1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitReader_3_0.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/IR/AutoUpgrade.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/CFG.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/DiagnosticPrinter.h"
24#include "llvm/IR/GVMaterializer.h"
25#include "llvm/IR/InlineAsm.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/OperandTraits.h"
31#include "llvm/IR/Operator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/Support/ManagedStatic.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/MemoryBuffer.h"
36
37using namespace llvm;
38using namespace llvm_3_0;
39
40#define FUNC_CODE_INST_UNWIND_2_7     14
41#define eh_exception_2_7             145
42#define eh_selector_2_7              149
43
44#define TYPE_BLOCK_ID_OLD_3_0         10
45#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
46#define TYPE_CODE_STRUCT_OLD_3_0      10
47
48namespace {
49  void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn,
50                                      CallInst *&Sel,
51                                      SmallPtrSet<BasicBlock*, 8> &Visited) {
52    if (!Visited.insert(BB).second) return;
53
54    for (BasicBlock::iterator
55           I = BB->begin(), E = BB->end(); I != E; ++I) {
56      if (CallInst *CI = dyn_cast<CallInst>(I)) {
57        switch (CI->getCalledFunction()->getIntrinsicID()) {
58        default: break;
59        case eh_exception_2_7:
60          assert(!Exn && "Found more than one eh.exception call!");
61          Exn = CI;
62          break;
63        case eh_selector_2_7:
64          assert(!Sel && "Found more than one eh.selector call!");
65          Sel = CI;
66          break;
67        }
68
69        if (Exn && Sel) return;
70      }
71    }
72
73    if (Exn && Sel) return;
74
75    for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
76      FindExnAndSelIntrinsics(*I, Exn, Sel, Visited);
77      if (Exn && Sel) return;
78    }
79  }
80
81
82
83  /// TransferClausesToLandingPadInst - Transfer the exception handling clauses
84  /// from the eh_selector call to the new landingpad instruction.
85  void TransferClausesToLandingPadInst(LandingPadInst *LPI,
86                                              CallInst *EHSel) {
87    LLVMContext &Context = LPI->getContext();
88    unsigned N = EHSel->getNumArgOperands();
89
90    for (unsigned i = N - 1; i > 1; --i) {
91      if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){
92        unsigned FilterLength = CI->getZExtValue();
93        unsigned FirstCatch = i + FilterLength + !FilterLength;
94        assert(FirstCatch <= N && "Invalid filter length");
95
96        if (FirstCatch < N)
97          for (unsigned j = FirstCatch; j < N; ++j) {
98            Value *Val = EHSel->getArgOperand(j);
99            if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
100              LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
101            } else {
102              GlobalVariable *GV = cast<GlobalVariable>(Val);
103              LPI->addClause(GV->getInitializer());
104            }
105          }
106
107        if (!FilterLength) {
108          // Cleanup.
109          LPI->setCleanup(true);
110        } else {
111          // Filter.
112          SmallVector<Constant *, 4> TyInfo;
113          TyInfo.reserve(FilterLength - 1);
114          for (unsigned j = i + 1; j < FirstCatch; ++j)
115            TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j)));
116          ArrayType *AType =
117            ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() :
118                           PointerType::getUnqual(Type::getInt8Ty(Context)),
119                           TyInfo.size());
120          LPI->addClause(ConstantArray::get(AType, TyInfo));
121        }
122
123        N = i;
124      }
125    }
126
127    if (N > 2)
128      for (unsigned j = 2; j < N; ++j) {
129        Value *Val = EHSel->getArgOperand(j);
130        if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
131          LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
132        } else {
133          GlobalVariable *GV = cast<GlobalVariable>(Val);
134          LPI->addClause(GV->getInitializer());
135        }
136      }
137  }
138
139
140  /// This function upgrades the old pre-3.0 exception handling system to the new
141  /// one. N.B. This will be removed in 3.1.
142  void UpgradeExceptionHandling(Module *M) {
143    Function *EHException = M->getFunction("llvm.eh.exception");
144    Function *EHSelector = M->getFunction("llvm.eh.selector");
145    if (!EHException || !EHSelector)
146      return;
147
148    LLVMContext &Context = M->getContext();
149    Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context));
150    Type *SelTy = Type::getInt32Ty(Context);
151    Type *LPadSlotTy = StructType::get(ExnTy, SelTy, nullptr);
152
153    // This map links the invoke instruction with the eh.exception and eh.selector
154    // calls associated with it.
155    DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap;
156    for (Module::iterator
157           I = M->begin(), E = M->end(); I != E; ++I) {
158      Function &F = *I;
159
160      for (Function::iterator
161             II = F.begin(), IE = F.end(); II != IE; ++II) {
162        BasicBlock *BB = &*II;
163        InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator());
164        if (!Inst) continue;
165        BasicBlock *UnwindDest = Inst->getUnwindDest();
166        if (UnwindDest->isLandingPad()) continue; // Already converted.
167
168        SmallPtrSet<BasicBlock*, 8> Visited;
169        CallInst *Exn = 0;
170        CallInst *Sel = 0;
171        FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited);
172        assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!");
173        InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel);
174      }
175    }
176
177    // This map stores the slots where the exception object and selector value are
178    // stored within a function.
179    DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap;
180    SmallPtrSet<Instruction*, 32> DeadInsts;
181    for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
182           I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
183         I != E; ++I) {
184      InvokeInst *Invoke = I->first;
185      BasicBlock *UnwindDest = Invoke->getUnwindDest();
186      Function *F = UnwindDest->getParent();
187      std::pair<Value*, Value*> EHIntrinsics = I->second;
188      CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
189      CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
190
191      // Store the exception object and selector value in the entry block.
192      Value *ExnSlot = 0;
193      Value *SelSlot = 0;
194      if (!FnToLPadSlotMap[F].first) {
195        BasicBlock *Entry = &F->front();
196        ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator());
197        SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator());
198        FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot);
199      } else {
200        ExnSlot = FnToLPadSlotMap[F].first;
201        SelSlot = FnToLPadSlotMap[F].second;
202      }
203
204      if (!UnwindDest->getSinglePredecessor()) {
205        // The unwind destination doesn't have a single predecessor. Create an
206        // unwind destination which has only one predecessor.
207        BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad",
208                                               UnwindDest->getParent());
209        BranchInst::Create(UnwindDest, NewBB);
210        Invoke->setUnwindDest(NewBB);
211
212        // Fix up any PHIs in the original unwind destination block.
213        for (BasicBlock::iterator
214               II = UnwindDest->begin(); isa<PHINode>(II); ++II) {
215          PHINode *PN = cast<PHINode>(II);
216          int Idx = PN->getBasicBlockIndex(Invoke->getParent());
217          if (Idx == -1) continue;
218          PN->setIncomingBlock(Idx, NewBB);
219        }
220
221        UnwindDest = NewBB;
222      }
223
224      IRBuilder<> Builder(Context);
225      Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt());
226
227      LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, 0);
228      Value *LPExn = Builder.CreateExtractValue(LPI, 0);
229      Value *LPSel = Builder.CreateExtractValue(LPI, 1);
230      Builder.CreateStore(LPExn, ExnSlot);
231      Builder.CreateStore(LPSel, SelSlot);
232
233      TransferClausesToLandingPadInst(LPI, Sel);
234
235      DeadInsts.insert(Exn);
236      DeadInsts.insert(Sel);
237    }
238
239    // Replace the old intrinsic calls with the values from the landingpad
240    // instruction(s). These values were stored in allocas for us to use here.
241    for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
242           I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
243         I != E; ++I) {
244      std::pair<Value*, Value*> EHIntrinsics = I->second;
245      CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
246      CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
247      BasicBlock *Parent = Exn->getParent();
248
249      std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()];
250
251      IRBuilder<> Builder(Context);
252      Builder.SetInsertPoint(Parent, Exn->getIterator());
253      LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load");
254      LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load");
255
256      Exn->replaceAllUsesWith(LPExn);
257      Sel->replaceAllUsesWith(LPSel);
258    }
259
260    // Remove the dead instructions.
261    for (SmallPtrSet<Instruction*, 32>::iterator
262           I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) {
263      Instruction *Inst = *I;
264      Inst->eraseFromParent();
265    }
266
267    // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the
268    // exception and selector values from the stored place.
269    Function *EHResume = M->getFunction("llvm.eh.resume");
270    if (!EHResume) return;
271
272    while (!EHResume->use_empty()) {
273      CallInst *Resume = cast<CallInst>(*EHResume->use_begin());
274      BasicBlock *BB = Resume->getParent();
275
276      IRBuilder<> Builder(Context);
277      Builder.SetInsertPoint(BB, Resume->getIterator());
278
279      Value *LPadVal =
280        Builder.CreateInsertValue(UndefValue::get(LPadSlotTy),
281                                  Resume->getArgOperand(0), 0, "lpad.val");
282      LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1),
283                                          1, "lpad.val");
284      Builder.CreateResume(LPadVal);
285
286      // Remove all instructions after the 'resume.'
287      BasicBlock::iterator I = Resume->getIterator();
288      while (I != BB->end()) {
289        Instruction *Inst = &*I++;
290        Inst->eraseFromParent();
291      }
292    }
293  }
294
295
296  void StripDebugInfoOfFunction(Module* M, const char* name) {
297    if (Function* FuncStart = M->getFunction(name)) {
298      while (!FuncStart->use_empty()) {
299        cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
300      }
301      FuncStart->eraseFromParent();
302    }
303  }
304
305  /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
306  /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
307  /// strips that use.
308  void CheckDebugInfoIntrinsics(Module *M) {
309    StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
310    StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
311    StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
312    StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
313
314    if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
315      if (!Declare->use_empty()) {
316        DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
317        if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
318            !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
319          while (!Declare->use_empty()) {
320            CallInst *CI = cast<CallInst>(*Declare->use_begin());
321            CI->eraseFromParent();
322          }
323          Declare->eraseFromParent();
324        }
325      }
326    }
327  }
328
329
330//===----------------------------------------------------------------------===//
331//                          BitcodeReaderValueList Class
332//===----------------------------------------------------------------------===//
333
334class BitcodeReaderValueList {
335  std::vector<WeakVH> ValuePtrs;
336
337  /// ResolveConstants - As we resolve forward-referenced constants, we add
338  /// information about them to this vector.  This allows us to resolve them in
339  /// bulk instead of resolving each reference at a time.  See the code in
340  /// ResolveConstantForwardRefs for more information about this.
341  ///
342  /// The key of this vector is the placeholder constant, the value is the slot
343  /// number that holds the resolved value.
344  typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
345  ResolveConstantsTy ResolveConstants;
346  LLVMContext &Context;
347public:
348  explicit BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
349  ~BitcodeReaderValueList() {
350    assert(ResolveConstants.empty() && "Constants not resolved?");
351  }
352
353  // vector compatibility methods
354  unsigned size() const { return ValuePtrs.size(); }
355  void resize(unsigned N) { ValuePtrs.resize(N); }
356  void push_back(Value *V) {
357    ValuePtrs.push_back(V);
358  }
359
360  void clear() {
361    assert(ResolveConstants.empty() && "Constants not resolved?");
362    ValuePtrs.clear();
363  }
364
365  Value *operator[](unsigned i) const {
366    assert(i < ValuePtrs.size());
367    return ValuePtrs[i];
368  }
369
370  Value *back() const { return ValuePtrs.back(); }
371    void pop_back() { ValuePtrs.pop_back(); }
372  bool empty() const { return ValuePtrs.empty(); }
373  void shrinkTo(unsigned N) {
374    assert(N <= size() && "Invalid shrinkTo request!");
375    ValuePtrs.resize(N);
376  }
377
378  Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
379  Value *getValueFwdRef(unsigned Idx, Type *Ty);
380
381  void AssignValue(Value *V, unsigned Idx);
382
383  /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
384  /// resolves any forward references.
385  void ResolveConstantForwardRefs();
386};
387
388
389//===----------------------------------------------------------------------===//
390//                          BitcodeReaderMDValueList Class
391//===----------------------------------------------------------------------===//
392
393class BitcodeReaderMDValueList {
394  unsigned NumFwdRefs;
395  bool AnyFwdRefs;
396  std::vector<TrackingMDRef> MDValuePtrs;
397
398  LLVMContext &Context;
399public:
400  explicit BitcodeReaderMDValueList(LLVMContext &C)
401      : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
402
403  // vector compatibility methods
404  unsigned size() const       { return MDValuePtrs.size(); }
405  void resize(unsigned N)     { MDValuePtrs.resize(N); }
406  void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
407  void clear()                { MDValuePtrs.clear();  }
408  Metadata *back() const      { return MDValuePtrs.back(); }
409  void pop_back()             { MDValuePtrs.pop_back(); }
410  bool empty() const          { return MDValuePtrs.empty(); }
411
412  Metadata *operator[](unsigned i) const {
413    assert(i < MDValuePtrs.size());
414    return MDValuePtrs[i];
415  }
416
417  void shrinkTo(unsigned N) {
418    assert(N <= size() && "Invalid shrinkTo request!");
419    MDValuePtrs.resize(N);
420  }
421
422  Metadata *getValueFwdRef(unsigned Idx);
423  void AssignValue(Metadata *MD, unsigned Idx);
424  void tryToResolveCycles();
425};
426
427class BitcodeReader : public GVMaterializer {
428  LLVMContext &Context;
429  DiagnosticHandlerFunction DiagnosticHandler;
430  Module *TheModule;
431  std::unique_ptr<MemoryBuffer> Buffer;
432  std::unique_ptr<BitstreamReader> StreamFile;
433  BitstreamCursor Stream;
434  std::unique_ptr<DataStreamer> LazyStreamer;
435  uint64_t NextUnreadBit;
436  bool SeenValueSymbolTable;
437
438  std::vector<Type*> TypeList;
439  BitcodeReaderValueList ValueList;
440  BitcodeReaderMDValueList MDValueList;
441  SmallVector<Instruction *, 64> InstructionList;
442
443  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
444  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
445
446  /// MAttributes - The set of attributes by index.  Index zero in the
447  /// file is for null, and is thus not represented here.  As such all indices
448  /// are off by one.
449  std::vector<AttributeSet> MAttributes;
450
451  /// \brief The set of attribute groups.
452  std::map<unsigned, AttributeSet> MAttributeGroups;
453
454  /// FunctionBBs - While parsing a function body, this is a list of the basic
455  /// blocks for the function.
456  std::vector<BasicBlock*> FunctionBBs;
457
458  // When reading the module header, this list is populated with functions that
459  // have bodies later in the file.
460  std::vector<Function*> FunctionsWithBodies;
461
462  // When intrinsic functions are encountered which require upgrading they are
463  // stored here with their replacement function.
464  typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
465  UpgradedIntrinsicMap UpgradedIntrinsics;
466
467  // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
468  DenseMap<unsigned, unsigned> MDKindMap;
469
470  // Several operations happen after the module header has been read, but
471  // before function bodies are processed. This keeps track of whether
472  // we've done this yet.
473  bool SeenFirstFunctionBody;
474
475  /// DeferredFunctionInfo - When function bodies are initially scanned, this
476  /// map contains info about where to find deferred function body in the
477  /// stream.
478  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
479
480  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
481  /// are resolved lazily when functions are loaded.
