1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <utils/String8.h>
18
19#include "Caches.h"
20#include "ProgramCache.h"
21#include "Properties.h"
22
23namespace android {
24namespace uirenderer {
25
26///////////////////////////////////////////////////////////////////////////////
27// Defines
28///////////////////////////////////////////////////////////////////////////////
29
30#define MODULATE_OP_NO_MODULATE 0
31#define MODULATE_OP_MODULATE 1
32#define MODULATE_OP_MODULATE_A8 2
33
34#define STR(x) STR1(x)
35#define STR1(x) #x
36
37///////////////////////////////////////////////////////////////////////////////
38// Vertex shaders snippets
39///////////////////////////////////////////////////////////////////////////////
40
41const char* gVS_Header_Start =
42        "#version 100\n"
43        "attribute vec4 position;\n";
44const char* gVS_Header_Attributes_TexCoords =
45        "attribute vec2 texCoords;\n";
46const char* gVS_Header_Attributes_Colors =
47        "attribute vec4 colors;\n";
48const char* gVS_Header_Attributes_VertexAlphaParameters =
49        "attribute float vtxAlpha;\n";
50const char* gVS_Header_Uniforms_TextureTransform =
51        "uniform mat4 mainTextureTransform;\n";
52const char* gVS_Header_Uniforms =
53        "uniform mat4 projection;\n" \
54        "uniform mat4 transform;\n";
55const char* gVS_Header_Uniforms_HasGradient =
56        "uniform mat4 screenSpace;\n";
57const char* gVS_Header_Uniforms_HasBitmap =
58        "uniform mat4 textureTransform;\n"
59        "uniform mediump vec2 textureDimension;\n";
60const char* gVS_Header_Uniforms_HasRoundRectClip =
61        "uniform mat4 roundRectInvTransform;\n";
62const char* gVS_Header_Varyings_HasTexture =
63        "varying vec2 outTexCoords;\n";
64const char* gVS_Header_Varyings_HasColors =
65        "varying vec4 outColors;\n";
66const char* gVS_Header_Varyings_HasVertexAlpha =
67        "varying float alpha;\n";
68const char* gVS_Header_Varyings_HasBitmap =
69        "varying highp vec2 outBitmapTexCoords;\n";
70const char* gVS_Header_Varyings_HasGradient[6] = {
71        // Linear
72        "varying highp vec2 linear;\n",
73        "varying float linear;\n",
74
75        // Circular
76        "varying highp vec2 circular;\n",
77        "varying highp vec2 circular;\n",
78
79        // Sweep
80        "varying highp vec2 sweep;\n",
81        "varying highp vec2 sweep;\n",
82};
83const char* gVS_Header_Varyings_HasRoundRectClip =
84        "varying highp vec2 roundRectPos;\n";
85const char* gVS_Main =
86        "\nvoid main(void) {\n";
87const char* gVS_Main_OutTexCoords =
88        "    outTexCoords = texCoords;\n";
89const char* gVS_Main_OutColors =
90        "    outColors = colors;\n";
91const char* gVS_Main_OutTransformedTexCoords =
92        "    outTexCoords = (mainTextureTransform * vec4(texCoords, 0.0, 1.0)).xy;\n";
93const char* gVS_Main_OutGradient[6] = {
94        // Linear
95        "    linear = vec2((screenSpace * position).x, 0.5);\n",
96        "    linear = (screenSpace * position).x;\n",
97
98        // Circular
99        "    circular = (screenSpace * position).xy;\n",
100        "    circular = (screenSpace * position).xy;\n",
101
102        // Sweep
103        "    sweep = (screenSpace * position).xy;\n",
104        "    sweep = (screenSpace * position).xy;\n"
105};
106const char* gVS_Main_OutBitmapTexCoords =
107        "    outBitmapTexCoords = (textureTransform * position).xy * textureDimension;\n";
108const char* gVS_Main_Position =
109        "    vec4 transformedPosition = projection * transform * position;\n"
110        "    gl_Position = transformedPosition;\n";
111
112const char* gVS_Main_VertexAlpha =
113        "    alpha = vtxAlpha;\n";
114
115const char* gVS_Main_HasRoundRectClip =
116        "    roundRectPos = (roundRectInvTransform * transformedPosition).xy;\n";
117const char* gVS_Footer =
118        "}\n\n";
119
120///////////////////////////////////////////////////////////////////////////////
121// Fragment shaders snippets
122///////////////////////////////////////////////////////////////////////////////
123
124const char* gFS_Header_Start =
125        "#version 100\n";
126const char* gFS_Header_Extension_FramebufferFetch =
127        "#extension GL_NV_shader_framebuffer_fetch : enable\n\n";
128const char* gFS_Header_Extension_ExternalTexture =
