1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "Parcel"
18//#define LOG_NDEBUG 0
19
20#include <errno.h>
21#include <fcntl.h>
22#include <inttypes.h>
23#include <pthread.h>
24#include <stdint.h>
25#include <stdio.h>
26#include <stdlib.h>
27#include <sys/mman.h>
28#include <sys/stat.h>
29#include <sys/types.h>
30#include <sys/resource.h>
31#include <unistd.h>
32
33#include <binder/Binder.h>
34#include <binder/BpBinder.h>
35#include <binder/IPCThreadState.h>
36#include <binder/Parcel.h>
37#include <binder/ProcessState.h>
38#include <binder/Status.h>
39#include <binder/TextOutput.h>
40#include <binder/Value.h>
41
42#include <cutils/ashmem.h>
43#include <utils/Debug.h>
44#include <utils/Flattenable.h>
45#include <utils/Log.h>
46#include <utils/misc.h>
47#include <utils/String8.h>
48#include <utils/String16.h>
49
50#include <private/binder/binder_module.h>
51#include <private/binder/Static.h>
52
53#ifndef INT32_MAX
54#define INT32_MAX ((int32_t)(2147483647))
55#endif
56
57#define LOG_REFS(...)
58//#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
59#define LOG_ALLOC(...)
60//#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
61
62// ---------------------------------------------------------------------------
63
64// This macro should never be used at runtime, as a too large value
65// of s could cause an integer overflow. Instead, you should always
66// use the wrapper function pad_size()
67#define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
68
69static size_t pad_size(size_t s) {
70    if (s > (SIZE_T_MAX - 3)) {
71        abort();
72    }
73    return PAD_SIZE_UNSAFE(s);
74}
75
76// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
77#define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
78
79// XXX This can be made public if we want to provide
80// support for typed data.
81struct small_flat_data
82{
83    uint32_t type;
84    uint32_t data;
85};
86
87namespace android {
88
89static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
90static size_t gParcelGlobalAllocSize = 0;
91static size_t gParcelGlobalAllocCount = 0;
92
93static size_t gMaxFds = 0;
94
95// Maximum size of a blob to transfer in-place.
96static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
97
98enum {
99    BLOB_INPLACE = 0,
100    BLOB_ASHMEM_IMMUTABLE = 1,
101    BLOB_ASHMEM_MUTABLE = 2,
102};
103
104void acquire_object(const sp<ProcessState>& proc,
105    const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
106{
107    switch (obj.type) {
108        case BINDER_TYPE_BINDER:
109            if (obj.binder) {
110                LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
111                reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
112            }
113            return;
114        case BINDER_TYPE_WEAK_BINDER:
115            if (obj.binder)
116                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
117            return;
118        case BINDER_TYPE_HANDLE: {
119            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
120            if (b != NULL) {
121                LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
122                b->incStrong(who);
123            }
124            return;
125        }
126        case BINDER_TYPE_WEAK_HANDLE: {
127            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
128            if (b != NULL) b.get_refs()->incWeak(who);
129            return;
130        }
131        case BINDER_TYPE_FD: {
132            if ((obj.cookie != 0) && (outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
133                // If we own an ashmem fd, keep track of how much memory it refers to.
134                int size = ashmem_get_size_region(obj.handle);
135                if (size > 0) {
136                    *outAshmemSize += size;
137                }
138            }
139            return;
140        }
141    }
142
143    ALOGD("Invalid object type 0x%08x", obj.type);
144}
145
146void acquire_object(const sp<ProcessState>& proc,
147    const flat_binder_object& obj, const void* who)
148{
149    acquire_object(proc, obj, who, NULL);
150}
151
152static void release_object(const sp<ProcessState>& proc,
153    const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
154{
155    switch (obj.type) {
156        case BINDER_TYPE_BINDER:
157            if (obj.binder) {
158                LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
159                reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
160            }
161            return;
162        case BINDER_TYPE_WEAK_BINDER:
163            if (obj.binder)
164                reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
165            return;
166        case BINDER_TYPE_HANDLE: {
167            const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
168            if (b != NULL) {
169                LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
170                b->decStrong(who);
171            }
172            return;
173        }
174        case BINDER_TYPE_WEAK_HANDLE: {
175            const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
176            if (b != NULL) b.get_refs()->decWeak(who);
177            return;
178        }
179        case BINDER_TYPE_FD: {
180            if (obj.cookie != 0) { // owned
181                if ((outAshmemSize != NULL) && ashmem_valid(obj.handle)) {
182                    int size = ashmem_get_size_region(obj.handle);
183                    if (size > 0) {
184                        *outAshmemSize -= size;
185                    }
186                }
187
188                close(obj.handle);
189            }
190            return;
191        }
192    }
193
194    ALOGE("Invalid object type 0x%08x", obj.type);
195}
196
197void release_object(const sp<ProcessState>& proc,
198    const flat_binder_object& obj, const void* who)
199{
200    release_object(proc, obj, who, NULL);
201}
202
203inline static status_t finish_flatten_binder(
204    const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
205{
206    return out->writeObject(flat, false);
207}
208
209status_t flatten_binder(const sp<ProcessState>& /*proc*/,
210    const sp<IBinder>& binder, Parcel* out)
211{
212    flat_binder_object obj;
213
214    if (IPCThreadState::self()->backgroundSchedulingDisabled()) {
215        /* minimum priority for all nodes is nice 0 */
216        obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
217    } else {
218        /* minimum priority for all nodes is MAX_NICE(19) */
219        obj.flags = 0x13 | FLAT_BINDER_FLAG_ACCEPTS_FDS;
220    }
221
222    if (binder != NULL) {
223        IBinder *local = binder->localBinder();
224        if (!local) {
225            BpBinder *proxy = binder->remoteBinder();
226            if (proxy == NULL) {
227                ALOGE("null proxy");
228            }
229            const int32_t handle = proxy ? proxy->handle() : 0;
230            obj.type = BINDER_TYPE_HANDLE;
231            obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
232            obj.handle = handle;
233            obj.cookie = 0;
234        } else {
235            obj.type = BINDER_TYPE_BINDER;
236            obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
237            obj.cookie = reinterpret_cast<uintptr_t>(local);
238        }
239    } else {
240        obj.type = BINDER_TYPE_BINDER;
241        obj.binder = 0;
242        obj.cookie = 0;
243    }
244
245    return finish_flatten_binder(binder, obj, out);
246}
247
248status_t flatten_binder(const sp<ProcessState>& /*proc*/,
249    const wp<IBinder>& binder, Parcel* out)
250{
251    flat_binder_object obj;
252
253    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
254    if (binder != NULL) {
255        sp<IBinder> real = binder.promote();
256        if (real != NULL) {
257            IBinder *local = real->localBinder();
258            if (!local) {
259                BpBinder *proxy = real->remoteBinder();
260                if (proxy == NULL) {
261                    ALOGE("null proxy");
262                }
263                const int32_t handle = proxy ? proxy->handle() : 0;
264                obj.type = BINDER_TYPE_WEAK_HANDLE;
265                obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
266                obj.handle = handle;
267                obj.cookie = 0;
268            } else {
269                obj.type = BINDER_TYPE_WEAK_BINDER;
270                obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
271                obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
272            }
273            return finish_flatten_binder(real, obj, out);
274        }
275
276        // XXX How to deal?  In order to flatten the given binder,
277        // we need to probe it for information, which requires a primary
278        // reference...  but we don't have one.
279        //
280        // The OpenBinder implementation uses a dynamic_cast<> here,
281        // but we can't do that with the different reference counting
282        // implementation we are using.
