SensorService.cpp revision 2c588c536090ea3e7e80db0e5031935b6026814c
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <cutils/properties.h>
18
19#include <binder/AppOpsManager.h>
20#include <binder/BinderService.h>
21#include <binder/IServiceManager.h>
22#include <binder/PermissionCache.h>
23
24#include <gui/SensorEventQueue.h>
25
26#include <hardware/sensors.h>
27#include <hardware_legacy/power.h>
28
29#include <openssl/digest.h>
30#include <openssl/hmac.h>
31#include <openssl/rand.h>
32
33#include "BatteryService.h"
34#include "CorrectedGyroSensor.h"
35#include "GravitySensor.h"
36#include "LinearAccelerationSensor.h"
37#include "OrientationSensor.h"
38#include "RotationVectorSensor.h"
39#include "SensorFusion.h"
40#include "SensorInterface.h"
41
42#include "SensorService.h"
43#include "SensorEventAckReceiver.h"
44#include "SensorEventConnection.h"
45#include "SensorRecord.h"
46#include "SensorRegistrationInfo.h"
47
48#include <inttypes.h>
49#include <math.h>
50#include <sched.h>
51#include <stdint.h>
52#include <sys/socket.h>
53#include <sys/stat.h>
54#include <sys/types.h>
55#include <unistd.h>
56
57namespace android {
58// ---------------------------------------------------------------------------
59
60/*
61 * Notes:
62 *
63 * - what about a gyro-corrected magnetic-field sensor?
64 * - run mag sensor from time to time to force calibration
65 * - gravity sensor length is wrong (=> drift in linear-acc sensor)
66 *
67 */
68
69const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
70uint8_t SensorService::sHmacGlobalKey[128] = {};
71bool SensorService::sHmacGlobalKeyIsValid = false;
72
73#define SENSOR_SERVICE_DIR "/data/system/sensor_service"
74#define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
75#define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
76
77// Permissions.
78static const String16 sDump("android.permission.DUMP");
79
80SensorService::SensorService()
81    : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
82      mWakeLockAcquired(false) {
83}
84
85bool SensorService::initializeHmacKey() {
86    int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
87    if (fd != -1) {
88        int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
89        close(fd);
90        if (result == sizeof(sHmacGlobalKey)) {
91            return true;
92        }
93        ALOGW("Unable to read HMAC key; generating new one.");
94    }
95
96    if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
97        ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
98        return false;
99    }
100
101    // We need to make sure this is only readable to us.
102    bool wroteKey = false;
103    mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
104    fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
105              S_IRUSR|S_IWUSR);
106    if (fd != -1) {
107        int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
108        close(fd);
109        wroteKey = (result == sizeof(sHmacGlobalKey));
110    }
111    if (wroteKey) {
112        ALOGI("Generated new HMAC key.");
113    } else {
114        ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
115              "after reboot.");
116    }
117    // Even if we failed to write the key we return true, because we did
118    // initialize the HMAC key.
119    return true;
120}
121
122// Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
123void SensorService::enableSchedFifoMode() {
124    struct sched_param param = {0};
125    param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
126    if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
127        ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
128    }
129}
130
131void SensorService::onFirstRef() {
132    ALOGD("nuSensorService starting...");
133    SensorDevice& dev(SensorDevice::getInstance());
134
135    sHmacGlobalKeyIsValid = initializeHmacKey();
136
137    if (dev.initCheck() == NO_ERROR) {
138        sensor_t const* list;
139        ssize_t count = dev.getSensorList(&list);
140        if (count > 0) {
141            ssize_t orientationIndex = -1;
142            bool hasGyro = false, hasAccel = false, hasMag = false;
143            uint32_t virtualSensorsNeeds =
144                    (1<<SENSOR_TYPE_GRAVITY) |
145                    (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
146                    (1<<SENSOR_TYPE_ROTATION_VECTOR) |
147                    (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
148                    (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
149
150            for (ssize_t i=0 ; i<count ; i++) {
151                bool useThisSensor=true;
152
153                switch (list[i].type) {
154                    case SENSOR_TYPE_ACCELEROMETER:
155                        hasAccel = true;
156                        break;
157                    case SENSOR_TYPE_MAGNETIC_FIELD:
158                        hasMag = true;
159                        break;
160                    case SENSOR_TYPE_ORIENTATION:
161                        orientationIndex = i;
162                        break;
163                    case SENSOR_TYPE_GYROSCOPE:
164                    case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
165                        hasGyro = true;
166                        break;
167                    case SENSOR_TYPE_GRAVITY:
168                    case SENSOR_TYPE_LINEAR_ACCELERATION:
169                    case SENSOR_TYPE_ROTATION_VECTOR:
170                    case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
171                    case SENSOR_TYPE_GAME_ROTATION_VECTOR:
172                        if (IGNORE_HARDWARE_FUSION) {
173                            useThisSensor = false;
174                        } else {
175                            virtualSensorsNeeds &= ~(1<<list[i].type);
176                        }
177                        break;
178                }
179                if (useThisSensor) {
180                    registerSensor( new HardwareSensor(list[i]) );
181                }
182            }
183
184            // it's safe to instantiate the SensorFusion object here
185            // (it wants to be instantiated after h/w sensors have been
186            // registered)
187            SensorFusion::getInstance();
188
189            if (hasGyro && hasAccel && hasMag) {
190                // Add Android virtual sensors if they're not already
191                // available in the HAL
192                bool needRotationVector =
193                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
194
195                registerSensor(new RotationVectorSensor(), !needRotationVector, true);
196                registerSensor(new OrientationSensor(), !needRotationVector, true);
197
198                bool needLinearAcceleration =
199                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
200
201                registerSensor(new LinearAccelerationSensor(list, count),
202                               !needLinearAcceleration, true);
203
204                // virtual debugging sensors are not for user
205                registerSensor( new CorrectedGyroSensor(list, count), true, true);
206                registerSensor( new GyroDriftSensor(), true, true);
207            }
208
209            if (hasAccel && hasGyro) {
210                bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
211                registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
212
213                bool needGameRotationVector =
214                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
215                registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
216            }
217
218            if (hasAccel && hasMag) {
219                bool needGeoMagRotationVector =
220                        (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
221                registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
222            }
223
224            // Check if the device really supports batching by looking at the FIFO event
225            // counts for each sensor.
