BitcodeReader.cpp revision 3e88bf7dfe2af63827099a7d5be0173cf4c74f4d
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "BitReader_2_7.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/AutoUpgrade.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/OperandTraits.h"
29using namespace llvm;
30using namespace llvm_2_7;
31
32#define METADATA_NODE_2_7             2
33#define METADATA_FN_NODE_2_7          3
34#define METADATA_NAMED_NODE_2_7       5
35#define METADATA_ATTACHMENT_2_7       7
36#define FUNC_CODE_INST_MALLOC_2_7     17
37#define FUNC_CODE_INST_FREE_2_7       18
38#define FUNC_CODE_INST_STORE_2_7      21
39#define FUNC_CODE_INST_CALL_2_7       22
40#define FUNC_CODE_INST_GETRESULT_2_7  25
41#define FUNC_CODE_DEBUG_LOC_2_7       32
42
43void BitcodeReader::FreeState() {
44  if (BufferOwned)
45    delete Buffer;
46  Buffer = 0;
47  std::vector<Type*>().swap(TypeList);
48  ValueList.clear();
49  MDValueList.clear();
50
51  std::vector<AttrListPtr>().swap(MAttributes);
52  std::vector<BasicBlock*>().swap(FunctionBBs);
53  std::vector<Function*>().swap(FunctionsWithBodies);
54  DeferredFunctionInfo.clear();
55  MDKindMap.clear();
56}
57
58//===----------------------------------------------------------------------===//
59//  Helper functions to implement forward reference resolution, etc.
60//===----------------------------------------------------------------------===//
61
62/// ConvertToString - Convert a string from a record into an std::string, return
63/// true on failure.
64template<typename StrTy>
65static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
66                            StrTy &Result) {
67  if (Idx > Record.size())
68    return true;
69
70  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
71    Result += (char)Record[i];
72  return false;
73}
74
75static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
76  switch (Val) {
77  default: // Map unknown/new linkages to external
78  case 0:  return GlobalValue::ExternalLinkage;
79  case 1:  return GlobalValue::WeakAnyLinkage;
80  case 2:  return GlobalValue::AppendingLinkage;
81  case 3:  return GlobalValue::InternalLinkage;
82  case 4:  return GlobalValue::LinkOnceAnyLinkage;
83  case 5:  return GlobalValue::DLLImportLinkage;
84  case 6:  return GlobalValue::DLLExportLinkage;
85  case 7:  return GlobalValue::ExternalWeakLinkage;
86  case 8:  return GlobalValue::CommonLinkage;
87  case 9:  return GlobalValue::PrivateLinkage;
88  case 10: return GlobalValue::WeakODRLinkage;
89  case 11: return GlobalValue::LinkOnceODRLinkage;
90  case 12: return GlobalValue::AvailableExternallyLinkage;
91  case 13: return GlobalValue::LinkerPrivateLinkage;
92  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
93  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
94  }
95}
96
97static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
98  switch (Val) {
99  default: // Map unknown visibilities to default.
100  case 0: return GlobalValue::DefaultVisibility;
101  case 1: return GlobalValue::HiddenVisibility;
102  case 2: return GlobalValue::ProtectedVisibility;
103  }
104}
105
106static int GetDecodedCastOpcode(unsigned Val) {
107  switch (Val) {
108  default: return -1;
109  case bitc::CAST_TRUNC   : return Instruction::Trunc;
110  case bitc::CAST_ZEXT    : return Instruction::ZExt;
111  case bitc::CAST_SEXT    : return Instruction::SExt;
112  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
113  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
114  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
115  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
116  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
117  case bitc::CAST_FPEXT   : return Instruction::FPExt;
118  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
119  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
120  case bitc::CAST_BITCAST : return Instruction::BitCast;
121  }
122}
123static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
124  switch (Val) {
125  default: return -1;
126  case bitc::BINOP_ADD:
127    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
128  case bitc::BINOP_SUB:
129    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
130  case bitc::BINOP_MUL:
131    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
132  case bitc::BINOP_UDIV: return Instruction::UDiv;
133  case bitc::BINOP_SDIV:
134    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
135  case bitc::BINOP_UREM: return Instruction::URem;
136  case bitc::BINOP_SREM:
137    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
138  case bitc::BINOP_SHL:  return Instruction::Shl;
139  case bitc::BINOP_LSHR: return Instruction::LShr;
140  case bitc::BINOP_ASHR: return Instruction::AShr;
141  case bitc::BINOP_AND:  return Instruction::And;
142  case bitc::BINOP_OR:   return Instruction::Or;
143  case bitc::BINOP_XOR:  return Instruction::Xor;
144  }
145}
146
147namespace llvm {
148namespace {
149  /// @brief A class for maintaining the slot number definition
150  /// as a placeholder for the actual definition for forward constants defs.
151  class ConstantPlaceHolder : public ConstantExpr {
152    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
153  public:
154    // allocate space for exactly one operand
155    void *operator new(size_t s) {
156      return User::operator new(s, 1);
157    }
158    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
159      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
160      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
161    }
162
163    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
164    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
165    static bool classof(const Value *V) {
166      return isa<ConstantExpr>(V) &&
167             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
168    }
169
170
171    /// Provide fast operand accessors
172    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
173  };
174}
175
176// FIXME: can we inherit this from ConstantExpr?
177template <>
178struct OperandTraits<ConstantPlaceHolder> :
179  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
180};
181}
182
183
184void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
185  if (Idx == size()) {
186    push_back(V);
187    return;
188  }
189
190  if (Idx >= size())
191    resize(Idx+1);
192
193  WeakVH &OldV = ValuePtrs[Idx];
194  if (OldV == 0) {
195    OldV = V;
196    return;
197  }
198
199  // Handle constants and non-constants (e.g. instrs) differently for
200  // efficiency.
201  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
202    ResolveConstants.push_back(std::make_pair(PHC, Idx));
203    OldV = V;
204  } else {
205    // If there was a forward reference to this value, replace it.
206    Value *PrevVal = OldV;
207    OldV->replaceAllUsesWith(V);
208    delete PrevVal;
209  }
210}
211
212
213Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
214                                                    Type *Ty) {
215  if (Idx >= size())
216    resize(Idx + 1);
217
218  if (Value *V = ValuePtrs[Idx]) {
219    assert(Ty == V->getType() && "Type mismatch in constant table!");
220    return cast<Constant>(V);
221  }
222
223  // Create and return a placeholder, which will later be RAUW'd.
224  Constant *C = new ConstantPlaceHolder(Ty, Context);
225  ValuePtrs[Idx] = C;
226  return C;
227}
228
229Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
230  if (Idx >= size())
231    resize(Idx + 1);
232
233  if (Value *V = ValuePtrs[Idx]) {
234    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
235    return V;
236  }
237
238  // No type specified, must be invalid reference.
239  if (Ty == 0) return 0;
240
241  // Create and return a placeholder, which will later be RAUW'd.
242  Value *V = new Argument(Ty);
243  ValuePtrs[Idx] = V;
244  return V;
245}
246
247/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
248/// resolves any forward references.  The idea behind this is that we sometimes
249/// get constants (such as large arrays) which reference *many* forward ref
250/// constants.  Replacing each of these causes a lot of thrashing when
251/// building/reuniquing the constant.  Instead of doing this, we look at all the
252/// uses and rewrite all the place holders at once for any constant that uses
253/// a placeholder.
254void BitcodeReaderValueList::ResolveConstantForwardRefs() {
255  // Sort the values by-pointer so that they are efficient to look up with a
256  // binary search.
257  std::sort(ResolveConstants.begin(), ResolveConstants.end());
258
259  SmallVector<Constant*, 64> NewOps;
260
261  while (!ResolveConstants.empty()) {
262    Value *RealVal = operator[](ResolveConstants.back().second);
263    Constant *Placeholder = ResolveConstants.back().first;
264    ResolveConstants.pop_back();
265
266    // Loop over all users of the placeholder, updating them to reference the
267    // new value.  If they reference more than one placeholder, update them all
268    // at once.
269    while (!Placeholder->use_empty()) {
270      Value::use_iterator UI = Placeholder->use_begin();
271      User *U = *UI;
272
273      // If the using object isn't uniqued, just update the operands.  This
274      // handles instructions and initializers for global variables.
275      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
276        UI.getUse().set(RealVal);
277        continue;
278      }
279
280      // Otherwise, we have a constant that uses the placeholder.  Replace that
281      // constant with a new constant that has *all* placeholder uses updated.
282      Constant *UserC = cast<Constant>(U);
283      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
284           I != E; ++I) {
285        Value *NewOp;
286        if (!isa<ConstantPlaceHolder>(*I)) {
287          // Not a placeholder reference.
288          NewOp = *I;
289        } else if (*I == Placeholder) {
290          // Common case is that it just references this one placeholder.
291          NewOp = RealVal;
292        } else {
293          // Otherwise, look up the placeholder in ResolveConstants.
294          ResolveConstantsTy::iterator It =
295            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
296                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
297                                                            0));
298          assert(It != ResolveConstants.end() && It->first == *I);
299          NewOp = operator[](It->second);
300        }
301
302        NewOps.push_back(cast<Constant>(NewOp));
303      }
304
305      // Make the new constant.
306      Constant *NewC;
307      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
308        NewC = ConstantArray::get(UserCA->getType(), NewOps);
309      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
310        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
311      } else if (isa<ConstantVector>(UserC)) {
312        NewC = ConstantVector::get(NewOps);
313      } else {
314        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
315        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
316      }
317
318      UserC->replaceAllUsesWith(NewC);
319      UserC->destroyConstant();
320      NewOps.clear();
321    }
322
323    // Update all ValueHandles, they should be the only users at this point.
324    Placeholder->replaceAllUsesWith(RealVal);
325    delete Placeholder;
326  }
327}
328
329void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
330  if (Idx == size()) {
331    push_back(V);
332    return;
333  }
334
335  if (Idx >= size())
336    resize(Idx+1);
337
338  WeakVH &OldV = MDValuePtrs[Idx];
339  if (OldV == 0) {
340    OldV = V;
341    return;
342  }
343
344  // If there was a forward reference to this value, replace it.
345  MDNode *PrevVal = cast<MDNode>(OldV);
346  OldV->replaceAllUsesWith(V);
347  MDNode::deleteTemporary(PrevVal);
348  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
349  // value for Idx.
350  MDValuePtrs[Idx] = V;
351}
352
353Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
354  if (Idx >= size())
355    resize(Idx + 1);
356
357  if (Value *V = MDValuePtrs[Idx]) {
358    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
359    return V;
360  }
361
362  // Create and return a placeholder, which will later be RAUW'd.
363  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
364  MDValuePtrs[Idx] = V;
365  return V;
366}
367
368Type *BitcodeReader::getTypeByID(unsigned ID) {
369  // The type table size is always specified correctly.
370  if (ID >= TypeList.size())
371    return 0;
372
373  if (Type *Ty = TypeList[ID])
374    return Ty;
375
376  // If we have a forward reference, the only possible case is when it is to a
377  // named struct.  Just create a placeholder for now.
378  return TypeList[ID] = StructType::create(Context, "");
379}
380
381/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
382Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
383  if (ID >= TypeList.size())
384    TypeList.resize(ID+1);
385
386  return TypeList[ID];
387}
388
389
390//===----------------------------------------------------------------------===//
391//  Functions for parsing blocks from the bitcode file
392//===----------------------------------------------------------------------===//
393
394bool BitcodeReader::ParseAttributeBlock() {
395  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
396    return Error("Malformed block record");
397
398  if (!MAttributes.empty())
399    return Error("Multiple PARAMATTR blocks found!");
400
401  SmallVector<uint64_t, 64> Record;
402
403  SmallVector<AttributeWithIndex, 8> Attrs;
404
405  // Read all the records.