283        ALOGE("Unable to unflatten Binder weak reference!");
284        obj.type = BINDER_TYPE_BINDER;
285        obj.binder = 0;
286        obj.cookie = 0;
287        return finish_flatten_binder(NULL, obj, out);
288
289    } else {
290        obj.type = BINDER_TYPE_BINDER;
291        obj.binder = 0;
292        obj.cookie = 0;
293        return finish_flatten_binder(NULL, obj, out);
294    }
295}
296
297inline static status_t finish_unflatten_binder(
298    BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
299    const Parcel& /*in*/)
300{
301    return NO_ERROR;
302}
303
304status_t unflatten_binder(const sp<ProcessState>& proc,
305    const Parcel& in, sp<IBinder>* out)
306{
307    const flat_binder_object* flat = in.readObject(false);
308
309    if (flat) {
310        switch (flat->type) {
311            case BINDER_TYPE_BINDER:
312                *out = reinterpret_cast<IBinder*>(flat->cookie);
313                return finish_unflatten_binder(NULL, *flat, in);
314            case BINDER_TYPE_HANDLE:
315                *out = proc->getStrongProxyForHandle(flat->handle);
316                return finish_unflatten_binder(
317                    static_cast<BpBinder*>(out->get()), *flat, in);
318        }
319    }
320    return BAD_TYPE;
321}
322
323status_t unflatten_binder(const sp<ProcessState>& proc,
324    const Parcel& in, wp<IBinder>* out)
325{
326    const flat_binder_object* flat = in.readObject(false);
327
328    if (flat) {
329        switch (flat->type) {
330            case BINDER_TYPE_BINDER:
331                *out = reinterpret_cast<IBinder*>(flat->cookie);
332                return finish_unflatten_binder(NULL, *flat, in);
333            case BINDER_TYPE_WEAK_BINDER:
334                if (flat->binder != 0) {
335                    out->set_object_and_refs(
336                        reinterpret_cast<IBinder*>(flat->cookie),
337                        reinterpret_cast<RefBase::weakref_type*>(flat->binder));
338                } else {
339                    *out = NULL;
340                }
341                return finish_unflatten_binder(NULL, *flat, in);
342            case BINDER_TYPE_HANDLE:
343            case BINDER_TYPE_WEAK_HANDLE:
344                *out = proc->getWeakProxyForHandle(flat->handle);
345                return finish_unflatten_binder(
346                    static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
347        }
348    }
349    return BAD_TYPE;
350}
351
352// ---------------------------------------------------------------------------
353
354Parcel::Parcel()
355{
356    LOG_ALLOC("Parcel %p: constructing", this);
357    initState();
358}
359
360Parcel::~Parcel()
361{
362    freeDataNoInit();
363    LOG_ALLOC("Parcel %p: destroyed", this);
364}
365
366size_t Parcel::getGlobalAllocSize() {
367    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
368    size_t size = gParcelGlobalAllocSize;
369    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
370    return size;
371}
372
373size_t Parcel::getGlobalAllocCount() {
374    pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
375    size_t count = gParcelGlobalAllocCount;
376    pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
377    return count;
378}
379
380const uint8_t* Parcel::data() const
381{
382    return mData;
383}
384
385size_t Parcel::dataSize() const
386{
387    return (mDataSize > mDataPos ? mDataSize : mDataPos);
388}
389
390size_t Parcel::dataAvail() const
391{
392    size_t result = dataSize() - dataPosition();
393    if (result > INT32_MAX) {
394        abort();
395    }
396    return result;
397}
398
399size_t Parcel::dataPosition() const
400{
401    return mDataPos;
402}
403
404size_t Parcel::dataCapacity() const
405{
406    return mDataCapacity;
407}
408
409status_t Parcel::setDataSize(size_t size)
410{
411    if (size > INT32_MAX) {
412        // don't accept size_t values which may have come from an
413        // inadvertent conversion from a negative int.
414        return BAD_VALUE;
415    }
416
417    status_t err;
418    err = continueWrite(size);
419    if (err == NO_ERROR) {
420        mDataSize = size;
421        ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
422    }
423    return err;
424}
425
426void Parcel::setDataPosition(size_t pos) const
427{
428    if (pos > INT32_MAX) {
429        // don't accept size_t values which may have come from an
430        // inadvertent conversion from a negative int.
431        abort();
432    }
433
434    mDataPos = pos;
435    mNextObjectHint = 0;
436}
437
438status_t Parcel::setDataCapacity(size_t size)
439{
440    if (size > INT32_MAX) {
441        // don't accept size_t values which may have come from an
442        // inadvertent conversion from a negative int.
443        return BAD_VALUE;
444    }
445
446    if (size > mDataCapacity) return continueWrite(size);
447    return NO_ERROR;
448}
449
450status_t Parcel::setData(const uint8_t* buffer, size_t len)
451{
452    if (len > INT32_MAX) {
453        // don't accept size_t values which may have come from an
454        // inadvertent conversion from a negative int.
455        return BAD_VALUE;
456    }
457
458    status_t err = restartWrite(len);
459    if (err == NO_ERROR) {
460        memcpy(const_cast<uint8_t*>(data()), buffer, len);
461        mDataSize = len;
462        mFdsKnown = false;
463    }
464    return err;
465}
466
467status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
468{
469    const sp<ProcessState> proc(ProcessState::self());
470    status_t err;
471    const uint8_t *data = parcel->mData;
472    const binder_size_t *objects = parcel->mObjects;
473    size_t size = parcel->mObjectsSize;
474    int startPos = mDataPos;
475    int firstIndex = -1, lastIndex = -2;
476
477    if (len == 0) {
478        return NO_ERROR;
479    }
480
481    if (len > INT32_MAX) {
482        // don't accept size_t values which may have come from an
483        // inadvertent conversion from a negative int.
484        return BAD_VALUE;
485    }
486
487    // range checks against the source parcel size
488    if ((offset > parcel->mDataSize)
489            || (len > parcel->mDataSize)
490            || (offset + len > parcel->mDataSize)) {
491        return BAD_VALUE;
492    }
493
494    // Count objects in range
495    for (int i = 0; i < (int) size; i++) {
496        size_t off = objects[i];
497        if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
498            if (firstIndex == -1) {
499                firstIndex = i;
500            }
501            lastIndex = i;
502        }
503    }
504    int numObjects = lastIndex - firstIndex + 1;
505
506    if ((mDataSize+len) > mDataCapacity) {
507        // grow data
508        err = growData(len);
509        if (err != NO_ERROR) {
510            return err;
511        }
512    }
513
514    // append data
515    memcpy(mData + mDataPos, data + offset, len);
516    mDataPos += len;
517    mDataSize += len;
518
519    err = NO_ERROR;
520
521    if (numObjects > 0) {
522        // grow objects
523        if (mObjectsCapacity < mObjectsSize + numObjects) {
524            size_t newSize = ((mObjectsSize + numObjects)*3)/2;
525            if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY;   // overflow
526            binder_size_t *objects =
527                (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
528            if (objects == (binder_size_t*)0) {
529                return NO_MEMORY;
530            }
531            mObjects = objects;
532            mObjectsCapacity = newSize;
533        }
534
535        // append and acquire objects
536        int idx = mObjectsSize;
537        for (int i = firstIndex; i <= lastIndex; i++) {
538            size_t off = objects[i] - offset + startPos;
539            mObjects[idx++] = off;
540            mObjectsSize++;
541
542            flat_binder_object* flat
543                = reinterpret_cast<flat_binder_object*>(mData + off);
544            acquire_object(proc, *flat, this, &mOpenAshmemSize);
545
546            if (flat->type == BINDER_TYPE_FD) {
547                // If this is a file descriptor, we need to dup it so the
548                // new Parcel now owns its own fd, and can declare that we
549                // officially know we have fds.
550                flat->handle = fcntl(flat->handle, F_DUPFD_CLOEXEC, 0);
551                flat->cookie = 1;
552                mHasFds = mFdsKnown = true;
553                if (!mAllowFds) {
554                    err = FDS_NOT_ALLOWED;
555                }
556            }
557        }
558    }
559
560    return err;
561}
562
563int Parcel::compareData(const Parcel& other) {
564    size_t size = dataSize();
565    if (size != other.dataSize()) {
566        return size < other.dataSize() ? -1 : 1;
567    }
568    return memcmp(data(), other.data(), size);
569}
570
571bool Parcel::allowFds() const
572{
573    return mAllowFds;
574}
575
576bool Parcel::pushAllowFds(bool allowFds)
577{
578    const bool origValue = mAllowFds;
579    if (!allowFds) {
580        mAllowFds = false;
581    }
582    return origValue;
583}
584
585void Parcel::restoreAllowFds(bool lastValue)
586{
587    mAllowFds = lastValue;
588}
589
590bool Parcel::hasFileDescriptors() const
591{
592    if (!mFdsKnown) {
593        scanForFds();
594    }
595    return mHasFds;
596}
597
598// Write RPC headers.  (previously just the interface token)
599status_t Parcel::writeInterfaceToken(const String16& interface)
600{
601    writeInt32(IPCThreadState::self()->getStrictModePolicy() |
602               STRICT_MODE_PENALTY_GATHER);
603    // currently the interface identification token is just its name as a string
604    return writeString16(interface);
605}
606
607bool Parcel::checkInterface(IBinder* binder) const
608{
609    return enforceInterface(binder->getInterfaceDescriptor());
610}
611
612bool Parcel::enforceInterface(const String16& interface,
613                              IPCThreadState* threadState) const
614{
615    int32_t strictPolicy = readInt32();
616    if (threadState == NULL) {
617        threadState = IPCThreadState::self();
618    }
619    if ((threadState->getLastTransactionBinderFlags() &
620         IBinder::FLAG_ONEWAY) != 0) {
621      // For one-way calls, the callee is running entirely
622      // disconnected from the caller, so disable StrictMode entirely.
623      // Not only does disk/network usage not impact the caller, but
624      // there's no way to commuicate back any violations anyway.
625      threadState->setStrictModePolicy(0);
626    } else {
627      threadState->setStrictModePolicy(strictPolicy);
628    }
629    const String16 str(readString16());
630    if (str == interface) {
631        return true;
632    } else {
633        ALOGW("**** enforceInterface() expected '%s' but read '%s'",
634                String8(interface).string(), String8(str).string());
635        return false;
636    }
637}
638
639const binder_size_t* Parcel::objects() const
640{
641    return mObjects;
642}
643
644size_t Parcel::objectsCount() const
645{
646    return mObjectsSize;
647}
648
649status_t Parcel::errorCheck() const
650{
651    return mError;
652}
653
654void Parcel::setError(status_t err)
655{
656    mError = err;
657}
658
659status_t Parcel::finishWrite(size_t len)
660{
661    if (len > INT32_MAX) {
662        // don't accept size_t values which may have come from an
663        // inadvertent conversion from a negative int.
664        return BAD_VALUE;
665    }
666
667    //printf("Finish write of %d\n", len);
668    mDataPos += len;
669    ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
670    if (mDataPos > mDataSize) {
671        mDataSize = mDataPos;
672        ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
673    }
674    //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
675    return NO_ERROR;
676}
677
678status_t Parcel::writeUnpadded(const void* data, size_t len)
679{
680    if (len > INT32_MAX) {
681        // don't accept size_t values which may have come from an
682        // inadvertent conversion from a negative int.