226            bool batchingSupported = false;
227            mSensors.forEachSensor(
228                    [&batchingSupported] (const Sensor& s) -> bool {
229                        if (s.getFifoMaxEventCount() > 0) {
230                            batchingSupported = true;
231                        }
232                        return !batchingSupported;
233                    });
234
235            if (batchingSupported) {
236                // Increase socket buffer size to a max of 100 KB for batching capabilities.
237                mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
238            } else {
239                mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
240            }
241
242            // Compare the socketBufferSize value against the system limits and limit
243            // it to maxSystemSocketBufferSize if necessary.
244            FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
245            char line[128];
246            if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
247                line[sizeof(line) - 1] = '\0';
248                size_t maxSystemSocketBufferSize;
249                sscanf(line, "%zu", &maxSystemSocketBufferSize);
250                if (mSocketBufferSize > maxSystemSocketBufferSize) {
251                    mSocketBufferSize = maxSystemSocketBufferSize;
252                }
253            }
254            if (fp) {
255                fclose(fp);
256            }
257
258            mWakeLockAcquired = false;
259            mLooper = new Looper(false);
260            const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
261            mSensorEventBuffer = new sensors_event_t[minBufferSize];
262            mSensorEventScratch = new sensors_event_t[minBufferSize];
263            mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
264            mCurrentOperatingMode = NORMAL;
265
266            mNextSensorRegIndex = 0;
267            for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
268                mLastNSensorRegistrations.push();
269            }
270
271            mInitCheck = NO_ERROR;
272            mAckReceiver = new SensorEventAckReceiver(this);
273            mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
274            run("SensorService", PRIORITY_URGENT_DISPLAY);
275
276            // priority can only be changed after run
277            enableSchedFifoMode();
278        }
279    }
280}
281
282const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
283    int handle = s->getSensor().getHandle();
284    int type = s->getSensor().getType();
285    if (mSensors.add(handle, s, isDebug, isVirtual)){
286        mRecentEvent.emplace(handle, new RecentEventLogger(type));
287        return s->getSensor();
288    } else {
289        return mSensors.getNonSensor();
290    }
291}
292
293const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
294    return registerSensor(s, isDebug);
295}
296
297bool SensorService::unregisterDynamicSensorLocked(int handle) {
298    bool ret = mSensors.remove(handle);
299
300    const auto i = mRecentEvent.find(handle);
301    if (i != mRecentEvent.end()) {
302        delete i->second;
303        mRecentEvent.erase(i);
304    }
305    return ret;
306}
307
308const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
309    return registerSensor(s, isDebug, true);
310}
311
312SensorService::~SensorService() {
313    for (auto && entry : mRecentEvent) {
314        delete entry.second;
315    }
316}
317
318status_t SensorService::dump(int fd, const Vector<String16>& args) {
319    String8 result;
320    if (!PermissionCache::checkCallingPermission(sDump)) {
321        result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
322                IPCThreadState::self()->getCallingPid(),
323                IPCThreadState::self()->getCallingUid());
324    } else {
325        bool privileged = IPCThreadState::self()->getCallingUid() == 0;
326        if (args.size() > 2) {
327           return INVALID_OPERATION;
328        }
329        Mutex::Autolock _l(mLock);
330        SensorDevice& dev(SensorDevice::getInstance());
331        if (args.size() == 2 && args[0] == String16("restrict")) {
332            // If already in restricted mode. Ignore.
333            if (mCurrentOperatingMode == RESTRICTED) {
334                return status_t(NO_ERROR);
335            }
336            // If in any mode other than normal, ignore.
337            if (mCurrentOperatingMode != NORMAL) {
338                return INVALID_OPERATION;
339            }
340            mCurrentOperatingMode = RESTRICTED;
341            dev.disableAllSensors();
342            // Clear all pending flush connections for all active sensors. If one of the active
343            // connections has called flush() and the underlying sensor has been disabled before a
344            // flush complete event is returned, we need to remove the connection from this queue.
345            for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
346                mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
347            }
348            mWhiteListedPackage.setTo(String8(args[1]));
349            return status_t(NO_ERROR);
350        } else if (args.size() == 1 && args[0] == String16("enable")) {
351            // If currently in restricted mode, reset back to NORMAL mode else ignore.
352            if (mCurrentOperatingMode == RESTRICTED) {
353                mCurrentOperatingMode = NORMAL;
354                dev.enableAllSensors();
355            }
356            if (mCurrentOperatingMode == DATA_INJECTION) {
357               resetToNormalModeLocked();
358            }
359            mWhiteListedPackage.clear();
360            return status_t(NO_ERROR);
361        } else if (args.size() == 2 && args[0] == String16("data_injection")) {
362            if (mCurrentOperatingMode == NORMAL) {
363                dev.disableAllSensors();
364                status_t err = dev.setMode(DATA_INJECTION);
365                if (err == NO_ERROR) {
366                    mCurrentOperatingMode = DATA_INJECTION;
367                } else {
368                    // Re-enable sensors.