482  typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
483  DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
484
485  static const std::error_category &BitcodeErrorCategory();
486
487public:
488  std::error_code Error(BitcodeError E, const Twine &Message);
489  std::error_code Error(BitcodeError E);
490  std::error_code Error(const Twine &Message);
491
492  explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
493                         DiagnosticHandlerFunction DiagnosticHandler);
494  ~BitcodeReader() { FreeState(); }
495
496  void FreeState();
497
498  void releaseBuffer();
499
500  bool isDematerializable(const GlobalValue *GV) const;
501  std::error_code materialize(GlobalValue *GV) override;
502  std::error_code materializeModule() override;
503  std::vector<StructType *> getIdentifiedStructTypes() const override;
504  void dematerialize(GlobalValue *GV);
505
506  /// @brief Main interface to parsing a bitcode buffer.
507  /// @returns true if an error occurred.
508  std::error_code ParseBitcodeInto(Module *M);
509
510  /// @brief Cheap mechanism to just extract module triple
511  /// @returns true if an error occurred.
512  llvm::ErrorOr<std::string> parseTriple();
513
514  static uint64_t decodeSignRotatedValue(uint64_t V);
515
516  /// Materialize any deferred Metadata block.
517  std::error_code materializeMetadata() override;
518
519  void setStripDebugInfo() override;
520
521private:
522  std::vector<StructType *> IdentifiedStructTypes;
523  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
524  StructType *createIdentifiedStructType(LLVMContext &Context);
525
526  Type *getTypeByID(unsigned ID);
527  Type *getTypeByIDOrNull(unsigned ID);
528  Value *getFnValueByID(unsigned ID, Type *Ty) {
529    if (Ty && Ty->isMetadataTy())
530      return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
531    return ValueList.getValueFwdRef(ID, Ty);
532  }
533  Metadata *getFnMetadataByID(unsigned ID) {
534    return MDValueList.getValueFwdRef(ID);
535  }
536  BasicBlock *getBasicBlock(unsigned ID) const {
537    if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
538    return FunctionBBs[ID];
539  }
540  AttributeSet getAttributes(unsigned i) const {
541    if (i-1 < MAttributes.size())
542      return MAttributes[i-1];
543    return AttributeSet();
544  }
545
546  /// getValueTypePair - Read a value/type pair out of the specified record from
547  /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
548  /// Return true on failure.
549  bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
550                        unsigned InstNum, Value *&ResVal) {
551    if (Slot == Record.size()) return true;
552    unsigned ValNo = (unsigned)Record[Slot++];
553    if (ValNo < InstNum) {
554      // If this is not a forward reference, just return the value we already
555      // have.
556      ResVal = getFnValueByID(ValNo, nullptr);
557      return ResVal == nullptr;
558    } else if (Slot == Record.size()) {
559      return true;
560    }
561
562    unsigned TypeNo = (unsigned)Record[Slot++];
563    ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
564    return ResVal == nullptr;
565  }
566  bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
567                Type *Ty, Value *&ResVal) {
568    if (Slot == Record.size()) return true;
569    unsigned ValNo = (unsigned)Record[Slot++];
570    ResVal = getFnValueByID(ValNo, Ty);
571    return ResVal == 0;
572  }
573
574
575  std::error_code ParseModule(bool Resume);
576  std::error_code ParseAttributeBlock();
577  std::error_code ParseTypeTable();
578  std::error_code ParseOldTypeTable();         // FIXME: Remove in LLVM 3.1
579  std::error_code ParseTypeTableBody();
580
581  std::error_code ParseOldTypeSymbolTable();   // FIXME: Remove in LLVM 3.1
582  std::error_code ParseValueSymbolTable();
583  std::error_code ParseConstants();
584  std::error_code RememberAndSkipFunctionBody();
585  std::error_code ParseFunctionBody(Function *F);
586  std::error_code GlobalCleanup();
587  std::error_code ResolveGlobalAndAliasInits();
588  std::error_code ParseMetadata();
589  std::error_code ParseMetadataAttachment();
590  llvm::ErrorOr<std::string> parseModuleTriple();
591  std::error_code InitStream();
592  std::error_code InitStreamFromBuffer();
593  std::error_code InitLazyStream();
594};
595
596} // end anonymous namespace
597
598static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
599                             std::error_code EC, const Twine &Message) {
600  BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
601  DiagnosticHandler(DI);
602  return EC;
603}
604
605static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
606                             std::error_code EC) {
607  return Error(DiagnosticHandler, EC, EC.message());
608}
609
610std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
611  return ::Error(DiagnosticHandler, make_error_code(E), Message);
612}
613
614std::error_code BitcodeReader::Error(const Twine &Message) {
615  return ::Error(DiagnosticHandler,
616                 make_error_code(BitcodeError::CorruptedBitcode), Message);
617}
618
619std::error_code BitcodeReader::Error(BitcodeError E) {
620  return ::Error(DiagnosticHandler, make_error_code(E));
621}
622
623static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
624                                                LLVMContext &C) {
625  if (F)
626    return F;
627  return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
628}
629
630BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
631                             DiagnosticHandlerFunction DiagnosticHandler)
632    : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
633      TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
634      NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
635      MDValueList(C), SeenFirstFunctionBody(false) {}
636
637
638void BitcodeReader::FreeState() {
639  Buffer = nullptr;
640  std::vector<Type*>().swap(TypeList);
641  ValueList.clear();
642  MDValueList.clear();
643
644  std::vector<AttributeSet>().swap(MAttributes);
645  std::vector<BasicBlock*>().swap(FunctionBBs);
646  std::vector<Function*>().swap(FunctionsWithBodies);
647  DeferredFunctionInfo.clear();
648  MDKindMap.clear();
649}
650
651//===----------------------------------------------------------------------===//
652//  Helper functions to implement forward reference resolution, etc.
653//===----------------------------------------------------------------------===//
654
655/// ConvertToString - Convert a string from a record into an std::string, return
656/// true on failure.
657template<typename StrTy>
658static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
659                            StrTy &Result) {
660  if (Idx > Record.size())
661    return true;
662
663  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
664    Result += (char)Record[i];
665  return false;
666}
667
668static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
669  switch (Val) {
670  default: // Map unknown/new linkages to external
671  case 0:
672    return GlobalValue::ExternalLinkage;
673  case 1:
674    return GlobalValue::WeakAnyLinkage;
675  case 2:
676    return GlobalValue::AppendingLinkage;
677  case 3:
678    return GlobalValue::InternalLinkage;
679  case 4:
680    return GlobalValue::LinkOnceAnyLinkage;
681  case 5:
682    return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
683  case 6:
684    return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
685  case 7:
686    return GlobalValue::ExternalWeakLinkage;
687  case 8:
688    return GlobalValue::CommonLinkage;
689  case 9:
690    return GlobalValue::PrivateLinkage;
691  case 10:
692    return GlobalValue::WeakODRLinkage;
693  case 11:
694    return GlobalValue::LinkOnceODRLinkage;
695  case 12:
696    return GlobalValue::AvailableExternallyLinkage;
697  case 13:
698    return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
699  case 14:
700    return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
701  //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
702  case 15:
703    return GlobalValue::LinkOnceODRLinkage;
704  }
705}
706
707static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
708  switch (Val) {
709  default: // Map unknown visibilities to default.
710  case 0: return GlobalValue::DefaultVisibility;
711  case 1: return GlobalValue::HiddenVisibility;
712  case 2: return GlobalValue::ProtectedVisibility;
713  }
714}
715
716static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
717  switch (Val) {
718    case 0: return GlobalVariable::NotThreadLocal;
719    default: // Map unknown non-zero value to general dynamic.
720    case 1: return GlobalVariable::GeneralDynamicTLSModel;
721    case 2: return GlobalVariable::LocalDynamicTLSModel;
722    case 3: return GlobalVariable::InitialExecTLSModel;
723    case 4: return GlobalVariable::LocalExecTLSModel;
724  }
725}
726
727static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
728  switch (Val) {
729    default: // Map unknown to UnnamedAddr::None.
730    case 0: return GlobalVariable::UnnamedAddr::None;
731    case 1: return GlobalVariable::UnnamedAddr::Global;
732    case 2: return GlobalVariable::UnnamedAddr::Local;
733  }
734}
735
736static int GetDecodedCastOpcode(unsigned Val) {
737  switch (Val) {
738  default: return -1;
739  case bitc::CAST_TRUNC   : return Instruction::Trunc;
740  case bitc::CAST_ZEXT    : return Instruction::ZExt;
741  case bitc::CAST_SEXT    : return Instruction::SExt;
742  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
743  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
744  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
745  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
746  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
747  case bitc::CAST_FPEXT   : return Instruction::FPExt;
748  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
749  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
750  case bitc::CAST_BITCAST : return Instruction::BitCast;
751  }
752}
753static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
754  switch (Val) {
755  default: return -1;
756  case bitc::BINOP_ADD:
757    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
758  case bitc::BINOP_SUB:
759    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
760  case bitc::BINOP_MUL:
761    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
762  case bitc::BINOP_UDIV: return Instruction::UDiv;
763  case bitc::BINOP_SDIV:
764    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
765  case bitc::BINOP_UREM: return Instruction::URem;
766  case bitc::BINOP_SREM:
767    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
768  case bitc::BINOP_SHL:  return Instruction::Shl;
769  case bitc::BINOP_LSHR: return Instruction::LShr;
770  case bitc::BINOP_ASHR: return Instruction::AShr;
771  case bitc::BINOP_AND:  return Instruction::And;
772  case bitc::BINOP_OR:   return Instruction::Or;
773  case bitc::BINOP_XOR:  return Instruction::Xor;
774  }
775}
776
777static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
778  switch (Val) {
779  default: return AtomicRMWInst::BAD_BINOP;
780  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
781  case bitc::RMW_ADD: return AtomicRMWInst::Add;
782  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
783  case bitc::RMW_AND: return AtomicRMWInst::And;
784  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
785  case bitc::RMW_OR: return AtomicRMWInst::Or;
786  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
787  case bitc::RMW_MAX: return AtomicRMWInst::Max;
788  case bitc::RMW_MIN: return AtomicRMWInst::Min;
789  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
790  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
791  }
792}
793
794static AtomicOrdering GetDecodedOrdering(unsigned Val) {
795  switch (Val) {
796  case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
797  case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
798  case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
799  case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
800  case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
801  case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
802  default: // Map unknown orderings to sequentially-consistent.
803  case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
804  }
805}
806
807static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
808  switch (Val) {
809  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
810  default: // Map unknown scopes to cross-thread.
811  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
812  }
813}
814
815namespace llvm {
816namespace {
817  /// @brief A class for maintaining the slot number definition
818  /// as a placeholder for the actual definition for forward constants defs.
819  class ConstantPlaceHolder : public ConstantExpr {
820    void operator=(const ConstantPlaceHolder &) = delete;
821  public:
822    // allocate space for exactly one operand
823    void *operator new(size_t s) {
824      return User::operator new(s, 1);
825    }
826    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
827      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
828      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
829    }
830
831    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
832    static bool classof(const Value *V) {
833      return isa<ConstantExpr>(V) &&
834             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
835    }
836
837
838    /// Provide fast operand accessors
839    DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
840  };
841}
842
843// FIXME: can we inherit this from ConstantExpr?
844template <>
845struct OperandTraits<ConstantPlaceHolder> :
846  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
847};
848DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
849}
850
851
852void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
853  if (Idx == size()) {
854    push_back(V);
855    return;
856  }
857
858  if (Idx >= size())
859    resize(Idx+1);
860
861  WeakVH &OldV = ValuePtrs[Idx];
862  if (!OldV) {
863    OldV = V;
864    return;
865  }
866
867  // Handle constants and non-constants (e.g. instrs) differently for
868  // efficiency.
869  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
870    ResolveConstants.push_back(std::make_pair(PHC, Idx));
871    OldV = V;
872  } else {
873    // If there was a forward reference to this value, replace it.
874    Value *PrevVal = OldV;
875    OldV->replaceAllUsesWith(V);
876    delete PrevVal;
877  }
878}
879
880
881Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
882                                                    Type *Ty) {
883  if (Idx >= size())
884    resize(Idx + 1);
885
886  if (Value *V = ValuePtrs[Idx]) {
887    assert(Ty == V->getType() && "Type mismatch in constant table!");
888    return cast<Constant>(V);
889  }
890
891  // Create and return a placeholder, which will later be RAUW'd.
892  Constant *C = new ConstantPlaceHolder(Ty, Context);
893  ValuePtrs[Idx] = C;
894  return C;
895}
896
897Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
898  if (Idx >= size())
899    resize(Idx + 1);
900
901  if (Value *V = ValuePtrs[Idx]) {
902    assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
903    return V;
904  }
905
906  // No type specified, must be invalid reference.
907  if (!Ty) return nullptr;
908
909  // Create and return a placeholder, which will later be RAUW'd.
910  Value *V = new Argument(Ty);
911  ValuePtrs[Idx] = V;
912  return V;
913}
914
915/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
916/// resolves any forward references.  The idea behind this is that we sometimes
917/// get constants (such as large arrays) which reference *many* forward ref
918/// constants.  Replacing each of these causes a lot of thrashing when
919/// building/reuniquing the constant.  Instead of doing this, we look at all the
920/// uses and rewrite all the place holders at once for any constant that uses
921/// a placeholder.
922void BitcodeReaderValueList::ResolveConstantForwardRefs() {
923  // Sort the values by-pointer so that they are efficient to look up with a
924  // binary search.
925  std::sort(ResolveConstants.begin(), ResolveConstants.end());
926
927  SmallVector<Constant*, 64> NewOps;
928
929  while (!ResolveConstants.empty()) {
930    Value *RealVal = operator[](ResolveConstants.back().second);
931    Constant *Placeholder = ResolveConstants.back().first;
932    ResolveConstants.pop_back();
933
934    // Loop over all users of the placeholder, updating them to reference the
935    // new value.  If they reference more than one placeholder, update them all
936    // at once.
937    while (!Placeholder->use_empty()) {
938      auto UI = Placeholder->user_begin();
939      User *U = *UI;
940
941      // If the using object isn't uniqued, just update the operands.  This
942      // handles instructions and initializers for global variables.
943      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
944        UI.getUse().set(RealVal);
945        continue;
946      }
947
948      // Otherwise, we have a constant that uses the placeholder.  Replace that
949      // constant with a new constant that has *all* placeholder uses updated.
950      Constant *UserC = cast<Constant>(U);
951      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
952           I != E; ++I) {
953        Value *NewOp;
954        if (!isa<ConstantPlaceHolder>(*I)) {
955          // Not a placeholder reference.
956          NewOp = *I;
957        } else if (*I == Placeholder) {
958          // Common case is that it just references this one placeholder.
959          NewOp = RealVal;
960        } else {
961          // Otherwise, look up the placeholder in ResolveConstants.
962          ResolveConstantsTy::iterator It =
963            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
964                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
965                                                            0));
966          assert(It != ResolveConstants.end() && It->first == *I);
967          NewOp = operator[](It->second);
968        }
969
970        NewOps.push_back(cast<Constant>(NewOp));
971      }
972
973      // Make the new constant.
974      Constant *NewC;
975      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
976        NewC = ConstantArray::get(UserCA->getType(), NewOps);
977      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
978        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
979      } else if (isa<ConstantVector>(UserC)) {
980        NewC = ConstantVector::get(NewOps);
981      } else {
982        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
983        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
984      }
985
986      UserC->replaceAllUsesWith(NewC);
987      UserC->destroyConstant();
988      NewOps.clear();
989    }
990
991    // Update all ValueHandles, they should be the only users at this point.
