.parentStateInfo = parentStateInfo;
1162            stateInfo.active = false;
1163            if (mDbg) mSm.log("addStateInternal: X stateInfo: " + stateInfo);
1164            return stateInfo;
1165        }
1166
1167        /**
1168         * Constructor
1169         *
1170         * @param looper for dispatching messages
1171         * @param sm the hierarchical state machine
1172         */
1173        private SmHandler(Looper looper, StateMachine sm) {
1174            super(looper);
1175            mSm = sm;
1176
1177            addState(mHaltingState, null);
1178            addState(mQuittingState, null);
1179        }
1180
1181        /** @see StateMachine#setInitialState(State) */
1182        private final void setInitialState(State initialState) {
1183            if (mDbg) mSm.log("setInitialState: initialState=" + initialState.getName());
1184            mInitialState = initialState;
1185        }
1186
1187        /** @see StateMachine#transitionTo(IState) */
1188        private final void transitionTo(IState destState) {
1189            mDestState = (State) destState;
1190            if (mDbg) mSm.log("transitionTo: destState=" + mDestState.getName());
1191        }
1192
1193        /** @see StateMachine#deferMessage(Message) */
1194        private final void deferMessage(Message msg) {
1195            if (mDbg) mSm.log("deferMessage: msg=" + msg.what);
1196
1197            /* Copy the "msg" to "newMsg" as "msg" will be recycled */
1198            Message newMsg = obtainMessage();
1199            newMsg.copyFrom(msg);
1200
1201            mDeferredMessages.add(newMsg);
1202        }
1203
1204        /** @see StateMachine#quit() */
1205        private final void quit() {
1206            if (mDbg) mSm.log("quit:");
1207            sendMessage(obtainMessage(SM_QUIT_CMD, mSmHandlerObj));
1208        }
1209
1210        /** @see StateMachine#quitNow() */
1211        private final void quitNow() {
1212            if (mDbg) mSm.log("quitNow:");
1213            sendMessageAtFrontOfQueue(obtainMessage(SM_QUIT_CMD, mSmHandlerObj));
1214        }
1215
1216        /** Validate that the message was sent by quit or quitNow. */
1217        private final boolean isQuit(Message msg) {
1218            return (msg.what == SM_QUIT_CMD) && (msg.obj == mSmHandlerObj);
1219        }
1220
1221        /** @see StateMachine#isDbg() */
1222        private final boolean isDbg() {
1223            return mDbg;
1224        }
1225
1226        /** @see StateMachine#setDbg(boolean) */
1227        private final void setDbg(boolean dbg) {
1228            mDbg = dbg;
1229        }
1230
1231    }
1232
1233    private SmHandler mSmHandler;
1234    private HandlerThread mSmThread;
1235
1236    /**
1237     * Initialize.
1238     *
1239     * @param looper for this state machine
1240     * @param name of the state machine
1241     */
1242    private void initStateMachine(String name, Looper looper) {
1243        mName = name;
1244        mSmHandler = new SmHandler(looper, this);
1245    }
1246
1247    /**
1248     * Constructor creates a StateMachine with its own thread.
1249     *
1250     * @param name of the state machine
1251     */
1252    protected StateMachine(String name) {
1253        mSmThread = new HandlerThread(name);
1254        mSmThread.start();
1255        Looper looper = mSmThread.getLooper();
1256
1257        initStateMachine(name, looper);
1258    }
1259
1260    /**
1261     * Constructor creates a StateMachine using the looper.
1262     *
1263     * @param name of the state machine
1264     */
1265    protected StateMachine(String name, Looper looper) {
1266        initStateMachine(name, looper);
1267    }
1268
1269    /**
1270     * Constructor creates a StateMachine using the handler.
