1/*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <assert.h>
18#include <dirent.h>
19#include <errno.h>
20#include <fcntl.h>
21#include <inttypes.h>
22#include <memory.h>
23#include <stdint.h>
24#include <stdio.h>
25#include <stdlib.h>
26#include <string.h>
27#include <sys/epoll.h>
28#include <sys/limits.h>
29#include <sys/inotify.h>
30#include <sys/ioctl.h>
31#include <sys/utsname.h>
32#include <unistd.h>
33
34#define LOG_TAG "EventHub"
35
36// #define LOG_NDEBUG 0
37
38#include "EventHub.h"
39
40#include <hardware_legacy/power.h>
41
42#include <cutils/properties.h>
43#include <openssl/sha.h>
44#include <utils/Log.h>
45#include <utils/Timers.h>
46#include <utils/threads.h>
47#include <utils/Errors.h>
48
49#include <input/KeyLayoutMap.h>
50#include <input/KeyCharacterMap.h>
51#include <input/VirtualKeyMap.h>
52
53/* this macro is used to tell if "bit" is set in "array"
54 * it selects a byte from the array, and does a boolean AND
55 * operation with a byte that only has the relevant bit set.
56 * eg. to check for the 12th bit, we do (array[1] & 1<<4)
57 */
58#define test_bit(bit, array)    ((array)[(bit)/8] & (1<<((bit)%8)))
59
60/* this macro computes the number of bytes needed to represent a bit array of the specified size */
61#define sizeof_bit_array(bits)  (((bits) + 7) / 8)
62
63#define INDENT "  "
64#define INDENT2 "    "
65#define INDENT3 "      "
66
67namespace android {
68
69static const char *WAKE_LOCK_ID = "KeyEvents";
70static const char *DEVICE_PATH = "/dev/input";
71
72/* return the larger integer */
73static inline int max(int v1, int v2)
74{
75    return (v1 > v2) ? v1 : v2;
76}
77
78static inline const char* toString(bool value) {
79    return value ? "true" : "false";
80}
81
82static String8 sha1(const String8& in) {
83    SHA_CTX ctx;
84    SHA1_Init(&ctx);
85    SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
86    u_char digest[SHA_DIGEST_LENGTH];
87    SHA1_Final(digest, &ctx);
88
89    String8 out;
90    for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) {
91        out.appendFormat("%02x", digest[i]);
92    }
93    return out;
94}
95
96static void getLinuxRelease(int* major, int* minor) {
97    struct utsname info;
98    if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) {
99        *major = 0, *minor = 0;
100        ALOGE("Could not get linux version: %s", strerror(errno));
101    }
102}
103
104// --- Global Functions ---
105
106uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
107    // Touch devices get dibs on touch-related axes.
108    if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
109        switch (axis) {
110        case ABS_X:
111        case ABS_Y:
112        case ABS_PRESSURE:
113        case ABS_TOOL_WIDTH:
114        case ABS_DISTANCE:
115        case ABS_TILT_X:
116        case ABS_TILT_Y:
117        case ABS_MT_SLOT:
118        case ABS_MT_TOUCH_MAJOR:
119        case ABS_MT_TOUCH_MINOR:
120        case ABS_MT_WIDTH_MAJOR:
121        case ABS_MT_WIDTH_MINOR:
122        case ABS_MT_ORIENTATION:
123        case ABS_MT_POSITION_X:
124        case ABS_MT_POSITION_Y:
125        case ABS_MT_TOOL_TYPE:
126        case ABS_MT_BLOB_ID:
127        case ABS_MT_TRACKING_ID:
128        case ABS_MT_PRESSURE:
129        case ABS_MT_DISTANCE:
130            return INPUT_DEVICE_CLASS_TOUCH;
131        }
132    }
133
134    // External stylus gets the pressure axis
135    if (deviceClasses & INPUT_DEVICE_CLASS_EXTERNAL_STYLUS) {
136        if (axis == ABS_PRESSURE) {
137            return INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
138        }
139    }
140
141    // Joystick devices get the rest.
142    return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
143}
144
145// --- EventHub::Device ---
146
147EventHub::Device::Device(int fd, int32_t id, const String8& path,
148        const InputDeviceIdentifier& identifier) :
149        next(NULL),
150        fd(fd), id(id), path(path), identifier(identifier),
151        classes(0), configuration(NULL), virtualKeyMap(NULL),
152        ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0),
153        timestampOverrideSec(0), timestampOverrideUsec(0) {
154    memset(keyBitmask, 0, sizeof(keyBitmask));
155    memset(absBitmask, 0, sizeof(absBitmask));
156    memset(relBitmask, 0, sizeof(relBitmask));
157    memset(swBitmask, 0, sizeof(swBitmask));
158    memset(ledBitmask, 0, sizeof(ledBitmask));
159    memset(ffBitmask, 0, sizeof(ffBitmask));
160    memset(propBitmask, 0, sizeof(propBitmask));
161}
162
163EventHub::Device::~Device() {
164    close();
165    delete configuration;
166    delete virtualKeyMap;
167}
168
169void EventHub::Device::close() {
170    if (fd >= 0) {
171        ::close(fd);
172        fd = -1;
173    }
174}
175
176
177// --- EventHub ---
178
179const uint32_t EventHub::EPOLL_ID_INOTIFY;
180const uint32_t EventHub::EPOLL_ID_WAKE;
181const int EventHub::EPOLL_SIZE_HINT;
182const int EventHub::EPOLL_MAX_EVENTS;
183
184EventHub::EventHub(void) :
185        mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(),
186        mOpeningDevices(0), mClosingDevices(0),
187        mNeedToSendFinishedDeviceScan(false),
188        mNeedToReopenDevices(false), mNeedToScanDevices(true),
189        mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
190    acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
191
192    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
193    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);
194
195    mINotifyFd = inotify_init();
196    int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
197    LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s.  errno=%d",
198            DEVICE_PATH, errno);
199
200    struct epoll_event eventItem;
201    memset(&eventItem, 0, sizeof(eventItem));
202    eventItem.events = EPOLLIN;
203    eventItem.data.u32 = EPOLL_ID_INOTIFY;
204    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
205    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno);
206
207    int wakeFds[2];
208    result = pipe(wakeFds);
209    LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno);
210
211    mWakeReadPipeFd = wakeFds[0];
212    mWakeWritePipeFd = wakeFds[1];
213
214    result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
215    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d",
216            errno);
217
218    result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
219    LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d",
220            errno);
221
222    eventItem.data.u32 = EPOLL_ID_WAKE;
223    result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
224    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d",
225            errno);
226
227    int major, minor;
228    getLinuxRelease(&major, &minor);
229    // EPOLLWAKEUP was introduced in kernel 3.5
230    mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5);
231}
232
233EventHub::~EventHub(void) {
234    closeAllDevicesLocked();
235
236    while (mClosingDevices) {
237        Device* device = mClosingDevices;
238        mClosingDevices = device->next;
239        delete device;
240    }
241
242    ::close(mEpollFd);
243    ::close(mINotifyFd);
244    ::close(mWakeReadPipeFd);
245    ::close(mWakeWritePipeFd);
246
247    release_wake_lock(WAKE_LOCK_ID);
248}
249
250InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
251    AutoMutex _l(mLock);
252    Device* device = getDeviceLocked(deviceId);
