BitcodeReader.cpp revision be81e1078cd32c1c4a2b8f60e16e2c7760c2a353
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "BitReader_2_7.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/AutoUpgrade.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/OperandTraits.h"
29using namespace llvm;
30using namespace llvm_2_7;
31
32#define METADATA_NODE_2_7             2
33#define METADATA_FN_NODE_2_7          3
34#define METADATA_NAMED_NODE_2_7       5
35#define METADATA_ATTACHMENT_2_7       7
36#define FUNC_CODE_INST_MALLOC_2_7     17
37#define FUNC_CODE_INST_FREE_2_7       18
38#define FUNC_CODE_INST_STORE_2_7      21
39#define FUNC_CODE_INST_CALL_2_7       22
40#define FUNC_CODE_INST_GETRESULT_2_7  25
41#define FUNC_CODE_DEBUG_LOC_2_7       32
42
43#define TYPE_BLOCK_ID_OLD_3_0         10
44#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
45#define TYPE_CODE_STRUCT_OLD_3_0      10
46
47namespace {
48  /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
49  /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
50  /// strips that use.
51  void CheckDebugInfoIntrinsics(Module *M) {
52    if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
53      while (!FuncStart->use_empty())
54        cast<CallInst>(FuncStart->use_back())->eraseFromParent();
55      FuncStart->eraseFromParent();
56    }
57
58    if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
59      while (!StopPoint->use_empty())
60        cast<CallInst>(StopPoint->use_back())->eraseFromParent();
61      StopPoint->eraseFromParent();
62    }
63
64    if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
65      while (!RegionStart->use_empty())
66        cast<CallInst>(RegionStart->use_back())->eraseFromParent();
67      RegionStart->eraseFromParent();
68    }
69
70    if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
71      while (!RegionEnd->use_empty())
72        cast<CallInst>(RegionEnd->use_back())->eraseFromParent();
73      RegionEnd->eraseFromParent();
74    }
75
76    if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
77      if (!Declare->use_empty()) {
78        DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
79        if (!isa<MDNode>(DDI->getArgOperand(0)) ||
80            !isa<MDNode>(DDI->getArgOperand(1))) {
81          while (!Declare->use_empty()) {
82            CallInst *CI = cast<CallInst>(Declare->use_back());
83            CI->eraseFromParent();
84          }
85          Declare->eraseFromParent();
86        }
87      }
88    }
89  }
90} // end anonymous namespace
91
92void BitcodeReader::FreeState() {
93  if (BufferOwned)
94    delete Buffer;
95  Buffer = 0;
96  std::vector<Type*>().swap(TypeList);
97  ValueList.clear();
98  MDValueList.clear();
99
100  std::vector<AttrListPtr>().swap(MAttributes);
101  std::vector<BasicBlock*>().swap(FunctionBBs);
102  std::vector<Function*>().swap(FunctionsWithBodies);
103  DeferredFunctionInfo.clear();
104  MDKindMap.clear();
105}
106
107//===----------------------------------------------------------------------===//
108//  Helper functions to implement forward reference resolution, etc.
109//===----------------------------------------------------------------------===//
110
111/// ConvertToString - Convert a string from a record into an std::string, return
112/// true on failure.
113template<typename StrTy>
114static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
115                            StrTy &Result) {
116  if (Idx > Record.size())
117    return true;
118
119  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
120    Result += (char)Record[i];
121  return false;
122}
123
124static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
125  switch (Val) {
126  default: // Map unknown/new linkages to external
127  case 0:  return GlobalValue::ExternalLinkage;
128  case 1:  return GlobalValue::WeakAnyLinkage;
129  case 2:  return GlobalValue::AppendingLinkage;
130  case 3:  return GlobalValue::InternalLinkage;
131  case 4:  return GlobalValue::LinkOnceAnyLinkage;
132  case 5:  return GlobalValue::DLLImportLinkage;
133  case 6:  return GlobalValue::DLLExportLinkage;
134  case 7:  return GlobalValue::ExternalWeakLinkage;
135  case 8:  return GlobalValue::CommonLinkage;
136  case 9:  return GlobalValue::PrivateLinkage;
137  case 10: return GlobalValue::WeakODRLinkage;
138  case 11: return GlobalValue::LinkOnceODRLinkage;
139  case 12: return GlobalValue::AvailableExternallyLinkage;
140  case 13: return GlobalValue::LinkerPrivateLinkage;
141  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
142  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
143  }
144}
145
146static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
147  switch (Val) {
148  default: // Map unknown visibilities to default.
149  case 0: return GlobalValue::DefaultVisibility;
150  case 1: return GlobalValue::HiddenVisibility;
151  case 2: return GlobalValue::ProtectedVisibility;
152  }
153}
154
155static int GetDecodedCastOpcode(unsigned Val) {
156  switch (Val) {
157  default: return -1;
158  case bitc::CAST_TRUNC   : return Instruction::Trunc;
159  case bitc::CAST_ZEXT    : return Instruction::ZExt;
160  case bitc::CAST_SEXT    : return Instruction::SExt;
161  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
162  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
163  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
164  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
165  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
166  case bitc::CAST_FPEXT   : return Instruction::FPExt;
167  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
168  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
169  case bitc::CAST_BITCAST : return Instruction::BitCast;
170  }
171}
172static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
173  switch (Val) {
174  default: return -1;
175  case bitc::BINOP_ADD:
176    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
177  case bitc::BINOP_SUB:
178    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
179  case bitc::BINOP_MUL:
180    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
181  case bitc::BINOP_UDIV: return Instruction::UDiv;
182  case bitc::BINOP_SDIV:
183    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
184  case bitc::BINOP_UREM: return Instruction::URem;
185  case bitc::BINOP_SREM:
186    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
187  case bitc::BINOP_SHL:  return Instruction::Shl;
188  case bitc::BINOP_LSHR: return Instruction::LShr;
189  case bitc::BINOP_ASHR: return Instruction::AShr;
190  case bitc::BINOP_AND:  return Instruction::And;
191  case bitc::BINOP_OR:   return Instruction::Or;
192  case bitc::BINOP_XOR:  return Instruction::Xor;
193  }
194}
195
196namespace llvm {
197namespace {
198  /// @brief A class for maintaining the slot number definition
199  /// as a placeholder for the actual definition for forward constants defs.
200  class ConstantPlaceHolder : public ConstantExpr {
201    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
202  public:
203    // allocate space for exactly one operand
204    void *operator new(size_t s) {
205      return User::operator new(s, 1);
206    }
207    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
208      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
209      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
210    }
211
212    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
213    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
214    static bool classof(const Value *V) {
215      return isa<ConstantExpr>(V) &&
216             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
217    }
218
219
220    /// Provide fast operand accessors
221    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
222  };
223}
224
225// FIXME: can we inherit this from ConstantExpr?
226template <>
227struct OperandTraits<ConstantPlaceHolder> :
228  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
229};
230}
231
232
233void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
234  if (Idx == size()) {
235    push_back(V);
236    return;
237  }
238
239  if (Idx >= size())
240    resize(Idx+1);
241
242  WeakVH &OldV = ValuePtrs[Idx];
243  if (OldV == 0) {
244    OldV = V;
245    return;
246  }
247
248  // Handle constants and non-constants (e.g. instrs) differently for
249  // efficiency.
250  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
251    ResolveConstants.push_back(std::make_pair(PHC, Idx));
252    OldV = V;
253  } else {
254    // If there was a forward reference to this value, replace it.
255    Value *PrevVal = OldV;
256    OldV->replaceAllUsesWith(V);
257    delete PrevVal;
258  }
259}
260
261
262Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
263                                                    Type *Ty) {
264  if (Idx >= size())
265    resize(Idx + 1);
266
267  if (Value *V = ValuePtrs[Idx]) {
268    assert(Ty == V->getType() && "Type mismatch in constant table!");
269    return cast<Constant>(V);
270  }
271
272  // Create and return a placeholder, which will later be RAUW'd.
273  Constant *C = new ConstantPlaceHolder(Ty, Context);
274  ValuePtrs[Idx] = C;
275  return C;
276}
277
278Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
279  if (Idx >= size())
280    resize(Idx + 1);
281
282  if (Value *V = ValuePtrs[Idx]) {
283    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
284    return V;
285  }
286
287  // No type specified, must be invalid reference.
288  if (Ty == 0) return 0;
289
290  // Create and return a placeholder, which will later be RAUW'd.
291  Value *V = new Argument(Ty);
292  ValuePtrs[Idx] = V;
293  return V;
294}
295
296/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
297/// resolves any forward references.  The idea behind this is that we sometimes
298/// get constants (such as large arrays) which reference *many* forward ref
299/// constants.  Replacing each of these causes a lot of thrashing when
300/// building/reuniquing the constant.  Instead of doing this, we look at all the
301/// uses and rewrite all the place holders at once for any constant that uses
302/// a placeholder.
303void BitcodeReaderValueList::ResolveConstantForwardRefs() {
304  // Sort the values by-pointer so that they are efficient to look up with a
305  // binary search.
306  std::sort(ResolveConstants.begin(), ResolveConstants.end());
307
308  SmallVector<Constant*, 64> NewOps;
309
310  while (!ResolveConstants.empty()) {
311    Value *RealVal = operator[](ResolveConstants.back().second);
312    Constant *Placeholder = ResolveConstants.back().first;
313    ResolveConstants.pop_back();
314
315    // Loop over all users of the placeholder, updating them to reference the
316    // new value.  If they reference more than one placeholder, update them all
317    // at once.
318    while (!Placeholder->use_empty()) {
319      Value::use_iterator UI = Placeholder->use_begin();
320      User *U = *UI;
321
322      // If the using object isn't uniqued, just update the operands.  This
323      // handles instructions and initializers for global variables.
324      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
325        UI.getUse().set(RealVal);
326        continue;
327      }
328
329      // Otherwise, we have a constant that uses the placeholder.  Replace that
330      // constant with a new constant that has *all* placeholder uses updated.
331      Constant *UserC = cast<Constant>(U);
332      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
333           I != E; ++I) {
334        Value *NewOp;
335        if (!isa<ConstantPlaceHolder>(*I)) {
336          // Not a placeholder reference.
337          NewOp = *I;
338        } else if (*I == Placeholder) {
339          // Common case is that it just references this one placeholder.
340          NewOp = RealVal;
341        } else {
342          // Otherwise, look up the placeholder in ResolveConstants.
343          ResolveConstantsTy::iterator It =
344            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
345                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
346                                                            0));
347          assert(It != ResolveConstants.end() && It->first == *I);
348          NewOp = operator[](It->second);
349        }
350
351        NewOps.push_back(cast<Constant>(NewOp));
352      }
353
354      // Make the new constant.
355      Constant *NewC;
356      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
357        NewC = ConstantArray::get(UserCA->getType(), NewOps);
358      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
359        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
360      } else if (isa<ConstantVector>(UserC)) {
361        NewC = ConstantVector::get(NewOps);
362      } else {
363        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
364        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
365      }
366
367      UserC->replaceAllUsesWith(NewC);
368      UserC->destroyConstant();
369      NewOps.clear();
370    }
371
372    // Update all ValueHandles, they should be the only users at this point.
373    Placeholder->replaceAllUsesWith(RealVal);
374    delete Placeholder;
375  }
376}
377
378void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
379  if (Idx == size()) {
380    push_back(V);
381    return;
382  }
383
384  if (Idx >= size())
385    resize(Idx+1);
386
387  WeakVH &OldV = MDValuePtrs[Idx];
388  if (OldV == 0) {
389    OldV = V;
390    return;
391  }
392
393  // If there was a forward reference to this value, replace it.
394  MDNode *PrevVal = cast<MDNode>(OldV);
395  OldV->replaceAllUsesWith(V);
396  MDNode::deleteTemporary(PrevVal);
397  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
398  // value for Idx.