1271     *
1272     * @param name of the state machine
1273     */
1274    protected StateMachine(String name, Handler handler) {
1275        initStateMachine(name, handler.getLooper());
1276    }
1277
1278    /**
1279     * Notifies subclass that the StateMachine handler is about to process the Message msg
1280     * @param msg The message that is being handled
1281     */
1282    protected void onPreHandleMessage(Message msg) {
1283    }
1284
1285    /**
1286     * Notifies subclass that the StateMachine handler has finished processing the Message msg and
1287     * has possibly transitioned to a new state.
1288     * @param msg The message that is being handled
1289     */
1290    protected void onPostHandleMessage(Message msg) {
1291    }
1292
1293    /**
1294     * Add a new state to the state machine
1295     * @param state the state to add
1296     * @param parent the parent of state
1297     */
1298    protected final void addState(State state, State parent) {
1299        mSmHandler.addState(state, parent);
1300    }
1301
1302    /**
1303     * Add a new state to the state machine, parent will be null
1304     * @param state to add
1305     */
1306    protected final void addState(State state) {
1307        mSmHandler.addState(state, null);
1308    }
1309
1310    /**
1311     * Set the initial state. This must be invoked before
1312     * and messages are sent to the state machine.
1313     *
1314     * @param initialState is the state which will receive the first message.
1315     */
1316    protected final void setInitialState(State initialState) {
1317        mSmHandler.setInitialState(initialState);
1318    }
1319
1320    /**
1321     * @return current message
1322     */
1323    protected final Message getCurrentMessage() {
1324        // mSmHandler can be null if the state machine has quit.
1325        SmHandler smh = mSmHandler;
1326        if (smh == null) return null;
1327        return smh.getCurrentMessage();
1328    }
1329
1330    /**
1331     * @return current state
1332     */
1333    protected final IState getCurrentState() {
1334        // mSmHandler can be null if the state machine has quit.
1335        SmHandler smh = mSmHandler;
1336        if (smh == null) return null;
1337        return smh.getCurrentState();
1338    }
1339
1340    /**
1341     * transition to destination state. Upon returning
1342     * from processMessage the current state's exit will
1343     * be executed and upon the next message arriving
1344     * destState.enter will be invoked.
1345     *
1346     * this function can also be called inside the enter function of the
1347     * previous transition target, but the behavior is undefined when it is
1348     * called mid-way through a previous transition (for example, calling this
1349     * in the enter() routine of a intermediate node when the current transition
1350     * target is one of the nodes descendants).
1351     *
1352     * @param destState will be the state that receives the next message.
1353     */
1354    protected final void transitionTo(IState destState) {
1355        mSmHandler.transitionTo(destState);
1356    }
1357
1358    /**
1359     * transition to halt state. Upon returning
1360     * from processMessage we will exit all current
1361     * states, execute the onHalting() method and then
1362     * for all subsequent messages haltedProcessMessage
1363     * will be called.
1364     */
1365    protected final void transitionToHaltingState() {
1366        mSmHandler.transitionTo(mSmHandler.mHaltingState);
1367    }
1368
1369    /**
1370     * Defer this message until next state transition.
1371     * Upon transitioning all deferred messages will be
1372     * placed on the queue and reprocessed in the original
1373     * order. (i.e. The next state the oldest messages will
1374     * be processed first)
1375     *
1376     * @param msg is deferred until the next transition.
1377     */
1378    protected final void deferMessage(Message msg) {
1379        mSmHandler.deferMessage(msg);
1380    }
1381
1382    /**
1383     * Called when message wasn't handled
1384     *
1385     * @param msg that couldn't be handled.
1386     */
1387    protected void unhandledMessage(Message msg) {
1388        if (mSmHandler.mDbg) loge(" - unhandledMessage: msg.what=" + msg.what);
1389    }
1390
1391    /**
1392     * Called for any message that is received after
1393     * transitionToHalting is called.