992    Placeholder->replaceAllUsesWith(RealVal);
993    delete Placeholder;
994  }
995}
996
997void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
998  if (Idx == size()) {
999    push_back(MD);
1000    return;
1001  }
1002
1003  if (Idx >= size())
1004    resize(Idx+1);
1005
1006  TrackingMDRef &OldMD = MDValuePtrs[Idx];
1007  if (!OldMD) {
1008    OldMD.reset(MD);
1009    return;
1010  }
1011
1012  // If there was a forward reference to this value, replace it.
1013  TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1014  PrevMD->replaceAllUsesWith(MD);
1015  --NumFwdRefs;
1016}
1017
1018Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
1019  if (Idx >= size())
1020    resize(Idx + 1);
1021
1022  if (Metadata *MD = MDValuePtrs[Idx])
1023    return MD;
1024
1025  // Create and return a placeholder, which will later be RAUW'd.
1026  AnyFwdRefs = true;
1027  ++NumFwdRefs;
1028  Metadata *MD = MDNode::getTemporary(Context, None).release();
1029  MDValuePtrs[Idx].reset(MD);
1030  return MD;
1031}
1032
1033void BitcodeReaderMDValueList::tryToResolveCycles() {
1034  if (!AnyFwdRefs)
1035    // Nothing to do.
1036    return;
1037
1038  if (NumFwdRefs)
1039    // Still forward references... can't resolve cycles.
1040    return;
1041
1042  // Resolve any cycles.
1043  for (auto &MD : MDValuePtrs) {
1044    auto *N = dyn_cast_or_null<MDNode>(MD);
1045    if (!N)
1046      continue;
1047
1048    assert(!N->isTemporary() && "Unexpected forward reference");
1049    N->resolveCycles();
1050  }
1051}
1052
1053Type *BitcodeReader::getTypeByID(unsigned ID) {
1054  // The type table size is always specified correctly.
1055  if (ID >= TypeList.size())
1056    return nullptr;
1057
1058  if (Type *Ty = TypeList[ID])
1059    return Ty;
1060
1061  // If we have a forward reference, the only possible case is when it is to a
1062  // named struct.  Just create a placeholder for now.
1063  return TypeList[ID] = createIdentifiedStructType(Context);
1064}
1065
1066StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1067                                                      StringRef Name) {
1068  auto *Ret = StructType::create(Context, Name);
1069  IdentifiedStructTypes.push_back(Ret);
1070  return Ret;
1071}
1072
1073StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1074  auto *Ret = StructType::create(Context);
1075  IdentifiedStructTypes.push_back(Ret);
1076  return Ret;
1077}
1078
1079
1080/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
1081Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
1082  if (ID >= TypeList.size())
1083    TypeList.resize(ID+1);
1084
1085  return TypeList[ID];
1086}
1087
1088//===----------------------------------------------------------------------===//
1089//  Functions for parsing blocks from the bitcode file
1090//===----------------------------------------------------------------------===//
1091
1092
1093/// \brief This fills an AttrBuilder object with the LLVM attributes that have
1094/// been decoded from the given integer. This function must stay in sync with
1095/// 'encodeLLVMAttributesForBitcode'.
1096static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1097                                           uint64_t EncodedAttrs) {
1098  // FIXME: Remove in 4.0.
1099
1100  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1101  // the bits above 31 down by 11 bits.
1102  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1103  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1104         "Alignment must be a power of two.");
1105
1106  if (Alignment)
1107    B.addAlignmentAttr(Alignment);
1108  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1109                (EncodedAttrs & 0xffff));
1110}
1111
1112std::error_code BitcodeReader::ParseAttributeBlock() {
1113  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1114    return Error("Invalid record");
1115
1116  if (!MAttributes.empty())
1117    return Error("Invalid multiple blocks");
1118
1119  SmallVector<uint64_t, 64> Record;
1120
1121  SmallVector<AttributeSet, 8> Attrs;
1122
1123  // Read all the records.
1124  while (1) {
1125    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1126
1127    switch (Entry.Kind) {
1128    case BitstreamEntry::SubBlock: // Handled for us already.
1129    case BitstreamEntry::Error:
1130      return Error("Malformed block");
1131    case BitstreamEntry::EndBlock:
1132      return std::error_code();
1133    case BitstreamEntry::Record:
1134      // The interesting case.
1135      break;
1136    }
1137
1138    // Read a record.
1139    Record.clear();
1140    switch (Stream.readRecord(Entry.ID, Record)) {
1141    default:  // Default behavior: ignore.
1142      break;
1143    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1144      // FIXME: Remove in 4.0.
1145      if (Record.size() & 1)
1146        return Error("Invalid record");
1147
1148      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1149        AttrBuilder B;
1150        decodeLLVMAttributesForBitcode(B, Record[i+1]);
1151        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1152      }
1153
1154      MAttributes.push_back(AttributeSet::get(Context, Attrs));
1155      Attrs.clear();
1156      break;
1157    }
1158    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1159      for (unsigned i = 0, e = Record.size(); i != e; ++i)
1160        Attrs.push_back(MAttributeGroups[Record[i]]);
1161
1162      MAttributes.push_back(AttributeSet::get(Context, Attrs));
1163      Attrs.clear();
1164      break;
1165    }
1166    }
1167  }
1168}
1169
1170
1171std::error_code BitcodeReader::ParseTypeTable() {
1172  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1173    return Error("Invalid record");
1174
1175  return ParseTypeTableBody();
1176}
1177
1178std::error_code BitcodeReader::ParseTypeTableBody() {
1179  if (!TypeList.empty())
1180    return Error("Invalid multiple blocks");
1181
1182  SmallVector<uint64_t, 64> Record;
1183  unsigned NumRecords = 0;
1184
1185  SmallString<64> TypeName;
1186
1187  // Read all the records for this type table.
1188  while (1) {
1189    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1190
1191    switch (Entry.Kind) {
1192    case BitstreamEntry::SubBlock: // Handled for us already.
1193    case BitstreamEntry::Error:
1194      return Error("Malformed block");
1195    case BitstreamEntry::EndBlock:
1196      if (NumRecords != TypeList.size())
1197        return Error("Malformed block");
1198      return std::error_code();
1199    case BitstreamEntry::Record:
1200      // The interesting case.
1201      break;
1202    }
1203
1204    // Read a record.
1205    Record.clear();
1206    Type *ResultTy = nullptr;
1207    switch (Stream.readRecord(Entry.ID, Record)) {
1208    default:
1209      return Error("Invalid value");
1210    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1211      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1212      // type list.  This allows us to reserve space.
1213      if (Record.size() < 1)
1214        return Error("Invalid record");
1215      TypeList.resize(Record[0]);
1216      continue;
1217    case bitc::TYPE_CODE_VOID:      // VOID
1218      ResultTy = Type::getVoidTy(Context);
1219      break;
1220    case bitc::TYPE_CODE_HALF:     // HALF
1221      ResultTy = Type::getHalfTy(Context);
1222      break;
1223    case bitc::TYPE_CODE_FLOAT:     // FLOAT
1224      ResultTy = Type::getFloatTy(Context);
1225      break;
1226    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1227      ResultTy = Type::getDoubleTy(Context);
1228      break;
1229    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1230      ResultTy = Type::getX86_FP80Ty(Context);
1231      break;
1232    case bitc::TYPE_CODE_FP128:     // FP128
1233      ResultTy = Type::getFP128Ty(Context);
1234      break;
1235    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1236      ResultTy = Type::getPPC_FP128Ty(Context);
1237      break;
1238    case bitc::TYPE_CODE_LABEL:     // LABEL
1239      ResultTy = Type::getLabelTy(Context);
1240      break;
1241    case bitc::TYPE_CODE_METADATA:  // METADATA
1242      ResultTy = Type::getMetadataTy(Context);
1243      break;
1244    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1245      ResultTy = Type::getX86_MMXTy(Context);
1246      break;
1247    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1248      if (Record.size() < 1)
1249        return Error("Invalid record");
1250
1251      ResultTy = IntegerType::get(Context, Record[0]);
1252      break;
1253    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1254                                    //          [pointee type, address space]
1255      if (Record.size() < 1)
1256        return Error("Invalid record");
1257      unsigned AddressSpace = 0;
1258      if (Record.size() == 2)
1259        AddressSpace = Record[1];
1260      ResultTy = getTypeByID(Record[0]);
1261      if (!ResultTy)
1262        return Error("Invalid type");
1263      ResultTy = PointerType::get(ResultTy, AddressSpace);
1264      break;
1265    }
1266    case bitc::TYPE_CODE_FUNCTION_OLD: {
1267      // FIXME: attrid is dead, remove it in LLVM 4.0
1268      // FUNCTION: [vararg, attrid, retty, paramty x N]
1269      if (Record.size() < 3)
1270        return Error("Invalid record");
1271      SmallVector<Type*, 8> ArgTys;
1272      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1273        if (Type *T = getTypeByID(Record[i]))
1274          ArgTys.push_back(T);
1275        else
1276          break;
1277      }
1278
1279      ResultTy = getTypeByID(Record[2]);
1280      if (!ResultTy || ArgTys.size() < Record.size()-3)
1281        return Error("Invalid type");
1282
1283      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1284      break;
1285    }
1286    case bitc::TYPE_CODE_FUNCTION: {
1287      // FUNCTION: [vararg, retty, paramty x N]
1288      if (Record.size() < 2)
1289        return Error("Invalid record");
1290      SmallVector<Type*, 8> ArgTys;
1291      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1292        if (Type *T = getTypeByID(Record[i]))
1293          ArgTys.push_back(T);
1294        else
1295          break;
1296      }
1297
1298      ResultTy = getTypeByID(Record[1]);
1299      if (!ResultTy || ArgTys.size() < Record.size()-2)
1300        return Error("Invalid type");
1301
1302      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1303      break;
1304    }
1305    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1306      if (Record.size() < 1)
1307        return Error("Invalid record");
1308      SmallVector<Type*, 8> EltTys;
1309      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1310        if (Type *T = getTypeByID(Record[i]))
1311          EltTys.push_back(T);
1312        else
1313          break;
1314      }
1315      if (EltTys.size() != Record.size()-1)
1316        return Error("Invalid type");
1317      ResultTy = StructType::get(Context, EltTys, Record[0]);
1318      break;
1319    }
1320    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1321      if (ConvertToString(Record, 0, TypeName))
1322        return Error("Invalid record");
1323      continue;
1324
1325    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1326      if (Record.size() < 1)
1327        return Error("Invalid record");
1328
1329      if (NumRecords >= TypeList.size())
1330        return Error("Invalid TYPE table");
1331
1332      // Check to see if this was forward referenced, if so fill in the temp.
1333      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1334      if (Res) {
1335        Res->setName(TypeName);
1336        TypeList[NumRecords] = nullptr;
1337      } else  // Otherwise, create a new struct.
1338        Res = createIdentifiedStructType(Context, TypeName);
1339      TypeName.clear();
1340
1341      SmallVector<Type*, 8> EltTys;
1342      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1343        if (Type *T = getTypeByID(Record[i]))
1344          EltTys.push_back(T);
1345        else
1346          break;
1347      }
1348      if (EltTys.size() != Record.size()-1)
1349        return Error("Invalid record");
1350      Res->setBody(EltTys, Record[0]);
1351      ResultTy = Res;
1352      break;
1353    }
1354    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1355      if (Record.size() != 1)
1356        return Error("Invalid record");
1357
1358      if (NumRecords >= TypeList.size())
1359        return Error("Invalid TYPE table");
1360
1361      // Check to see if this was forward referenced, if so fill in the temp.
1362      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1363      if (Res) {
1364        Res->setName(TypeName);
1365        TypeList[NumRecords] = nullptr;
1366      } else  // Otherwise, create a new struct with no body.
1367        Res = createIdentifiedStructType(Context, TypeName);
1368      TypeName.clear();
1369      ResultTy = Res;
1370      break;
1371    }
1372    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1373      if (Record.size() < 2)
1374        return Error("Invalid record");
1375      if ((ResultTy = getTypeByID(Record[1])))
1376        ResultTy = ArrayType::get(ResultTy, Record[0]);
1377      else
1378        return Error("Invalid type");
1379      break;
1380    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1381      if (Record.size() < 2)
1382        return Error("Invalid record");
1383      if ((ResultTy = getTypeByID(Record[1])))
1384        ResultTy = VectorType::get(ResultTy, Record[0]);
1385      else
1386        return Error("Invalid type");
1387      break;
1388    }
1389
1390    if (NumRecords >= TypeList.size())
1391      return Error("Invalid TYPE table");
1392    assert(ResultTy && "Didn't read a type?");
1393    assert(!TypeList[NumRecords] && "Already read type?");
1394    TypeList[NumRecords++] = ResultTy;
1395  }
1396}
1397
1398// FIXME: Remove in LLVM 3.1
1399std::error_code BitcodeReader::ParseOldTypeTable() {
1400  if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
1401    return Error("Malformed block");
1402
1403  if (!TypeList.empty())
1404    return Error("Invalid TYPE table");
1405
1406
1407  // While horrible, we have no good ordering of types in the bc file.  Just
1408  // iteratively parse types out of the bc file in multiple passes until we get
1409  // them all.  Do this by saving a cursor for the start of the type block.
1410  BitstreamCursor StartOfTypeBlockCursor(Stream);
1411
1412  unsigned NumTypesRead = 0;
1413
1414  SmallVector<uint64_t, 64> Record;
1415RestartScan:
1416  unsigned NextTypeID = 0;
1417  bool ReadAnyTypes = false;
1418
1419  // Read all the records for this type table.
1420  while (1) {
1421    unsigned Code = Stream.ReadCode();
1422    if (Code == bitc::END_BLOCK) {
1423      if (NextTypeID != TypeList.size())
1424        return Error("Invalid TYPE table");
1425
1426      // If we haven't read all of the types yet, iterate again.
1427      if (NumTypesRead != TypeList.size()) {
1428        // If we didn't successfully read any types in this pass, then we must
1429        // have an unhandled forward reference.
1430        if (!ReadAnyTypes)
1431          return Error("Invalid TYPE table");
1432
1433        Stream = StartOfTypeBlockCursor;
1434        goto RestartScan;
1435      }
1436
1437      if (Stream.ReadBlockEnd())
1438        return Error("Invalid TYPE table");
1439      return std::error_code();
1440    }
1441
1442    if (Code == bitc::ENTER_SUBBLOCK) {
1443      // No known subblocks, always skip them.
1444      Stream.ReadSubBlockID();
1445      if (Stream.SkipBlock())
1446        return Error("Malformed block");
1447      continue;
1448    }
1449
1450    if (Code == bitc::DEFINE_ABBREV) {
1451      Stream.ReadAbbrevRecord();
1452      continue;
1453    }
1454
1455    // Read a record.
1456    Record.clear();
1457    Type *ResultTy = nullptr;
1458    switch (Stream.readRecord(Code, Record)) {
1459    default: return Error("Invalid TYPE table");
1460    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1461      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1462      // type list.  This allows us to reserve space.