253    if (device == NULL) return InputDeviceIdentifier();
254    return device->identifier;
255}
256
257uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
258    AutoMutex _l(mLock);
259    Device* device = getDeviceLocked(deviceId);
260    if (device == NULL) return 0;
261    return device->classes;
262}
263
264int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const {
265    AutoMutex _l(mLock);
266    Device* device = getDeviceLocked(deviceId);
267    if (device == NULL) return 0;
268    return device->controllerNumber;
269}
270
271void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
272    AutoMutex _l(mLock);
273    Device* device = getDeviceLocked(deviceId);
274    if (device && device->configuration) {
275        *outConfiguration = *device->configuration;
276    } else {
277        outConfiguration->clear();
278    }
279}
280
281status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
282        RawAbsoluteAxisInfo* outAxisInfo) const {
283    outAxisInfo->clear();
284
285    if (axis >= 0 && axis <= ABS_MAX) {
286        AutoMutex _l(mLock);
287
288        Device* device = getDeviceLocked(deviceId);
289        if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
290            struct input_absinfo info;
291            if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
292                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
293                     axis, device->identifier.name.string(), device->fd, errno);
294                return -errno;
295            }
296
297            if (info.minimum != info.maximum) {
298                outAxisInfo->valid = true;
299                outAxisInfo->minValue = info.minimum;
300                outAxisInfo->maxValue = info.maximum;
301                outAxisInfo->flat = info.flat;
302                outAxisInfo->fuzz = info.fuzz;
303                outAxisInfo->resolution = info.resolution;
304            }
305            return OK;
306        }
307    }
308    return -1;
309}
310
311bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
312    if (axis >= 0 && axis <= REL_MAX) {
313        AutoMutex _l(mLock);
314
315        Device* device = getDeviceLocked(deviceId);
316        if (device) {
317            return test_bit(axis, device->relBitmask);
318        }
319    }
320    return false;
321}
322
323bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
324    if (property >= 0 && property <= INPUT_PROP_MAX) {
325        AutoMutex _l(mLock);
326
327        Device* device = getDeviceLocked(deviceId);
328        if (device) {
329            return test_bit(property, device->propBitmask);
330        }
331    }
332    return false;
333}
334
335int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
336    if (scanCode >= 0 && scanCode <= KEY_MAX) {
337        AutoMutex _l(mLock);
338
339        Device* device = getDeviceLocked(deviceId);
340        if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
341            uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
342            memset(keyState, 0, sizeof(keyState));
343            if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
344                return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
345            }
346        }
347    }
348    return AKEY_STATE_UNKNOWN;
349}
350
351int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
352    AutoMutex _l(mLock);
353
354    Device* device = getDeviceLocked(deviceId);
355    if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
356        Vector<int32_t> scanCodes;
357        device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
358        if (scanCodes.size() != 0) {
359            uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
360            memset(keyState, 0, sizeof(keyState));
361            if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
362                for (size_t i = 0; i < scanCodes.size(); i++) {
363                    int32_t sc = scanCodes.itemAt(i);
364                    if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
365                        return AKEY_STATE_DOWN;
366                    }
367                }
368                return AKEY_STATE_UP;
369            }
370        }
371    }
372    return AKEY_STATE_UNKNOWN;
373}
374
375int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
376    if (sw >= 0 && sw <= SW_MAX) {
377        AutoMutex _l(mLock);
378
379        Device* device = getDeviceLocked(deviceId);
380        if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
381            uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
382            memset(swState, 0, sizeof(swState));
383            if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
384                return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
385            }
386        }
387    }
388    return AKEY_STATE_UNKNOWN;
389}
390
391status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
392    *outValue = 0;
393
394    if (axis >= 0 && axis <= ABS_MAX) {
395        AutoMutex _l(mLock);
396
397        Device* device = getDeviceLocked(deviceId);
398        if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
399            struct input_absinfo info;
400            if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
401                ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
402                     axis, device->identifier.name.string(), device->fd, errno);
403                return -errno;
404            }
405
406            *outValue = info.value;
407            return OK;
408        }
409    }
410    return -1;
411}
412
413bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
414        const int32_t* keyCodes, uint8_t* outFlags) const {
415    AutoMutex _l(mLock);
416
417    Device* device = getDeviceLocked(deviceId);
418    if (device && device->keyMap.haveKeyLayout()) {
419        Vector<int32_t> scanCodes;
420        for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
421            scanCodes.clear();
422
423            status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
424                    keyCodes[codeIndex], &scanCodes);
425            if (! err) {
426                // check the possible scan codes identified by the layout map against the
427                // map of codes actually emitted by the driver
428                for (size_t sc = 0; sc < scanCodes.size(); sc++) {
429                    if (test_bit(scanCodes[sc], device->keyBitmask)) {
430                        outFlags[codeIndex] = 1;
431                        break;
432                    }
433                }
434            }
435        }
436        return true;
437    }
438    return false;
439}
440
441status_t EventHub::mapKey(int32_t deviceId,
442        int32_t scanCode, int32_t usageCode, int32_t metaState,
443        int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const {
444    AutoMutex _l(mLock);
445    Device* device = getDeviceLocked(deviceId);
446    status_t status = NAME_NOT_FOUND;
447
448    if (device) {
449        // Check the key character map first.
450        sp<KeyCharacterMap> kcm = device->getKeyCharacterMap();
451        if (kcm != NULL) {
452            if (!kcm->mapKey(scanCode, usageCode, outKeycode)) {
453                *outFlags = 0;
454                status = NO_ERROR;
455            }
456        }
457
458        // Check the key layout next.