399  MDValuePtrs[Idx] = V;
400}
401
402Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
403  if (Idx >= size())
404    resize(Idx + 1);
405
406  if (Value *V = MDValuePtrs[Idx]) {
407    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
408    return V;
409  }
410
411  // Create and return a placeholder, which will later be RAUW'd.
412  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
413  MDValuePtrs[Idx] = V;
414  return V;
415}
416
417Type *BitcodeReader::getTypeByID(unsigned ID) {
418  // The type table size is always specified correctly.
419  if (ID >= TypeList.size())
420    return 0;
421
422  if (Type *Ty = TypeList[ID])
423    return Ty;
424
425  // If we have a forward reference, the only possible case is when it is to a
426  // named struct.  Just create a placeholder for now.
427  return TypeList[ID] = StructType::create(Context, "");
428}
429
430/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
431Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
432  if (ID >= TypeList.size())
433    TypeList.resize(ID+1);
434
435  return TypeList[ID];
436}
437
438
439//===----------------------------------------------------------------------===//
440//  Functions for parsing blocks from the bitcode file
441//===----------------------------------------------------------------------===//
442
443bool BitcodeReader::ParseAttributeBlock() {
444  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
445    return Error("Malformed block record");
446
447  if (!MAttributes.empty())
448    return Error("Multiple PARAMATTR blocks found!");
449
450  SmallVector<uint64_t, 64> Record;
451
452  SmallVector<AttributeWithIndex, 8> Attrs;
453
454  // Read all the records.
455  while (1) {
456    unsigned Code = Stream.ReadCode();
457    if (Code == bitc::END_BLOCK) {
458      if (Stream.ReadBlockEnd())
459        return Error("Error at end of PARAMATTR block");
460      return false;
461    }
462
463    if (Code == bitc::ENTER_SUBBLOCK) {
464      // No known subblocks, always skip them.
465      Stream.ReadSubBlockID();
466      if (Stream.SkipBlock())
467        return Error("Malformed block record");
468      continue;
469    }
470
471    if (Code == bitc::DEFINE_ABBREV) {
472      Stream.ReadAbbrevRecord();
473      continue;
474    }
475
476    // Read a record.
477    Record.clear();
478    switch (Stream.ReadRecord(Code, Record)) {
479    default:  // Default behavior: ignore.
480      break;
481    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
482      if (Record.size() & 1)
483        return Error("Invalid ENTRY record");
484
485      // FIXME : Remove this autoupgrade code in LLVM 3.0.
486      // If Function attributes are using index 0 then transfer them
487      // to index ~0. Index 0 is used for return value attributes but used to be
488      // used for function attributes.
489      Attributes RetAttribute = Attribute::None;
490      Attributes FnAttribute = Attribute::None;
491      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
492        // FIXME: remove in LLVM 3.0
493        // The alignment is stored as a 16-bit raw value from bits 31--16.
494        // We shift the bits above 31 down by 11 bits.
495
496        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
497        if (Alignment && !isPowerOf2_32(Alignment))
498          return Error("Alignment is not a power of two.");
499
500        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
501        if (Alignment)
502          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
503        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
504        Record[i+1] = ReconstitutedAttr;
505
506        if (Record[i] == 0)
507          RetAttribute = Record[i+1];
508        else if (Record[i] == ~0U)
509          FnAttribute = Record[i+1];
510      }
511
512      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
513                              Attribute::ReadOnly|Attribute::ReadNone);
514
515      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
516          (RetAttribute & OldRetAttrs) != 0) {
517        if (FnAttribute == Attribute::None) { // add a slot so they get added.
518          Record.push_back(~0U);
519          Record.push_back(0);
520        }
521
522        FnAttribute  |= RetAttribute & OldRetAttrs;
523        RetAttribute &= ~OldRetAttrs;
524      }
525
526      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
527        if (Record[i] == 0) {
528          if (RetAttribute != Attribute::None)
529            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
530        } else if (Record[i] == ~0U) {
531          if (FnAttribute != Attribute::None)
532            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
533        } else if (Record[i+1] != Attribute::None)
534          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
535      }
536
537      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
538      Attrs.clear();
539      break;
540    }
541    }
542  }
543}
544
545bool BitcodeReader::ParseTypeTable() {
546  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
547    return Error("Malformed block record");
548
549  return ParseTypeTableBody();
550}
551
552bool BitcodeReader::ParseTypeTableBody() {
553  if (!TypeList.empty())
554    return Error("Multiple TYPE_BLOCKs found!");
555
556  SmallVector<uint64_t, 64> Record;
557  unsigned NumRecords = 0;
558
559  SmallString<64> TypeName;
560
561  // Read all the records for this type table.
562  while (1) {
563    unsigned Code = Stream.ReadCode();
564    if (Code == bitc::END_BLOCK) {
565      if (NumRecords != TypeList.size())
566        return Error("Invalid type forward reference in TYPE_BLOCK");
567      if (Stream.ReadBlockEnd())
568        return Error("Error at end of type table block");
569      return false;
570    }
571
572    if (Code == bitc::ENTER_SUBBLOCK) {
573      // No known subblocks, always skip them.
574      Stream.ReadSubBlockID();
575      if (Stream.SkipBlock())
576        return Error("Malformed block record");
577      continue;
578    }
579
580    if (Code == bitc::DEFINE_ABBREV) {
581      Stream.ReadAbbrevRecord();
582      continue;
583    }
584
585    // Read a record.
586    Record.clear();
587    Type *ResultTy = 0;
588    switch (Stream.ReadRecord(Code, Record)) {
589    default: return Error("unknown type in type table");
590    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
591      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
592      // type list.  This allows us to reserve space.
593      if (Record.size() < 1)
594        return Error("Invalid TYPE_CODE_NUMENTRY record");
595      TypeList.resize(Record[0]);
596      continue;
597    case bitc::TYPE_CODE_VOID:      // VOID
598      ResultTy = Type::getVoidTy(Context);
599      break;
600    case bitc::TYPE_CODE_FLOAT:     // FLOAT
601      ResultTy = Type::getFloatTy(Context);
602      break;
603    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
604      ResultTy = Type::getDoubleTy(Context);
605      break;
606    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
607      ResultTy = Type::getX86_FP80Ty(Context);
608      break;
609    case bitc::TYPE_CODE_FP128:     // FP128
610      ResultTy = Type::getFP128Ty(Context);
611      break;
612    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
613      ResultTy = Type::getPPC_FP128Ty(Context);
614      break;
615    case bitc::TYPE_CODE_LABEL:     // LABEL
616      ResultTy = Type::getLabelTy(Context);
617      break;
618    case bitc::TYPE_CODE_METADATA:  // METADATA
619      ResultTy = Type::getMetadataTy(Context);
620      break;
621    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
622      ResultTy = Type::getX86_MMXTy(Context);
623      break;
624    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
625      if (Record.size() < 1)
626        return Error("Invalid Integer type record");
627
628      ResultTy = IntegerType::get(Context, Record[0]);
629      break;
630    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
631                                    //          [pointee type, address space]
632      if (Record.size() < 1)
633        return Error("Invalid POINTER type record");
634      unsigned AddressSpace = 0;
635      if (Record.size() == 2)
636        AddressSpace = Record[1];
637      ResultTy = getTypeByID(Record[0]);
638      if (ResultTy == 0) return Error("invalid element type in pointer type");
639      ResultTy = PointerType::get(ResultTy, AddressSpace);
640      break;
641    }
642    case bitc::TYPE_CODE_FUNCTION_OLD: {
643      // FIXME: attrid is dead, remove it in LLVM 3.0
644      // FUNCTION: [vararg, attrid, retty, paramty x N]
645      if (Record.size() < 3)
646        return Error("Invalid FUNCTION type record");
647      std::vector<Type*> ArgTys;
648      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
649        if (Type *T = getTypeByID(Record[i]))
650          ArgTys.push_back(T);
651        else
652          break;
653      }
654
655      ResultTy = getTypeByID(Record[2]);
656      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
657        return Error("invalid type in function type");
658
659      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
660      break;
661    }
662    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
663      if (Record.size() < 1)
664        return Error("Invalid STRUCT type record");
665      std::vector<Type*> EltTys;
666      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
667        if (Type *T = getTypeByID(Record[i]))
668          EltTys.push_back(T);
669        else
670          break;
671      }
672      if (EltTys.size() != Record.size()-1)
673        return Error("invalid type in struct type");
674      ResultTy = StructType::get(Context, EltTys, Record[0]);
675      break;
676    }
677    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
678      if (ConvertToString(Record, 0, TypeName))
679        return Error("Invalid STRUCT_NAME record");
680      continue;
681
682    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
683      if (Record.size() < 1)
684        return Error("Invalid STRUCT type record");
685
686      if (NumRecords >= TypeList.size())
687        return Error("invalid TYPE table");
688
689      // Check to see if this was forward referenced, if so fill in the temp.
690      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
691      if (Res) {
692        Res->setName(TypeName);
693        TypeList[NumRecords] = 0;
694      } else  // Otherwise, create a new struct.
695        Res = StructType::create(Context, TypeName);
696      TypeName.clear();
697
698      SmallVector<Type*, 8> EltTys;
699      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
700        if (Type *T = getTypeByID(Record[i]))
701          EltTys.push_back(T);
702        else
703          break;
704      }
705      if (EltTys.size() != Record.size()-1)
706        return Error("invalid STRUCT type record");
707      Res->setBody(EltTys, Record[0]);
708      ResultTy = Res;
709      break;
710    }
711    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
712      if (Record.size() != 1)
713        return Error("Invalid OPAQUE type record");
714
715      if (NumRecords >= TypeList.size())
716        return Error("invalid TYPE table");
717
718      // Check to see if this was forward referenced, if so fill in the temp.
719      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
720      if (Res) {
721        Res->setName(TypeName);
722        TypeList[NumRecords] = 0;
723      } else  // Otherwise, create a new struct with no body.
724        Res = StructType::create(Context, TypeName);
725      TypeName.clear();
726      ResultTy = Res;
727      break;
728    }
729    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
730      if (Record.size() < 2)
731        return Error("Invalid ARRAY type record");
732      if ((ResultTy = getTypeByID(Record[1])))
733        ResultTy = ArrayType::get(ResultTy, Record[0]);
734      else
735        return Error("Invalid ARRAY type element");
736      break;
737    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
738      if (Record.size() < 2)
739        return Error("Invalid VECTOR type record");
740      if ((ResultTy = getTypeByID(Record[1])))
741        ResultTy = VectorType::get(ResultTy, Record[0]);
742      else
743        return Error("Invalid ARRAY type element");
744      break;
745    }
746
747    if (NumRecords >= TypeList.size())
748      return Error("invalid TYPE table");
749    assert(ResultTy && "Didn't read a type?");
750    assert(TypeList[NumRecords] == 0 && "Already read type?");
751    TypeList[NumRecords++] = ResultTy;
752  }
753}
754
755// FIXME: Remove in LLVM 3.1
756bool BitcodeReader::ParseOldTypeTable() {
757  if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
758    return Error("Malformed block record");
759
760  if (!TypeList.empty())
761    return Error("Multiple TYPE_BLOCKs found!");
762
763
764  // While horrible, we have no good ordering of types in the bc file.  Just
765  // iteratively parse types out of the bc file in multiple passes until we get
766  // them all.  Do this by saving a cursor for the start of the type block.
767  BitstreamCursor StartOfTypeBlockCursor(Stream);
768
769  unsigned NumTypesRead = 0;
770
771  SmallVector<uint64_t, 64> Record;
772RestartScan:
773  unsigned NextTypeID = 0;
774  bool ReadAnyTypes = false;
775
776  // Read all the records for this type table.