129        "#extension GL_OES_EGL_image_external : require\n\n";
130const char* gFS_Header =
131        "precision mediump float;\n\n";
132const char* gFS_Uniforms_Color =
133        "uniform vec4 color;\n";
134const char* gFS_Uniforms_TextureSampler =
135        "uniform sampler2D baseSampler;\n";
136const char* gFS_Uniforms_ExternalTextureSampler =
137        "uniform samplerExternalOES baseSampler;\n";
138const char* gFS_Uniforms_GradientSampler[2] = {
139        "uniform vec2 screenSize;\n"
140        "uniform sampler2D gradientSampler;\n",
141
142        "uniform vec2 screenSize;\n"
143        "uniform vec4 startColor;\n"
144        "uniform vec4 endColor;\n"
145};
146const char* gFS_Uniforms_BitmapSampler =
147        "uniform sampler2D bitmapSampler;\n";
148const char* gFS_Uniforms_BitmapExternalSampler =
149        "uniform samplerExternalOES bitmapSampler;\n";
150const char* gFS_Uniforms_ColorOp[3] = {
151        // None
152        "",
153        // Matrix
154        "uniform mat4 colorMatrix;\n"
155        "uniform vec4 colorMatrixVector;\n",
156        // PorterDuff
157        "uniform vec4 colorBlend;\n"
158};
159
160const char* gFS_Uniforms_HasRoundRectClip =
161        "uniform vec4 roundRectInnerRectLTRB;\n"
162        "uniform float roundRectRadius;\n";
163
164const char* gFS_Uniforms_ColorSpaceConversion =
165        // TODO: Should we use a 3D LUT to combine the matrix and transfer functions?
166        // 32x32x32 fp16 LUTs (for scRGB output) are large and heavy to generate...
167        "uniform mat3 colorSpaceMatrix;\n";
168
169const char* gFS_Uniforms_TransferFunction[4] = {
170        // In this order: g, a, b, c, d, e, f
171        // See ColorSpace::TransferParameters
172        // We'll use hardware sRGB conversion as much as possible
173        "",
174        "uniform float transferFunction[7];\n",
175        "uniform float transferFunction[5];\n",
176        "uniform float transferFunctionGamma;\n"
177};
178
179const char* gFS_OETF[2] = {
180        R"__SHADER__(
181        vec4 OETF(const vec4 linear) {
182            return linear;
183        }
184        )__SHADER__",
185        // We expect linear data to be scRGB so we mirror the gamma function
186        R"__SHADER__(
187        vec4 OETF(const vec4 linear) {
188            return vec4(sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)), linear.a);
189        }
190        )__SHADER__"
191};
192
193const char* gFS_ColorConvert[3] = {
194        // Just OETF
195        R"__SHADER__(
196        vec4 colorConvert(const vec4 color) {
197            return OETF(color);
198        }
199        )__SHADER__",
200        // Full color conversion for opaque bitmaps
201        R"__SHADER__(
202        vec4 colorConvert(const vec4 color) {
203            return OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
204        }
205        )__SHADER__",
206        // Full color conversion for translucent bitmaps
207        // Note: 0.5/256=0.0019
208        R"__SHADER__(
209        vec4 colorConvert(in vec4 color) {
210            color.rgb /= color.a + 0.0019;
211            color = OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
212            color.rgb *= color.a + 0.0019;
213            return color;
214        }
215        )__SHADER__",
216};
217
218const char* gFS_sRGB_TransferFunctions = R"__SHADER__(
219        float OETF_sRGB(const float linear) {
220            // IEC 61966-2-1:1999
221            return linear <= 0.0031308 ? linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
222        }
223
224        vec3 OETF_sRGB(const vec3 linear) {
225            return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
226        }
227
228        float EOTF_sRGB(float srgb) {
229            // IEC 61966-2-1:1999
230            return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
231        }
232)__SHADER__";
233
234const char* gFS_TransferFunction[4] = {
235        // Conversion done by the texture unit (sRGB)
236        R"__SHADER__(
237        vec3 EOTF_Parametric(const vec3 x) {
238            return x;
239        }
240        )__SHADER__",
241        // Full transfer function
242        // TODO: We should probably use a 1D LUT (256x1 with texelFetch() since input is 8 bit)
243        // TODO: That would cause 3 dependent texture fetches. Is it worth it?
