Layer.cpp revision 22851c3ba2cf5ccb0c3a0aa6c5b94ae123a5616a
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//#define LOG_NDEBUG 0
18#undef LOG_TAG
19#define LOG_TAG "Layer"
20#define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22#include <stdlib.h>
23#include <stdint.h>
24#include <sys/types.h>
25#include <math.h>
26
27#include <cutils/compiler.h>
28#include <cutils/native_handle.h>
29#include <cutils/properties.h>
30
31#include <utils/Errors.h>
32#include <utils/Log.h>
33#include <utils/NativeHandle.h>
34#include <utils/StopWatch.h>
35#include <utils/Trace.h>
36
37#include <ui/GraphicBuffer.h>
38#include <ui/PixelFormat.h>
39
40#include <gui/BufferItem.h>
41#include <gui/Surface.h>
42
43#include "clz.h"
44#include "Colorizer.h"
45#include "DisplayDevice.h"
46#include "Layer.h"
47#include "MonitoredProducer.h"
48#include "SurfaceFlinger.h"
49
50#include "DisplayHardware/HWComposer.h"
51
52#include "RenderEngine/RenderEngine.h"
53
54#include <mutex>
55
56#define DEBUG_RESIZE    0
57
58namespace android {
59
60// ---------------------------------------------------------------------------
61
62int32_t Layer::sSequence = 1;
63
64Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
65        const String8& name, uint32_t w, uint32_t h, uint32_t flags)
66    :   contentDirty(false),
67        sequence(uint32_t(android_atomic_inc(&sSequence))),
68        mFlinger(flinger),
69        mTextureName(-1U),
70        mPremultipliedAlpha(true),
71        mName("unnamed"),
72        mFormat(PIXEL_FORMAT_NONE),
73        mTransactionFlags(0),
74        mPendingStateMutex(),
75        mPendingStates(),
76        mQueuedFrames(0),
77        mSidebandStreamChanged(false),
78        mCurrentTransform(0),
79        mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
80        mOverrideScalingMode(-1),
81        mCurrentOpacity(true),
82        mCurrentFrameNumber(0),
83        mRefreshPending(false),
84        mFrameLatencyNeeded(false),
85        mFiltering(false),
86        mNeedsFiltering(false),
87        mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2),
88#ifndef USE_HWC2
89        mIsGlesComposition(false),
90#endif
91        mProtectedByApp(false),
92        mHasSurface(false),
93        mClientRef(client),
94        mPotentialCursor(false),
95        mQueueItemLock(),
96        mQueueItemCondition(),
97        mQueueItems(),
98        mLastFrameNumberReceived(0),
99        mUpdateTexImageFailed(false),
100        mAutoRefresh(false),
101        mFreezePositionUpdates(false)
102{
103#ifdef USE_HWC2
104    ALOGV("Creating Layer %s", name.string());
105#endif
106
107    mCurrentCrop.makeInvalid();
108    mFlinger->getRenderEngine().genTextures(1, &mTextureName);
109    mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
110
111    uint32_t layerFlags = 0;
112    if (flags & ISurfaceComposerClient::eHidden)
113        layerFlags |= layer_state_t::eLayerHidden;
114    if (flags & ISurfaceComposerClient::eOpaque)
115        layerFlags |= layer_state_t::eLayerOpaque;
116    if (flags & ISurfaceComposerClient::eSecure)
117        layerFlags |= layer_state_t::eLayerSecure;
118
119    if (flags & ISurfaceComposerClient::eNonPremultiplied)
120        mPremultipliedAlpha = false;
121
122    mName = name;
123
124    mCurrentState.active.w = w;
125    mCurrentState.active.h = h;
126    mCurrentState.active.transform.set(0, 0);
127    mCurrentState.crop.makeInvalid();
128    mCurrentState.finalCrop.makeInvalid();
129    mCurrentState.z = 0;
130#ifdef USE_HWC2
131    mCurrentState.alpha = 1.0f;
132#else
133    mCurrentState.alpha = 0xFF;
134#endif
135    mCurrentState.layerStack = 0;
136    mCurrentState.flags = layerFlags;
137    mCurrentState.sequence = 0;
138    mCurrentState.requested = mCurrentState.active;
139
140    // drawing state & current state are identical
141    mDrawingState = mCurrentState;
142
143#ifdef USE_HWC2
144    const auto& hwc = flinger->getHwComposer();
145    const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY);
146    nsecs_t displayPeriod = activeConfig->getVsyncPeriod();
147#else
148    nsecs_t displayPeriod =
149            flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
150#endif
151    mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
152}
153
154void Layer::onFirstRef() {
155    // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
156    sp<IGraphicBufferProducer> producer;
157    sp<IGraphicBufferConsumer> consumer;
158    BufferQueue::createBufferQueue(&producer, &consumer, nullptr, true);
159    mProducer = new MonitoredProducer(producer, mFlinger);
160    mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName, this);
161    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