1394     */
1395    protected void haltedProcessMessage(Message msg) {
1396    }
1397
1398    /**
1399     * This will be called once after handling a message that called
1400     * transitionToHalting. All subsequent messages will invoke
1401     * {@link StateMachine#haltedProcessMessage(Message)}
1402     */
1403    protected void onHalting() {
1404    }
1405
1406    /**
1407     * This will be called once after a quit message that was NOT handled by
1408     * the derived StateMachine. The StateMachine will stop and any subsequent messages will be
1409     * ignored. In addition, if this StateMachine created the thread, the thread will
1410     * be stopped after this method returns.
1411     */
1412    protected void onQuitting() {
1413    }
1414
1415    /**
1416     * @return the name
1417     */
1418    public final String getName() {
1419        return mName;
1420    }
1421
1422    /**
1423     * Set number of log records to maintain and clears all current records.
1424     *
1425     * @param maxSize number of messages to maintain at anyone time.
1426     */
1427    public final void setLogRecSize(int maxSize) {
1428        mSmHandler.mLogRecords.setSize(maxSize);
1429    }
1430
1431    /**
1432     * Set to log only messages that cause a state transition
1433     *
1434     * @param enable {@code true} to enable, {@code false} to disable
1435     */
1436    public final void setLogOnlyTransitions(boolean enable) {
1437        mSmHandler.mLogRecords.setLogOnlyTransitions(enable);
1438    }
1439
1440    /**
1441     * @return number of log records
1442     */
1443    public final int getLogRecSize() {
1444        // mSmHandler can be null if the state machine has quit.
1445        SmHandler smh = mSmHandler;
1446        if (smh == null) return 0;
1447        return smh.mLogRecords.size();
1448    }
1449
1450    /**
1451     * @return the total number of records processed
1452     */
1453    public final int getLogRecCount() {
1454        // mSmHandler can be null if the state machine has quit.
1455        SmHandler smh = mSmHandler;
1456        if (smh == null) return 0;
1457        return smh.mLogRecords.count();
1458    }
1459
1460    /**
1461     * @return a log record, or null if index is out of range
1462     */
1463    public final LogRec getLogRec(int index) {
1464        // mSmHandler can be null if the state machine has quit.
1465        SmHandler smh = mSmHandler;
1466        if (smh == null) return null;
1467        return smh.mLogRecords.get(index);
1468    }
1469
1470    /**
1471     * @return a copy of LogRecs as a collection
1472     */
1473    public final Collection<LogRec> copyLogRecs() {
1474        Vector<LogRec> vlr = new Vector<LogRec>();
1475        SmHandler smh = mSmHandler;
1476        if (smh != null) {
1477            for (LogRec lr : smh.mLogRecords.mLogRecVector) {
1478                vlr.add(lr);
1479            }
1480        }
1481        return vlr;
1482    }
1483
1484    /**
1485     * Add the string to LogRecords.
1486     *
1487     * @param string
1488     */
1489    protected void addLogRec(String string) {
1490        // mSmHandler can be null if the state machine has quit.
1491        SmHandler smh = mSmHandler;
1492        if (smh == null) return;
1493        smh.mLogRecords.add(this, smh.getCurrentMessage(), string, smh.getCurrentState(),
1494                smh.mStateStack[smh.mStateStackTopIndex].state, smh.mDestState);
1495    }
1496
1497    /**
1498     * @return true if msg should be saved in the log, default is true.
1499     */
1500    protected boolean recordLogRec(Message msg) {
1501        return true;
1502    }
1503
1504    /**
1505     * Return a string to be logged by LogRec, default
1506     * is an empty string. Override if additional information is desired.
1507     *
1508     * @param msg that was processed
1509     * @return information to be logged as a String
1510     */
1511    protected String getLogRecString(Message msg) {
1512        return "";
1513    }
1514
1515    /**
1516     * @return the string for msg.what
1517     */
1518    protected String getWhatToString(int what) {
1519        return null;
1520    }
1521
1522    /**
1523     * @return Handler, maybe null if state machine has quit.
