1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <stdio.h>
18
19#include <utils/Log.h>
20
21#include "Fusion.h"
22
23namespace android {
24
25// -----------------------------------------------------------------------
26
27/*==================== BEGIN FUSION SENSOR PARAMETER =========================*/
28
29/* Note:
30 *   If a platform uses software fusion, it is necessary to tune the following
31 *   parameters to fit the hardware sensors prior to release.
32 *
33 *   The DEFAULT_ parameters will be used in FUSION_9AXIS and FUSION_NOMAG mode.
34 *   The GEOMAG_ parameters will be used in FUSION_NOGYRO mode.
35 */
36
37/*
38 * GYRO_VAR gives the measured variance of the gyro's output per
39 * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
40 * which is independent of the sampling frequency.
41 *
42 * The variance of gyro's output at a given sampling period can be
43 * calculated as:
44 *      variance(T) = GYRO_VAR / T
45 *
46 * The variance of the INTEGRATED OUTPUT at a given sampling period can be
47 * calculated as:
48 *       variance_integrate_output(T) = GYRO_VAR * T
49 */
50static const float DEFAULT_GYRO_VAR = 1e-7;      // (rad/s)^2 / Hz
51static const float DEFAULT_GYRO_BIAS_VAR = 1e-12;  // (rad/s)^2 / s (guessed)
52static const float GEOMAG_GYRO_VAR = 1e-4;      // (rad/s)^2 / Hz
53static const float GEOMAG_GYRO_BIAS_VAR = 1e-8;  // (rad/s)^2 / s (guessed)
54
55/*
56 * Standard deviations of accelerometer and magnetometer
57 */
58static const float DEFAULT_ACC_STDEV  = 0.015f; // m/s^2 (measured 0.08 / CDD 0.05)
59static const float DEFAULT_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
60static const float GEOMAG_ACC_STDEV  = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
61static const float GEOMAG_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
62
63
64/* ====================== END FUSION SENSOR PARAMETER ========================*/
65
66static const float SYMMETRY_TOLERANCE = 1e-10f;
67
68/*
69 * Accelerometer updates will not be performed near free fall to avoid
70 * ill-conditioning and div by zeros.
71 * Threshhold: 10% of g, in m/s^2
72 */
73static const float NOMINAL_GRAVITY = 9.81f;
74static const float FREE_FALL_THRESHOLD = 0.1f * (NOMINAL_GRAVITY);
75
76/*
77 * The geomagnetic-field should be between 30uT and 60uT.
78 * Fields strengths greater than this likely indicate a local magnetic
79 * disturbance which we do not want to update into the fused frame.
80 */
81static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
82static const float MAX_VALID_MAGNETIC_FIELD_SQ =
83        MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
84
85/*
86 * Values of the field smaller than this should be ignored in fusion to avoid
87 * ill-conditioning. This state can happen with anomalous local magnetic
88 * disturbances canceling the Earth field.
89 */
90static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
91static const float MIN_VALID_MAGNETIC_FIELD_SQ =
92        MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
93
94/*
95 * If the cross product of two vectors has magnitude squared less than this,
96 * we reject it as invalid due to alignment of the vectors.
97 * This threshold is used to check for the case where the magnetic field sample
98 * is parallel to the gravity field, which can happen in certain places due
99 * to magnetic field disturbances.
100 */
101static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
102static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
103    MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
104
105static const float SQRT_3 = 1.732f;
106static const float WVEC_EPS = 1e-4f/SQRT_3;
107// -----------------------------------------------------------------------
108
109template <typename TYPE, size_t C, size_t R>
110static mat<TYPE, R, R> scaleCovariance(
111        const mat<TYPE, C, R>& A,
112        const mat<TYPE, C, C>& P) {
113    // A*P*transpose(A);
114    mat<TYPE, R, R> APAt;
115    for (size_t r=0 ; r<R ; r++) {