459        if (status != NO_ERROR && device->keyMap.haveKeyLayout()) {
460            if (!device->keyMap.keyLayoutMap->mapKey(
461                    scanCode, usageCode, outKeycode, outFlags)) {
462                status = NO_ERROR;
463            }
464        }
465
466        if (status == NO_ERROR) {
467            if (kcm != NULL) {
468                kcm->tryRemapKey(*outKeycode, metaState, outKeycode, outMetaState);
469            } else {
470                *outMetaState = metaState;
471            }
472        }
473    }
474
475    if (status != NO_ERROR) {
476        *outKeycode = 0;
477        *outFlags = 0;
478        *outMetaState = metaState;
479    }
480
481    return status;
482}
483
484status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
485    AutoMutex _l(mLock);
486    Device* device = getDeviceLocked(deviceId);
487
488    if (device && device->keyMap.haveKeyLayout()) {
489        status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
490        if (err == NO_ERROR) {
491            return NO_ERROR;
492        }
493    }
494
495    return NAME_NOT_FOUND;
496}
497
498void EventHub::setExcludedDevices(const Vector<String8>& devices) {
499    AutoMutex _l(mLock);
500
501    mExcludedDevices = devices;
502}
503
504bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
505    AutoMutex _l(mLock);
506    Device* device = getDeviceLocked(deviceId);
507    if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
508        if (test_bit(scanCode, device->keyBitmask)) {
509            return true;
510        }
511    }
512    return false;
513}
514
515bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
516    AutoMutex _l(mLock);
517    Device* device = getDeviceLocked(deviceId);
518    int32_t sc;
519    if (device && mapLed(device, led, &sc) == NO_ERROR) {
520        if (test_bit(sc, device->ledBitmask)) {
521            return true;
522        }
523    }
524    return false;
525}
526
527void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
528    AutoMutex _l(mLock);
529    Device* device = getDeviceLocked(deviceId);
530    setLedStateLocked(device, led, on);
531}
532
533void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) {
534    int32_t sc;
535    if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) {
536        struct input_event ev;
537        ev.time.tv_sec = 0;
538        ev.time.tv_usec = 0;
539        ev.type = EV_LED;
540        ev.code = sc;
541        ev.value = on ? 1 : 0;
542
543        ssize_t nWrite;
544        do {
545            nWrite = write(device->fd, &ev, sizeof(struct input_event));
546        } while (nWrite == -1 && errno == EINTR);
547    }
548}
549
550void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
551        Vector<VirtualKeyDefinition>& outVirtualKeys) const {
552    outVirtualKeys.clear();
553
554    AutoMutex _l(mLock);
555    Device* device = getDeviceLocked(deviceId);
556    if (device && device->virtualKeyMap) {
557        outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
558    }
559}
560
561sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
562    AutoMutex _l(mLock);
563    Device* device = getDeviceLocked(deviceId);
564    if (device) {
565        return device->getKeyCharacterMap();
566    }
567    return NULL;
568}
569
570bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId,
571        const sp<KeyCharacterMap>& map) {
572    AutoMutex _l(mLock);
573    Device* device = getDeviceLocked(deviceId);
574    if (device) {
575        if (map != device->overlayKeyMap) {
576            device->overlayKeyMap = map;
577            device->combinedKeyMap = KeyCharacterMap::combine(
578                    device->keyMap.keyCharacterMap, map);
579            return true;
580        }
581    }
582    return false;
583}
584
585static String8 generateDescriptor(InputDeviceIdentifier& identifier) {
586    String8 rawDescriptor;
587    rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor,
588            identifier.product);
589    // TODO add handling for USB devices to not uniqueify kbs that show up twice
590    if (!identifier.uniqueId.isEmpty()) {
591        rawDescriptor.append("uniqueId:");
592        rawDescriptor.append(identifier.uniqueId);
593    } else if (identifier.nonce != 0) {
594        rawDescriptor.appendFormat("nonce:%04x", identifier.nonce);
595    }
596
597    if (identifier.vendor == 0 && identifier.product == 0) {
598        // If we don't know the vendor and product id, then the device is probably
599        // built-in so we need to rely on other information to uniquely identify
600        // the input device.  Usually we try to avoid relying on the device name or
601        // location but for built-in input device, they are unlikely to ever change.
602        if (!identifier.name.isEmpty()) {
603            rawDescriptor.append("name:");
604            rawDescriptor.append(identifier.name);
605        } else if (!identifier.location.isEmpty()) {
606            rawDescriptor.append("location:");
607            rawDescriptor.append(identifier.location);
608        }
609    }
610    identifier.descriptor = sha1(rawDescriptor);
611    return rawDescriptor;
612}
613
614void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) {
615    // Compute a device descriptor that uniquely identifies the device.
616    // The descriptor is assumed to be a stable identifier.  Its value should not
617    // change between reboots, reconnections, firmware updates or new releases
618    // of Android. In practice we sometimes get devices that cannot be uniquely
619    // identified. In this case we enforce uniqueness between connected devices.
620    // Ideally, we also want the descriptor to be short and relatively opaque.
621
622    identifier.nonce = 0;
623    String8 rawDescriptor = generateDescriptor(identifier);
624    if (identifier.uniqueId.isEmpty()) {
625        // If it didn't have a unique id check for conflicts and enforce
626        // uniqueness if necessary.
627        while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) {
628            identifier.nonce++;
629            rawDescriptor = generateDescriptor(identifier);
630        }
631    }
632    ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
633            identifier.descriptor.string());
634}
635
636void EventHub::vibrate(int32_t deviceId, nsecs_t duration) {
637    AutoMutex _l(mLock);
638    Device* device = getDeviceLocked(deviceId);
639    if (device && !device->isVirtual()) {
640        ff_effect effect;
641        memset(&effect, 0, sizeof(effect));
642        effect.type = FF_RUMBLE;
643        effect.id = device->ffEffectId;
644        effect.u.rumble.strong_magnitude = 0xc000;
645        effect.u.rumble.weak_magnitude = 0xc000;
646        effect.replay.length = (duration + 999999LL) / 1000000LL;
647        effect.replay.delay = 0;
648        if (ioctl(device->fd, EVIOCSFF, &effect)) {
649            ALOGW("Could not upload force feedback effect to device %s due to error %d.",
650                    device->identifier.name.string(), errno);
651            return;
652        }
653        device->ffEffectId = effect.id;
654
655        struct input_event ev;
656        ev.time.tv_sec = 0;
657        ev.time.tv_usec = 0;
658        ev.type = EV_FF;
659        ev.code = device->ffEffectId;
660        ev.value = 1;
661        if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
662            ALOGW("Could not start force feedback effect on device %s due to error %d.",
663                    device->identifier.name.string(), errno);
664            return;
665        }
666        device->ffEffectPlaying = true;
667    }
668}
669
670void EventHub::cancelVibrate(int32_t deviceId) {
671    AutoMutex _l(mLock);
672    Device* device = getDeviceLocked(deviceId);
673    if (device && !device->isVirtual()) {
674        if (device->ffEffectPlaying) {
675            device->ffEffectPlaying = false;
676
677            struct input_event ev;
678            ev.time.tv_sec = 0;
679            ev.time.tv_usec = 0;
680            ev.type = EV_FF;
681            ev.code = device->ffEffectId;
682            ev.value = 0;
683            if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) {
684                ALOGW("Could not stop force feedback effect on device %s due to error %d.",
685                        device->identifier.name.string(), errno);
686                return;
687            }
688        }
689    }
690}
691
692EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const {
693    size_t size = mDevices.size();
694    for (size_t i = 0; i < size; i++) {
695        Device* device = mDevices.valueAt(i);
696        if (descriptor.compare(device->identifier.descriptor) == 0) {
697            return device;
698        }
699    }
700    return NULL;
701}
702
703EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
704    if (deviceId == BUILT_IN_KEYBOARD_ID) {
705        deviceId = mBuiltInKeyboardId;
706    }
707    ssize_t index = mDevices.indexOfKey(deviceId);
708    return index >= 0 ? mDevices.valueAt(index) : NULL;
709}
710
711EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
712    for (size_t i = 0; i < mDevices.size(); i++) {
713        Device* device = mDevices.valueAt(i);
714        if (device->path == devicePath) {
715            return device;
716        }
717    }
718    return NULL;
719}
720
721size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
722    ALOG_ASSERT(bufferSize >= 1);
723
724    AutoMutex _l(mLock);
725
726    struct input_event readBuffer[bufferSize];
727
728    RawEvent* event = buffer;
729    size_t capacity = bufferSize;
730    bool awoken = false;
731    for (;;) {
732        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
733
734        // Reopen input devices if needed.