1524     */
1525    public final Handler getHandler() {
1526        return mSmHandler;
1527    }
1528
1529    /**
1530     * Get a message and set Message.target state machine handler.
1531     *
1532     * Note: The handler can be null if the state machine has quit,
1533     * which means target will be null and may cause a AndroidRuntimeException
1534     * in MessageQueue#enqueMessage if sent directly or if sent using
1535     * StateMachine#sendMessage the message will just be ignored.
1536     *
1537     * @return  A Message object from the global pool
1538     */
1539    public final Message obtainMessage() {
1540        return Message.obtain(mSmHandler);
1541    }
1542
1543    /**
1544     * Get a message and set Message.target state machine handler, what.
1545     *
1546     * Note: The handler can be null if the state machine has quit,
1547     * which means target will be null and may cause a AndroidRuntimeException
1548     * in MessageQueue#enqueMessage if sent directly or if sent using
1549     * StateMachine#sendMessage the message will just be ignored.
1550     *
1551     * @param what is the assigned to Message.what.
1552     * @return  A Message object from the global pool
1553     */
1554    public final Message obtainMessage(int what) {
1555        return Message.obtain(mSmHandler, what);
1556    }
1557
1558    /**
1559     * Get a message and set Message.target state machine handler,
1560     * what and obj.
1561     *
1562     * Note: The handler can be null if the state machine has quit,
1563     * which means target will be null and may cause a AndroidRuntimeException
1564     * in MessageQueue#enqueMessage if sent directly or if sent using
1565     * StateMachine#sendMessage the message will just be ignored.
1566     *
1567     * @param what is the assigned to Message.what.
1568     * @param obj is assigned to Message.obj.
1569     * @return  A Message object from the global pool
1570     */
1571    public final Message obtainMessage(int what, Object obj) {
1572        return Message.obtain(mSmHandler, what, obj);
1573    }
1574
1575    /**
1576     * Get a message and set Message.target state machine handler,
1577     * what, arg1 and arg2
1578     *
1579     * Note: The handler can be null if the state machine has quit,
1580     * which means target will be null and may cause a AndroidRuntimeException
1581     * in MessageQueue#enqueMessage if sent directly or if sent using
1582     * StateMachine#sendMessage the message will just be ignored.
1583     *
1584     * @param what  is assigned to Message.what
1585     * @param arg1  is assigned to Message.arg1
1586     * @return  A Message object from the global pool
1587     */
1588    public final Message obtainMessage(int what, int arg1) {
1589        // use this obtain so we don't match the obtain(h, what, Object) method
1590        return Message.obtain(mSmHandler, what, arg1, 0);
1591    }
1592
1593    /**
1594     * Get a message and set Message.target state machine handler,
1595     * what, arg1 and arg2
1596     *
1597     * Note: The handler can be null if the state machine has quit,
1598     * which means target will be null and may cause a AndroidRuntimeException
1599     * in MessageQueue#enqueMessage if sent directly or if sent using
1600     * StateMachine#sendMessage the message will just be ignored.
1601     *
1602     * @param what  is assigned to Message.what
1603     * @param arg1  is assigned to Message.arg1
1604     * @param arg2  is assigned to Message.arg2
1605     * @return  A Message object from the global pool
1606     */
1607    public final Message obtainMessage(int what, int arg1, int arg2) {
1608        return Message.obtain(mSmHandler, what, arg1, arg2);
1609    }
1610
1611    /**
1612     * Get a message and set Message.target state machine handler,
1613     * what, arg1, arg2 and obj
1614     *
1615     * Note: The handler can be null if the state machine has quit,
1616     * which means target will be null and may cause a AndroidRuntimeException
1617     * in MessageQueue#enqueMessage if sent directly or if sent using
1618     * StateMachine#sendMessage the message will just be ignored.