406  while (1) {
407    unsigned Code = Stream.ReadCode();
408    if (Code == bitc::END_BLOCK) {
409      if (Stream.ReadBlockEnd())
410        return Error("Error at end of PARAMATTR block");
411      return false;
412    }
413
414    if (Code == bitc::ENTER_SUBBLOCK) {
415      // No known subblocks, always skip them.
416      Stream.ReadSubBlockID();
417      if (Stream.SkipBlock())
418        return Error("Malformed block record");
419      continue;
420    }
421
422    if (Code == bitc::DEFINE_ABBREV) {
423      Stream.ReadAbbrevRecord();
424      continue;
425    }
426
427    // Read a record.
428    Record.clear();
429    switch (Stream.ReadRecord(Code, Record)) {
430    default:  // Default behavior: ignore.
431      break;
432    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
433      if (Record.size() & 1)
434        return Error("Invalid ENTRY record");
435
436      // FIXME : Remove this autoupgrade code in LLVM 3.0.
437      // If Function attributes are using index 0 then transfer them
438      // to index ~0. Index 0 is used for return value attributes but used to be
439      // used for function attributes.
440      Attributes RetAttribute = Attribute::None;
441      Attributes FnAttribute = Attribute::None;
442      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
443        // FIXME: remove in LLVM 3.0
444        // The alignment is stored as a 16-bit raw value from bits 31--16.
445        // We shift the bits above 31 down by 11 bits.
446
447        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
448        if (Alignment && !isPowerOf2_32(Alignment))
449          return Error("Alignment is not a power of two.");
450
451        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
452        if (Alignment)
453          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
454        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
455        Record[i+1] = ReconstitutedAttr;
456
457        if (Record[i] == 0)
458          RetAttribute = Record[i+1];
459        else if (Record[i] == ~0U)
460          FnAttribute = Record[i+1];
461      }
462
463      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
464                              Attribute::ReadOnly|Attribute::ReadNone);
465
466      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
467          (RetAttribute & OldRetAttrs) != 0) {
468        if (FnAttribute == Attribute::None) { // add a slot so they get added.
469          Record.push_back(~0U);
470          Record.push_back(0);
471        }
472
473        FnAttribute  |= RetAttribute & OldRetAttrs;
474        RetAttribute &= ~OldRetAttrs;
475      }
476
477      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
478        if (Record[i] == 0) {
479          if (RetAttribute != Attribute::None)
480            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
481        } else if (Record[i] == ~0U) {
482          if (FnAttribute != Attribute::None)
483            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
484        } else if (Record[i+1] != Attribute::None)
485          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
486      }
487
488      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
489      Attrs.clear();
490      break;
491    }
492    }
493  }
494}
495
496bool BitcodeReader::ParseTypeTable() {
497  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
498    return Error("Malformed block record");
499
500  return ParseTypeTableBody();
501}
502
503bool BitcodeReader::ParseTypeTableBody() {
504  if (!TypeList.empty())
505    return Error("Multiple TYPE_BLOCKs found!");
506
507  SmallVector<uint64_t, 64> Record;
508  unsigned NumRecords = 0;
509
510  SmallString<64> TypeName;
511
512  // Read all the records for this type table.
513  while (1) {
514    unsigned Code = Stream.ReadCode();
515    if (Code == bitc::END_BLOCK) {
516      if (NumRecords != TypeList.size())
517        return Error("Invalid type forward reference in TYPE_BLOCK");
518      if (Stream.ReadBlockEnd())
519        return Error("Error at end of type table block");
520      return false;
521    }
522
523    if (Code == bitc::ENTER_SUBBLOCK) {
524      // No known subblocks, always skip them.
525      Stream.ReadSubBlockID();
526      if (Stream.SkipBlock())
527        return Error("Malformed block record");
528      continue;
529    }
530
531    if (Code == bitc::DEFINE_ABBREV) {
532      Stream.ReadAbbrevRecord();
533      continue;
534    }
535
536    // Read a record.
537    Record.clear();
538    Type *ResultTy = 0;
539    switch (Stream.ReadRecord(Code, Record)) {
540    default: return Error("unknown type in type table");
541    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
542      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
543      // type list.  This allows us to reserve space.
544      if (Record.size() < 1)
545        return Error("Invalid TYPE_CODE_NUMENTRY record");
546      TypeList.resize(Record[0]);
547      continue;
548    case bitc::TYPE_CODE_VOID:      // VOID
549      ResultTy = Type::getVoidTy(Context);
550      break;
551    case bitc::TYPE_CODE_FLOAT:     // FLOAT
552      ResultTy = Type::getFloatTy(Context);
553      break;
554    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
555      ResultTy = Type::getDoubleTy(Context);
556      break;
557    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
558      ResultTy = Type::getX86_FP80Ty(Context);
559      break;
560    case bitc::TYPE_CODE_FP128:     // FP128
561      ResultTy = Type::getFP128Ty(Context);
562      break;
563    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
564      ResultTy = Type::getPPC_FP128Ty(Context);
565      break;
566    case bitc::TYPE_CODE_LABEL:     // LABEL
567      ResultTy = Type::getLabelTy(Context);
568      break;
569    case bitc::TYPE_CODE_METADATA:  // METADATA
570      ResultTy = Type::getMetadataTy(Context);
571      break;
572    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
573      ResultTy = Type::getX86_MMXTy(Context);
574      break;
575    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
576      if (Record.size() < 1)
577        return Error("Invalid Integer type record");
578
579      ResultTy = IntegerType::get(Context, Record[0]);
580      break;
581    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
582                                    //          [pointee type, address space]
583      if (Record.size() < 1)
584        return Error("Invalid POINTER type record");
585      unsigned AddressSpace = 0;
586      if (Record.size() == 2)
587        AddressSpace = Record[1];
588      ResultTy = getTypeByID(Record[0]);
589      if (ResultTy == 0) return Error("invalid element type in pointer type");
590      ResultTy = PointerType::get(ResultTy, AddressSpace);
591      break;
592    }
593    case bitc::TYPE_CODE_FUNCTION_OLD: {
594      // FIXME: attrid is dead, remove it in LLVM 3.0
595      // FUNCTION: [vararg, attrid, retty, paramty x N]
596      if (Record.size() < 3)
597        return Error("Invalid FUNCTION type record");
598      std::vector<Type*> ArgTys;
599      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
600        if (Type *T = getTypeByID(Record[i]))
601          ArgTys.push_back(T);
602        else
603          break;
604      }
605
606      ResultTy = getTypeByID(Record[2]);
607      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
608        return Error("invalid type in function type");
609
610      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
611      break;
612    }
613    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
614      if (Record.size() < 1)
615        return Error("Invalid STRUCT type record");
616      std::vector<Type*> EltTys;
617      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
618        if (Type *T = getTypeByID(Record[i]))
619          EltTys.push_back(T);
620        else
621          break;
622      }
623      if (EltTys.size() != Record.size()-1)
624        return Error("invalid type in struct type");
625      ResultTy = StructType::get(Context, EltTys, Record[0]);
626      break;
627    }
628    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
629      if (ConvertToString(Record, 0, TypeName))
630        return Error("Invalid STRUCT_NAME record");
631      continue;
632
633    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
634      if (Record.size() < 1)
635        return Error("Invalid STRUCT type record");
636
637      if (NumRecords >= TypeList.size())
638        return Error("invalid TYPE table");
639
640      // Check to see if this was forward referenced, if so fill in the temp.
641      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
642      if (Res) {
643        Res->setName(TypeName);
644        TypeList[NumRecords] = 0;
645      } else  // Otherwise, create a new struct.
646        Res = StructType::create(Context, TypeName);
647      TypeName.clear();
648
649      SmallVector<Type*, 8> EltTys;
650      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
651        if (Type *T = getTypeByID(Record[i]))
652          EltTys.push_back(T);
653        else
654          break;
655      }
656      if (EltTys.size() != Record.size()-1)
657        return Error("invalid STRUCT type record");
658      Res->setBody(EltTys, Record[0]);
659      ResultTy = Res;
660      break;
661    }
662    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
663      if (Record.size() != 1)
664        return Error("Invalid OPAQUE type record");
665
666      if (NumRecords >= TypeList.size())
667        return Error("invalid TYPE table");
668
669      // Check to see if this was forward referenced, if so fill in the temp.
670      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
671      if (Res) {
672        Res->setName(TypeName);
673        TypeList[NumRecords] = 0;
674      } else  // Otherwise, create a new struct with no body.
675        Res = StructType::create(Context, TypeName);
676      TypeName.clear();
677      ResultTy = Res;
678      break;
679    }
680    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
681      if (Record.size() < 2)
682        return Error("Invalid ARRAY type record");
683      if ((ResultTy = getTypeByID(Record[1])))
684        ResultTy = ArrayType::get(ResultTy, Record[0]);
685      else
686        return Error("Invalid ARRAY type element");
687      break;
688    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
689      if (Record.size() < 2)
690        return Error("Invalid VECTOR type record");
691      if ((ResultTy = getTypeByID(Record[1])))
692        ResultTy = VectorType::get(ResultTy, Record[0]);
693      else
694        return Error("Invalid ARRAY type element");
695      break;
696    }
697
698    if (NumRecords >= TypeList.size())
699      return Error("invalid TYPE table");
700    assert(ResultTy && "Didn't read a type?");
701    assert(TypeList[NumRecords] == 0 && "Already read type?");
702    TypeList[NumRecords++] = ResultTy;
703  }
704}
705
706// FIXME: Remove in LLVM 3.1
707bool BitcodeReader::ParseOldTypeTable() {
708  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
709    return Error("Malformed block record");
710
711  if (!TypeList.empty())
712    return Error("Multiple TYPE_BLOCKs found!");
713
714
715  // While horrible, we have no good ordering of types in the bc file.  Just
716  // iteratively parse types out of the bc file in multiple passes until we get
717  // them all.  Do this by saving a cursor for the start of the type block.
718  BitstreamCursor StartOfTypeBlockCursor(Stream);
719
720  unsigned NumTypesRead = 0;
721
722  SmallVector<uint64_t, 64> Record;
723RestartScan:
724  unsigned NextTypeID = 0;
725  bool ReadAnyTypes = false;
726
727  // Read all the records for this type table.
728  while (1) {
729    unsigned Code = Stream.ReadCode();
730    if (Code == bitc::END_BLOCK) {
731      if (NextTypeID != TypeList.size())
732        return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
733
734      // If we haven't read all of the types yet, iterate again.
735      if (NumTypesRead != TypeList.size()) {
736        // If we didn't successfully read any types in this pass, then we must
737        // have an unhandled forward reference.
738        if (!ReadAnyTypes)
739          return Error("Obsolete bitcode contains unhandled recursive type");
740
741        Stream = StartOfTypeBlockCursor;
742        goto RestartScan;
743      }
744
745      if (Stream.ReadBlockEnd())
746        return Error("Error at end of type table block");
747      return false;
748    }
749
750    if (Code == bitc::ENTER_SUBBLOCK) {
751      // No known subblocks, always skip them.
752      Stream.ReadSubBlockID();
753      if (Stream.SkipBlock())
754        return Error("Malformed block record");
755      continue;
756    }
757
758    if (Code == bitc::DEFINE_ABBREV) {
759      Stream.ReadAbbrevRecord();
760      continue;
761    }
762
763    // Read a record.
