StateMachine.java revision ef8da9fe0b70fdbbb54bb0645ac66f75f58f31b8
1/**
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package com.android.internal.util;
18
19import android.os.Handler;
20import android.os.HandlerThread;
21import android.os.Looper;
22import android.os.Message;
23import android.text.TextUtils;
24import android.util.Log;
25
26import java.io.FileDescriptor;
27import java.io.PrintWriter;
28import java.util.ArrayList;
29import java.util.Calendar;
30import java.util.HashMap;
31import java.util.Vector;
32
33/**
34 * {@hide}
35 *
36 * <p>The state machine defined here is a hierarchical state machine which processes messages
37 * and can have states arranged hierarchically.</p>
38 *
39 * <p>A state is a <code>State</code> object and must implement
40 * <code>processMessage</code> and optionally <code>enter/exit/getName</code>.
41 * The enter/exit methods are equivalent to the construction and destruction
42 * in Object Oriented programming and are used to perform initialization and
43 * cleanup of the state respectively. The <code>getName</code> method returns the
44 * name of the state the default implementation returns the class name it may be
45 * desirable to have this return the name of the state instance name instead.
46 * In particular if a particular state class has multiple instances.</p>
47 *
48 * <p>When a state machine is created <code>addState</code> is used to build the
49 * hierarchy and <code>setInitialState</code> is used to identify which of these
50 * is the initial state. After construction the programmer calls <code>start</code>
51 * which initializes and starts the state machine. The first action the StateMachine
52 * is to the invoke <code>enter</code> for all of the initial state's hierarchy,
53 * starting at its eldest parent. The calls to enter will be done in the context
54 * of the StateMachines Handler not in the context of the call to start and they
55 * will be invoked before any messages are processed. For example, given the simple
56 * state machine below mP1.enter will be invoked and then mS1.enter. Finally,
57 * messages sent to the state machine will be processed by the current state,
58 * in our simple state machine below that would initially be mS1.processMessage.</p>
59<code>
60        mP1
61       /   \
62      mS2   mS1 ----> initial state
63</code>
64 * <p>After the state machine is created and started, messages are sent to a state
65 * machine using <code>sendMessage</code> and the messages are created using
66 * <code>obtainMessage</code>. When the state machine receives a message the
67 * current state's <code>processMessage</code> is invoked. In the above example
68 * mS1.processMessage will be invoked first. The state may use <code>transitionTo</code>
69 * to change the current state to a new state</p>
70 *
71 * <p>Each state in the state machine may have a zero or one parent states and if
72 * a child state is unable to handle a message it may have the message processed
73 * by its parent by returning false or NOT_HANDLED. If a message is never processed
74 * <code>unhandledMessage</code> will be invoked to give one last chance for the state machine
75 * to process the message.</p>
76 *
77 * <p>When all processing is completed a state machine may choose to call
78 * <code>transitionToHaltingState</code>. When the current <code>processingMessage</code>
79 * returns the state machine will transfer to an internal <code>HaltingState</code>
80 * and invoke <code>halting</code>. Any message subsequently received by the state
81 * machine will cause <code>haltedProcessMessage</code> to be invoked.</p>
82 *
83 * <p>If it is desirable to completely stop the state machine call <code>quit</code> or
84 * <code>abort</code>. These will call <code>exit</code> of the current state and its parents, call
85 * <code>onQuiting</code> and then exit Thread/Loopers.</p>
86 *
87 * <p>In addition to <code>processMessage</code> each <code>State</code> has
88 * an <code>enter</code> method and <code>exit</exit> method which may be overridden.</p>
89 *
90 * <p>Since the states are arranged in a hierarchy transitioning to a new state
91 * causes current states to be exited and new states to be entered. To determine
92 * the list of states to be entered/exited the common parent closest to
93 * the current state is found. We then exit from the current state and its
94 * parent's up to but not including the common parent state and then enter all
95 * of the new states below the common parent down to the destination state.
96 * If there is no common parent all states are exited and then the new states
97 * are entered.</p>
98 *
99 * <p>Two other methods that states can use are <code>deferMessage</code> and
100 * <code>sendMessageAtFrontOfQueue</code>. The <code>sendMessageAtFrontOfQueue</code> sends
101 * a message but places it on the front of the queue rather than the back. The
102 * <code>deferMessage</code> causes the message to be saved on a list until a
103 * transition is made to a new state. At which time all of the deferred messages
104 * will be put on the front of the state machine queue with the oldest message
105 * at the front. These will then be processed by the new current state before
106 * any other messages that are on the queue or might be added later. Both of
107 * these are protected and may only be invoked from within a state machine.</p>
108 *
109 * <p>To illustrate some of these properties we'll use state machine with an 8
110 * state hierarchy:</p>
111<code>
112          mP0
113         /   \
114        mP1   mS0
115       /   \
116      mS2   mS1
117     /  \    \
118    mS3  mS4  mS5  ---> initial state
119</code>
120 * <p>After starting mS5 the list of active states is mP0, mP1, mS1 and mS5.
121 * So the order of calling processMessage when a message is received is mS5,
122 * mS1, mP1, mP0 assuming each processMessage indicates it can't handle this
123 * message by returning false or NOT_HANDLED.</p>
124 *
125 * <p>Now assume mS5.processMessage receives a message it can handle, and during
126 * the handling determines the machine should change states. It could call
127 * transitionTo(mS4) and return true or HANDLED. Immediately after returning from
128 * processMessage the state machine runtime will find the common parent,
129 * which is mP1. It will then call mS5.exit, mS1.exit, mS2.enter and then
130 * mS4.enter. The new list of active states is mP0, mP1, mS2 and mS4. So
131 * when the next message is received mS4.processMessage will be invoked.</p>
132 *
133 * <p>Now for some concrete examples, here is the canonical HelloWorld as a state machine.