1463      if (Record.size() < 1)
1464        return Error("Invalid TYPE table");
1465      TypeList.resize(Record[0]);
1466      continue;
1467    case bitc::TYPE_CODE_VOID:      // VOID
1468      ResultTy = Type::getVoidTy(Context);
1469      break;
1470    case bitc::TYPE_CODE_FLOAT:     // FLOAT
1471      ResultTy = Type::getFloatTy(Context);
1472      break;
1473    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1474      ResultTy = Type::getDoubleTy(Context);
1475      break;
1476    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1477      ResultTy = Type::getX86_FP80Ty(Context);
1478      break;
1479    case bitc::TYPE_CODE_FP128:     // FP128
1480      ResultTy = Type::getFP128Ty(Context);
1481      break;
1482    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1483      ResultTy = Type::getPPC_FP128Ty(Context);
1484      break;
1485    case bitc::TYPE_CODE_LABEL:     // LABEL
1486      ResultTy = Type::getLabelTy(Context);
1487      break;
1488    case bitc::TYPE_CODE_METADATA:  // METADATA
1489      ResultTy = Type::getMetadataTy(Context);
1490      break;
1491    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1492      ResultTy = Type::getX86_MMXTy(Context);
1493      break;
1494    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1495      if (Record.size() < 1)
1496        return Error("Invalid TYPE table");
1497      ResultTy = IntegerType::get(Context, Record[0]);
1498      break;
1499    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
1500      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
1501        ResultTy = StructType::create(Context, "");
1502      break;
1503    case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
1504      if (NextTypeID >= TypeList.size()) break;
1505      // If we already read it, don't reprocess.
1506      if (TypeList[NextTypeID] &&
1507          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
1508        break;
1509
1510      // Set a type.
1511      if (TypeList[NextTypeID] == 0)
1512        TypeList[NextTypeID] = StructType::create(Context, "");
1513
1514      std::vector<Type*> EltTys;
1515      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1516        if (Type *Elt = getTypeByIDOrNull(Record[i]))
1517          EltTys.push_back(Elt);
1518        else
1519          break;
1520      }
1521
1522      if (EltTys.size() != Record.size()-1)
1523        break;      // Not all elements are ready.
1524
1525      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
1526      ResultTy = TypeList[NextTypeID];
1527      TypeList[NextTypeID] = 0;
1528      break;
1529    }
1530    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1531      //          [pointee type, address space]
1532      if (Record.size() < 1)
1533        return Error("Invalid TYPE table");
1534      unsigned AddressSpace = 0;
1535      if (Record.size() == 2)
1536        AddressSpace = Record[1];
1537      if ((ResultTy = getTypeByIDOrNull(Record[0])))
1538        ResultTy = PointerType::get(ResultTy, AddressSpace);
1539      break;
1540    }
1541    case bitc::TYPE_CODE_FUNCTION_OLD: {
1542      // FIXME: attrid is dead, remove it in LLVM 3.0
1543      // FUNCTION: [vararg, attrid, retty, paramty x N]
1544      if (Record.size() < 3)
1545        return Error("Invalid TYPE table");
1546      std::vector<Type*> ArgTys;
1547      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1548        if (Type *Elt = getTypeByIDOrNull(Record[i]))
1549          ArgTys.push_back(Elt);
1550        else
1551          break;
1552      }
1553      if (ArgTys.size()+3 != Record.size())
1554        break;  // Something was null.
1555      if ((ResultTy = getTypeByIDOrNull(Record[2])))
1556        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1557      break;
1558    }
1559    case bitc::TYPE_CODE_FUNCTION: {
1560      // FUNCTION: [vararg, retty, paramty x N]
1561      if (Record.size() < 2)
1562        return Error("Invalid TYPE table");
1563      std::vector<Type*> ArgTys;
1564      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1565        if (Type *Elt = getTypeByIDOrNull(Record[i]))
1566          ArgTys.push_back(Elt);
1567        else
1568          break;
1569      }
1570      if (ArgTys.size()+2 != Record.size())
1571        break;  // Something was null.
1572      if ((ResultTy = getTypeByIDOrNull(Record[1])))
1573        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1574      break;
1575    }
1576    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1577      if (Record.size() < 2)
1578        return Error("Invalid TYPE table");
1579      if ((ResultTy = getTypeByIDOrNull(Record[1])))
1580        ResultTy = ArrayType::get(ResultTy, Record[0]);
1581      break;
1582    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1583      if (Record.size() < 2)
1584        return Error("Invalid TYPE table");
1585      if ((ResultTy = getTypeByIDOrNull(Record[1])))
1586        ResultTy = VectorType::get(ResultTy, Record[0]);
1587      break;
1588    }
1589
1590    if (NextTypeID >= TypeList.size())
1591      return Error("Invalid TYPE table");
1592
1593    if (ResultTy && TypeList[NextTypeID] == 0) {
1594      ++NumTypesRead;
1595      ReadAnyTypes = true;
1596
1597      TypeList[NextTypeID] = ResultTy;
1598    }
1599
1600    ++NextTypeID;
1601  }
1602}
1603
1604
1605std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
1606  if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
1607    return Error("Malformed block");
1608
1609  SmallVector<uint64_t, 64> Record;
1610
1611  // Read all the records for this type table.
1612  std::string TypeName;
1613  while (1) {
1614    unsigned Code = Stream.ReadCode();
1615    if (Code == bitc::END_BLOCK) {
1616      if (Stream.ReadBlockEnd())
1617        return Error("Malformed block");
1618      return std::error_code();
1619    }
1620
1621    if (Code == bitc::ENTER_SUBBLOCK) {
1622      // No known subblocks, always skip them.
1623      Stream.ReadSubBlockID();
1624      if (Stream.SkipBlock())
1625        return Error("Malformed block");
1626      continue;
1627    }
1628
1629    if (Code == bitc::DEFINE_ABBREV) {
1630      Stream.ReadAbbrevRecord();
1631      continue;
1632    }
1633
1634    // Read a record.
1635    Record.clear();
1636    switch (Stream.readRecord(Code, Record)) {
1637    default:  // Default behavior: unknown type.
1638      break;
1639    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
1640      if (ConvertToString(Record, 1, TypeName))
1641        return Error("Invalid record");
1642      unsigned TypeID = Record[0];
1643      if (TypeID >= TypeList.size())
1644        return Error("Invalid record");
1645
1646      // Only apply the type name to a struct type with no name.
1647      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1648        if (!STy->isLiteral() && !STy->hasName())
1649          STy->setName(TypeName);
1650      TypeName.clear();
1651      break;
1652    }
1653  }
1654}
1655
1656std::error_code BitcodeReader::ParseValueSymbolTable() {
1657  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1658    return Error("Invalid record");
1659
1660  SmallVector<uint64_t, 64> Record;
1661
1662  // Read all the records for this value table.
1663  SmallString<128> ValueName;
1664  while (1) {
1665    unsigned Code = Stream.ReadCode();
1666    if (Code == bitc::END_BLOCK) {
1667      if (Stream.ReadBlockEnd())
1668        return Error("Malformed block");
1669      return std::error_code();
1670    }
1671    if (Code == bitc::ENTER_SUBBLOCK) {
1672      // No known subblocks, always skip them.
1673      Stream.ReadSubBlockID();
1674      if (Stream.SkipBlock())
1675        return Error("Malformed block");
1676      continue;
1677    }
1678
1679    if (Code == bitc::DEFINE_ABBREV) {
1680      Stream.ReadAbbrevRecord();
1681      continue;
1682    }
1683
1684    // Read a record.
1685    Record.clear();
1686    switch (Stream.readRecord(Code, Record)) {
1687    default:  // Default behavior: unknown type.
1688      break;
1689    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1690      if (ConvertToString(Record, 1, ValueName))
1691        return Error("Invalid record");
1692      unsigned ValueID = Record[0];
1693      if (ValueID >= ValueList.size())
1694        return Error("Invalid record");
1695      Value *V = ValueList[ValueID];
1696
1697      V->setName(StringRef(ValueName.data(), ValueName.size()));
1698      ValueName.clear();
1699      break;
1700    }
1701    case bitc::VST_CODE_BBENTRY: {
1702      if (ConvertToString(Record, 1, ValueName))
1703        return Error("Invalid record");
1704      BasicBlock *BB = getBasicBlock(Record[0]);
1705      if (!BB)
1706        return Error("Invalid record");
1707
1708      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1709      ValueName.clear();
1710      break;
1711    }
1712    }
1713  }
1714}
1715
1716std::error_code BitcodeReader::ParseMetadata() {
1717  unsigned NextMDValueNo = MDValueList.size();
1718
1719  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1720    return Error("Invalid record");
1721
1722  SmallVector<uint64_t, 64> Record;
1723
1724  // Read all the records.
1725  while (1) {
1726    unsigned Code = Stream.ReadCode();
1727    if (Code == bitc::END_BLOCK) {
1728      if (Stream.ReadBlockEnd())
1729        return Error("Malformed block");
1730      return std::error_code();
1731    }
1732
1733    if (Code == bitc::ENTER_SUBBLOCK) {
1734      // No known subblocks, always skip them.
1735      Stream.ReadSubBlockID();
1736      if (Stream.SkipBlock())
1737        return Error("Malformed block");
1738      continue;
1739    }
1740
1741    if (Code == bitc::DEFINE_ABBREV) {
1742      Stream.ReadAbbrevRecord();
1743      continue;
1744    }
1745
1746    bool IsFunctionLocal = false;
1747    // Read a record.
1748    Record.clear();
1749    Code = Stream.readRecord(Code, Record);
1750    switch (Code) {
1751    default:  // Default behavior: ignore.
1752      break;
1753    case bitc::METADATA_NAME: {
1754      // Read name of the named metadata.
1755      SmallString<8> Name(Record.begin(), Record.end());
1756      Record.clear();
1757      Code = Stream.ReadCode();
1758
1759      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1760      unsigned NextBitCode = Stream.readRecord(Code, Record);
1761      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1762
1763      // Read named metadata elements.
1764      unsigned Size = Record.size();
1765      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1766      for (unsigned i = 0; i != Size; ++i) {
1767        MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1768        if (!MD)
1769          return Error("Invalid record");
1770        NMD->addOperand(MD);
1771      }
1772      break;
1773    }
1774    case bitc::METADATA_OLD_FN_NODE:
1775      IsFunctionLocal = true;
1776      // fall-through
1777    case bitc::METADATA_OLD_NODE: {
1778      if (Record.size() % 2 == 1)
1779        return Error("Invalid record");
1780
1781      unsigned Size = Record.size();
1782      SmallVector<Metadata *, 8> Elts;
1783      for (unsigned i = 0; i != Size; i += 2) {
1784        Type *Ty = getTypeByID(Record[i]);
1785        if (!Ty)
1786          return Error("Invalid record");
1787        if (Ty->isMetadataTy())
1788          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1789        else if (!Ty->isVoidTy()) {
1790          auto *MD =
1791              ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1792          assert(isa<ConstantAsMetadata>(MD) &&
1793                 "Expected non-function-local metadata");
1794          Elts.push_back(MD);
1795        } else
1796          Elts.push_back(nullptr);
1797      }
1798      MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1799      break;
1800    }
1801    case bitc::METADATA_STRING_OLD: {
1802      std::string String(Record.begin(), Record.end());
1803
1804      // Test for upgrading !llvm.loop.
1805      mayBeOldLoopAttachmentTag(String);
1806
1807      Metadata *MD = MDString::get(Context, String);
1808      MDValueList.AssignValue(MD, NextMDValueNo++);
1809      break;
1810    }
1811    case bitc::METADATA_KIND: {
1812      if (Record.size() < 2)
1813        return Error("Invalid record");
1814
1815      unsigned Kind = Record[0];
1816      SmallString<8> Name(Record.begin()+1, Record.end());
1817
1818      unsigned NewKind = TheModule->getMDKindID(Name.str());
1819      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1820        return Error("Conflicting METADATA_KIND records");
1821      break;
1822    }
1823    }
1824  }
1825}
1826
1827/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1828/// the LSB for dense VBR encoding.
1829uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1830  if ((V & 1) == 0)
1831    return V >> 1;
1832  if (V != 1)
1833    return -(V >> 1);
1834  // There is no such thing as -0 with integers.  "-0" really means MININT.
1835  return 1ULL << 63;
1836}
1837
1838// FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1839// GlobalObject.
1840static GlobalObject &
1841getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1842                      Constant &C) {
1843  auto *GO = dyn_cast<GlobalObject>(&C);
1844  if (GO)
1845    return *GO;
1846
1847  auto *GA = dyn_cast<GlobalAlias>(&C);
1848  if (GA)
1849    return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1850
1851  auto &CE = cast<ConstantExpr>(C);
1852  assert(CE.getOpcode() == Instruction::BitCast ||
1853         CE.getOpcode() == Instruction::GetElementPtr ||
1854         CE.getOpcode() == Instruction::AddrSpaceCast);
1855  if (CE.getOpcode() == Instruction::GetElementPtr)
1856    assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1857  return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1858}
1859
1860/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1861/// values and aliases that we can.
1862std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1863  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1864  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1865
1866  GlobalInitWorklist.swap(GlobalInits);
1867  AliasInitWorklist.swap(AliasInits);
1868
1869  while (!GlobalInitWorklist.empty()) {
1870    unsigned ValID = GlobalInitWorklist.back().second;
1871    if (ValID >= ValueList.size()) {
1872      // Not ready to resolve this yet, it requires something later in the file.
1873      GlobalInits.push_back(GlobalInitWorklist.back());
1874    } else {
1875      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1876        GlobalInitWorklist.back().first->setInitializer(C);
1877      else
1878        return Error("Expected a constant");
1879    }
1880    GlobalInitWorklist.pop_back();
1881  }
1882
1883  // FIXME: Delete this in LLVM 4.0
1884  // Older versions of llvm could write an alias pointing to another. We cannot
1885  // construct those aliases, so we first collect an alias to aliasee expression
1886  // and then compute the actual aliasee.
1887  DenseMap<GlobalAlias *, Constant *> AliasInit;
1888
1889  while (!AliasInitWorklist.empty()) {
1890    unsigned ValID = AliasInitWorklist.back().second;
1891    if (ValID >= ValueList.size()) {
1892      AliasInits.push_back(AliasInitWorklist.back());
1893    } else {
1894      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1895        AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1896      else
1897        return Error("Expected a constant");
1898    }
1899    AliasInitWorklist.pop_back();
1900  }
1901
1902  for (auto &Pair : AliasInit) {
1903    auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1904    Pair.first->setAliasee(&GO);
1905  }
1906
1907  return std::error_code();
1908}
1909
1910static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1911  SmallVector<uint64_t, 8> Words(Vals.size());
1912  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1913                 BitcodeReader::decodeSignRotatedValue);
1914
1915  return APInt(TypeBits, Words);
1916}
1917
1918std::error_code BitcodeReader::ParseConstants() {
1919  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1920    return Error("Invalid record");
1921
1922  SmallVector<uint64_t, 64> Record;
1923
1924  // Read all the records for this value table.
1925  Type *CurTy = Type::getInt32Ty(Context);
1926  unsigned NextCstNo = ValueList.size();
1927  while (1) {
1928    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1929
1930    switch (Entry.Kind) {
1931    case BitstreamEntry::SubBlock: // Handled for us already.
1932    case BitstreamEntry::Error:
1933      return Error("Malformed block");
1934    case BitstreamEntry::EndBlock:
1935      if (NextCstNo != ValueList.size())
1936        return Error("Invalid constant reference");
1937
1938      // Once all the constants have been read, go through and resolve forward
1939      // references.
1940      ValueList.ResolveConstantForwardRefs();
1941      return std::error_code();
1942    case BitstreamEntry::Record:
1943      // The interesting case.
1944      break;
1945    }
1946
1947    // Read a record.