244        R"__SHADER__(
245        float EOTF_Parametric(float x) {
246            return x <= transferFunction[4]
247                  ? transferFunction[3] * x + transferFunction[6]
248                  : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0])
249                          + transferFunction[5];
250        }
251
252        vec3 EOTF_Parametric(const vec3 x) {
253            return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
254        }
255        )__SHADER__",
256        // Limited transfer function, e = f = 0.0
257        R"__SHADER__(
258        float EOTF_Parametric(float x) {
259            return x <= transferFunction[4]
260                  ? transferFunction[3] * x
261                  : pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]);
262        }
263
264        vec3 EOTF_Parametric(const vec3 x) {
265            return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
266        }
267        )__SHADER__",
268        // Gamma transfer function, e = f = 0.0
269        R"__SHADER__(
270        vec3 EOTF_Parametric(const vec3 x) {
271            return vec3(pow(x.r, transferFunctionGamma),
272                        pow(x.g, transferFunctionGamma),
273                        pow(x.b, transferFunctionGamma));
274        }
275        )__SHADER__"
276};
277
278// Dithering must be done in the quantization space
279// When we are writing to an sRGB framebuffer, we must do the following:
280//     EOTF(OETF(color) + dither)
281// The dithering pattern is generated with a triangle noise generator in the range [-1.0,1.0]
282// TODO: Handle linear fp16 render targets
283const char* gFS_GradientFunctions = R"__SHADER__(
284        float triangleNoise(const highp vec2 n) {
285            highp vec2 p = fract(n * vec2(5.3987, 5.4421));
286            p += dot(p.yx, p.xy + vec2(21.5351, 14.3137));
287            highp float xy = p.x * p.y;
288            return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0;
289        }
290)__SHADER__";
291
292const char* gFS_GradientPreamble[2] = {
293        // Linear framebuffer
294        R"__SHADER__(
295        vec4 dither(const vec4 color) {
296            return color + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
297        }
298        )__SHADER__",
299        // sRGB framebuffer
300        R"__SHADER__(
301        vec4 dither(const vec4 color) {
302            vec3 dithered = sqrt(color.rgb) + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
303            return vec4(dithered * dithered, color.a);
304        }
305        )__SHADER__",
306};
307
308// Uses luminance coefficients from Rec.709 to choose the appropriate gamma
309// The gamma() function assumes that bright text will be displayed on a dark
310// background and that dark text will be displayed on bright background
311// The gamma coefficient is chosen to thicken or thin the text accordingly
312// The dot product used to compute the luminance could be approximated with
313// a simple max(color.r, color.g, color.b)
314const char* gFS_Gamma_Preamble = R"__SHADER__(
315        #define GAMMA (%.2f)
316        #define GAMMA_INV (%.2f)
317
318        float gamma(float a, const vec3 color) {
319            float luminance = dot(color, vec3(0.2126, 0.7152, 0.0722));
320            return pow(a, luminance < 0.5 ? GAMMA_INV : GAMMA);
321        }
322)__SHADER__";
323
324const char* gFS_Main =
325        "\nvoid main(void) {\n"
326        "    vec4 fragColor;\n";
327
328const char* gFS_Main_AddDither =
329        "    fragColor = dither(fragColor);\n";
330
331// General case
332const char* gFS_Main_FetchColor =
333        "    fragColor = color;\n";
334const char* gFS_Main_ModulateColor =
335        "    fragColor *= color.a;\n";
336const char* gFS_Main_ApplyVertexAlphaLinearInterp =
337        "    fragColor *= alpha;\n";
338const char* gFS_Main_ApplyVertexAlphaShadowInterp =
339        // map alpha through shadow alpha sampler
340        "    fragColor *= texture2D(baseSampler, vec2(alpha, 0.5)).a;\n";
341const char* gFS_Main_FetchTexture[2] = {
342        // Don't modulate
343        "    fragColor = colorConvert(texture2D(baseSampler, outTexCoords));\n",