134 * It responds with "Hello World" being printed to the log for every message.</p>
135<code>
136class HelloWorld extends StateMachine {
137    HelloWorld(String name) {
138        super(name);
139        addState(mState1);
140        setInitialState(mState1);
141    }
142
143    public static HelloWorld makeHelloWorld() {
144        HelloWorld hw = new HelloWorld("hw");
145        hw.start();
146        return hw;
147    }
148
149    class State1 extends State {
150        &#64;Override public boolean processMessage(Message message) {
151            Log.d(TAG, "Hello World");
152            return HANDLED;
153        }
154    }
155    State1 mState1 = new State1();
156}
157
158void testHelloWorld() {
159    HelloWorld hw = makeHelloWorld();
160    hw.sendMessage(hw.obtainMessage());
161}
162</code>
163 * <p>A more interesting state machine is one with four states
164 * with two independent parent states.</p>
165<code>
166        mP1      mP2
167       /   \
168      mS2   mS1
169</code>
170 * <p>Here is a description of this state machine using pseudo code.</p>
171 <code>
172state mP1 {
173     enter { log("mP1.enter"); }
174     exit { log("mP1.exit");  }
175     on msg {
176         CMD_2 {
177             send(CMD_3);
178             defer(msg);
179             transitonTo(mS2);
180             return HANDLED;
181         }
182         return NOT_HANDLED;
183     }
184}
185
186INITIAL
187state mS1 parent mP1 {
188     enter { log("mS1.enter"); }
189     exit  { log("mS1.exit");  }
190     on msg {
191         CMD_1 {
192             transitionTo(mS1);
193             return HANDLED;
194         }
195         return NOT_HANDLED;
196     }
197}
198
199state mS2 parent mP1 {
200     enter { log("mS2.enter"); }
201     exit  { log("mS2.exit");  }
202     on msg {
203         CMD_2 {
204             send(CMD_4);
205             return HANDLED;
206         }
207         CMD_3 {
208             defer(msg);
209             transitionTo(mP2);
210             return HANDLED;
211         }
212         return NOT_HANDLED;
213     }
214}
215
216state mP2 {
217     enter {
218         log("mP2.enter");
219         send(CMD_5);
220     }
221     exit { log("mP2.exit"); }
222     on msg {
223         CMD_3, CMD_4 { return HANDLED; }
224         CMD_5 {
225             transitionTo(HaltingState);
226             return HANDLED;
227         }
228         return NOT_HANDLED;
229     }
230}
231</code>
232 * <p>The implementation is below and also in StateMachineTest:</p>
233<code>
234class Hsm1 extends StateMachine {
235    private static final String TAG = "hsm1";
236
237    public static final int CMD_1 = 1;
238    public static final int CMD_2 = 2;
239    public static final int CMD_3 = 3;
240    public static final int CMD_4 = 4;
241    public static final int CMD_5 = 5;
242
243    public static Hsm1 makeHsm1() {
244        Log.d(TAG, "makeHsm1 E");
245        Hsm1 sm = new Hsm1("hsm1");
246        sm.start();
247        Log.d(TAG, "makeHsm1 X");
248        return sm;
249    }
250
251    Hsm1(String name) {
252        super(name);
253        Log.d(TAG, "ctor E");
254
255        // Add states, use indentation to show hierarchy
256        addState(mP1);
257            addState(mS1, mP1);
258            addState(mS2, mP1);
259        addState(mP2);
260
261        // Set the initial state
262        setInitialState(mS1);
263        Log.d(TAG, "ctor X");
264    }
265
266    class P1 extends State {
267        &#64;Override public void enter() {
268            Log.d(TAG, "mP1.enter");
269        }
270        &#64;Override public boolean processMessage(Message message) {
271            boolean retVal;
272            Log.d(TAG, "mP1.processMessage what=" + message.what);
273            switch(message.what) {
274            case CMD_2:
275                // CMD_2 will arrive in mS2 before CMD_3
276                sendMessage(obtainMessage(CMD_3));
277                deferMessage(message);
278                transitionTo(mS2);
279                retVal = HANDLED;
280                break;
281            default:
282                // Any message we don't understand in this state invokes unhandledMessage
283                retVal = NOT_HANDLED;
284                break;
285            }
286            return retVal;
287        }
288        &#64;Override public void exit() {
289            Log.d(TAG, "mP1.exit");
290        }
291    }
292
293    class S1 extends State {
294        &#64;Override public void enter() {
295            Log.d(TAG, "mS1.enter");
296        }
297        &#64;Override public boolean processMessage(Message message) {
298            Log.d(TAG, "S1.processMessage what=" + message.what);
299            if (message.what == CMD_1) {
300                // Transition to ourself to show that enter/exit is called
301                transitionTo(mS1);
302                return HANDLED;
303            } else {
304                // Let parent process all other messages
305                return NOT_HANDLED;
306            }
307        }
308        &#64;Override public void exit() {
309            Log.d(TAG, "mS1.exit");
310        }
311    }
312
313    class S2 extends State {
314        &#64;Override public void enter() {
315            Log.d(TAG, "mS2.enter");
316        }
317        &#64;Override public boolean processMessage(Message message) {
318            boolean retVal;
319            Log.d(TAG, "mS2.processMessage what=" + message.what);
320            switch(message.what) {
321            case(CMD_2):
322                sendMessage(obtainMessage(CMD_4));
323                retVal = HANDLED;
324                break;
325            case(CMD_3):
326                deferMessage(message);
327                transitionTo(mP2);
328                retVal = HANDLED;
329                break;
330            default:
331                retVal = NOT_HANDLED;
332                break;
333            }
334            return retVal;
335        }
336        &#64;Override public void exit() {
337            Log.d(TAG, "mS2.exit");
338        }
339    }
340
341    class P2 extends State {
342        &#64;Override public void enter() {
343            Log.d(TAG, "mP2.enter");
344            sendMessage(obtainMessage(CMD_5));
345        }
346        &#64;Override public boolean processMessage(Message message) {
347            Log.d(TAG, "P2.processMessage what=" + message.what);
348            switch(message.what) {
349            case(CMD_3):
350                break;
351            case(CMD_4):
352                break;
353            case(CMD_5):
354                transitionToHaltingState();
355                break;
356            }
357            return HANDLED;
358        }
359        &#64;Override public void exit() {
360            Log.d(TAG, "mP2.exit");
361        }
362    }
363
364    &#64;Override
365    void onHalting() {
366        Log.d(TAG, "halting");
367        synchronized (this) {
368            this.notifyAll();
369        }
370    }
371
372    P1 mP1 = new P1();
373    S1 mS1 = new S1();
374    S2 mS2 = new S2();
375    P2 mP2 = new P2();
376}
377</code>
378 * <p>If this is executed by sending two messages CMD_1 and CMD_2
379 * (Note the synchronize is only needed because we use hsm.wait())</p>
380<code>
381Hsm1 hsm = makeHsm1();
382synchronize(hsm) {
383     hsm.sendMessage(obtainMessage(hsm.CMD_1));
384     hsm.sendMessage(obtainMessage(hsm.CMD_2));
385     try {
386          // wait for the messages to be handled
387          hsm.wait();
388     } catch (InterruptedException e) {
389          Log.e(TAG, "exception while waiting " + e.getMessage());
390     }
391}
392</code>
393 * <p>The output is:</p>
394<code>
395D/hsm1    ( 1999): makeHsm1 E
396D/hsm1    ( 1999): ctor E
397D/hsm1    ( 1999): ctor X
398D/hsm1    ( 1999): mP1.enter
399D/hsm1    ( 1999): mS1.enter
400D/hsm1    ( 1999): makeHsm1 X
401D/hsm1    ( 1999): mS1.processMessage what=1
402D/hsm1    ( 1999): mS1.exit
403D/hsm1    ( 1999): mS1.enter
404D/hsm1    ( 1999): mS1.processMessage what=2
405D/hsm1    ( 1999): mP1.processMessage what=2
406D/hsm1    ( 1999): mS1.exit
407D/hsm1    ( 1999): mS2.enter
408D/hsm1    ( 1999): mS2.processMessage what=2
409D/hsm1    ( 1999): mS2.processMessage what=3
410D/hsm1    ( 1999): mS2.exit
411D/hsm1    ( 1999): mP1.exit
412D/hsm1    ( 1999): mP2.enter
413D/hsm1    ( 1999): mP2.processMessage what=3
414D/hsm1    ( 1999): mP2.processMessage what=4
415D/hsm1    ( 1999): mP2.processMessage what=5
416D/hsm1    ( 1999): mP2.exit
417D/hsm1    ( 1999): halting
418</code>
419 */
420public class StateMachine {
421
422    private static final String TAG = "StateMachine";
423    private String mName;
424
425    /** Message.what value when quitting */
426    private static final int SM_QUIT_CMD = -1;
427
428    /** Message.what value when initializing */
429    private static final int SM_INIT_CMD = -2;
430
431    /**
432     * Convenience constant that maybe returned by processMessage
433     * to indicate the the message was processed and is not to be
434     * processed by parent states
435     */
436    public static final boolean HANDLED = true;
437
438    /**
439     * Convenience constant that maybe returned by processMessage
440     * to indicate the the message was NOT processed and is to be
441     * processed by parent states
442     */
443    public static final boolean NOT_HANDLED = false;
444
445    /**
446     * StateMachine logging record.