735        if (mNeedToReopenDevices) {
736            mNeedToReopenDevices = false;
737
738            ALOGI("Reopening all input devices due to a configuration change.");
739
740            closeAllDevicesLocked();
741            mNeedToScanDevices = true;
742            break; // return to the caller before we actually rescan
743        }
744
745        // Report any devices that had last been added/removed.
746        while (mClosingDevices) {
747            Device* device = mClosingDevices;
748            ALOGV("Reporting device closed: id=%d, name=%s\n",
749                 device->id, device->path.string());
750            mClosingDevices = device->next;
751            event->when = now;
752            event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
753            event->type = DEVICE_REMOVED;
754            event += 1;
755            delete device;
756            mNeedToSendFinishedDeviceScan = true;
757            if (--capacity == 0) {
758                break;
759            }
760        }
761
762        if (mNeedToScanDevices) {
763            mNeedToScanDevices = false;
764            scanDevicesLocked();
765            mNeedToSendFinishedDeviceScan = true;
766        }
767
768        while (mOpeningDevices != NULL) {
769            Device* device = mOpeningDevices;
770            ALOGV("Reporting device opened: id=%d, name=%s\n",
771                 device->id, device->path.string());
772            mOpeningDevices = device->next;
773            event->when = now;
774            event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
775            event->type = DEVICE_ADDED;
776            event += 1;
777            mNeedToSendFinishedDeviceScan = true;
778            if (--capacity == 0) {
779                break;
780            }
781        }
782
783        if (mNeedToSendFinishedDeviceScan) {
784            mNeedToSendFinishedDeviceScan = false;
785            event->when = now;
786            event->type = FINISHED_DEVICE_SCAN;
787            event += 1;
788            if (--capacity == 0) {
789                break;
790            }
791        }
792
793        // Grab the next input event.
794        bool deviceChanged = false;
795        while (mPendingEventIndex < mPendingEventCount) {
796            const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
797            if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
798                if (eventItem.events & EPOLLIN) {
799                    mPendingINotify = true;
800                } else {
801                    ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
802                }
803                continue;
804            }
805
806            if (eventItem.data.u32 == EPOLL_ID_WAKE) {
807                if (eventItem.events & EPOLLIN) {
808                    ALOGV("awoken after wake()");
809                    awoken = true;
810                    char buffer[16];
811                    ssize_t nRead;
812                    do {
813                        nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
814                    } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
815                } else {
816                    ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
817                            eventItem.events);
818                }
819                continue;
820            }
821
822            ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
823            if (deviceIndex < 0) {
824                ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
825                        eventItem.events, eventItem.data.u32);
826                continue;
827            }
828
829            Device* device = mDevices.valueAt(deviceIndex);
830            if (eventItem.events & EPOLLIN) {
831                int32_t readSize = read(device->fd, readBuffer,
832                        sizeof(struct input_event) * capacity);
833                if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
834                    // Device was removed before INotify noticed.
835                    ALOGW("could not get event, removed? (fd: %d size: %" PRId32
836                            " bufferSize: %zu capacity: %zu errno: %d)\n",
837                            device->fd, readSize, bufferSize, capacity, errno);
838                    deviceChanged = true;
839                    closeDeviceLocked(device);
840                } else if (readSize < 0) {
841                    if (errno != EAGAIN && errno != EINTR) {
842                        ALOGW("could not get event (errno=%d)", errno);
843                    }
844                } else if ((readSize % sizeof(struct input_event)) != 0) {
845                    ALOGE("could not get event (wrong size: %d)", readSize);
846                } else {
847                    int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
848
849                    size_t count = size_t(readSize) / sizeof(struct input_event);
850                    for (size_t i = 0; i < count; i++) {
851                        struct input_event& iev = readBuffer[i];
852                        ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d",
853                                device->path.string(),
854                                (int) iev.time.tv_sec, (int) iev.time.tv_usec,
855                                iev.type, iev.code, iev.value);
856
857                        // Some input devices may have a better concept of the time
858                        // when an input event was actually generated than the kernel
859                        // which simply timestamps all events on entry to evdev.
860                        // This is a custom Android extension of the input protocol
861                        // mainly intended for use with uinput based device drivers.
862                        if (iev.type == EV_MSC) {
863                            if (iev.code == MSC_ANDROID_TIME_SEC) {
864                                device->timestampOverrideSec = iev.value;
865                                continue;
866                            } else if (iev.code == MSC_ANDROID_TIME_USEC) {
867                                device->timestampOverrideUsec = iev.value;
868                                continue;
869                            }
870                        }
871                        if (device->timestampOverrideSec || device->timestampOverrideUsec) {
872                            iev.time.tv_sec = device->timestampOverrideSec;
873                            iev.time.tv_usec = device->timestampOverrideUsec;
874                            if (iev.type == EV_SYN && iev.code == SYN_REPORT) {
875                                device->timestampOverrideSec = 0;
876                                device->timestampOverrideUsec = 0;
877                            }
878                            ALOGV("applied override time %d.%06d",
879                                    int(iev.time.tv_sec), int(iev.time.tv_usec));
880                        }
881
882                        // Use the time specified in the event instead of the current time
883                        // so that downstream code can get more accurate estimates of
884                        // event dispatch latency from the time the event is enqueued onto
885                        // the evdev client buffer.
886                        //
887                        // The event's timestamp fortuitously uses the same monotonic clock
888                        // time base as the rest of Android.  The kernel event device driver
889                        // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
890                        // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
891                        // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
892                        // system call that also queries ktime_get_ts().
893                        event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
894                                + nsecs_t(iev.time.tv_usec) * 1000LL;
895                        ALOGV("event time %" PRId64 ", now %" PRId64, event->when, now);
896
897                        // Bug 7291243: Add a guard in case the kernel generates timestamps
898                        // that appear to be far into the future because they were generated
899                        // using the wrong clock source.