1948    Record.clear();
1949    Value *V = nullptr;
1950    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1951    switch (BitCode) {
1952    default:  // Default behavior: unknown constant
1953    case bitc::CST_CODE_UNDEF:     // UNDEF
1954      V = UndefValue::get(CurTy);
1955      break;
1956    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1957      if (Record.empty())
1958        return Error("Invalid record");
1959      if (Record[0] >= TypeList.size())
1960        return Error("Invalid record");
1961      CurTy = TypeList[Record[0]];
1962      continue;  // Skip the ValueList manipulation.
1963    case bitc::CST_CODE_NULL:      // NULL
1964      V = Constant::getNullValue(CurTy);
1965      break;
1966    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1967      if (!CurTy->isIntegerTy() || Record.empty())
1968        return Error("Invalid record");
1969      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1970      break;
1971    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1972      if (!CurTy->isIntegerTy() || Record.empty())
1973        return Error("Invalid record");
1974
1975      APInt VInt = ReadWideAPInt(Record,
1976                                 cast<IntegerType>(CurTy)->getBitWidth());
1977      V = ConstantInt::get(Context, VInt);
1978
1979      break;
1980    }
1981    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1982      if (Record.empty())
1983        return Error("Invalid record");
1984      if (CurTy->isHalfTy())
1985        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1986                                             APInt(16, (uint16_t)Record[0])));
1987      else if (CurTy->isFloatTy())
1988        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1989                                             APInt(32, (uint32_t)Record[0])));
1990      else if (CurTy->isDoubleTy())
1991        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1992                                             APInt(64, Record[0])));
1993      else if (CurTy->isX86_FP80Ty()) {
1994        // Bits are not stored the same way as a normal i80 APInt, compensate.
1995        uint64_t Rearrange[2];
1996        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1997        Rearrange[1] = Record[0] >> 48;
1998        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1999                                             APInt(80, Rearrange)));
2000      } else if (CurTy->isFP128Ty())
2001        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2002                                             APInt(128, Record)));
2003      else if (CurTy->isPPC_FP128Ty())
2004        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2005                                             APInt(128, Record)));
2006      else
2007        V = UndefValue::get(CurTy);
2008      break;
2009    }
2010
2011    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2012      if (Record.empty())
2013        return Error("Invalid record");
2014
2015      unsigned Size = Record.size();
2016      SmallVector<Constant*, 16> Elts;
2017
2018      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2019        for (unsigned i = 0; i != Size; ++i)
2020          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2021                                                     STy->getElementType(i)));
2022        V = ConstantStruct::get(STy, Elts);
2023      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2024        Type *EltTy = ATy->getElementType();
2025        for (unsigned i = 0; i != Size; ++i)
2026          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2027        V = ConstantArray::get(ATy, Elts);
2028      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2029        Type *EltTy = VTy->getElementType();
2030        for (unsigned i = 0; i != Size; ++i)
2031          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2032        V = ConstantVector::get(Elts);
2033      } else {
2034        V = UndefValue::get(CurTy);
2035      }
2036      break;
2037    }
2038    case bitc::CST_CODE_STRING: { // STRING: [values]
2039      if (Record.empty())
2040        return Error("Invalid record");
2041
2042      ArrayType *ATy = cast<ArrayType>(CurTy);
2043      Type *EltTy = ATy->getElementType();
2044
2045      unsigned Size = Record.size();
2046      std::vector<Constant*> Elts;
2047      for (unsigned i = 0; i != Size; ++i)
2048        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2049      V = ConstantArray::get(ATy, Elts);
2050      break;
2051    }
2052    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2053      if (Record.empty())
2054        return Error("Invalid record");
2055
2056      ArrayType *ATy = cast<ArrayType>(CurTy);
2057      Type *EltTy = ATy->getElementType();
2058
2059      unsigned Size = Record.size();
2060      std::vector<Constant*> Elts;
2061      for (unsigned i = 0; i != Size; ++i)
2062        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2063      Elts.push_back(Constant::getNullValue(EltTy));
2064      V = ConstantArray::get(ATy, Elts);
2065      break;
2066    }
2067    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2068      if (Record.size() < 3)
2069        return Error("Invalid record");
2070      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
2071      if (Opc < 0) {
2072        V = UndefValue::get(CurTy);  // Unknown binop.
2073      } else {
2074        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2075        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2076        unsigned Flags = 0;
2077        if (Record.size() >= 4) {
2078          if (Opc == Instruction::Add ||
2079              Opc == Instruction::Sub ||
2080              Opc == Instruction::Mul ||
2081              Opc == Instruction::Shl) {
2082            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2083              Flags |= OverflowingBinaryOperator::NoSignedWrap;
2084            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2085              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2086          } else if (Opc == Instruction::SDiv ||
2087                     Opc == Instruction::UDiv ||
2088                     Opc == Instruction::LShr ||
2089                     Opc == Instruction::AShr) {
2090            if (Record[3] & (1 << bitc::PEO_EXACT))
2091              Flags |= SDivOperator::IsExact;
2092          }
2093        }
2094        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2095      }
2096      break;
2097    }
2098    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2099      if (Record.size() < 3)
2100        return Error("Invalid record");
2101      int Opc = GetDecodedCastOpcode(Record[0]);
2102      if (Opc < 0) {
2103        V = UndefValue::get(CurTy);  // Unknown cast.
2104      } else {
2105        Type *OpTy = getTypeByID(Record[1]);
2106        if (!OpTy)
2107          return Error("Invalid record");
2108        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2109        V = ConstantExpr::getCast(Opc, Op, CurTy);
2110      }
2111      break;
2112    }
2113    case bitc::CST_CODE_CE_INBOUNDS_GEP:
2114    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2115      Type *PointeeType = nullptr;
2116      if (Record.size() & 1)
2117        return Error("Invalid record");
2118      SmallVector<Constant*, 16> Elts;
2119      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2120        Type *ElTy = getTypeByID(Record[i]);
2121        if (!ElTy)
2122          return Error("Invalid record");
2123        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
2124      }
2125      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2126      V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2127                                         BitCode ==
2128                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
2129      break;
2130    }
2131    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
2132      if (Record.size() < 3)
2133        return Error("Invalid record");
2134      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2135                                                              Type::getInt1Ty(Context)),
2136                                  ValueList.getConstantFwdRef(Record[1],CurTy),
2137                                  ValueList.getConstantFwdRef(Record[2],CurTy));
2138      break;
2139    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
2140      if (Record.size() < 3)
2141        return Error("Invalid record");
2142      VectorType *OpTy =
2143        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2144      if (!OpTy)
2145        return Error("Invalid record");
2146      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2147      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2148      V = ConstantExpr::getExtractElement(Op0, Op1);
2149      break;
2150    }
2151    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
2152      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2153      if (Record.size() < 3 || !OpTy)
2154        return Error("Invalid record");
2155      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2156      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2157                                                  OpTy->getElementType());
2158      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2159      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2160      break;
2161    }
2162    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2163      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2164      if (Record.size() < 3 || !OpTy)
2165        return Error("Invalid record");
2166      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2167      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2168      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2169                                                 OpTy->getNumElements());
2170      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2171      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2172      break;
2173    }
2174    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2175      VectorType *RTy = dyn_cast<VectorType>(CurTy);
2176      VectorType *OpTy =
2177        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2178      if (Record.size() < 4 || !RTy || !OpTy)
2179        return Error("Invalid record");
2180      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2181      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2182      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2183                                                 RTy->getNumElements());
2184      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2185      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2186      break;
2187    }
2188    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2189      if (Record.size() < 4)
2190        return Error("Invalid record");
2191      Type *OpTy = getTypeByID(Record[0]);
2192      if (!OpTy)
2193        return Error("Invalid record");
2194      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2195      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2196
2197      if (OpTy->isFPOrFPVectorTy())
2198        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2199      else
2200        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2201      break;
2202    }
2203    case bitc::CST_CODE_INLINEASM:
2204    case bitc::CST_CODE_INLINEASM_OLD: {
2205      if (Record.size() < 2)
2206        return Error("Invalid record");
2207      std::string AsmStr, ConstrStr;
2208      bool HasSideEffects = Record[0] & 1;
2209      bool IsAlignStack = Record[0] >> 1;
2210      unsigned AsmStrSize = Record[1];
2211      if (2+AsmStrSize >= Record.size())
2212        return Error("Invalid record");
2213      unsigned ConstStrSize = Record[2+AsmStrSize];
2214      if (3+AsmStrSize+ConstStrSize > Record.size())
2215        return Error("Invalid record");
2216
2217      for (unsigned i = 0; i != AsmStrSize; ++i)
2218        AsmStr += (char)Record[2+i];
2219      for (unsigned i = 0; i != ConstStrSize; ++i)
2220        ConstrStr += (char)Record[3+AsmStrSize+i];
2221      PointerType *PTy = cast<PointerType>(CurTy);
2222      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2223                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2224      break;
2225    }
2226    case bitc::CST_CODE_BLOCKADDRESS:{
2227      if (Record.size() < 3)
2228        return Error("Invalid record");
2229      Type *FnTy = getTypeByID(Record[0]);
2230      if (!FnTy)
2231        return Error("Invalid record");
2232      Function *Fn =
2233        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2234      if (!Fn)
2235        return Error("Invalid record");
2236
2237      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
2238                                                  Type::getInt8Ty(Context),
2239                                            false, GlobalValue::InternalLinkage,
2240                                                  0, "");
2241      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
2242      V = FwdRef;
2243      break;
2244    }
2245    }
2246
2247    ValueList.AssignValue(V, NextCstNo);
2248    ++NextCstNo;
2249  }
2250
2251  if (NextCstNo != ValueList.size())
2252    return Error("Invalid constant reference");
2253
2254  if (Stream.ReadBlockEnd())
2255    return Error("Expected a constant");
2256
2257  // Once all the constants have been read, go through and resolve forward
2258  // references.
2259  ValueList.ResolveConstantForwardRefs();
2260  return std::error_code();
2261}
2262
2263std::error_code BitcodeReader::materializeMetadata() {
2264  return std::error_code();
2265}
2266
2267void BitcodeReader::setStripDebugInfo() { }
2268
2269/// RememberAndSkipFunctionBody - When we see the block for a function body,
2270/// remember where it is and then skip it.  This lets us lazily deserialize the
2271/// functions.
2272std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
2273  // Get the function we are talking about.
2274  if (FunctionsWithBodies.empty())
2275    return Error("Insufficient function protos");
2276
2277  Function *Fn = FunctionsWithBodies.back();
2278  FunctionsWithBodies.pop_back();
2279
2280  // Save the current stream state.
2281  uint64_t CurBit = Stream.GetCurrentBitNo();
2282  DeferredFunctionInfo[Fn] = CurBit;
2283
2284  // Skip over the function block for now.
2285  if (Stream.SkipBlock())
2286    return Error("Invalid record");
2287  return std::error_code();
2288}
2289
2290std::error_code BitcodeReader::GlobalCleanup() {
2291  // Patch the initializers for globals and aliases up.
2292  ResolveGlobalAndAliasInits();
2293  if (!GlobalInits.empty() || !AliasInits.empty())
2294    return Error("Malformed global initializer set");
2295
2296  // Look for intrinsic functions which need to be upgraded at some point
2297  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2298       FI != FE; ++FI) {
2299    Function *NewFn;
2300    if (UpgradeIntrinsicFunction(&*FI, NewFn))
2301      UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
2302  }
2303
2304  // Look for global variables which need to be renamed.
2305  for (Module::global_iterator
2306         GI = TheModule->global_begin(), GE = TheModule->global_end();
2307       GI != GE; GI++) {
2308    GlobalVariable *GV = &*GI;
2309    UpgradeGlobalVariable(GV);
2310  }
2311
2312  // Force deallocation of memory for these vectors to favor the client that
2313  // want lazy deserialization.
2314  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2315  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2316  return std::error_code();
2317}
2318
2319std::error_code BitcodeReader::ParseModule(bool Resume) {
2320  if (Resume)
2321    Stream.JumpToBit(NextUnreadBit);
2322  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2323    return Error("Invalid record");
2324
2325  SmallVector<uint64_t, 64> Record;
2326  std::vector<std::string> SectionTable;
2327  std::vector<std::string> GCTable;
2328
2329  // Read all the records for this module.
2330  while (1) {
2331    BitstreamEntry Entry = Stream.advance();
2332
2333    switch (Entry.Kind) {
2334    case BitstreamEntry::Error:
2335      return Error("Malformed block");
2336    case BitstreamEntry::EndBlock:
2337      return GlobalCleanup();
2338
2339    case BitstreamEntry::SubBlock:
2340      switch (Entry.ID) {
2341      default:  // Skip unknown content.
2342        if (Stream.SkipBlock())
2343          return Error("Invalid record");
2344        break;
2345      case bitc::BLOCKINFO_BLOCK_ID:
2346        if (Stream.ReadBlockInfoBlock())
2347          return Error("Malformed block");
2348        break;
2349      case bitc::PARAMATTR_BLOCK_ID:
2350        if (std::error_code EC = ParseAttributeBlock())
2351          return EC;
2352        break;
2353      case bitc::TYPE_BLOCK_ID_NEW:
2354        if (std::error_code EC = ParseTypeTable())
2355          return EC;
2356        break;
2357      case TYPE_BLOCK_ID_OLD_3_0:
2358        if (std::error_code EC = ParseOldTypeTable())
2359          return EC;
2360        break;
2361      case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
2362        if (std::error_code EC = ParseOldTypeSymbolTable())
2363          return EC;
2364        break;
2365      case bitc::VALUE_SYMTAB_BLOCK_ID:
2366        if (std::error_code EC = ParseValueSymbolTable())
2367          return EC;
2368        SeenValueSymbolTable = true;
2369        break;
2370      case bitc::CONSTANTS_BLOCK_ID:
2371        if (std::error_code EC = ParseConstants())
2372          return EC;
2373        if (std::error_code EC = ResolveGlobalAndAliasInits())
2374          return EC;
2375        break;
2376      case bitc::METADATA_BLOCK_ID:
2377        if (std::error_code EC = ParseMetadata())
2378          return EC;
2379        break;
2380      case bitc::FUNCTION_BLOCK_ID:
2381        // If this is the first function body we've seen, reverse the
2382        // FunctionsWithBodies list.
2383        if (!SeenFirstFunctionBody) {
2384          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2385          if (std::error_code EC = GlobalCleanup())
2386            return EC;
2387          SeenFirstFunctionBody = true;
2388        }
2389
2390        if (std::error_code EC = RememberAndSkipFunctionBody())
2391          return EC;
2392        // For streaming bitcode, suspend parsing when we reach the function
2393        // bodies. Subsequent materialization calls will resume it when
2394        // necessary. For streaming, the function bodies must be at the end of
2395        // the bitcode. If the bitcode file is old, the symbol table will be
2396        // at the end instead and will not have been seen yet. In this case,
2397        // just finish the parse now.
2398        if (LazyStreamer && SeenValueSymbolTable) {
2399          NextUnreadBit = Stream.GetCurrentBitNo();
2400          return std::error_code();
2401        }
2402        break;
2403        break;
2404      }
2405      continue;
2406
2407    case BitstreamEntry::Record:
2408      // The interesting case.
2409      break;
2410    }
2411
2412
2413    // Read a record.
2414    switch (Stream.readRecord(Entry.ID, Record)) {
2415    default: break;  // Default behavior, ignore unknown content.
2416    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2417      if (Record.size() < 1)
2418        return Error("Invalid record");
2419      // Only version #0 is supported so far.
