1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ReaderWriter_3_2.h"
15#include "legacy_bitcode.h"
16#include "ValueEnumerator.h"
17#include "llvm/ADT/Triple.h"
18#include "llvm/Bitcode/BitstreamWriter.h"
19#include "llvm/Bitcode/LLVMBitCodes.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DebugInfoMetadata.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/InlineAsm.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/IR/UseListOrder.h"
28#include "llvm/IR/ValueSymbolTable.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/Program.h"
33#include "llvm/Support/raw_ostream.h"
34#include <cctype>
35#include <map>
36using namespace llvm;
37
38/// These are manifest constants used by the bitcode writer. They do not need to
39/// be kept in sync with the reader, but need to be consistent within this file.
40enum {
41  // VALUE_SYMTAB_BLOCK abbrev id's.
42  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
43  VST_ENTRY_7_ABBREV,
44  VST_ENTRY_6_ABBREV,
45  VST_BBENTRY_6_ABBREV,
46
47  // CONSTANTS_BLOCK abbrev id's.
48  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
49  CONSTANTS_INTEGER_ABBREV,
50  CONSTANTS_CE_CAST_Abbrev,
51  CONSTANTS_NULL_Abbrev,
52
53  // FUNCTION_BLOCK abbrev id's.
54  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
55  FUNCTION_INST_BINOP_ABBREV,
56  FUNCTION_INST_BINOP_FLAGS_ABBREV,
57  FUNCTION_INST_CAST_ABBREV,
58  FUNCTION_INST_RET_VOID_ABBREV,
59  FUNCTION_INST_RET_VAL_ABBREV,
60  FUNCTION_INST_UNREACHABLE_ABBREV
61};
62
63static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64  switch (Opcode) {
65  default: llvm_unreachable("Unknown cast instruction!");
66  case Instruction::Trunc   : return bitc::CAST_TRUNC;
67  case Instruction::ZExt    : return bitc::CAST_ZEXT;
68  case Instruction::SExt    : return bitc::CAST_SEXT;
69  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
70  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
71  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
72  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
73  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74  case Instruction::FPExt   : return bitc::CAST_FPEXT;
75  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77  case Instruction::BitCast : return bitc::CAST_BITCAST;
78  }
79}
80
81static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
82  switch (Opcode) {
83  default: llvm_unreachable("Unknown binary instruction!");
84  case Instruction::Add:
85  case Instruction::FAdd: return bitc::BINOP_ADD;
86  case Instruction::Sub:
87  case Instruction::FSub: return bitc::BINOP_SUB;
88  case Instruction::Mul:
89  case Instruction::FMul: return bitc::BINOP_MUL;
90  case Instruction::UDiv: return bitc::BINOP_UDIV;
91  case Instruction::FDiv:
92  case Instruction::SDiv: return bitc::BINOP_SDIV;
93  case Instruction::URem: return bitc::BINOP_UREM;
94  case Instruction::FRem:
95  case Instruction::SRem: return bitc::BINOP_SREM;
96  case Instruction::Shl:  return bitc::BINOP_SHL;
97  case Instruction::LShr: return bitc::BINOP_LSHR;
98  case Instruction::AShr: return bitc::BINOP_ASHR;
99  case Instruction::And:  return bitc::BINOP_AND;
100  case Instruction::Or:   return bitc::BINOP_OR;
101  case Instruction::Xor:  return bitc::BINOP_XOR;
102  }
103}
104
105static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
106  switch (Op) {
107  default: llvm_unreachable("Unknown RMW operation!");
108  case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
109  case AtomicRMWInst::Add: return bitc::RMW_ADD;
110  case AtomicRMWInst::Sub: return bitc::RMW_SUB;
111  case AtomicRMWInst::And: return bitc::RMW_AND;
112  case AtomicRMWInst::Nand: return bitc::RMW_NAND;
113  case AtomicRMWInst::Or: return bitc::RMW_OR;
114  case AtomicRMWInst::Xor: return bitc::RMW_XOR;
115  case AtomicRMWInst::Max: return bitc::RMW_MAX;
116  case AtomicRMWInst::Min: return bitc::RMW_MIN;
117  case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
118  case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
119  }
120}
121
122static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
123  switch (Ordering) {
124  case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
125  case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
126  case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
127  case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
128  case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
129  case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
130  case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
131  }
132  llvm_unreachable("Invalid ordering");
133}
134
135static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
136  switch (SynchScope) {
137  case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
138  case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
139  }
140  llvm_unreachable("Invalid synch scope");
141}
142
143static void WriteStringRecord(unsigned Code, StringRef Str,
144                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
145  SmallVector<unsigned, 64> Vals;
146
147  // Code: [strchar x N]
148  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
149    if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
150      AbbrevToUse = 0;
151    Vals.push_back(Str[i]);
152  }
153
154  // Emit the finished record.
155  Stream.EmitRecord(Code, Vals, AbbrevToUse);
156}
157
158// Emit information about parameter attributes.
159static void WriteAttributeTable(const llvm_3_2::ValueEnumerator &VE,
160                                BitstreamWriter &Stream) {
161  const std::vector<AttributeSet> &Attrs = VE.getAttributes();
162  if (Attrs.empty()) return;
163
164  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
165
166  SmallVector<uint64_t, 64> Record;
167  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
168    const AttributeSet &A = Attrs[i];
169    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
170      Record.push_back(A.getSlotIndex(i));
171      Record.push_back(encodeLLVMAttributesForBitcode(A, A.getSlotIndex(i)));
172    }
173
174    // This needs to use the 3.2 entry type
175    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY_OLD, Record);
176    Record.clear();
177  }
178
179  Stream.ExitBlock();
180}
181
182/// WriteTypeTable - Write out the type table for a module.
183static void WriteTypeTable(const llvm_3_2::ValueEnumerator &VE,
184                           BitstreamWriter &Stream) {
185  const llvm_3_2::ValueEnumerator::TypeList &TypeList = VE.getTypes();
186
187  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
188  SmallVector<uint64_t, 64> TypeVals;
189
190  uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
191
192  // Abbrev for TYPE_CODE_POINTER.
193  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
194  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
195  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
196  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
197  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
198
199  // Abbrev for TYPE_CODE_FUNCTION.
200  Abbv = new BitCodeAbbrev();
201  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
202  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
203  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
204  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
205
206  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
207
208  // Abbrev for TYPE_CODE_STRUCT_ANON.
209  Abbv = new BitCodeAbbrev();
210  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
211  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
212  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
213  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
214
215  unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
216
217  // Abbrev for TYPE_CODE_STRUCT_NAME.
218  Abbv = new BitCodeAbbrev();
219  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
220  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
221  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
222  unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
223
224  // Abbrev for TYPE_CODE_STRUCT_NAMED.
225  Abbv = new BitCodeAbbrev();
226  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
227  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
228  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
229  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
230
231  unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
232
233  // Abbrev for TYPE_CODE_ARRAY.
234  Abbv = new BitCodeAbbrev();
235  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
236  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
237  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
238
239  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
240
241  // Emit an entry count so the reader can reserve space.
242  TypeVals.push_back(TypeList.size());
243  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
244  TypeVals.clear();
245
246  // Loop over all of the types, emitting each in turn.