369                    dev.enableAllSensors();
370                }
371                mWhiteListedPackage.setTo(String8(args[1]));
372                return NO_ERROR;
373            } else if (mCurrentOperatingMode == DATA_INJECTION) {
374                // Already in DATA_INJECTION mode. Treat this as a no_op.
375                return NO_ERROR;
376            } else {
377                // Transition to data injection mode supported only from NORMAL mode.
378                return INVALID_OPERATION;
379            }
380        } else if (!mSensors.hasAnySensor()) {
381            result.append("No Sensors on the device\n");
382        } else {
383            // Default dump the sensor list and debugging information.
384            //
385            result.append("Sensor Device:\n");
386            result.append(SensorDevice::getInstance().dump().c_str());
387
388            result.append("Sensor List:\n");
389            result.append(mSensors.dump().c_str());
390
391            result.append("Fusion States:\n");
392            SensorFusion::getInstance().dump(result);
393
394            result.append("Recent Sensor events:\n");
395            for (auto&& i : mRecentEvent) {
396                sp<SensorInterface> s = mSensors.getInterface(i.first);
397                if (!i.second->isEmpty()) {
398                    if (privileged || s->getSensor().getRequiredPermission().isEmpty()) {
399                        i.second->setFormat("normal");
400                    } else {
401                        i.second->setFormat("mask_data");
402                    }
403                    // if there is events and sensor does not need special permission.
404                    result.appendFormat("%s: ", s->getSensor().getName().string());
405                    result.append(i.second->dump().c_str());
406                }
407            }
408
409            result.append("Active sensors:\n");
410            for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
411                int handle = mActiveSensors.keyAt(i);
412                result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
413                        getSensorName(handle).string(),
414                        handle,
415                        mActiveSensors.valueAt(i)->getNumConnections());
416            }
417
418            result.appendFormat("Socket Buffer size = %zd events\n",
419                                mSocketBufferSize/sizeof(sensors_event_t));
420            result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
421                    "not held");
422            result.appendFormat("Mode :");
423            switch(mCurrentOperatingMode) {
424               case NORMAL:
425                   result.appendFormat(" NORMAL\n");
426                   break;
427               case RESTRICTED:
428                   result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
429                   break;
430               case DATA_INJECTION:
431                   result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
432            }
433            result.appendFormat("%zd active connections\n", mActiveConnections.size());
434
435            for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
436                sp<SensorEventConnection> connection(mActiveConnections[i].promote());
437                if (connection != 0) {
438                    result.appendFormat("Connection Number: %zu \n", i);
439                    connection->dump(result);
440                }
441            }
442
443            result.appendFormat("Previous Registrations:\n");
444            // Log in the reverse chronological order.
445            int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
446                SENSOR_REGISTRATIONS_BUF_SIZE;
447            const int startIndex = currentIndex;
448            do {
449                const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
450                if (SensorRegistrationInfo::isSentinel(reg_info)) {
451                    // Ignore sentinel, proceed to next item.
452                    currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
453                        SENSOR_REGISTRATIONS_BUF_SIZE;
454                    continue;
455                }
456                if (reg_info.mActivated) {
457                   result.appendFormat("%02d:%02d:%02d activated handle=0x%08x "
458                           "samplingRate=%dus maxReportLatency=%dus package=%s\n",
459                           reg_info.mHour, reg_info.mMin, reg_info.mSec, reg_info.mSensorHandle,
460                           reg_info.mSamplingRateUs, reg_info.mMaxReportLatencyUs,
461                           reg_info.mPackageName.string());
462                } else {
463                   result.appendFormat("%02d:%02d:%02d de-activated handle=0x%08x package=%s\n",
464                           reg_info.mHour, reg_info.mMin, reg_info.mSec,
465                           reg_info.mSensorHandle, reg_info.mPackageName.string());
466                }
467                currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
468                        SENSOR_REGISTRATIONS_BUF_SIZE;
469            } while(startIndex != currentIndex);
470        }
471    }
472    write(fd, result.string(), result.size());
473    return NO_ERROR;
474}
475
476//TODO: move to SensorEventConnection later
477void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
478        sensors_event_t const* buffer, const int count) {
479    for (int i=0 ; i<count ; i++) {
480        int handle = buffer[i].sensor;
481        if (buffer[i].type == SENSOR_TYPE_META_DATA) {
482            handle = buffer[i].meta_data.sensor;
483        }
484        if (connection->hasSensor(handle)) {
485            sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
486            // If this buffer has an event from a one_shot sensor and this connection is registered
487            // for this particular one_shot sensor, try cleaning up the connection.
488            if (si != nullptr &&
489                si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
490                si->autoDisable(connection.get(), handle);
491                cleanupWithoutDisableLocked(connection, handle);
492            }
493
494        }
495   }
496}
497
498bool SensorService::threadLoop() {
499    ALOGD("nuSensorService thread starting...");
500
501    // each virtual sensor could generate an event per "real" event, that's why we need to size
502    // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
503    // aggressive, but guaranteed to be enough.
504    const size_t vcount = mSensors.getVirtualSensors().size();
505    const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
506    const size_t numEventMax = minBufferSize / (1 + vcount);
507
508    SensorDevice& device(SensorDevice::getInstance());
509
510    const int halVersion = device.getHalDeviceVersion();
511    do {
512        ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
513        if (count < 0) {
514            ALOGE("sensor poll failed (%s)", strerror(-count));
515            break;
516        }
517
518        // Reset sensors_event_t.flags to zero for all events in the buffer.