683        return BAD_VALUE;
684    }
685
686    size_t end = mDataPos + len;
687    if (end < mDataPos) {
688        // integer overflow
689        return BAD_VALUE;
690    }
691
692    if (end <= mDataCapacity) {
693restart_write:
694        memcpy(mData+mDataPos, data, len);
695        return finishWrite(len);
696    }
697
698    status_t err = growData(len);
699    if (err == NO_ERROR) goto restart_write;
700    return err;
701}
702
703status_t Parcel::write(const void* data, size_t len)
704{
705    if (len > INT32_MAX) {
706        // don't accept size_t values which may have come from an
707        // inadvertent conversion from a negative int.
708        return BAD_VALUE;
709    }
710
711    void* const d = writeInplace(len);
712    if (d) {
713        memcpy(d, data, len);
714        return NO_ERROR;
715    }
716    return mError;
717}
718
719void* Parcel::writeInplace(size_t len)
720{
721    if (len > INT32_MAX) {
722        // don't accept size_t values which may have come from an
723        // inadvertent conversion from a negative int.
724        return NULL;
725    }
726
727    const size_t padded = pad_size(len);
728
729    // sanity check for integer overflow
730    if (mDataPos+padded < mDataPos) {
731        return NULL;
732    }
733
734    if ((mDataPos+padded) <= mDataCapacity) {
735restart_write:
736        //printf("Writing %ld bytes, padded to %ld\n", len, padded);
737        uint8_t* const data = mData+mDataPos;
738
739        // Need to pad at end?
740        if (padded != len) {
741#if BYTE_ORDER == BIG_ENDIAN
742            static const uint32_t mask[4] = {
743                0x00000000, 0xffffff00, 0xffff0000, 0xff000000
744            };
745#endif
746#if BYTE_ORDER == LITTLE_ENDIAN
747            static const uint32_t mask[4] = {
748                0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
749            };
750#endif
751            //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
752            //    *reinterpret_cast<void**>(data+padded-4));
753            *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
754        }
755
756        finishWrite(padded);
757        return data;
758    }
759
760    status_t err = growData(padded);
761    if (err == NO_ERROR) goto restart_write;
762    return NULL;
763}
764
765status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
766    const uint8_t* strData = (uint8_t*)str.data();
767    const size_t strLen= str.length();
768    const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
769    if (utf16Len < 0 || utf16Len > std::numeric_limits<int32_t>::max()) {
770        return BAD_VALUE;
771    }
772
773    status_t err = writeInt32(utf16Len);
774    if (err) {
775        return err;
776    }
777
778    // Allocate enough bytes to hold our converted string and its terminating NULL.
779    void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
780    if (!dst) {
781        return NO_MEMORY;
782    }
783
784    utf8_to_utf16(strData, strLen, (char16_t*)dst, (size_t) utf16Len + 1);
785
786    return NO_ERROR;
787}
788
789status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
790  if (!str) {
791    return writeInt32(-1);
792  }
793  return writeUtf8AsUtf16(*str);
794}
795
796namespace {
797
798template<typename T>
799status_t writeByteVectorInternal(Parcel* parcel, const std::vector<T>& val)
800{
801    status_t status;
802    if (val.size() > std::numeric_limits<int32_t>::max()) {
803        status = BAD_VALUE;
804        return status;
805    }
806
807    status = parcel->writeInt32(val.size());
808    if (status != OK) {
809        return status;
810    }
811
812    void* data = parcel->writeInplace(val.size());
813    if (!data) {
814        status = BAD_VALUE;
815        return status;
816    }
817
818    memcpy(data, val.data(), val.size());
819    return status;
820}
821
822template<typename T>
823status_t writeByteVectorInternalPtr(Parcel* parcel,
824                                    const std::unique_ptr<std::vector<T>>& val)
825{
826    if (!val) {
827        return parcel->writeInt32(-1);
828    }
829
830    return writeByteVectorInternal(parcel, *val);
831}
832
833}  // namespace
834
835status_t Parcel::writeByteVector(const std::vector<int8_t>& val) {
836    return writeByteVectorInternal(this, val);
837}
838
839status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
840{
841    return writeByteVectorInternalPtr(this, val);
842}
843
844status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) {
845    return writeByteVectorInternal(this, val);
846}
847
848status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val)
849{
850    return writeByteVectorInternalPtr(this, val);
851}
852
853status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
854{
855    return writeTypedVector(val, &Parcel::writeInt32);
856}
857
858status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
859{
860    return writeNullableTypedVector(val, &Parcel::writeInt32);
861}
862
863status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
864{
865    return writeTypedVector(val, &Parcel::writeInt64);
866}
867
868status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
869{
870    return writeNullableTypedVector(val, &Parcel::writeInt64);
871}
872
873status_t Parcel::writeFloatVector(const std::vector<float>& val)
874{
875    return writeTypedVector(val, &Parcel::writeFloat);
876}
877
878status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
879{
880    return writeNullableTypedVector(val, &Parcel::writeFloat);
881}
882
883status_t Parcel::writeDoubleVector(const std::vector<double>& val)
884{
885    return writeTypedVector(val, &Parcel::writeDouble);
886}
887
888status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
889{
890    return writeNullableTypedVector(val, &Parcel::writeDouble);
891}
892
893status_t Parcel::writeBoolVector(const std::vector<bool>& val)
894{
895    return writeTypedVector(val, &Parcel::writeBool);
896}
897
898status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
899{
900    return writeNullableTypedVector(val, &Parcel::writeBool);
901}
902
903status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
904{
905    return writeTypedVector(val, &Parcel::writeChar);
906}
907
908status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
909{
910    return writeNullableTypedVector(val, &Parcel::writeChar);
911}
912
913status_t Parcel::writeString16Vector(const std::vector<String16>& val)
914{
915    return writeTypedVector(val, &Parcel::writeString16);
916}
917
918status_t Parcel::writeString16Vector(
919        const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
920{
921    return writeNullableTypedVector(val, &Parcel::writeString16);
922}
923
924status_t Parcel::writeUtf8VectorAsUtf16Vector(
925                        const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
926    return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
927}
928
929status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
930    return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
931}
932
933status_t Parcel::writeInt32(int32_t val)
934{
935    return writeAligned(val);
936}
937
938status_t Parcel::writeUint32(uint32_t val)
939{
940    return writeAligned(val);
941}
942
943status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
944    if (len > INT32_MAX) {
945        // don't accept size_t values which may have come from an
946        // inadvertent conversion from a negative int.
947        return BAD_VALUE;
948    }
949
950    if (!val) {
951        return writeInt32(-1);
952    }
953    status_t ret = writeInt32(static_cast<uint32_t>(len));
954    if (ret == NO_ERROR) {
955        ret = write(val, len * sizeof(*val));
956    }
957    return ret;
958}
959status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
960    if (len > INT32_MAX) {
961        // don't accept size_t values which may have come from an
962        // inadvertent conversion from a negative int.
963        return BAD_VALUE;
964    }
965
966    if (!val) {
967        return writeInt32(-1);
968    }
969    status_t ret = writeInt32(static_cast<uint32_t>(len));
970    if (ret == NO_ERROR) {
971        ret = write(val, len * sizeof(*val));
972    }
973    return ret;
974}
975
976status_t Parcel::writeBool(bool val)
977{
978    return writeInt32(int32_t(val));
979}
980
981status_t Parcel::writeChar(char16_t val)
982{
983    return writeInt32(int32_t(val));
984}
985
986status_t Parcel::writeByte(int8_t val)
987{
988    return writeInt32(int32_t(val));
989}
990
991status_t Parcel::writeInt64(int64_t val)
992{
993    return writeAligned(val);
994}
995
996status_t Parcel::writeUint64(uint64_t val)
997{
998    return writeAligned(val);
999}
1000
1001status_t Parcel::writePointer(uintptr_t val)
1002{
1003    return writeAligned<binder_uintptr_t>(val);
1004}
1005
1006status_t Parcel::writeFloat(float val)
1007{
1008    return writeAligned(val);
1009}
1010
1011#if defined(__mips__) && defined(__mips_hard_float)
1012
1013status_t Parcel::writeDouble(double val)
1014{
1015    union {
1016        double d;
1017        unsigned long long ll;
1018    } u;
1019    u.d = val;
1020    return writeAligned(u.ll);
1021}
1022
1023#else
1024
1025status_t Parcel::writeDouble(double val)
1026{
1027    return writeAligned(val);
1028}
1029
1030#endif
1031
1032status_t Parcel::writeCString(const char* str)
1033{
1034    return write(str, strlen(str)+1);
1035}
1036
1037status_t Parcel::writeString8(const String8& str)
1038{
1039    status_t err = writeInt32(str.bytes());
1040    // only write string if its length is more than zero characters,
1041    // as readString8 will only read if the length field is non-zero.
1042    // this is slightly different from how writeString16 works.