2420      if (Record[0] != 0)
2421        return Error("Invalid value");
2422      break;
2423    }
2424    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2425      std::string S;
2426      if (ConvertToString(Record, 0, S))
2427        return Error("Invalid record");
2428      TheModule->setTargetTriple(S);
2429      break;
2430    }
2431    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2432      std::string S;
2433      if (ConvertToString(Record, 0, S))
2434        return Error("Invalid record");
2435      TheModule->setDataLayout(S);
2436      break;
2437    }
2438    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2439      std::string S;
2440      if (ConvertToString(Record, 0, S))
2441        return Error("Invalid record");
2442      TheModule->setModuleInlineAsm(S);
2443      break;
2444    }
2445    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2446      std::string S;
2447      if (ConvertToString(Record, 0, S))
2448        return Error("Invalid record");
2449      // ANDROID: Ignore value, since we never used it anyways.
2450      // TheModule->addLibrary(S);
2451      break;
2452    }
2453    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2454      std::string S;
2455      if (ConvertToString(Record, 0, S))
2456        return Error("Invalid record");
2457      SectionTable.push_back(S);
2458      break;
2459    }
2460    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2461      std::string S;
2462      if (ConvertToString(Record, 0, S))
2463        return Error("Invalid record");
2464      GCTable.push_back(S);
2465      break;
2466    }
2467    // GLOBALVAR: [pointer type, isconst, initid,
2468    //             linkage, alignment, section, visibility, threadlocal,
2469    //             unnamed_addr]
2470    case bitc::MODULE_CODE_GLOBALVAR: {
2471      if (Record.size() < 6)
2472        return Error("Invalid record");
2473      Type *Ty = getTypeByID(Record[0]);
2474      if (!Ty)
2475        return Error("Invalid record");
2476      if (!Ty->isPointerTy())
2477        return Error("Invalid type for value");
2478      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2479      Ty = cast<PointerType>(Ty)->getElementType();
2480
2481      bool isConstant = Record[1];
2482      uint64_t RawLinkage = Record[3];
2483      GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2484      unsigned Alignment = (1 << Record[4]) >> 1;
2485      std::string Section;
2486      if (Record[5]) {
2487        if (Record[5]-1 >= SectionTable.size())
2488          return Error("Invalid ID");
2489        Section = SectionTable[Record[5]-1];
2490      }
2491      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2492      if (Record.size() > 6)
2493        Visibility = GetDecodedVisibility(Record[6]);
2494
2495      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2496      if (Record.size() > 7)
2497        TLM = GetDecodedThreadLocalMode(Record[7]);
2498
2499      GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2500      if (Record.size() > 8)
2501        UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2502
2503      GlobalVariable *NewGV =
2504        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2505                           TLM, AddressSpace);
2506      NewGV->setAlignment(Alignment);
2507      if (!Section.empty())
2508        NewGV->setSection(Section);
2509      NewGV->setVisibility(Visibility);
2510      NewGV->setUnnamedAddr(UnnamedAddr);
2511
2512      ValueList.push_back(NewGV);
2513
2514      // Remember which value to use for the global initializer.
2515      if (unsigned InitID = Record[2])
2516        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2517      break;
2518    }
2519    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2520    //             alignment, section, visibility, gc, unnamed_addr]
2521    case bitc::MODULE_CODE_FUNCTION: {
2522      if (Record.size() < 8)
2523        return Error("Invalid record");
2524      Type *Ty = getTypeByID(Record[0]);
2525      if (!Ty)
2526        return Error("Invalid record");
2527      if (!Ty->isPointerTy())
2528        return Error("Invalid type for value");
2529      FunctionType *FTy =
2530        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2531      if (!FTy)
2532        return Error("Invalid type for value");
2533
2534      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2535                                        "", TheModule);
2536
2537      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2538      bool isProto = Record[2];
2539      uint64_t RawLinkage = Record[3];
2540      Func->setLinkage(getDecodedLinkage(RawLinkage));
2541      Func->setAttributes(getAttributes(Record[4]));
2542
2543      Func->setAlignment((1 << Record[5]) >> 1);
2544      if (Record[6]) {
2545        if (Record[6]-1 >= SectionTable.size())
2546          return Error("Invalid ID");
2547        Func->setSection(SectionTable[Record[6]-1]);
2548      }
2549      Func->setVisibility(GetDecodedVisibility(Record[7]));
2550      if (Record.size() > 8 && Record[8]) {
2551        if (Record[8]-1 > GCTable.size())
2552          return Error("Invalid ID");
2553        Func->setGC(GCTable[Record[8]-1].c_str());
2554      }
2555      GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2556      if (Record.size() > 9)
2557        UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2558      Func->setUnnamedAddr(UnnamedAddr);
2559      ValueList.push_back(Func);
2560
2561      // If this is a function with a body, remember the prototype we are
2562      // creating now, so that we can match up the body with them later.
2563      if (!isProto) {
2564        Func->setIsMaterializable(true);
2565        FunctionsWithBodies.push_back(Func);
2566        if (LazyStreamer)
2567          DeferredFunctionInfo[Func] = 0;
2568      }
2569      break;
2570    }
2571    // ALIAS: [alias type, aliasee val#, linkage]
2572    // ALIAS: [alias type, aliasee val#, linkage, visibility]
2573    case bitc::MODULE_CODE_ALIAS_OLD: {
2574      if (Record.size() < 3)
2575        return Error("Invalid record");
2576      Type *Ty = getTypeByID(Record[0]);
2577      if (!Ty)
2578        return Error("Invalid record");
2579      auto *PTy = dyn_cast<PointerType>(Ty);
2580      if (!PTy)
2581        return Error("Invalid type for value");
2582
2583      auto *NewGA =
2584          GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2585                              getDecodedLinkage(Record[2]), "", TheModule);
2586      // Old bitcode files didn't have visibility field.
2587      if (Record.size() > 3)
2588        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2589      ValueList.push_back(NewGA);
2590      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2591      break;
2592    }
2593    /// MODULE_CODE_PURGEVALS: [numvals]
2594    case bitc::MODULE_CODE_PURGEVALS:
2595      // Trim down the value list to the specified size.
2596      if (Record.size() < 1 || Record[0] > ValueList.size())
2597        return Error("Invalid record");
2598      ValueList.shrinkTo(Record[0]);
2599      break;
2600    }
2601    Record.clear();
2602  }
2603}
2604
2605std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2606  TheModule = nullptr;
2607
2608  if (std::error_code EC = InitStream())
2609    return EC;
2610
2611  // Sniff for the signature.
2612  if (Stream.Read(8) != 'B' ||
2613      Stream.Read(8) != 'C' ||
2614      Stream.Read(4) != 0x0 ||
2615      Stream.Read(4) != 0xC ||
2616      Stream.Read(4) != 0xE ||
2617      Stream.Read(4) != 0xD)
2618    return Error("Invalid bitcode signature");
2619
2620  // We expect a number of well-defined blocks, though we don't necessarily
2621  // need to understand them all.
2622  while (1) {
2623    if (Stream.AtEndOfStream())
2624      return std::error_code();
2625
2626    BitstreamEntry Entry =
2627      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2628
2629    switch (Entry.Kind) {
2630    case BitstreamEntry::Error:
2631      return Error("Malformed block");
2632    case BitstreamEntry::EndBlock:
2633      return std::error_code();
2634
2635    case BitstreamEntry::SubBlock:
2636      switch (Entry.ID) {
2637      case bitc::BLOCKINFO_BLOCK_ID:
2638        if (Stream.ReadBlockInfoBlock())
2639          return Error("Malformed block");
2640        break;
2641      case bitc::MODULE_BLOCK_ID:
2642        // Reject multiple MODULE_BLOCK's in a single bitstream.
2643        if (TheModule)
2644          return Error("Invalid multiple blocks");
2645        TheModule = M;
2646        if (std::error_code EC = ParseModule(false))
2647          return EC;
2648        if (LazyStreamer)
2649          return std::error_code();
2650        break;
2651      default:
2652        if (Stream.SkipBlock())
2653          return Error("Invalid record");
2654        break;
2655      }
2656      continue;
2657    case BitstreamEntry::Record:
2658      // There should be no records in the top-level of blocks.
2659
2660      // The ranlib in Xcode 4 will align archive members by appending newlines
2661      // to the end of them. If this file size is a multiple of 4 but not 8, we
2662      // have to read and ignore these final 4 bytes :-(
2663      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2664          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2665          Stream.AtEndOfStream())
2666        return std::error_code();
2667
2668      return Error("Invalid record");
2669    }
2670  }
2671}
2672
2673llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2674  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2675    return Error("Invalid record");
2676
2677  SmallVector<uint64_t, 64> Record;
2678
2679  std::string Triple;
2680  // Read all the records for this module.
2681  while (1) {
2682    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2683
2684    switch (Entry.Kind) {
2685    case BitstreamEntry::SubBlock: // Handled for us already.
2686    case BitstreamEntry::Error:
2687      return Error("Malformed block");
2688    case BitstreamEntry::EndBlock:
2689      return Triple;
2690    case BitstreamEntry::Record:
2691      // The interesting case.
2692      break;
2693    }
2694
2695    // Read a record.
2696    switch (Stream.readRecord(Entry.ID, Record)) {
2697    default: break;  // Default behavior, ignore unknown content.
2698    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
2699      if (Record.size() < 1)
2700        return Error("Invalid record");
2701      // Only version #0 is supported so far.
2702      if (Record[0] != 0)
2703        return Error("Invalid record");
2704      break;
2705    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2706      std::string S;
2707      if (ConvertToString(Record, 0, S))
2708        return Error("Invalid record");
2709      Triple = S;
2710      break;
2711    }
2712    }
2713    Record.clear();
2714  }
2715
2716  return Error("Invalid bitcode signature");
2717}
2718
2719llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
2720  if (std::error_code EC = InitStream())
2721    return EC;
2722
2723  // Sniff for the signature.
2724  if (Stream.Read(8) != 'B' ||
2725      Stream.Read(8) != 'C' ||
2726      Stream.Read(4) != 0x0 ||
2727      Stream.Read(4) != 0xC ||
2728      Stream.Read(4) != 0xE ||
2729      Stream.Read(4) != 0xD)
2730    return Error("Invalid bitcode signature");
2731
2732  // We expect a number of well-defined blocks, though we don't necessarily
2733  // need to understand them all.
2734  while (1) {
2735    BitstreamEntry Entry = Stream.advance();
2736
2737    switch (Entry.Kind) {
2738    case BitstreamEntry::Error:
2739      return Error("Malformed block");
2740    case BitstreamEntry::EndBlock:
2741      return std::error_code();
2742
2743    case BitstreamEntry::SubBlock:
2744      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2745        return parseModuleTriple();
2746
2747      // Ignore other sub-blocks.
2748      if (Stream.SkipBlock())
2749        return Error("Malformed block");
2750      continue;
2751
2752    case BitstreamEntry::Record:
2753      Stream.skipRecord(Entry.ID);
2754      continue;
2755    }
2756  }
2757}
2758
2759/// ParseMetadataAttachment - Parse metadata attachments.
2760std::error_code BitcodeReader::ParseMetadataAttachment() {
2761  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2762    return Error("Invalid record");
2763
2764  SmallVector<uint64_t, 64> Record;
2765  while (1) {
2766    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2767
2768    switch (Entry.Kind) {
2769    case BitstreamEntry::SubBlock: // Handled for us already.
2770    case BitstreamEntry::Error:
2771      return Error("Malformed block");
2772    case BitstreamEntry::EndBlock:
2773      return std::error_code();
2774    case BitstreamEntry::Record:
2775      // The interesting case.
2776      break;
2777    }
2778
2779    // Read a metadata attachment record.
2780    Record.clear();
2781    switch (Stream.readRecord(Entry.ID, Record)) {
2782    default:  // Default behavior: ignore.
2783      break;
2784    case bitc::METADATA_ATTACHMENT: {
2785      unsigned RecordLength = Record.size();
2786      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2787        return Error("Invalid record");
2788      Instruction *Inst = InstructionList[Record[0]];
2789      for (unsigned i = 1; i != RecordLength; i = i+2) {
2790        unsigned Kind = Record[i];
2791        DenseMap<unsigned, unsigned>::iterator I =
2792          MDKindMap.find(Kind);
2793        if (I == MDKindMap.end())
2794          return Error("Invalid ID");
2795        Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2796        Inst->setMetadata(I->second, cast<MDNode>(Node));
2797      }
2798      break;
2799    }
2800    }
2801  }
2802}
2803
2804/// ParseFunctionBody - Lazily parse the specified function body block.
2805std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2806  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2807    return Error("Invalid record");
2808
2809  InstructionList.clear();
2810  unsigned ModuleValueListSize = ValueList.size();
2811  unsigned ModuleMDValueListSize = MDValueList.size();
2812
2813  // Add all the function arguments to the value table.
2814  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2815    ValueList.push_back(&*I);
2816
2817  unsigned NextValueNo = ValueList.size();
2818  BasicBlock *CurBB = nullptr;
2819  unsigned CurBBNo = 0;
2820
2821  DebugLoc LastLoc;
2822
2823  // Read all the records.
2824  SmallVector<uint64_t, 64> Record;
2825  while (1) {
2826    unsigned Code = Stream.ReadCode();
2827    if (Code == bitc::END_BLOCK) {
2828      if (Stream.ReadBlockEnd())
2829        return Error("Malformed block");
2830      break;
2831    }
2832
2833    if (Code == bitc::ENTER_SUBBLOCK) {
2834      switch (Stream.ReadSubBlockID()) {
2835      default:  // Skip unknown content.
2836        if (Stream.SkipBlock())
2837          return Error("Invalid record");
2838        break;
2839      case bitc::CONSTANTS_BLOCK_ID:
2840        if (std::error_code EC = ParseConstants())
2841          return EC;
2842        NextValueNo = ValueList.size();
2843        break;
2844      case bitc::VALUE_SYMTAB_BLOCK_ID:
2845        if (std::error_code EC = ParseValueSymbolTable())
2846          return EC;
2847        break;
2848      case bitc::METADATA_ATTACHMENT_ID:
2849        if (std::error_code EC = ParseMetadataAttachment())
2850          return EC;
2851        break;
2852      case bitc::METADATA_BLOCK_ID:
2853        if (std::error_code EC = ParseMetadata())
2854          return EC;
2855        break;
2856      }
2857      continue;
2858    }
2859
2860    if (Code == bitc::DEFINE_ABBREV) {
2861      Stream.ReadAbbrevRecord();
2862      continue;
2863    }
2864
2865    // Read a record.
2866    Record.clear();
2867    Instruction *I = nullptr;
2868    unsigned BitCode = Stream.readRecord(Code, Record);
2869    switch (BitCode) {
2870    default: // Default behavior: reject
2871      return Error("Invalid value");
2872    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2873      if (Record.size() < 1 || Record[0] == 0)
2874        return Error("Invalid record");
2875      // Create all the basic blocks for the function.
2876      FunctionBBs.resize(Record[0]);
2877      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2878        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2879      CurBB = FunctionBBs[0];
2880      continue;
2881
2882    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2883      // This record indicates that the last instruction is at the same
2884      // location as the previous instruction with a location.
2885      I = nullptr;
2886
2887      // Get the last instruction emitted.
2888      if (CurBB && !CurBB->empty())
2889        I = &CurBB->back();
2890      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2891               !FunctionBBs[CurBBNo-1]->empty())
2892        I = &FunctionBBs[CurBBNo-1]->back();
2893
2894      if (!I)
2895        return Error("Invalid record");
2896      I->setDebugLoc(LastLoc);
2897      I = nullptr;
2898      continue;
2899
2900    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2901      I = nullptr;     // Get the last instruction emitted.