162    mSurfaceFlingerConsumer->setContentsChangedListener(this);
163    mSurfaceFlingerConsumer->setName(mName);
164
165#ifndef TARGET_DISABLE_TRIPLE_BUFFERING
166    mProducer->setMaxDequeuedBufferCount(2);
167#endif
168
169    const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
170    updateTransformHint(hw);
171}
172
173Layer::~Layer() {
174  sp<Client> c(mClientRef.promote());
175    if (c != 0) {
176        c->detachLayer(this);
177    }
178
179    for (auto& point : mRemoteSyncPoints) {
180        point->setTransactionApplied();
181    }
182    for (auto& point : mLocalSyncPoints) {
183        point->setFrameAvailable();
184    }
185    mFlinger->deleteTextureAsync(mTextureName);
186    mFrameTracker.logAndResetStats(mName);
187}
188
189// ---------------------------------------------------------------------------
190// callbacks
191// ---------------------------------------------------------------------------
192
193#ifdef USE_HWC2
194void Layer::onLayerDisplayed(const sp<Fence>& releaseFence) {
195    if (mHwcLayers.empty()) {
196        return;
197    }
198    mSurfaceFlingerConsumer->setReleaseFence(releaseFence);
199}
200#else
201void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */,
202        HWComposer::HWCLayerInterface* layer) {
203    if (layer) {
204        layer->onDisplayed();
205        mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
206    }
207}
208#endif
209
210void Layer::onFrameAvailable(const BufferItem& item) {
211    // Add this buffer from our internal queue tracker
212    { // Autolock scope
213        Mutex::Autolock lock(mQueueItemLock);
214        mFlinger->mInterceptor.saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
215                item.mGraphicBuffer->getHeight(), item.mFrameNumber);
216        // Reset the frame number tracker when we receive the first buffer after
217        // a frame number reset
218        if (item.mFrameNumber == 1) {
219            mLastFrameNumberReceived = 0;
220        }
221
222        // Ensure that callbacks are handled in order
223        while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
224            status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
225                    ms2ns(500));
226            if (result != NO_ERROR) {
227                ALOGE("[%s] Timed out waiting on callback", mName.string());
228            }
229        }
230
231        mQueueItems.push_back(item);
232        android_atomic_inc(&mQueuedFrames);
233
234        // Wake up any pending callbacks
235        mLastFrameNumberReceived = item.mFrameNumber;
236        mQueueItemCondition.broadcast();
237    }
238
239    mFlinger->signalLayerUpdate();
240}
241
242void Layer::onFrameReplaced(const BufferItem& item) {
243    { // Autolock scope
244        Mutex::Autolock lock(mQueueItemLock);
245
246        // Ensure that callbacks are handled in order
247        while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
248            status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
249                    ms2ns(500));
250            if (result != NO_ERROR) {
251                ALOGE("[%s] Timed out waiting on callback", mName.string());
252            }
253        }
254
255        if (mQueueItems.empty()) {
256            ALOGE("Can't replace a frame on an empty queue");
257            return;
258        }
259        mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
260
261        // Wake up any pending callbacks
262        mLastFrameNumberReceived = item.mFrameNumber;
263        mQueueItemCondition.broadcast();
264    }
265}
266
267void Layer::onSidebandStreamChanged() {
268    if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
269        // mSidebandStreamChanged was false
270        mFlinger->signalLayerUpdate();
271    }
272}
273
274// called with SurfaceFlinger::mStateLock from the drawing thread after
275// the layer has been remove from the current state list (and just before
276// it's removed from the drawing state list)
277void Layer::onRemoved() {
278    mSurfaceFlingerConsumer->abandon();
279}
280
281// ---------------------------------------------------------------------------
282// set-up
283// ---------------------------------------------------------------------------
284
285const String8& Layer::getName() const {
286    return mName;
287}
288
289status_t Layer::setBuffers( uint32_t w, uint32_t h,
290                            PixelFormat format, uint32_t flags)
291{
292    uint32_t const maxSurfaceDims = min(
293            mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
294
295    // never allow a surface larger than what our underlying GL implementation
296    // can handle.