1619     *
1620     * @param what  is assigned to Message.what
1621     * @param arg1  is assigned to Message.arg1
1622     * @param arg2  is assigned to Message.arg2
1623     * @param obj is assigned to Message.obj
1624     * @return  A Message object from the global pool
1625     */
1626    public final Message obtainMessage(int what, int arg1, int arg2, Object obj) {
1627        return Message.obtain(mSmHandler, what, arg1, arg2, obj);
1628    }
1629
1630    /**
1631     * Enqueue a message to this state machine.
1632     *
1633     * Message is ignored if state machine has quit.
1634     */
1635    public final void sendMessage(int what) {
1636        // mSmHandler can be null if the state machine has quit.
1637        SmHandler smh = mSmHandler;
1638        if (smh == null) return;
1639
1640        smh.sendMessage(obtainMessage(what));
1641    }
1642
1643    /**
1644     * Enqueue a message to this state machine.
1645     *
1646     * Message is ignored if state machine has quit.
1647     */
1648    public final void sendMessage(int what, Object obj) {
1649        // mSmHandler can be null if the state machine has quit.
1650        SmHandler smh = mSmHandler;
1651        if (smh == null) return;
1652
1653        smh.sendMessage(obtainMessage(what, obj));
1654    }
1655
1656    /**
1657     * Enqueue a message to this state machine.
1658     *
1659     * Message is ignored if state machine has quit.
1660     */
1661    public final void sendMessage(int what, int arg1) {
1662        // mSmHandler can be null if the state machine has quit.
1663        SmHandler smh = mSmHandler;
1664        if (smh == null) return;
1665
1666        smh.sendMessage(obtainMessage(what, arg1));
1667    }
1668
1669    /**
1670     * Enqueue a message to this state machine.
1671     *
1672     * Message is ignored if state machine has quit.
1673     */
1674    public final void sendMessage(int what, int arg1, int arg2) {
1675        // mSmHandler can be null if the state machine has quit.
1676        SmHandler smh = mSmHandler;
1677        if (smh == null) return;
1678
1679        smh.sendMessage(obtainMessage(what, arg1, arg2));
1680    }
1681
1682    /**
1683     * Enqueue a message to this state machine.
1684     *
1685     * Message is ignored if state machine has quit.
1686     */
1687    public final void sendMessage(int what, int arg1, int arg2, Object obj) {
1688        // mSmHandler can be null if the state machine has quit.
1689        SmHandler smh = mSmHandler;
1690        if (smh == null) return;
1691
1692        smh.sendMessage(obtainMessage(what, arg1, arg2, obj));
1693    }
1694
1695    /**
1696     * Enqueue a message to this state machine.
1697     *
1698     * Message is ignored if state machine has quit.
1699     */
1700    public final void sendMessage(Message msg) {
1701        // mSmHandler can be null if the state machine has quit.
1702        SmHandler smh = mSmHandler;
1703        if (smh == null) return;
1704
1705        smh.sendMessage(msg);
1706    }
1707
1708    /**
1709     * Enqueue a message to this state machine after a delay.
1710     *
1711     * Message is ignored if state machine has quit.
1712     */
1713    public final void sendMessageDelayed(int what, long delayMillis) {
1714        // mSmHandler can be null if the state machine has quit.
1715        SmHandler smh = mSmHandler;
1716        if (smh == null) return;
1717
1718        smh.sendMessageDelayed(obtainMessage(what), delayMillis);
1719    }
1720
1721    /**
1722     * Enqueue a message to this state machine after a delay.
1723     *
1724     * Message is ignored if state machine has quit.
1725     */
1726    public final void sendMessageDelayed(int what, Object obj, long delayMillis) {
1727        // mSmHandler can be null if the state machine has quit.
1728        SmHandler smh = mSmHandler;
1729        if (smh == null) return;
1730
1731        smh.sendMessageDelayed(obtainMessage(what, obj), delayMillis);
1732    }
1733
1734    /**
1735     * Enqueue a message to this state machine after a delay.