447     * {@hide}
448     */
449    public static class LogRec {
450        private long mTime;
451        private int mWhat;
452        private String mInfo;
453        private State mState;
454        private State mOrgState;
455        private State mTransitionToState;
456
457        /**
458         * Constructor
459         *
460         * @param msg
461         * @param state the state which handled the message
462         * @param orgState is the first state the received the message but
463         * did not processes the message.
464         * @param transToState is the state that was transitioned to after the message was
465         * processed.
466         */
467        LogRec(Message msg, String info, State state, State orgState, State transToState) {
468            update(msg, info, state, orgState, transToState);
469        }
470
471        /**
472         * Update the information in the record.
473         * @param state that handled the message
474         * @param orgState is the first state the received the message but
475         * did not processes the message.
476         * @param transToState is the state that was transitioned to after the message was
477         * processed.
478         */
479        public void update(Message msg, String info, State state, State orgState,
480                State transToState) {
481            mTime = System.currentTimeMillis();
482            mWhat = (msg != null) ? msg.what : 0;
483            mInfo = info;
484            mState = state;
485            mOrgState = orgState;
486            mTransitionToState = transToState;
487        }
488
489        /**
490         * @return time stamp
491         */
492        public long getTime() {
493            return mTime;
494        }
495
496        /**
497         * @return msg.what
498         */
499        public long getWhat() {
500            return mWhat;
501        }
502
503        /**
504         * @return the command that was executing
505         */
506        public String getInfo() {
507            return mInfo;
508        }
509
510        /**
511         * @return the state that handled this message
512         */
513        public State getState() {
514            return mState;
515        }
516
517        /**
518         * @return the original state that received the message.
519         */
520        public State getOriginalState() {
521            return mOrgState;
522        }
523
524        /**
525         * @return as string
526         */
527        public String toString(StateMachine sm) {
528            StringBuilder sb = new StringBuilder();
529            sb.append("time=");
530            Calendar c = Calendar.getInstance();
531            c.setTimeInMillis(mTime);
532            sb.append(String.format("%tm-%td %tH:%tM:%tS.%tL", c, c, c, c, c, c));
533            sb.append(" processed=");
534            sb.append(mState == null ? "<null>" : mState.getName());
535            sb.append(" org=");
536            sb.append(mOrgState == null ? "<null>" : mOrgState.getName());
537            sb.append(" dest=");
538            sb.append(mTransitionToState == null ? "<null>" : mTransitionToState.getName());
539            sb.append(" what=");
540            String what = sm.getWhatToString(mWhat);
541            if (TextUtils.isEmpty(what)) {
542                sb.append(mWhat);
543                sb.append("(0x");
544                sb.append(Integer.toHexString(mWhat));
545                sb.append(")");
546            } else {
547                sb.append(what);
548            }
549            if ( ! TextUtils.isEmpty(mInfo)) {
550                sb.append(" ");
551                sb.append(mInfo);
552            }
553            return sb.toString();
554        }
555    }
556
557    /**
558     * A list of log records including messages recently processed by the state machine.
559     *
560     * The class maintains a list of log records including messages
561     * recently processed. The list is finite and may be set in the
562     * constructor or by calling setSize. The public interface also
563     * includes size which returns the number of recent records,
564     * count which is the number of records processed since the
565     * the last setSize, get which returns a record and
566     * add which adds a record.
567     */
568    private static class LogRecords {
569
570        private static final int DEFAULT_SIZE = 20;
571
572        private Vector<LogRec> mLogRecVector = new Vector<LogRec>();
573        private int mMaxSize = DEFAULT_SIZE;
574        private int mOldestIndex = 0;
575        private int mCount = 0;
576        private boolean mLogOnlyTransitions = false;
577
578        /**
579         * private constructor use add
580         */
581        private LogRecords() {
582        }
583
584        /**
585         * Set size of messages to maintain and clears all current records.
586         *
587         * @param maxSize number of records to maintain at anyone time.
588        */
589        synchronized void setSize(int maxSize) {
590            mMaxSize = maxSize;
591            mCount = 0;
592            mLogRecVector.clear();
593        }
594
595        synchronized void setLogOnlyTransitions(boolean enable) {
596            mLogOnlyTransitions = enable;
597        }
598
599        synchronized boolean logOnlyTransitions() {
600            return mLogOnlyTransitions;
601        }
602
603        /**
604         * @return the number of recent records.
605         */
606        synchronized int size() {
607            return mLogRecVector.size();
608        }
609
610        /**
611         * @return the total number of records processed since size was set.
612         */
613        synchronized int count() {
614            return mCount;
615        }
616
617        /**
618         * Clear the list of records.
619         */
620        synchronized void cleanup() {
621            mLogRecVector.clear();
622        }
623
624        /**
625         * @return the information on a particular record. 0 is the oldest
626         * record and size()-1 is the newest record. If the index is to
627         * large null is returned.
628         */
629        synchronized LogRec get(int index) {
630            int nextIndex = mOldestIndex + index;
631            if (nextIndex >= mMaxSize) {
632                nextIndex -= mMaxSize;
633            }
634            if (nextIndex >= size()) {
635                return null;
636            } else {
637                return mLogRecVector.get(nextIndex);
638            }
639        }
640
641        /**
642         * Add a processed message.
643         *
644         * @param msg
645         * @param messageInfo to be stored
646         * @param state that handled the message
647         * @param orgState is the first state the received the message but
648         * did not processes the message.