764    Record.clear();
765    Type *ResultTy = 0;
766    switch (Stream.ReadRecord(Code, Record)) {
767    default: return Error("unknown type in type table");
768    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
769      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
770      // type list.  This allows us to reserve space.
771      if (Record.size() < 1)
772        return Error("Invalid TYPE_CODE_NUMENTRY record");
773      TypeList.resize(Record[0]);
774      continue;
775    case bitc::TYPE_CODE_VOID:      // VOID
776      ResultTy = Type::getVoidTy(Context);
777      break;
778    case bitc::TYPE_CODE_FLOAT:     // FLOAT
779      ResultTy = Type::getFloatTy(Context);
780      break;
781    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
782      ResultTy = Type::getDoubleTy(Context);
783      break;
784    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
785      ResultTy = Type::getX86_FP80Ty(Context);
786      break;
787    case bitc::TYPE_CODE_FP128:     // FP128
788      ResultTy = Type::getFP128Ty(Context);
789      break;
790    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
791      ResultTy = Type::getPPC_FP128Ty(Context);
792      break;
793    case bitc::TYPE_CODE_LABEL:     // LABEL
794      ResultTy = Type::getLabelTy(Context);
795      break;
796    case bitc::TYPE_CODE_METADATA:  // METADATA
797      ResultTy = Type::getMetadataTy(Context);
798      break;
799    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
800      ResultTy = Type::getX86_MMXTy(Context);
801      break;
802    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
803      if (Record.size() < 1)
804        return Error("Invalid Integer type record");
805      ResultTy = IntegerType::get(Context, Record[0]);
806      break;
807    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
808      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
809        ResultTy = StructType::create(Context, "");
810      break;
811    case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
812      if (NextTypeID >= TypeList.size()) break;
813      // If we already read it, don't reprocess.
814      if (TypeList[NextTypeID] &&
815          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
816        break;
817
818      // Set a type.
819      if (TypeList[NextTypeID] == 0)
820        TypeList[NextTypeID] = StructType::create(Context, "");
821
822      std::vector<Type*> EltTys;
823      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
824        if (Type *Elt = getTypeByIDOrNull(Record[i]))
825          EltTys.push_back(Elt);
826        else
827          break;
828      }
829
830      if (EltTys.size() != Record.size()-1)
831        break;      // Not all elements are ready.
832
833      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
834      ResultTy = TypeList[NextTypeID];
835      TypeList[NextTypeID] = 0;
836      break;
837    }
838    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
839      //          [pointee type, address space]
840      if (Record.size() < 1)
841        return Error("Invalid POINTER type record");
842      unsigned AddressSpace = 0;
843      if (Record.size() == 2)
844        AddressSpace = Record[1];
845      if ((ResultTy = getTypeByIDOrNull(Record[0])))
846        ResultTy = PointerType::get(ResultTy, AddressSpace);
847      break;
848    }
849    case bitc::TYPE_CODE_FUNCTION_OLD: {
850      // FIXME: attrid is dead, remove it in LLVM 3.0
851      // FUNCTION: [vararg, attrid, retty, paramty x N]
852      if (Record.size() < 3)
853        return Error("Invalid FUNCTION type record");
854      std::vector<Type*> ArgTys;
855      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
856        if (Type *Elt = getTypeByIDOrNull(Record[i]))
857          ArgTys.push_back(Elt);
858        else
859          break;
860      }
861      if (ArgTys.size()+3 != Record.size())
862        break;  // Something was null.
863      if ((ResultTy = getTypeByIDOrNull(Record[2])))
864        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
865      break;
866    }
867    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
868      if (Record.size() < 2)
869        return Error("Invalid ARRAY type record");
870      if ((ResultTy = getTypeByIDOrNull(Record[1])))
871        ResultTy = ArrayType::get(ResultTy, Record[0]);
872      break;
873    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
874      if (Record.size() < 2)
875        return Error("Invalid VECTOR type record");
876      if ((ResultTy = getTypeByIDOrNull(Record[1])))
877        ResultTy = VectorType::get(ResultTy, Record[0]);
878      break;
879    }
880
881    if (NextTypeID >= TypeList.size())
882      return Error("invalid TYPE table");
883
884    if (ResultTy && TypeList[NextTypeID] == 0) {
885      ++NumTypesRead;
886      ReadAnyTypes = true;
887
888      TypeList[NextTypeID] = ResultTy;
889    }
890
891    ++NextTypeID;
892  }
893}
894
895
896bool BitcodeReader::ParseOldTypeSymbolTable() {
897  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
898    return Error("Malformed block record");
899
900  SmallVector<uint64_t, 64> Record;
901
902  // Read all the records for this type table.
903  std::string TypeName;
904  while (1) {
905    unsigned Code = Stream.ReadCode();
906    if (Code == bitc::END_BLOCK) {
907      if (Stream.ReadBlockEnd())
908        return Error("Error at end of type symbol table block");
909      return false;
910    }
911
912    if (Code == bitc::ENTER_SUBBLOCK) {
913      // No known subblocks, always skip them.
914      Stream.ReadSubBlockID();
915      if (Stream.SkipBlock())
916        return Error("Malformed block record");
917      continue;
918    }
919
920    if (Code == bitc::DEFINE_ABBREV) {
921      Stream.ReadAbbrevRecord();
922      continue;
923    }
924
925    // Read a record.
926    Record.clear();
927    switch (Stream.ReadRecord(Code, Record)) {
928    default:  // Default behavior: unknown type.
929      break;
930    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
931      if (ConvertToString(Record, 1, TypeName))
932        return Error("Invalid TST_ENTRY record");
933      unsigned TypeID = Record[0];
934      if (TypeID >= TypeList.size())
935        return Error("Invalid Type ID in TST_ENTRY record");
936
937      // Only apply the type name to a struct type with no name.
938      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
939        if (!STy->isLiteral() && !STy->hasName())
940          STy->setName(TypeName);
941      TypeName.clear();
942      break;
943    }
944  }
945}
946
947bool BitcodeReader::ParseValueSymbolTable() {
948  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
949    return Error("Malformed block record");
950
951  SmallVector<uint64_t, 64> Record;
952
953  // Read all the records for this value table.
954  SmallString<128> ValueName;
955  while (1) {
956    unsigned Code = Stream.ReadCode();
957    if (Code == bitc::END_BLOCK) {
958      if (Stream.ReadBlockEnd())
959        return Error("Error at end of value symbol table block");
960      return false;
961    }
962    if (Code == bitc::ENTER_SUBBLOCK) {
963      // No known subblocks, always skip them.
964      Stream.ReadSubBlockID();
965      if (Stream.SkipBlock())
966        return Error("Malformed block record");
967      continue;
968    }
969
970    if (Code == bitc::DEFINE_ABBREV) {
971      Stream.ReadAbbrevRecord();
972      continue;
973    }
974
975    // Read a record.
976    Record.clear();
977    switch (Stream.ReadRecord(Code, Record)) {
978    default:  // Default behavior: unknown type.
979      break;
980    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
981      if (ConvertToString(Record, 1, ValueName))
982        return Error("Invalid VST_ENTRY record");
983      unsigned ValueID = Record[0];
984      if (ValueID >= ValueList.size())
985        return Error("Invalid Value ID in VST_ENTRY record");
986      Value *V = ValueList[ValueID];
987
988      V->setName(StringRef(ValueName.data(), ValueName.size()));
989      ValueName.clear();
990      break;
991    }
992    case bitc::VST_CODE_BBENTRY: {
993      if (ConvertToString(Record, 1, ValueName))
994        return Error("Invalid VST_BBENTRY record");
995      BasicBlock *BB = getBasicBlock(Record[0]);
996      if (BB == 0)
997        return Error("Invalid BB ID in VST_BBENTRY record");
998
999      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1000      ValueName.clear();
1001      break;
1002    }
1003    }
1004  }
1005}
1006
1007bool BitcodeReader::ParseMetadata() {
1008  unsigned NextMDValueNo = MDValueList.size();
1009
1010  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1011    return Error("Malformed block record");
1012
1013  SmallVector<uint64_t, 64> Record;
1014
1015  // Read all the records.
1016  while (1) {
1017    unsigned Code = Stream.ReadCode();
1018    if (Code == bitc::END_BLOCK) {
1019      if (Stream.ReadBlockEnd())
1020        return Error("Error at end of PARAMATTR block");
1021      return false;
1022    }
1023
1024    if (Code == bitc::ENTER_SUBBLOCK) {
1025      // No known subblocks, always skip them.
1026      Stream.ReadSubBlockID();
1027      if (Stream.SkipBlock())
1028        return Error("Malformed block record");
1029      continue;
1030    }
1031
1032    if (Code == bitc::DEFINE_ABBREV) {
1033      Stream.ReadAbbrevRecord();
1034      continue;
1035    }
1036
1037    bool IsFunctionLocal = false;
1038    // Read a record.
1039    Record.clear();
1040    Code = Stream.ReadRecord(Code, Record);
1041    switch (Code) {
1042    default:  // Default behavior: ignore.
1043      break;
1044    case bitc::METADATA_NAME: {
1045      // Read named of the named metadata.
1046      unsigned NameLength = Record.size();
1047      SmallString<8> Name;
1048      Name.resize(NameLength);
1049      for (unsigned i = 0; i != NameLength; ++i)
1050        Name[i] = Record[i];
1051      Record.clear();
1052      Code = Stream.ReadCode();
1053
1054      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1055      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1056      if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1057        LLVM2_7MetadataDetected = true;
1058      } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1059        assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1060      }
1061
1062      // Read named metadata elements.
1063      unsigned Size = Record.size();
1064      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1065      for (unsigned i = 0; i != Size; ++i) {
1066        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1067        if (MD == 0)
1068          return Error("Malformed metadata record");
1069        NMD->addOperand(MD);
1070      }
1071
1072      if (LLVM2_7MetadataDetected) {
1073        MDValueList.AssignValue(0, NextMDValueNo++);
1074      }
1075      break;
1076    }
1077    case METADATA_FN_NODE_2_7:
1078    case bitc::METADATA_FN_NODE:
1079      IsFunctionLocal = true;
1080      // fall-through
1081    case METADATA_NODE_2_7:
1082    case bitc::METADATA_NODE: {
1083      if (Code == METADATA_FN_NODE_2_7 ||
1084          Code == METADATA_NODE_2_7) {
1085        LLVM2_7MetadataDetected = true;
1086      }
1087
1088      if (Record.size() % 2 == 1)
1089        return Error("Invalid METADATA_NODE record");
1090
1091      unsigned Size = Record.size();
1092      SmallVector<Value*, 8> Elts;
1093      for (unsigned i = 0; i != Size; i += 2) {
1094        Type *Ty = getTypeByID(Record[i]);
1095        if (!Ty) return Error("Invalid METADATA_NODE record");
1096        if (Ty->isMetadataTy())
1097          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1098        else if (!Ty->isVoidTy())
1099          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1100        else
1101          Elts.push_back(NULL);
1102      }
1103      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1104      IsFunctionLocal = false;
1105      MDValueList.AssignValue(V, NextMDValueNo++);
1106      break;
1107    }
1108    case bitc::METADATA_STRING: {
1109      unsigned MDStringLength = Record.size();
1110      SmallString<8> String;
1111      String.resize(MDStringLength);
1112      for (unsigned i = 0; i != MDStringLength; ++i)
1113        String[i] = Record[i];
1114      Value *V = MDString::get(Context,
1115                               StringRef(String.data(), String.size()));
1116      MDValueList.AssignValue(V, NextMDValueNo++);
1117      break;
1118    }
1119    case bitc::METADATA_KIND: {
1120      unsigned RecordLength = Record.size();
1121      if (Record.empty() || RecordLength < 2)
1122        return Error("Invalid METADATA_KIND record");
1123      SmallString<8> Name;
1124      Name.resize(RecordLength-1);
1125      unsigned Kind = Record[0];
1126      for (unsigned i = 1; i != RecordLength; ++i)
1127        Name[i-1] = Record[i];
1128
1129      unsigned NewKind = TheModule->getMDKindID(Name.str());
1130      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1131        return Error("Conflicting METADATA_KIND records");
1132      break;
1133    }
1134    }
1135  }
1136}
1137
1138/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1139/// the LSB for dense VBR encoding.