900                        //
901                        // This can happen because when the input device is initially opened
902                        // it has a default clock source of CLOCK_REALTIME.  Any input events
903                        // enqueued right after the device is opened will have timestamps
904                        // generated using CLOCK_REALTIME.  We later set the clock source
905                        // to CLOCK_MONOTONIC but it is already too late.
906                        //
907                        // Invalid input event timestamps can result in ANRs, crashes and
908                        // and other issues that are hard to track down.  We must not let them
909                        // propagate through the system.
910                        //
911                        // Log a warning so that we notice the problem and recover gracefully.
912                        if (event->when >= now + 10 * 1000000000LL) {
913                            // Double-check.  Time may have moved on.
914                            nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC);
915                            if (event->when > time) {
916                                ALOGW("An input event from %s has a timestamp that appears to "
917                                        "have been generated using the wrong clock source "
918                                        "(expected CLOCK_MONOTONIC): "
919                                        "event time %" PRId64 ", current time %" PRId64
920                                        ", call time %" PRId64 ".  "
921                                        "Using current time instead.",
922                                        device->path.string(), event->when, time, now);
923                                event->when = time;
924                            } else {
925                                ALOGV("Event time is ok but failed the fast path and required "
926                                        "an extra call to systemTime: "
927                                        "event time %" PRId64 ", current time %" PRId64
928                                        ", call time %" PRId64 ".",
929                                        event->when, time, now);
930                            }
931                        }
932                        event->deviceId = deviceId;
933                        event->type = iev.type;
934                        event->code = iev.code;
935                        event->value = iev.value;
936                        event += 1;
937                        capacity -= 1;
938                    }
939                    if (capacity == 0) {
940                        // The result buffer is full.  Reset the pending event index
941                        // so we will try to read the device again on the next iteration.
942                        mPendingEventIndex -= 1;
943                        break;
944                    }
945                }
946            } else if (eventItem.events & EPOLLHUP) {
947                ALOGI("Removing device %s due to epoll hang-up event.",
948                        device->identifier.name.string());
949                deviceChanged = true;
950                closeDeviceLocked(device);
951            } else {
952                ALOGW("Received unexpected epoll event 0x%08x for device %s.",
953                        eventItem.events, device->identifier.name.string());
954            }
955        }
956
957        // readNotify() will modify the list of devices so this must be done after
958        // processing all other events to ensure that we read all remaining events
959        // before closing the devices.
960        if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
961            mPendingINotify = false;
962            readNotifyLocked();
963            deviceChanged = true;
964        }
965
966        // Report added or removed devices immediately.
967        if (deviceChanged) {
968            continue;
969        }
970
971        // Return now if we have collected any events or if we were explicitly awoken.
972        if (event != buffer || awoken) {
973            break;
974        }
975
976        // Poll for events.  Mind the wake lock dance!
977        // We hold a wake lock at all times except during epoll_wait().  This works due to some
978        // subtle choreography.  When a device driver has pending (unread) events, it acquires
979        // a kernel wake lock.  However, once the last pending event has been read, the device
980        // driver will release the kernel wake lock.  To prevent the system from going to sleep
981        // when this happens, the EventHub holds onto its own user wake lock while the client
982        // is processing events.  Thus the system can only sleep if there are no events
983        // pending or currently being processed.
984        //
985        // The timeout is advisory only.  If the device is asleep, it will not wake just to
986        // service the timeout.
987        mPendingEventIndex = 0;
988
989        mLock.unlock(); // release lock before poll, must be before release_wake_lock
990        release_wake_lock(WAKE_LOCK_ID);
991
992        int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
993
994        acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
995        mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
996
997        if (pollResult == 0) {
998            // Timed out.
999            mPendingEventCount = 0;
1000            break;
1001        }
1002
1003        if (pollResult < 0) {
1004            // An error occurred.
1005            mPendingEventCount = 0;
1006
1007            // Sleep after errors to avoid locking up the system.
1008            // Hopefully the error is transient.
1009            if (errno != EINTR) {
1010                ALOGW("poll failed (errno=%d)\n", errno);
1011                usleep(100000);
1012            }
1013        } else {
1014            // Some events occurred.
1015            mPendingEventCount = size_t(pollResult);
1016        }
1017    }
1018
1019    // All done, return the number of events we read.
1020    return event - buffer;
1021}
1022
1023void EventHub::wake() {
1024    ALOGV("wake() called");
1025
1026    ssize_t nWrite;
1027    do {
1028        nWrite = write(mWakeWritePipeFd, "W", 1);
1029    } while (nWrite == -1 && errno == EINTR);
1030
1031    if (nWrite != 1 && errno != EAGAIN) {
1032        ALOGW("Could not write wake signal, errno=%d", errno);
1033    }
1034}
1035
1036void EventHub::scanDevicesLocked() {
1037    status_t res = scanDirLocked(DEVICE_PATH);
1038    if(res < 0) {
1039        ALOGE("scan dir failed for %s\n", DEVICE_PATH);
1040    }
1041    if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
1042        createVirtualKeyboardLocked();
1043    }
1044}
1045
1046// ----------------------------------------------------------------------------
1047
1048static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
1049    const uint8_t* end = array + endIndex;
1050    array += startIndex;
1051    while (array != end) {
1052        if (*(array++) != 0) {
1053            return true;
1054        }
1055    }
1056    return false;
1057}
1058
1059static const int32_t GAMEPAD_KEYCODES[] = {
1060        AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
1061        AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
1062        AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
1063        AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
1064        AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
1065        AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
1066};
1067
1068status_t EventHub::openDeviceLocked(const char *devicePath) {
1069    char buffer[80];
1070
1071    ALOGV("Opening device: %s", devicePath);
1072
1073    int fd = open(devicePath, O_RDWR | O_CLOEXEC);
1074    if(fd < 0) {
1075        ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
1076        return -1;
1077    }
1078
1079    InputDeviceIdentifier identifier;
1080
1081    // Get device name.
1082    if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
1083        //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
1084    } else {
1085        buffer[sizeof(buffer) - 1] = '\0';
1086        identifier.name.setTo(buffer);
1087    }
1088
1089    // Check to see if the device is on our excluded list
1090    for (size_t i = 0; i < mExcludedDevices.size(); i++) {
1091        const String8& item = mExcludedDevices.itemAt(i);
1092        if (identifier.name == item) {
1093            ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
1094            close(fd);
1095            return -1;
1096        }
1097    }
1098
1099    // Get device driver version.
1100    int driverVersion;
1101    if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
1102        ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
1103        close(fd);
1104        return -1;
1105    }
1106
1107    // Get device identifier.