247  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
248    Type *T = TypeList[i];
249    int AbbrevToUse = 0;
250    unsigned Code = 0;
251
252    switch (T->getTypeID()) {
253    default: llvm_unreachable("Unknown type!");
254    case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
255    case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
256    case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
257    case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
258    case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
259    case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
260    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
261    case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
262    case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
263    case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
264    case Type::IntegerTyID:
265      // INTEGER: [width]
266      Code = bitc::TYPE_CODE_INTEGER;
267      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
268      break;
269    case Type::PointerTyID: {
270      PointerType *PTy = cast<PointerType>(T);
271      // POINTER: [pointee type, address space]
272      Code = bitc::TYPE_CODE_POINTER;
273      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
274      unsigned AddressSpace = PTy->getAddressSpace();
275      TypeVals.push_back(AddressSpace);
276      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
277      break;
278    }
279    case Type::FunctionTyID: {
280      FunctionType *FT = cast<FunctionType>(T);
281      // FUNCTION: [isvararg, retty, paramty x N]
282      Code = bitc::TYPE_CODE_FUNCTION;
283      TypeVals.push_back(FT->isVarArg());
284      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
285      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
286        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
287      AbbrevToUse = FunctionAbbrev;
288      break;
289    }
290    case Type::StructTyID: {
291      StructType *ST = cast<StructType>(T);
292      // STRUCT: [ispacked, eltty x N]
293      TypeVals.push_back(ST->isPacked());
294      // Output all of the element types.
295      for (StructType::element_iterator I = ST->element_begin(),
296           E = ST->element_end(); I != E; ++I)
297        TypeVals.push_back(VE.getTypeID(*I));
298
299      if (ST->isLiteral()) {
300        Code = bitc::TYPE_CODE_STRUCT_ANON;
301        AbbrevToUse = StructAnonAbbrev;
302      } else {
303        if (ST->isOpaque()) {
304          Code = bitc::TYPE_CODE_OPAQUE;
305        } else {
306          Code = bitc::TYPE_CODE_STRUCT_NAMED;
307          AbbrevToUse = StructNamedAbbrev;
308        }
309
310        // Emit the name if it is present.
311        if (!ST->getName().empty())
312          WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
313                            StructNameAbbrev, Stream);
314      }
315      break;
316    }
317    case Type::ArrayTyID: {
318      ArrayType *AT = cast<ArrayType>(T);
319      // ARRAY: [numelts, eltty]
320      Code = bitc::TYPE_CODE_ARRAY;
321      TypeVals.push_back(AT->getNumElements());
322      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
323      AbbrevToUse = ArrayAbbrev;
324      break;
325    }
326    case Type::VectorTyID: {
327      VectorType *VT = cast<VectorType>(T);
328      // VECTOR [numelts, eltty]
329      Code = bitc::TYPE_CODE_VECTOR;
330      TypeVals.push_back(VT->getNumElements());
331      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
332      break;
333    }
334    }
335
336    // Emit the finished record.
337    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
338    TypeVals.clear();
339  }
340
341  Stream.ExitBlock();
342}
343
344static unsigned getEncodedLinkage(const GlobalValue &GV) {
345  switch (GV.getLinkage()) {
346  case GlobalValue::ExternalLinkage:
347    return 0;
348  case GlobalValue::WeakAnyLinkage:
349    return 1;
350  case GlobalValue::AppendingLinkage:
351    return 2;
352  case GlobalValue::InternalLinkage:
353    return 3;
354  case GlobalValue::LinkOnceAnyLinkage:
355    return 4;
356  case GlobalValue::ExternalWeakLinkage:
357    return 7;
358  case GlobalValue::CommonLinkage:
359    return 8;
360  case GlobalValue::PrivateLinkage:
361    return 9;
362  case GlobalValue::WeakODRLinkage:
363    return 10;
364  case GlobalValue::LinkOnceODRLinkage:
365    return 11;
366  case GlobalValue::AvailableExternallyLinkage:
367    return 12;
368  }
369  llvm_unreachable("Invalid linkage");
370}
371
372static unsigned getEncodedVisibility(const GlobalValue &GV) {
373  switch (GV.getVisibility()) {
374  case GlobalValue::DefaultVisibility:   return 0;
375  case GlobalValue::HiddenVisibility:    return 1;
376  case GlobalValue::ProtectedVisibility: return 2;
377  }
378  llvm_unreachable("Invalid visibility");
379}
380
381static unsigned getEncodedThreadLocalMode(const GlobalVariable &GV) {
382  switch (GV.getThreadLocalMode()) {
383    case GlobalVariable::NotThreadLocal:         return 0;
384    case GlobalVariable::GeneralDynamicTLSModel: return 1;
385    case GlobalVariable::LocalDynamicTLSModel:   return 2;
386    case GlobalVariable::InitialExecTLSModel:    return 3;
387    case GlobalVariable::LocalExecTLSModel:      return 4;
388  }
389  llvm_unreachable("Invalid TLS model");
390}
391
392// Emit top-level description of module, including target triple, inline asm,
393// descriptors for global variables, and function prototype info.
394static void WriteModuleInfo(const Module *M,
395                            const llvm_3_2::ValueEnumerator &VE,
396                            BitstreamWriter &Stream) {
397  // Emit various pieces of data attached to a module.
398  if (!M->getTargetTriple().empty())
399    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
400                      0/*TODO*/, Stream);
401  const std::string &DL = M->getDataLayoutStr();
402  if (!DL.empty())
403    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
404  if (!M->getModuleInlineAsm().empty())
405    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
406                      0/*TODO*/, Stream);
407
408  // Emit information about sections and GC, computing how many there are. Also
409  // compute the maximum alignment value.
410  std::map<std::string, unsigned> SectionMap;
411  std::map<std::string, unsigned> GCMap;
412  unsigned MaxAlignment = 0;
413  unsigned MaxGlobalType = 0;
414  for (const GlobalValue &GV : M->globals()) {
415    MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
416    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
417    if (GV.hasSection()) {
418      // Give section names unique ID's.
419      unsigned &Entry = SectionMap[GV.getSection()];
420      if (!Entry) {
421        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
422                          0/*TODO*/, Stream);
423        Entry = SectionMap.size();
424      }
425    }
426  }
427  for (const Function &F : *M) {
428    MaxAlignment = std::max(MaxAlignment, F.getAlignment());
429    if (F.hasSection()) {
430      // Give section names unique ID's.
431      unsigned &Entry = SectionMap[F.getSection()];
432      if (!Entry) {
433        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
434                          0/*TODO*/, Stream);
435        Entry = SectionMap.size();
436      }
437    }
438    if (F.hasGC()) {
439      // Same for GC names.
440      unsigned &Entry = GCMap[F.getGC()];
441      if (!Entry) {
442        WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
443                          0/*TODO*/, Stream);
444        Entry = GCMap.size();
445      }
446    }
447  }
448
449  // Emit abbrev for globals, now that we know # sections and max alignment.
450  unsigned SimpleGVarAbbrev = 0;
451  if (!M->global_empty()) {
452    // Add an abbrev for common globals with no visibility or thread localness.
453    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
454    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
455    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
456                              Log2_32_Ceil(MaxGlobalType+1)));
457    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
458    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
459    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
460    if (MaxAlignment == 0)                                      // Alignment.
461      Abbv->Add(BitCodeAbbrevOp(0));
462    else {
463      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
464      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
465                               Log2_32_Ceil(MaxEncAlignment+1)));
466    }
467    if (SectionMap.empty())                                    // Section.
468      Abbv->Add(BitCodeAbbrevOp(0));
469    else
470      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
471                               Log2_32_Ceil(SectionMap.size()+1)));
472    // Don't bother emitting vis + thread local.
473    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
474  }
475
476  // Emit the global variable information.