777  while (1) {
778    unsigned Code = Stream.ReadCode();
779    if (Code == bitc::END_BLOCK) {
780      if (NextTypeID != TypeList.size())
781        return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
782
783      // If we haven't read all of the types yet, iterate again.
784      if (NumTypesRead != TypeList.size()) {
785        // If we didn't successfully read any types in this pass, then we must
786        // have an unhandled forward reference.
787        if (!ReadAnyTypes)
788          return Error("Obsolete bitcode contains unhandled recursive type");
789
790        Stream = StartOfTypeBlockCursor;
791        goto RestartScan;
792      }
793
794      if (Stream.ReadBlockEnd())
795        return Error("Error at end of type table block");
796      return false;
797    }
798
799    if (Code == bitc::ENTER_SUBBLOCK) {
800      // No known subblocks, always skip them.
801      Stream.ReadSubBlockID();
802      if (Stream.SkipBlock())
803        return Error("Malformed block record");
804      continue;
805    }
806
807    if (Code == bitc::DEFINE_ABBREV) {
808      Stream.ReadAbbrevRecord();
809      continue;
810    }
811
812    // Read a record.
813    Record.clear();
814    Type *ResultTy = 0;
815    switch (Stream.ReadRecord(Code, Record)) {
816    default: return Error("unknown type in type table");
817    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
818      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
819      // type list.  This allows us to reserve space.
820      if (Record.size() < 1)
821        return Error("Invalid TYPE_CODE_NUMENTRY record");
822      TypeList.resize(Record[0]);
823      continue;
824    case bitc::TYPE_CODE_VOID:      // VOID
825      ResultTy = Type::getVoidTy(Context);
826      break;
827    case bitc::TYPE_CODE_FLOAT:     // FLOAT
828      ResultTy = Type::getFloatTy(Context);
829      break;
830    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
831      ResultTy = Type::getDoubleTy(Context);
832      break;
833    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
834      ResultTy = Type::getX86_FP80Ty(Context);
835      break;
836    case bitc::TYPE_CODE_FP128:     // FP128
837      ResultTy = Type::getFP128Ty(Context);
838      break;
839    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
840      ResultTy = Type::getPPC_FP128Ty(Context);
841      break;
842    case bitc::TYPE_CODE_LABEL:     // LABEL
843      ResultTy = Type::getLabelTy(Context);
844      break;
845    case bitc::TYPE_CODE_METADATA:  // METADATA
846      ResultTy = Type::getMetadataTy(Context);
847      break;
848    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
849      ResultTy = Type::getX86_MMXTy(Context);
850      break;
851    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
852      if (Record.size() < 1)
853        return Error("Invalid Integer type record");
854      ResultTy = IntegerType::get(Context, Record[0]);
855      break;
856    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
857      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
858        ResultTy = StructType::create(Context, "");
859      break;
860    case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
861      if (NextTypeID >= TypeList.size()) break;
862      // If we already read it, don't reprocess.
863      if (TypeList[NextTypeID] &&
864          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
865        break;
866
867      // Set a type.
868      if (TypeList[NextTypeID] == 0)
869        TypeList[NextTypeID] = StructType::create(Context, "");
870
871      std::vector<Type*> EltTys;
872      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
873        if (Type *Elt = getTypeByIDOrNull(Record[i]))
874          EltTys.push_back(Elt);
875        else
876          break;
877      }
878
879      if (EltTys.size() != Record.size()-1)
880        break;      // Not all elements are ready.
881
882      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
883      ResultTy = TypeList[NextTypeID];
884      TypeList[NextTypeID] = 0;
885      break;
886    }
887    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
888      //          [pointee type, address space]
889      if (Record.size() < 1)
890        return Error("Invalid POINTER type record");
891      unsigned AddressSpace = 0;
892      if (Record.size() == 2)
893        AddressSpace = Record[1];
894      if ((ResultTy = getTypeByIDOrNull(Record[0])))
895        ResultTy = PointerType::get(ResultTy, AddressSpace);
896      break;
897    }
898    case bitc::TYPE_CODE_FUNCTION_OLD: {
899      // FIXME: attrid is dead, remove it in LLVM 3.0
900      // FUNCTION: [vararg, attrid, retty, paramty x N]
901      if (Record.size() < 3)
902        return Error("Invalid FUNCTION type record");
903      std::vector<Type*> ArgTys;
904      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
905        if (Type *Elt = getTypeByIDOrNull(Record[i]))
906          ArgTys.push_back(Elt);
907        else
908          break;
909      }
910      if (ArgTys.size()+3 != Record.size())
911        break;  // Something was null.
912      if ((ResultTy = getTypeByIDOrNull(Record[2])))
913        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
914      break;
915    }
916    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
917      if (Record.size() < 2)
918        return Error("Invalid ARRAY type record");
919      if ((ResultTy = getTypeByIDOrNull(Record[1])))
920        ResultTy = ArrayType::get(ResultTy, Record[0]);
921      break;
922    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
923      if (Record.size() < 2)
924        return Error("Invalid VECTOR type record");
925      if ((ResultTy = getTypeByIDOrNull(Record[1])))
926        ResultTy = VectorType::get(ResultTy, Record[0]);
927      break;
928    }
929
930    if (NextTypeID >= TypeList.size())
931      return Error("invalid TYPE table");
932
933    if (ResultTy && TypeList[NextTypeID] == 0) {
934      ++NumTypesRead;
935      ReadAnyTypes = true;
936
937      TypeList[NextTypeID] = ResultTy;
938    }
939
940    ++NextTypeID;
941  }
942}
943
944
945bool BitcodeReader::ParseOldTypeSymbolTable() {
946  if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
947    return Error("Malformed block record");
948
949  SmallVector<uint64_t, 64> Record;
950
951  // Read all the records for this type table.
952  std::string TypeName;
953  while (1) {
954    unsigned Code = Stream.ReadCode();
955    if (Code == bitc::END_BLOCK) {
956      if (Stream.ReadBlockEnd())
957        return Error("Error at end of type symbol table block");
958      return false;
959    }
960
961    if (Code == bitc::ENTER_SUBBLOCK) {
962      // No known subblocks, always skip them.
963      Stream.ReadSubBlockID();
964      if (Stream.SkipBlock())
965        return Error("Malformed block record");
966      continue;
967    }
968
969    if (Code == bitc::DEFINE_ABBREV) {
970      Stream.ReadAbbrevRecord();
971      continue;
972    }
973
974    // Read a record.
975    Record.clear();
976    switch (Stream.ReadRecord(Code, Record)) {
977    default:  // Default behavior: unknown type.
978      break;
979    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
980      if (ConvertToString(Record, 1, TypeName))
981        return Error("Invalid TST_ENTRY record");
982      unsigned TypeID = Record[0];
983      if (TypeID >= TypeList.size())
984        return Error("Invalid Type ID in TST_ENTRY record");
985
986      // Only apply the type name to a struct type with no name.
987      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
988        if (!STy->isLiteral() && !STy->hasName())
989          STy->setName(TypeName);
990      TypeName.clear();
991      break;
992    }
993  }
994}
995
996bool BitcodeReader::ParseValueSymbolTable() {
997  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
998    return Error("Malformed block record");
999
1000  SmallVector<uint64_t, 64> Record;
1001
1002  // Read all the records for this value table.
1003  SmallString<128> ValueName;
1004  while (1) {
1005    unsigned Code = Stream.ReadCode();
1006    if (Code == bitc::END_BLOCK) {
1007      if (Stream.ReadBlockEnd())
1008        return Error("Error at end of value symbol table block");
1009      return false;
1010    }
1011    if (Code == bitc::ENTER_SUBBLOCK) {
1012      // No known subblocks, always skip them.
1013      Stream.ReadSubBlockID();
1014      if (Stream.SkipBlock())
1015        return Error("Malformed block record");
1016      continue;
1017    }
1018
1019    if (Code == bitc::DEFINE_ABBREV) {
1020      Stream.ReadAbbrevRecord();
1021      continue;
1022    }
1023
1024    // Read a record.
1025    Record.clear();
1026    switch (Stream.ReadRecord(Code, Record)) {
1027    default:  // Default behavior: unknown type.
1028      break;
1029    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1030      if (ConvertToString(Record, 1, ValueName))
1031        return Error("Invalid VST_ENTRY record");
1032      unsigned ValueID = Record[0];
1033      if (ValueID >= ValueList.size())
1034        return Error("Invalid Value ID in VST_ENTRY record");
1035      Value *V = ValueList[ValueID];
1036
1037      V->setName(StringRef(ValueName.data(), ValueName.size()));
1038      ValueName.clear();
1039      break;
1040    }
1041    case bitc::VST_CODE_BBENTRY: {
1042      if (ConvertToString(Record, 1, ValueName))
1043        return Error("Invalid VST_BBENTRY record");
1044      BasicBlock *BB = getBasicBlock(Record[0]);
1045      if (BB == 0)
1046        return Error("Invalid BB ID in VST_BBENTRY record");
1047
1048      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1049      ValueName.clear();
1050      break;
1051    }
1052    }
1053  }
1054}
1055
1056bool BitcodeReader::ParseMetadata() {
1057  unsigned NextMDValueNo = MDValueList.size();
1058
1059  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1060    return Error("Malformed block record");
1061
1062  SmallVector<uint64_t, 64> Record;
1063
1064  // Read all the records.
1065  while (1) {
1066    unsigned Code = Stream.ReadCode();
1067    if (Code == bitc::END_BLOCK) {
1068      if (Stream.ReadBlockEnd())
1069        return Error("Error at end of PARAMATTR block");
1070      return false;
1071    }
1072
1073    if (Code == bitc::ENTER_SUBBLOCK) {
1074      // No known subblocks, always skip them.
1075      Stream.ReadSubBlockID();
1076      if (Stream.SkipBlock())
1077        return Error("Malformed block record");
1078      continue;
1079    }
1080
1081    if (Code == bitc::DEFINE_ABBREV) {
1082      Stream.ReadAbbrevRecord();
1083      continue;
1084    }
1085
1086    bool IsFunctionLocal = false;
1087    // Read a record.
1088    Record.clear();
1089    Code = Stream.ReadRecord(Code, Record);
1090    switch (Code) {
1091    default:  // Default behavior: ignore.
1092      break;
1093    case bitc::METADATA_NAME: {
1094      // Read named of the named metadata.
1095      unsigned NameLength = Record.size();
1096      SmallString<8> Name;
1097      Name.resize(NameLength);
1098      for (unsigned i = 0; i != NameLength; ++i)
1099        Name[i] = Record[i];
1100      Record.clear();
1101      Code = Stream.ReadCode();
1102
1103      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1104      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1105      if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1106        LLVM2_7MetadataDetected = true;
1107      } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1108        assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1109      }
1110
1111      // Read named metadata elements.