519        for (int i = 0; i < count; i++) {
520             mSensorEventBuffer[i].flags = 0;
521        }
522
523        // Make a copy of the connection vector as some connections may be removed during the course
524        // of this loop (especially when one-shot sensor events are present in the sensor_event
525        // buffer). Promote all connections to StrongPointers before the lock is acquired. If the
526        // destructor of the sp gets called when the lock is acquired, it may result in a deadlock
527        // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
528        // strongPointers to a vector before the lock is acquired.
529        SortedVector< sp<SensorEventConnection> > activeConnections;
530        populateActiveConnections(&activeConnections);
531
532        Mutex::Autolock _l(mLock);
533        // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
534        // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
535        // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
536        // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
537        // releasing the wakelock.
538        bool bufferHasWakeUpEvent = false;
539        for (int i = 0; i < count; i++) {
540            if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
541                bufferHasWakeUpEvent = true;
542                break;
543            }
544        }
545
546        if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
547            setWakeLockAcquiredLocked(true);
548        }
549        recordLastValueLocked(mSensorEventBuffer, count);
550
551        // handle virtual sensors
552        if (count && vcount) {
553            sensors_event_t const * const event = mSensorEventBuffer;
554            if (!mActiveVirtualSensors.empty()) {
555                size_t k = 0;
556                SensorFusion& fusion(SensorFusion::getInstance());
557                if (fusion.isEnabled()) {
558                    for (size_t i=0 ; i<size_t(count) ; i++) {
559                        fusion.process(event[i]);
560                    }
561                }
562                for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
563                    for (int handle : mActiveVirtualSensors) {
564                        if (count + k >= minBufferSize) {
565                            ALOGE("buffer too small to hold all events: "
566                                    "count=%zd, k=%zu, size=%zu",
567                                    count, k, minBufferSize);
568                            break;
569                        }
570                        sensors_event_t out;
571                        sp<SensorInterface> si = mSensors.getInterface(handle);
572                        if (si == nullptr) {
573                            ALOGE("handle %d is not an valid virtual sensor", handle);
574                            continue;
575                        }
576
577                        if (si->process(&out, event[i])) {
578                            mSensorEventBuffer[count + k] = out;
579                            k++;
580                        }
581                    }
582                }
583                if (k) {
584                    // record the last synthesized values
585                    recordLastValueLocked(&mSensorEventBuffer[count], k);
586                    count += k;
587                    // sort the buffer by time-stamps
588                    sortEventBuffer(mSensorEventBuffer, count);
589                }
590            }
591        }
592
593        // handle backward compatibility for RotationVector sensor
594        if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
595            for (int i = 0; i < count; i++) {
596                if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
597                    // All the 4 components of the quaternion should be available
598                    // No heading accuracy. Set it to -1
599                    mSensorEventBuffer[i].data[4] = -1;
600                }
601            }
602        }
603
604        for (int i = 0; i < count; ++i) {
605            // Map flush_complete_events in the buffer to SensorEventConnections which called flush
606            // on the hardware sensor. mapFlushEventsToConnections[i] will be the
607            // SensorEventConnection mapped to the corresponding flush_complete_event in
608            // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
609            mMapFlushEventsToConnections[i] = NULL;
610            if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
611                const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
612                SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
613                if (rec != NULL) {
614                    mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
615                    rec->removeFirstPendingFlushConnection();
616                }
617            }
618
619            // handle dynamic sensor meta events, process registration and unregistration of dynamic
620            // sensor based on content of event.
621            if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
622                if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
623                    int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
624                    const sensor_t& dynamicSensor =
625                            *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
626                    ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
627                          handle, dynamicSensor.type, dynamicSensor.name);
628
629                    if (mSensors.isNewHandle(handle)) {
630                        const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
631                        sensor_t s = dynamicSensor;
632                        // make sure the dynamic sensor flag is set
633                        s.flags |= DYNAMIC_SENSOR_MASK;
634                        // force the handle to be consistent
635                        s.handle = handle;
636
637                        SensorInterface *si = new HardwareSensor(s, uuid);
638
639                        // This will release hold on dynamic sensor meta, so it should be called
640                        // after Sensor object is created.
641                        device.handleDynamicSensorConnection(handle, true /*connected*/);
642                        registerDynamicSensorLocked(si);
643                    } else {
644                        ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
645                    }
646                } else {
647                    int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
648                    ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
649
650                    device.handleDynamicSensorConnection(handle, false /*connected*/);
651                    if (!unregisterDynamicSensorLocked(handle)) {
652                        ALOGE("Dynamic sensor release error.");
653                    }
654
655                    size_t numConnections = activeConnections.size();
656                    for (size_t i=0 ; i < numConnections; ++i) {
657                        if (activeConnections[i] != NULL) {
658                            activeConnections[i]->removeSensor(handle);
659                        }
660                    }
661                }
662            }
663        }
664
665
666        // Send our events to clients. Check the state of wake lock for each client and release the
667        // lock if none of the clients need it.
668        bool needsWakeLock = false;
669        size_t numConnections = activeConnections.size();
670        for (size_t i=0 ; i < numConnections; ++i) {
671            if (activeConnections[i] != 0) {
672                activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
673                        mMapFlushEventsToConnections);
674                needsWakeLock |= activeConnections[i]->needsWakeLock();
675                // If the connection has one-shot sensors, it may be cleaned up after first trigger.