2902      if (CurBB && !CurBB->empty())
2903        I = &CurBB->back();
2904      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2905               !FunctionBBs[CurBBNo-1]->empty())
2906        I = &FunctionBBs[CurBBNo-1]->back();
2907      if (!I || Record.size() < 4)
2908        return Error("Invalid record");
2909
2910      unsigned Line = Record[0], Col = Record[1];
2911      unsigned ScopeID = Record[2], IAID = Record[3];
2912
2913      MDNode *Scope = nullptr, *IA = nullptr;
2914      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2915      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2916      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2917      I->setDebugLoc(LastLoc);
2918      I = nullptr;
2919      continue;
2920    }
2921
2922    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2923      unsigned OpNum = 0;
2924      Value *LHS, *RHS;
2925      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2926          getValue(Record, OpNum, LHS->getType(), RHS) ||
2927          OpNum+1 > Record.size())
2928        return Error("Invalid record");
2929
2930      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2931      if (Opc == -1)
2932        return Error("Invalid record");
2933      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2934      InstructionList.push_back(I);
2935      if (OpNum < Record.size()) {
2936        if (Opc == Instruction::Add ||
2937            Opc == Instruction::Sub ||
2938            Opc == Instruction::Mul ||
2939            Opc == Instruction::Shl) {
2940          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2941            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2942          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2943            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2944        } else if (Opc == Instruction::SDiv ||
2945                   Opc == Instruction::UDiv ||
2946                   Opc == Instruction::LShr ||
2947                   Opc == Instruction::AShr) {
2948          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2949            cast<BinaryOperator>(I)->setIsExact(true);
2950        }
2951      }
2952      break;
2953    }
2954    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2955      unsigned OpNum = 0;
2956      Value *Op;
2957      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2958          OpNum+2 != Record.size())
2959        return Error("Invalid record");
2960
2961      Type *ResTy = getTypeByID(Record[OpNum]);
2962      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2963      if (Opc == -1 || !ResTy)
2964        return Error("Invalid record");
2965      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2966      InstructionList.push_back(I);
2967      break;
2968    }
2969    case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
2970    case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
2971    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2972      unsigned OpNum = 0;
2973
2974      Type *Ty;
2975      bool InBounds;
2976
2977      if (BitCode == bitc::FUNC_CODE_INST_GEP) {
2978        InBounds = Record[OpNum++];
2979        Ty = getTypeByID(Record[OpNum++]);
2980      } else {
2981        InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
2982        Ty = nullptr;
2983      }
2984
2985      Value *BasePtr;
2986      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2987        return Error("Invalid record");
2988
2989      if (Ty &&
2990          Ty !=
2991              cast<SequentialType>(BasePtr->getType()->getScalarType())
2992                  ->getElementType())
2993        return Error(
2994            "Explicit gep type does not match pointee type of pointer operand");
2995
2996      SmallVector<Value*, 16> GEPIdx;
2997      while (OpNum != Record.size()) {
2998        Value *Op;
2999        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3000          return Error("Invalid record");
3001        GEPIdx.push_back(Op);
3002      }
3003
3004      I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3005
3006      InstructionList.push_back(I);
3007      if (InBounds)
3008        cast<GetElementPtrInst>(I)->setIsInBounds(true);
3009      break;
3010    }
3011
3012    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3013                                       // EXTRACTVAL: [opty, opval, n x indices]
3014      unsigned OpNum = 0;
3015      Value *Agg;
3016      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3017        return Error("Invalid record");
3018
3019      SmallVector<unsigned, 4> EXTRACTVALIdx;
3020      for (unsigned RecSize = Record.size();
3021           OpNum != RecSize; ++OpNum) {
3022        uint64_t Index = Record[OpNum];
3023        if ((unsigned)Index != Index)
3024          return Error("Invalid value");
3025        EXTRACTVALIdx.push_back((unsigned)Index);
3026      }
3027
3028      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3029      InstructionList.push_back(I);
3030      break;
3031    }
3032
3033    case bitc::FUNC_CODE_INST_INSERTVAL: {
3034                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
3035      unsigned OpNum = 0;
3036      Value *Agg;
3037      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3038        return Error("Invalid record");
3039      Value *Val;
3040      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3041        return Error("Invalid record");
3042
3043      SmallVector<unsigned, 4> INSERTVALIdx;
3044      for (unsigned RecSize = Record.size();
3045           OpNum != RecSize; ++OpNum) {
3046        uint64_t Index = Record[OpNum];
3047        if ((unsigned)Index != Index)
3048          return Error("Invalid value");
3049        INSERTVALIdx.push_back((unsigned)Index);
3050      }
3051
3052      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3053      InstructionList.push_back(I);
3054      break;
3055    }
3056
3057    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3058      // obsolete form of select
3059      // handles select i1 ... in old bitcode
3060      unsigned OpNum = 0;
3061      Value *TrueVal, *FalseVal, *Cond;
3062      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3063          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3064          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
3065        return Error("Invalid record");
3066
3067      I = SelectInst::Create(Cond, TrueVal, FalseVal);
3068      InstructionList.push_back(I);
3069      break;
3070    }
3071
3072    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3073      // new form of select
3074      // handles select i1 or select [N x i1]
3075      unsigned OpNum = 0;
3076      Value *TrueVal, *FalseVal, *Cond;
3077      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3078          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3079          getValueTypePair(Record, OpNum, NextValueNo, Cond))
3080        return Error("Invalid record");
3081
3082      // select condition can be either i1 or [N x i1]
3083      if (VectorType* vector_type =
3084          dyn_cast<VectorType>(Cond->getType())) {
3085        // expect <n x i1>
3086        if (vector_type->getElementType() != Type::getInt1Ty(Context))
3087          return Error("Invalid type for value");
3088      } else {
3089        // expect i1
3090        if (Cond->getType() != Type::getInt1Ty(Context))
3091          return Error("Invalid type for value");
3092      }
3093
3094      I = SelectInst::Create(Cond, TrueVal, FalseVal);
3095      InstructionList.push_back(I);
3096      break;
3097    }
3098
3099    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3100      unsigned OpNum = 0;
3101      Value *Vec, *Idx;
3102      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3103          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3104        return Error("Invalid record");
3105      I = ExtractElementInst::Create(Vec, Idx);
3106      InstructionList.push_back(I);
3107      break;
3108    }
3109
3110    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3111      unsigned OpNum = 0;
3112      Value *Vec, *Elt, *Idx;
3113      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3114          getValue(Record, OpNum,
3115                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3116          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3117        return Error("Invalid record");
3118      I = InsertElementInst::Create(Vec, Elt, Idx);
3119      InstructionList.push_back(I);
3120      break;
3121    }
3122
3123    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3124      unsigned OpNum = 0;
3125      Value *Vec1, *Vec2, *Mask;
3126      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3127          getValue(Record, OpNum, Vec1->getType(), Vec2))
3128        return Error("Invalid record");
3129
3130      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3131        return Error("Invalid record");
3132      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3133      InstructionList.push_back(I);
3134      break;
3135    }
3136
3137    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3138      // Old form of ICmp/FCmp returning bool
3139      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3140      // both legal on vectors but had different behaviour.
3141    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3142      // FCmp/ICmp returning bool or vector of bool
3143
3144      unsigned OpNum = 0;
3145      Value *LHS, *RHS;
3146      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3147          getValue(Record, OpNum, LHS->getType(), RHS) ||
3148          OpNum+1 != Record.size())
3149        return Error("Invalid record");
3150
3151      if (LHS->getType()->isFPOrFPVectorTy())
3152        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
3153      else
3154        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
3155      InstructionList.push_back(I);
3156      break;
3157    }
3158
3159    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3160      {
3161        unsigned Size = Record.size();
3162        if (Size == 0) {
3163          I = ReturnInst::Create(Context);
3164          InstructionList.push_back(I);
3165          break;
3166        }
3167
3168        unsigned OpNum = 0;
3169        Value *Op = nullptr;
3170        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3171          return Error("Invalid record");
3172        if (OpNum != Record.size())
3173          return Error("Invalid record");
3174
3175        I = ReturnInst::Create(Context, Op);
3176        InstructionList.push_back(I);
3177        break;
3178      }
3179    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3180      if (Record.size() != 1 && Record.size() != 3)
3181        return Error("Invalid record");
3182      BasicBlock *TrueDest = getBasicBlock(Record[0]);
3183      if (!TrueDest)
3184        return Error("Invalid record");
3185
3186      if (Record.size() == 1) {
3187        I = BranchInst::Create(TrueDest);
3188        InstructionList.push_back(I);
3189      }
3190      else {
3191        BasicBlock *FalseDest = getBasicBlock(Record[1]);
3192        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
3193        if (!FalseDest || !Cond)
3194          return Error("Invalid record");
3195        I = BranchInst::Create(TrueDest, FalseDest, Cond);
3196        InstructionList.push_back(I);
3197      }
3198      break;
3199    }
3200    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3201      if (Record.size() < 3 || (Record.size() & 1) == 0)
3202        return Error("Invalid record");
3203      Type *OpTy = getTypeByID(Record[0]);
3204      Value *Cond = getFnValueByID(Record[1], OpTy);
3205      BasicBlock *Default = getBasicBlock(Record[2]);
3206      if (!OpTy || !Cond || !Default)
3207        return Error("Invalid record");
3208      unsigned NumCases = (Record.size()-3)/2;
3209      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3210      InstructionList.push_back(SI);
3211      for (unsigned i = 0, e = NumCases; i != e; ++i) {
3212        ConstantInt *CaseVal =
3213          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3214        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3215        if (!CaseVal || !DestBB) {
3216          delete SI;
3217          return Error("Invalid record");
3218        }
3219        SI->addCase(CaseVal, DestBB);
3220      }
3221      I = SI;
3222      break;
3223    }
3224    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3225      if (Record.size() < 2)
3226        return Error("Invalid record");
3227      Type *OpTy = getTypeByID(Record[0]);
3228      Value *Address = getFnValueByID(Record[1], OpTy);
3229      if (!OpTy || !Address)
3230        return Error("Invalid record");
3231      unsigned NumDests = Record.size()-2;
3232      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3233      InstructionList.push_back(IBI);
3234      for (unsigned i = 0, e = NumDests; i != e; ++i) {
3235        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3236          IBI->addDestination(DestBB);
3237        } else {
3238          delete IBI;
3239          return Error("Invalid record");
3240        }
3241      }
3242      I = IBI;
3243      break;
3244    }
3245
3246    case bitc::FUNC_CODE_INST_INVOKE: {
3247      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3248      if (Record.size() < 4)
3249        return Error("Invalid record");
3250      AttributeSet PAL = getAttributes(Record[0]);
3251      unsigned CCInfo = Record[1];
3252      BasicBlock *NormalBB = getBasicBlock(Record[2]);
3253      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3254
3255      unsigned OpNum = 4;
3256      Value *Callee;
3257      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3258        return Error("Invalid record");
3259
3260      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3261      FunctionType *FTy = !CalleeTy ? nullptr :
3262        dyn_cast<FunctionType>(CalleeTy->getElementType());
3263
3264      // Check that the right number of fixed parameters are here.
3265      if (!FTy || !NormalBB || !UnwindBB ||
3266          Record.size() < OpNum+FTy->getNumParams())
3267        return Error("Invalid record");
3268
3269      SmallVector<Value*, 16> Ops;
3270      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3271        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3272        if (!Ops.back())
3273          return Error("Invalid record");
3274      }
3275
3276      if (!FTy->isVarArg()) {
3277        if (Record.size() != OpNum)
3278          return Error("Invalid record");
3279      } else {
3280        // Read type/value pairs for varargs params.
3281        while (OpNum != Record.size()) {
3282          Value *Op;
3283          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3284            return Error("Invalid record");
3285          Ops.push_back(Op);
3286        }
3287      }
3288
3289      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3290      InstructionList.push_back(I);
3291      cast<InvokeInst>(I)->setCallingConv(
3292        static_cast<CallingConv::ID>(CCInfo));
3293      cast<InvokeInst>(I)->setAttributes(PAL);
3294      break;
3295    }
3296    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3297      unsigned Idx = 0;
3298      Value *Val = nullptr;
3299      if (getValueTypePair(Record, Idx, NextValueNo, Val))
3300        return Error("Invalid record");
3301      I = ResumeInst::Create(Val);
3302      InstructionList.push_back(I);
3303      break;
3304    }
3305    case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
3306      // 'unwind' instruction has been removed in LLVM 3.1
3307      // Replace 'unwind' with 'landingpad' and 'resume'.