1140static uint64_t DecodeSignRotatedValue(uint64_t V) {
1141  if ((V & 1) == 0)
1142    return V >> 1;
1143  if (V != 1)
1144    return -(V >> 1);
1145  // There is no such thing as -0 with integers.  "-0" really means MININT.
1146  return 1ULL << 63;
1147}
1148
1149/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1150/// values and aliases that we can.
1151bool BitcodeReader::ResolveGlobalAndAliasInits() {
1152  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1153  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1154
1155  GlobalInitWorklist.swap(GlobalInits);
1156  AliasInitWorklist.swap(AliasInits);
1157
1158  while (!GlobalInitWorklist.empty()) {
1159    unsigned ValID = GlobalInitWorklist.back().second;
1160    if (ValID >= ValueList.size()) {
1161      // Not ready to resolve this yet, it requires something later in the file.
1162      GlobalInits.push_back(GlobalInitWorklist.back());
1163    } else {
1164      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1165        GlobalInitWorklist.back().first->setInitializer(C);
1166      else
1167        return Error("Global variable initializer is not a constant!");
1168    }
1169    GlobalInitWorklist.pop_back();
1170  }
1171
1172  while (!AliasInitWorklist.empty()) {
1173    unsigned ValID = AliasInitWorklist.back().second;
1174    if (ValID >= ValueList.size()) {
1175      AliasInits.push_back(AliasInitWorklist.back());
1176    } else {
1177      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1178        AliasInitWorklist.back().first->setAliasee(C);
1179      else
1180        return Error("Alias initializer is not a constant!");
1181    }
1182    AliasInitWorklist.pop_back();
1183  }
1184  return false;
1185}
1186
1187bool BitcodeReader::ParseConstants() {
1188  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1189    return Error("Malformed block record");
1190
1191  SmallVector<uint64_t, 64> Record;
1192
1193  // Read all the records for this value table.
1194  Type *CurTy = Type::getInt32Ty(Context);
1195  unsigned NextCstNo = ValueList.size();
1196  while (1) {
1197    unsigned Code = Stream.ReadCode();
1198    if (Code == bitc::END_BLOCK)
1199      break;
1200
1201    if (Code == bitc::ENTER_SUBBLOCK) {
1202      // No known subblocks, always skip them.
1203      Stream.ReadSubBlockID();
1204      if (Stream.SkipBlock())
1205        return Error("Malformed block record");
1206      continue;
1207    }
1208
1209    if (Code == bitc::DEFINE_ABBREV) {
1210      Stream.ReadAbbrevRecord();
1211      continue;
1212    }
1213
1214    // Read a record.
1215    Record.clear();
1216    Value *V = 0;
1217    unsigned BitCode = Stream.ReadRecord(Code, Record);
1218    switch (BitCode) {
1219    default:  // Default behavior: unknown constant
1220    case bitc::CST_CODE_UNDEF:     // UNDEF
1221      V = UndefValue::get(CurTy);
1222      break;
1223    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1224      if (Record.empty())
1225        return Error("Malformed CST_SETTYPE record");
1226      if (Record[0] >= TypeList.size())
1227        return Error("Invalid Type ID in CST_SETTYPE record");
1228      CurTy = TypeList[Record[0]];
1229      continue;  // Skip the ValueList manipulation.
1230    case bitc::CST_CODE_NULL:      // NULL
1231      V = Constant::getNullValue(CurTy);
1232      break;
1233    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1234      if (!CurTy->isIntegerTy() || Record.empty())
1235        return Error("Invalid CST_INTEGER record");
1236      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1237      break;
1238    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1239      if (!CurTy->isIntegerTy() || Record.empty())
1240        return Error("Invalid WIDE_INTEGER record");
1241
1242      unsigned NumWords = Record.size();
1243      SmallVector<uint64_t, 8> Words;
1244      Words.resize(NumWords);
1245      for (unsigned i = 0; i != NumWords; ++i)
1246        Words[i] = DecodeSignRotatedValue(Record[i]);
1247      V = ConstantInt::get(Context,
1248                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1249                                 Words));
1250      break;
1251    }
1252    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1253      if (Record.empty())
1254        return Error("Invalid FLOAT record");
1255      if (CurTy->isFloatTy())
1256        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1257      else if (CurTy->isDoubleTy())
1258        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1259      else if (CurTy->isX86_FP80Ty()) {
1260        // Bits are not stored the same way as a normal i80 APInt, compensate.
1261        uint64_t Rearrange[2];
1262        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1263        Rearrange[1] = Record[0] >> 48;
1264        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1265      } else if (CurTy->isFP128Ty())
1266        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1267      else if (CurTy->isPPC_FP128Ty())
1268        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1269      else
1270        V = UndefValue::get(CurTy);
1271      break;
1272    }
1273
1274    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1275      if (Record.empty())
1276        return Error("Invalid CST_AGGREGATE record");
1277
1278      unsigned Size = Record.size();
1279      std::vector<Constant*> Elts;
1280
1281      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1282        for (unsigned i = 0; i != Size; ++i)
1283          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1284                                                     STy->getElementType(i)));
1285        V = ConstantStruct::get(STy, Elts);
1286      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1287        Type *EltTy = ATy->getElementType();
1288        for (unsigned i = 0; i != Size; ++i)
1289          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1290        V = ConstantArray::get(ATy, Elts);
1291      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1292        Type *EltTy = VTy->getElementType();
1293        for (unsigned i = 0; i != Size; ++i)
1294          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1295        V = ConstantVector::get(Elts);
1296      } else {
1297        V = UndefValue::get(CurTy);
1298      }
1299      break;
1300    }
1301    case bitc::CST_CODE_STRING: { // STRING: [values]
1302      if (Record.empty())
1303        return Error("Invalid CST_AGGREGATE record");
1304
1305      ArrayType *ATy = cast<ArrayType>(CurTy);
1306      Type *EltTy = ATy->getElementType();
1307
1308      unsigned Size = Record.size();
1309      std::vector<Constant*> Elts;
1310      for (unsigned i = 0; i != Size; ++i)
1311        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1312      V = ConstantArray::get(ATy, Elts);
1313      break;
1314    }
1315    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1316      if (Record.empty())
1317        return Error("Invalid CST_AGGREGATE record");
1318
1319      ArrayType *ATy = cast<ArrayType>(CurTy);
1320      Type *EltTy = ATy->getElementType();
1321
1322      unsigned Size = Record.size();
1323      std::vector<Constant*> Elts;
1324      for (unsigned i = 0; i != Size; ++i)
1325        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1326      Elts.push_back(Constant::getNullValue(EltTy));
1327      V = ConstantArray::get(ATy, Elts);
1328      break;
1329    }
1330    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1331      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1332      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1333      if (Opc < 0) {
1334        V = UndefValue::get(CurTy);  // Unknown binop.
1335      } else {
1336        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1337        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1338        unsigned Flags = 0;
1339        if (Record.size() >= 4) {
1340          if (Opc == Instruction::Add ||
1341              Opc == Instruction::Sub ||
1342              Opc == Instruction::Mul ||
1343              Opc == Instruction::Shl) {
1344            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1345              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1346            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1347              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1348          } else if (Opc == Instruction::SDiv ||
1349                     Opc == Instruction::UDiv ||
1350                     Opc == Instruction::LShr ||
1351                     Opc == Instruction::AShr) {
1352            if (Record[3] & (1 << bitc::PEO_EXACT))
1353              Flags |= SDivOperator::IsExact;
1354          }
1355        }
1356        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1357      }
1358      break;
1359    }
1360    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1361      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1362      int Opc = GetDecodedCastOpcode(Record[0]);
1363      if (Opc < 0) {
1364        V = UndefValue::get(CurTy);  // Unknown cast.
1365      } else {
1366        Type *OpTy = getTypeByID(Record[1]);
1367        if (!OpTy) return Error("Invalid CE_CAST record");
1368        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1369        V = ConstantExpr::getCast(Opc, Op, CurTy);
1370      }
1371      break;
1372    }
1373    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1374    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1375      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1376      SmallVector<Constant*, 16> Elts;
1377      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1378        Type *ElTy = getTypeByID(Record[i]);
1379        if (!ElTy) return Error("Invalid CE_GEP record");
1380        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1381      }
1382      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1383        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0],
1384          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1385      else
1386        V = ConstantExpr::getGetElementPtr(Elts[0],
1387          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1388      break;
1389    }
1390    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1391      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1392      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1393                                                              Type::getInt1Ty(Context)),
1394                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1395                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1396      break;
1397    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1398      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1399      VectorType *OpTy =
1400        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1401      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1402      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1403      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1404      V = ConstantExpr::getExtractElement(Op0, Op1);
1405      break;
1406    }
1407    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1408      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1409      if (Record.size() < 3 || OpTy == 0)
1410        return Error("Invalid CE_INSERTELT record");
1411      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1412      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1413                                                  OpTy->getElementType());
1414      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1415      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1416      break;
1417    }
1418    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1419      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1420      if (Record.size() < 3 || OpTy == 0)
1421        return Error("Invalid CE_SHUFFLEVEC record");
1422      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1423      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1424      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1425                                                 OpTy->getNumElements());
1426      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1427      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1428      break;
1429    }
1430    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1431      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1432      VectorType *OpTy =
1433        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1434      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1435        return Error("Invalid CE_SHUFVEC_EX record");
1436      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1437      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1438      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1439                                                 RTy->getNumElements());
1440      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1441      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1442      break;
1443    }
1444    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1445      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1446      Type *OpTy = getTypeByID(Record[0]);
1447      if (OpTy == 0) return Error("Invalid CE_CMP record");
1448      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1449      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1450
1451      if (OpTy->isFPOrFPVectorTy())
1452        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1453      else
1454        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1455      break;
1456    }
1457    case bitc::CST_CODE_INLINEASM: {
1458      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1459      std::string AsmStr, ConstrStr;
1460      bool HasSideEffects = Record[0] & 1;
1461      bool IsAlignStack = Record[0] >> 1;
1462      unsigned AsmStrSize = Record[1];
1463      if (2+AsmStrSize >= Record.size())
1464        return Error("Invalid INLINEASM record");
1465      unsigned ConstStrSize = Record[2+AsmStrSize];
1466      if (3+AsmStrSize+ConstStrSize > Record.size())
1467        return Error("Invalid INLINEASM record");
1468
1469      for (unsigned i = 0; i != AsmStrSize; ++i)
1470        AsmStr += (char)Record[2+i];
1471      for (unsigned i = 0; i != ConstStrSize; ++i)
1472        ConstrStr += (char)Record[3+AsmStrSize+i];
1473      PointerType *PTy = cast<PointerType>(CurTy);
1474      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1475                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1476      break;
1477    }
1478    case bitc::CST_CODE_BLOCKADDRESS:{
1479      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1480      Type *FnTy = getTypeByID(Record[0]);
1481      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1482      Function *Fn =
1483        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1484      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1485
1486      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1487                                                  Type::getInt8Ty(Context),
1488                                            false, GlobalValue::InternalLinkage,
1489                                                  0, "");
1490      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1491      V = FwdRef;
1492      break;
1493    }
1494    }
1495
1496    ValueList.AssignValue(V, NextCstNo);
1497    ++NextCstNo;
1498  }
1499
1500  if (NextCstNo != ValueList.size())
1501    return Error("Invalid constant reference!");
1502
1503  if (Stream.ReadBlockEnd())
1504    return Error("Error at end of constants block");
1505
1506  // Once all the constants have been read, go through and resolve forward
1507  // references.