676                // Early check for one-shot sensors.
677                if (activeConnections[i]->hasOneShotSensors()) {
678                    cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
679                            count);
680                }
681            }
682        }
683
684        if (mWakeLockAcquired && !needsWakeLock) {
685            setWakeLockAcquiredLocked(false);
686        }
687    } while (!Thread::exitPending());
688
689    ALOGW("Exiting SensorService::threadLoop => aborting...");
690    abort();
691    return false;
692}
693
694sp<Looper> SensorService::getLooper() const {
695    return mLooper;
696}
697
698void SensorService::resetAllWakeLockRefCounts() {
699    SortedVector< sp<SensorEventConnection> > activeConnections;
700    populateActiveConnections(&activeConnections);
701    {
702        Mutex::Autolock _l(mLock);
703        for (size_t i=0 ; i < activeConnections.size(); ++i) {
704            if (activeConnections[i] != 0) {
705                activeConnections[i]->resetWakeLockRefCount();
706            }
707        }
708        setWakeLockAcquiredLocked(false);
709    }
710}
711
712void SensorService::setWakeLockAcquiredLocked(bool acquire) {
713    if (acquire) {
714        if (!mWakeLockAcquired) {
715            acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
716            mWakeLockAcquired = true;
717        }
718        mLooper->wake();
719    } else {
720        if (mWakeLockAcquired) {
721            release_wake_lock(WAKE_LOCK_NAME);
722            mWakeLockAcquired = false;
723        }
724    }
725}
726
727bool SensorService::isWakeLockAcquired() {
728    Mutex::Autolock _l(mLock);
729    return mWakeLockAcquired;
730}
731
732bool SensorService::SensorEventAckReceiver::threadLoop() {
733    ALOGD("new thread SensorEventAckReceiver");
734    sp<Looper> looper = mService->getLooper();
735    do {
736        bool wakeLockAcquired = mService->isWakeLockAcquired();
737        int timeout = -1;
738        if (wakeLockAcquired) timeout = 5000;
739        int ret = looper->pollOnce(timeout);
740        if (ret == ALOOPER_POLL_TIMEOUT) {
741           mService->resetAllWakeLockRefCounts();
742        }
743    } while(!Thread::exitPending());
744    return false;
745}
746
747void SensorService::recordLastValueLocked(
748        const sensors_event_t* buffer, size_t count) {
749    for (size_t i = 0; i < count; i++) {
750        if (buffer[i].type == SENSOR_TYPE_META_DATA ||
751            buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
752            buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
753            continue;
754        }
755
756        auto logger = mRecentEvent.find(buffer[i].sensor);
757        if (logger != mRecentEvent.end()) {
758            logger->second->addEvent(buffer[i]);
759        }
760    }
761}
762
763void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
764    struct compar {
765        static int cmp(void const* lhs, void const* rhs) {
766            sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
767            sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
768            return l->timestamp - r->timestamp;
769        }
770    };
771    qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
772}
773
774String8 SensorService::getSensorName(int handle) const {
775    return mSensors.getName(handle);
776}
777
778bool SensorService::isVirtualSensor(int handle) const {
779    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
780    return sensor != nullptr && sensor->isVirtual();
781}
782
783bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
784    int handle = event.sensor;
785    if (event.type == SENSOR_TYPE_META_DATA) {
786        handle = event.meta_data.sensor;
787    }
788    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
789    return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
790}
791
792int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
793    if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
794        // UUID is not supported for this device.
795        return 0;
796    }
797    if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
798        // This sensor can be uniquely identified in the system by
799        // the combination of its type and name.
800        return -1;
801    }
802
803    // We have a dynamic sensor.
804
805    if (!sHmacGlobalKeyIsValid) {
806        // Rather than risk exposing UUIDs, we cripple dynamic sensors.
807        ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
808        return 0;
809    }
810
811    // We want each app author/publisher to get a different ID, so that the
812    // same dynamic sensor cannot be tracked across apps by multiple
813    // authors/publishers.  So we use both our UUID and our User ID.
814    // Note potential confusion:
815    //     UUID => Universally Unique Identifier.
816    //     UID  => User Identifier.
817    // We refrain from using "uid" except as needed by API to try to
818    // keep this distinction clear.
819
820    auto appUserId = IPCThreadState::self()->getCallingUid();
821    uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
822    memcpy(uuidAndApp, &uuid, sizeof(uuid));
823    memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
824
825    // Now we use our key on our UUID/app combo to get the hash.
826    uint8_t hash[EVP_MAX_MD_SIZE];
827    unsigned int hashLen;
828    if (HMAC(EVP_sha256(),
829             sHmacGlobalKey, sizeof(sHmacGlobalKey),
830             uuidAndApp, sizeof(uuidAndApp),
831             hash, &hashLen) == nullptr) {
832        // Rather than risk exposing UUIDs, we cripple dynamic sensors.
833        ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
834        return 0;
835    }
836
837    int32_t id = 0;
838    if (hashLen < sizeof(id)) {
839        // We never expect this case, but out of paranoia, we handle it.
840        // Our 'id' length is already quite small, we don't want the
841        // effective length of it to be even smaller.
842        // Rather than risk exposing UUIDs, we cripple dynamic sensors.
843        ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
844        return 0;
845    }
846
847    // This is almost certainly less than all of 'hash', but it's as secure
848    // as we can be with our current 'id' length.
849    memcpy(&id, hash, sizeof(id));
850
851    // Note at the beginning of the function that we return the values of
852    // 0 and -1 to represent special cases.  As a result, we can't return
853    // those as dynamic sensor IDs.  If we happened to hash to one of those
854    // values, we change 'id' so we report as a dynamic sensor, and not as
855    // one of those special cases.