649         * @param transToState is the state that was transitioned to after the message was
650         * processed.
651         *
652         */
653        synchronized void add(Message msg, String messageInfo, State state, State orgState,
654                State transToState) {
655            mCount += 1;
656            if (mLogRecVector.size() < mMaxSize) {
657                mLogRecVector.add(new LogRec(msg, messageInfo, state, orgState, transToState));
658            } else {
659                LogRec pmi = mLogRecVector.get(mOldestIndex);
660                mOldestIndex += 1;
661                if (mOldestIndex >= mMaxSize) {
662                    mOldestIndex = 0;
663                }
664                pmi.update(msg, messageInfo, state, orgState, transToState);
665            }
666        }
667    }
668
669
670    private static class SmHandler extends Handler {
671
672        /** The debug flag */
673        private boolean mDbg = false;
674
675        /** The SmHandler object, identifies that message is internal */
676        private static final Object mSmHandlerObj = new Object();
677
678        /** The current message */
679        private Message mMsg;
680
681        /** A list of log records including messages this state machine has processed */
682        private LogRecords mLogRecords = new LogRecords();
683
684        /** true if construction of the state machine has not been completed */
685        private boolean mIsConstructionCompleted;
686
687        /** Stack used to manage the current hierarchy of states */
688        private StateInfo mStateStack[];
689
690        /** Top of mStateStack */
691        private int mStateStackTopIndex = -1;
692
693        /** A temporary stack used to manage the state stack */
694        private StateInfo mTempStateStack[];
695
696        /** The top of the mTempStateStack */
697        private int mTempStateStackCount;
698
699        /** State used when state machine is halted */
700        private HaltingState mHaltingState = new HaltingState();
701
702        /** State used when state machine is quitting */
703        private QuittingState mQuittingState = new QuittingState();
704
705        /** Reference to the StateMachine */
706        private StateMachine mSm;
707
708        /**
709         * Information about a state.
710         * Used to maintain the hierarchy.
711         */
712        private class StateInfo {
713            /** The state */
714            State state;
715
716            /** The parent of this state, null if there is no parent */
717            StateInfo parentStateInfo;
718
719            /** True when the state has been entered and on the stack */
720            boolean active;
721
722            /**
723             * Convert StateInfo to string
724             */
725            @Override
726            public String toString() {
727                return "state=" + state.getName() + ",active=" + active
728                        + ",parent=" + ((parentStateInfo == null) ?
729                                        "null" : parentStateInfo.state.getName());
730            }
731        }
732
733        /** The map of all of the states in the state machine */
734        private HashMap<State, StateInfo> mStateInfo =
735            new HashMap<State, StateInfo>();
736
737        /** The initial state that will process the first message */
738        private State mInitialState;
739
740        /** The destination state when transitionTo has been invoked */
741        private State mDestState;
742
743        /** The list of deferred messages */
744        private ArrayList<Message> mDeferredMessages = new ArrayList<Message>();
745
746        /**
747         * State entered when transitionToHaltingState is called.
748         */
749        private class HaltingState extends State {
750            @Override
751            public boolean processMessage(Message msg) {
752                mSm.haltedProcessMessage(msg);
753                return true;
754            }
755        }
756
757        /**
758         * State entered when a valid quit message is handled.
759         */
760        private class QuittingState extends State {
761            @Override
762            public boolean processMessage(Message msg) {
763                return NOT_HANDLED;
764            }
765        }
766
767        /**
768         * Handle messages sent to the state machine by calling
769         * the current state's processMessage. It also handles
770         * the enter/exit calls and placing any deferred messages
771         * back onto the queue when transitioning to a new state.
772         */
773        @Override
774        public final void handleMessage(Message msg) {
775            if (mDbg) Log.d(TAG, "handleMessage: E msg.what=" + msg.what);
776
777            /** Save the current message */
778            mMsg = msg;
779
780            /** State that processed the message */
781            State msgProcessedState = null;
782            if (mIsConstructionCompleted) {
783                /** Normal path */
784                msgProcessedState = processMsg(msg);
785            } else if (!mIsConstructionCompleted &&
786                    (mMsg.what == SM_INIT_CMD) && (mMsg.obj == mSmHandlerObj)) {
787                /** Initial one time path. */
788                mIsConstructionCompleted = true;
789                invokeEnterMethods(0);
790            } else {
791                throw new RuntimeException("StateMachine.handleMessage: " +
792                            "The start method not called, received msg: " + msg);
793            }
794            performTransitions(msgProcessedState);
795
796            if (mDbg) Log.d(TAG, "handleMessage: X");
797        }
798
799        /**
800         * Do any transitions
801         * @param msgProcessedState is the state that processed the message
802         */
803        private void performTransitions(State msgProcessedState) {
804            /**
805             * If transitionTo has been called, exit and then enter
806             * the appropriate states. We loop on this to allow
807             * enter and exit methods to use transitionTo.
808             */
809            State destState = null;
810            State orgState = mStateStack[mStateStackTopIndex].state;
811
812            /** Record whether message needs to be logged before transitions */
813            boolean recordLogMsg = mSm.recordLogRec(mMsg);
814
815            while (mDestState != null) {
816                if (mDbg) Log.d(TAG, "handleMessage: new destination call exit");
817
818                /**
819                 * Save mDestState locally and set to null
820                 * to know if enter/exit use transitionTo.
821                 */
822                destState = mDestState;
823                mDestState = null;
824
825                /**
826                 * Determine the states to exit and enter and return the
827                 * common ancestor state of the enter/exit states. Then
828                 * invoke the exit methods then the enter methods.
829                 */
830                StateInfo commonStateInfo = setupTempStateStackWithStatesToEnter(destState);
831                invokeExitMethods(commonStateInfo);
832                int stateStackEnteringIndex = moveTempStateStackToStateStack();
833                invokeEnterMethods(stateStackEnteringIndex);
834
835
836                /**
837                 * Since we have transitioned to a new state we need to have
838                 * any deferred messages moved to the front of the message queue
839                 * so they will be processed before any other messages in the
840                 * message queue.
841                 */
842                moveDeferredMessageAtFrontOfQueue();
843            }
844
845            /**
846             * After processing all transitions check and
847             * see if the last transition was to quit or halt.
848             */
849            if (destState != null) {
850                if (destState == mQuittingState) {
851                    /**
852                     * Call onQuitting to let subclasses cleanup.
853                     */
854                    mSm.onQuitting();
855                    cleanupAfterQuitting();
856                } else if (destState == mHaltingState) {
857                    /**
858                     * Call onHalting() if we've transitioned to the halting
859                     * state. All subsequent messages will be processed in
860                     * in the halting state which invokes haltedProcessMessage(msg);
861                     */
862                    mSm.onHalting();
863                }
864            }
865
866            if (mLogRecords.logOnlyTransitions()) {
867                /** Record only if there is a transition */
868                if (destState != null) {
869                    mLogRecords.add(mMsg, mSm.getLogRecString(mMsg), msgProcessedState,
870                            orgState, destState);
871                }
872            } else if (recordLogMsg) {
873                /** Record message */
874                mLogRecords.add(mMsg, mSm.getLogRecString(mMsg), msgProcessedState,
875                        orgState, destState);
876            }
877        }
878
879        /**
880         * Cleanup all the static variables and the looper after the SM has been quit.