344        // Modulate
345        "    fragColor = color * colorConvert(texture2D(baseSampler, outTexCoords));\n"
346};
347const char* gFS_Main_FetchA8Texture[4] = {
348        // Don't modulate
349        "    fragColor = texture2D(baseSampler, outTexCoords);\n",
350        "    fragColor = texture2D(baseSampler, outTexCoords);\n",
351        // Modulate
352        "    fragColor = color * texture2D(baseSampler, outTexCoords).a;\n",
353        "    fragColor = color * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
354};
355const char* gFS_Main_FetchGradient[6] = {
356        // Linear
357        "    vec4 gradientColor = texture2D(gradientSampler, linear);\n",
358
359        "    vec4 gradientColor = mix(startColor, endColor, clamp(linear, 0.0, 1.0));\n",
360
361        // Circular
362        "    vec4 gradientColor = texture2D(gradientSampler, vec2(length(circular), 0.5));\n",
363
364        "    vec4 gradientColor = mix(startColor, endColor, clamp(length(circular), 0.0, 1.0));\n",
365
366        // Sweep
367        "    highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
368        "    vec4 gradientColor = texture2D(gradientSampler, vec2(index - floor(index), 0.5));\n",
369
370        "    highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
371        "    vec4 gradientColor = mix(startColor, endColor, clamp(index - floor(index), 0.0, 1.0));\n"
372};
373const char* gFS_Main_FetchBitmap =
374        "    vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, outBitmapTexCoords));\n";
375const char* gFS_Main_FetchBitmapNpot =
376        "    vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, wrap(outBitmapTexCoords)));\n";
377const char* gFS_Main_BlendShadersBG =
378        "    fragColor = blendShaders(gradientColor, bitmapColor)";
379const char* gFS_Main_BlendShadersGB =
380        "    fragColor = blendShaders(bitmapColor, gradientColor)";
381const char* gFS_Main_BlendShaders_Modulate[6] = {
382        // Don't modulate
383        ";\n",
384        ";\n",
385        // Modulate
386        " * color.a;\n",
387        " * color.a;\n",
388        // Modulate with alpha 8 texture
389        " * texture2D(baseSampler, outTexCoords).a;\n",
390        " * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
391};
392const char* gFS_Main_GradientShader_Modulate[6] = {
393        // Don't modulate
394        "    fragColor = gradientColor;\n",
395        "    fragColor = gradientColor;\n",
396        // Modulate
397        "    fragColor = gradientColor * color.a;\n",
398        "    fragColor = gradientColor * color.a;\n",
399        // Modulate with alpha 8 texture
400        "    fragColor = gradientColor * texture2D(baseSampler, outTexCoords).a;\n",
401        "    fragColor = gradientColor * gamma(texture2D(baseSampler, outTexCoords).a, gradientColor.rgb);\n",
402    };
403const char* gFS_Main_BitmapShader_Modulate[6] = {
404        // Don't modulate
405        "    fragColor = bitmapColor;\n",
406        "    fragColor = bitmapColor;\n",
407        // Modulate
408        "    fragColor = bitmapColor * color.a;\n",
409        "    fragColor = bitmapColor * color.a;\n",
410        // Modulate with alpha 8 texture
411        "    fragColor = bitmapColor * texture2D(baseSampler, outTexCoords).a;\n",
412        "    fragColor = bitmapColor * gamma(texture2D(baseSampler, outTexCoords).a, bitmapColor.rgb);\n",
413    };
414const char* gFS_Main_FragColor =
415        "    gl_FragColor = fragColor;\n";
416const char* gFS_Main_FragColor_HasColors =
417        "    gl_FragColor *= outColors;\n";
418const char* gFS_Main_FragColor_Blend =
419        "    gl_FragColor = blendFramebuffer(fragColor, gl_LastFragColor);\n";
420const char* gFS_Main_FragColor_Blend_Swap =
421        "    gl_FragColor = blendFramebuffer(gl_LastFragColor, fragColor);\n";
422const char* gFS_Main_ApplyColorOp[3] = {
423        // None
424        "",
425        // Matrix
426        "    fragColor.rgb /= (fragColor.a + 0.0019);\n" // un-premultiply
427        "    fragColor *= colorMatrix;\n"
428        "    fragColor += colorMatrixVector;\n"