477  SmallVector<unsigned, 64> Vals;
478  for (const GlobalVariable &GV : M->globals()) {
479    unsigned AbbrevToUse = 0;
480
481    // GLOBALVAR: [type, isconst, initid,
482    //             linkage, alignment, section, visibility, threadlocal,
483    //             unnamed_addr]
484    Vals.push_back(VE.getTypeID(GV.getType()));
485    Vals.push_back(GV.isConstant());
486    Vals.push_back(GV.isDeclaration() ? 0 :
487                   (VE.getValueID(GV.getInitializer()) + 1));
488    Vals.push_back(getEncodedLinkage(GV));
489    Vals.push_back(Log2_32(GV.getAlignment())+1);
490    Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
491    if (GV.isThreadLocal() ||
492        GV.getVisibility() != GlobalValue::DefaultVisibility ||
493        GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
494        GV.isExternallyInitialized()) {
495      Vals.push_back(getEncodedVisibility(GV));
496      Vals.push_back(getEncodedThreadLocalMode(GV));
497      Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
498      Vals.push_back(GV.isExternallyInitialized());
499    } else {
500      AbbrevToUse = SimpleGVarAbbrev;
501    }
502
503    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
504    Vals.clear();
505  }
506
507  // Emit the function proto information.
508  for (const Function &F : *M) {
509    // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
510    //             section, visibility, gc, unnamed_addr]
511    Vals.push_back(VE.getTypeID(F.getType()));
512    Vals.push_back(F.getCallingConv());
513    Vals.push_back(F.isDeclaration());
514    Vals.push_back(getEncodedLinkage(F));
515    Vals.push_back(VE.getAttributeID(F.getAttributes()));
516    Vals.push_back(Log2_32(F.getAlignment())+1);
517    Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
518    Vals.push_back(getEncodedVisibility(F));
519    Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
520    Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
521
522    unsigned AbbrevToUse = 0;
523    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
524    Vals.clear();
525  }
526
527  // Emit the alias information.
528  for (const GlobalAlias &A : M->aliases()) {
529    // ALIAS: [alias type, aliasee val#, linkage, visibility]
530    Vals.push_back(VE.getTypeID(A.getType()));
531    Vals.push_back(VE.getValueID(A.getAliasee()));
532    Vals.push_back(getEncodedLinkage(A));
533    Vals.push_back(getEncodedVisibility(A));
534    unsigned AbbrevToUse = 0;
535    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
536    Vals.clear();
537  }
538}
539
540static uint64_t GetOptimizationFlags(const Value *V) {
541  uint64_t Flags = 0;
542
543  if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
544    if (OBO->hasNoSignedWrap())
545      Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
546    if (OBO->hasNoUnsignedWrap())
547      Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
548  } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
549    if (PEO->isExact())
550      Flags |= 1 << bitc::PEO_EXACT;
551  } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
552    // FIXME(srhines): We don't handle fast math in llvm-rs-cc today.
553    if (false) {
554      if (FPMO->hasUnsafeAlgebra())
555        Flags |= FastMathFlags::UnsafeAlgebra;
556      if (FPMO->hasNoNaNs())
557        Flags |= FastMathFlags::NoNaNs;
558      if (FPMO->hasNoInfs())
559        Flags |= FastMathFlags::NoInfs;
560      if (FPMO->hasNoSignedZeros())
561        Flags |= FastMathFlags::NoSignedZeros;
562      if (FPMO->hasAllowReciprocal())
563        Flags |= FastMathFlags::AllowReciprocal;
564    }
565  }
566
567  return Flags;
568}
569
570static void WriteValueAsMetadata(const ValueAsMetadata *MD,
571                                 const llvm_3_2::ValueEnumerator &VE,
572                                 BitstreamWriter &Stream,
573                                 SmallVectorImpl<uint64_t> &Record) {
574  // Mimic an MDNode with a value as one operand.
575  Value *V = MD->getValue();
576  Record.push_back(VE.getTypeID(V->getType()));
577  Record.push_back(VE.getValueID(V));
578  Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, 0);
579  Record.clear();
580}
581
582static void WriteMDTuple(const MDTuple *N, const llvm_3_2::ValueEnumerator &VE,
583                         BitstreamWriter &Stream,
584                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
585  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
586    Metadata *MD = N->getOperand(i);
587    assert(!(MD && isa<LocalAsMetadata>(MD)) &&
588           "Unexpected function-local metadata");
589    if (!MD) {
590      // TODO(srhines): I don't believe this case can exist for RS.
591      Record.push_back(VE.getTypeID(llvm::Type::getVoidTy(N->getContext())));
592      Record.push_back(0);
593    } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
594      Record.push_back(VE.getTypeID(MDC->getType()));
595      Record.push_back(VE.getValueID(MDC->getValue()));
596    } else {
597      Record.push_back(VE.getTypeID(
598          llvm::Type::getMetadataTy(N->getContext())));
599      Record.push_back(VE.getMetadataID(MD));
600    }
601  }
602  Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, Abbrev);
603  Record.clear();
604}
605
606/*static void WriteMDLocation(const MDLocation *N, const llvm_3_2::ValueEnumerator &VE,
607                            BitstreamWriter &Stream,
608                            SmallVectorImpl<uint64_t> &Record,
609                            unsigned Abbrev) {
610  Record.push_back(N->isDistinct());
611  Record.push_back(N->getLine());
612  Record.push_back(N->getColumn());
613  Record.push_back(VE.getMetadataID(N->getScope()));
614  Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
615
616  Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
617  Record.clear();
618}
619
620static void WriteGenericDebugNode(const GenericDebugNode *,
621                                  const llvm_3_2::ValueEnumerator &, BitstreamWriter &,
622                                  SmallVectorImpl<uint64_t> &, unsigned) {
623  llvm_unreachable("unimplemented");
624}*/
625
626static void WriteModuleMetadata(const Module *M,
627                                const llvm_3_2::ValueEnumerator &VE,
628                                BitstreamWriter &Stream) {
629  const auto &MDs = VE.getMDs();
630  if (MDs.empty() && M->named_metadata_empty())
631    return;
632
633  // RenderScript files *ALWAYS* have metadata!
634  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
635
636  unsigned MDSAbbrev = 0;
637  if (VE.hasMDString()) {
638    // Abbrev for METADATA_STRING.
639    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
640    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
641    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
642    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
643    MDSAbbrev = Stream.EmitAbbrev(Abbv);
644  }
645
646  unsigned MDLocationAbbrev = 0;
647  if (VE.hasDILocation()) {
648    // TODO(srhines): Should be unreachable for RenderScript.
649    // Abbrev for METADATA_LOCATION.
650    //
651    // Assume the column is usually under 128, and always output the inlined-at
652    // location (it's never more expensive than building an array size 1).
653    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
654    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
655    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
656    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
657    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
658    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
659    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
660    MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
661  }
662
663  unsigned NameAbbrev = 0;
664  if (!M->named_metadata_empty()) {
665    // Abbrev for METADATA_NAME.
666    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
667    Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
668    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
669    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
670    NameAbbrev = Stream.EmitAbbrev(Abbv);
671  }
672
673  unsigned MDTupleAbbrev = 0;
674  //unsigned GenericDebugNodeAbbrev = 0;
675  SmallVector<uint64_t, 64> Record;
676  for (const Metadata *MD : MDs) {
677    if (const MDNode *N = dyn_cast<MDNode>(MD)) {
678      switch (N->getMetadataID()) {
679      default:
680        llvm_unreachable("Invalid MDNode subclass");
681#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)
682#define HANDLE_MDNODE_LEAF(CLASS)                                              \
683  case Metadata::CLASS##Kind:                                                  \
684    Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
685    continue;
686#include "llvm/IR/Metadata.def"
687      }
688    }
689    if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
690      WriteValueAsMetadata(MDC, VE, Stream, Record);
691      continue;
692    }
693    const MDString *MDS = cast<MDString>(MD);
694    // Code: [strchar x N]
695    Record.append(MDS->bytes_begin(), MDS->bytes_end());
696
697    // Emit the finished record.
698    Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
699    Record.clear();
700  }
701
702  // Write named metadata.