856    if (id == -1) {
857        id = -2;
858    } else if (id == 0) {
859        id = 1;
860    }
861    return id;
862}
863
864void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
865    for (auto &sensor : sensorList) {
866        int32_t id = getIdFromUuid(sensor.getUuid());
867        sensor.setId(id);
868    }
869}
870
871Vector<Sensor> SensorService::getSensorList(const String16& /* opPackageName */) {
872    char value[PROPERTY_VALUE_MAX];
873    property_get("debug.sensors", value, "0");
874    const Vector<Sensor>& initialSensorList = (atoi(value)) ?
875            mSensors.getUserDebugSensors() : mSensors.getUserSensors();
876    Vector<Sensor> accessibleSensorList;
877    for (size_t i = 0; i < initialSensorList.size(); i++) {
878        Sensor sensor = initialSensorList[i];
879        accessibleSensorList.add(sensor);
880    }
881    makeUuidsIntoIdsForSensorList(accessibleSensorList);
882    return accessibleSensorList;
883}
884
885Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
886    Vector<Sensor> accessibleSensorList;
887    mSensors.forEachSensor(
888            [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
889                if (sensor.isDynamicSensor()) {
890                    if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
891                        accessibleSensorList.add(sensor);
892                    } else {
893                        ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
894                              sensor.getName().string(),
895                              sensor.getRequiredPermission().string(),
896                              sensor.getRequiredAppOp());
897                    }
898                }
899                return true;
900            });
901    makeUuidsIntoIdsForSensorList(accessibleSensorList);
902    return accessibleSensorList;
903}
904
905sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
906        int requestedMode, const String16& opPackageName) {
907    // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
908    if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
909        return NULL;
910    }
911
912    Mutex::Autolock _l(mLock);
913    // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
914    // operating in DI mode.
915    if (requestedMode == DATA_INJECTION) {
916        if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
917        if (!isWhiteListedPackage(packageName)) return NULL;
918    }
919
920    uid_t uid = IPCThreadState::self()->getCallingUid();
921    sp<SensorEventConnection> result(new SensorEventConnection(this, uid, packageName,
922            requestedMode == DATA_INJECTION, opPackageName));
923    if (requestedMode == DATA_INJECTION) {
924        if (mActiveConnections.indexOf(result) < 0) {
925            mActiveConnections.add(result);
926        }
927        // Add the associated file descriptor to the Looper for polling whenever there is data to
928        // be injected.
929        result->updateLooperRegistration(mLooper);
930    }
931    return result;
932}
933
934int SensorService::isDataInjectionEnabled() {
935    Mutex::Autolock _l(mLock);
936    return (mCurrentOperatingMode == DATA_INJECTION);
937}
938
939status_t SensorService::resetToNormalMode() {
940    Mutex::Autolock _l(mLock);
941    return resetToNormalModeLocked();
942}
943
944status_t SensorService::resetToNormalModeLocked() {
945    SensorDevice& dev(SensorDevice::getInstance());
946    status_t err = dev.setMode(NORMAL);
947    if (err == NO_ERROR) {
948        mCurrentOperatingMode = NORMAL;
949        dev.enableAllSensors();
950    }
951    return err;
952}
953
954void SensorService::cleanupConnection(SensorEventConnection* c) {
955    Mutex::Autolock _l(mLock);
956    const wp<SensorEventConnection> connection(c);
957    size_t size = mActiveSensors.size();
958    ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
959    for (size_t i=0 ; i<size ; ) {
960        int handle = mActiveSensors.keyAt(i);
961        if (c->hasSensor(handle)) {
962            ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
963            sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
964            if (sensor != nullptr) {
965                sensor->activate(c, false);
966            } else {
967                ALOGE("sensor interface of handle=0x%08x is null!", handle);
968            }
969            c->removeSensor(handle);
970        }
971        SensorRecord* rec = mActiveSensors.valueAt(i);
972        ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
973        ALOGD_IF(DEBUG_CONNECTIONS,
974                "removing connection %p for sensor[%zu].handle=0x%08x",
975                c, i, handle);
976
977        if (rec && rec->removeConnection(connection)) {
978            ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
979            mActiveSensors.removeItemsAt(i, 1);
980            mActiveVirtualSensors.erase(handle);
981            delete rec;
982            size--;
983        } else {
984            i++;
985        }
986    }
987    c->updateLooperRegistration(mLooper);
988    mActiveConnections.remove(connection);
989    BatteryService::cleanup(c->getUid());
990    if (c->needsWakeLock()) {
991        checkWakeLockStateLocked();
992    }
993
994    SensorDevice& dev(SensorDevice::getInstance());
995    dev.notifyConnectionDestroyed(c);
996}
997
998sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
999    return mSensors.getInterface(handle);
1000}
1001
1002
1003status_t SensorService::enable(const sp<SensorEventConnection>& connection,
1004        int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
1005        const String16& opPackageName) {
1006    if (mInitCheck != NO_ERROR)
1007        return mInitCheck;
1008
1009    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1010    if (sensor == nullptr ||
1011        !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
1012        return BAD_VALUE;
1013    }
1014
1015    Mutex::Autolock _l(mLock);
1016    if ((mCurrentOperatingMode == RESTRICTED || mCurrentOperatingMode == DATA_INJECTION)
1017           && !isWhiteListedPackage(connection->getPackageName())) {
1018        return INVALID_OPERATION;
1019    }
1020
1021    SensorRecord* rec = mActiveSensors.valueFor(handle);
1022    if (rec == 0) {
1023        rec = new SensorRecord(connection);
1024        mActiveSensors.add(handle, rec);
1025        if (sensor->isVirtual()) {
1026            mActiveVirtualSensors.emplace(handle);
1027        }
1028    } else {
1029        if (rec->addConnection(connection)) {
1030            // this sensor is already activated, but we are adding a connection that uses it.