297    if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
298        ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
299        return BAD_VALUE;
300    }
301
302    mFormat = format;
303
304    mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
305    mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
306    mCurrentOpacity = getOpacityForFormat(format);
307
308    mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
309    mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
310    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
311
312    return NO_ERROR;
313}
314
315sp<IBinder> Layer::getHandle() {
316    Mutex::Autolock _l(mLock);
317
318    LOG_ALWAYS_FATAL_IF(mHasSurface,
319            "Layer::getHandle() has already been called");
320
321    mHasSurface = true;
322
323    return new Handle(mFlinger, this);
324}
325
326sp<IGraphicBufferProducer> Layer::getProducer() const {
327    return mProducer;
328}
329
330// ---------------------------------------------------------------------------
331// h/w composer set-up
332// ---------------------------------------------------------------------------
333
334Rect Layer::getContentCrop() const {
335    // this is the crop rectangle that applies to the buffer
336    // itself (as opposed to the window)
337    Rect crop;
338    if (!mCurrentCrop.isEmpty()) {
339        // if the buffer crop is defined, we use that
340        crop = mCurrentCrop;
341    } else if (mActiveBuffer != NULL) {
342        // otherwise we use the whole buffer
343        crop = mActiveBuffer->getBounds();
344    } else {
345        // if we don't have a buffer yet, we use an empty/invalid crop
346        crop.makeInvalid();
347    }
348    return crop;
349}
350
351static Rect reduce(const Rect& win, const Region& exclude) {
352    if (CC_LIKELY(exclude.isEmpty())) {
353        return win;
354    }
355    if (exclude.isRect()) {
356        return win.reduce(exclude.getBounds());
357    }
358    return Region(win).subtract(exclude).getBounds();
359}
360
361Rect Layer::computeBounds() const {
362    const Layer::State& s(getDrawingState());
363    return computeBounds(s.activeTransparentRegion);
364}
365
366Rect Layer::computeBounds(const Region& activeTransparentRegion) const {
367    const Layer::State& s(getDrawingState());
368    Rect win(s.active.w, s.active.h);
369
370    if (!s.crop.isEmpty()) {
371        win.intersect(s.crop, &win);
372    }
373    // subtract the transparent region and snap to the bounds
374    return reduce(win, activeTransparentRegion);
375}
376
377FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
378    // the content crop is the area of the content that gets scaled to the
379    // layer's size.
380    FloatRect crop(getContentCrop());
381
382    // the crop is the area of the window that gets cropped, but not
383    // scaled in any ways.
384    const State& s(getDrawingState());
385
386    // apply the projection's clipping to the window crop in
387    // layerstack space, and convert-back to layer space.
388    // if there are no window scaling involved, this operation will map to full
389    // pixels in the buffer.
390    // FIXME: the 3 lines below can produce slightly incorrect clipping when we have
391    // a viewport clipping and a window transform. we should use floating point to fix this.