881         */
882        private final void cleanupAfterQuitting() {
883            if (mSm.mSmThread != null) {
884                // If we made the thread then quit looper which stops the thread.
885                getLooper().quit();
886                mSm.mSmThread = null;
887            }
888
889            mSm.mSmHandler = null;
890            mSm = null;
891            mMsg = null;
892            mLogRecords.cleanup();
893            mStateStack = null;
894            mTempStateStack = null;
895            mStateInfo.clear();
896            mInitialState = null;
897            mDestState = null;
898            mDeferredMessages.clear();
899        }
900
901        /**
902         * Complete the construction of the state machine.
903         */
904        private final void completeConstruction() {
905            if (mDbg) Log.d(TAG, "completeConstruction: E");
906
907            /**
908             * Determine the maximum depth of the state hierarchy
909             * so we can allocate the state stacks.
910             */
911            int maxDepth = 0;
912            for (StateInfo si : mStateInfo.values()) {
913                int depth = 0;
914                for (StateInfo i = si; i != null; depth++) {
915                    i = i.parentStateInfo;
916                }
917                if (maxDepth < depth) {
918                    maxDepth = depth;
919                }
920            }
921            if (mDbg) Log.d(TAG, "completeConstruction: maxDepth=" + maxDepth);
922
923            mStateStack = new StateInfo[maxDepth];
924            mTempStateStack = new StateInfo[maxDepth];
925            setupInitialStateStack();
926
927            /** Sending SM_INIT_CMD message to invoke enter methods asynchronously */
928            sendMessageAtFrontOfQueue(obtainMessage(SM_INIT_CMD, mSmHandlerObj));
929
930            if (mDbg) Log.d(TAG, "completeConstruction: X");
931        }
932
933        /**
934         * Process the message. If the current state doesn't handle
935         * it, call the states parent and so on. If it is never handled then
936         * call the state machines unhandledMessage method.
937         * @return the state that processed the message
938         */
939        private final State processMsg(Message msg) {
940            StateInfo curStateInfo = mStateStack[mStateStackTopIndex];
941            if (mDbg) {
942                Log.d(TAG, "processMsg: " + curStateInfo.state.getName());
943            }
944
945            if (isQuit(msg)) {
946                transitionTo(mQuittingState);
947            } else {
948                while (!curStateInfo.state.processMessage(msg)) {
949                    /**
950                     * Not processed
951                     */
952                    curStateInfo = curStateInfo.parentStateInfo;
953                    if (curStateInfo == null) {
954                        /**
955                         * No parents left so it's not handled
956                         */
957                        mSm.unhandledMessage(msg);
958                        break;
959                    }
960                    if (mDbg) {
961                        Log.d(TAG, "processMsg: " + curStateInfo.state.getName());
962                    }
963                }
964           }
965            return (curStateInfo != null) ? curStateInfo.state : null;
966        }
967
968        /**
969         * Call the exit method for each state from the top of stack
970         * up to the common ancestor state.
971         */
972        private final void invokeExitMethods(StateInfo commonStateInfo) {
973            while ((mStateStackTopIndex >= 0) &&
974                    (mStateStack[mStateStackTopIndex] != commonStateInfo)) {
975                State curState = mStateStack[mStateStackTopIndex].state;
976                if (mDbg) Log.d(TAG, "invokeExitMethods: " + curState.getName());
977                curState.exit();
978                mStateStack[mStateStackTopIndex].active = false;
979                mStateStackTopIndex -= 1;
980            }
981        }
982
983        /**
984         * Invoke the enter method starting at the entering index to top of state stack
985         */
986        private final void invokeEnterMethods(int stateStackEnteringIndex) {
987            for (int i = stateStackEnteringIndex; i <= mStateStackTopIndex; i++) {
988                if (mDbg) Log.d(TAG, "invokeEnterMethods: " + mStateStack[i].state.getName());
989                mStateStack[i].state.enter();
990                mStateStack[i].active = true;
991            }
992        }
993
994        /**
995         * Move the deferred message to the front of the message queue.
996         */
997        private final void moveDeferredMessageAtFrontOfQueue() {
998            /**
999             * The oldest messages on the deferred list must be at
1000             * the front of the queue so start at the back, which
1001             * as the most resent message and end with the oldest
1002             * messages at the front of the queue.
1003             */
1004            for (int i = mDeferredMessages.size() - 1; i >= 0; i-- ) {
1005                Message curMsg = mDeferredMessages.get(i);
1006                if (mDbg) Log.d(TAG, "moveDeferredMessageAtFrontOfQueue; what=" + curMsg.what);
1007                sendMessageAtFrontOfQueue(curMsg);
1008            }
1009            mDeferredMessages.clear();
1010        }
1011
1012        /**
1013         * Move the contents of the temporary stack to the state stack
1014         * reversing the order of the items on the temporary stack as
1015         * they are moved.
1016         *
1017         * @return index into mStateStack where entering needs to start
1018         */
1019        private final int moveTempStateStackToStateStack() {
1020            int startingIndex = mStateStackTopIndex + 1;
1021            int i = mTempStateStackCount - 1;
1022            int j = startingIndex;
1023            while (i >= 0) {
1024                if (mDbg) Log.d(TAG, "moveTempStackToStateStack: i=" + i + ",j=" + j);
1025                mStateStack[j] = mTempStateStack[i];
1026                j += 1;
1027                i -= 1;
1028            }
1029
1030            mStateStackTopIndex = j - 1;
1031            if (mDbg) {
1032                Log.d(TAG, "moveTempStackToStateStack: X mStateStackTop="
1033                      + mStateStackTopIndex + ",startingIndex=" + startingIndex
1034                      + ",Top=" + mStateStack[mStateStackTopIndex].state.getName());
1035            }
1036            return startingIndex;
1037        }
1038
1039        /**
1040         * Setup the mTempStateStack with the states we are going to enter.
1041         *
1042         * This is found by searching up the destState's ancestors for a
1043         * state that is already active i.e. StateInfo.active == true.
1044         * The destStae and all of its inactive parents will be on the
1045         * TempStateStack as the list of states to enter.
1046         *
1047         * @return StateInfo of the common ancestor for the destState and
1048         * current state or null if there is no common parent.
1049         */
1050        private final StateInfo setupTempStateStackWithStatesToEnter(State destState) {
1051            /**
1052             * Search up the parent list of the destination state for an active
1053             * state. Use a do while() loop as the destState must always be entered
1054             * even if it is active. This can happen if we are exiting/entering
1055             * the current state.