1043    if (str.bytes() > 0 && err == NO_ERROR) {
1044        err = write(str.string(), str.bytes()+1);
1045    }
1046    return err;
1047}
1048
1049status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
1050{
1051    if (!str) {
1052        return writeInt32(-1);
1053    }
1054
1055    return writeString16(*str);
1056}
1057
1058status_t Parcel::writeString16(const String16& str)
1059{
1060    return writeString16(str.string(), str.size());
1061}
1062
1063status_t Parcel::writeString16(const char16_t* str, size_t len)
1064{
1065    if (str == NULL) return writeInt32(-1);
1066
1067    status_t err = writeInt32(len);
1068    if (err == NO_ERROR) {
1069        len *= sizeof(char16_t);
1070        uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1071        if (data) {
1072            memcpy(data, str, len);
1073            *reinterpret_cast<char16_t*>(data+len) = 0;
1074            return NO_ERROR;
1075        }
1076        err = mError;
1077    }
1078    return err;
1079}
1080
1081status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1082{
1083    return flatten_binder(ProcessState::self(), val, this);
1084}
1085
1086status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1087{
1088    return writeTypedVector(val, &Parcel::writeStrongBinder);
1089}
1090
1091status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
1092{
1093    return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
1094}
1095
1096status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
1097    return readNullableTypedVector(val, &Parcel::readNullableStrongBinder);
1098}
1099
1100status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1101    return readTypedVector(val, &Parcel::readStrongBinder);
1102}
1103
1104status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1105{
1106    return flatten_binder(ProcessState::self(), val, this);
1107}
1108
1109status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1110    if (!parcelable) {
1111        return writeInt32(0);
1112    }
1113
1114    return writeParcelable(*parcelable);
1115}
1116
1117status_t Parcel::writeParcelable(const Parcelable& parcelable) {
1118    status_t status = writeInt32(1);  // parcelable is not null.
1119    if (status != OK) {
1120        return status;
1121    }
1122    return parcelable.writeToParcel(this);
1123}
1124
1125status_t Parcel::writeValue(const binder::Value& value) {
1126    return value.writeToParcel(this);
1127}
1128
1129status_t Parcel::writeNativeHandle(const native_handle* handle)
1130{
1131    if (!handle || handle->version != sizeof(native_handle))
1132        return BAD_TYPE;
1133
1134    status_t err;
1135    err = writeInt32(handle->numFds);
1136    if (err != NO_ERROR) return err;
1137
1138    err = writeInt32(handle->numInts);
1139    if (err != NO_ERROR) return err;
1140
1141    for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1142        err = writeDupFileDescriptor(handle->data[i]);
1143
1144    if (err != NO_ERROR) {
1145        ALOGD("write native handle, write dup fd failed");
1146        return err;
1147    }
1148    err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1149    return err;
1150}
1151
1152status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1153{
1154    flat_binder_object obj;
1155    obj.type = BINDER_TYPE_FD;
1156    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1157    obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1158    obj.handle = fd;
1159    obj.cookie = takeOwnership ? 1 : 0;
1160    return writeObject(obj, true);
1161}
1162
1163status_t Parcel::writeDupFileDescriptor(int fd)
1164{
1165    int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
1166    if (dupFd < 0) {
1167        return -errno;
1168    }
1169    status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1170    if (err != OK) {
1171        close(dupFd);
1172    }
1173    return err;
1174}
1175
1176status_t Parcel::writeParcelFileDescriptor(int fd, bool takeOwnership)
1177{
1178    writeInt32(0);
1179    return writeFileDescriptor(fd, takeOwnership);
1180}
1181
1182status_t Parcel::writeUniqueFileDescriptor(const base::unique_fd& fd) {
1183    return writeDupFileDescriptor(fd.get());
1184}
1185
1186status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<base::unique_fd>& val) {
1187    return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1188}
1189
1190status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>>& val) {
1191    return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1192}
1193
1194status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1195{
1196    if (len > INT32_MAX) {
1197        // don't accept size_t values which may have come from an
1198        // inadvertent conversion from a negative int.
1199        return BAD_VALUE;
1200    }
1201
1202    status_t status;
1203    if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1204        ALOGV("writeBlob: write in place");
1205        status = writeInt32(BLOB_INPLACE);
1206        if (status) return status;
1207
1208        void* ptr = writeInplace(len);
1209        if (!ptr) return NO_MEMORY;
1210
1211        outBlob->init(-1, ptr, len, false);
1212        return NO_ERROR;
1213    }
1214
1215    ALOGV("writeBlob: write to ashmem");
1216    int fd = ashmem_create_region("Parcel Blob", len);
1217    if (fd < 0) return NO_MEMORY;
1218
1219    int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1220    if (result < 0) {
1221        status = result;
1222    } else {
1223        void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1224        if (ptr == MAP_FAILED) {
1225            status = -errno;
1226        } else {
1227            if (!mutableCopy) {
1228                result = ashmem_set_prot_region(fd, PROT_READ);
1229            }
1230            if (result < 0) {
1231                status = result;
1232            } else {
1233                status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1234                if (!status) {
1235                    status = writeFileDescriptor(fd, true /*takeOwnership*/);
1236                    if (!status) {
1237                        outBlob->init(fd, ptr, len, mutableCopy);
1238                        return NO_ERROR;
1239                    }
1240                }
1241            }
1242        }
1243        ::munmap(ptr, len);
1244    }
1245    ::close(fd);
1246    return status;
1247}
1248
1249status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1250{
1251    // Must match up with what's done in writeBlob.
1252    if (!mAllowFds) return FDS_NOT_ALLOWED;
1253    status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1254    if (status) return status;
1255    return writeDupFileDescriptor(fd);
1256}
1257
1258status_t Parcel::write(const FlattenableHelperInterface& val)
1259{
1260    status_t err;
1261
1262    // size if needed
1263    const size_t len = val.getFlattenedSize();
1264    const size_t fd_count = val.getFdCount();
1265
1266    if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1267        // don't accept size_t values which may have come from an
1268        // inadvertent conversion from a negative int.
1269        return BAD_VALUE;
1270    }
1271
1272    err = this->writeInt32(len);
1273    if (err) return err;
1274
1275    err = this->writeInt32(fd_count);
1276    if (err) return err;
1277
1278    // payload
1279    void* const buf = this->writeInplace(pad_size(len));
1280    if (buf == NULL)
1281        return BAD_VALUE;
1282
1283    int* fds = NULL;
1284    if (fd_count) {
1285        fds = new (std::nothrow) int[fd_count];
1286        if (fds == nullptr) {
1287            ALOGE("write: failed to allocate requested %zu fds", fd_count);
1288            return BAD_VALUE;
1289        }
1290    }
1291
1292    err = val.flatten(buf, len, fds, fd_count);
1293    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1294        err = this->writeDupFileDescriptor( fds[i] );
1295    }
1296
1297    if (fd_count) {
1298        delete [] fds;
1299    }
1300
1301    return err;
1302}
1303
1304status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1305{
1306    const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1307    const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1308    if (enoughData && enoughObjects) {
1309restart_write:
1310        *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1311
1312        // remember if it's a file descriptor
1313        if (val.type == BINDER_TYPE_FD) {
1314            if (!mAllowFds) {
1315                // fail before modifying our object index
1316                return FDS_NOT_ALLOWED;
1317            }
1318            mHasFds = mFdsKnown = true;
1319        }
1320
1321        // Need to write meta-data?
1322        if (nullMetaData || val.binder != 0) {
1323            mObjects[mObjectsSize] = mDataPos;
1324            acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1325            mObjectsSize++;
1326        }
1327
1328        return finishWrite(sizeof(flat_binder_object));
1329    }
1330
1331    if (!enoughData) {
1332        const status_t err = growData(sizeof(val));
1333        if (err != NO_ERROR) return err;
1334    }
1335    if (!enoughObjects) {
1336        size_t newSize = ((mObjectsSize+2)*3)/2;
1337        if (newSize*sizeof(binder_size_t) < mObjectsSize) return NO_MEMORY;   // overflow
1338        binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1339        if (objects == NULL) return NO_MEMORY;
1340        mObjects = objects;
1341        mObjectsCapacity = newSize;
1342    }
1343
1344    goto restart_write;
1345}
1346
1347status_t Parcel::writeNoException()
1348{
1349    binder::Status status;
1350    return status.writeToParcel(this);
1351}
1352
1353status_t Parcel::writeMap(const ::android::binder::Map& map_in)
1354{
1355    using ::std::map;
1356    using ::android::binder::Value;
1357    using ::android::binder::Map;
1358
1359    Map::const_iterator iter;
1360    status_t ret;
1361
1362    ret = writeInt32(map_in.size());
1363
1364    if (ret != NO_ERROR) {
1365        return ret;
1366    }
1367
1368    for (iter = map_in.begin(); iter != map_in.end(); ++iter) {
1369        ret = writeValue(Value(iter->first));
1370        if (ret != NO_ERROR) {
1371            return ret;
1372        }
1373
1374        ret = writeValue(iter->second);
1375        if (ret != NO_ERROR) {
1376            return ret;
1377        }
1378    }
1379
1380    return ret;
1381}
1382
1383status_t Parcel::writeNullableMap(const std::unique_ptr<binder::Map>& map)
1384{
1385    if (map == NULL) {
1386        return writeInt32(-1);
1387    }
1388
1389    return writeMap(*map.get());
1390}
1391
1392status_t Parcel::readMap(::android::binder::Map* map_out)const
1393{
1394    using ::std::map;
1395    using ::android::String16;
1396    using ::android::String8;
1397    using ::android::binder::Value;
1398    using ::android::binder::Map;
1399
1400    status_t ret = NO_ERROR;
1401    int32_t count;
1402
1403    ret = readInt32(&count);
1404    if (ret != NO_ERROR) {
1405        return ret;
1406    }
1407
1408    if (count < 0) {
1409        ALOGE("readMap: Unexpected count: %d", count);
1410        return (count == -1)
1411            ? UNEXPECTED_NULL
1412            : BAD_VALUE;
1413    }
1414
1415    map_out->clear();
1416
1417    while (count--) {
1418        Map::key_type key;
1419        Value value;
1420
1421        ret = readValue(&value);
1422        if (ret != NO_ERROR) {
1423            return ret;
1424        }
1425
1426        if (!value.getString(&key)) {
1427            ALOGE("readMap: Key type not a string (parcelType = %d)", value.parcelType());
1428            return BAD_VALUE;
1429        }
1430
1431        ret = readValue(&value);
1432        if (ret != NO_ERROR) {
1433            return ret;
1434        }
1435
1436        (*map_out)[key] = value;
1437    }
1438
1439    return ret;
1440}
1441
1442status_t Parcel::readNullableMap(std::unique_ptr<binder::Map>* map) const
1443{
1444    const size_t start = dataPosition();
1445    int32_t count;
1446    status_t status = readInt32(&count);
1447    map->reset();
1448
1449    if (status != OK || count == -1) {
1450        return status;
1451    }
1452
1453    setDataPosition(start);
1454    map->reset(new binder::Map());
1455
1456    status = readMap(map->get());
1457
1458    if (status != OK) {
1459        map->reset();
1460    }
1461
1462    return status;
1463}
1464
1465
1466
1467void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1468{
1469    LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1470}
1471
1472status_t Parcel::read(void* outData, size_t len) const
1473{
1474    if (len > INT32_MAX) {
1475        // don't accept size_t values which may have come from an
1476        // inadvertent conversion from a negative int.