3308      Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
3309                                    Type::getInt32Ty(Context), nullptr);
3310
3311      LandingPadInst *LP = LandingPadInst::Create(ExnTy, 1);
3312      LP->setCleanup(true);
3313
3314      CurBB->getInstList().push_back(LP);
3315      I = ResumeInst::Create(LP);
3316      InstructionList.push_back(I);
3317      break;
3318    }
3319    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3320      I = new UnreachableInst(Context);
3321      InstructionList.push_back(I);
3322      break;
3323    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3324      if (Record.size() < 1 || ((Record.size()-1)&1))
3325        return Error("Invalid record");
3326      Type *Ty = getTypeByID(Record[0]);
3327      if (!Ty)
3328        return Error("Invalid record");
3329
3330      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3331      InstructionList.push_back(PN);
3332
3333      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3334        Value *V = getFnValueByID(Record[1+i], Ty);
3335        BasicBlock *BB = getBasicBlock(Record[2+i]);
3336        if (!V || !BB)
3337          return Error("Invalid record");
3338        PN->addIncoming(V, BB);
3339      }
3340      I = PN;
3341      break;
3342    }
3343
3344    case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
3345      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
3346      unsigned Idx = 0;
3347      if (Record.size() < 4)
3348        return Error("Invalid record");
3349      Type *Ty = getTypeByID(Record[Idx++]);
3350      if (!Ty)
3351        return Error("Invalid record");
3352      Value *PersFn = nullptr;
3353      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
3354        return Error("Invalid record");
3355
3356      bool IsCleanup = !!Record[Idx++];
3357      unsigned NumClauses = Record[Idx++];
3358      LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
3359      LP->setCleanup(IsCleanup);
3360      for (unsigned J = 0; J != NumClauses; ++J) {
3361        LandingPadInst::ClauseType CT =
3362          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
3363        Value *Val;
3364
3365        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
3366          delete LP;
3367          return Error("Invalid record");
3368        }
3369
3370        assert((CT != LandingPadInst::Catch ||
3371                !isa<ArrayType>(Val->getType())) &&
3372               "Catch clause has a invalid type!");
3373        assert((CT != LandingPadInst::Filter ||
3374                isa<ArrayType>(Val->getType())) &&
3375               "Filter clause has invalid type!");
3376        LP->addClause(cast<Constant>(Val));
3377      }
3378
3379      I = LP;
3380      InstructionList.push_back(I);
3381      break;
3382    }
3383
3384    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3385      if (Record.size() != 4)
3386        return Error("Invalid record");
3387      PointerType *Ty =
3388        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3389      Type *OpTy = getTypeByID(Record[1]);
3390      Value *Size = getFnValueByID(Record[2], OpTy);
3391      unsigned Align = Record[3];
3392      if (!Ty || !Size)
3393        return Error("Invalid record");
3394      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3395      InstructionList.push_back(I);
3396      break;
3397    }
3398    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3399      unsigned OpNum = 0;
3400      Value *Op;
3401      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3402          OpNum+2 != Record.size())
3403        return Error("Invalid record");
3404
3405      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3406      InstructionList.push_back(I);
3407      break;
3408    }
3409    case bitc::FUNC_CODE_INST_LOADATOMIC: {
3410       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
3411      unsigned OpNum = 0;
3412      Value *Op;
3413      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3414          OpNum+4 != Record.size())
3415        return Error("Invalid record");
3416
3417      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3418      if (Ordering == AtomicOrdering::NotAtomic ||
3419          Ordering == AtomicOrdering::Release ||
3420          Ordering == AtomicOrdering::AcquireRelease)
3421        return Error("Invalid record");
3422      if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
3423        return Error("Invalid record");
3424      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3425
3426      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3427                       Ordering, SynchScope);
3428      InstructionList.push_back(I);
3429      break;
3430    }
3431    case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
3432      unsigned OpNum = 0;
3433      Value *Val, *Ptr;
3434      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3435          getValue(Record, OpNum,
3436                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3437          OpNum+2 != Record.size())
3438        return Error("Invalid record");
3439
3440      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3441      InstructionList.push_back(I);
3442      break;
3443    }
3444    case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
3445      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
3446      unsigned OpNum = 0;
3447      Value *Val, *Ptr;
3448      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3449          getValue(Record, OpNum,
3450                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3451          OpNum+4 != Record.size())
3452        return Error("Invalid record");
3453
3454      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3455      if (Ordering == AtomicOrdering::NotAtomic ||
3456          Ordering == AtomicOrdering::Acquire ||
3457          Ordering == AtomicOrdering::AcquireRelease)
3458        return Error("Invalid record");
3459      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3460      if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
3461        return Error("Invalid record");
3462
3463      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3464                        Ordering, SynchScope);
3465      InstructionList.push_back(I);
3466      break;
3467    }
3468    case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
3469      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
3470      unsigned OpNum = 0;
3471      Value *Ptr, *Cmp, *New;
3472      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3473          getValue(Record, OpNum,
3474                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
3475          getValue(Record, OpNum,
3476                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
3477          OpNum+3 != Record.size())
3478        return Error("Invalid record");
3479      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
3480      if (Ordering == AtomicOrdering::NotAtomic ||
3481          Ordering == AtomicOrdering::Unordered)
3482        return Error("Invalid record");
3483      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
3484      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Ordering, SynchScope);
3485      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
3486      InstructionList.push_back(I);
3487      break;
3488    }
3489    case bitc::FUNC_CODE_INST_ATOMICRMW: {
3490      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
3491      unsigned OpNum = 0;
3492      Value *Ptr, *Val;
3493      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3494          getValue(Record, OpNum,
3495                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3496          OpNum+4 != Record.size())
3497        return Error("Invalid record");
3498      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
3499      if (Operation < AtomicRMWInst::FIRST_BINOP ||
3500          Operation > AtomicRMWInst::LAST_BINOP)
3501        return Error("Invalid record");
3502      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3503      if (Ordering == AtomicOrdering::NotAtomic ||
3504          Ordering == AtomicOrdering::Unordered)
3505        return Error("Invalid record");
3506      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3507      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
3508      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
3509      InstructionList.push_back(I);
3510      break;
3511    }
3512    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
3513      if (2 != Record.size())
3514        return Error("Invalid record");
3515      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
3516      if (Ordering == AtomicOrdering::NotAtomic ||
3517          Ordering == AtomicOrdering::Unordered ||
3518          Ordering == AtomicOrdering::Monotonic)
3519        return Error("Invalid record");
3520      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
3521      I = new FenceInst(Context, Ordering, SynchScope);
3522      InstructionList.push_back(I);
3523      break;
3524    }
3525    case bitc::FUNC_CODE_INST_CALL: {
3526      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3527      if (Record.size() < 3)
3528        return Error("Invalid record");
3529
3530      AttributeSet PAL = getAttributes(Record[0]);
3531      unsigned CCInfo = Record[1];
3532
3533      unsigned OpNum = 2;
3534      Value *Callee;
3535      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3536        return Error("Invalid record");
3537
3538      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3539      FunctionType *FTy = nullptr;
3540      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3541      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3542        return Error("Invalid record");
3543
3544      SmallVector<Value*, 16> Args;
3545      // Read the fixed params.
3546      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3547        if (FTy->getParamType(i)->isLabelTy())
3548          Args.push_back(getBasicBlock(Record[OpNum]));
3549        else
3550          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3551        if (!Args.back())
3552          return Error("Invalid record");
3553      }
3554
3555      // Read type/value pairs for varargs params.
3556      if (!FTy->isVarArg()) {
3557        if (OpNum != Record.size())
3558          return Error("Invalid record");
3559      } else {
3560        while (OpNum != Record.size()) {
3561          Value *Op;
3562          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3563            return Error("Invalid record");
3564          Args.push_back(Op);
3565        }
3566      }
3567
3568      I = CallInst::Create(Callee, Args);
3569      InstructionList.push_back(I);
3570      cast<CallInst>(I)->setCallingConv(
3571        static_cast<CallingConv::ID>(CCInfo>>1));
3572      cast<CallInst>(I)->setTailCall(CCInfo & 1);
3573      cast<CallInst>(I)->setAttributes(PAL);
3574      break;
3575    }
3576    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3577      if (Record.size() < 3)
3578        return Error("Invalid record");
3579      Type *OpTy = getTypeByID(Record[0]);
3580      Value *Op = getFnValueByID(Record[1], OpTy);
3581      Type *ResTy = getTypeByID(Record[2]);
3582      if (!OpTy || !Op || !ResTy)
3583        return Error("Invalid record");
3584      I = new VAArgInst(Op, ResTy);
3585      InstructionList.push_back(I);
3586      break;
3587    }
3588    }
3589
3590    // Add instruction to end of current BB.  If there is no current BB, reject
3591    // this file.
3592    if (!CurBB) {
3593      delete I;
3594      return Error("Invalid instruction with no BB");
3595    }
3596    CurBB->getInstList().push_back(I);
3597
3598    // If this was a terminator instruction, move to the next block.
3599    if (isa<TerminatorInst>(I)) {
3600      ++CurBBNo;
3601      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3602    }
3603
3604    // Non-void values get registered in the value table for future use.
3605    if (I && !I->getType()->isVoidTy())
3606      ValueList.AssignValue(I, NextValueNo++);
3607  }
3608
3609  // Check the function list for unresolved values.
3610  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3611    if (!A->getParent()) {
3612      // We found at least one unresolved value.  Nuke them all to avoid leaks.
3613      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3614        if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3615          A->replaceAllUsesWith(UndefValue::get(A->getType()));
3616          delete A;
3617        }
3618      }
3619      return Error("Never resolved value found in function");
3620    }
3621  }
3622
3623  // FIXME: Check for unresolved forward-declared metadata references
3624  // and clean up leaks.
3625
3626  // See if anything took the address of blocks in this function.  If so,
3627  // resolve them now.
3628  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3629    BlockAddrFwdRefs.find(F);
3630  if (BAFRI != BlockAddrFwdRefs.end()) {
3631    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3632    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3633      unsigned BlockIdx = RefList[i].first;
3634      if (BlockIdx >= FunctionBBs.size())
3635        return Error("Invalid ID");
3636
3637      GlobalVariable *FwdRef = RefList[i].second;
3638      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3639      FwdRef->eraseFromParent();
3640    }
3641
3642    BlockAddrFwdRefs.erase(BAFRI);
3643  }
3644
3645  // Trim the value list down to the size it was before we parsed this function.
3646  ValueList.shrinkTo(ModuleValueListSize);
3647  MDValueList.shrinkTo(ModuleMDValueListSize);
3648  std::vector<BasicBlock*>().swap(FunctionBBs);
3649  return std::error_code();
3650}
3651
3652//===----------------------------------------------------------------------===//
3653// GVMaterializer implementation
3654//===----------------------------------------------------------------------===//
3655
3656void BitcodeReader::releaseBuffer() { Buffer.release(); }
3657
3658std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3659  if (std::error_code EC = materializeMetadata())
3660    return EC;
3661
3662  Function *F = dyn_cast<Function>(GV);
3663  // If it's not a function or is already material, ignore the request.
3664  if (!F || !F->isMaterializable())
3665    return std::error_code();
3666
3667  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3668  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3669
3670  // Move the bit stream to the saved position of the deferred function body.
3671  Stream.JumpToBit(DFII->second);
3672
3673  if (std::error_code EC = ParseFunctionBody(F))
3674    return EC;
3675  F->setIsMaterializable(false);
3676
3677  // Upgrade any old intrinsic calls in the function.
3678  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3679       E = UpgradedIntrinsics.end(); I != E; ++I) {
3680    if (I->first != I->second) {
3681      for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3682           UI != UE;) {
3683        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3684          UpgradeIntrinsicCall(CI, I->second);
3685      }
3686    }
3687  }
3688
3689  return std::error_code();
3690}
3691
3692bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3693  const Function *F = dyn_cast<Function>(GV);
3694  if (!F || F->isDeclaration())
3695    return false;
3696  return DeferredFunctionInfo.count(const_cast<Function*>(F));
3697}
3698
3699void BitcodeReader::dematerialize(GlobalValue *GV) {
3700  Function *F = dyn_cast<Function>(GV);
3701  // If this function isn't dematerializable, this is a noop.
3702  if (!F || !isDematerializable(F))
3703    return;
3704
3705  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3706
3707  // Just forget the function body, we can remat it later.
3708  F->deleteBody();
3709  F->setIsMaterializable(true);
3710}
3711
3712std::error_code BitcodeReader::materializeModule() {
3713  // Iterate over the module, deserializing any functions that are still on
3714  // disk.
3715  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3716       F != E; ++F) {
3717    if (std::error_code EC = materialize(&*F))
3718      return EC;
3719  }
3720  // At this point, if there are any function bodies, the current bit is
3721  // pointing to the END_BLOCK record after them. Now make sure the rest
3722  // of the bits in the module have been read.
3723  if (NextUnreadBit)
3724    ParseModule(true);
3725
3726  // Upgrade any intrinsic calls that slipped through (should not happen!) and
3727  // delete the old functions to clean up. We can't do this unless the entire
3728  // module is materialized because there could always be another function body
3729  // with calls to the old function.
3730  for (std::vector<std::pair<Function*, Function*> >::iterator I =
3731       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3732    if (I->first != I->second) {
3733      for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3734           UI != UE;) {
3735        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3736          UpgradeIntrinsicCall(CI, I->second);
3737      }
3738      if (!I->first->use_empty())
3739        I->first->replaceAllUsesWith(I->second);
3740      I->first->eraseFromParent();
3741    }
3742  }
3743  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3744
3745  // Upgrade to new EH scheme. N.B. This will go away in 3.1.
3746  UpgradeExceptionHandling(TheModule);
3747
3748  // Check debug info intrinsics.
3749  CheckDebugInfoIntrinsics(TheModule);
3750
3751  return std::error_code();
3752}
3753
3754std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3755  return IdentifiedStructTypes;
3756}
3757
3758std::error_code BitcodeReader::InitStream() {
3759  if (LazyStreamer)
3760    return InitLazyStream();
3761  return InitStreamFromBuffer();
3762}
3763
3764std::error_code BitcodeReader::InitStreamFromBuffer() {
3765  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3766  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3767
3768  if (Buffer->getBufferSize() & 3)
3769    return Error("Invalid bitcode signature");
3770
3771  // If we have a wrapper header, parse it and ignore the non-bc file contents.
3772  // The magic number is 0x0B17C0DE stored in little endian.
3773  if (isBitcodeWrapper(BufPtr, BufEnd))
3774    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3775      return Error("Invalid bitcode wrapper header");
3776
3777  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3778  Stream.init(&*StreamFile);
3779
3780  return std::error_code();
3781}
3782
3783std::error_code BitcodeReader::InitLazyStream() {
3784  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3785  // see it.
3786  auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(
3787      std::move(LazyStreamer));
3788  StreamingMemoryObject &Bytes = *OwnedBytes;
3789  StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3790  Stream.init(&*StreamFile);
3791
3792  unsigned char buf[16];
3793  if (Bytes.readBytes(buf, 16, 0) != 16)
3794    return Error("Invalid bitcode signature");
3795
3796  if (!isBitcode(buf, buf + 16))
3797    return Error("Invalid bitcode signature");
3798
3799  if (isBitcodeWrapper(buf, buf + 4)) {
3800    const unsigned char *bitcodeStart = buf;
3801    const unsigned char *bitcodeEnd = buf + 16;
3802    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3803    Bytes.dropLeadingBytes(bitcodeStart - buf);
3804    Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3805  }
3806  return std::error_code();
3807}
3808
3809namespace {
3810class BitcodeErrorCategoryType : public std::error_category {
3811  const char *name() const LLVM_NOEXCEPT override {
3812    return "llvm.bitcode";
3813  }
3814  std::string message(int IE) const override {
3815    BitcodeError E = static_cast<BitcodeError>(IE);
3816    switch (E) {
3817    case BitcodeError::InvalidBitcodeSignature:
3818      return "Invalid bitcode signature";
3819    case BitcodeError::CorruptedBitcode:
3820      return "Corrupted bitcode";
3821    }
3822    llvm_unreachable("Unknown error type!");
3823  }
3824};
3825}
3826
3827static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3828
3829const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3830  return *ErrorCategory;
3831}
3832
3833//===----------------------------------------------------------------------===//
3834// External interface
3835//===----------------------------------------------------------------------===//
3836
3837/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3838///
3839static llvm::ErrorOr<llvm::Module *>
3840getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3841                         LLVMContext &Context, bool WillMaterializeAll,
3842                         const DiagnosticHandlerFunction &DiagnosticHandler) {
3843  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3844  BitcodeReader *R =
3845      new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3846  M->setMaterializer(R);
3847
3848  auto cleanupOnError = [&](std::error_code EC) {
3849    R->releaseBuffer(); // Never take ownership on error.
3850    delete M;  // Also deletes R.
3851    return EC;
3852  };
3853
3854  if (std::error_code EC = R->ParseBitcodeInto(M))
3855    return cleanupOnError(EC);
3856
3857  Buffer.release(); // The BitcodeReader owns it now.
3858  return M;
3859}
3860
3861llvm::ErrorOr<Module *>
3862llvm_3_0::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3863                           LLVMContext &Context,
3864                           const DiagnosticHandlerFunction &DiagnosticHandler) {
3865  return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3866                                  DiagnosticHandler);
3867}
3868
3869/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3870/// If an error occurs, return null and fill in *ErrMsg if non-null.
3871llvm::ErrorOr<llvm::Module *>
3872llvm_3_0::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3873                       const DiagnosticHandlerFunction &DiagnosticHandler) {
3874  std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3875  ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3876      std::move(Buf), Context, true, DiagnosticHandler);
3877  if (!ModuleOrErr)
3878    return ModuleOrErr;
3879  Module *M = ModuleOrErr.get();
3880  // Read in the entire module, and destroy the BitcodeReader.
3881  if (std::error_code EC = M->materializeAll()) {
3882    delete M;
3883    return EC;
3884  }
3885
3886  return M;
3887}
3888
3889std::string
3890llvm_3_0::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3891                             DiagnosticHandlerFunction DiagnosticHandler) {
3892  std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3893  auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3894                                            DiagnosticHandler);
3895  ErrorOr<std::string> Triple = R->parseTriple();
3896  if (Triple.getError())
3897    return "";
3898  return Triple.get();
3899}
3900