116        for (size_t j=r ; j<R ; j++) {
117            double apat(0);
118            for (size_t c=0 ; c<C ; c++) {
119                double v(A[c][r]*P[c][c]*0.5);
120                for (size_t k=c+1 ; k<C ; k++)
121                    v += A[k][r] * P[c][k];
122                apat += 2 * v * A[c][j];
123            }
124            APAt[j][r] = apat;
125            APAt[r][j] = apat;
126        }
127    }
128    return APAt;
129}
130
131template <typename TYPE, typename OTHER_TYPE>
132static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
133    mat<TYPE, 3, 3> r;
134    r[0][0] = diag;
135    r[1][1] = diag;
136    r[2][2] = diag;
137    r[0][1] = p.z;
138    r[1][0] =-p.z;
139    r[0][2] =-p.y;
140    r[2][0] = p.y;
141    r[1][2] = p.x;
142    r[2][1] =-p.x;
143    return r;
144}
145
146
147template<typename TYPE, size_t SIZE>
148class Covariance {
149    mat<TYPE, SIZE, SIZE> mSumXX;
150    vec<TYPE, SIZE> mSumX;
151    size_t mN;
152public:
153    Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
154    void update(const vec<TYPE, SIZE>& x) {
155        mSumXX += x*transpose(x);
156        mSumX  += x;
157        mN++;
158    }
159    mat<TYPE, SIZE, SIZE> operator()() const {
160        const float N = 1.0f / mN;
161        return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
162    }
163    void reset() {
164        mN = 0;
165        mSumXX = 0;
166        mSumX = 0;
167    }
168    size_t getCount() const {
169        return mN;
170    }
171};
172
173// -----------------------------------------------------------------------
174
175Fusion::Fusion() {
176    Phi[0][1] = 0;
177    Phi[1][1] = 1;
178
179    Ba.x = 0;
180    Ba.y = 0;
181    Ba.z = 1;
182
183    Bm.x = 0;
184    Bm.y = 1;
185    Bm.z = 0;
186
187    x0 = 0;
188    x1 = 0;
189
190    init();
191}
192
193void Fusion::init(int mode) {
194    mInitState = 0;
195
196    mGyroRate = 0;
197
198    mCount[0] = 0;
199    mCount[1] = 0;
200    mCount[2] = 0;
201
202    mData = 0;
203    mMode = mode;
204
205    if (mMode != FUSION_NOGYRO) { //normal or game rotation
206        mParam.gyroVar = DEFAULT_GYRO_VAR;
207        mParam.gyroBiasVar = DEFAULT_GYRO_BIAS_VAR;
208        mParam.accStdev = DEFAULT_ACC_STDEV;
209        mParam.magStdev = DEFAULT_MAG_STDEV;
210    } else {
211        mParam.gyroVar = GEOMAG_GYRO_VAR;
212        mParam.gyroBiasVar = GEOMAG_GYRO_BIAS_VAR;
213        mParam.accStdev = GEOMAG_ACC_STDEV;
214        mParam.magStdev = GEOMAG_MAG_STDEV;
215    }
216}
217
218void Fusion::initFusion(const vec4_t& q, float dT)
219{
220    // initial estimate: E{ x(t0) }
221    x0 = q;
222    x1 = 0;
223
224    // process noise covariance matrix: G.Q.Gt, with
225    //
226    //  G = | -1 0 |        Q = | q00 q10 |
227    //      |  0 1 |            | q01 q11 |
228    //
229    // q00 = sv^2.dt + 1/3.su^2.dt^3
230    // q10 = q01 = 1/2.su^2.dt^2
231    // q11 = su^2.dt
232    //
233
234    const float dT2 = dT*dT;
235    const float dT3 = dT2*dT;
236
237    // variance of integrated output at 1/dT Hz (random drift)
238    const float q00 = mParam.gyroVar * dT + 0.33333f * mParam.gyroBiasVar * dT3;
239
240    // variance of drift rate ramp
241    const float q11 = mParam.gyroBiasVar * dT;
242    const float q10 = 0.5f * mParam.gyroBiasVar * dT2;
243    const float q01 = q10;
244
245    GQGt[0][0] =  q00;      // rad^2
246    GQGt[1][0] = -q10;
247    GQGt[0][1] = -q01;
248    GQGt[1][1] =  q11;      // (rad/s)^2
249
250    // initial covariance: Var{ x(t0) }
251    // TODO: initialize P correctly
252    P = 0;
253}
254
255bool Fusion::hasEstimate() const {
256    return ((mInitState & MAG) || (mMode == FUSION_NOMAG)) &&
257           ((mInitState & GYRO) || (mMode == FUSION_NOGYRO)) &&
258           (mInitState & ACC);
259}
260
261bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
262    if (hasEstimate())
263        return true;
264
265    if (what == ACC) {
266        mData[0] += d * (1/length(d));
267        mCount[0]++;