1056             */
1057            mTempStateStackCount = 0;
1058            StateInfo curStateInfo = mStateInfo.get(destState);
1059            do {
1060                mTempStateStack[mTempStateStackCount++] = curStateInfo;
1061                curStateInfo = curStateInfo.parentStateInfo;
1062            } while ((curStateInfo != null) && !curStateInfo.active);
1063
1064            if (mDbg) {
1065                Log.d(TAG, "setupTempStateStackWithStatesToEnter: X mTempStateStackCount="
1066                      + mTempStateStackCount + ",curStateInfo: " + curStateInfo);
1067            }
1068            return curStateInfo;
1069        }
1070
1071        /**
1072         * Initialize StateStack to mInitialState.
1073         */
1074        private final void setupInitialStateStack() {
1075            if (mDbg) {
1076                Log.d(TAG, "setupInitialStateStack: E mInitialState="
1077                    + mInitialState.getName());
1078            }
1079
1080            StateInfo curStateInfo = mStateInfo.get(mInitialState);
1081            for (mTempStateStackCount = 0; curStateInfo != null; mTempStateStackCount++) {
1082                mTempStateStack[mTempStateStackCount] = curStateInfo;
1083                curStateInfo = curStateInfo.parentStateInfo;
1084            }
1085
1086            // Empty the StateStack
1087            mStateStackTopIndex = -1;
1088
1089            moveTempStateStackToStateStack();
1090        }
1091
1092        /**
1093         * @return current message
1094         */
1095        private final Message getCurrentMessage() {
1096            return mMsg;
1097        }
1098
1099        /**
1100         * @return current state
1101         */
1102        private final IState getCurrentState() {
1103            return mStateStack[mStateStackTopIndex].state;
1104        }
1105
1106        /**
1107         * Add a new state to the state machine. Bottom up addition
1108         * of states is allowed but the same state may only exist
1109         * in one hierarchy.
1110         *
1111         * @param state the state to add
1112         * @param parent the parent of state
1113         * @return stateInfo for this state
1114         */
1115        private final StateInfo addState(State state, State parent) {
1116            if (mDbg) {
1117                Log.d(TAG, "addStateInternal: E state=" + state.getName()
1118                        + ",parent=" + ((parent == null) ? "" : parent.getName()));
1119            }
1120            StateInfo parentStateInfo = null;
1121            if (parent != null) {
1122                parentStateInfo = mStateInfo.get(parent);
1123                if (parentStateInfo == null) {
1124                    // Recursively add our parent as it's not been added yet.
1125                    parentStateInfo = addState(parent, null);
1126                }
1127            }
1128            StateInfo stateInfo = mStateInfo.get(state);
1129            if (stateInfo == null) {
1130                stateInfo = new StateInfo();
1131                mStateInfo.put(state, stateInfo);
1132            }
1133
1134            // Validate that we aren't adding the same state in two different hierarchies.
1135            if ((stateInfo.parentStateInfo != null) &&
1136                    (stateInfo.parentStateInfo != parentStateInfo)) {
1137                    throw new RuntimeException("state already added");
1138            }
1139            stateInfo.state = state;
1140            stateInfo.parentStateInfo = parentStateInfo;
1141            stateInfo.active = false;
1142            if (mDbg) Log.d(TAG, "addStateInternal: X stateInfo: " + stateInfo);
1143            return stateInfo;
1144        }
1145
1146        /**
1147         * Constructor
1148         *
1149         * @param looper for dispatching messages
1150         * @param sm the hierarchical state machine
1151         */
1152        private SmHandler(Looper looper, StateMachine sm) {
1153            super(looper);
1154            mSm = sm;
1155
1156            addState(mHaltingState, null);
1157            addState(mQuittingState, null);
1158        }
1159
1160        /** @see StateMachine#setInitialState(State) */
1161        private final void setInitialState(State initialState) {
1162            if (mDbg) Log.d(TAG, "setInitialState: initialState=" + initialState.getName());
1163            mInitialState = initialState;
1164        }
1165
1166        /** @see StateMachine#transitionTo(IState) */
1167        private final void transitionTo(IState destState) {
1168            mDestState = (State) destState;
1169            if (mDbg) Log.d(TAG, "transitionTo: destState=" + mDestState.getName());
1170        }
1171
1172        /** @see StateMachine#deferMessage(Message) */
1173        private final void deferMessage(Message msg) {
1174            if (mDbg) Log.d(TAG, "deferMessage: msg=" + msg.what);
1175
1176            /* Copy the "msg" to "newMsg" as "msg" will be recycled */
1177            Message newMsg = obtainMessage();
1178            newMsg.copyFrom(msg);
1179
1180            mDeferredMessages.add(newMsg);
1181        }
1182
1183        /** @see StateMachine#quit() */
1184        private final void quit() {
1185            if (mDbg) Log.d(TAG, "quit:");
1186            sendMessage(obtainMessage(SM_QUIT_CMD, mSmHandlerObj));
1187        }
1188
1189        /** @see StateMachine#quitNow() */
1190        private final void quitNow() {
1191            if (mDbg) Log.d(TAG, "abort:");
1192            sendMessageAtFrontOfQueue(obtainMessage(SM_QUIT_CMD, mSmHandlerObj));
1193        }
1194
1195        /** Validate that the message was sent by quit or abort. */
1196        private final boolean isQuit(Message msg) {
1197            return (msg.what == SM_QUIT_CMD) && (msg.obj == mSmHandlerObj);
1198        }
1199
1200        /** @see StateMachine#isDbg() */
1201        private final boolean isDbg() {
1202            return mDbg;
1203        }
1204
1205        /** @see StateMachine#setDbg(boolean) */
1206        private final void setDbg(boolean dbg) {
1207            mDbg = dbg;
1208        }
1209
1210    }
1211
1212    private SmHandler mSmHandler;
1213    private HandlerThread mSmThread;
1214
1215    /**
1216     * Initialize.
1217     *
1218     * @param looper for this state machine
1219     * @param name of the state machine
1220     */
1221    private void initStateMachine(String name, Looper looper) {
1222        mName = name;
1223        mSmHandler = new SmHandler(looper, this);
1224    }
1225
1226    /**
1227     * Constructor creates a StateMachine with its own thread.
1228     *
1229     * @param name of the state machine
1230     */
1231    protected StateMachine(String name) {
1232        mSmThread = new HandlerThread(name);
1233        mSmThread.start();
1234        Looper looper = mSmThread.getLooper();
1235
1236        initStateMachine(name, looper);
1237    }
1238
1239    /**
1240     * Constructor creates a StateMachine using the looper.