1508  ValueList.ResolveConstantForwardRefs();
1509  return false;
1510}
1511
1512/// RememberAndSkipFunctionBody - When we see the block for a function body,
1513/// remember where it is and then skip it.  This lets us lazily deserialize the
1514/// functions.
1515bool BitcodeReader::RememberAndSkipFunctionBody() {
1516  // Get the function we are talking about.
1517  if (FunctionsWithBodies.empty())
1518    return Error("Insufficient function protos");
1519
1520  Function *Fn = FunctionsWithBodies.back();
1521  FunctionsWithBodies.pop_back();
1522
1523  // Save the current stream state.
1524  uint64_t CurBit = Stream.GetCurrentBitNo();
1525  DeferredFunctionInfo[Fn] = CurBit;
1526
1527  // Skip over the function block for now.
1528  if (Stream.SkipBlock())
1529    return Error("Malformed block record");
1530  return false;
1531}
1532
1533bool BitcodeReader::ParseModule() {
1534  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1535    return Error("Malformed block record");
1536
1537  SmallVector<uint64_t, 64> Record;
1538  std::vector<std::string> SectionTable;
1539  std::vector<std::string> GCTable;
1540
1541  // Read all the records for this module.
1542  while (!Stream.AtEndOfStream()) {
1543    unsigned Code = Stream.ReadCode();
1544    if (Code == bitc::END_BLOCK) {
1545      if (Stream.ReadBlockEnd())
1546        return Error("Error at end of module block");
1547
1548      // Patch the initializers for globals and aliases up.
1549      ResolveGlobalAndAliasInits();
1550      if (!GlobalInits.empty() || !AliasInits.empty())
1551        return Error("Malformed global initializer set");
1552      if (!FunctionsWithBodies.empty())
1553        return Error("Too few function bodies found");
1554
1555      // Look for intrinsic functions which need to be upgraded at some point
1556      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1557           FI != FE; ++FI) {
1558        Function* NewFn;
1559        if (UpgradeIntrinsicFunction(FI, NewFn))
1560          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1561      }
1562
1563      // Look for global variables which need to be renamed.
1564      for (Module::global_iterator
1565             GI = TheModule->global_begin(), GE = TheModule->global_end();
1566           GI != GE; ++GI)
1567        UpgradeGlobalVariable(GI);
1568
1569      // Force deallocation of memory for these vectors to favor the client that
1570      // want lazy deserialization.
1571      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1572      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1573      std::vector<Function*>().swap(FunctionsWithBodies);
1574      return false;
1575    }
1576
1577    if (Code == bitc::ENTER_SUBBLOCK) {
1578      switch (Stream.ReadSubBlockID()) {
1579      default:  // Skip unknown content.
1580        if (Stream.SkipBlock())
1581          return Error("Malformed block record");
1582        break;
1583      case bitc::BLOCKINFO_BLOCK_ID:
1584        if (Stream.ReadBlockInfoBlock())
1585          return Error("Malformed BlockInfoBlock");
1586        break;
1587      case bitc::PARAMATTR_BLOCK_ID:
1588        if (ParseAttributeBlock())
1589          return true;
1590        break;
1591      case bitc::TYPE_BLOCK_ID_NEW:
1592        if (ParseTypeTable())
1593          return true;
1594        break;
1595      case bitc::TYPE_BLOCK_ID_OLD:
1596        if (ParseOldTypeTable())
1597          return true;
1598        break;
1599      case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1600        if (ParseOldTypeSymbolTable())
1601          return true;
1602        break;
1603      case bitc::VALUE_SYMTAB_BLOCK_ID:
1604        if (ParseValueSymbolTable())
1605          return true;
1606        break;
1607      case bitc::CONSTANTS_BLOCK_ID:
1608        if (ParseConstants() || ResolveGlobalAndAliasInits())
1609          return true;
1610        break;
1611      case bitc::METADATA_BLOCK_ID:
1612        if (ParseMetadata())
1613          return true;
1614        break;
1615      case bitc::FUNCTION_BLOCK_ID:
1616        // If this is the first function body we've seen, reverse the
1617        // FunctionsWithBodies list.
1618        if (!HasReversedFunctionsWithBodies) {
1619          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1620          HasReversedFunctionsWithBodies = true;
1621        }
1622
1623        if (RememberAndSkipFunctionBody())
1624          return true;
1625        break;
1626      }
1627      continue;
1628    }
1629
1630    if (Code == bitc::DEFINE_ABBREV) {
1631      Stream.ReadAbbrevRecord();
1632      continue;
1633    }
1634
1635    // Read a record.
1636    switch (Stream.ReadRecord(Code, Record)) {
1637    default: break;  // Default behavior, ignore unknown content.
1638    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1639      if (Record.size() < 1)
1640        return Error("Malformed MODULE_CODE_VERSION");
1641      // Only version #0 is supported so far.
1642      if (Record[0] != 0)
1643        return Error("Unknown bitstream version!");
1644      break;
1645    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1646      std::string S;
1647      if (ConvertToString(Record, 0, S))
1648        return Error("Invalid MODULE_CODE_TRIPLE record");
1649      TheModule->setTargetTriple(S);
1650      break;
1651    }
1652    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1653      std::string S;
1654      if (ConvertToString(Record, 0, S))
1655        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1656      TheModule->setDataLayout(S);
1657      break;
1658    }
1659    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1660      std::string S;
1661      if (ConvertToString(Record, 0, S))
1662        return Error("Invalid MODULE_CODE_ASM record");
1663      TheModule->setModuleInlineAsm(S);
1664      break;
1665    }
1666    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1667      std::string S;
1668      if (ConvertToString(Record, 0, S))
1669        return Error("Invalid MODULE_CODE_DEPLIB record");
1670      TheModule->addLibrary(S);
1671      break;
1672    }
1673    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1674      std::string S;
1675      if (ConvertToString(Record, 0, S))
1676        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1677      SectionTable.push_back(S);
1678      break;
1679    }
1680    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1681      std::string S;
1682      if (ConvertToString(Record, 0, S))
1683        return Error("Invalid MODULE_CODE_GCNAME record");
1684      GCTable.push_back(S);
1685      break;
1686    }
1687    // GLOBALVAR: [pointer type, isconst, initid,
1688    //             linkage, alignment, section, visibility, threadlocal,
1689    //             unnamed_addr]
1690    case bitc::MODULE_CODE_GLOBALVAR: {
1691      if (Record.size() < 6)
1692        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1693      Type *Ty = getTypeByID(Record[0]);
1694      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1695      if (!Ty->isPointerTy())
1696        return Error("Global not a pointer type!");
1697      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1698      Ty = cast<PointerType>(Ty)->getElementType();
1699
1700      bool isConstant = Record[1];
1701      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1702      unsigned Alignment = (1 << Record[4]) >> 1;
1703      std::string Section;
1704      if (Record[5]) {
1705        if (Record[5]-1 >= SectionTable.size())
1706          return Error("Invalid section ID");
1707        Section = SectionTable[Record[5]-1];
1708      }
1709      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1710      if (Record.size() > 6)
1711        Visibility = GetDecodedVisibility(Record[6]);
1712      bool isThreadLocal = false;
1713      if (Record.size() > 7)
1714        isThreadLocal = Record[7];
1715
1716      bool UnnamedAddr = false;
1717      if (Record.size() > 8)
1718        UnnamedAddr = Record[8];
1719
1720      GlobalVariable *NewGV =
1721        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1722                           isThreadLocal, AddressSpace);
1723      NewGV->setAlignment(Alignment);
1724      if (!Section.empty())
1725        NewGV->setSection(Section);
1726      NewGV->setVisibility(Visibility);
1727      NewGV->setThreadLocal(isThreadLocal);
1728      NewGV->setUnnamedAddr(UnnamedAddr);
1729
1730      ValueList.push_back(NewGV);
1731
1732      // Remember which value to use for the global initializer.
1733      if (unsigned InitID = Record[2])
1734        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1735      break;
1736    }
1737    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1738    //             alignment, section, visibility, gc, unnamed_addr]
1739    case bitc::MODULE_CODE_FUNCTION: {
1740      if (Record.size() < 8)
1741        return Error("Invalid MODULE_CODE_FUNCTION record");
1742      Type *Ty = getTypeByID(Record[0]);
1743      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1744      if (!Ty->isPointerTy())
1745        return Error("Function not a pointer type!");
1746      FunctionType *FTy =
1747        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1748      if (!FTy)
1749        return Error("Function not a pointer to function type!");
1750
1751      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1752                                        "", TheModule);
1753
1754      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1755      bool isProto = Record[2];
1756      Func->setLinkage(GetDecodedLinkage(Record[3]));
1757      Func->setAttributes(getAttributes(Record[4]));
1758
1759      Func->setAlignment((1 << Record[5]) >> 1);
1760      if (Record[6]) {
1761        if (Record[6]-1 >= SectionTable.size())
1762          return Error("Invalid section ID");
1763        Func->setSection(SectionTable[Record[6]-1]);
1764      }
1765      Func->setVisibility(GetDecodedVisibility(Record[7]));
1766      if (Record.size() > 8 && Record[8]) {
1767        if (Record[8]-1 > GCTable.size())
1768          return Error("Invalid GC ID");
1769        Func->setGC(GCTable[Record[8]-1].c_str());
1770      }
1771      bool UnnamedAddr = false;
1772      if (Record.size() > 9)
1773        UnnamedAddr = Record[9];
1774      Func->setUnnamedAddr(UnnamedAddr);
1775      ValueList.push_back(Func);
1776
1777      // If this is a function with a body, remember the prototype we are
1778      // creating now, so that we can match up the body with them later.
1779      if (!isProto)
1780        FunctionsWithBodies.push_back(Func);
1781      break;
1782    }
1783    // ALIAS: [alias type, aliasee val#, linkage]
1784    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1785    case bitc::MODULE_CODE_ALIAS: {
1786      if (Record.size() < 3)
1787        return Error("Invalid MODULE_ALIAS record");
1788      Type *Ty = getTypeByID(Record[0]);
1789      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1790      if (!Ty->isPointerTy())
1791        return Error("Function not a pointer type!");
1792
1793      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1794                                           "", 0, TheModule);
1795      // Old bitcode files didn't have visibility field.
1796      if (Record.size() > 3)
1797        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1798      ValueList.push_back(NewGA);
1799      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1800      break;
1801    }
1802    /// MODULE_CODE_PURGEVALS: [numvals]
1803    case bitc::MODULE_CODE_PURGEVALS:
1804      // Trim down the value list to the specified size.