1112      unsigned Size = Record.size();
1113      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1114      for (unsigned i = 0; i != Size; ++i) {
1115        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1116        if (MD == 0)
1117          return Error("Malformed metadata record");
1118        NMD->addOperand(MD);
1119      }
1120
1121      if (LLVM2_7MetadataDetected) {
1122        MDValueList.AssignValue(0, NextMDValueNo++);
1123      }
1124      break;
1125    }
1126    case METADATA_FN_NODE_2_7:
1127    case bitc::METADATA_FN_NODE:
1128      IsFunctionLocal = true;
1129      // fall-through
1130    case METADATA_NODE_2_7:
1131    case bitc::METADATA_NODE: {
1132      if (Code == METADATA_FN_NODE_2_7 ||
1133          Code == METADATA_NODE_2_7) {
1134        LLVM2_7MetadataDetected = true;
1135      }
1136
1137      if (Record.size() % 2 == 1)
1138        return Error("Invalid METADATA_NODE record");
1139
1140      unsigned Size = Record.size();
1141      SmallVector<Value*, 8> Elts;
1142      for (unsigned i = 0; i != Size; i += 2) {
1143        Type *Ty = getTypeByID(Record[i]);
1144        if (!Ty) return Error("Invalid METADATA_NODE record");
1145        if (Ty->isMetadataTy())
1146          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1147        else if (!Ty->isVoidTy())
1148          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1149        else
1150          Elts.push_back(NULL);
1151      }
1152      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1153      IsFunctionLocal = false;
1154      MDValueList.AssignValue(V, NextMDValueNo++);
1155      break;
1156    }
1157    case bitc::METADATA_STRING: {
1158      unsigned MDStringLength = Record.size();
1159      SmallString<8> String;
1160      String.resize(MDStringLength);
1161      for (unsigned i = 0; i != MDStringLength; ++i)
1162        String[i] = Record[i];
1163      Value *V = MDString::get(Context,
1164                               StringRef(String.data(), String.size()));
1165      MDValueList.AssignValue(V, NextMDValueNo++);
1166      break;
1167    }
1168    case bitc::METADATA_KIND: {
1169      unsigned RecordLength = Record.size();
1170      if (Record.empty() || RecordLength < 2)
1171        return Error("Invalid METADATA_KIND record");
1172      SmallString<8> Name;
1173      Name.resize(RecordLength-1);
1174      unsigned Kind = Record[0];
1175      for (unsigned i = 1; i != RecordLength; ++i)
1176        Name[i-1] = Record[i];
1177
1178      unsigned NewKind = TheModule->getMDKindID(Name.str());
1179      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1180        return Error("Conflicting METADATA_KIND records");
1181      break;
1182    }
1183    }
1184  }
1185}
1186
1187/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1188/// the LSB for dense VBR encoding.
1189static uint64_t DecodeSignRotatedValue(uint64_t V) {
1190  if ((V & 1) == 0)
1191    return V >> 1;
1192  if (V != 1)
1193    return -(V >> 1);
1194  // There is no such thing as -0 with integers.  "-0" really means MININT.
1195  return 1ULL << 63;
1196}
1197
1198/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1199/// values and aliases that we can.
1200bool BitcodeReader::ResolveGlobalAndAliasInits() {
1201  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1202  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1203
1204  GlobalInitWorklist.swap(GlobalInits);
1205  AliasInitWorklist.swap(AliasInits);
1206
1207  while (!GlobalInitWorklist.empty()) {
1208    unsigned ValID = GlobalInitWorklist.back().second;
1209    if (ValID >= ValueList.size()) {
1210      // Not ready to resolve this yet, it requires something later in the file.
1211      GlobalInits.push_back(GlobalInitWorklist.back());
1212    } else {
1213      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1214        GlobalInitWorklist.back().first->setInitializer(C);
1215      else
1216        return Error("Global variable initializer is not a constant!");
1217    }
1218    GlobalInitWorklist.pop_back();
1219  }
1220
1221  while (!AliasInitWorklist.empty()) {
1222    unsigned ValID = AliasInitWorklist.back().second;
1223    if (ValID >= ValueList.size()) {
1224      AliasInits.push_back(AliasInitWorklist.back());
1225    } else {
1226      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1227        AliasInitWorklist.back().first->setAliasee(C);
1228      else
1229        return Error("Alias initializer is not a constant!");
1230    }
1231    AliasInitWorklist.pop_back();
1232  }
1233  return false;
1234}
1235
1236bool BitcodeReader::ParseConstants() {
1237  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1238    return Error("Malformed block record");
1239
1240  SmallVector<uint64_t, 64> Record;
1241
1242  // Read all the records for this value table.
1243  Type *CurTy = Type::getInt32Ty(Context);
1244  unsigned NextCstNo = ValueList.size();
1245  while (1) {
1246    unsigned Code = Stream.ReadCode();
1247    if (Code == bitc::END_BLOCK)
1248      break;
1249
1250    if (Code == bitc::ENTER_SUBBLOCK) {
1251      // No known subblocks, always skip them.
1252      Stream.ReadSubBlockID();
1253      if (Stream.SkipBlock())
1254        return Error("Malformed block record");
1255      continue;
1256    }
1257
1258    if (Code == bitc::DEFINE_ABBREV) {
1259      Stream.ReadAbbrevRecord();
1260      continue;
1261    }
1262
1263    // Read a record.
1264    Record.clear();
1265    Value *V = 0;
1266    unsigned BitCode = Stream.ReadRecord(Code, Record);
1267    switch (BitCode) {
1268    default:  // Default behavior: unknown constant
1269    case bitc::CST_CODE_UNDEF:     // UNDEF
1270      V = UndefValue::get(CurTy);
1271      break;
1272    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1273      if (Record.empty())
1274        return Error("Malformed CST_SETTYPE record");
1275      if (Record[0] >= TypeList.size())
1276        return Error("Invalid Type ID in CST_SETTYPE record");
1277      CurTy = TypeList[Record[0]];
1278      continue;  // Skip the ValueList manipulation.
1279    case bitc::CST_CODE_NULL:      // NULL
1280      V = Constant::getNullValue(CurTy);
1281      break;
1282    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1283      if (!CurTy->isIntegerTy() || Record.empty())
1284        return Error("Invalid CST_INTEGER record");
1285      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1286      break;
1287    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1288      if (!CurTy->isIntegerTy() || Record.empty())
1289        return Error("Invalid WIDE_INTEGER record");
1290
1291      unsigned NumWords = Record.size();
1292      SmallVector<uint64_t, 8> Words;
1293      Words.resize(NumWords);
1294      for (unsigned i = 0; i != NumWords; ++i)
1295        Words[i] = DecodeSignRotatedValue(Record[i]);
1296      V = ConstantInt::get(Context,
1297                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1298                                 Words));
1299      break;
1300    }
1301    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1302      if (Record.empty())
1303        return Error("Invalid FLOAT record");
1304      if (CurTy->isFloatTy())
1305        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1306      else if (CurTy->isDoubleTy())
1307        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1308      else if (CurTy->isX86_FP80Ty()) {
1309        // Bits are not stored the same way as a normal i80 APInt, compensate.
1310        uint64_t Rearrange[2];
1311        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1312        Rearrange[1] = Record[0] >> 48;
1313        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1314      } else if (CurTy->isFP128Ty())
1315        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1316      else if (CurTy->isPPC_FP128Ty())
1317        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1318      else
1319        V = UndefValue::get(CurTy);
1320      break;
1321    }
1322
1323    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1324      if (Record.empty())
1325        return Error("Invalid CST_AGGREGATE record");
1326
1327      unsigned Size = Record.size();
1328      std::vector<Constant*> Elts;
1329
1330      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1331        for (unsigned i = 0; i != Size; ++i)
1332          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1333                                                     STy->getElementType(i)));
1334        V = ConstantStruct::get(STy, Elts);
1335      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1336        Type *EltTy = ATy->getElementType();
1337        for (unsigned i = 0; i != Size; ++i)
1338          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1339        V = ConstantArray::get(ATy, Elts);
1340      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1341        Type *EltTy = VTy->getElementType();
1342        for (unsigned i = 0; i != Size; ++i)
1343          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1344        V = ConstantVector::get(Elts);
1345      } else {
1346        V = UndefValue::get(CurTy);
1347      }
1348      break;
1349    }
1350    case bitc::CST_CODE_STRING: { // STRING: [values]
1351      if (Record.empty())
1352        return Error("Invalid CST_AGGREGATE record");
1353
1354      ArrayType *ATy = cast<ArrayType>(CurTy);
1355      Type *EltTy = ATy->getElementType();
1356
1357      unsigned Size = Record.size();
1358      std::vector<Constant*> Elts;
1359      for (unsigned i = 0; i != Size; ++i)
1360        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1361      V = ConstantArray::get(ATy, Elts);
1362      break;
1363    }
1364    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1365      if (Record.empty())
1366        return Error("Invalid CST_AGGREGATE record");
1367
1368      ArrayType *ATy = cast<ArrayType>(CurTy);
1369      Type *EltTy = ATy->getElementType();
1370
1371      unsigned Size = Record.size();
1372      std::vector<Constant*> Elts;
1373      for (unsigned i = 0; i != Size; ++i)
1374        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1375      Elts.push_back(Constant::getNullValue(EltTy));
1376      V = ConstantArray::get(ATy, Elts);
1377      break;
1378    }
1379    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1380      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1381      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1382      if (Opc < 0) {
1383        V = UndefValue::get(CurTy);  // Unknown binop.
1384      } else {
1385        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1386        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1387        unsigned Flags = 0;
1388        if (Record.size() >= 4) {
1389          if (Opc == Instruction::Add ||
1390              Opc == Instruction::Sub ||
1391              Opc == Instruction::Mul ||
1392              Opc == Instruction::Shl) {
1393            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1394              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1395            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1396              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1397          } else if (Opc == Instruction::SDiv ||
1398                     Opc == Instruction::UDiv ||
1399                     Opc == Instruction::LShr ||
1400                     Opc == Instruction::AShr) {
1401            if (Record[3] & (1 << bitc::PEO_EXACT))
1402              Flags |= SDivOperator::IsExact;
1403          }
1404        }
1405        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1406      }
1407      break;
1408    }
1409    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1410      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1411      int Opc = GetDecodedCastOpcode(Record[0]);
1412      if (Opc < 0) {
1413        V = UndefValue::get(CurTy);  // Unknown cast.
1414      } else {
1415        Type *OpTy = getTypeByID(Record[1]);
1416        if (!OpTy) return Error("Invalid CE_CAST record");
1417        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1418        V = ConstantExpr::getCast(Opc, Op, CurTy);
1419      }
1420      break;
1421    }
1422    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1423    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1424      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1425      SmallVector<Constant*, 16> Elts;
1426      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1427        Type *ElTy = getTypeByID(Record[i]);
1428        if (!ElTy) return Error("Invalid CE_GEP record");
1429        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1430      }
1431      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1432        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0],
1433          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1434      else
1435        V = ConstantExpr::getGetElementPtr(Elts[0],
1436          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1437      break;
1438    }
1439    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1440      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1441      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1442                                                              Type::getInt1Ty(Context)),
1443                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1444                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1445      break;
1446    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1447      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1448      VectorType *OpTy =
1449        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1450      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1451      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1452      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1453      V = ConstantExpr::getExtractElement(Op0, Op1);
1454      break;
1455    }
1456    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1457      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1458      if (Record.size() < 3 || OpTy == 0)
1459        return Error("Invalid CE_INSERTELT record");
1460      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1461      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1462                                                  OpTy->getElementType());
1463      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1464      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1465      break;
1466    }
1467    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1468      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1469      if (Record.size() < 3 || OpTy == 0)
1470        return Error("Invalid CE_SHUFFLEVEC record");
1471      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1472      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1473      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1474                                                 OpTy->getNumElements());
1475      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1476      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1477      break;
1478    }
1479    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1480      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1481      VectorType *OpTy =
1482        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1483      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1484        return Error("Invalid CE_SHUFVEC_EX record");
1485      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1486      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1487      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1488                                                 RTy->getNumElements());
1489      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1490      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1491      break;
1492    }
1493    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1494      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1495      Type *OpTy = getTypeByID(Record[0]);
1496      if (OpTy == 0) return Error("Invalid CE_CMP record");
1497      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1498      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1499
1500      if (OpTy->isFPOrFPVectorTy())
1501        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1502      else
1503        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1504      break;
1505    }
1506    case bitc::CST_CODE_INLINEASM: {
1507      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1508      std::string AsmStr, ConstrStr;
1509      bool HasSideEffects = Record[0] & 1;
1510      bool IsAlignStack = Record[0] >> 1;
1511      unsigned AsmStrSize = Record[1];
1512      if (2+AsmStrSize >= Record.size())
1513        return Error("Invalid INLINEASM record");
1514      unsigned ConstStrSize = Record[2+AsmStrSize];
1515      if (3+AsmStrSize+ConstStrSize > Record.size())
1516        return Error("Invalid INLINEASM record");
1517
1518      for (unsigned i = 0; i != AsmStrSize; ++i)
1519        AsmStr += (char)Record[2+i];
1520      for (unsigned i = 0; i != ConstStrSize; ++i)
1521        ConstrStr += (char)Record[3+AsmStrSize+i];
1522      PointerType *PTy = cast<PointerType>(CurTy);
1523      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1524                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1525      break;
1526    }
1527    case bitc::CST_CODE_BLOCKADDRESS:{
1528      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1529      Type *FnTy = getTypeByID(Record[0]);
1530      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1531      Function *Fn =
1532        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1533      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1534
1535      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1536                                                  Type::getInt8Ty(Context),
1537                                            false, GlobalValue::InternalLinkage,
1538                                                  0, "");
1539      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1540      V = FwdRef;
1541      break;
1542    }
1543    }
1544
1545    ValueList.AssignValue(V, NextCstNo);
1546    ++NextCstNo;
1547  }
1548
1549  if (NextCstNo != ValueList.size())
1550    return Error("Invalid constant reference!");
1551
1552  if (Stream.ReadBlockEnd())
1553    return Error("Error at end of constants block");
1554
1555  // Once all the constants have been read, go through and resolve forward
1556  // references.