1477        return BAD_VALUE;
1478    }
1479
1480    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1481            && len <= pad_size(len)) {
1482        memcpy(outData, mData+mDataPos, len);
1483        mDataPos += pad_size(len);
1484        ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1485        return NO_ERROR;
1486    }
1487    return NOT_ENOUGH_DATA;
1488}
1489
1490const void* Parcel::readInplace(size_t len) const
1491{
1492    if (len > INT32_MAX) {
1493        // don't accept size_t values which may have come from an
1494        // inadvertent conversion from a negative int.
1495        return NULL;
1496    }
1497
1498    if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1499            && len <= pad_size(len)) {
1500        const void* data = mData+mDataPos;
1501        mDataPos += pad_size(len);
1502        ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1503        return data;
1504    }
1505    return NULL;
1506}
1507
1508template<class T>
1509status_t Parcel::readAligned(T *pArg) const {
1510    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1511
1512    if ((mDataPos+sizeof(T)) <= mDataSize) {
1513        const void* data = mData+mDataPos;
1514        mDataPos += sizeof(T);
1515        *pArg =  *reinterpret_cast<const T*>(data);
1516        return NO_ERROR;
1517    } else {
1518        return NOT_ENOUGH_DATA;
1519    }
1520}
1521
1522template<class T>
1523T Parcel::readAligned() const {
1524    T result;
1525    if (readAligned(&result) != NO_ERROR) {
1526        result = 0;
1527    }
1528
1529    return result;
1530}
1531
1532template<class T>
1533status_t Parcel::writeAligned(T val) {
1534    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1535
1536    if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1537restart_write:
1538        *reinterpret_cast<T*>(mData+mDataPos) = val;
1539        return finishWrite(sizeof(val));
1540    }
1541
1542    status_t err = growData(sizeof(val));
1543    if (err == NO_ERROR) goto restart_write;
1544    return err;
1545}
1546
1547namespace {
1548
1549template<typename T>
1550status_t readByteVectorInternal(const Parcel* parcel,
1551                                std::vector<T>* val) {
1552    val->clear();
1553
1554    int32_t size;
1555    status_t status = parcel->readInt32(&size);
1556
1557    if (status != OK) {
1558        return status;
1559    }
1560
1561    if (size < 0) {
1562        status = UNEXPECTED_NULL;
1563        return status;
1564    }
1565    if (size_t(size) > parcel->dataAvail()) {
1566        status = BAD_VALUE;
1567        return status;
1568    }
1569
1570    T* data = const_cast<T*>(reinterpret_cast<const T*>(parcel->readInplace(size)));
1571    if (!data) {
1572        status = BAD_VALUE;
1573        return status;
1574    }
1575    val->reserve(size);
1576    val->insert(val->end(), data, data + size);
1577
1578    return status;
1579}
1580
1581template<typename T>
1582status_t readByteVectorInternalPtr(
1583        const Parcel* parcel,
1584        std::unique_ptr<std::vector<T>>* val) {
1585    const int32_t start = parcel->dataPosition();
1586    int32_t size;
1587    status_t status = parcel->readInt32(&size);
1588    val->reset();
1589
1590    if (status != OK || size < 0) {
1591        return status;
1592    }
1593
1594    parcel->setDataPosition(start);
1595    val->reset(new (std::nothrow) std::vector<T>());
1596
1597    status = readByteVectorInternal(parcel, val->get());
1598
1599    if (status != OK) {
1600        val->reset();
1601    }
1602
1603    return status;
1604}
1605
1606}  // namespace
1607
1608status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1609    return readByteVectorInternal(this, val);
1610}
1611
1612status_t Parcel::readByteVector(std::vector<uint8_t>* val) const {
1613    return readByteVectorInternal(this, val);
1614}
1615
1616status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
1617    return readByteVectorInternalPtr(this, val);
1618}
1619
1620status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const {
1621    return readByteVectorInternalPtr(this, val);
1622}
1623
1624status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
1625    return readNullableTypedVector(val, &Parcel::readInt32);
1626}
1627
1628status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1629    return readTypedVector(val, &Parcel::readInt32);
1630}
1631
1632status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
1633    return readNullableTypedVector(val, &Parcel::readInt64);
1634}
1635
1636status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1637    return readTypedVector(val, &Parcel::readInt64);
1638}
1639
1640status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
1641    return readNullableTypedVector(val, &Parcel::readFloat);
1642}
1643
1644status_t Parcel::readFloatVector(std::vector<float>* val) const {
1645    return readTypedVector(val, &Parcel::readFloat);
1646}
1647
1648status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
1649    return readNullableTypedVector(val, &Parcel::readDouble);
1650}
1651
1652status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1653    return readTypedVector(val, &Parcel::readDouble);
1654}
1655
1656status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
1657    const int32_t start = dataPosition();
1658    int32_t size;
1659    status_t status = readInt32(&size);
1660    val->reset();
1661
1662    if (status != OK || size < 0) {
1663        return status;
1664    }
1665
1666    setDataPosition(start);
1667    val->reset(new (std::nothrow) std::vector<bool>());
1668
1669    status = readBoolVector(val->get());
1670
1671    if (status != OK) {
1672        val->reset();
1673    }
1674
1675    return status;
1676}
1677
1678status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1679    int32_t size;
1680    status_t status = readInt32(&size);
1681
1682    if (status != OK) {
1683        return status;
1684    }
1685
1686    if (size < 0) {
1687        return UNEXPECTED_NULL;
1688    }
1689
1690    val->resize(size);
1691
1692    /* C++ bool handling means a vector of bools isn't necessarily addressable
1693     * (we might use individual bits)
1694     */
1695    bool data;
1696    for (int32_t i = 0; i < size; ++i) {
1697        status = readBool(&data);
1698        (*val)[i] = data;
1699
1700        if (status != OK) {
1701            return status;
1702        }
1703    }
1704
1705    return OK;
1706}
1707
1708status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
1709    return readNullableTypedVector(val, &Parcel::readChar);
1710}
1711
1712status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1713    return readTypedVector(val, &Parcel::readChar);
1714}
1715
1716status_t Parcel::readString16Vector(
1717        std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
1718    return readNullableTypedVector(val, &Parcel::readString16);
1719}
1720
1721status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1722    return readTypedVector(val, &Parcel::readString16);
1723}
1724
1725status_t Parcel::readUtf8VectorFromUtf16Vector(
1726        std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
1727    return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
1728}
1729
1730status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
1731    return readTypedVector(val, &Parcel::readUtf8FromUtf16);
1732}
1733
1734status_t Parcel::readInt32(int32_t *pArg) const
1735{
1736    return readAligned(pArg);
1737}
1738
1739int32_t Parcel::readInt32() const
1740{
1741    return readAligned<int32_t>();
1742}
1743
1744status_t Parcel::readUint32(uint32_t *pArg) const
1745{
1746    return readAligned(pArg);
1747}
1748
1749uint32_t Parcel::readUint32() const
1750{
1751    return readAligned<uint32_t>();
1752}
1753
1754status_t Parcel::readInt64(int64_t *pArg) const
1755{
1756    return readAligned(pArg);
1757}
1758
1759
1760int64_t Parcel::readInt64() const
1761{
1762    return readAligned<int64_t>();
1763}
1764
1765status_t Parcel::readUint64(uint64_t *pArg) const
1766{
1767    return readAligned(pArg);
1768}
1769
1770uint64_t Parcel::readUint64() const
1771{
1772    return readAligned<uint64_t>();
1773}
1774
1775status_t Parcel::readPointer(uintptr_t *pArg) const
1776{
1777    status_t ret;
1778    binder_uintptr_t ptr;
1779    ret = readAligned(&ptr);
1780    if (!ret)
1781        *pArg = ptr;
1782    return ret;
1783}
1784
1785uintptr_t Parcel::readPointer() const
1786{
1787    return readAligned<binder_uintptr_t>();
1788}
1789
1790
1791status_t Parcel::readFloat(float *pArg) const
1792{
1793    return readAligned(pArg);
1794}
1795
1796
1797float Parcel::readFloat() const
1798{
1799    return readAligned<float>();
1800}
1801
1802#if defined(__mips__) && defined(__mips_hard_float)
1803
1804status_t Parcel::readDouble(double *pArg) const
1805{
1806    union {
1807      double d;
1808      unsigned long long ll;
1809    } u;
1810    u.d = 0;
1811    status_t status;
1812    status = readAligned(&u.ll);
1813    *pArg = u.d;
1814    return status;
1815}
1816
1817double Parcel::readDouble() const
1818{
1819    union {
1820      double d;
1821      unsigned long long ll;
1822    } u;
1823    u.ll = readAligned<unsigned long long>();
1824    return u.d;
1825}
1826
1827#else
1828
1829status_t Parcel::readDouble(double *pArg) const
1830{
1831    return readAligned(pArg);
1832}
1833
1834double Parcel::readDouble() const
1835{
1836    return readAligned<double>();
1837}
1838
1839#endif
1840
1841status_t Parcel::readIntPtr(intptr_t *pArg) const
1842{
1843    return readAligned(pArg);
1844}
1845
1846
1847intptr_t Parcel::readIntPtr() const
1848{
1849    return readAligned<intptr_t>();
1850}
1851
1852status_t Parcel::readBool(bool *pArg) const
1853{
1854    int32_t tmp;
1855    status_t ret = readInt32(&tmp);
1856    *pArg = (tmp != 0);
1857    return ret;
1858}
1859
1860bool Parcel::readBool() const
1861{
1862    return readInt32() != 0;
1863}
1864
1865status_t Parcel::readChar(char16_t *pArg) const
1866{
1867    int32_t tmp;
1868    status_t ret = readInt32(&tmp);
1869    *pArg = char16_t(tmp);
1870    return ret;
1871}
1872
1873char16_t Parcel::readChar() const
1874{
1875    return char16_t(readInt32());
1876}
1877
1878status_t Parcel::readByte(int8_t *pArg) const
1879{
1880    int32_t tmp;
1881    status_t ret = readInt32(&tmp);
1882    *pArg = int8_t(tmp);
1883    return ret;
1884}
1885
1886int8_t Parcel::readByte() const
1887{
1888    return int8_t(readInt32());
1889}
1890
1891status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1892    size_t utf16Size = 0;
1893    const char16_t* src = readString16Inplace(&utf16Size);
1894    if (!src) {
1895        return UNEXPECTED_NULL;
1896    }
1897
1898    // Save ourselves the trouble, we're done.