392
393    Rect activeCrop(s.active.w, s.active.h);
394    if (!s.crop.isEmpty()) {
395        activeCrop = s.crop;
396    }
397
398    activeCrop = s.active.transform.transform(activeCrop);
399    if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) {
400        activeCrop.clear();
401    }
402    if (!s.finalCrop.isEmpty()) {
403        if(!activeCrop.intersect(s.finalCrop, &activeCrop)) {
404            activeCrop.clear();
405        }
406    }
407    activeCrop = s.active.transform.inverse().transform(activeCrop);
408
409    // This needs to be here as transform.transform(Rect) computes the
410    // transformed rect and then takes the bounding box of the result before
411    // returning. This means
412    // transform.inverse().transform(transform.transform(Rect)) != Rect
413    // in which case we need to make sure the final rect is clipped to the
414    // display bounds.
415    if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
416        activeCrop.clear();
417    }
418
419    // subtract the transparent region and snap to the bounds
420    activeCrop = reduce(activeCrop, s.activeTransparentRegion);
421
422    // Transform the window crop to match the buffer coordinate system,
423    // which means using the inverse of the current transform set on the
424    // SurfaceFlingerConsumer.
425    uint32_t invTransform = mCurrentTransform;
426    if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
427        /*
428         * the code below applies the primary display's inverse transform to the
429         * buffer
430         */
431        uint32_t invTransformOrient =
432                DisplayDevice::getPrimaryDisplayOrientationTransform();
433        // calculate the inverse transform
434        if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) {
435            invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
436                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
437        }
438        // and apply to the current transform
439        invTransform = (Transform(invTransformOrient) * Transform(invTransform))
440                .getOrientation();
441    }
442
443    int winWidth = s.active.w;
444    int winHeight = s.active.h;
445    if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
446        // If the activeCrop has been rotate the ends are rotated but not
447        // the space itself so when transforming ends back we can't rely on
448        // a modification of the axes of rotation. To account for this we
449        // need to reorient the inverse rotation in terms of the current
450        // axes of rotation.
451        bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
452        bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
453        if (is_h_flipped == is_v_flipped) {
454            invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
455                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
456        }
457        winWidth = s.active.h;
458        winHeight = s.active.w;
459    }
460    const Rect winCrop = activeCrop.transform(
461            invTransform, s.active.w, s.active.h);
462
463    // below, crop is intersected with winCrop expressed in crop's coordinate space
464    float xScale = crop.getWidth()  / float(winWidth);
465    float yScale = crop.getHeight() / float(winHeight);
466
467    float insetL = winCrop.left                 * xScale;
468    float insetT = winCrop.top                  * yScale;
469    float insetR = (winWidth - winCrop.right )  * xScale;
470    float insetB = (winHeight - winCrop.bottom) * yScale;
471
472    crop.left   += insetL;
473    crop.top    += insetT;
474    crop.right  -= insetR;
475    crop.bottom -= insetB;
476
477    return crop;
478}
479
480#ifdef USE_HWC2
481void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice)
482#else
483void Layer::setGeometry(
484    const sp<const DisplayDevice>& hw,
485        HWComposer::HWCLayerInterface& layer)
486#endif
487{
488#ifdef USE_HWC2
489    const auto hwcId = displayDevice->getHwcDisplayId();
490    auto& hwcInfo = mHwcLayers[hwcId];
491#else
492    layer.setDefaultState();
493#endif
494
495    // enable this layer
496#ifdef USE_HWC2
497    hwcInfo.forceClientComposition = false;
498
499    if (isSecure() && !displayDevice->isSecure()) {
500        hwcInfo.forceClientComposition = true;
501    }
502
503    auto& hwcLayer = hwcInfo.layer;
504#else
505    layer.setSkip(false);
506
507    if (isSecure() && !hw->isSecure()) {
508        layer.setSkip(true);
509    }
510#endif
511
512    // this gives us only the "orientation" component of the transform
513    const State& s(getDrawingState());
514#ifdef USE_HWC2
515    if (!isOpaque(s) || s.alpha != 1.0f) {
516        auto blendMode = mPremultipliedAlpha ?