1031            // Immediately send down the last known value of the requested sensor if it's not a
1032            // "continuous" sensor.
1033            if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
1034                // NOTE: The wake_up flag of this event may get set to
1035                // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
1036
1037                auto logger = mRecentEvent.find(handle);
1038                if (logger != mRecentEvent.end()) {
1039                    sensors_event_t event;
1040                    // It is unlikely that this buffer is empty as the sensor is already active.
1041                    // One possible corner case may be two applications activating an on-change
1042                    // sensor at the same time.
1043                    if(logger->second->populateLastEvent(&event)) {
1044                        event.sensor = handle;
1045                        if (event.version == sizeof(sensors_event_t)) {
1046                            if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
1047                                setWakeLockAcquiredLocked(true);
1048                            }
1049                            connection->sendEvents(&event, 1, NULL);
1050                            if (!connection->needsWakeLock() && mWakeLockAcquired) {
1051                                checkWakeLockStateLocked();
1052                            }
1053                        }
1054                    }
1055                }
1056            }
1057        }
1058    }
1059
1060    if (connection->addSensor(handle)) {
1061        BatteryService::enableSensor(connection->getUid(), handle);
1062        // the sensor was added (which means it wasn't already there)
1063        // so, see if this connection becomes active
1064        if (mActiveConnections.indexOf(connection) < 0) {
1065            mActiveConnections.add(connection);
1066        }
1067    } else {
1068        ALOGW("sensor %08x already enabled in connection %p (ignoring)",
1069            handle, connection.get());
1070    }
1071
1072    nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1073    if (samplingPeriodNs < minDelayNs) {
1074        samplingPeriodNs = minDelayNs;
1075    }
1076
1077    ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
1078                                "rate=%" PRId64 " timeout== %" PRId64"",
1079             handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
1080
1081    status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
1082                                 maxBatchReportLatencyNs);
1083
1084    // Call flush() before calling activate() on the sensor. Wait for a first
1085    // flush complete event before sending events on this connection. Ignore
1086    // one-shot sensors which don't support flush(). Ignore on-change sensors
1087    // to maintain the on-change logic (any on-change events except the initial
1088    // one should be trigger by a change in value). Also if this sensor isn't
1089    // already active, don't call flush().
1090    if (err == NO_ERROR &&
1091            sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
1092            rec->getNumConnections() > 1) {
1093        connection->setFirstFlushPending(handle, true);
1094        status_t err_flush = sensor->flush(connection.get(), handle);
1095        // Flush may return error if the underlying h/w sensor uses an older HAL.
1096        if (err_flush == NO_ERROR) {
1097            rec->addPendingFlushConnection(connection.get());
1098        } else {
1099            connection->setFirstFlushPending(handle, false);
1100        }
1101    }
1102
1103    if (err == NO_ERROR) {
1104        ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
1105        err = sensor->activate(connection.get(), true);
1106    }
1107
1108    if (err == NO_ERROR) {
1109        connection->updateLooperRegistration(mLooper);
1110        SensorRegistrationInfo &reg_info =
1111            mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
1112        reg_info.mSensorHandle = handle;
1113        reg_info.mSamplingRateUs = samplingPeriodNs/1000;
1114        reg_info.mMaxReportLatencyUs = maxBatchReportLatencyNs/1000;
1115        reg_info.mActivated = true;
1116        reg_info.mPackageName = connection->getPackageName();
1117        time_t rawtime = time(NULL);
1118        struct tm * timeinfo = localtime(&rawtime);
1119        reg_info.mHour = timeinfo->tm_hour;
1120        reg_info.mMin = timeinfo->tm_min;
1121        reg_info.mSec = timeinfo->tm_sec;
1122        mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1123    }
1124
1125    if (err != NO_ERROR) {
1126        // batch/activate has failed, reset our state.