1805      if (Record.size() < 1 || Record[0] > ValueList.size())
1806        return Error("Invalid MODULE_PURGEVALS record");
1807      ValueList.shrinkTo(Record[0]);
1808      break;
1809    }
1810    Record.clear();
1811  }
1812
1813  return Error("Premature end of bitstream");
1814}
1815
1816bool BitcodeReader::ParseBitcodeInto(Module *M) {
1817  TheModule = 0;
1818
1819  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1820  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1821
1822  if (Buffer->getBufferSize() & 3) {
1823    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1824      return Error("Invalid bitcode signature");
1825    else
1826      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1827  }
1828
1829  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1830  // The magic number is 0x0B17C0DE stored in little endian.
1831  if (isBitcodeWrapper(BufPtr, BufEnd))
1832    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1833      return Error("Invalid bitcode wrapper header");
1834
1835  StreamFile.init(BufPtr, BufEnd);
1836  Stream.init(StreamFile);
1837
1838  // Sniff for the signature.
1839  if (Stream.Read(8) != 'B' ||
1840      Stream.Read(8) != 'C' ||
1841      Stream.Read(4) != 0x0 ||
1842      Stream.Read(4) != 0xC ||
1843      Stream.Read(4) != 0xE ||
1844      Stream.Read(4) != 0xD)
1845    return Error("Invalid bitcode signature");
1846
1847  // We expect a number of well-defined blocks, though we don't necessarily
1848  // need to understand them all.
1849  while (!Stream.AtEndOfStream()) {
1850    unsigned Code = Stream.ReadCode();
1851
1852    if (Code != bitc::ENTER_SUBBLOCK) {
1853
1854      // The ranlib in xcode 4 will align archive members by appending newlines to the
1855      // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1856      // ignore these final 4 bytes :-(
1857      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1858          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1859	  Stream.AtEndOfStream())
1860        return false;
1861
1862      return Error("Invalid record at top-level");
1863    }
1864
1865    unsigned BlockID = Stream.ReadSubBlockID();
1866
1867    // We only know the MODULE subblock ID.
1868    switch (BlockID) {
1869    case bitc::BLOCKINFO_BLOCK_ID:
1870      if (Stream.ReadBlockInfoBlock())
1871        return Error("Malformed BlockInfoBlock");
1872      break;
1873    case bitc::MODULE_BLOCK_ID:
1874      // Reject multiple MODULE_BLOCK's in a single bitstream.
1875      if (TheModule)
1876        return Error("Multiple MODULE_BLOCKs in same stream");
1877      TheModule = M;
1878      if (ParseModule())
1879        return true;
1880      break;
1881    default:
1882      if (Stream.SkipBlock())
1883        return Error("Malformed block record");
1884      break;
1885    }
1886  }
1887
1888  return false;
1889}
1890
1891bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1892  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1893    return Error("Malformed block record");
1894
1895  SmallVector<uint64_t, 64> Record;
1896
1897  // Read all the records for this module.
1898  while (!Stream.AtEndOfStream()) {
1899    unsigned Code = Stream.ReadCode();
1900    if (Code == bitc::END_BLOCK) {
1901      if (Stream.ReadBlockEnd())
1902        return Error("Error at end of module block");
1903
1904      return false;
1905    }
1906
1907    if (Code == bitc::ENTER_SUBBLOCK) {
1908      switch (Stream.ReadSubBlockID()) {
1909      default:  // Skip unknown content.
1910        if (Stream.SkipBlock())
1911          return Error("Malformed block record");
1912        break;
1913      }
1914      continue;
1915    }
1916
1917    if (Code == bitc::DEFINE_ABBREV) {
1918      Stream.ReadAbbrevRecord();
1919      continue;
1920    }
1921
1922    // Read a record.
1923    switch (Stream.ReadRecord(Code, Record)) {
1924    default: break;  // Default behavior, ignore unknown content.
1925    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1926      if (Record.size() < 1)
1927        return Error("Malformed MODULE_CODE_VERSION");
1928      // Only version #0 is supported so far.
1929      if (Record[0] != 0)
1930        return Error("Unknown bitstream version!");
1931      break;
1932    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1933      std::string S;
1934      if (ConvertToString(Record, 0, S))
1935        return Error("Invalid MODULE_CODE_TRIPLE record");
1936      Triple = S;
1937      break;
1938    }
1939    }
1940    Record.clear();
1941  }
1942
1943  return Error("Premature end of bitstream");
1944}
1945
1946bool BitcodeReader::ParseTriple(std::string &Triple) {
1947  if (Buffer->getBufferSize() & 3)
1948    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1949
1950  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1951  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1952
1953  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1954  // The magic number is 0x0B17C0DE stored in little endian.
1955  if (isBitcodeWrapper(BufPtr, BufEnd))
1956    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1957      return Error("Invalid bitcode wrapper header");
1958
1959  StreamFile.init(BufPtr, BufEnd);
1960  Stream.init(StreamFile);
1961
1962  // Sniff for the signature.
1963  if (Stream.Read(8) != 'B' ||
1964      Stream.Read(8) != 'C' ||
1965      Stream.Read(4) != 0x0 ||
1966      Stream.Read(4) != 0xC ||
1967      Stream.Read(4) != 0xE ||
1968      Stream.Read(4) != 0xD)
1969    return Error("Invalid bitcode signature");
1970
1971  // We expect a number of well-defined blocks, though we don't necessarily
1972  // need to understand them all.
1973  while (!Stream.AtEndOfStream()) {
1974    unsigned Code = Stream.ReadCode();
1975
1976    if (Code != bitc::ENTER_SUBBLOCK)
1977      return Error("Invalid record at top-level");
1978
1979    unsigned BlockID = Stream.ReadSubBlockID();
1980
1981    // We only know the MODULE subblock ID.
1982    switch (BlockID) {
1983    case bitc::MODULE_BLOCK_ID:
1984      if (ParseModuleTriple(Triple))
1985        return true;
1986      break;
1987    default:
1988      if (Stream.SkipBlock())
1989        return Error("Malformed block record");
1990      break;
1991    }
1992  }
1993
1994  return false;
1995}
1996
1997/// ParseMetadataAttachment - Parse metadata attachments.
1998bool BitcodeReader::ParseMetadataAttachment() {
1999  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2000    return Error("Malformed block record");
2001
2002  SmallVector<uint64_t, 64> Record;
2003  while(1) {
2004    unsigned Code = Stream.ReadCode();
2005    if (Code == bitc::END_BLOCK) {
2006      if (Stream.ReadBlockEnd())
2007        return Error("Error at end of PARAMATTR block");
2008      break;
2009    }
2010    if (Code == bitc::DEFINE_ABBREV) {
2011      Stream.ReadAbbrevRecord();
2012      continue;
2013    }
2014    // Read a metadata attachment record.
2015    Record.clear();
2016    switch (Stream.ReadRecord(Code, Record)) {
2017    default:  // Default behavior: ignore.
2018      break;
2019    case METADATA_ATTACHMENT_2_7:
2020      LLVM2_7MetadataDetected = true;
2021    case bitc::METADATA_ATTACHMENT: {
2022      unsigned RecordLength = Record.size();
2023      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2024        return Error ("Invalid METADATA_ATTACHMENT reader!");
2025      Instruction *Inst = InstructionList[Record[0]];
2026      for (unsigned i = 1; i != RecordLength; i = i+2) {
2027        unsigned Kind = Record[i];
2028        DenseMap<unsigned, unsigned>::iterator I =
2029          MDKindMap.find(Kind);
2030        if (I == MDKindMap.end())
2031          return Error("Invalid metadata kind ID");
2032        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2033        Inst->setMetadata(I->second, cast<MDNode>(Node));
2034      }
2035      break;
2036    }
2037    }
2038  }
2039  return false;
2040}
2041
2042/// ParseFunctionBody - Lazily parse the specified function body block.
2043bool BitcodeReader::ParseFunctionBody(Function *F) {
2044  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2045    return Error("Malformed block record");
2046
2047  InstructionList.clear();
2048  unsigned ModuleValueListSize = ValueList.size();
2049  unsigned ModuleMDValueListSize = MDValueList.size();
2050
2051  // Add all the function arguments to the value table.
2052  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2053    ValueList.push_back(I);
2054
2055  unsigned NextValueNo = ValueList.size();
2056  BasicBlock *CurBB = 0;
2057  unsigned CurBBNo = 0;
2058
2059  DebugLoc LastLoc;
2060
2061  // Read all the records.
2062  SmallVector<uint64_t, 64> Record;
2063  while (1) {
2064    unsigned Code = Stream.ReadCode();
2065    if (Code == bitc::END_BLOCK) {
2066      if (Stream.ReadBlockEnd())
2067        return Error("Error at end of function block");
2068      break;
2069    }
2070
2071    if (Code == bitc::ENTER_SUBBLOCK) {
2072      switch (Stream.ReadSubBlockID()) {
2073      default:  // Skip unknown content.
2074        if (Stream.SkipBlock())
2075          return Error("Malformed block record");
2076        break;
2077      case bitc::CONSTANTS_BLOCK_ID:
2078        if (ParseConstants()) return true;
2079        NextValueNo = ValueList.size();
2080        break;
2081      case bitc::VALUE_SYMTAB_BLOCK_ID:
2082        if (ParseValueSymbolTable()) return true;
2083        break;
2084      case bitc::METADATA_ATTACHMENT_ID:
2085        if (ParseMetadataAttachment()) return true;
2086        break;
2087      case bitc::METADATA_BLOCK_ID:
2088        if (ParseMetadata()) return true;
2089        break;
2090      }
2091      continue;
2092    }
2093
2094    if (Code == bitc::DEFINE_ABBREV) {
2095      Stream.ReadAbbrevRecord();
2096      continue;
2097    }
2098
2099    // Read a record.
2100    Record.clear();
2101    Instruction *I = 0;
2102    unsigned BitCode = Stream.ReadRecord(Code, Record);
2103    switch (BitCode) {
2104    default: // Default behavior: reject
2105      return Error("Unknown instruction");
2106    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2107      if (Record.size() < 1 || Record[0] == 0)
2108        return Error("Invalid DECLAREBLOCKS record");
2109      // Create all the basic blocks for the function.
2110      FunctionBBs.resize(Record[0]);
2111      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2112        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2113      CurBB = FunctionBBs[0];
2114      continue;
2115
2116    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2117      // This record indicates that the last instruction is at the same
2118      // location as the previous instruction with a location.
2119      I = 0;
2120
2121      // Get the last instruction emitted.
2122      if (CurBB && !CurBB->empty())
2123        I = &CurBB->back();
2124      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2125               !FunctionBBs[CurBBNo-1]->empty())
2126        I = &FunctionBBs[CurBBNo-1]->back();
2127
2128      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2129      I->setDebugLoc(LastLoc);
2130      I = 0;
2131      continue;
2132
2133    case FUNC_CODE_DEBUG_LOC_2_7:
2134      LLVM2_7MetadataDetected = true;
2135    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2136      I = 0;     // Get the last instruction emitted.