1899    if (utf16Size == 0u) {
1900        str->clear();
1901       return NO_ERROR;
1902    }
1903
1904    // Allow for closing '\0'
1905    ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size) + 1;
1906    if (utf8Size < 1) {
1907        return BAD_VALUE;
1908    }
1909    // Note that while it is probably safe to assume string::resize keeps a
1910    // spare byte around for the trailing null, we still pass the size including the trailing null
1911    str->resize(utf8Size);
1912    utf16_to_utf8(src, utf16Size, &((*str)[0]), utf8Size);
1913    str->resize(utf8Size - 1);
1914    return NO_ERROR;
1915}
1916
1917status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
1918    const int32_t start = dataPosition();
1919    int32_t size;
1920    status_t status = readInt32(&size);
1921    str->reset();
1922
1923    if (status != OK || size < 0) {
1924        return status;
1925    }
1926
1927    setDataPosition(start);
1928    str->reset(new (std::nothrow) std::string());
1929    return readUtf8FromUtf16(str->get());
1930}
1931
1932const char* Parcel::readCString() const
1933{
1934    const size_t avail = mDataSize-mDataPos;
1935    if (avail > 0) {
1936        const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1937        // is the string's trailing NUL within the parcel's valid bounds?
1938        const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1939        if (eos) {
1940            const size_t len = eos - str;
1941            mDataPos += pad_size(len+1);
1942            ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1943            return str;
1944        }
1945    }
1946    return NULL;
1947}
1948
1949String8 Parcel::readString8() const
1950{
1951    String8 retString;
1952    status_t status = readString8(&retString);
1953    if (status != OK) {
1954        // We don't care about errors here, so just return an empty string.
1955        return String8();
1956    }
1957    return retString;
1958}
1959
1960status_t Parcel::readString8(String8* pArg) const
1961{
1962    int32_t size;
1963    status_t status = readInt32(&size);
1964    if (status != OK) {
1965        return status;
1966    }
1967    // watch for potential int overflow from size+1
1968    if (size < 0 || size >= INT32_MAX) {
1969        return BAD_VALUE;
1970    }
1971    // |writeString8| writes nothing for empty string.
1972    if (size == 0) {
1973        *pArg = String8();
1974        return OK;
1975    }
1976    const char* str = (const char*)readInplace(size + 1);
1977    if (str == NULL) {
1978        return BAD_VALUE;
1979    }
1980    pArg->setTo(str, size);
1981    return OK;
1982}
1983
1984String16 Parcel::readString16() const
1985{
1986    size_t len;
1987    const char16_t* str = readString16Inplace(&len);
1988    if (str) return String16(str, len);
1989    ALOGE("Reading a NULL string not supported here.");
1990    return String16();
1991}
1992
1993status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1994{
1995    const int32_t start = dataPosition();
1996    int32_t size;
1997    status_t status = readInt32(&size);
1998    pArg->reset();
1999
2000    if (status != OK || size < 0) {
2001        return status;
2002    }
2003
2004    setDataPosition(start);
2005    pArg->reset(new (std::nothrow) String16());
2006
2007    status = readString16(pArg->get());
2008
2009    if (status != OK) {
2010        pArg->reset();
2011    }
2012
2013    return status;
2014}
2015
2016status_t Parcel::readString16(String16* pArg) const
2017{
2018    size_t len;
2019    const char16_t* str = readString16Inplace(&len);
2020    if (str) {
2021        pArg->setTo(str, len);
2022        return 0;
2023    } else {
2024        *pArg = String16();
2025        return UNEXPECTED_NULL;
2026    }
2027}
2028
2029const char16_t* Parcel::readString16Inplace(size_t* outLen) const
2030{
2031    int32_t size = readInt32();
2032    // watch for potential int overflow from size+1
2033    if (size >= 0 && size < INT32_MAX) {
2034        *outLen = size;
2035        const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
2036        if (str != NULL) {
2037            return str;
2038        }
2039    }
2040    *outLen = 0;
2041    return NULL;
2042}
2043
2044status_t Parcel::readStrongBinder(sp<IBinder>* val) const
2045{
2046    status_t status = readNullableStrongBinder(val);
2047    if (status == OK && !val->get()) {
2048        status = UNEXPECTED_NULL;
2049    }
2050    return status;
2051}
2052
2053status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
2054{
2055    return unflatten_binder(ProcessState::self(), *this, val);
2056}
2057
2058sp<IBinder> Parcel::readStrongBinder() const
2059{
2060    sp<IBinder> val;
2061    // Note that a lot of code in Android reads binders by hand with this
2062    // method, and that code has historically been ok with getting nullptr
2063    // back (while ignoring error codes).