429        "    fragColor.rgb *= (fragColor.a + 0.0019);\n", // re-premultiply
430        // PorterDuff
431        "    fragColor = blendColors(colorBlend, fragColor);\n"
432};
433
434// Note: LTRB -> xyzw
435const char* gFS_Main_FragColor_HasRoundRectClip =
436        "    mediump vec2 fragToLT = roundRectInnerRectLTRB.xy - roundRectPos;\n"
437        "    mediump vec2 fragFromRB = roundRectPos - roundRectInnerRectLTRB.zw;\n"
438
439        // divide + multiply by 128 to avoid falling out of range in length() function
440        "    mediump vec2 dist = max(max(fragToLT, fragFromRB), vec2(0.0, 0.0)) / 128.0;\n"
441        "    mediump float linearDist = roundRectRadius - (length(dist) * 128.0);\n"
442        "    gl_FragColor *= clamp(linearDist, 0.0, 1.0);\n";
443
444const char* gFS_Main_DebugHighlight =
445        "    gl_FragColor.rgb = vec3(0.0, gl_FragColor.a, 0.0);\n";
446const char* gFS_Footer =
447        "}\n\n";
448
449///////////////////////////////////////////////////////////////////////////////
450// PorterDuff snippets
451///////////////////////////////////////////////////////////////////////////////
452
453const char* gBlendOps[18] = {
454        // Clear
455        "return vec4(0.0, 0.0, 0.0, 0.0);\n",
456        // Src
457        "return src;\n",
458        // Dst
459        "return dst;\n",
460        // SrcOver
461        "return src + dst * (1.0 - src.a);\n",
462        // DstOver
463        "return dst + src * (1.0 - dst.a);\n",
464        // SrcIn
465        "return src * dst.a;\n",
466        // DstIn
467        "return dst * src.a;\n",
468        // SrcOut
469        "return src * (1.0 - dst.a);\n",
470        // DstOut
471        "return dst * (1.0 - src.a);\n",
472        // SrcAtop
473        "return vec4(src.rgb * dst.a + (1.0 - src.a) * dst.rgb, dst.a);\n",
474        // DstAtop
475        "return vec4(dst.rgb * src.a + (1.0 - dst.a) * src.rgb, src.a);\n",
476        // Xor
477        "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb, "
478                "src.a + dst.a - 2.0 * src.a * dst.a);\n",
479        // Plus
480        "return min(src + dst, 1.0);\n",
481        // Modulate
482        "return src * dst;\n",
483        // Screen
484        "return src + dst - src * dst;\n",
485        // Overlay
486        "return clamp(vec4(mix("
487                "2.0 * src.rgb * dst.rgb + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), "
488                "src.a * dst.a - 2.0 * (dst.a - dst.rgb) * (src.a - src.rgb) + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), "
489                "step(dst.a, 2.0 * dst.rgb)), "
490                "src.a + dst.a - src.a * dst.a), 0.0, 1.0);\n",
491        // Darken
492        "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
493                "min(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
494        // Lighten
495        "return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
496                "max(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
497};
498
499///////////////////////////////////////////////////////////////////////////////
500// Constructors/destructors
501///////////////////////////////////////////////////////////////////////////////
502
503ProgramCache::ProgramCache(Extensions& extensions)
504        : mHasES3(extensions.getMajorGlVersion() >= 3)
505        , mHasLinearBlending(extensions.hasLinearBlending()) {
506}
507
508ProgramCache::~ProgramCache() {
509    clear();
510}
511
512///////////////////////////////////////////////////////////////////////////////
513// Cache management
514///////////////////////////////////////////////////////////////////////////////
515
516void ProgramCache::clear() {
517    PROGRAM_LOGD("Clearing program cache");
518    mCache.clear();
519}
520
521Program* ProgramCache::get(const ProgramDescription& description) {
522    programid key = description.key();
523    if (key == (PROGRAM_KEY_TEXTURE | PROGRAM_KEY_A8_TEXTURE)) {
524        // program for A8, unmodulated, texture w/o shader (black text/path textures) is equivalent
525        // to standard texture program (bitmaps, patches). Consider them equivalent.