1557  ValueList.ResolveConstantForwardRefs();
1558  return false;
1559}
1560
1561/// RememberAndSkipFunctionBody - When we see the block for a function body,
1562/// remember where it is and then skip it.  This lets us lazily deserialize the
1563/// functions.
1564bool BitcodeReader::RememberAndSkipFunctionBody() {
1565  // Get the function we are talking about.
1566  if (FunctionsWithBodies.empty())
1567    return Error("Insufficient function protos");
1568
1569  Function *Fn = FunctionsWithBodies.back();
1570  FunctionsWithBodies.pop_back();
1571
1572  // Save the current stream state.
1573  uint64_t CurBit = Stream.GetCurrentBitNo();
1574  DeferredFunctionInfo[Fn] = CurBit;
1575
1576  // Skip over the function block for now.
1577  if (Stream.SkipBlock())
1578    return Error("Malformed block record");
1579  return false;
1580}
1581
1582bool BitcodeReader::ParseModule() {
1583  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1584    return Error("Malformed block record");
1585
1586  SmallVector<uint64_t, 64> Record;
1587  std::vector<std::string> SectionTable;
1588  std::vector<std::string> GCTable;
1589
1590  // Read all the records for this module.
1591  while (!Stream.AtEndOfStream()) {
1592    unsigned Code = Stream.ReadCode();
1593    if (Code == bitc::END_BLOCK) {
1594      if (Stream.ReadBlockEnd())
1595        return Error("Error at end of module block");
1596
1597      // Patch the initializers for globals and aliases up.
1598      ResolveGlobalAndAliasInits();
1599      if (!GlobalInits.empty() || !AliasInits.empty())
1600        return Error("Malformed global initializer set");
1601      if (!FunctionsWithBodies.empty())
1602        return Error("Too few function bodies found");
1603
1604      // Look for intrinsic functions which need to be upgraded at some point
1605      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1606           FI != FE; ++FI) {
1607        Function* NewFn;
1608        if (UpgradeIntrinsicFunction(FI, NewFn))
1609          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1610      }
1611
1612      // Look for global variables which need to be renamed.
1613      for (Module::global_iterator
1614             GI = TheModule->global_begin(), GE = TheModule->global_end();
1615           GI != GE; ++GI)
1616        UpgradeGlobalVariable(GI);
1617
1618      // Force deallocation of memory for these vectors to favor the client that
1619      // want lazy deserialization.
1620      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1621      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1622      std::vector<Function*>().swap(FunctionsWithBodies);
1623      return false;
1624    }
1625
1626    if (Code == bitc::ENTER_SUBBLOCK) {
1627      switch (Stream.ReadSubBlockID()) {
1628      default:  // Skip unknown content.
1629        if (Stream.SkipBlock())
1630          return Error("Malformed block record");
1631        break;
1632      case bitc::BLOCKINFO_BLOCK_ID:
1633        if (Stream.ReadBlockInfoBlock())
1634          return Error("Malformed BlockInfoBlock");
1635        break;
1636      case bitc::PARAMATTR_BLOCK_ID:
1637        if (ParseAttributeBlock())
1638          return true;
1639        break;
1640      case bitc::TYPE_BLOCK_ID_NEW:
1641        if (ParseTypeTable())
1642          return true;
1643        break;
1644      case TYPE_BLOCK_ID_OLD_3_0:
1645        if (ParseOldTypeTable())
1646          return true;
1647        break;
1648      case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
1649        if (ParseOldTypeSymbolTable())
1650          return true;
1651        break;
1652      case bitc::VALUE_SYMTAB_BLOCK_ID:
1653        if (ParseValueSymbolTable())
1654          return true;
1655        break;
1656      case bitc::CONSTANTS_BLOCK_ID:
1657        if (ParseConstants() || ResolveGlobalAndAliasInits())
1658          return true;
1659        break;
1660      case bitc::METADATA_BLOCK_ID:
1661        if (ParseMetadata())
1662          return true;
1663        break;
1664      case bitc::FUNCTION_BLOCK_ID:
1665        // If this is the first function body we've seen, reverse the
1666        // FunctionsWithBodies list.
1667        if (!HasReversedFunctionsWithBodies) {
1668          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1669          HasReversedFunctionsWithBodies = true;
1670        }
1671
1672        if (RememberAndSkipFunctionBody())
1673          return true;
1674        break;
1675      }
1676      continue;
1677    }
1678
1679    if (Code == bitc::DEFINE_ABBREV) {
1680      Stream.ReadAbbrevRecord();
1681      continue;
1682    }
1683
1684    // Read a record.
1685    switch (Stream.ReadRecord(Code, Record)) {
1686    default: break;  // Default behavior, ignore unknown content.
1687    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1688      if (Record.size() < 1)
1689        return Error("Malformed MODULE_CODE_VERSION");
1690      // Only version #0 is supported so far.
1691      if (Record[0] != 0)
1692        return Error("Unknown bitstream version!");
1693      break;
1694    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1695      std::string S;
1696      if (ConvertToString(Record, 0, S))
1697        return Error("Invalid MODULE_CODE_TRIPLE record");
1698      TheModule->setTargetTriple(S);
1699      break;
1700    }
1701    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1702      std::string S;
1703      if (ConvertToString(Record, 0, S))
1704        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1705      TheModule->setDataLayout(S);
1706      break;
1707    }
1708    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1709      std::string S;
1710      if (ConvertToString(Record, 0, S))
1711        return Error("Invalid MODULE_CODE_ASM record");
1712      TheModule->setModuleInlineAsm(S);
1713      break;
1714    }
1715    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1716      std::string S;
1717      if (ConvertToString(Record, 0, S))
1718        return Error("Invalid MODULE_CODE_DEPLIB record");
1719      TheModule->addLibrary(S);
1720      break;
1721    }
1722    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1723      std::string S;
1724      if (ConvertToString(Record, 0, S))
1725        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1726      SectionTable.push_back(S);
1727      break;
1728    }
1729    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1730      std::string S;
1731      if (ConvertToString(Record, 0, S))
1732        return Error("Invalid MODULE_CODE_GCNAME record");
1733      GCTable.push_back(S);
1734      break;
1735    }
1736    // GLOBALVAR: [pointer type, isconst, initid,
1737    //             linkage, alignment, section, visibility, threadlocal,
1738    //             unnamed_addr]
1739    case bitc::MODULE_CODE_GLOBALVAR: {
1740      if (Record.size() < 6)
1741        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1742      Type *Ty = getTypeByID(Record[0]);
1743      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1744      if (!Ty->isPointerTy())
1745        return Error("Global not a pointer type!");
1746      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1747      Ty = cast<PointerType>(Ty)->getElementType();
1748
1749      bool isConstant = Record[1];
1750      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1751      unsigned Alignment = (1 << Record[4]) >> 1;
1752      std::string Section;
1753      if (Record[5]) {
1754        if (Record[5]-1 >= SectionTable.size())
1755          return Error("Invalid section ID");
1756        Section = SectionTable[Record[5]-1];
1757      }
1758      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1759      if (Record.size() > 6)
1760        Visibility = GetDecodedVisibility(Record[6]);
1761      bool isThreadLocal = false;
1762      if (Record.size() > 7)
1763        isThreadLocal = Record[7];
1764
1765      bool UnnamedAddr = false;
1766      if (Record.size() > 8)
1767        UnnamedAddr = Record[8];
1768
1769      GlobalVariable *NewGV =
1770        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1771                           isThreadLocal, AddressSpace);
1772      NewGV->setAlignment(Alignment);
1773      if (!Section.empty())
1774        NewGV->setSection(Section);
1775      NewGV->setVisibility(Visibility);
1776      NewGV->setThreadLocal(isThreadLocal);
1777      NewGV->setUnnamedAddr(UnnamedAddr);
1778
1779      ValueList.push_back(NewGV);
1780
1781      // Remember which value to use for the global initializer.
1782      if (unsigned InitID = Record[2])
1783        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1784      break;
1785    }
1786    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1787    //             alignment, section, visibility, gc, unnamed_addr]
1788    case bitc::MODULE_CODE_FUNCTION: {
1789      if (Record.size() < 8)
1790        return Error("Invalid MODULE_CODE_FUNCTION record");
1791      Type *Ty = getTypeByID(Record[0]);
1792      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1793      if (!Ty->isPointerTy())
1794        return Error("Function not a pointer type!");
1795      FunctionType *FTy =
1796        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1797      if (!FTy)
1798        return Error("Function not a pointer to function type!");
1799
1800      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1801                                        "", TheModule);
1802
1803      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1804      bool isProto = Record[2];
1805      Func->setLinkage(GetDecodedLinkage(Record[3]));
1806      Func->setAttributes(getAttributes(Record[4]));
1807
1808      Func->setAlignment((1 << Record[5]) >> 1);
1809      if (Record[6]) {
1810        if (Record[6]-1 >= SectionTable.size())
1811          return Error("Invalid section ID");
1812        Func->setSection(SectionTable[Record[6]-1]);
1813      }
1814      Func->setVisibility(GetDecodedVisibility(Record[7]));
1815      if (Record.size() > 8 && Record[8]) {
1816        if (Record[8]-1 > GCTable.size())
1817          return Error("Invalid GC ID");
1818        Func->setGC(GCTable[Record[8]-1].c_str());
1819      }
1820      bool UnnamedAddr = false;
1821      if (Record.size() > 9)
1822        UnnamedAddr = Record[9];
1823      Func->setUnnamedAddr(UnnamedAddr);
1824      ValueList.push_back(Func);
1825
1826      // If this is a function with a body, remember the prototype we are
1827      // creating now, so that we can match up the body with them later.
1828      if (!isProto)
1829        FunctionsWithBodies.push_back(Func);
1830      break;
1831    }
1832    // ALIAS: [alias type, aliasee val#, linkage]
1833    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1834    case bitc::MODULE_CODE_ALIAS: {
1835      if (Record.size() < 3)
1836        return Error("Invalid MODULE_ALIAS record");
1837      Type *Ty = getTypeByID(Record[0]);
1838      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1839      if (!Ty->isPointerTy())
1840        return Error("Function not a pointer type!");
1841
1842      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1843                                           "", 0, TheModule);
1844      // Old bitcode files didn't have visibility field.