1108    struct input_id inputId;
1109    if(ioctl(fd, EVIOCGID, &inputId)) {
1110        ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
1111        close(fd);
1112        return -1;
1113    }
1114    identifier.bus = inputId.bustype;
1115    identifier.product = inputId.product;
1116    identifier.vendor = inputId.vendor;
1117    identifier.version = inputId.version;
1118
1119    // Get device physical location.
1120    if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
1121        //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
1122    } else {
1123        buffer[sizeof(buffer) - 1] = '\0';
1124        identifier.location.setTo(buffer);
1125    }
1126
1127    // Get device unique id.
1128    if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
1129        //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
1130    } else {
1131        buffer[sizeof(buffer) - 1] = '\0';
1132        identifier.uniqueId.setTo(buffer);
1133    }
1134
1135    // Fill in the descriptor.
1136    assignDescriptorLocked(identifier);
1137
1138    // Make file descriptor non-blocking for use with poll().
1139    if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
1140        ALOGE("Error %d making device file descriptor non-blocking.", errno);
1141        close(fd);
1142        return -1;
1143    }
1144
1145    // Allocate device.  (The device object takes ownership of the fd at this point.)
1146    int32_t deviceId = mNextDeviceId++;
1147    Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
1148
1149    ALOGV("add device %d: %s\n", deviceId, devicePath);
1150    ALOGV("  bus:        %04x\n"
1151         "  vendor      %04x\n"
1152         "  product     %04x\n"
1153         "  version     %04x\n",
1154        identifier.bus, identifier.vendor, identifier.product, identifier.version);
1155    ALOGV("  name:       \"%s\"\n", identifier.name.string());
1156    ALOGV("  location:   \"%s\"\n", identifier.location.string());
1157    ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.string());
1158    ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.string());
1159    ALOGV("  driver:     v%d.%d.%d\n",
1160        driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
1161
1162    // Load the configuration file for the device.
1163    loadConfigurationLocked(device);
1164
1165    // Figure out the kinds of events the device reports.
1166    ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
1167    ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
1168    ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
1169    ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
1170    ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
1171    ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask);
1172    ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
1173
1174    // See if this is a keyboard.  Ignore everything in the button range except for
1175    // joystick and gamepad buttons which are handled like keyboards for the most part.
1176    bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
1177            || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
1178                    sizeof_bit_array(KEY_MAX + 1));
1179    bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
1180                    sizeof_bit_array(BTN_MOUSE))
1181            || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
1182                    sizeof_bit_array(BTN_DIGI));
1183    if (haveKeyboardKeys || haveGamepadButtons) {
1184        device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1185    }
1186
1187    // See if this is a cursor device such as a trackball or mouse.
1188    if (test_bit(BTN_MOUSE, device->keyBitmask)
1189            && test_bit(REL_X, device->relBitmask)
1190            && test_bit(REL_Y, device->relBitmask)) {
1191        device->classes |= INPUT_DEVICE_CLASS_CURSOR;
1192    }
1193
1194    // See if this is a rotary encoder type device.
1195    String8 deviceType = String8();
1196    if (device->configuration &&
1197        device->configuration->tryGetProperty(String8("device.type"), deviceType)) {
1198            if (!deviceType.compare(String8("rotaryEncoder"))) {
1199                device->classes |= INPUT_DEVICE_CLASS_ROTARY_ENCODER;
1200            }
1201    }
1202
1203    // See if this is a touch pad.
1204    // Is this a new modern multi-touch driver?
1205    if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
1206            && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
1207        // Some joysticks such as the PS3 controller report axes that conflict
1208        // with the ABS_MT range.  Try to confirm that the device really is
1209        // a touch screen.
1210        if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
1211            device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
1212        }
1213    // Is this an old style single-touch driver?
1214    } else if (test_bit(BTN_TOUCH, device->keyBitmask)
1215            && test_bit(ABS_X, device->absBitmask)
1216            && test_bit(ABS_Y, device->absBitmask)) {
1217        device->classes |= INPUT_DEVICE_CLASS_TOUCH;
1218    // Is this a BT stylus?
1219    } else if ((test_bit(ABS_PRESSURE, device->absBitmask) ||
1220                test_bit(BTN_TOUCH, device->keyBitmask))
1221            && !test_bit(ABS_X, device->absBitmask)
1222            && !test_bit(ABS_Y, device->absBitmask)) {
1223        device->classes |= INPUT_DEVICE_CLASS_EXTERNAL_STYLUS;
1224        // Keyboard will try to claim some of the buttons but we really want to reserve those so we
1225        // can fuse it with the touch screen data, so just take them back. Note this means an
1226        // external stylus cannot also be a keyboard device.
1227        device->classes &= ~INPUT_DEVICE_CLASS_KEYBOARD;
1228    }
1229
1230    // See if this device is a joystick.
1231    // Assumes that joysticks always have gamepad buttons in order to distinguish them
1232    // from other devices such as accelerometers that also have absolute axes.
1233    if (haveGamepadButtons) {
1234        uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
1235        for (int i = 0; i <= ABS_MAX; i++) {
1236            if (test_bit(i, device->absBitmask)
1237                    && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
1238                device->classes = assumedClasses;
1239                break;
1240            }
1241        }
1242    }
1243
1244    // Check whether this device has switches.
1245    for (int i = 0; i <= SW_MAX; i++) {
1246        if (test_bit(i, device->swBitmask)) {
1247            device->classes |= INPUT_DEVICE_CLASS_SWITCH;
1248            break;
1249        }
1250    }
1251
1252    // Check whether this device supports the vibrator.
1253    if (test_bit(FF_RUMBLE, device->ffBitmask)) {
1254        device->classes |= INPUT_DEVICE_CLASS_VIBRATOR;
1255    }
1256
1257    // Configure virtual keys.
1258    if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
1259        // Load the virtual keys for the touch screen, if any.
1260        // We do this now so that we can make sure to load the keymap if necessary.
1261        status_t status = loadVirtualKeyMapLocked(device);
1262        if (!status) {
1263            device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
1264        }
1265    }
1266
1267    // Load the key map.
1268    // We need to do this for joysticks too because the key layout may specify axes.
1269    status_t keyMapStatus = NAME_NOT_FOUND;
1270    if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
1271        // Load the keymap for the device.
1272        keyMapStatus = loadKeyMapLocked(device);
1273    }
1274
1275    // Configure the keyboard, gamepad or virtual keyboard.
1276    if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
1277        // Register the keyboard as a built-in keyboard if it is eligible.
1278        if (!keyMapStatus
1279                && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
1280                && isEligibleBuiltInKeyboard(device->identifier,
1281                        device->configuration, &device->keyMap)) {
1282            mBuiltInKeyboardId = device->id;
1283        }
1284
1285        // 'Q' key support = cheap test of whether this is an alpha-capable kbd
1286        if (hasKeycodeLocked(device, AKEYCODE_Q)) {
1287            device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
1288        }
1289
1290        // See if this device has a DPAD.