1241     *
1242     * @param name of the state machine
1243     */
1244    protected StateMachine(String name, Looper looper) {
1245        initStateMachine(name, looper);
1246    }
1247
1248    /**
1249     * Add a new state to the state machine
1250     * @param state the state to add
1251     * @param parent the parent of state
1252     */
1253    protected final void addState(State state, State parent) {
1254        mSmHandler.addState(state, parent);
1255    }
1256
1257    /**
1258     * @return current message
1259     */
1260    protected final Message getCurrentMessage() {
1261        return mSmHandler.getCurrentMessage();
1262    }
1263
1264    /**
1265     * @return current state
1266     */
1267    protected final IState getCurrentState() {
1268        return mSmHandler.getCurrentState();
1269    }
1270
1271    /**
1272     * Add a new state to the state machine, parent will be null
1273     * @param state to add
1274     */
1275    protected final void addState(State state) {
1276        mSmHandler.addState(state, null);
1277    }
1278
1279    /**
1280     * Set the initial state. This must be invoked before
1281     * and messages are sent to the state machine.
1282     *
1283     * @param initialState is the state which will receive the first message.
1284     */
1285    protected final void setInitialState(State initialState) {
1286        mSmHandler.setInitialState(initialState);
1287    }
1288
1289    /**
1290     * transition to destination state. Upon returning
1291     * from processMessage the current state's exit will
1292     * be executed and upon the next message arriving
1293     * destState.enter will be invoked.
1294     *
1295     * this function can also be called inside the enter function of the
1296     * previous transition target, but the behavior is undefined when it is
1297     * called mid-way through a previous transition (for example, calling this
1298     * in the enter() routine of a intermediate node when the current transition
1299     * target is one of the nodes descendants).
1300     *
1301     * @param destState will be the state that receives the next message.
1302     */
1303    protected final void transitionTo(IState destState) {
1304        mSmHandler.transitionTo(destState);
1305    }
1306
1307    /**
1308     * transition to halt state. Upon returning
1309     * from processMessage we will exit all current
1310     * states, execute the onHalting() method and then
1311     * for all subsequent messages haltedProcessMessage
1312     * will be called.
1313     */
1314    protected final void transitionToHaltingState() {
1315        mSmHandler.transitionTo(mSmHandler.mHaltingState);
1316    }
1317
1318    /**
1319     * Defer this message until next state transition.
1320     * Upon transitioning all deferred messages will be
1321     * placed on the queue and reprocessed in the original
1322     * order. (i.e. The next state the oldest messages will
1323     * be processed first)
1324     *
1325     * @param msg is deferred until the next transition.
1326     */
1327    protected final void deferMessage(Message msg) {
1328        mSmHandler.deferMessage(msg);
1329    }
1330
1331    /**
1332     * Called when message wasn't handled
1333     *
1334     * @param msg that couldn't be handled.
1335     */
1336    protected void unhandledMessage(Message msg) {
1337        if (mSmHandler.mDbg) Log.e(TAG, mName + " - unhandledMessage: msg.what=" + msg.what);
1338    }
1339
1340    /**
1341     * Called for any message that is received after
1342     * transitionToHalting is called.
1343     */
1344    protected void haltedProcessMessage(Message msg) {
1345    }
1346
1347    /**
1348     * This will be called once after handling a message that called
1349     * transitionToHalting. All subsequent messages will invoke
1350     * {@link StateMachine#haltedProcessMessage(Message)}
1351     */
1352    protected void onHalting() {
1353    }
1354
1355    /**
1356     * This will be called once after a quit message that was NOT handled by
1357     * the derived StateMachine. The StateMachine will stop and any subsequent messages will be
1358     * ignored. In addition, if this StateMachine created the thread, the thread will
1359     * be stopped after this method returns.
1360     */
1361    protected void onQuitting() {
1362    }
1363
1364    /**
1365     * @return the name
1366     */
1367    public final String getName() {
1368        return mName;
1369    }
1370
1371    /**
1372     * Set number of log records to maintain and clears all current records.
1373     *
1374     * @param maxSize number of messages to maintain at anyone time.
1375     */
1376    public final void setLogRecSize(int maxSize) {
1377        mSmHandler.mLogRecords.setSize(maxSize);
1378    }
1379
1380    /**
1381     * Set to log only messages that cause a state transition
1382     *
1383     * @param enable {@code true} to enable, {@code false} to disable
1384     */
1385    public final void setLogOnlyTransitions(boolean enable) {
1386        mSmHandler.mLogRecords.setLogOnlyTransitions(enable);
1387    }
1388
1389    /**
1390     * @return number of log records
1391     */
1392    public final int getLogRecSize() {
1393        return mSmHandler.mLogRecords.size();
1394    }
1395
1396    /**
1397     * @return the total number of records processed
1398     */
1399    public final int getLogRecCount() {
1400        return mSmHandler.mLogRecords.count();
1401    }
1402
1403    /**
1404     * @return a log record
1405     */
1406    public final LogRec getLogRec(int index) {
1407        return mSmHandler.mLogRecords.get(index);
1408    }
1409
1410    /**
1411     * Add the string to LogRecords.
1412     *
1413     * @param string
1414     */
1415    protected void addLogRec(String string) {
1416        mSmHandler.mLogRecords.add(null, string, null, null, null);
1417    }
1418
1419    /**
1420     * Add the string and state to LogRecords
1421     *
1422     * @param string
1423     * @param state current state
1424     */
1425    protected void addLogRec(String string, State state) {
1426        mSmHandler.mLogRecords.add(null, string, state, null, null);
1427    }
1428
1429    /**
1430     * @return true if msg should be saved in the log, default is true.
1431     */
1432    protected boolean recordLogRec(Message msg) {
1433        return true;
1434    }
1435
1436    /**
1437     * Return a string to be logged by LogRec, default
1438     * is an empty string. Override if additional information is desired.
1439     *
1440     * @param msg that was processed
1441     * @return information to be logged as a String
1442     */
1443    protected String getLogRecString(Message msg) {
1444        return "";
1445    }
1446
1447    /**
1448     * @return the string for msg.what
1449     */
1450    protected String getWhatToString(int what) {
1451        return null;
1452    }
1453
1454    /**
1455     * @return Handler
1456     */
1457    public final Handler getHandler() {
1458        return mSmHandler;
1459    }
1460
1461    /**
1462     * Get a message and set Message.target = this.
1463     *
1464     * @return message or null if SM has quit
1465     */
1466    public final Message obtainMessage()
1467    {
1468        if (mSmHandler == null) return null;
1469
1470        return Message.obtain(mSmHandler);
1471    }
1472
1473    /**
1474     * Get a message and set Message.target = this and what
1475     *
1476     * @param what is the assigned to Message.what.
1477     * @return message or null if SM has quit
1478     */
1479    public final Message obtainMessage(int what) {
1480        if (mSmHandler == null) return null;
1481
1482        return Message.obtain(mSmHandler, what);
1483    }
1484
1485    /**
1486     * Get a message and set Message.target = this,
1487     * what and obj.
1488     *
1489     * @param what is the assigned to Message.what.
1490     * @param obj is assigned to Message.obj.