526        key = PROGRAM_KEY_TEXTURE;
527    }
528
529    auto iter = mCache.find(key);
530    Program* program = nullptr;
531    if (iter == mCache.end()) {
532        description.log("Could not find program");
533        program = generateProgram(description, key);
534        mCache[key] = std::unique_ptr<Program>(program);
535    } else {
536        program = iter->second.get();
537    }
538    return program;
539}
540
541///////////////////////////////////////////////////////////////////////////////
542// Program generation
543///////////////////////////////////////////////////////////////////////////////
544
545Program* ProgramCache::generateProgram(const ProgramDescription& description, programid key) {
546    String8 vertexShader = generateVertexShader(description);
547    String8 fragmentShader = generateFragmentShader(description);
548
549    return new Program(description, vertexShader.string(), fragmentShader.string());
550}
551
552static inline size_t gradientIndex(const ProgramDescription& description) {
553    return description.gradientType * 2 + description.isSimpleGradient;
554}
555
556String8 ProgramCache::generateVertexShader(const ProgramDescription& description) {
557    // Add attributes
558    String8 shader(gVS_Header_Start);
559    if (description.hasTexture || description.hasExternalTexture) {
560        shader.append(gVS_Header_Attributes_TexCoords);
561    }
562    if (description.hasVertexAlpha) {
563        shader.append(gVS_Header_Attributes_VertexAlphaParameters);
564    }
565    if (description.hasColors) {
566        shader.append(gVS_Header_Attributes_Colors);
567    }
568    // Uniforms
569    shader.append(gVS_Header_Uniforms);
570    if (description.hasTextureTransform) {
571        shader.append(gVS_Header_Uniforms_TextureTransform);
572    }
573    if (description.hasGradient) {
574        shader.append(gVS_Header_Uniforms_HasGradient);
575    }
576    if (description.hasBitmap) {
577        shader.append(gVS_Header_Uniforms_HasBitmap);
578    }
579    if (description.hasRoundRectClip) {
580        shader.append(gVS_Header_Uniforms_HasRoundRectClip);
581    }
582    // Varyings
583    if (description.hasTexture || description.hasExternalTexture) {
584        shader.append(gVS_Header_Varyings_HasTexture);
585    }
586    if (description.hasVertexAlpha) {
587        shader.append(gVS_Header_Varyings_HasVertexAlpha);
588    }
589    if (description.hasColors) {
590        shader.append(gVS_Header_Varyings_HasColors);
591    }
592    if (description.hasGradient) {
593        shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
594    }
595    if (description.hasBitmap) {
596        shader.append(gVS_Header_Varyings_HasBitmap);
597    }
598    if (description.hasRoundRectClip) {
599        shader.append(gVS_Header_Varyings_HasRoundRectClip);
600    }
601
602    // Begin the shader
603    shader.append(gVS_Main); {
604        if (description.hasTextureTransform) {
605            shader.append(gVS_Main_OutTransformedTexCoords);
606        } else if (description.hasTexture || description.hasExternalTexture) {
607            shader.append(gVS_Main_OutTexCoords);
608        }
609        if (description.hasVertexAlpha) {
610            shader.append(gVS_Main_VertexAlpha);
611        }
612        if (description.hasColors) {
613            shader.append(gVS_Main_OutColors);
614        }
615        if (description.hasBitmap) {
616            shader.append(gVS_Main_OutBitmapTexCoords);
617        }
618        // Output transformed position
619        shader.append(gVS_Main_Position);
620        if (description.hasGradient) {
621            shader.append(gVS_Main_OutGradient[gradientIndex(description)]);
622        }
623        if (description.hasRoundRectClip) {
624            shader.append(gVS_Main_HasRoundRectClip);
625        }
626    }
627    // End the shader
628    shader.append(gVS_Footer);
629
630    PROGRAM_LOGD("*** Generated vertex shader:\n\n%s", shader.string());
631
632    return shader;
633}
634
635static bool shaderOp(const ProgramDescription& description, String8& shader,
636        const int modulateOp, const char** snippets) {
637    int op = description.hasAlpha8Texture ? MODULATE_OP_MODULATE_A8 : modulateOp;
638    op = op * 2 + description.hasGammaCorrection;
639    shader.append(snippets[op]);
640    return description.hasAlpha8Texture;
641}
642
643String8 ProgramCache::generateFragmentShader(const ProgramDescription& description) {
644    String8 shader(gFS_Header_Start);
645
646    const bool blendFramebuffer = description.framebufferMode >= SkBlendMode::kPlus;
647    if (blendFramebuffer) {
648        shader.append(gFS_Header_Extension_FramebufferFetch);
649    }
650    if (description.hasExternalTexture
651            || (description.hasBitmap && description.isShaderBitmapExternal)) {
652        shader.append(gFS_Header_Extension_ExternalTexture);
653    }
654
655    shader.append(gFS_Header);
656
657    // Varyings
658    if (description.hasTexture || description.hasExternalTexture) {
659        shader.append(gVS_Header_Varyings_HasTexture);
660    }
661    if (description.hasVertexAlpha) {
662        shader.append(gVS_Header_Varyings_HasVertexAlpha);
663    }
664    if (description.hasColors) {
665        shader.append(gVS_Header_Varyings_HasColors);
666    }
667    if (description.hasGradient) {
668        shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
669    }
670    if (description.hasBitmap) {
671        shader.append(gVS_Header_Varyings_HasBitmap);
672    }
673    if (description.hasRoundRectClip) {
674        shader.append(gVS_Header_Varyings_HasRoundRectClip);
675    }
676
677    // Uniforms
678    int modulateOp = MODULATE_OP_NO_MODULATE;
679    const bool singleColor = !description.hasTexture && !description.hasExternalTexture &&
680            !description.hasGradient && !description.hasBitmap;