703  for (const NamedMDNode &NMD : M->named_metadata()) {
704    // Write name.
705    StringRef Str = NMD.getName();
706    Record.append(Str.bytes_begin(), Str.bytes_end());
707    Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
708    Record.clear();
709
710    // Write named metadata operands.
711    for (const MDNode *N : NMD.operands())
712      Record.push_back(VE.getMetadataID(N));
713    Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
714    Record.clear();
715  }
716
717  Stream.ExitBlock();
718}
719
720static void WriteFunctionLocalMetadata(const Function &F,
721                                       const llvm_3_2::ValueEnumerator &VE,
722                                       BitstreamWriter &Stream) {
723  bool StartedMetadataBlock = false;
724  SmallVector<uint64_t, 64> Record;
725  const SmallVectorImpl<const LocalAsMetadata *> &MDs =
726      VE.getFunctionLocalMDs();
727  for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
728    assert(MDs[i] && "Expected valid function-local metadata");
729    if (!StartedMetadataBlock) {
730      Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
731      StartedMetadataBlock = true;
732    }
733    WriteValueAsMetadata(MDs[i], VE, Stream, Record);
734  }
735
736  if (StartedMetadataBlock)
737    Stream.ExitBlock();
738}
739
740static void WriteMetadataAttachment(const Function &F,
741                                    const llvm_3_2::ValueEnumerator &VE,
742                                    BitstreamWriter &Stream) {
743  Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
744
745  SmallVector<uint64_t, 64> Record;
746
747  // Write metadata attachments
748  // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
749  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
750
751  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
752    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
753         I != E; ++I) {
754      MDs.clear();
755      I->getAllMetadataOtherThanDebugLoc(MDs);
756
757      // If no metadata, ignore instruction.
758      if (MDs.empty()) continue;
759
760      Record.push_back(VE.getInstructionID(&*I));
761
762      for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
763        Record.push_back(MDs[i].first);
764        Record.push_back(VE.getMetadataID(MDs[i].second));
765      }
766      Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
767      Record.clear();
768    }
769
770  Stream.ExitBlock();
771}
772
773static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
774  SmallVector<uint64_t, 64> Record;
775
776  // Write metadata kinds
777  // METADATA_KIND - [n x [id, name]]
778  SmallVector<StringRef, 4> Names;
779  M->getMDKindNames(Names);
780
781  if (Names.empty()) return;
782
783  Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
784
785  for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
786    Record.push_back(MDKindID);
787    StringRef KName = Names[MDKindID];
788    Record.append(KName.begin(), KName.end());
789
790    Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
791    Record.clear();
792  }
793
794  Stream.ExitBlock();
795}
796
797static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
798  if ((int64_t)V >= 0)
799    Vals.push_back(V << 1);
800  else
801    Vals.push_back((-V << 1) | 1);
802}
803
804static void WriteConstants(unsigned FirstVal, unsigned LastVal,
805                           const llvm_3_2::ValueEnumerator &VE,
806                           BitstreamWriter &Stream, bool isGlobal) {
807  if (FirstVal == LastVal) return;
808
809  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
810
811  unsigned AggregateAbbrev = 0;
812  unsigned String8Abbrev = 0;
813  unsigned CString7Abbrev = 0;
814  unsigned CString6Abbrev = 0;
815  // If this is a constant pool for the module, emit module-specific abbrevs.
816  if (isGlobal) {
817    // Abbrev for CST_CODE_AGGREGATE.
818    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
819    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
820    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
821    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
822    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
823
824    // Abbrev for CST_CODE_STRING.
825    Abbv = new BitCodeAbbrev();
826    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
827    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
828    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
829    String8Abbrev = Stream.EmitAbbrev(Abbv);
830    // Abbrev for CST_CODE_CSTRING.
831    Abbv = new BitCodeAbbrev();
832    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
833    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
834    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
835    CString7Abbrev = Stream.EmitAbbrev(Abbv);
836    // Abbrev for CST_CODE_CSTRING.
837    Abbv = new BitCodeAbbrev();
838    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
839    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
840    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
841    CString6Abbrev = Stream.EmitAbbrev(Abbv);
842  }
843
844  SmallVector<uint64_t, 64> Record;
845
846  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
847  Type *LastTy = nullptr;
848  for (unsigned i = FirstVal; i != LastVal; ++i) {
849    const Value *V = Vals[i].first;
850    // If we need to switch types, do so now.
851    if (V->getType() != LastTy) {
852      LastTy = V->getType();
853      Record.push_back(VE.getTypeID(LastTy));
854      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
855                        CONSTANTS_SETTYPE_ABBREV);
856      Record.clear();
857    }
858
859    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
860      Record.push_back(unsigned(IA->hasSideEffects()) |
861                       unsigned(IA->isAlignStack()) << 1 |
862                       unsigned(IA->getDialect()&1) << 2);
863
864      // Add the asm string.
865      const std::string &AsmStr = IA->getAsmString();
866      Record.push_back(AsmStr.size());
867      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
868        Record.push_back(AsmStr[i]);
869
870      // Add the constraint string.
871      const std::string &ConstraintStr = IA->getConstraintString();
872      Record.push_back(ConstraintStr.size());
873      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
874        Record.push_back(ConstraintStr[i]);
875      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
876      Record.clear();
877      continue;
878    }
879    const Constant *C = cast<Constant>(V);
880    unsigned Code = -1U;
881    unsigned AbbrevToUse = 0;
882    if (C->isNullValue()) {
883      Code = bitc::CST_CODE_NULL;
884    } else if (isa<UndefValue>(C)) {
885      Code = bitc::CST_CODE_UNDEF;
886    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
887      if (IV->getBitWidth() <= 64) {
888        uint64_t V = IV->getSExtValue();
889        emitSignedInt64(Record, V);
890        Code = bitc::CST_CODE_INTEGER;
891        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
892      } else {                             // Wide integers, > 64 bits in size.
893        // We have an arbitrary precision integer value to write whose
894        // bit width is > 64. However, in canonical unsigned integer
895        // format it is likely that the high bits are going to be zero.
896        // So, we only write the number of active words.
897        unsigned NWords = IV->getValue().getActiveWords();
898        const uint64_t *RawWords = IV->getValue().getRawData();
899        for (unsigned i = 0; i != NWords; ++i) {
900          emitSignedInt64(Record, RawWords[i]);
901        }
902        Code = bitc::CST_CODE_WIDE_INTEGER;
903      }
904    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
905      Code = bitc::CST_CODE_FLOAT;
906      Type *Ty = CFP->getType();
907      if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
908        Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
909      } else if (Ty->isX86_FP80Ty()) {
910        // api needed to prevent premature destruction
911        // bits are not in the same order as a normal i80 APInt, compensate.
912        APInt api = CFP->getValueAPF().bitcastToAPInt();
913        const uint64_t *p = api.getRawData();
914        Record.push_back((p[1] << 48) | (p[0] >> 16));
915        Record.push_back(p[0] & 0xffffLL);
916      } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
917        APInt api = CFP->getValueAPF().bitcastToAPInt();
918        const uint64_t *p = api.getRawData();
919        Record.push_back(p[0]);
920        Record.push_back(p[1]);
921      } else {
922        assert (0 && "Unknown FP type!");
923      }
924    } else if (isa<ConstantDataSequential>(C) &&
925               cast<ConstantDataSequential>(C)->isString()) {
926      const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
927      // Emit constant strings specially.
928      unsigned NumElts = Str->getNumElements();
929      // If this is a null-terminated string, use the denser CSTRING encoding.
930      if (Str->isCString()) {
931        Code = bitc::CST_CODE_CSTRING;
932        --NumElts;  // Don't encode the null, which isn't allowed by char6.