2137      if (CurBB && !CurBB->empty())
2138        I = &CurBB->back();
2139      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2140               !FunctionBBs[CurBBNo-1]->empty())
2141        I = &FunctionBBs[CurBBNo-1]->back();
2142      if (I == 0 || Record.size() < 4)
2143        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2144
2145      unsigned Line = Record[0], Col = Record[1];
2146      unsigned ScopeID = Record[2], IAID = Record[3];
2147
2148      MDNode *Scope = 0, *IA = 0;
2149      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2150      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2151      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2152      I->setDebugLoc(LastLoc);
2153      I = 0;
2154      continue;
2155    }
2156
2157    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2158      unsigned OpNum = 0;
2159      Value *LHS, *RHS;
2160      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2161          getValue(Record, OpNum, LHS->getType(), RHS) ||
2162          OpNum+1 > Record.size())
2163        return Error("Invalid BINOP record");
2164
2165      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2166      if (Opc == -1) return Error("Invalid BINOP record");
2167      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2168      InstructionList.push_back(I);
2169      if (OpNum < Record.size()) {
2170        if (Opc == Instruction::Add ||
2171            Opc == Instruction::Sub ||
2172            Opc == Instruction::Mul ||
2173            Opc == Instruction::Shl) {
2174          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2175            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2176          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2177            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2178        } else if (Opc == Instruction::SDiv ||
2179                   Opc == Instruction::UDiv ||
2180                   Opc == Instruction::LShr ||
2181                   Opc == Instruction::AShr) {
2182          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2183            cast<BinaryOperator>(I)->setIsExact(true);
2184        }
2185      }
2186      break;
2187    }
2188    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2189      unsigned OpNum = 0;
2190      Value *Op;
2191      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2192          OpNum+2 != Record.size())
2193        return Error("Invalid CAST record");
2194
2195      Type *ResTy = getTypeByID(Record[OpNum]);
2196      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2197      if (Opc == -1 || ResTy == 0)
2198        return Error("Invalid CAST record");
2199      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2200      InstructionList.push_back(I);
2201      break;
2202    }
2203    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2204    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2205      unsigned OpNum = 0;
2206      Value *BasePtr;
2207      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2208        return Error("Invalid GEP record");
2209
2210      SmallVector<Value*, 16> GEPIdx;
2211      while (OpNum != Record.size()) {
2212        Value *Op;
2213        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2214          return Error("Invalid GEP record");
2215        GEPIdx.push_back(Op);
2216      }
2217
2218      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2219      InstructionList.push_back(I);
2220      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2221        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2222      break;
2223    }
2224
2225    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2226                                       // EXTRACTVAL: [opty, opval, n x indices]
2227      unsigned OpNum = 0;
2228      Value *Agg;
2229      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2230        return Error("Invalid EXTRACTVAL record");
2231
2232      SmallVector<unsigned, 4> EXTRACTVALIdx;
2233      for (unsigned RecSize = Record.size();
2234           OpNum != RecSize; ++OpNum) {
2235        uint64_t Index = Record[OpNum];
2236        if ((unsigned)Index != Index)
2237          return Error("Invalid EXTRACTVAL index");
2238        EXTRACTVALIdx.push_back((unsigned)Index);
2239      }
2240
2241      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2242      InstructionList.push_back(I);
2243      break;
2244    }
2245
2246    case bitc::FUNC_CODE_INST_INSERTVAL: {
2247                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2248      unsigned OpNum = 0;
2249      Value *Agg;
2250      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2251        return Error("Invalid INSERTVAL record");
2252      Value *Val;
2253      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2254        return Error("Invalid INSERTVAL record");
2255
2256      SmallVector<unsigned, 4> INSERTVALIdx;
2257      for (unsigned RecSize = Record.size();
2258           OpNum != RecSize; ++OpNum) {
2259        uint64_t Index = Record[OpNum];
2260        if ((unsigned)Index != Index)
2261          return Error("Invalid INSERTVAL index");
2262        INSERTVALIdx.push_back((unsigned)Index);
2263      }
2264
2265      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2266      InstructionList.push_back(I);
2267      break;
2268    }
2269
2270    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2271      // obsolete form of select
2272      // handles select i1 ... in old bitcode
2273      unsigned OpNum = 0;
2274      Value *TrueVal, *FalseVal, *Cond;
2275      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2276          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2277          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2278        return Error("Invalid SELECT record");
2279
2280      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2281      InstructionList.push_back(I);
2282      break;
2283    }
2284
2285    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2286      // new form of select
2287      // handles select i1 or select [N x i1]
2288      unsigned OpNum = 0;
2289      Value *TrueVal, *FalseVal, *Cond;
2290      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2291          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2292          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2293        return Error("Invalid SELECT record");
2294
2295      // select condition can be either i1 or [N x i1]
2296      if (VectorType* vector_type =
2297          dyn_cast<VectorType>(Cond->getType())) {
2298        // expect <n x i1>
2299        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2300          return Error("Invalid SELECT condition type");
2301      } else {
2302        // expect i1
2303        if (Cond->getType() != Type::getInt1Ty(Context))
2304          return Error("Invalid SELECT condition type");
2305      }
2306
2307      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2308      InstructionList.push_back(I);
2309      break;
2310    }
2311
2312    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2313      unsigned OpNum = 0;
2314      Value *Vec, *Idx;
2315      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2316          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2317        return Error("Invalid EXTRACTELT record");
2318      I = ExtractElementInst::Create(Vec, Idx);
2319      InstructionList.push_back(I);
2320      break;
2321    }
2322
2323    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2324      unsigned OpNum = 0;
2325      Value *Vec, *Elt, *Idx;
2326      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2327          getValue(Record, OpNum,
2328                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2329          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2330        return Error("Invalid INSERTELT record");
2331      I = InsertElementInst::Create(Vec, Elt, Idx);
2332      InstructionList.push_back(I);
2333      break;
2334    }
2335
2336    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2337      unsigned OpNum = 0;
2338      Value *Vec1, *Vec2, *Mask;
2339      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2340          getValue(Record, OpNum, Vec1->getType(), Vec2))
2341        return Error("Invalid SHUFFLEVEC record");
2342
2343      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2344        return Error("Invalid SHUFFLEVEC record");
2345      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2346      InstructionList.push_back(I);
2347      break;
2348    }
2349
2350    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2351      // Old form of ICmp/FCmp returning bool
2352      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2353      // both legal on vectors but had different behaviour.
2354    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2355      // FCmp/ICmp returning bool or vector of bool
2356
2357      unsigned OpNum = 0;
2358      Value *LHS, *RHS;
2359      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2360          getValue(Record, OpNum, LHS->getType(), RHS) ||
2361          OpNum+1 != Record.size())
2362        return Error("Invalid CMP record");
2363
2364      if (LHS->getType()->isFPOrFPVectorTy())
2365        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2366      else
2367        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2368      InstructionList.push_back(I);
2369      break;
2370    }
2371
2372    case FUNC_CODE_INST_GETRESULT_2_7: {
2373      if (Record.size() != 2) {
2374        return Error("Invalid GETRESULT record");
2375      }
2376      unsigned OpNum = 0;
2377      Value *Op;
2378      getValueTypePair(Record, OpNum, NextValueNo, Op);
2379      unsigned Index = Record[1];
2380      I = ExtractValueInst::Create(Op, Index);
2381      InstructionList.push_back(I);
2382      break;
2383    }
2384
2385    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2386      {
2387        unsigned Size = Record.size();
2388        if (Size == 0) {
2389          I = ReturnInst::Create(Context);
2390          InstructionList.push_back(I);
2391          break;
2392        }
2393
2394        unsigned OpNum = 0;
2395        Value *Op = NULL;
2396        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2397          return Error("Invalid RET record");
2398        if (OpNum != Record.size())
2399          return Error("Invalid RET record");
2400
2401        I = ReturnInst::Create(Context, Op);
2402        InstructionList.push_back(I);
2403        break;
2404      }
2405    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2406      if (Record.size() != 1 && Record.size() != 3)
2407        return Error("Invalid BR record");
2408      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2409      if (TrueDest == 0)
2410        return Error("Invalid BR record");
2411
2412      if (Record.size() == 1) {
2413        I = BranchInst::Create(TrueDest);
2414        InstructionList.push_back(I);
2415      }
2416      else {
2417        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2418        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2419        if (FalseDest == 0 || Cond == 0)
2420          return Error("Invalid BR record");
2421        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2422        InstructionList.push_back(I);
2423      }
2424      break;
2425    }
2426    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2427      if (Record.size() < 3 || (Record.size() & 1) == 0)
2428        return Error("Invalid SWITCH record");
2429      Type *OpTy = getTypeByID(Record[0]);
2430      Value *Cond = getFnValueByID(Record[1], OpTy);
2431      BasicBlock *Default = getBasicBlock(Record[2]);
2432      if (OpTy == 0 || Cond == 0 || Default == 0)
2433        return Error("Invalid SWITCH record");
2434      unsigned NumCases = (Record.size()-3)/2;
2435      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2436      InstructionList.push_back(SI);
2437      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2438        ConstantInt *CaseVal =
2439          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2440        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2441        if (CaseVal == 0 || DestBB == 0) {
2442          delete SI;
2443          return Error("Invalid SWITCH record!");
2444        }
2445        SI->addCase(CaseVal, DestBB);
2446      }
2447      I = SI;
2448      break;
2449    }
2450    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2451      if (Record.size() < 2)
2452        return Error("Invalid INDIRECTBR record");
2453      Type *OpTy = getTypeByID(Record[0]);
2454      Value *Address = getFnValueByID(Record[1], OpTy);
2455      if (OpTy == 0 || Address == 0)
2456        return Error("Invalid INDIRECTBR record");
2457      unsigned NumDests = Record.size()-2;
2458      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2459      InstructionList.push_back(IBI);
2460      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2461        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2462          IBI->addDestination(DestBB);
2463        } else {
2464          delete IBI;
2465          return Error("Invalid INDIRECTBR record!");
2466        }
2467      }
2468      I = IBI;
2469      break;
2470    }
2471
2472    case bitc::FUNC_CODE_INST_INVOKE: {
2473      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2474      if (Record.size() < 4) return Error("Invalid INVOKE record");
2475      AttrListPtr PAL = getAttributes(Record[0]);
2476      unsigned CCInfo = Record[1];
2477      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2478      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2479
2480      unsigned OpNum = 4;
2481      Value *Callee;
2482      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2483        return Error("Invalid INVOKE record");
2484
2485      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2486      FunctionType *FTy = !CalleeTy ? 0 :
2487        dyn_cast<FunctionType>(CalleeTy->getElementType());
2488
2489      // Check that the right number of fixed parameters are here.
2490      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2491          Record.size() < OpNum+FTy->getNumParams())
2492        return Error("Invalid INVOKE record");
2493
2494      SmallVector<Value*, 16> Ops;
2495      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2496        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2497        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2498      }
2499
2500      if (!FTy->isVarArg()) {
2501        if (Record.size() != OpNum)
2502          return Error("Invalid INVOKE record");
2503      } else {
2504        // Read type/value pairs for varargs params.
2505        while (OpNum != Record.size()) {
2506          Value *Op;
2507          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2508            return Error("Invalid INVOKE record");
2509          Ops.push_back(Op);
2510        }
2511      }
2512
2513      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2514      InstructionList.push_back(I);
2515      cast<InvokeInst>(I)->setCallingConv(
2516        static_cast<CallingConv::ID>(CCInfo));
2517      cast<InvokeInst>(I)->setAttributes(PAL);
2518      break;
2519    }
2520    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2521      I = new UnwindInst(Context);
2522      InstructionList.push_back(I);
2523      break;
2524    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2525      I = new UnreachableInst(Context);
2526      InstructionList.push_back(I);
2527      break;
2528    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2529      if (Record.size() < 1 || ((Record.size()-1)&1))
2530        return Error("Invalid PHI record");
2531      Type *Ty = getTypeByID(Record[0]);
2532      if (!Ty) return Error("Invalid PHI record");
2533
2534      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2535      InstructionList.push_back(PN);
2536
2537      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2538        Value *V = getFnValueByID(Record[1+i], Ty);
2539        BasicBlock *BB = getBasicBlock(Record[2+i]);
2540        if (!V || !BB) return Error("Invalid PHI record");
2541        PN->addIncoming(V, BB);
2542      }
2543      I = PN;
2544      break;
2545    }
2546
2547    case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
2548      // Autoupgrade malloc instruction to malloc call.