2064    readNullableStrongBinder(&val);
2065    return val;
2066}
2067
2068wp<IBinder> Parcel::readWeakBinder() const
2069{
2070    wp<IBinder> val;
2071    unflatten_binder(ProcessState::self(), *this, &val);
2072    return val;
2073}
2074
2075status_t Parcel::readParcelable(Parcelable* parcelable) const {
2076    int32_t have_parcelable = 0;
2077    status_t status = readInt32(&have_parcelable);
2078    if (status != OK) {
2079        return status;
2080    }
2081    if (!have_parcelable) {
2082        return UNEXPECTED_NULL;
2083    }
2084    return parcelable->readFromParcel(this);
2085}
2086
2087status_t Parcel::readValue(binder::Value* value) const {
2088    return value->readFromParcel(this);
2089}
2090
2091int32_t Parcel::readExceptionCode() const
2092{
2093    binder::Status status;
2094    status.readFromParcel(*this);
2095    return status.exceptionCode();
2096}
2097
2098native_handle* Parcel::readNativeHandle() const
2099{
2100    int numFds, numInts;
2101    status_t err;
2102    err = readInt32(&numFds);
2103    if (err != NO_ERROR) return 0;
2104    err = readInt32(&numInts);
2105    if (err != NO_ERROR) return 0;
2106
2107    native_handle* h = native_handle_create(numFds, numInts);
2108    if (!h) {
2109        return 0;
2110    }
2111
2112    for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
2113        h->data[i] = fcntl(readFileDescriptor(), F_DUPFD_CLOEXEC, 0);
2114        if (h->data[i] < 0) {
2115            for (int j = 0; j < i; j++) {
2116                close(h->data[j]);
2117            }
2118            native_handle_delete(h);
2119            return 0;
2120        }
2121    }
2122    err = read(h->data + numFds, sizeof(int)*numInts);
2123    if (err != NO_ERROR) {
2124        native_handle_close(h);
2125        native_handle_delete(h);
2126        h = 0;
2127    }
2128    return h;
2129}
2130
2131int Parcel::readFileDescriptor() const
2132{
2133    const flat_binder_object* flat = readObject(true);
2134
2135    if (flat && flat->type == BINDER_TYPE_FD) {
2136        return flat->handle;
2137    }
2138
2139    return BAD_TYPE;
2140}
2141
2142int Parcel::readParcelFileDescriptor() const
2143{
2144    int32_t hasComm = readInt32();
2145    int fd = readFileDescriptor();
2146    if (hasComm != 0) {
2147        // skip
2148        readFileDescriptor();
2149    }
2150    return fd;
2151}
2152
2153status_t Parcel::readUniqueFileDescriptor(base::unique_fd* val) const
2154{
2155    int got = readFileDescriptor();
2156
2157    if (got == BAD_TYPE) {
2158        return BAD_TYPE;
2159    }
2160
2161    val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0));
2162
2163    if (val->get() < 0) {
2164        return BAD_VALUE;
2165    }
2166
2167    return OK;
2168}
2169
2170
2171status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>>* val) const {
2172    return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
2173}
2174
2175status_t Parcel::readUniqueFileDescriptorVector(std::vector<base::unique_fd>* val) const {
2176    return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
2177}
2178
2179status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
2180{
2181    int32_t blobType;
2182    status_t status = readInt32(&blobType);
2183    if (status) return status;
2184
2185    if (blobType == BLOB_INPLACE) {
2186        ALOGV("readBlob: read in place");
2187        const void* ptr = readInplace(len);
2188        if (!ptr) return BAD_VALUE;
2189
2190        outBlob->init(-1, const_cast<void*>(ptr), len, false);
2191        return NO_ERROR;
2192    }
2193
2194    ALOGV("readBlob: read from ashmem");
2195    bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
2196    int fd = readFileDescriptor();
2197    if (fd == int(BAD_TYPE)) return BAD_VALUE;
2198
2199    void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
2200            MAP_SHARED, fd, 0);
2201    if (ptr == MAP_FAILED) return NO_MEMORY;
2202
2203    outBlob->init(fd, ptr, len, isMutable);
2204    return NO_ERROR;
2205}
2206
2207status_t Parcel::read(FlattenableHelperInterface& val) const
2208{
2209    // size
2210    const size_t len = this->readInt32();
2211    const size_t fd_count = this->readInt32();
2212
2213    if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
2214        // don't accept size_t values which may have come from an
2215        // inadvertent conversion from a negative int.
2216        return BAD_VALUE;
2217    }
2218
2219    // payload
2220    void const* const buf = this->readInplace(pad_size(len));
2221    if (buf == NULL)
2222        return BAD_VALUE;
2223
2224    int* fds = NULL;
2225    if (fd_count) {
2226        fds = new (std::nothrow) int[fd_count];
2227        if (fds == nullptr) {
2228            ALOGE("read: failed to allocate requested %zu fds", fd_count);
2229            return BAD_VALUE;
2230        }
2231    }
2232
2233    status_t err = NO_ERROR;
2234    for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2235        int fd = this->readFileDescriptor();
2236        if (fd < 0 || ((fds[i] = fcntl(fd, F_DUPFD_CLOEXEC, 0)) < 0)) {
2237            err = BAD_VALUE;
2238            ALOGE("fcntl(F_DUPFD_CLOEXEC) failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2239                  i, fds[i], fd_count, strerror(fd < 0 ? -fd : errno));
2240            // Close all the file descriptors that were dup-ed.
2241            for (size_t j=0; j<i ;j++) {
2242                close(fds[j]);
2243            }
2244        }
2245    }
2246
2247    if (err == NO_ERROR) {
2248        err = val.unflatten(buf, len, fds, fd_count);
2249    }
2250
2251    if (fd_count) {
2252        delete [] fds;
2253    }
2254
2255    return err;
2256}
2257const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2258{
2259    const size_t DPOS = mDataPos;
2260    if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2261        const flat_binder_object* obj
2262                = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2263        mDataPos = DPOS + sizeof(flat_binder_object);
2264        if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2265            // When transferring a NULL object, we don't write it into
2266            // the object list, so we don't want to check for it when
2267            // reading.
2268            ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2269            return obj;
2270        }
2271
2272        // Ensure that this object is valid...
2273        binder_size_t* const OBJS = mObjects;
2274        const size_t N = mObjectsSize;
2275        size_t opos = mNextObjectHint;
2276
2277        if (N > 0) {
2278            ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2279                 this, DPOS, opos);
2280
2281            // Start at the current hint position, looking for an object at
2282            // the current data position.
2283            if (opos < N) {
2284                while (opos < (N-1) && OBJS[opos] < DPOS) {
2285                    opos++;
2286                }
2287            } else {
2288                opos = N-1;
2289            }
2290            if (OBJS[opos] == DPOS) {
2291                // Found it!
2292                ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2293                     this, DPOS, opos);
2294                mNextObjectHint = opos+1;
2295                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2296                return obj;
2297            }
2298
2299            // Look backwards for it...
2300            while (opos > 0 && OBJS[opos] > DPOS) {
2301                opos--;
2302            }
2303            if (OBJS[opos] == DPOS) {
2304                // Found it!
2305                ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2306                     this, DPOS, opos);
2307                mNextObjectHint = opos+1;
2308                ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2309                return obj;
2310            }
2311        }
2312        ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2313             this, DPOS);
2314    }
2315    return NULL;
2316}
2317
2318void Parcel::closeFileDescriptors()
2319{
2320    size_t i = mObjectsSize;
2321    if (i > 0) {
2322        //ALOGI("Closing file descriptors for %zu objects...", i);
2323    }
2324    while (i > 0) {
2325        i--;
2326        const flat_binder_object* flat
2327            = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2328        if (flat->type == BINDER_TYPE_FD) {
2329            //ALOGI("Closing fd: %ld", flat->handle);
2330            close(flat->handle);
2331        }
2332    }
2333}
2334
2335uintptr_t Parcel::ipcData() const
2336{
2337    return reinterpret_cast<uintptr_t>(mData);
2338}
2339
2340size_t Parcel::ipcDataSize() const
2341{
2342    return (mDataSize > mDataPos ? mDataSize : mDataPos);
2343}
2344
2345uintptr_t Parcel::ipcObjects() const
2346{
2347    return reinterpret_cast<uintptr_t>(mObjects);
2348}
2349
2350size_t Parcel::ipcObjectsCount() const
2351{
2352    return mObjectsSize;
2353}
2354
2355void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2356    const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
2357{
2358    binder_size_t minOffset = 0;
2359    freeDataNoInit();
2360    mError = NO_ERROR;
2361    mData = const_cast<uint8_t*>(data);
2362    mDataSize = mDataCapacity = dataSize;
2363    //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
2364    mDataPos = 0;
2365    ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
2366    mObjects = const_cast<binder_size_t*>(objects);
2367    mObjectsSize = mObjectsCapacity = objectsCount;
2368    mNextObjectHint = 0;
2369    mOwner = relFunc;
2370    mOwnerCookie = relCookie;
2371    for (size_t i = 0; i < mObjectsSize; i++) {
2372        binder_size_t offset = mObjects[i];
2373        if (offset < minOffset) {
2374            ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2375                  __func__, (uint64_t)offset, (uint64_t)minOffset);
2376            mObjectsSize = 0;
2377            break;
2378        }
2379        minOffset = offset + sizeof(flat_binder_object);
2380    }
2381    scanForFds();
2382}
2383
2384void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2385{
2386    to << "Parcel(";
2387
2388    if (errorCheck() != NO_ERROR) {
2389        const status_t err = errorCheck();
2390        to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2391    } else if (dataSize() > 0) {
2392        const uint8_t* DATA = data();
2393        to << indent << HexDump(DATA, dataSize()) << dedent;
2394        const binder_size_t* OBJS = objects();
2395        const size_t N = objectsCount();
2396        for (size_t i=0; i<N; i++) {
2397            const flat_binder_object* flat
2398                = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2399            to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2400                << TypeCode(flat->type & 0x7f7f7f00)
2401                << " = " << flat->binder;
2402        }
2403    } else {
2404        to << "NULL";
2405    }
2406
2407    to << ")";
2408}
2409
2410void Parcel::releaseObjects()
2411{
2412    const sp<ProcessState> proc(ProcessState::self());
2413    size_t i = mObjectsSize;
2414    uint8_t* const data = mData;
2415    binder_size_t* const objects = mObjects;
2416    while (i > 0) {
2417        i--;
2418        const flat_binder_object* flat
2419            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2420        release_object(proc, *flat, this, &mOpenAshmemSize);
2421    }
2422}
2423
2424void Parcel::acquireObjects()
2425{
2426    const sp<ProcessState> proc(ProcessState::self());
2427    size_t i = mObjectsSize;
2428    uint8_t* const data = mData;
2429    binder_size_t* const objects = mObjects;
2430    while (i > 0) {
2431        i--;
2432        const flat_binder_object* flat
2433            = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2434        acquire_object(proc, *flat, this, &mOpenAshmemSize);
2435    }
2436}
2437
2438void Parcel::freeData()
2439{
2440    freeDataNoInit();
2441    initState();
2442}
2443
2444void Parcel::freeDataNoInit()
2445{
2446    if (mOwner) {
2447        LOG_ALLOC("Parcel %p: freeing other owner data", this);
2448        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2449        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2450    } else {
2451        LOG_ALLOC("Parcel %p: freeing allocated data", this);
2452        releaseObjects();
2453        if (mData) {
2454            LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2455            pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2456            if (mDataCapacity <= gParcelGlobalAllocSize) {
2457              gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2458            } else {
2459              gParcelGlobalAllocSize = 0;
2460            }
2461            if (gParcelGlobalAllocCount > 0) {
2462              gParcelGlobalAllocCount--;
2463            }
2464            pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2465            free(mData);
2466        }
2467        if (mObjects) free(mObjects);
2468    }
2469}
2470
2471status_t Parcel::growData(size_t len)
2472{
2473    if (len > INT32_MAX) {
2474        // don't accept size_t values which may have come from an
2475        // inadvertent conversion from a negative int.