1491     * @return message or null if SM has quit
1492     */
1493    public final Message obtainMessage(int what, Object obj)
1494    {
1495        if (mSmHandler == null) return null;
1496
1497        return Message.obtain(mSmHandler, what, obj);
1498    }
1499
1500    /**
1501     * Get a message and set Message.target = this,
1502     * what, arg1 and arg2
1503     *
1504     * @param what  is assigned to Message.what
1505     * @param arg1  is assigned to Message.arg1
1506     * @param arg2  is assigned to Message.arg2
1507     * @return  A Message object from the global pool or null if
1508     *          SM has quit
1509     */
1510    public final Message obtainMessage(int what, int arg1, int arg2)
1511    {
1512        if (mSmHandler == null) return null;
1513
1514        return Message.obtain(mSmHandler, what, arg1, arg2);
1515    }
1516
1517    /**
1518     * Get a message and set Message.target = this,
1519     * what, arg1, arg2 and obj
1520     *
1521     * @param what  is assigned to Message.what
1522     * @param arg1  is assigned to Message.arg1
1523     * @param arg2  is assigned to Message.arg2
1524     * @param obj is assigned to Message.obj
1525     * @return  A Message object from the global pool or null if
1526     *          SM has quit
1527     */
1528    public final Message obtainMessage(int what, int arg1, int arg2, Object obj)
1529    {
1530        if (mSmHandler == null) return null;
1531
1532        return Message.obtain(mSmHandler, what, arg1, arg2, obj);
1533    }
1534
1535    /**
1536     * Enqueue a message to this state machine.
1537     */
1538    public final void sendMessage(int what) {
1539        // mSmHandler can be null if the state machine has quit.
1540        if (mSmHandler == null) return;
1541
1542        mSmHandler.sendMessage(obtainMessage(what));
1543    }
1544
1545    /**
1546     * Enqueue a message to this state machine.
1547     */
1548    public final void sendMessage(int what, Object obj) {
1549        // mSmHandler can be null if the state machine has quit.
1550        if (mSmHandler == null) return;
1551
1552        mSmHandler.sendMessage(obtainMessage(what,obj));
1553    }
1554
1555    /**
1556     * Enqueue a message to this state machine.
1557     */
1558    public final void sendMessage(Message msg) {
1559        // mSmHandler can be null if the state machine has quit.
1560        if (mSmHandler == null) return;
1561
1562        mSmHandler.sendMessage(msg);
1563    }
1564
1565    /**
1566     * Enqueue a message to this state machine after a delay.
1567     */
1568    public final void sendMessageDelayed(int what, long delayMillis) {
1569        // mSmHandler can be null if the state machine has quit.
1570        if (mSmHandler == null) return;
1571
1572        mSmHandler.sendMessageDelayed(obtainMessage(what), delayMillis);
1573    }
1574
1575    /**
1576     * Enqueue a message to this state machine after a delay.
1577     */
1578    public final void sendMessageDelayed(int what, Object obj, long delayMillis) {
1579        // mSmHandler can be null if the state machine has quit.
1580        if (mSmHandler == null) return;
1581
1582        mSmHandler.sendMessageDelayed(obtainMessage(what, obj), delayMillis);
1583    }
1584
1585    /**
1586     * Enqueue a message to this state machine after a delay.
1587     */
1588    public final void sendMessageDelayed(Message msg, long delayMillis) {
1589        // mSmHandler can be null if the state machine has quit.
1590        if (mSmHandler == null) return;
1591
1592        mSmHandler.sendMessageDelayed(msg, delayMillis);
1593    }
1594
1595    /**
1596     * Enqueue a message to the front of the queue for this state machine.
1597     * Protected, may only be called by instances of StateMachine.
1598     */
1599    protected final void sendMessageAtFrontOfQueue(int what, Object obj) {
1600        mSmHandler.sendMessageAtFrontOfQueue(obtainMessage(what, obj));
1601    }
1602
1603    /**
1604     * Enqueue a message to the front of the queue for this state machine.
1605     * Protected, may only be called by instances of StateMachine.
1606     */
1607    protected final void sendMessageAtFrontOfQueue(int what) {
1608        mSmHandler.sendMessageAtFrontOfQueue(obtainMessage(what));
1609    }
1610
1611    /**
1612     * Enqueue a message to the front of the queue for this state machine.
1613     * Protected, may only be called by instances of StateMachine.
1614     */
1615    protected final void sendMessageAtFrontOfQueue(Message msg) {
1616        mSmHandler.sendMessageAtFrontOfQueue(msg);
1617    }
1618
1619    /**
1620     * Removes a message from the message queue.
1621     * Protected, may only be called by instances of StateMachine.
1622     */
1623    protected final void removeMessages(int what) {
1624        mSmHandler.removeMessages(what);
1625    }
1626
1627    /**
1628     * Quit the state machine after all currently queued up messages are processed.
1629     */
1630    protected final void quit() {
1631        // mSmHandler can be null if the state machine is already stopped.
1632        if (mSmHandler == null) return;
1633
1634        mSmHandler.quit();
1635    }
1636
1637    /**
1638     * Quit the state machine immediately all currently queued messages will be discarded.
1639     */
1640    protected final void quitNow() {
1641        // mSmHandler can be null if the state machine is already stopped.
1642        if (mSmHandler == null) return;
1643
1644        mSmHandler.quitNow();
1645    }
1646
1647    /**
1648     * @return if debugging is enabled
1649     */
1650    public boolean isDbg() {
1651        // mSmHandler can be null if the state machine has quit.
1652        if (mSmHandler == null) return false;
1653
1654        return mSmHandler.isDbg();
1655    }
1656
1657    /**
1658     * Set debug enable/disabled.
1659     *
1660     * @param dbg is true to enable debugging.
1661     */
1662    public void setDbg(boolean dbg) {
1663        // mSmHandler can be null if the state machine has quit.
1664        if (mSmHandler == null) return;
1665
1666        mSmHandler.setDbg(dbg);
1667    }
1668
1669    /**
1670     * Start the state machine.
1671     */
1672    public void start() {
1673        // mSmHandler can be null if the state machine has quit.
1674        if (mSmHandler == null) return;
1675
1676        /** Send the complete construction message */
1677        mSmHandler.completeConstruction();
1678    }
1679
1680    /**
1681     * Dump the current state.
1682     *
1683     * @param fd
1684     * @param pw
1685     * @param args
1686     */
1687    public void dump(FileDescriptor fd, PrintWriter pw, String[] args) {
1688        pw.println(getName() + ":");
1689        pw.println(" total records=" + getLogRecCount());
1690        for (int i=0; i < getLogRecSize(); i++) {
1691            pw.printf(" rec[%d]: %s\n", i, getLogRec(i).toString(this));
1692            pw.flush();
1693        }
1694        pw.println("curState=" + getCurrentState().getName());
1695    }
1696}
1697