1845      if (Record.size() > 3)
1846        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1847      ValueList.push_back(NewGA);
1848      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1849      break;
1850    }
1851    /// MODULE_CODE_PURGEVALS: [numvals]
1852    case bitc::MODULE_CODE_PURGEVALS:
1853      // Trim down the value list to the specified size.
1854      if (Record.size() < 1 || Record[0] > ValueList.size())
1855        return Error("Invalid MODULE_PURGEVALS record");
1856      ValueList.shrinkTo(Record[0]);
1857      break;
1858    }
1859    Record.clear();
1860  }
1861
1862  return Error("Premature end of bitstream");
1863}
1864
1865bool BitcodeReader::ParseBitcodeInto(Module *M) {
1866  TheModule = 0;
1867
1868  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1869  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1870
1871  if (Buffer->getBufferSize() & 3) {
1872    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1873      return Error("Invalid bitcode signature");
1874    else
1875      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1876  }
1877
1878  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1879  // The magic number is 0x0B17C0DE stored in little endian.
1880  if (isBitcodeWrapper(BufPtr, BufEnd))
1881    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1882      return Error("Invalid bitcode wrapper header");
1883
1884  StreamFile.init(BufPtr, BufEnd);
1885  Stream.init(StreamFile);
1886
1887  // Sniff for the signature.
1888  if (Stream.Read(8) != 'B' ||
1889      Stream.Read(8) != 'C' ||
1890      Stream.Read(4) != 0x0 ||
1891      Stream.Read(4) != 0xC ||
1892      Stream.Read(4) != 0xE ||
1893      Stream.Read(4) != 0xD)
1894    return Error("Invalid bitcode signature");
1895
1896  // We expect a number of well-defined blocks, though we don't necessarily
1897  // need to understand them all.
1898  while (!Stream.AtEndOfStream()) {
1899    unsigned Code = Stream.ReadCode();
1900
1901    if (Code != bitc::ENTER_SUBBLOCK) {
1902
1903      // The ranlib in xcode 4 will align archive members by appending newlines to the
1904      // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1905      // ignore these final 4 bytes :-(
1906      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1907          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1908	  Stream.AtEndOfStream())
1909        return false;
1910
1911      return Error("Invalid record at top-level");
1912    }
1913
1914    unsigned BlockID = Stream.ReadSubBlockID();
1915
1916    // We only know the MODULE subblock ID.
1917    switch (BlockID) {
1918    case bitc::BLOCKINFO_BLOCK_ID:
1919      if (Stream.ReadBlockInfoBlock())
1920        return Error("Malformed BlockInfoBlock");
1921      break;
1922    case bitc::MODULE_BLOCK_ID:
1923      // Reject multiple MODULE_BLOCK's in a single bitstream.
1924      if (TheModule)
1925        return Error("Multiple MODULE_BLOCKs in same stream");
1926      TheModule = M;
1927      if (ParseModule())
1928        return true;
1929      break;
1930    default:
1931      if (Stream.SkipBlock())
1932        return Error("Malformed block record");
1933      break;
1934    }
1935  }
1936
1937  return false;
1938}
1939
1940bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1941  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1942    return Error("Malformed block record");
1943
1944  SmallVector<uint64_t, 64> Record;
1945
1946  // Read all the records for this module.
1947  while (!Stream.AtEndOfStream()) {
1948    unsigned Code = Stream.ReadCode();
1949    if (Code == bitc::END_BLOCK) {
1950      if (Stream.ReadBlockEnd())
1951        return Error("Error at end of module block");
1952
1953      return false;
1954    }
1955
1956    if (Code == bitc::ENTER_SUBBLOCK) {
1957      switch (Stream.ReadSubBlockID()) {
1958      default:  // Skip unknown content.
1959        if (Stream.SkipBlock())
1960          return Error("Malformed block record");
1961        break;
1962      }
1963      continue;
1964    }
1965
1966    if (Code == bitc::DEFINE_ABBREV) {
1967      Stream.ReadAbbrevRecord();
1968      continue;
1969    }
1970
1971    // Read a record.
1972    switch (Stream.ReadRecord(Code, Record)) {
1973    default: break;  // Default behavior, ignore unknown content.
1974    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1975      if (Record.size() < 1)
1976        return Error("Malformed MODULE_CODE_VERSION");
1977      // Only version #0 is supported so far.
1978      if (Record[0] != 0)
1979        return Error("Unknown bitstream version!");
1980      break;
1981    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1982      std::string S;
1983      if (ConvertToString(Record, 0, S))
1984        return Error("Invalid MODULE_CODE_TRIPLE record");
1985      Triple = S;
1986      break;
1987    }
1988    }
1989    Record.clear();
1990  }
1991
1992  return Error("Premature end of bitstream");
1993}
1994
1995bool BitcodeReader::ParseTriple(std::string &Triple) {
1996  if (Buffer->getBufferSize() & 3)
1997    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1998
1999  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
2000  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2001
2002  // If we have a wrapper header, parse it and ignore the non-bc file contents.
2003  // The magic number is 0x0B17C0DE stored in little endian.
2004  if (isBitcodeWrapper(BufPtr, BufEnd))
2005    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
2006      return Error("Invalid bitcode wrapper header");
2007
2008  StreamFile.init(BufPtr, BufEnd);
2009  Stream.init(StreamFile);
2010
2011  // Sniff for the signature.
2012  if (Stream.Read(8) != 'B' ||
2013      Stream.Read(8) != 'C' ||
2014      Stream.Read(4) != 0x0 ||
2015      Stream.Read(4) != 0xC ||
2016      Stream.Read(4) != 0xE ||
2017      Stream.Read(4) != 0xD)
2018    return Error("Invalid bitcode signature");
2019
2020  // We expect a number of well-defined blocks, though we don't necessarily
2021  // need to understand them all.
2022  while (!Stream.AtEndOfStream()) {
2023    unsigned Code = Stream.ReadCode();
2024
2025    if (Code != bitc::ENTER_SUBBLOCK)
2026      return Error("Invalid record at top-level");
2027
2028    unsigned BlockID = Stream.ReadSubBlockID();
2029
2030    // We only know the MODULE subblock ID.
2031    switch (BlockID) {
2032    case bitc::MODULE_BLOCK_ID:
2033      if (ParseModuleTriple(Triple))
2034        return true;
2035      break;
2036    default:
2037      if (Stream.SkipBlock())
2038        return Error("Malformed block record");
2039      break;
2040    }
2041  }
2042
2043  return false;
2044}
2045
2046/// ParseMetadataAttachment - Parse metadata attachments.
2047bool BitcodeReader::ParseMetadataAttachment() {
2048  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2049    return Error("Malformed block record");
2050
2051  SmallVector<uint64_t, 64> Record;
2052  while(1) {
2053    unsigned Code = Stream.ReadCode();
2054    if (Code == bitc::END_BLOCK) {
2055      if (Stream.ReadBlockEnd())
2056        return Error("Error at end of PARAMATTR block");
2057      break;
2058    }
2059    if (Code == bitc::DEFINE_ABBREV) {
2060      Stream.ReadAbbrevRecord();
2061      continue;
2062    }
2063    // Read a metadata attachment record.
2064    Record.clear();
2065    switch (Stream.ReadRecord(Code, Record)) {
2066    default:  // Default behavior: ignore.
2067      break;
2068    case METADATA_ATTACHMENT_2_7:
2069      LLVM2_7MetadataDetected = true;
2070    case bitc::METADATA_ATTACHMENT: {
2071      unsigned RecordLength = Record.size();
2072      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2073        return Error ("Invalid METADATA_ATTACHMENT reader!");
2074      Instruction *Inst = InstructionList[Record[0]];
2075      for (unsigned i = 1; i != RecordLength; i = i+2) {
2076        unsigned Kind = Record[i];
2077        DenseMap<unsigned, unsigned>::iterator I =
2078          MDKindMap.find(Kind);
2079        if (I == MDKindMap.end())
2080          return Error("Invalid metadata kind ID");
2081        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2082        Inst->setMetadata(I->second, cast<MDNode>(Node));
2083      }
2084      break;
2085    }
2086    }
2087  }
2088  return false;
2089}
2090
2091/// ParseFunctionBody - Lazily parse the specified function body block.
2092bool BitcodeReader::ParseFunctionBody(Function *F) {
2093  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2094    return Error("Malformed block record");
2095
2096  InstructionList.clear();
2097  unsigned ModuleValueListSize = ValueList.size();
2098  unsigned ModuleMDValueListSize = MDValueList.size();
2099
2100  // Add all the function arguments to the value table.
2101  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2102    ValueList.push_back(I);
2103
2104  unsigned NextValueNo = ValueList.size();
2105  BasicBlock *CurBB = 0;
2106  unsigned CurBBNo = 0;
2107
2108  DebugLoc LastLoc;
2109
2110  // Read all the records.
2111  SmallVector<uint64_t, 64> Record;
2112  while (1) {
2113    unsigned Code = Stream.ReadCode();
2114    if (Code == bitc::END_BLOCK) {
2115      if (Stream.ReadBlockEnd())
2116        return Error("Error at end of function block");
2117      break;
2118    }
2119
2120    if (Code == bitc::ENTER_SUBBLOCK) {
2121      switch (Stream.ReadSubBlockID()) {
2122      default:  // Skip unknown content.
2123        if (Stream.SkipBlock())
2124          return Error("Malformed block record");
2125        break;
2126      case bitc::CONSTANTS_BLOCK_ID:
2127        if (ParseConstants()) return true;
2128        NextValueNo = ValueList.size();
2129        break;
2130      case bitc::VALUE_SYMTAB_BLOCK_ID:
2131        if (ParseValueSymbolTable()) return true;
2132        break;
2133      case bitc::METADATA_ATTACHMENT_ID:
2134        if (ParseMetadataAttachment()) return true;
2135        break;
2136      case bitc::METADATA_BLOCK_ID:
2137        if (ParseMetadata()) return true;
2138        break;
2139      }
2140      continue;
2141    }
2142
2143    if (Code == bitc::DEFINE_ABBREV) {
2144      Stream.ReadAbbrevRecord();
2145      continue;
2146    }
2147
2148    // Read a record.
2149    Record.clear();
2150    Instruction *I = 0;
2151    unsigned BitCode = Stream.ReadRecord(Code, Record);
2152    switch (BitCode) {
2153    default: // Default behavior: reject
2154      return Error("Unknown instruction");
2155    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2156      if (Record.size() < 1 || Record[0] == 0)
2157        return Error("Invalid DECLAREBLOCKS record");
2158      // Create all the basic blocks for the function.
2159      FunctionBBs.resize(Record[0]);
2160      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2161        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2162      CurBB = FunctionBBs[0];
2163      continue;
2164
2165    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2166      // This record indicates that the last instruction is at the same
2167      // location as the previous instruction with a location.
2168      I = 0;
2169
2170      // Get the last instruction emitted.
2171      if (CurBB && !CurBB->empty())
2172        I = &CurBB->back();
2173      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2174               !FunctionBBs[CurBBNo-1]->empty())
2175        I = &FunctionBBs[CurBBNo-1]->back();
2176
2177      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2178      I->setDebugLoc(LastLoc);
2179      I = 0;
2180      continue;
2181
2182    case FUNC_CODE_DEBUG_LOC_2_7:
2183      LLVM2_7MetadataDetected = true;
2184    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2185      I = 0;     // Get the last instruction emitted.