933      } else {
934        Code = bitc::CST_CODE_STRING;
935        AbbrevToUse = String8Abbrev;
936      }
937      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
938      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
939      for (unsigned i = 0; i != NumElts; ++i) {
940        unsigned char V = Str->getElementAsInteger(i);
941        Record.push_back(V);
942        isCStr7 &= (V & 128) == 0;
943        if (isCStrChar6)
944          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
945      }
946
947      if (isCStrChar6)
948        AbbrevToUse = CString6Abbrev;
949      else if (isCStr7)
950        AbbrevToUse = CString7Abbrev;
951    } else if (const ConstantDataSequential *CDS =
952                  dyn_cast<ConstantDataSequential>(C)) {
953      Code = bitc::CST_CODE_DATA;
954      Type *EltTy = CDS->getType()->getElementType();
955      if (isa<IntegerType>(EltTy)) {
956        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
957          Record.push_back(CDS->getElementAsInteger(i));
958      } else {
959        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
960          Record.push_back(
961              CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
962      }
963    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
964               isa<ConstantVector>(C)) {
965      Code = bitc::CST_CODE_AGGREGATE;
966      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
967        Record.push_back(VE.getValueID(C->getOperand(i)));
968      AbbrevToUse = AggregateAbbrev;
969    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
970      switch (CE->getOpcode()) {
971      default:
972        if (Instruction::isCast(CE->getOpcode())) {
973          Code = bitc::CST_CODE_CE_CAST;
974          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
975          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
976          Record.push_back(VE.getValueID(C->getOperand(0)));
977          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
978        } else {
979          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
980          Code = bitc::CST_CODE_CE_BINOP;
981          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
982          Record.push_back(VE.getValueID(C->getOperand(0)));
983          Record.push_back(VE.getValueID(C->getOperand(1)));
984          uint64_t Flags = GetOptimizationFlags(CE);
985          if (Flags != 0)
986            Record.push_back(Flags);
987        }
988        break;
989      case Instruction::GetElementPtr:
990        Code = bitc::CST_CODE_CE_GEP;
991        if (cast<GEPOperator>(C)->isInBounds())
992          Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
993        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
994          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
995          Record.push_back(VE.getValueID(C->getOperand(i)));
996        }
997        break;
998      case Instruction::Select:
999        Code = bitc::CST_CODE_CE_SELECT;
1000        Record.push_back(VE.getValueID(C->getOperand(0)));
1001        Record.push_back(VE.getValueID(C->getOperand(1)));
1002        Record.push_back(VE.getValueID(C->getOperand(2)));
1003        break;
1004      case Instruction::ExtractElement:
1005        Code = bitc::CST_CODE_CE_EXTRACTELT;
1006        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1007        Record.push_back(VE.getValueID(C->getOperand(0)));
1008        Record.push_back(VE.getValueID(C->getOperand(1)));
1009        break;
1010      case Instruction::InsertElement:
1011        Code = bitc::CST_CODE_CE_INSERTELT;
1012        Record.push_back(VE.getValueID(C->getOperand(0)));
1013        Record.push_back(VE.getValueID(C->getOperand(1)));
1014        Record.push_back(VE.getValueID(C->getOperand(2)));
1015        break;
1016      case Instruction::ShuffleVector:
1017        // If the return type and argument types are the same, this is a
1018        // standard shufflevector instruction.  If the types are different,
1019        // then the shuffle is widening or truncating the input vectors, and
1020        // the argument type must also be encoded.
1021        if (C->getType() == C->getOperand(0)->getType()) {
1022          Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1023        } else {
1024          Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1025          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1026        }
1027        Record.push_back(VE.getValueID(C->getOperand(0)));
1028        Record.push_back(VE.getValueID(C->getOperand(1)));
1029        Record.push_back(VE.getValueID(C->getOperand(2)));
1030        break;
1031      case Instruction::ICmp:
1032      case Instruction::FCmp:
1033        Code = bitc::CST_CODE_CE_CMP;
1034        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1035        Record.push_back(VE.getValueID(C->getOperand(0)));
1036        Record.push_back(VE.getValueID(C->getOperand(1)));
1037        Record.push_back(CE->getPredicate());
1038        break;
1039      }
1040    } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1041      Code = bitc::CST_CODE_BLOCKADDRESS;
1042      Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1043      Record.push_back(VE.getValueID(BA->getFunction()));
1044      Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1045    } else {
1046#ifndef NDEBUG
1047      C->dump();
1048#endif
1049      llvm_unreachable("Unknown constant!");
1050    }
1051    Stream.EmitRecord(Code, Record, AbbrevToUse);
1052    Record.clear();
1053  }
1054
1055  Stream.ExitBlock();
1056}
1057
1058static void WriteModuleConstants(const llvm_3_2::ValueEnumerator &VE,
1059                                 BitstreamWriter &Stream) {
1060  const llvm_3_2::ValueEnumerator::ValueList &Vals = VE.getValues();
1061
1062  // Find the first constant to emit, which is the first non-globalvalue value.
1063  // We know globalvalues have been emitted by WriteModuleInfo.
1064  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1065    if (!isa<GlobalValue>(Vals[i].first)) {
1066      WriteConstants(i, Vals.size(), VE, Stream, true);
1067      return;
1068    }
1069  }
1070}
1071
1072/// PushValueAndType - The file has to encode both the value and type id for
1073/// many values, because we need to know what type to create for forward
1074/// references.  However, most operands are not forward references, so this type
1075/// field is not needed.
1076///
1077/// This function adds V's value ID to Vals.  If the value ID is higher than the
1078/// instruction ID, then it is a forward reference, and it also includes the
1079/// type ID.
1080static bool PushValueAndType(const Value *V, unsigned InstID,
1081                             SmallVector<unsigned, 64> &Vals,
1082                             llvm_3_2::ValueEnumerator &VE) {
1083  unsigned ValID = VE.getValueID(V);
1084  Vals.push_back(ValID);
1085  if (ValID >= InstID) {
1086    Vals.push_back(VE.getTypeID(V->getType()));
1087    return true;
1088  }
1089  return false;
1090}
1091
1092/// WriteInstruction - Emit an instruction to the specified stream.