2476        return BAD_VALUE;
2477    }
2478
2479    size_t newSize = ((mDataSize+len)*3)/2;
2480    return (newSize <= mDataSize)
2481            ? (status_t) NO_MEMORY
2482            : continueWrite(newSize);
2483}
2484
2485status_t Parcel::restartWrite(size_t desired)
2486{
2487    if (desired > INT32_MAX) {
2488        // don't accept size_t values which may have come from an
2489        // inadvertent conversion from a negative int.
2490        return BAD_VALUE;
2491    }
2492
2493    if (mOwner) {
2494        freeData();
2495        return continueWrite(desired);
2496    }
2497
2498    uint8_t* data = (uint8_t*)realloc(mData, desired);
2499    if (!data && desired > mDataCapacity) {
2500        mError = NO_MEMORY;
2501        return NO_MEMORY;
2502    }
2503
2504    releaseObjects();
2505
2506    if (data) {
2507        LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2508        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2509        gParcelGlobalAllocSize += desired;
2510        gParcelGlobalAllocSize -= mDataCapacity;
2511        if (!mData) {
2512            gParcelGlobalAllocCount++;
2513        }
2514        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2515        mData = data;
2516        mDataCapacity = desired;
2517    }
2518
2519    mDataSize = mDataPos = 0;
2520    ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2521    ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2522
2523    free(mObjects);
2524    mObjects = NULL;
2525    mObjectsSize = mObjectsCapacity = 0;
2526    mNextObjectHint = 0;
2527    mHasFds = false;
2528    mFdsKnown = true;
2529    mAllowFds = true;
2530
2531    return NO_ERROR;
2532}
2533
2534status_t Parcel::continueWrite(size_t desired)
2535{
2536    if (desired > INT32_MAX) {
2537        // don't accept size_t values which may have come from an
2538        // inadvertent conversion from a negative int.
2539        return BAD_VALUE;
2540    }
2541
2542    // If shrinking, first adjust for any objects that appear
2543    // after the new data size.
2544    size_t objectsSize = mObjectsSize;
2545    if (desired < mDataSize) {
2546        if (desired == 0) {
2547            objectsSize = 0;
2548        } else {
2549            while (objectsSize > 0) {
2550                if (mObjects[objectsSize-1] < desired)
2551                    break;
2552                objectsSize--;
2553            }
2554        }
2555    }
2556
2557    if (mOwner) {
2558        // If the size is going to zero, just release the owner's data.
2559        if (desired == 0) {
2560            freeData();
2561            return NO_ERROR;
2562        }
2563
2564        // If there is a different owner, we need to take
2565        // posession.
2566        uint8_t* data = (uint8_t*)malloc(desired);
2567        if (!data) {
2568            mError = NO_MEMORY;
2569            return NO_MEMORY;
2570        }
2571        binder_size_t* objects = NULL;
2572
2573        if (objectsSize) {
2574            objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2575            if (!objects) {
2576                free(data);
2577
2578                mError = NO_MEMORY;
2579                return NO_MEMORY;
2580            }
2581
2582            // Little hack to only acquire references on objects
2583            // we will be keeping.
2584            size_t oldObjectsSize = mObjectsSize;
2585            mObjectsSize = objectsSize;
2586            acquireObjects();
2587            mObjectsSize = oldObjectsSize;
2588        }
2589
2590        if (mData) {
2591            memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2592        }
2593        if (objects && mObjects) {
2594            memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2595        }
2596        //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2597        mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2598        mOwner = NULL;
2599
2600        LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2601        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2602        gParcelGlobalAllocSize += desired;
2603        gParcelGlobalAllocCount++;
2604        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2605
2606        mData = data;
2607        mObjects = objects;
2608        mDataSize = (mDataSize < desired) ? mDataSize : desired;
2609        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2610        mDataCapacity = desired;
2611        mObjectsSize = mObjectsCapacity = objectsSize;
2612        mNextObjectHint = 0;
2613
2614    } else if (mData) {
2615        if (objectsSize < mObjectsSize) {
2616            // Need to release refs on any objects we are dropping.
2617            const sp<ProcessState> proc(ProcessState::self());
2618            for (size_t i=objectsSize; i<mObjectsSize; i++) {
2619                const flat_binder_object* flat
2620                    = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2621                if (flat->type == BINDER_TYPE_FD) {
2622                    // will need to rescan because we may have lopped off the only FDs
2623                    mFdsKnown = false;
2624                }
2625                release_object(proc, *flat, this, &mOpenAshmemSize);
2626            }
2627            binder_size_t* objects =
2628                (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2629            if (objects) {
2630                mObjects = objects;
2631            }
2632            mObjectsSize = objectsSize;
2633            mNextObjectHint = 0;
2634        }
2635
2636        // We own the data, so we can just do a realloc().
2637        if (desired > mDataCapacity) {
2638            uint8_t* data = (uint8_t*)realloc(mData, desired);
2639            if (data) {
2640                LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2641                        desired);
2642                pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2643                gParcelGlobalAllocSize += desired;
2644                gParcelGlobalAllocSize -= mDataCapacity;
2645                pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2646                mData = data;
2647                mDataCapacity = desired;
2648            } else if (desired > mDataCapacity) {
2649                mError = NO_MEMORY;
2650                return NO_MEMORY;
2651            }
2652        } else {
2653            if (mDataSize > desired) {
2654                mDataSize = desired;
2655                ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2656            }
2657            if (mDataPos > desired) {
2658                mDataPos = desired;
2659                ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2660            }
2661        }
2662
2663    } else {
2664        // This is the first data.  Easy!
2665        uint8_t* data = (uint8_t*)malloc(desired);
2666        if (!data) {
2667            mError = NO_MEMORY;
2668            return NO_MEMORY;
2669        }
2670
2671        if(!(mDataCapacity == 0 && mObjects == NULL
2672             && mObjectsCapacity == 0)) {
2673            ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2674        }
2675
2676        LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2677        pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2678        gParcelGlobalAllocSize += desired;
2679        gParcelGlobalAllocCount++;
2680        pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2681
2682        mData = data;
2683        mDataSize = mDataPos = 0;
2684        ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2685        ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2686        mDataCapacity = desired;
2687    }
2688
2689    return NO_ERROR;
2690}
2691
2692void Parcel::initState()
2693{
2694    LOG_ALLOC("Parcel %p: initState", this);
2695    mError = NO_ERROR;
2696    mData = 0;
2697    mDataSize = 0;
2698    mDataCapacity = 0;
2699    mDataPos = 0;
2700    ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2701    ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2702    mObjects = NULL;
2703    mObjectsSize = 0;
2704    mObjectsCapacity = 0;
2705    mNextObjectHint = 0;
2706    mHasFds = false;
2707    mFdsKnown = true;
2708    mAllowFds = true;
2709    mOwner = NULL;
2710    mOpenAshmemSize = 0;
2711
2712    // racing multiple init leads only to multiple identical write
2713    if (gMaxFds == 0) {
2714        struct rlimit result;
2715        if (!getrlimit(RLIMIT_NOFILE, &result)) {
2716            gMaxFds = (size_t)result.rlim_cur;
2717            //ALOGI("parcel fd limit set to %zu", gMaxFds);
2718        } else {
2719            ALOGW("Unable to getrlimit: %s", strerror(errno));
2720            gMaxFds = 1024;
2721        }
2722    }
2723}
2724
2725void Parcel::scanForFds() const
2726{
2727    bool hasFds = false;
2728    for (size_t i=0; i<mObjectsSize; i++) {
2729        const flat_binder_object* flat
2730            = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2731        if (flat->type == BINDER_TYPE_FD) {
2732            hasFds = true;
2733            break;
2734        }
2735    }
2736    mHasFds = hasFds;
2737    mFdsKnown = true;
2738}
2739
2740size_t Parcel::getBlobAshmemSize() const
2741{
2742    // This used to return the size of all blobs that were written to ashmem, now we're returning
2743    // the ashmem currently referenced by this Parcel, which should be equivalent.
2744    // TODO: Remove method once ABI can be changed.
2745    return mOpenAshmemSize;
2746}
2747
2748size_t Parcel::getOpenAshmemSize() const
2749{
2750    return mOpenAshmemSize;
2751}
2752
2753// --- Parcel::Blob ---
2754
2755Parcel::Blob::Blob() :
2756        mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2757}
2758
2759Parcel::Blob::~Blob() {
2760    release();
2761}
2762
2763void Parcel::Blob::release() {
2764    if (mFd != -1 && mData) {
2765        ::munmap(mData, mSize);
2766    }
2767    clear();
2768}
2769
2770void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2771    mFd = fd;
2772    mData = data;
2773    mSize = size;
2774    mMutable = isMutable;
2775}
2776
2777void Parcel::Blob::clear() {
2778    mFd = -1;
2779    mData = NULL;
2780    mSize = 0;
2781    mMutable = false;
2782}
2783
2784}; // namespace android
2785