268        mInitState |= ACC;
269        if (mMode == FUSION_NOGYRO ) {
270            mGyroRate = dT;
271        }
272    } else if (what == MAG) {
273        mData[1] += d * (1/length(d));
274        mCount[1]++;
275        mInitState |= MAG;
276    } else if (what == GYRO) {
277        mGyroRate = dT;
278        mData[2] += d*dT;
279        mCount[2]++;
280        mInitState |= GYRO;
281    }
282
283    if (hasEstimate()) {
284        // Average all the values we collected so far
285        mData[0] *= 1.0f/mCount[0];
286        if (mMode != FUSION_NOMAG) {
287            mData[1] *= 1.0f/mCount[1];
288        }
289        mData[2] *= 1.0f/mCount[2];
290
291        // calculate the MRPs from the data collection, this gives us
292        // a rough estimate of our initial state
293        mat33_t R;
294        vec3_t  up(mData[0]);
295        vec3_t  east;
296
297        if (mMode != FUSION_NOMAG) {
298            east = normalize(cross_product(mData[1], up));
299        } else {
300            east = getOrthogonal(up);
301        }
302
303        vec3_t north(cross_product(up, east));
304        R << east << north << up;
305        const vec4_t q = matrixToQuat(R);
306
307        initFusion(q, mGyroRate);
308    }
309
310    return false;
311}
312
313void Fusion::handleGyro(const vec3_t& w, float dT) {
314    if (!checkInitComplete(GYRO, w, dT))
315        return;
316
317    predict(w, dT);
318}
319
320status_t Fusion::handleAcc(const vec3_t& a, float dT) {
321    if (!checkInitComplete(ACC, a, dT))
322        return BAD_VALUE;
323
324    // ignore acceleration data if we're close to free-fall
325    const float l = length(a);
326    if (l < FREE_FALL_THRESHOLD) {
327        return BAD_VALUE;
328    }
329
330    const float l_inv = 1.0f/l;
331
332    if ( mMode == FUSION_NOGYRO ) {
333        //geo mag
334        vec3_t w_dummy;
335        w_dummy = x1; //bias
336        predict(w_dummy, dT);
337    }
338
339    if ( mMode == FUSION_NOMAG) {
340        vec3_t m;
341        m = getRotationMatrix()*Bm;
342        update(m, Bm, mParam.magStdev);
343    }
344
345    vec3_t unityA = a * l_inv;
346    const float d = sqrtf(fabsf(l- NOMINAL_GRAVITY));
347    const float p = l_inv * mParam.accStdev*expf(d);
348
349    update(unityA, Ba, p);
350    return NO_ERROR;
351}
352
353status_t Fusion::handleMag(const vec3_t& m) {
354    if (!checkInitComplete(MAG, m))
355        return BAD_VALUE;
356
357    // the geomagnetic-field should be between 30uT and 60uT
358    // reject if too large to avoid spurious magnetic sources
359    const float magFieldSq = length_squared(m);
360    if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
361        return BAD_VALUE;
362    } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
363        // Also reject if too small since we will get ill-defined (zero mag)
364        // cross-products below
365        return BAD_VALUE;
366    }
367
368    // Orthogonalize the magnetic field to the gravity field, mapping it into
369    // tangent to Earth.
370    const vec3_t up( getRotationMatrix() * Ba );
371    const vec3_t east( cross_product(m, up) );
372
373    // If the m and up vectors align, the cross product magnitude will
374    // approach 0.
375    // Reject this case as well to avoid div by zero problems and
376    // ill-conditioning below.
377    if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
378        return BAD_VALUE;
379    }
380
381    // If we have created an orthogonal magnetic field successfully,
382    // then pass it in as the update.
383    vec3_t north( cross_product(up, east) );
384
385    const float l_inv = 1 / length(north);
386    north *= l_inv;
387
388    update(north, Bm,  mParam.magStdev*l_inv);
389    return NO_ERROR;
390}
391
392void Fusion::checkState() {
393    // P needs to stay positive semidefinite or the fusion diverges. When we
394    // detect divergence, we reset the fusion.
395    // TODO(braun): Instead, find the reason for the divergence and fix it.