1736     *
1737     * Message is ignored if state machine has quit.
1738     */
1739    public final void sendMessageDelayed(int what, int arg1, long delayMillis) {
1740        // mSmHandler can be null if the state machine has quit.
1741        SmHandler smh = mSmHandler;
1742        if (smh == null) return;
1743
1744        smh.sendMessageDelayed(obtainMessage(what, arg1), delayMillis);
1745    }
1746
1747    /**
1748     * Enqueue a message to this state machine after a delay.
1749     *
1750     * Message is ignored if state machine has quit.
1751     */
1752    public final void sendMessageDelayed(int what, int arg1, int arg2, long delayMillis) {
1753        // mSmHandler can be null if the state machine has quit.
1754        SmHandler smh = mSmHandler;
1755        if (smh == null) return;
1756
1757        smh.sendMessageDelayed(obtainMessage(what, arg1, arg2), delayMillis);
1758    }
1759
1760    /**
1761     * Enqueue a message to this state machine after a delay.
1762     *
1763     * Message is ignored if state machine has quit.
1764     */
1765    public final void sendMessageDelayed(int what, int arg1, int arg2, Object obj,
1766            long delayMillis) {
1767        // mSmHandler can be null if the state machine has quit.
1768        SmHandler smh = mSmHandler;
1769        if (smh == null) return;
1770
1771        smh.sendMessageDelayed(obtainMessage(what, arg1, arg2, obj), delayMillis);
1772    }
1773
1774    /**
1775     * Enqueue a message to this state machine after a delay.
1776     *
1777     * Message is ignored if state machine has quit.
1778     */
1779    public final void sendMessageDelayed(Message msg, long delayMillis) {
1780        // mSmHandler can be null if the state machine has quit.
1781        SmHandler smh = mSmHandler;
1782        if (smh == null) return;
1783
1784        smh.sendMessageDelayed(msg, delayMillis);
1785    }
1786
1787    /**
1788     * Enqueue a message to the front of the queue for this state machine.
1789     * Protected, may only be called by instances of StateMachine.
1790     *
1791     * Message is ignored if state machine has quit.
1792     */
1793    protected final void sendMessageAtFrontOfQueue(int what) {
1794        // mSmHandler can be null if the state machine has quit.
1795        SmHandler smh = mSmHandler;
1796        if (smh == null) return;
1797
1798        smh.sendMessageAtFrontOfQueue(obtainMessage(what));
1799    }
1800
1801    /**
1802     * Enqueue a message to the front of the queue for this state machine.
1803     * Protected, may only be called by instances of StateMachine.
1804     *
1805     * Message is ignored if state machine has quit.
1806     */
1807    protected final void sendMessageAtFrontOfQueue(int what, Object obj) {
1808        // mSmHandler can be null if the state machine has quit.
1809        SmHandler smh = mSmHandler;
1810        if (smh == null) return;
1811
1812        smh.sendMessageAtFrontOfQueue(obtainMessage(what, obj));
1813    }
1814
1815    /**
1816     * Enqueue a message to the front of the queue for this state machine.
1817     * Protected, may only be called by instances of StateMachine.
1818     *
1819     * Message is ignored if state machine has quit.
1820     */
1821    protected final void sendMessageAtFrontOfQueue(int what, int arg1) {
1822        // mSmHandler can be null if the state machine has quit.
1823        SmHandler smh = mSmHandler;
1824        if (smh == null) return;
1825
1826        smh.sendMessageAtFrontOfQueue(obtainMessage(what, arg1));
1827    }
1828
1829
1830    /**
1831     * Enqueue a message to the front of the queue for this state machine.
1832     * Protected, may only be called by instances of StateMachine.
1833     *
1834     * Message is ignored if state machine has quit.
1835     */
1836    protected final void sendMessageAtFrontOfQueue(int what, int arg1, int arg2) {
1837        // mSmHandler can be null if the state machine has quit.