1127        cleanupWithoutDisableLocked(connection, handle);
1128    }
1129    return err;
1130}
1131
1132status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
1133    if (mInitCheck != NO_ERROR)
1134        return mInitCheck;
1135
1136    Mutex::Autolock _l(mLock);
1137    status_t err = cleanupWithoutDisableLocked(connection, handle);
1138    if (err == NO_ERROR) {
1139        sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1140        err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
1141
1142    }
1143    if (err == NO_ERROR) {
1144        SensorRegistrationInfo &reg_info =
1145            mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
1146        reg_info.mActivated = false;
1147        reg_info.mPackageName= connection->getPackageName();
1148        reg_info.mSensorHandle = handle;
1149        time_t rawtime = time(NULL);
1150        struct tm * timeinfo = localtime(&rawtime);
1151        reg_info.mHour = timeinfo->tm_hour;
1152        reg_info.mMin = timeinfo->tm_min;
1153        reg_info.mSec = timeinfo->tm_sec;
1154        mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
1155    }
1156    return err;
1157}
1158
1159status_t SensorService::cleanupWithoutDisable(
1160        const sp<SensorEventConnection>& connection, int handle) {
1161    Mutex::Autolock _l(mLock);
1162    return cleanupWithoutDisableLocked(connection, handle);
1163}
1164
1165status_t SensorService::cleanupWithoutDisableLocked(
1166        const sp<SensorEventConnection>& connection, int handle) {
1167    SensorRecord* rec = mActiveSensors.valueFor(handle);
1168    if (rec) {
1169        // see if this connection becomes inactive
1170        if (connection->removeSensor(handle)) {
1171            BatteryService::disableSensor(connection->getUid(), handle);
1172        }
1173        if (connection->hasAnySensor() == false) {
1174            connection->updateLooperRegistration(mLooper);
1175            mActiveConnections.remove(connection);
1176        }
1177        // see if this sensor becomes inactive
1178        if (rec->removeConnection(connection)) {
1179            mActiveSensors.removeItem(handle);
1180            mActiveVirtualSensors.erase(handle);
1181            delete rec;
1182        }
1183        return NO_ERROR;
1184    }
1185    return BAD_VALUE;
1186}
1187
1188status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
1189        int handle, nsecs_t ns, const String16& opPackageName) {
1190    if (mInitCheck != NO_ERROR)
1191        return mInitCheck;
1192
1193    sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1194    if (sensor == nullptr ||
1195        !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
1196        return BAD_VALUE;
1197    }
1198
1199    if (ns < 0)
1200        return BAD_VALUE;
1201
1202    nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
1203    if (ns < minDelayNs) {
1204        ns = minDelayNs;
1205    }
1206
1207    return sensor->setDelay(connection.get(), handle, ns);
1208}
1209
1210status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
1211        const String16& opPackageName) {
1212    if (mInitCheck != NO_ERROR) return mInitCheck;
1213    SensorDevice& dev(SensorDevice::getInstance());
1214    const int halVersion = dev.getHalDeviceVersion();
1215    status_t err(NO_ERROR);
1216    Mutex::Autolock _l(mLock);
1217    // Loop through all sensors for this connection and call flush on each of them.
1218    for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
1219        const int handle = connection->mSensorInfo.keyAt(i);
1220        sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
1221        if (sensor == nullptr) {
1222            continue;
1223        }
1224        if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
1225            ALOGE("flush called on a one-shot sensor");
1226            err = INVALID_OPERATION;
1227            continue;
1228        }
1229        if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
1230            // For older devices just increment pending flush count which will send a trivial
1231            // flush complete event.
1232            connection->incrementPendingFlushCount(handle);
1233        } else {
1234            if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
1235                err = INVALID_OPERATION;
1236                continue;
1237            }
1238            status_t err_flush = sensor->flush(connection.get(), handle);
1239            if (err_flush == NO_ERROR) {
1240                SensorRecord* rec = mActiveSensors.valueFor(handle);
1241                if (rec != NULL) rec->addPendingFlushConnection(connection);
1242            }
1243            err = (err_flush != NO_ERROR) ? err_flush : err;
1244        }
1245    }
1246    return err;
1247}
1248
1249bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
1250        const String16& opPackageName) {
1251    const String8& requiredPermission = sensor.getRequiredPermission();
1252
1253    if (requiredPermission.length() <= 0) {
1254        return true;
1255    }
1256
1257    bool hasPermission = false;
1258
1259    // Runtime permissions can't use the cache as they may change.
1260    if (sensor.isRequiredPermissionRuntime()) {
1261        hasPermission = checkPermission(String16(requiredPermission),
1262                IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
1263    } else {
1264        hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
1265    }
1266
1267    if (!hasPermission) {
1268        ALOGE("%s a sensor (%s) without holding its required permission: %s",
1269                operation, sensor.getName().string(), sensor.getRequiredPermission().string());
1270        return false;
1271    }
1272
1273    const int32_t opCode = sensor.getRequiredAppOp();
1274    if (opCode >= 0) {
1275        AppOpsManager appOps;
1276        if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
1277                        != AppOpsManager::MODE_ALLOWED) {
1278            ALOGE("%s a sensor (%s) without enabled required app op: %d",
1279                    operation, sensor.getName().string(), opCode);
1280            return false;
1281        }
1282    }
1283
1284    return true;
1285}
1286
1287void SensorService::checkWakeLockState() {
1288    Mutex::Autolock _l(mLock);
1289    checkWakeLockStateLocked();
1290}
1291
1292void SensorService::checkWakeLockStateLocked() {
1293    if (!mWakeLockAcquired) {
1294        return;
1295    }
1296    bool releaseLock = true;
1297    for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
1298        sp<SensorEventConnection> connection(mActiveConnections[i].promote());
1299        if (connection != 0) {
1300            if (connection->needsWakeLock()) {
1301                releaseLock = false;
1302                break;
1303            }
1304        }
1305    }
1306    if (releaseLock) {
1307        setWakeLockAcquiredLocked(false);
1308    }
1309}
1310
1311void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
1312    Mutex::Autolock _l(mLock);
1313    connection->writeToSocketFromCache();
1314    if (connection->needsWakeLock()) {
1315        setWakeLockAcquiredLocked(true);
1316    }
1317}
1318
1319void SensorService::populateActiveConnections(
1320        SortedVector< sp<SensorEventConnection> >* activeConnections) {
1321    Mutex::Autolock _l(mLock);
1322    for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
1323        sp<SensorEventConnection> connection(mActiveConnections[i].promote());
1324        if (connection != 0) {
1325            activeConnections->add(connection);
1326        }
1327    }
1328}
1329
1330bool SensorService::isWhiteListedPackage(const String8& packageName) {
1331    return (packageName.contains(mWhiteListedPackage.string()));
1332}
1333
1334}; // namespace android
1335
1336