681
682    if (description.modulate || singleColor) {
683        shader.append(gFS_Uniforms_Color);
684        if (!singleColor) modulateOp = MODULATE_OP_MODULATE;
685    }
686    if (description.hasTexture || description.useShadowAlphaInterp) {
687        shader.append(gFS_Uniforms_TextureSampler);
688    } else if (description.hasExternalTexture) {
689        shader.append(gFS_Uniforms_ExternalTextureSampler);
690    }
691    if (description.hasGradient) {
692        shader.append(gFS_Uniforms_GradientSampler[description.isSimpleGradient]);
693    }
694    if (description.hasRoundRectClip) {
695        shader.append(gFS_Uniforms_HasRoundRectClip);
696    }
697
698    if (description.hasGammaCorrection) {
699        shader.appendFormat(gFS_Gamma_Preamble, Properties::textGamma, 1.0f / Properties::textGamma);
700    }
701
702    if (description.hasBitmap) {
703        if (description.isShaderBitmapExternal) {
704            shader.append(gFS_Uniforms_BitmapExternalSampler);
705        } else {
706            shader.append(gFS_Uniforms_BitmapSampler);
707        }
708    }
709    shader.append(gFS_Uniforms_ColorOp[static_cast<int>(description.colorOp)]);
710
711    if (description.hasColorSpaceConversion) {
712        shader.append(gFS_Uniforms_ColorSpaceConversion);
713    }
714    shader.append(gFS_Uniforms_TransferFunction[static_cast<int>(description.transferFunction)]);
715
716    // Generate required functions
717    if (description.hasGradient && description.hasBitmap) {
718        generateBlend(shader, "blendShaders", description.shadersMode);
719    }
720    if (description.colorOp == ProgramDescription::ColorFilterMode::Blend) {
721        generateBlend(shader, "blendColors", description.colorMode);
722    }
723    if (blendFramebuffer) {
724        generateBlend(shader, "blendFramebuffer", description.framebufferMode);
725    }
726    if (description.useShaderBasedWrap) {
727        generateTextureWrap(shader, description.bitmapWrapS, description.bitmapWrapT);
728    }
729    if (description.hasGradient || description.hasLinearTexture
730            || description.hasColorSpaceConversion) {
731        shader.append(gFS_sRGB_TransferFunctions);
732    }
733    if (description.hasBitmap || ((description.hasTexture || description.hasExternalTexture) &&
734            !description.hasAlpha8Texture)) {
735        shader.append(gFS_TransferFunction[static_cast<int>(description.transferFunction)]);
736        shader.append(gFS_OETF[(description.hasLinearTexture || description.hasColorSpaceConversion)
737                && !mHasLinearBlending]);
738        shader.append(gFS_ColorConvert[description.hasColorSpaceConversion
739                ? 1 + description.hasTranslucentConversion : 0]);
740    }
741    if (description.hasGradient) {
742        shader.append(gFS_GradientFunctions);
743        shader.append(gFS_GradientPreamble[mHasLinearBlending]);
744    }
745
746    // Begin the shader
747    shader.append(gFS_Main); {
748        // Stores the result in fragColor directly
749        if (description.hasTexture || description.hasExternalTexture) {
750            if (description.hasAlpha8Texture) {
751                if (!description.hasGradient && !description.hasBitmap) {
752                    shader.append(
753                            gFS_Main_FetchA8Texture[modulateOp * 2 + description.hasGammaCorrection]);
754                }
755            } else {
756                shader.append(gFS_Main_FetchTexture[modulateOp]);
757            }
758        } else {
759            if (!description.hasGradient && !description.hasBitmap) {
760                shader.append(gFS_Main_FetchColor);
761            }
762        }
763        if (description.hasGradient) {
764            shader.append(gFS_Main_FetchGradient[gradientIndex(description)]);
765        }
766        if (description.hasBitmap) {
767            if (!description.useShaderBasedWrap) {
768                shader.append(gFS_Main_FetchBitmap);
769            } else {
770                shader.append(gFS_Main_FetchBitmapNpot);
771            }
772        }
773        bool applyModulate = false;
774        // Case when we have two shaders set
775        if (description.hasGradient && description.hasBitmap) {
776            if (description.isBitmapFirst) {
777                shader.append(gFS_Main_BlendShadersBG);
778            } else {
779                shader.append(gFS_Main_BlendShadersGB);
780            }
781            applyModulate = shaderOp(description, shader, modulateOp,
782                    gFS_Main_BlendShaders_Modulate);
783        } else {
784            if (description.hasGradient) {
785                applyModulate = shaderOp(description, shader, modulateOp,
786                        gFS_Main_GradientShader_Modulate);
787            } else if (description.hasBitmap) {
788                applyModulate = shaderOp(description, shader, modulateOp,
789                        gFS_Main_BitmapShader_Modulate);
790            }
791        }
792
793        if (description.modulate && applyModulate) {
794            shader.append(gFS_Main_ModulateColor);
795        }
796
797        // Apply the color op if needed
798        shader.append(gFS_Main_ApplyColorOp[static_cast<int>(description.colorOp)]);
799
800        if (description.hasVertexAlpha) {
801            if (description.useShadowAlphaInterp) {
802                shader.append(gFS_Main_ApplyVertexAlphaShadowInterp);
803            } else {
804                shader.append(gFS_Main_ApplyVertexAlphaLinearInterp);
805            }
806        }
807
808        if (description.hasGradient) {
809            shader.append(gFS_Main_AddDither);
810        }
811
812        // Output the fragment
813        if (!blendFramebuffer) {
814            shader.append(gFS_Main_FragColor);
815        } else {
816            shader.append(!description.swapSrcDst ?