1291        if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
1292                hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
1293                hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
1294                hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
1295                hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
1296            device->classes |= INPUT_DEVICE_CLASS_DPAD;
1297        }
1298
1299        // See if this device has a gamepad.
1300        for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
1301            if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
1302                device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
1303                break;
1304            }
1305        }
1306
1307        // Disable kernel key repeat since we handle it ourselves
1308        unsigned int repeatRate[] = {0,0};
1309        if (ioctl(fd, EVIOCSREP, repeatRate)) {
1310            ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno));
1311        }
1312    }
1313
1314    // If the device isn't recognized as something we handle, don't monitor it.
1315    if (device->classes == 0) {
1316        ALOGV("Dropping device: id=%d, path='%s', name='%s'",
1317                deviceId, devicePath, device->identifier.name.string());
1318        delete device;
1319        return -1;
1320    }
1321
1322    // Determine whether the device has a mic.
1323    if (deviceHasMicLocked(device)) {
1324        device->classes |= INPUT_DEVICE_CLASS_MIC;
1325    }
1326
1327    // Determine whether the device is external or internal.
1328    if (isExternalDeviceLocked(device)) {
1329        device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
1330    }
1331
1332    if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD)
1333            && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) {
1334        device->controllerNumber = getNextControllerNumberLocked(device);
1335        setLedForController(device);
1336    }
1337
1338    // Register with epoll.
1339    struct epoll_event eventItem;
1340    memset(&eventItem, 0, sizeof(eventItem));
1341    eventItem.events = EPOLLIN;
1342    if (mUsingEpollWakeup) {
1343        eventItem.events |= EPOLLWAKEUP;
1344    }
1345    eventItem.data.u32 = deviceId;
1346    if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
1347        ALOGE("Could not add device fd to epoll instance.  errno=%d", errno);
1348        delete device;
1349        return -1;
1350    }
1351
1352    String8 wakeMechanism("EPOLLWAKEUP");
1353    if (!mUsingEpollWakeup) {
1354#ifndef EVIOCSSUSPENDBLOCK
1355        // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels
1356        // will use an epoll flag instead, so as long as we want to support
1357        // this feature, we need to be prepared to define the ioctl ourselves.
1358#define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int)
1359#endif
1360        if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) {
1361            wakeMechanism = "<none>";
1362        } else {
1363            wakeMechanism = "EVIOCSSUSPENDBLOCK";
1364        }
1365    }
1366
1367    // Tell the kernel that we want to use the monotonic clock for reporting timestamps
1368    // associated with input events.  This is important because the input system
1369    // uses the timestamps extensively and assumes they were recorded using the monotonic
1370    // clock.
1371    //
1372    // In older kernel, before Linux 3.4, there was no way to tell the kernel which
1373    // clock to use to input event timestamps.  The standard kernel behavior was to
1374    // record a real time timestamp, which isn't what we want.  Android kernels therefore
1375    // contained a patch to the evdev_event() function in drivers/input/evdev.c to
1376    // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
1377    // clock to be used instead of the real time clock.
1378    //
1379    // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
1380    // Therefore, we no longer require the Android-specific kernel patch described above
1381    // as long as we make sure to set select the monotonic clock.  We do that here.
1382    int clockId = CLOCK_MONOTONIC;
1383    bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId);
1384
1385    ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
1386            "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
1387            "wakeMechanism=%s, usingClockIoctl=%s",
1388         deviceId, fd, devicePath, device->identifier.name.string(),
1389         device->classes,
1390         device->configurationFile.string(),
1391         device->keyMap.keyLayoutFile.string(),
1392         device->keyMap.keyCharacterMapFile.string(),
1393         toString(mBuiltInKeyboardId == deviceId),
1394         wakeMechanism.string(), toString(usingClockIoctl));
1395
1396    addDeviceLocked(device);
1397    return 0;
1398}
1399
1400void EventHub::createVirtualKeyboardLocked() {
1401    InputDeviceIdentifier identifier;
1402    identifier.name = "Virtual";
1403    identifier.uniqueId = "<virtual>";
1404    assignDescriptorLocked(identifier);
1405
1406    Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
1407    device->classes = INPUT_DEVICE_CLASS_KEYBOARD
1408            | INPUT_DEVICE_CLASS_ALPHAKEY
1409            | INPUT_DEVICE_CLASS_DPAD
1410            | INPUT_DEVICE_CLASS_VIRTUAL;
1411    loadKeyMapLocked(device);
1412    addDeviceLocked(device);
1413}
1414
1415void EventHub::addDeviceLocked(Device* device) {
1416    mDevices.add(device->id, device);
1417    device->next = mOpeningDevices;
1418    mOpeningDevices = device;
1419}
1420
1421void EventHub::loadConfigurationLocked(Device* device) {
1422    device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
1423            device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
1424    if (device->configurationFile.isEmpty()) {
1425        ALOGD("No input device configuration file found for device '%s'.",
1426                device->identifier.name.string());
1427    } else {
1428        status_t status = PropertyMap::load(device->configurationFile,
1429                &device->configuration);
1430        if (status) {
1431            ALOGE("Error loading input device configuration file for device '%s'.  "
1432                    "Using default configuration.",
1433                    device->identifier.name.string());
1434        }
1435    }
1436}
1437
1438status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
1439    // The virtual key map is supplied by the kernel as a system board property file.