1093static void WriteInstruction(const Instruction &I, unsigned InstID,
1094                             llvm_3_2::ValueEnumerator &VE,
1095                             BitstreamWriter &Stream,
1096                             SmallVector<unsigned, 64> &Vals) {
1097  unsigned Code = 0;
1098  unsigned AbbrevToUse = 0;
1099  VE.setInstructionID(&I);
1100  switch (I.getOpcode()) {
1101  default:
1102    if (Instruction::isCast(I.getOpcode())) {
1103      Code = bitc::FUNC_CODE_INST_CAST;
1104      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1105        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1106      Vals.push_back(VE.getTypeID(I.getType()));
1107      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1108    } else {
1109      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1110      Code = bitc::FUNC_CODE_INST_BINOP;
1111      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1112        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1113      Vals.push_back(VE.getValueID(I.getOperand(1)));
1114      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1115      uint64_t Flags = GetOptimizationFlags(&I);
1116      if (Flags != 0) {
1117        if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1118          AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1119        Vals.push_back(Flags);
1120      }
1121    }
1122    break;
1123
1124  case Instruction::GetElementPtr:
1125    Code = bitc::FUNC_CODE_INST_GEP_OLD;
1126    if (cast<GEPOperator>(&I)->isInBounds())
1127      Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
1128    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1129      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1130    break;
1131  case Instruction::ExtractValue: {
1132    Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1133    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1134    const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1135    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1136      Vals.push_back(*i);
1137    break;
1138  }
1139  case Instruction::InsertValue: {
1140    Code = bitc::FUNC_CODE_INST_INSERTVAL;
1141    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1142    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1143    const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1144    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1145      Vals.push_back(*i);
1146    break;
1147  }
1148  case Instruction::Select:
1149    Code = bitc::FUNC_CODE_INST_VSELECT;
1150    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1151    Vals.push_back(VE.getValueID(I.getOperand(2)));
1152    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1153    break;
1154  case Instruction::ExtractElement:
1155    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1156    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1157    Vals.push_back(VE.getValueID(I.getOperand(1)));
1158    break;
1159  case Instruction::InsertElement:
1160    Code = bitc::FUNC_CODE_INST_INSERTELT;
1161    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1162    Vals.push_back(VE.getValueID(I.getOperand(1)));
1163    Vals.push_back(VE.getValueID(I.getOperand(2)));
1164    break;
1165  case Instruction::ShuffleVector:
1166    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1167    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1168    Vals.push_back(VE.getValueID(I.getOperand(1)));
1169    Vals.push_back(VE.getValueID(I.getOperand(2)));
1170    break;
1171  case Instruction::ICmp:
1172  case Instruction::FCmp:
1173    // compare returning Int1Ty or vector of Int1Ty
1174    Code = bitc::FUNC_CODE_INST_CMP2;
1175    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1176    Vals.push_back(VE.getValueID(I.getOperand(1)));
1177    Vals.push_back(cast<CmpInst>(I).getPredicate());
1178    break;
1179
1180  case Instruction::Ret:
1181    {
1182      Code = bitc::FUNC_CODE_INST_RET;
1183      unsigned NumOperands = I.getNumOperands();
1184      if (NumOperands == 0)
1185        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1186      else if (NumOperands == 1) {
1187        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1188          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1189      } else {
1190        for (unsigned i = 0, e = NumOperands; i != e; ++i)
1191          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1192      }
1193    }
1194    break;
1195  case Instruction::Br:
1196    {
1197      Code = bitc::FUNC_CODE_INST_BR;
1198      const BranchInst &II = cast<BranchInst>(I);
1199      Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1200      if (II.isConditional()) {
1201        Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1202        Vals.push_back(VE.getValueID(II.getCondition()));
1203      }
1204    }
1205    break;
1206  case Instruction::Switch:
1207    {
1208      Code = bitc::FUNC_CODE_INST_SWITCH;
1209      const SwitchInst &SI = cast<SwitchInst>(I);
1210      Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1211      Vals.push_back(VE.getValueID(SI.getCondition()));
1212      Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1213      for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1214           i != e; ++i) {
1215        Vals.push_back(VE.getValueID(i.getCaseValue()));
1216        Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1217      }
1218    }
1219    break;
1220  case Instruction::IndirectBr:
1221    Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1222    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1223    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1224      Vals.push_back(VE.getValueID(I.getOperand(i)));
1225    break;
1226
1227  case Instruction::Invoke: {
1228    const InvokeInst *II = cast<InvokeInst>(&I);
1229    const Value *Callee(II->getCalledValue());
1230    PointerType *PTy = cast<PointerType>(Callee->getType());
1231    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1232    Code = bitc::FUNC_CODE_INST_INVOKE;
1233
1234    Vals.push_back(VE.getAttributeID(II->getAttributes()));
1235    Vals.push_back(II->getCallingConv());
1236    Vals.push_back(VE.getValueID(II->getNormalDest()));
1237    Vals.push_back(VE.getValueID(II->getUnwindDest()));
1238    PushValueAndType(Callee, InstID, Vals, VE);
1239
1240    // Emit value #'s for the fixed parameters.
1241    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1242      Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
1243
1244    // Emit type/value pairs for varargs params.
1245    if (FTy->isVarArg()) {
1246      for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1247           i != e; ++i)
1248        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1249    }
1250    break;
1251  }
1252  case Instruction::Resume:
1253    Code = bitc::FUNC_CODE_INST_RESUME;
1254    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1255    break;
1256  case Instruction::Unreachable:
1257    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1258    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1259    break;
1260
1261  case Instruction::PHI: {
1262    const PHINode &PN = cast<PHINode>(I);
1263    Code = bitc::FUNC_CODE_INST_PHI;
1264    Vals.push_back(VE.getTypeID(PN.getType()));
1265    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1266      Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1267      Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1268    }
1269    break;
1270  }
1271
1272  case Instruction::LandingPad: {
1273    const LandingPadInst &LP = cast<LandingPadInst>(I);
1274    Code = bitc::FUNC_CODE_INST_LANDINGPAD_OLD;
1275    Vals.push_back(VE.getTypeID(LP.getType()));
1276    // TODO (rebase): is this fix enough?
1277    // PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1278    Vals.push_back(LP.isCleanup());
1279    Vals.push_back(LP.getNumClauses());
1280    for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1281      if (LP.isCatch(I))
1282        Vals.push_back(LandingPadInst::Catch);
1283      else
1284        Vals.push_back(LandingPadInst::Filter);
1285      PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1286    }
1287    break;
1288  }
1289
1290  case Instruction::Alloca: {
1291    Code = bitc::FUNC_CODE_INST_ALLOCA;
1292    Vals.push_back(VE.getTypeID(I.getType()));
1293    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1294    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1295    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1296    break;
1297  }
1298
1299  case Instruction::Load:
1300    if (cast<LoadInst>(I).isAtomic()) {
1301      Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1302      PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1303    } else {
1304      Code = bitc::FUNC_CODE_INST_LOAD;
1305      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
1306        AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1307    }
1308    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1309    Vals.push_back(cast<LoadInst>(I).isVolatile());
1310    if (cast<LoadInst>(I).isAtomic()) {
1311      Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1312      Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1313    }
1314    break;
1315  case Instruction::Store:
1316    if (cast<StoreInst>(I).isAtomic())
1317      Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1318    else
1319      Code = bitc::FUNC_CODE_INST_STORE_OLD;
1320    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
1321    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
1322    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1323    Vals.push_back(cast<StoreInst>(I).isVolatile());
1324    if (cast<StoreInst>(I).isAtomic()) {
1325      Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1326      Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1327    }
1328    break;
1329  case Instruction::AtomicCmpXchg:
1330    Code = bitc::FUNC_CODE_INST_CMPXCHG;
1331    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1332    Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
1333    Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
1334    Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1335    Vals.push_back(GetEncodedOrdering(
1336                     cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1337    Vals.push_back(GetEncodedSynchScope(
1338                     cast<AtomicCmpXchgInst>(I).getSynchScope()));
1339    break;
1340  case Instruction::AtomicRMW:
1341    Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1342    PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
1343    Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
1344    Vals.push_back(GetEncodedRMWOperation(
1345                     cast<AtomicRMWInst>(I).getOperation()));
1346    Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1347    Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1348    Vals.push_back(GetEncodedSynchScope(
1349                     cast<AtomicRMWInst>(I).getSynchScope()));
1350    break;
1351  case Instruction::Fence:
1352    Code = bitc::FUNC_CODE_INST_FENCE;
1353    Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1354    Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1355    break;
1356  case Instruction::Call: {
1357    const CallInst &CI = cast<CallInst>(I);
1358    PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1359    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1360
1361    Code = bitc::FUNC_CODE_INST_CALL;
1362
1363    Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1364    Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1365    PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
1366
1367    // Emit value #'s for the fixed parameters.
1368    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1369      Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
1370
1371    // Emit type/value pairs for varargs params.
1372    if (FTy->isVarArg()) {
1373      for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1374           i != e; ++i)
1375        PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
1376    }
1377    break;
1378  }
1379  case Instruction::VAArg:
1380    Code = bitc::FUNC_CODE_INST_VAARG;
1381    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
1382    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1383    Vals.push_back(VE.getTypeID(I.getType())); // restype.