2549      // FIXME: Remove in LLVM 3.0.
2550      if (Record.size() < 3) {
2551        return Error("Invalid MALLOC record");
2552      }
2553      PointerType *Ty =
2554          dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2555      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2556      if (!Ty || !Size) return Error("Invalid MALLOC record");
2557      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2558      Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2559      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2560      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2561      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2562                                 AllocSize, Size, NULL);
2563      InstructionList.push_back(I);
2564      break;
2565    }
2566    case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
2567      unsigned OpNum = 0;
2568      Value *Op;
2569      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2570          OpNum != Record.size()) {
2571        return Error("Invalid FREE record");
2572      }
2573      if (!CurBB) return Error("Invalid free instruction with no BB");
2574      I = CallInst::CreateFree(Op, CurBB);
2575      InstructionList.push_back(I);
2576      break;
2577    }
2578
2579    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2580      // For backward compatibility, tolerate a lack of an opty, and use i32.
2581      // Remove this in LLVM 3.0.
2582      if (Record.size() < 3 || Record.size() > 4) {
2583        return Error("Invalid ALLOCA record");
2584      }
2585      unsigned OpNum = 0;
2586      PointerType *Ty =
2587        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2588      Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2589                                              Type::getInt32Ty(Context);
2590      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2591      unsigned Align = Record[OpNum++];
2592      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2593      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2594      InstructionList.push_back(I);
2595      break;
2596    }
2597    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2598      unsigned OpNum = 0;
2599      Value *Op;
2600      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2601          OpNum+2 != Record.size())
2602        return Error("Invalid LOAD record");
2603
2604      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2605      InstructionList.push_back(I);
2606      break;
2607    }
2608    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2609      unsigned OpNum = 0;
2610      Value *Val, *Ptr;
2611      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2612          getValue(Record, OpNum,
2613                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2614          OpNum+2 != Record.size())
2615        return Error("Invalid STORE record");
2616
2617      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2618      InstructionList.push_back(I);
2619      break;
2620    }
2621    case FUNC_CODE_INST_STORE_2_7: {
2622      unsigned OpNum = 0;
2623      Value *Val, *Ptr;
2624      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2625          getValue(Record, OpNum,
2626                   PointerType::getUnqual(Val->getType()), Ptr)||
2627          OpNum+2 != Record.size()) {
2628        return Error("Invalid STORE record");
2629      }
2630      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2631      InstructionList.push_back(I);
2632      break;
2633    }
2634    case FUNC_CODE_INST_CALL_2_7:
2635      LLVM2_7MetadataDetected = true;
2636    case bitc::FUNC_CODE_INST_CALL: {
2637      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2638      if (Record.size() < 3)
2639        return Error("Invalid CALL record");
2640
2641      AttrListPtr PAL = getAttributes(Record[0]);
2642      unsigned CCInfo = Record[1];
2643
2644      unsigned OpNum = 2;
2645      Value *Callee;
2646      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2647        return Error("Invalid CALL record");
2648
2649      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2650      FunctionType *FTy = 0;
2651      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2652      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2653        return Error("Invalid CALL record");
2654
2655      SmallVector<Value*, 16> Args;
2656      // Read the fixed params.
2657      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2658        if (FTy->getParamType(i)->isLabelTy())
2659          Args.push_back(getBasicBlock(Record[OpNum]));
2660        else
2661          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2662        if (Args.back() == 0) return Error("Invalid CALL record");
2663      }
2664
2665      // Read type/value pairs for varargs params.
2666      if (!FTy->isVarArg()) {
2667        if (OpNum != Record.size())
2668          return Error("Invalid CALL record");
2669      } else {
2670        while (OpNum != Record.size()) {
2671          Value *Op;
2672          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2673            return Error("Invalid CALL record");
2674          Args.push_back(Op);
2675        }
2676      }
2677
2678      I = CallInst::Create(Callee, Args);
2679      InstructionList.push_back(I);
2680      cast<CallInst>(I)->setCallingConv(
2681        static_cast<CallingConv::ID>(CCInfo>>1));
2682      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2683      cast<CallInst>(I)->setAttributes(PAL);
2684      break;
2685    }
2686    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2687      if (Record.size() < 3)
2688        return Error("Invalid VAARG record");
2689      Type *OpTy = getTypeByID(Record[0]);
2690      Value *Op = getFnValueByID(Record[1], OpTy);
2691      Type *ResTy = getTypeByID(Record[2]);
2692      if (!OpTy || !Op || !ResTy)
2693        return Error("Invalid VAARG record");
2694      I = new VAArgInst(Op, ResTy);
2695      InstructionList.push_back(I);
2696      break;
2697    }
2698    }
2699
2700    // Add instruction to end of current BB.  If there is no current BB, reject
2701    // this file.
2702    if (CurBB == 0) {
2703      delete I;
2704      return Error("Invalid instruction with no BB");
2705    }
2706    CurBB->getInstList().push_back(I);
2707
2708    // If this was a terminator instruction, move to the next block.
2709    if (isa<TerminatorInst>(I)) {
2710      ++CurBBNo;
2711      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2712    }
2713
2714    // Non-void values get registered in the value table for future use.
2715    if (I && !I->getType()->isVoidTy())
2716      ValueList.AssignValue(I, NextValueNo++);
2717  }
2718
2719  // Check the function list for unresolved values.
2720  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2721    if (A->getParent() == 0) {
2722      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2723      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2724        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2725          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2726          delete A;
2727        }
2728      }
2729      return Error("Never resolved value found in function!");
2730    }
2731  }
2732
2733  // FIXME: Check for unresolved forward-declared metadata references
2734  // and clean up leaks.
2735
2736  // See if anything took the address of blocks in this function.  If so,
2737  // resolve them now.
2738  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2739    BlockAddrFwdRefs.find(F);
2740  if (BAFRI != BlockAddrFwdRefs.end()) {
2741    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2742    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2743      unsigned BlockIdx = RefList[i].first;
2744      if (BlockIdx >= FunctionBBs.size())
2745        return Error("Invalid blockaddress block #");
2746
2747      GlobalVariable *FwdRef = RefList[i].second;
2748      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2749      FwdRef->eraseFromParent();
2750    }
2751
2752    BlockAddrFwdRefs.erase(BAFRI);
2753  }
2754
2755  unsigned NewMDValueListSize = MDValueList.size();
2756  // Trim the value list down to the size it was before we parsed this function.
2757  ValueList.shrinkTo(ModuleValueListSize);
2758  MDValueList.shrinkTo(ModuleMDValueListSize);
2759
2760  if (LLVM2_7MetadataDetected) {
2761    MDValueList.resize(NewMDValueListSize);
2762  }
2763
2764  std::vector<BasicBlock*>().swap(FunctionBBs);
2765  return false;
2766}
2767
2768//===----------------------------------------------------------------------===//
2769// GVMaterializer implementation
2770//===----------------------------------------------------------------------===//
2771
2772
2773bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2774  if (const Function *F = dyn_cast<Function>(GV)) {
2775    return F->isDeclaration() &&
2776      DeferredFunctionInfo.count(const_cast<Function*>(F));
2777  }
2778  return false;
2779}
2780
2781bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2782  Function *F = dyn_cast<Function>(GV);
2783  // If it's not a function or is already material, ignore the request.
2784  if (!F || !F->isMaterializable()) return false;
2785
2786  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2787  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2788
2789  // Move the bit stream to the saved position of the deferred function body.
2790  Stream.JumpToBit(DFII->second);
2791
2792  if (ParseFunctionBody(F)) {
2793    if (ErrInfo) *ErrInfo = ErrorString;
2794    return true;
2795  }
2796
2797  // Upgrade any old intrinsic calls in the function.
2798  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2799       E = UpgradedIntrinsics.end(); I != E; ++I) {
2800    if (I->first != I->second) {
2801      for (Value::use_iterator UI = I->first->use_begin(),
2802           UE = I->first->use_end(); UI != UE; ) {
2803        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2804          UpgradeIntrinsicCall(CI, I->second);
2805      }
2806    }
2807  }
2808
2809  return false;
2810}
2811
2812bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2813  const Function *F = dyn_cast<Function>(GV);
2814  if (!F || F->isDeclaration())
2815    return false;
2816  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2817}
2818
2819void BitcodeReader::Dematerialize(GlobalValue *GV) {
2820  Function *F = dyn_cast<Function>(GV);
2821  // If this function isn't dematerializable, this is a noop.
2822  if (!F || !isDematerializable(F))
2823    return;
2824
2825  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2826
2827  // Just forget the function body, we can remat it later.
2828  F->deleteBody();
2829}
2830
2831
2832bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2833  assert(M == TheModule &&
2834         "Can only Materialize the Module this BitcodeReader is attached to.");
2835  // Iterate over the module, deserializing any functions that are still on
2836  // disk.
2837  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2838       F != E; ++F)
2839    if (F->isMaterializable() &&
2840        Materialize(F, ErrInfo))
2841      return true;
2842
2843  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2844  // delete the old functions to clean up. We can't do this unless the entire
2845  // module is materialized because there could always be another function body
2846  // with calls to the old function.
2847  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2848       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2849    if (I->first != I->second) {
2850      for (Value::use_iterator UI = I->first->use_begin(),
2851           UE = I->first->use_end(); UI != UE; ) {
2852        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2853          UpgradeIntrinsicCall(CI, I->second);
2854      }
2855      if (!I->first->use_empty())
2856        I->first->replaceAllUsesWith(I->second);
2857      I->first->eraseFromParent();
2858    }
2859  }
2860  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2861
2862  // Check debug info intrinsics.
2863  CheckDebugInfoIntrinsics(TheModule);
2864
2865  return false;
2866}
2867
2868
2869//===----------------------------------------------------------------------===//
2870// External interface
2871//===----------------------------------------------------------------------===//
2872
2873/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2874///
2875Module *llvm_2_7::getLazyBitcodeModule(MemoryBuffer *Buffer,
2876                                       LLVMContext& Context,
2877                                       std::string *ErrMsg) {
2878  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2879  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2880  M->setMaterializer(R);
2881  if (R->ParseBitcodeInto(M)) {
2882    if (ErrMsg)
2883      *ErrMsg = R->getErrorString();
2884
2885    delete M;  // Also deletes R.
2886    return 0;
2887  }
2888  // Have the BitcodeReader dtor delete 'Buffer'.
2889  R->setBufferOwned(true);
2890  return M;
2891}
2892
2893/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2894/// If an error occurs, return null and fill in *ErrMsg if non-null.
2895Module *llvm_2_7::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2896                                   std::string *ErrMsg){
2897  Module *M = llvm_2_7::getLazyBitcodeModule(Buffer, Context, ErrMsg);
2898  if (!M) return 0;
2899
2900  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2901  // there was an error.
2902  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2903
2904  // Read in the entire module, and destroy the BitcodeReader.
2905  if (M->MaterializeAllPermanently(ErrMsg)) {
2906    delete M;
2907    return 0;
2908  }
2909
2910  return M;
2911}
2912
2913std::string llvm_2_7::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2914                                             LLVMContext& Context,
2915                                             std::string *ErrMsg) {
2916  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2917  // Don't let the BitcodeReader dtor delete 'Buffer'.
2918  R->setBufferOwned(false);
2919
2920  std::string Triple("");
2921  if (R->ParseTriple(Triple))
2922    if (ErrMsg)
2923      *ErrMsg = R->getErrorString();
2924
2925  delete R;
2926  return Triple;
2927}
2928