396
397    if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
398        !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
399        ALOGW("Sensor fusion diverged; resetting state.");
400        P = 0;
401    }
402}
403
404vec4_t Fusion::getAttitude() const {
405    return x0;
406}
407
408vec3_t Fusion::getBias() const {
409    return x1;
410}
411
412mat33_t Fusion::getRotationMatrix() const {
413    return quatToMatrix(x0);
414}
415
416mat34_t Fusion::getF(const vec4_t& q) {
417    mat34_t F;
418
419    // This is used to compute the derivative of q
420    // F = | [q.xyz]x |
421    //     |  -q.xyz  |
422
423    F[0].x = q.w;   F[1].x =-q.z;   F[2].x = q.y;
424    F[0].y = q.z;   F[1].y = q.w;   F[2].y =-q.x;
425    F[0].z =-q.y;   F[1].z = q.x;   F[2].z = q.w;
426    F[0].w =-q.x;   F[1].w =-q.y;   F[2].w =-q.z;
427    return F;
428}
429
430void Fusion::predict(const vec3_t& w, float dT) {
431    const vec4_t q  = x0;
432    const vec3_t b  = x1;
433    vec3_t we = w - b;
434
435    if (length(we) < WVEC_EPS) {
436        we = (we[0]>0.f)?WVEC_EPS:-WVEC_EPS;
437    }
438    // q(k+1) = O(we)*q(k)
439    // --------------------
440    //
441    // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x                   psi |
442    //        | -psi'                              cos(0.5*||w||*dT) |
443    //
444    // psi = sin(0.5*||w||*dT)*w / ||w||
445    //
446    //
447    // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
448    // ----------------------------------------
449    //
450    // G = | -I33    0 |
451    //     |    0  I33 |
452    //
453    //  Phi = | Phi00 Phi10 |
454    //        |   0     1   |
455    //
456    //  Phi00 =   I33
457    //          - [w]x   * sin(||w||*dt)/||w||
458    //          + [w]x^2 * (1-cos(||w||*dT))/||w||^2
459    //
460    //  Phi10 =   [w]x   * (1        - cos(||w||*dt))/||w||^2
461    //          - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
462    //          - I33*dT
463
464    const mat33_t I33(1);
465    const mat33_t I33dT(dT);
466    const mat33_t wx(crossMatrix(we, 0));
467    const mat33_t wx2(wx*wx);
468    const float lwedT = length(we)*dT;
469    const float hlwedT = 0.5f*lwedT;
470    const float ilwe = 1.f/length(we);
471    const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
472    const float k1 = sinf(lwedT);
473    const float k2 = cosf(hlwedT);
474    const vec3_t psi(sinf(hlwedT)*ilwe*we);
475    const mat33_t O33(crossMatrix(-psi, k2));
476    mat44_t O;
477    O[0].xyz = O33[0];  O[0].w = -psi.x;
478    O[1].xyz = O33[1];  O[1].w = -psi.y;
479    O[2].xyz = O33[2];  O[2].w = -psi.z;
480    O[3].xyz = psi;     O[3].w = k2;
481
482    Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
483    Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
484
485    x0 = O*q;
486
487    if (x0.w < 0)
488        x0 = -x0;
489
490    P = Phi*P*transpose(Phi) + GQGt;
491
492    checkState();
493}
494
495void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
496    vec4_t q(x0);
497    // measured vector in body space: h(p) = A(p)*Bi
498    const mat33_t A(quatToMatrix(q));
499    const vec3_t Bb(A*Bi);
500
501    // Sensitivity matrix H = dh(p)/dp
502    // H = [ L 0 ]
503    const mat33_t L(crossMatrix(Bb, 0));
504
505    // gain...
506    // K = P*Ht / [H*P*Ht + R]
507    vec<mat33_t, 2> K;
508    const mat33_t R(sigma*sigma);
509    const mat33_t S(scaleCovariance(L, P[0][0]) + R);
510    const mat33_t Si(invert(S));
511    const mat33_t LtSi(transpose(L)*Si);
512    K[0] = P[0][0] * LtSi;
513    K[1] = transpose(P[1][0])*LtSi;
514
515    // update...
516    // P = (I-K*H) * P
517    // P -= K*H*P
518    // | K0 | * | L 0 | * P = | K0*L  0 | * | P00  P10 | = | K0*L*P00  K0*L*P10 |
519    // | K1 |                 | K1*L  0 |   | P01  P11 |   | K1*L*P00  K1*L*P10 |
520    // Note: the Joseph form is numerically more stable and given by:
521    //     P = (I-KH) * P * (I-KH)' + K*R*R'
522    const mat33_t K0L(K[0] * L);
523    const mat33_t K1L(K[1] * L);
524    P[0][0] -= K0L*P[0][0];
525    P[1][1] -= K1L*P[1][0];
526    P[1][0] -= K0L*P[1][0];
527    P[0][1] = transpose(P[1][0]);
528
529    const vec3_t e(z - Bb);
530    const vec3_t dq(K[0]*e);
531
532    q += getF(q)*(0.5f*dq);
533    x0 = normalize_quat(q);
534
535    if (mMode != FUSION_NOMAG) {
536        const vec3_t db(K[1]*e);
537        x1 += db;
538    }
539
540    checkState();
541}
542
543vec3_t Fusion::getOrthogonal(const vec3_t &v) {
544    vec3_t w;
545    if (fabsf(v[0])<= fabsf(v[1]) && fabsf(v[0]) <= fabsf(v[2]))  {
546        w[0]=0.f;
547        w[1] = v[2];
548        w[2] = -v[1];
549    } else if (fabsf(v[1]) <= fabsf(v[2])) {
550        w[0] = v[2];
551        w[1] = 0.f;
552        w[2] = -v[0];
553    }else {
554        w[0] = v[1];
555        w[1] = -v[0];
556        w[2] = 0.f;
557    }
558    return normalize(w);
559}
560
561
562// -----------------------------------------------------------------------
563
564}; // namespace android
565
566