1440    String8 path;
1441    path.append("/sys/board_properties/virtualkeys.");
1442    path.append(device->identifier.name);
1443    if (access(path.string(), R_OK)) {
1444        return NAME_NOT_FOUND;
1445    }
1446    return VirtualKeyMap::load(path, &device->virtualKeyMap);
1447}
1448
1449status_t EventHub::loadKeyMapLocked(Device* device) {
1450    return device->keyMap.load(device->identifier, device->configuration);
1451}
1452
1453bool EventHub::isExternalDeviceLocked(Device* device) {
1454    if (device->configuration) {
1455        bool value;
1456        if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
1457            return !value;
1458        }
1459    }
1460    return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
1461}
1462
1463bool EventHub::deviceHasMicLocked(Device* device) {
1464    if (device->configuration) {
1465        bool value;
1466        if (device->configuration->tryGetProperty(String8("audio.mic"), value)) {
1467            return value;
1468        }
1469    }
1470    return false;
1471}
1472
1473int32_t EventHub::getNextControllerNumberLocked(Device* device) {
1474    if (mControllerNumbers.isFull()) {
1475        ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s",
1476                device->identifier.name.string());
1477        return 0;
1478    }
1479    // Since the controller number 0 is reserved for non-controllers, translate all numbers up by
1480    // one
1481    return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1);
1482}
1483
1484void EventHub::releaseControllerNumberLocked(Device* device) {
1485    int32_t num = device->controllerNumber;
1486    device->controllerNumber= 0;
1487    if (num == 0) {
1488        return;
1489    }
1490    mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1));
1491}
1492
1493void EventHub::setLedForController(Device* device) {
1494    for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) {
1495        setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1);
1496    }
1497}
1498
1499bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
1500    if (!device->keyMap.haveKeyLayout()) {
1501        return false;
1502    }
1503
1504    Vector<int32_t> scanCodes;
1505    device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
1506    const size_t N = scanCodes.size();
1507    for (size_t i=0; i<N && i<=KEY_MAX; i++) {
1508        int32_t sc = scanCodes.itemAt(i);
1509        if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
1510            return true;
1511        }
1512    }
1513
1514    return false;
1515}
1516
1517status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const {
1518    if (!device->keyMap.haveKeyLayout()) {
1519        return NAME_NOT_FOUND;
1520    }
1521
1522    int32_t scanCode;
1523    if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) {
1524        if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) {
1525            *outScanCode = scanCode;
1526            return NO_ERROR;
1527        }
1528    }
1529    return NAME_NOT_FOUND;
1530}
1531
1532status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
1533    Device* device = getDeviceByPathLocked(devicePath);
1534    if (device) {
1535        closeDeviceLocked(device);
1536        return 0;
1537    }
1538    ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
1539    return -1;
1540}
1541
1542void EventHub::closeAllDevicesLocked() {
1543    while (mDevices.size() > 0) {
1544        closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
1545    }
1546}
1547
1548void EventHub::closeDeviceLocked(Device* device) {
1549    ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
1550         device->path.string(), device->identifier.name.string(), device->id,
1551         device->fd, device->classes);
1552
1553    if (device->id == mBuiltInKeyboardId) {
1554        ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
1555                device->path.string(), mBuiltInKeyboardId);
1556        mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
1557    }
1558
1559    if (!device->isVirtual()) {
1560        if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
1561            ALOGW("Could not remove device fd from epoll instance.  errno=%d", errno);
1562        }
1563    }
1564
1565    releaseControllerNumberLocked(device);
1566
1567    mDevices.removeItem(device->id);
1568    device->close();
1569
1570    // Unlink for opening devices list if it is present.
1571    Device* pred = NULL;
1572    bool found = false;
1573    for (Device* entry = mOpeningDevices; entry != NULL; ) {
1574        if (entry == device) {
1575            found = true;
1576            break;
1577        }
1578        pred = entry;
1579        entry = entry->next;
1580    }
1581    if (found) {
1582        // Unlink the device from the opening devices list then delete it.
1583        // We don't need to tell the client that the device was closed because
1584        // it does not even know it was opened in the first place.
1585        ALOGI("Device %s was immediately closed after opening.", device->path.string());
1586        if (pred) {
1587            pred->next = device->next;
1588        } else {
1589            mOpeningDevices = device->next;
1590        }
1591        delete device;
1592    } else {
1593        // Link into closing devices list.
1594        // The device will be deleted later after we have informed the client.
1595        device->next = mClosingDevices;
1596        mClosingDevices = device;
1597    }
1598}
1599
1600status_t EventHub::readNotifyLocked() {
1601    int res;
1602    char devname[PATH_MAX];
1603    char *filename;
1604    char event_buf[512];
1605    int event_size;
1606    int event_pos = 0;
1607    struct inotify_event *event;
1608
1609    ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
1610    res = read(mINotifyFd, event_buf, sizeof(event_buf));
1611    if(res < (int)sizeof(*event)) {
1612        if(errno == EINTR)
1613            return 0;
1614        ALOGW("could not get event, %s\n", strerror(errno));
1615        return -1;
1616    }
1617    //printf("got %d bytes of event information\n", res);
1618
1619    strcpy(devname, DEVICE_PATH);
1620    filename = devname + strlen(devname);
1621    *filename++ = '/';
1622
1623    while(res >= (int)sizeof(*event)) {
1624        event = (struct inotify_event *)(event_buf + event_pos);
1625        //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
1626        if(event->len) {
1627            strcpy(filename, event->name);
1628            if(event->mask & IN_CREATE) {
1629                openDeviceLocked(devname);
1630            } else {
1631                ALOGI("Removing device '%s' due to inotify event\n", devname);
1632                closeDeviceByPathLocked(devname);
1633            }
1634        }
1635        event_size = sizeof(*event) + event->len;
1636        res -= event_size;
1637        event_pos += event_size;
1638    }
1639    return 0;
1640}
1641
1642status_t EventHub::scanDirLocked(const char *dirname)
1643{
1644    char devname[PATH_MAX];
1645    char *filename;
1646    DIR *dir;
1647    struct dirent *de;
1648    dir = opendir(dirname);
1649    if(dir == NULL)
1650        return -1;
1651    strcpy(devname, dirname);
1652    filename = devname + strlen(devname);
1653    *filename++ = '/';
1654    while((de = readdir(dir))) {
1655        if(de->d_name[0] == '.' &&
1656           (de->d_name[1] == '\0' ||
1657            (de->d_name[1] == '.' && de->d_name[2] == '\0')))
1658            continue;
1659        strcpy(filename, de->d_name);
1660        openDeviceLocked(devname);
1661    }
1662    closedir(dir);
1663    return 0;
1664}
1665
1666void EventHub::requestReopenDevices() {
1667    ALOGV("requestReopenDevices() called");
1668
1669    AutoMutex _l(mLock);
1670    mNeedToReopenDevices = true;
1671}
1672
1673void EventHub::dump(String8& dump) {
1674    dump.append("Event Hub State:\n");
1675
1676    { // acquire lock
1677        AutoMutex _l(mLock);
1678
1679        dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
1680
1681        dump.append(INDENT "Devices:\n");
1682
1683        for (size_t i = 0; i < mDevices.size(); i++) {
1684            const Device* device = mDevices.valueAt(i);
1685            if (mBuiltInKeyboardId == device->id) {
1686                dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
1687                        device->id, device->identifier.name.string());
1688            } else {
1689                dump.appendFormat(INDENT2 "%d: %s\n", device->id,
1690                        device->identifier.name.string());
1691            }
1692            dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
1693            dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
1694            dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
1695            dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
1696            dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber);
1697            dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
1698            dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
1699                    "product=0x%04x, version=0x%04x\n",
1700                    device->identifier.bus, device->identifier.vendor,
1701                    device->identifier.product, device->identifier.version);
1702            dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
1703                    device->keyMap.keyLayoutFile.string());
1704            dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
1705                    device->keyMap.keyCharacterMapFile.string());
1706            dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
1707                    device->configurationFile.string());
1708            dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n",
1709                    toString(device->overlayKeyMap != NULL));
1710        }
1711    } // release lock
1712}
1713
1714void EventHub::monitor() {
1715    // Acquire and release the lock to ensure that the event hub has not deadlocked.
1716    mLock.lock();
1717    mLock.unlock();
1718}
1719
1720
1721}; // namespace android
1722