1838        SmHandler smh = mSmHandler;
1839        if (smh == null) return;
1840
1841        smh.sendMessageAtFrontOfQueue(obtainMessage(what, arg1, arg2));
1842    }
1843
1844    /**
1845     * Enqueue a message to the front of the queue for this state machine.
1846     * Protected, may only be called by instances of StateMachine.
1847     *
1848     * Message is ignored if state machine has quit.
1849     */
1850    protected final void sendMessageAtFrontOfQueue(int what, int arg1, int arg2, Object obj) {
1851        // mSmHandler can be null if the state machine has quit.
1852        SmHandler smh = mSmHandler;
1853        if (smh == null) return;
1854
1855        smh.sendMessageAtFrontOfQueue(obtainMessage(what, arg1, arg2, obj));
1856    }
1857
1858    /**
1859     * Enqueue a message to the front of the queue for this state machine.
1860     * Protected, may only be called by instances of StateMachine.
1861     *
1862     * Message is ignored if state machine has quit.
1863     */
1864    protected final void sendMessageAtFrontOfQueue(Message msg) {
1865        // mSmHandler can be null if the state machine has quit.
1866        SmHandler smh = mSmHandler;
1867        if (smh == null) return;
1868
1869        smh.sendMessageAtFrontOfQueue(msg);
1870    }
1871
1872    /**
1873     * Removes a message from the message queue.
1874     * Protected, may only be called by instances of StateMachine.
1875     */
1876    protected final void removeMessages(int what) {
1877        // mSmHandler can be null if the state machine has quit.
1878        SmHandler smh = mSmHandler;
1879        if (smh == null) return;
1880
1881        smh.removeMessages(what);
1882    }
1883
1884    /**
1885     * Removes a message from the deferred messages queue.
1886     */
1887    protected final void removeDeferredMessages(int what) {
1888        SmHandler smh = mSmHandler;
1889        if (smh == null) return;
1890
1891        Iterator<Message> iterator = smh.mDeferredMessages.iterator();
1892        while (iterator.hasNext()) {
1893            Message msg = iterator.next();
1894            if (msg.what == what) iterator.remove();
1895        }
1896    }
1897
1898    /**
1899     * Check if there are any pending messages with code 'what' in deferred messages queue.
1900     */
1901    protected final boolean hasDeferredMessages(int what) {
1902        SmHandler smh = mSmHandler;
1903        if (smh == null) return false;
1904
1905        Iterator<Message> iterator = smh.mDeferredMessages.iterator();
1906        while (iterator.hasNext()) {
1907            Message msg = iterator.next();
1908            if (msg.what == what) return true;
1909        }
1910
1911        return false;
1912    }
1913
1914    /**
1915     * Check if there are any pending posts of messages with code 'what' in
1916     * the message queue. This does NOT check messages in deferred message queue.
1917     */
1918    protected final boolean hasMessages(int what) {
1919        SmHandler smh = mSmHandler;
1920        if (smh == null) return false;
1921
1922        return smh.hasMessages(what);
1923    }
1924
1925    /**
1926     * Validate that the message was sent by
1927     * {@link StateMachine#quit} or {@link StateMachine#quitNow}.
1928     * */
1929    protected final boolean isQuit(Message msg) {
1930        // mSmHandler can be null if the state machine has quit.
1931        SmHandler smh = mSmHandler;
1932        if (smh == null) return msg.what == SM_QUIT_CMD;
1933
1934        return smh.isQuit(msg);
1935    }
1936
1937    /**
1938     * Quit the state machine after all currently queued up messages are processed.
1939     */
1940    protected final void quit() {
1941        // mSmHandler can be null if the state machine is already stopped.
1942        SmHandler smh = mSmHandler;
1943        if (smh == null) return;
1944
1945        smh.quit();
1946    }
1947
1948    /**
1949     * Quit the state machine immediately all currently queued messages will be discarded.