2186      if (CurBB && !CurBB->empty())
2187        I = &CurBB->back();
2188      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2189               !FunctionBBs[CurBBNo-1]->empty())
2190        I = &FunctionBBs[CurBBNo-1]->back();
2191      if (I == 0 || Record.size() < 4)
2192        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2193
2194      unsigned Line = Record[0], Col = Record[1];
2195      unsigned ScopeID = Record[2], IAID = Record[3];
2196
2197      MDNode *Scope = 0, *IA = 0;
2198      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2199      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2200      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2201      I->setDebugLoc(LastLoc);
2202      I = 0;
2203      continue;
2204    }
2205
2206    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2207      unsigned OpNum = 0;
2208      Value *LHS, *RHS;
2209      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2210          getValue(Record, OpNum, LHS->getType(), RHS) ||
2211          OpNum+1 > Record.size())
2212        return Error("Invalid BINOP record");
2213
2214      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2215      if (Opc == -1) return Error("Invalid BINOP record");
2216      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2217      InstructionList.push_back(I);
2218      if (OpNum < Record.size()) {
2219        if (Opc == Instruction::Add ||
2220            Opc == Instruction::Sub ||
2221            Opc == Instruction::Mul ||
2222            Opc == Instruction::Shl) {
2223          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2224            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2225          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2226            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2227        } else if (Opc == Instruction::SDiv ||
2228                   Opc == Instruction::UDiv ||
2229                   Opc == Instruction::LShr ||
2230                   Opc == Instruction::AShr) {
2231          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2232            cast<BinaryOperator>(I)->setIsExact(true);
2233        }
2234      }
2235      break;
2236    }
2237    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2238      unsigned OpNum = 0;
2239      Value *Op;
2240      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2241          OpNum+2 != Record.size())
2242        return Error("Invalid CAST record");
2243
2244      Type *ResTy = getTypeByID(Record[OpNum]);
2245      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2246      if (Opc == -1 || ResTy == 0)
2247        return Error("Invalid CAST record");
2248      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2249      InstructionList.push_back(I);
2250      break;
2251    }
2252    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2253    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2254      unsigned OpNum = 0;
2255      Value *BasePtr;
2256      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2257        return Error("Invalid GEP record");
2258
2259      SmallVector<Value*, 16> GEPIdx;
2260      while (OpNum != Record.size()) {
2261        Value *Op;
2262        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2263          return Error("Invalid GEP record");
2264        GEPIdx.push_back(Op);
2265      }
2266
2267      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2268      InstructionList.push_back(I);
2269      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2270        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2271      break;
2272    }
2273
2274    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2275                                       // EXTRACTVAL: [opty, opval, n x indices]
2276      unsigned OpNum = 0;
2277      Value *Agg;
2278      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2279        return Error("Invalid EXTRACTVAL record");
2280
2281      SmallVector<unsigned, 4> EXTRACTVALIdx;
2282      for (unsigned RecSize = Record.size();
2283           OpNum != RecSize; ++OpNum) {
2284        uint64_t Index = Record[OpNum];
2285        if ((unsigned)Index != Index)
2286          return Error("Invalid EXTRACTVAL index");
2287        EXTRACTVALIdx.push_back((unsigned)Index);
2288      }
2289
2290      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2291      InstructionList.push_back(I);
2292      break;
2293    }
2294
2295    case bitc::FUNC_CODE_INST_INSERTVAL: {
2296                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2297      unsigned OpNum = 0;
2298      Value *Agg;
2299      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2300        return Error("Invalid INSERTVAL record");
2301      Value *Val;
2302      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2303        return Error("Invalid INSERTVAL record");
2304
2305      SmallVector<unsigned, 4> INSERTVALIdx;
2306      for (unsigned RecSize = Record.size();
2307           OpNum != RecSize; ++OpNum) {
2308        uint64_t Index = Record[OpNum];
2309        if ((unsigned)Index != Index)
2310          return Error("Invalid INSERTVAL index");
2311        INSERTVALIdx.push_back((unsigned)Index);
2312      }
2313
2314      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2315      InstructionList.push_back(I);
2316      break;
2317    }
2318
2319    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2320      // obsolete form of select
2321      // handles select i1 ... in old bitcode
2322      unsigned OpNum = 0;
2323      Value *TrueVal, *FalseVal, *Cond;
2324      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2325          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2326          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2327        return Error("Invalid SELECT record");
2328
2329      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2330      InstructionList.push_back(I);
2331      break;
2332    }
2333
2334    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2335      // new form of select
2336      // handles select i1 or select [N x i1]
2337      unsigned OpNum = 0;
2338      Value *TrueVal, *FalseVal, *Cond;
2339      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2340          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2341          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2342        return Error("Invalid SELECT record");
2343
2344      // select condition can be either i1 or [N x i1]
2345      if (VectorType* vector_type =
2346          dyn_cast<VectorType>(Cond->getType())) {
2347        // expect <n x i1>
2348        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2349          return Error("Invalid SELECT condition type");
2350      } else {
2351        // expect i1
2352        if (Cond->getType() != Type::getInt1Ty(Context))
2353          return Error("Invalid SELECT condition type");
2354      }
2355
2356      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2357      InstructionList.push_back(I);
2358      break;
2359    }
2360
2361    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2362      unsigned OpNum = 0;
2363      Value *Vec, *Idx;
2364      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2365          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2366        return Error("Invalid EXTRACTELT record");
2367      I = ExtractElementInst::Create(Vec, Idx);
2368      InstructionList.push_back(I);
2369      break;
2370    }
2371
2372    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2373      unsigned OpNum = 0;
2374      Value *Vec, *Elt, *Idx;
2375      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2376          getValue(Record, OpNum,
2377                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2378          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2379        return Error("Invalid INSERTELT record");
2380      I = InsertElementInst::Create(Vec, Elt, Idx);
2381      InstructionList.push_back(I);
2382      break;
2383    }
2384
2385    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2386      unsigned OpNum = 0;
2387      Value *Vec1, *Vec2, *Mask;
2388      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2389          getValue(Record, OpNum, Vec1->getType(), Vec2))
2390        return Error("Invalid SHUFFLEVEC record");
2391
2392      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2393        return Error("Invalid SHUFFLEVEC record");
2394      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2395      InstructionList.push_back(I);
2396      break;
2397    }
2398
2399    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2400      // Old form of ICmp/FCmp returning bool
2401      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2402      // both legal on vectors but had different behaviour.
2403    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2404      // FCmp/ICmp returning bool or vector of bool
2405
2406      unsigned OpNum = 0;
2407      Value *LHS, *RHS;
2408      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2409          getValue(Record, OpNum, LHS->getType(), RHS) ||
2410          OpNum+1 != Record.size())
2411        return Error("Invalid CMP record");
2412
2413      if (LHS->getType()->isFPOrFPVectorTy())
2414        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2415      else
2416        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2417      InstructionList.push_back(I);
2418      break;
2419    }
2420
2421    case FUNC_CODE_INST_GETRESULT_2_7: {
2422      if (Record.size() != 2) {
2423        return Error("Invalid GETRESULT record");
2424      }
2425      unsigned OpNum = 0;
2426      Value *Op;
2427      getValueTypePair(Record, OpNum, NextValueNo, Op);
2428      unsigned Index = Record[1];
2429      I = ExtractValueInst::Create(Op, Index);
2430      InstructionList.push_back(I);
2431      break;
2432    }
2433
2434    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2435      {
2436        unsigned Size = Record.size();
2437        if (Size == 0) {
2438          I = ReturnInst::Create(Context);
2439          InstructionList.push_back(I);
2440          break;
2441        }
2442
2443        unsigned OpNum = 0;
2444        Value *Op = NULL;
2445        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2446          return Error("Invalid RET record");
2447        if (OpNum != Record.size())
2448          return Error("Invalid RET record");
2449
2450        I = ReturnInst::Create(Context, Op);
2451        InstructionList.push_back(I);
2452        break;
2453      }
2454    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2455      if (Record.size() != 1 && Record.size() != 3)
2456        return Error("Invalid BR record");
2457      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2458      if (TrueDest == 0)
2459        return Error("Invalid BR record");
2460
2461      if (Record.size() == 1) {
2462        I = BranchInst::Create(TrueDest);
2463        InstructionList.push_back(I);
2464      }
2465      else {
2466        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2467        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2468        if (FalseDest == 0 || Cond == 0)
2469          return Error("Invalid BR record");
2470        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2471        InstructionList.push_back(I);
2472      }
2473      break;
2474    }
2475    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2476      if (Record.size() < 3 || (Record.size() & 1) == 0)
2477        return Error("Invalid SWITCH record");
2478      Type *OpTy = getTypeByID(Record[0]);
2479      Value *Cond = getFnValueByID(Record[1], OpTy);
2480      BasicBlock *Default = getBasicBlock(Record[2]);
2481      if (OpTy == 0 || Cond == 0 || Default == 0)
2482        return Error("Invalid SWITCH record");
2483      unsigned NumCases = (Record.size()-3)/2;
2484      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2485      InstructionList.push_back(SI);
2486      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2487        ConstantInt *CaseVal =
2488          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2489        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2490        if (CaseVal == 0 || DestBB == 0) {
2491          delete SI;
2492          return Error("Invalid SWITCH record!");
2493        }
2494        SI->addCase(CaseVal, DestBB);
2495      }
2496      I = SI;
2497      break;
2498    }
2499    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2500      if (Record.size() < 2)
2501        return Error("Invalid INDIRECTBR record");
2502      Type *OpTy = getTypeByID(Record[0]);
2503      Value *Address = getFnValueByID(Record[1], OpTy);
2504      if (OpTy == 0 || Address == 0)
2505        return Error("Invalid INDIRECTBR record");
2506      unsigned NumDests = Record.size()-2;
2507      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2508      InstructionList.push_back(IBI);
2509      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2510        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2511          IBI->addDestination(DestBB);
2512        } else {
2513          delete IBI;
2514          return Error("Invalid INDIRECTBR record!");
2515        }
2516      }
2517      I = IBI;
2518      break;
2519    }
2520
2521    case bitc::FUNC_CODE_INST_INVOKE: {
2522      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2523      if (Record.size() < 4) return Error("Invalid INVOKE record");
2524      AttrListPtr PAL = getAttributes(Record[0]);
2525      unsigned CCInfo = Record[1];
2526      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2527      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2528
2529      unsigned OpNum = 4;
2530      Value *Callee;
2531      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2532        return Error("Invalid INVOKE record");
2533
2534      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2535      FunctionType *FTy = !CalleeTy ? 0 :
2536        dyn_cast<FunctionType>(CalleeTy->getElementType());
2537
2538      // Check that the right number of fixed parameters are here.
2539      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2540          Record.size() < OpNum+FTy->getNumParams())
2541        return Error("Invalid INVOKE record");
2542
2543      SmallVector<Value*, 16> Ops;
2544      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2545        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2546        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2547      }
2548
2549      if (!FTy->isVarArg()) {
2550        if (Record.size() != OpNum)
2551          return Error("Invalid INVOKE record");
2552      } else {
2553        // Read type/value pairs for varargs params.
2554        while (OpNum != Record.size()) {
2555          Value *Op;
2556          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2557            return Error("Invalid INVOKE record");
2558          Ops.push_back(Op);
2559        }
2560      }
2561
2562      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2563      InstructionList.push_back(I);
2564      cast<InvokeInst>(I)->setCallingConv(
2565        static_cast<CallingConv::ID>(CCInfo));
2566      cast<InvokeInst>(I)->setAttributes(PAL);
2567      break;
2568    }
2569    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2570      I = new UnwindInst(Context);
2571      InstructionList.push_back(I);
2572      break;
2573    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2574      I = new UnreachableInst(Context);
2575      InstructionList.push_back(I);
2576      break;
2577    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2578      if (Record.size() < 1 || ((Record.size()-1)&1))
2579        return Error("Invalid PHI record");
2580      Type *Ty = getTypeByID(Record[0]);
2581      if (!Ty) return Error("Invalid PHI record");
2582
2583      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2584      InstructionList.push_back(PN);
2585
2586      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2587        Value *V = getFnValueByID(Record[1+i], Ty);
2588        BasicBlock *BB = getBasicBlock(Record[2+i]);
2589        if (!V || !BB) return Error("Invalid PHI record");
2590        PN->addIncoming(V, BB);
2591      }
2592      I = PN;
2593      break;
2594    }
2595
2596    case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
2597      // Autoupgrade malloc instruction to malloc call.