1384    break;
1385  }
1386
1387  Stream.EmitRecord(Code, Vals, AbbrevToUse);
1388  Vals.clear();
1389}
1390
1391// Emit names for globals/functions etc.
1392static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1393                                  const llvm_3_2::ValueEnumerator &VE,
1394                                  BitstreamWriter &Stream) {
1395  if (VST.empty()) return;
1396  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1397
1398  // FIXME: Set up the abbrev, we know how many values there are!
1399  // FIXME: We know if the type names can use 7-bit ascii.
1400  SmallVector<unsigned, 64> NameVals;
1401
1402  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1403       SI != SE; ++SI) {
1404
1405    const ValueName &Name = *SI;
1406
1407    // Figure out the encoding to use for the name.
1408    bool is7Bit = true;
1409    bool isChar6 = true;
1410    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1411         C != E; ++C) {
1412      if (isChar6)
1413        isChar6 = BitCodeAbbrevOp::isChar6(*C);
1414      if ((unsigned char)*C & 128) {
1415        is7Bit = false;
1416        break;  // don't bother scanning the rest.
1417      }
1418    }
1419
1420    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1421
1422    // VST_ENTRY:   [valueid, namechar x N]
1423    // VST_BBENTRY: [bbid, namechar x N]
1424    unsigned Code;
1425    if (isa<BasicBlock>(SI->getValue())) {
1426      Code = bitc::VST_CODE_BBENTRY;
1427      if (isChar6)
1428        AbbrevToUse = VST_BBENTRY_6_ABBREV;
1429    } else {
1430      Code = bitc::VST_CODE_ENTRY;
1431      if (isChar6)
1432        AbbrevToUse = VST_ENTRY_6_ABBREV;
1433      else if (is7Bit)
1434        AbbrevToUse = VST_ENTRY_7_ABBREV;
1435    }
1436
1437    NameVals.push_back(VE.getValueID(SI->getValue()));
1438    for (const char *P = Name.getKeyData(),
1439         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1440      NameVals.push_back((unsigned char)*P);
1441
1442    // Emit the finished record.
1443    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1444    NameVals.clear();
1445  }
1446  Stream.ExitBlock();
1447}
1448
1449static void WriteUseList(llvm_3_2::ValueEnumerator &VE, UseListOrder &&Order,
1450                         BitstreamWriter &Stream) {
1451  assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
1452  unsigned Code;
1453  if (isa<BasicBlock>(Order.V))
1454    Code = bitc::USELIST_CODE_BB;
1455  else
1456    Code = bitc::USELIST_CODE_DEFAULT;
1457
1458  SmallVector<uint64_t, 64> Record;
1459  for (unsigned I : Order.Shuffle)
1460    Record.push_back(I);
1461  Record.push_back(VE.getValueID(Order.V));
1462  Stream.EmitRecord(Code, Record);
1463}
1464
1465static void WriteUseListBlock(const Function *F, llvm_3_2::ValueEnumerator &VE,
1466                              BitstreamWriter &Stream) {
1467  auto hasMore = [&]() {
1468    return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
1469  };
1470  if (!hasMore())
1471    // Nothing to do.
1472    return;
1473
1474  Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
1475  while (hasMore()) {
1476    WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
1477    VE.UseListOrders.pop_back();
1478  }
1479  Stream.ExitBlock();
1480}
1481
1482/// WriteFunction - Emit a function body to the module stream.
1483static void WriteFunction(const Function &F, llvm_3_2::ValueEnumerator &VE,
1484                          BitstreamWriter &Stream) {
1485  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1486  VE.incorporateFunction(F);
1487
1488  SmallVector<unsigned, 64> Vals;
1489
1490  // Emit the number of basic blocks, so the reader can create them ahead of
1491  // time.
1492  Vals.push_back(VE.getBasicBlocks().size());
1493  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1494  Vals.clear();
1495
1496  // If there are function-local constants, emit them now.
1497  unsigned CstStart, CstEnd;
1498  VE.getFunctionConstantRange(CstStart, CstEnd);
1499  WriteConstants(CstStart, CstEnd, VE, Stream, false);
1500
1501  // If there is function-local metadata, emit it now.
1502  WriteFunctionLocalMetadata(F, VE, Stream);
1503
1504  // Keep a running idea of what the instruction ID is.
1505  unsigned InstID = CstEnd;
1506
1507  bool NeedsMetadataAttachment = false;
1508
1509  DILocation *LastDL = nullptr;
1510
1511  // Finally, emit all the instructions, in order.
1512  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1513    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1514         I != E; ++I) {
1515      WriteInstruction(*I, InstID, VE, Stream, Vals);
1516
1517      if (!I->getType()->isVoidTy())
1518        ++InstID;
1519
1520      // If the instruction has metadata, write a metadata attachment later.
1521      NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1522
1523      // If the instruction has a debug location, emit it.
1524      DILocation *DL = I->getDebugLoc();
1525      if (!DL)
1526        continue;
1527
1528      if (DL == LastDL) {
1529        // Just repeat the same debug loc as last time.
1530        Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1531        continue;
1532      }
1533
1534      Vals.push_back(DL->getLine());
1535      Vals.push_back(DL->getColumn());
1536      Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
1537      Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
1538      Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1539      Vals.clear();
1540
1541      // Fixme(pirama): The following line is missing from upstream
1542      // https://llvm.org/bugs/show_bug.cgi?id=23436
1543      LastDL = DL;
1544    }
1545
1546  // Emit names for all the instructions etc.
1547  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1548
1549  if (NeedsMetadataAttachment)
1550    WriteMetadataAttachment(F, VE, Stream);
1551  if (false)
1552    WriteUseListBlock(&F, VE, Stream);
1553  VE.purgeFunction();
1554  Stream.ExitBlock();
1555}
1556
1557// Emit blockinfo, which defines the standard abbreviations etc.
1558static void WriteBlockInfo(const llvm_3_2::ValueEnumerator &VE,
1559                           BitstreamWriter &Stream) {
1560  // We only want to emit block info records for blocks that have multiple
1561  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1562  // blocks can defined their abbrevs inline.
1563  Stream.EnterBlockInfoBlock(2);
1564
1565  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1566    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1567    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1568    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1569    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1570    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1571    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1572                                   Abbv) != VST_ENTRY_8_ABBREV)
1573      llvm_unreachable("Unexpected abbrev ordering!");
1574  }
1575
1576  { // 7-bit fixed width VST_ENTRY strings.
1577    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1578    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1579    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1580    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1581    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1582    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1583                                   Abbv) != VST_ENTRY_7_ABBREV)
1584      llvm_unreachable("Unexpected abbrev ordering!");
1585  }
1586  { // 6-bit char6 VST_ENTRY strings.
1587    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1588    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1589    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1590    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1591    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1592    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1593                                   Abbv) != VST_ENTRY_6_ABBREV)
1594      llvm_unreachable("Unexpected abbrev ordering!");
1595  }
1596  { // 6-bit char6 VST_BBENTRY strings.
1597    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1598    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1599    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1600    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1601    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1602    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1603                                   Abbv) != VST_BBENTRY_6_ABBREV)
1604      llvm_unreachable("Unexpected abbrev ordering!");
1605  }
1606
1607
1608
1609  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1610    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1611    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1612    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1613                              Log2_32_Ceil(VE.getTypes().size()+1)));
1614    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1615                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1616      llvm_unreachable("Unexpected abbrev ordering!");
1617  }
1618
1619  { // INTEGER abbrev for CONSTANTS_BLOCK.
1620    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1621    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1622    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1623    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1624                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1625      llvm_unreachable("Unexpected abbrev ordering!");
1626  }
1627
1628  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1629    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1630    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1631    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1632    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1633                              Log2_32_Ceil(VE.getTypes().size()+1)));
1634    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1635
1636    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1637                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1638      llvm_unreachable("Unexpected abbrev ordering!");
1639  }
1640  { // NULL abbrev for CONSTANTS_BLOCK.