1950     */
1951    protected final void quitNow() {
1952        // mSmHandler can be null if the state machine is already stopped.
1953        SmHandler smh = mSmHandler;
1954        if (smh == null) return;
1955
1956        smh.quitNow();
1957    }
1958
1959    /**
1960     * @return if debugging is enabled
1961     */
1962    public boolean isDbg() {
1963        // mSmHandler can be null if the state machine has quit.
1964        SmHandler smh = mSmHandler;
1965        if (smh == null) return false;
1966
1967        return smh.isDbg();
1968    }
1969
1970    /**
1971     * Set debug enable/disabled.
1972     *
1973     * @param dbg is true to enable debugging.
1974     */
1975    public void setDbg(boolean dbg) {
1976        // mSmHandler can be null if the state machine has quit.
1977        SmHandler smh = mSmHandler;
1978        if (smh == null) return;
1979
1980        smh.setDbg(dbg);
1981    }
1982
1983    /**
1984     * Start the state machine.
1985     */
1986    public void start() {
1987        // mSmHandler can be null if the state machine has quit.
1988        SmHandler smh = mSmHandler;
1989        if (smh == null) return;
1990
1991        /** Send the complete construction message */
1992        smh.completeConstruction();
1993    }
1994
1995    /**
1996     * Dump the current state.
1997     *
1998     * @param fd
1999     * @param pw
2000     * @param args
2001     */
2002    public void dump(FileDescriptor fd, PrintWriter pw, String[] args) {
2003        // Cannot just invoke pw.println(this.toString()) because if the
2004        // resulting string is to long it won't be displayed.
2005        pw.println(getName() + ":");
2006        pw.println(" total records=" + getLogRecCount());
2007        for (int i = 0; i < getLogRecSize(); i++) {
2008            pw.println(" rec[" + i + "]: " + getLogRec(i).toString());
2009            pw.flush();
2010        }
2011        pw.println("curState=" + getCurrentState().getName());
2012    }
2013
2014    @Override
2015    public String toString() {
2016        StringWriter sr = new StringWriter();
2017        PrintWriter pr = new PrintWriter(sr);
2018        dump(null, pr, null);
2019        pr.flush();
2020        pr.close();
2021        return sr.toString();
2022    }
2023
2024    /**
2025     * Log with debug and add to the LogRecords.
2026     *
2027     * @param s is string log
2028     */
2029    protected void logAndAddLogRec(String s) {
2030        addLogRec(s);
2031        log(s);
2032    }
2033
2034    /**
2035     * Log with debug
2036     *
2037     * @param s is string log
2038     */
2039    protected void log(String s) {
2040        Log.d(mName, s);
2041    }
2042
2043    /**
2044     * Log with debug attribute
2045     *
2046     * @param s is string log
2047     */
2048    protected void logd(String s) {
2049        Log.d(mName, s);
2050    }
2051
2052    /**
2053     * Log with verbose attribute
2054     *
2055     * @param s is string log
2056     */
2057    protected void logv(String s) {
2058        Log.v(mName, s);
2059    }
2060
2061    /**
2062     * Log with info attribute
2063     *
2064     * @param s is string log
2065     */
2066    protected void logi(String s) {
2067        Log.i(mName, s);
2068    }
2069
2070    /**
2071     * Log with warning attribute
2072     *
2073     * @param s is string log
2074     */
2075    protected void logw(String s) {
2076        Log.w(mName, s);
2077    }
2078
2079    /**
2080     * Log with error attribute
2081     *
2082     * @param s is string log
2083     */
2084    protected void loge(String s) {
2085        Log.e(mName, s);
2086    }
2087
2088    /**
2089     * Log with error attribute
2090     *
2091     * @param s is string log
2092     * @param e is a Throwable which logs additional information.
2093     */
2094    protected void loge(String s, Throwable e) {
2095        Log.e(mName, s, e);
2096    }
2097}
2098