2598      // FIXME: Remove in LLVM 3.0.
2599      if (Record.size() < 3) {
2600        return Error("Invalid MALLOC record");
2601      }
2602      PointerType *Ty =
2603          dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2604      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2605      if (!Ty || !Size) return Error("Invalid MALLOC record");
2606      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2607      Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2608      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2609      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2610      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2611                                 AllocSize, Size, NULL);
2612      InstructionList.push_back(I);
2613      break;
2614    }
2615    case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
2616      unsigned OpNum = 0;
2617      Value *Op;
2618      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2619          OpNum != Record.size()) {
2620        return Error("Invalid FREE record");
2621      }
2622      if (!CurBB) return Error("Invalid free instruction with no BB");
2623      I = CallInst::CreateFree(Op, CurBB);
2624      InstructionList.push_back(I);
2625      break;
2626    }
2627
2628    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2629      // For backward compatibility, tolerate a lack of an opty, and use i32.
2630      // Remove this in LLVM 3.0.
2631      if (Record.size() < 3 || Record.size() > 4) {
2632        return Error("Invalid ALLOCA record");
2633      }
2634      unsigned OpNum = 0;
2635      PointerType *Ty =
2636        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2637      Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2638                                              Type::getInt32Ty(Context);
2639      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2640      unsigned Align = Record[OpNum++];
2641      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2642      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2643      InstructionList.push_back(I);
2644      break;
2645    }
2646    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2647      unsigned OpNum = 0;
2648      Value *Op;
2649      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2650          OpNum+2 != Record.size())
2651        return Error("Invalid LOAD record");
2652
2653      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2654      InstructionList.push_back(I);
2655      break;
2656    }
2657    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2658      unsigned OpNum = 0;
2659      Value *Val, *Ptr;
2660      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2661          getValue(Record, OpNum,
2662                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2663          OpNum+2 != Record.size())
2664        return Error("Invalid STORE record");
2665
2666      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2667      InstructionList.push_back(I);
2668      break;
2669    }
2670    case FUNC_CODE_INST_STORE_2_7: {
2671      unsigned OpNum = 0;
2672      Value *Val, *Ptr;
2673      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2674          getValue(Record, OpNum,
2675                   PointerType::getUnqual(Val->getType()), Ptr)||
2676          OpNum+2 != Record.size()) {
2677        return Error("Invalid STORE record");
2678      }
2679      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2680      InstructionList.push_back(I);
2681      break;
2682    }
2683    case FUNC_CODE_INST_CALL_2_7:
2684      LLVM2_7MetadataDetected = true;
2685    case bitc::FUNC_CODE_INST_CALL: {
2686      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2687      if (Record.size() < 3)
2688        return Error("Invalid CALL record");
2689
2690      AttrListPtr PAL = getAttributes(Record[0]);
2691      unsigned CCInfo = Record[1];
2692
2693      unsigned OpNum = 2;
2694      Value *Callee;
2695      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2696        return Error("Invalid CALL record");
2697
2698      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2699      FunctionType *FTy = 0;
2700      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2701      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2702        return Error("Invalid CALL record");
2703
2704      SmallVector<Value*, 16> Args;
2705      // Read the fixed params.
2706      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2707        if (FTy->getParamType(i)->isLabelTy())
2708          Args.push_back(getBasicBlock(Record[OpNum]));
2709        else
2710          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2711        if (Args.back() == 0) return Error("Invalid CALL record");
2712      }
2713
2714      // Read type/value pairs for varargs params.
2715      if (!FTy->isVarArg()) {
2716        if (OpNum != Record.size())
2717          return Error("Invalid CALL record");
2718      } else {
2719        while (OpNum != Record.size()) {
2720          Value *Op;
2721          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2722            return Error("Invalid CALL record");
2723          Args.push_back(Op);
2724        }
2725      }
2726
2727      I = CallInst::Create(Callee, Args);
2728      InstructionList.push_back(I);
2729      cast<CallInst>(I)->setCallingConv(
2730        static_cast<CallingConv::ID>(CCInfo>>1));
2731      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2732      cast<CallInst>(I)->setAttributes(PAL);
2733      break;
2734    }
2735    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2736      if (Record.size() < 3)
2737        return Error("Invalid VAARG record");
2738      Type *OpTy = getTypeByID(Record[0]);
2739      Value *Op = getFnValueByID(Record[1], OpTy);
2740      Type *ResTy = getTypeByID(Record[2]);
2741      if (!OpTy || !Op || !ResTy)
2742        return Error("Invalid VAARG record");
2743      I = new VAArgInst(Op, ResTy);
2744      InstructionList.push_back(I);
2745      break;
2746    }
2747    }
2748
2749    // Add instruction to end of current BB.  If there is no current BB, reject
2750    // this file.
2751    if (CurBB == 0) {
2752      delete I;
2753      return Error("Invalid instruction with no BB");
2754    }
2755    CurBB->getInstList().push_back(I);
2756
2757    // If this was a terminator instruction, move to the next block.
2758    if (isa<TerminatorInst>(I)) {
2759      ++CurBBNo;
2760      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2761    }
2762
2763    // Non-void values get registered in the value table for future use.
2764    if (I && !I->getType()->isVoidTy())
2765      ValueList.AssignValue(I, NextValueNo++);
2766  }
2767
2768  // Check the function list for unresolved values.
2769  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2770    if (A->getParent() == 0) {
2771      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2772      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2773        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2774          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2775          delete A;
2776        }
2777      }
2778      return Error("Never resolved value found in function!");
2779    }
2780  }
2781
2782  // FIXME: Check for unresolved forward-declared metadata references
2783  // and clean up leaks.
2784
2785  // See if anything took the address of blocks in this function.  If so,
2786  // resolve them now.
2787  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2788    BlockAddrFwdRefs.find(F);
2789  if (BAFRI != BlockAddrFwdRefs.end()) {
2790    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2791    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2792      unsigned BlockIdx = RefList[i].first;
2793      if (BlockIdx >= FunctionBBs.size())
2794        return Error("Invalid blockaddress block #");
2795
2796      GlobalVariable *FwdRef = RefList[i].second;
2797      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2798      FwdRef->eraseFromParent();
2799    }
2800
2801    BlockAddrFwdRefs.erase(BAFRI);
2802  }
2803
2804  unsigned NewMDValueListSize = MDValueList.size();
2805  // Trim the value list down to the size it was before we parsed this function.
2806  ValueList.shrinkTo(ModuleValueListSize);
2807  MDValueList.shrinkTo(ModuleMDValueListSize);
2808
2809  if (LLVM2_7MetadataDetected) {
2810    MDValueList.resize(NewMDValueListSize);
2811  }
2812
2813  std::vector<BasicBlock*>().swap(FunctionBBs);
2814  return false;
2815}
2816
2817//===----------------------------------------------------------------------===//
2818// GVMaterializer implementation
2819//===----------------------------------------------------------------------===//
2820
2821
2822bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2823  if (const Function *F = dyn_cast<Function>(GV)) {
2824    return F->isDeclaration() &&
2825      DeferredFunctionInfo.count(const_cast<Function*>(F));
2826  }
2827  return false;
2828}
2829
2830bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2831  Function *F = dyn_cast<Function>(GV);
2832  // If it's not a function or is already material, ignore the request.
2833  if (!F || !F->isMaterializable()) return false;
2834
2835  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2836  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2837
2838  // Move the bit stream to the saved position of the deferred function body.
2839  Stream.JumpToBit(DFII->second);
2840
2841  if (ParseFunctionBody(F)) {
2842    if (ErrInfo) *ErrInfo = ErrorString;
2843    return true;
2844  }
2845
2846  // Upgrade any old intrinsic calls in the function.
2847  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2848       E = UpgradedIntrinsics.end(); I != E; ++I) {
2849    if (I->first != I->second) {
2850      for (Value::use_iterator UI = I->first->use_begin(),
2851           UE = I->first->use_end(); UI != UE; ) {
2852        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2853          UpgradeIntrinsicCall(CI, I->second);
2854      }
2855    }
2856  }
2857
2858  return false;
2859}
2860
2861bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2862  const Function *F = dyn_cast<Function>(GV);
2863  if (!F || F->isDeclaration())
2864    return false;
2865  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2866}
2867
2868void BitcodeReader::Dematerialize(GlobalValue *GV) {
2869  Function *F = dyn_cast<Function>(GV);
2870  // If this function isn't dematerializable, this is a noop.
2871  if (!F || !isDematerializable(F))
2872    return;
2873
2874  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2875
2876  // Just forget the function body, we can remat it later.
2877  F->deleteBody();
2878}
2879
2880
2881bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2882  assert(M == TheModule &&
2883         "Can only Materialize the Module this BitcodeReader is attached to.");
2884  // Iterate over the module, deserializing any functions that are still on
2885  // disk.
2886  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2887       F != E; ++F)
2888    if (F->isMaterializable() &&
2889        Materialize(F, ErrInfo))
2890      return true;
2891
2892  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2893  // delete the old functions to clean up. We can't do this unless the entire
2894  // module is materialized because there could always be another function body
2895  // with calls to the old function.
2896  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2897       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2898    if (I->first != I->second) {
2899      for (Value::use_iterator UI = I->first->use_begin(),
2900           UE = I->first->use_end(); UI != UE; ) {
2901        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2902          UpgradeIntrinsicCall(CI, I->second);
2903      }
2904      if (!I->first->use_empty())
2905        I->first->replaceAllUsesWith(I->second);
2906      I->first->eraseFromParent();
2907    }
2908  }
2909  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2910
2911  // Check debug info intrinsics.
2912  CheckDebugInfoIntrinsics(TheModule);
2913
2914  return false;
2915}
2916
2917
2918//===----------------------------------------------------------------------===//
2919// External interface
2920//===----------------------------------------------------------------------===//
2921
2922/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2923///
2924Module *llvm_2_7::getLazyBitcodeModule(MemoryBuffer *Buffer,
2925                                       LLVMContext& Context,
2926                                       std::string *ErrMsg) {
2927  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2928  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2929  M->setMaterializer(R);
2930  if (R->ParseBitcodeInto(M)) {
2931    if (ErrMsg)
2932      *ErrMsg = R->getErrorString();
2933
2934    delete M;  // Also deletes R.
2935    return 0;
2936  }
2937  // Have the BitcodeReader dtor delete 'Buffer'.
2938  R->setBufferOwned(true);
2939  return M;
2940}
2941
2942/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2943/// If an error occurs, return null and fill in *ErrMsg if non-null.
2944Module *llvm_2_7::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2945                                   std::string *ErrMsg){
2946  Module *M = llvm_2_7::getLazyBitcodeModule(Buffer, Context, ErrMsg);
2947  if (!M) return 0;
2948
2949  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2950  // there was an error.
2951  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2952
2953  // Read in the entire module, and destroy the BitcodeReader.
2954  if (M->MaterializeAllPermanently(ErrMsg)) {
2955    delete M;
2956    return 0;
2957  }
2958
2959  return M;
2960}
2961
2962std::string llvm_2_7::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2963                                             LLVMContext& Context,
2964                                             std::string *ErrMsg) {
2965  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2966  // Don't let the BitcodeReader dtor delete 'Buffer'.
2967  R->setBufferOwned(false);
2968
2969  std::string Triple("");
2970  if (R->ParseTriple(Triple))
2971    if (ErrMsg)
2972      *ErrMsg = R->getErrorString();
2973
2974  delete R;
2975  return Triple;
2976}
2977