817                    gFS_Main_FragColor_Blend : gFS_Main_FragColor_Blend_Swap);
818        }
819        if (description.hasColors) {
820            shader.append(gFS_Main_FragColor_HasColors);
821        }
822        if (description.hasRoundRectClip) {
823            shader.append(gFS_Main_FragColor_HasRoundRectClip);
824        }
825        if (description.hasDebugHighlight) {
826            shader.append(gFS_Main_DebugHighlight);
827        }
828    }
829    // End the shader
830    shader.append(gFS_Footer);
831
832#if DEBUG_PROGRAMS
833        PROGRAM_LOGD("*** Generated fragment shader:\n\n");
834        printLongString(shader);
835#endif
836
837    return shader;
838}
839
840void ProgramCache::generateBlend(String8& shader, const char* name, SkBlendMode mode) {
841    shader.append("\nvec4 ");
842    shader.append(name);
843    shader.append("(vec4 src, vec4 dst) {\n");
844    shader.append("    ");
845    shader.append(gBlendOps[(int)mode]);
846    shader.append("}\n");
847}
848
849void ProgramCache::generateTextureWrap(String8& shader, GLenum wrapS, GLenum wrapT) {
850    shader.append("\nhighp vec2 wrap(highp vec2 texCoords) {\n");
851    if (wrapS == GL_MIRRORED_REPEAT) {
852        shader.append("    highp float xMod2 = mod(texCoords.x, 2.0);\n");
853        shader.append("    if (xMod2 > 1.0) xMod2 = 2.0 - xMod2;\n");
854    }
855    if (wrapT == GL_MIRRORED_REPEAT) {
856        shader.append("    highp float yMod2 = mod(texCoords.y, 2.0);\n");
857        shader.append("    if (yMod2 > 1.0) yMod2 = 2.0 - yMod2;\n");
858    }
859    shader.append("    return vec2(");
860    switch (wrapS) {
861        case GL_CLAMP_TO_EDGE:
862            shader.append("texCoords.x");
863            break;
864        case GL_REPEAT:
865            shader.append("mod(texCoords.x, 1.0)");
866            break;
867        case GL_MIRRORED_REPEAT:
868            shader.append("xMod2");
869            break;
870    }
871    shader.append(", ");
872    switch (wrapT) {
873        case GL_CLAMP_TO_EDGE:
874            shader.append("texCoords.y");
875            break;
876        case GL_REPEAT:
877            shader.append("mod(texCoords.y, 1.0)");
878            break;
879        case GL_MIRRORED_REPEAT:
880            shader.append("yMod2");
881            break;
882    }
883    shader.append(");\n");
884    shader.append("}\n");
885}
886
887void ProgramCache::printLongString(const String8& shader) const {
888    ssize_t index = 0;
889    ssize_t lastIndex = 0;
890    const char* str = shader.string();
891    while ((index = shader.find("\n", index)) > -1) {
892        String8 line(str, index - lastIndex);
893        if (line.length() == 0) line.append("\n");
894        ALOGD("%s", line.string());
895        index++;
896        str += (index - lastIndex);
897        lastIndex = index;
898    }
899}
900
901}; // namespace uirenderer
902}; // namespace android
903