1641    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1642    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1643    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1644                                   Abbv) != CONSTANTS_NULL_Abbrev)
1645      llvm_unreachable("Unexpected abbrev ordering!");
1646  }
1647
1648  // FIXME: This should only use space for first class types!
1649
1650  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1651    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1652    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1653    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1654    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1655    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1656    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1657                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1658      llvm_unreachable("Unexpected abbrev ordering!");
1659  }
1660  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1661    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1662    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1663    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1664    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1665    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1666    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1667                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1668      llvm_unreachable("Unexpected abbrev ordering!");
1669  }
1670  { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1671    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1672    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1673    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1674    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1675    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1676    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1677    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1678                                   Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1679      llvm_unreachable("Unexpected abbrev ordering!");
1680  }
1681  { // INST_CAST abbrev for FUNCTION_BLOCK.
1682    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1683    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1684    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1685    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1686                              Log2_32_Ceil(VE.getTypes().size()+1)));
1687    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1688    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1689                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1690      llvm_unreachable("Unexpected abbrev ordering!");
1691  }
1692
1693  { // INST_RET abbrev for FUNCTION_BLOCK.
1694    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1695    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1696    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1697                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1698      llvm_unreachable("Unexpected abbrev ordering!");
1699  }
1700  { // INST_RET abbrev for FUNCTION_BLOCK.
1701    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1702    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1703    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1704    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1705                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1706      llvm_unreachable("Unexpected abbrev ordering!");
1707  }
1708  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1709    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1710    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1711    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1712                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1713      llvm_unreachable("Unexpected abbrev ordering!");
1714  }
1715
1716  Stream.ExitBlock();
1717}
1718
1719/// WriteModule - Emit the specified module to the bitstream.
1720static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1721  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1722
1723  SmallVector<unsigned, 1> Vals;
1724  // TODO(srhines): RenderScript is always version 0 for now.
1725  unsigned CurVersion = 0;
1726  if (CurVersion) {
1727    Vals.push_back(CurVersion);
1728    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1729  }
1730
1731  // Analyze the module, enumerating globals, functions, etc.
1732  llvm_3_2::ValueEnumerator VE(*M);
1733
1734  // Emit blockinfo, which defines the standard abbreviations etc.
1735  WriteBlockInfo(VE, Stream);
1736
1737  // Emit information about parameter attributes.
1738  WriteAttributeTable(VE, Stream);
1739
1740  // Emit information describing all of the types in the module.
1741  WriteTypeTable(VE, Stream);
1742
1743  // Emit top-level description of module, including target triple, inline asm,
1744  // descriptors for global variables, and function prototype info.
1745  WriteModuleInfo(M, VE, Stream);
1746
1747  // Emit constants.
1748  WriteModuleConstants(VE, Stream);
1749
1750  // Emit metadata.
1751  WriteModuleMetadata(M, VE, Stream);
1752
1753  // Emit metadata.
1754  WriteModuleMetadataStore(M, Stream);
1755
1756  // Emit names for globals/functions etc.
1757  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1758
1759  // Emit module-level use-lists.
1760  if (false)
1761    WriteUseListBlock(nullptr, VE, Stream);
1762
1763  // Emit function bodies.
1764  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1765    if (!F->isDeclaration())
1766      WriteFunction(*F, VE, Stream);
1767
1768  Stream.ExitBlock();
1769}
1770
1771/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1772/// header and trailer to make it compatible with the system archiver.  To do
1773/// this we emit the following header, and then emit a trailer that pads the
1774/// file out to be a multiple of 16 bytes.
1775///
1776/// struct bc_header {
1777///   uint32_t Magic;         // 0x0B17C0DE
1778///   uint32_t Version;       // Version, currently always 0.
1779///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1780///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1781///   uint32_t CPUType;       // CPU specifier.
1782///   ... potentially more later ...
1783/// };
1784enum {
1785  DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1786  DarwinBCHeaderSize = 5*4
1787};
1788
1789static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
1790                               uint32_t &Position) {
1791  Buffer[Position + 0] = (unsigned char) (Value >>  0);
1792  Buffer[Position + 1] = (unsigned char) (Value >>  8);
1793  Buffer[Position + 2] = (unsigned char) (Value >> 16);
1794  Buffer[Position + 3] = (unsigned char) (Value >> 24);
1795  Position += 4;
1796}
1797
1798static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
1799                                         const Triple &TT) {
1800  unsigned CPUType = ~0U;
1801
1802  // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1803  // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1804  // number from /usr/include/mach/machine.h.  It is ok to reproduce the
1805  // specific constants here because they are implicitly part of the Darwin ABI.
1806  enum {
1807    DARWIN_CPU_ARCH_ABI64      = 0x01000000,
1808    DARWIN_CPU_TYPE_X86        = 7,
1809    DARWIN_CPU_TYPE_ARM        = 12,
1810    DARWIN_CPU_TYPE_POWERPC    = 18
1811  };
1812
1813  Triple::ArchType Arch = TT.getArch();
1814  if (Arch == Triple::x86_64)
1815    CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1816  else if (Arch == Triple::x86)
1817    CPUType = DARWIN_CPU_TYPE_X86;
1818  else if (Arch == Triple::ppc)
1819    CPUType = DARWIN_CPU_TYPE_POWERPC;
1820  else if (Arch == Triple::ppc64)
1821    CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1822  else if (Arch == Triple::arm || Arch == Triple::thumb)
1823    CPUType = DARWIN_CPU_TYPE_ARM;
1824
1825  // Traditional Bitcode starts after header.
1826  assert(Buffer.size() >= DarwinBCHeaderSize &&
1827         "Expected header size to be reserved");
1828  unsigned BCOffset = DarwinBCHeaderSize;
1829  unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
1830
1831  // Write the magic and version.
1832  unsigned Position = 0;
1833  WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
1834  WriteInt32ToBuffer(0          , Buffer, Position); // Version.
1835  WriteInt32ToBuffer(BCOffset   , Buffer, Position);
1836  WriteInt32ToBuffer(BCSize     , Buffer, Position);
1837  WriteInt32ToBuffer(CPUType    , Buffer, Position);
1838
1839  // If the file is not a multiple of 16 bytes, insert dummy padding.
1840  while (Buffer.size() & 15)
1841    Buffer.push_back(0);
1842}
1843
1844/// WriteBitcodeToFile - Write the specified module to the specified output
1845/// stream.
1846void llvm_3_2::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1847  SmallVector<char, 0> Buffer;
1848  Buffer.reserve(256*1024);
1849
1850  // If this is darwin or another generic macho target, reserve space for the
1851  // header.
1852  Triple TT(M->getTargetTriple());
1853  if (TT.isOSDarwin())
1854    Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
1855
1856  // Emit the module into the buffer.
1857  {
1858    BitstreamWriter Stream(Buffer);
1859
1860    // Emit the file header.
1861    Stream.Emit((unsigned)'B', 8);
1862    Stream.Emit((unsigned)'C', 8);
1863    Stream.Emit(0x0, 4);
1864    Stream.Emit(0xC, 4);
1865    Stream.Emit(0xE, 4);
1866    Stream.Emit(0xD, 4);
1867
1868    // Emit the module.
1869    WriteModule(M, Stream);
1870  }
1871
1872  if (TT.isOSDarwin())
1873    EmitDarwinBCHeaderAndTrailer(Buffer, TT);
1874
1875  // Write the generated bitstream to "Out".
1876  Out.write((char*)&Buffer.front(), Buffer.size());
1877}
1878