517                HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage;
518        auto error = hwcLayer->setBlendMode(blendMode);
519        ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:"
520                " %s (%d)", mName.string(), to_string(blendMode).c_str(),
521                to_string(error).c_str(), static_cast<int32_t>(error));
522    }
523#else
524    if (!isOpaque(s) || s.alpha != 0xFF) {
525        layer.setBlending(mPremultipliedAlpha ?
526                HWC_BLENDING_PREMULT :
527                HWC_BLENDING_COVERAGE);
528    }
529#endif
530
531    // apply the layer's transform, followed by the display's global transform
532    // here we're guaranteed that the layer's transform preserves rects
533    Region activeTransparentRegion(s.activeTransparentRegion);
534    if (!s.crop.isEmpty()) {
535        Rect activeCrop(s.crop);
536        activeCrop = s.active.transform.transform(activeCrop);
537#ifdef USE_HWC2
538        if(!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) {
539#else
540        if(!activeCrop.intersect(hw->getViewport(), &activeCrop)) {
541#endif
542            activeCrop.clear();
543        }
544        activeCrop = s.active.transform.inverse().transform(activeCrop, true);
545        // This needs to be here as transform.transform(Rect) computes the
546        // transformed rect and then takes the bounding box of the result before
547        // returning. This means
548        // transform.inverse().transform(transform.transform(Rect)) != Rect
549        // in which case we need to make sure the final rect is clipped to the
550        // display bounds.
551        if(!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
552            activeCrop.clear();
553        }
554        // mark regions outside the crop as transparent
555        activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top));
556        activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom,
557                s.active.w, s.active.h));
558        activeTransparentRegion.orSelf(Rect(0, activeCrop.top,
559                activeCrop.left, activeCrop.bottom));
560        activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top,
561                s.active.w, activeCrop.bottom));
562    }
563    Rect frame(s.active.transform.transform(computeBounds(activeTransparentRegion)));
564    if (!s.finalCrop.isEmpty()) {
565        if(!frame.intersect(s.finalCrop, &frame)) {
566            frame.clear();
567        }
568    }
569#ifdef USE_HWC2
570    if (!frame.intersect(displayDevice->getViewport(), &frame)) {
571        frame.clear();
572    }
573    const Transform& tr(displayDevice->getTransform());
574    Rect transformedFrame = tr.transform(frame);
575    auto error = hwcLayer->setDisplayFrame(transformedFrame);
576    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set display frame "
577            "[%d, %d, %d, %d]: %s (%d)", mName.string(), transformedFrame.left,
578            transformedFrame.top, transformedFrame.right,
579            transformedFrame.bottom, to_string(error).c_str(),
580            static_cast<int32_t>(error));
581
582    FloatRect sourceCrop = computeCrop(displayDevice);
583    error = hwcLayer->setSourceCrop(sourceCrop);
584    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set source crop "
585            "[%.3f, %.3f, %.3f, %.3f]: %s (%d)", mName.string(),
586            sourceCrop.left, sourceCrop.top, sourceCrop.right,
587            sourceCrop.bottom, to_string(error).c_str(),
588            static_cast<int32_t>(error));
589
590    error = hwcLayer->setPlaneAlpha(s.alpha);
591    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: "
592            "%s (%d)", mName.string(), s.alpha, to_string(error).c_str(),
593            static_cast<int32_t>(error));
594
595    error = hwcLayer->setZOrder(s.z);
596    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)",
597            mName.string(), s.z, to_string(error).c_str(),
598            static_cast<int32_t>(error));
599#else
600    if (!frame.intersect(hw->getViewport(), &frame)) {
601        frame.clear();
602    }
603    const Transform& tr(hw->getTransform());
604    layer.setFrame(tr.transform(frame));
605    layer.setCrop(computeCrop(hw));
606    layer.setPlaneAlpha(s.alpha);
607#endif
608
609    /*
610     * Transformations are applied in this order:
611     * 1) buffer orientation/flip/mirror
612     * 2) state transformation (window manager)
613     * 3) layer orientation (screen orientation)
614     * (NOTE: the matrices are multiplied in reverse order)
615     */
616
617    const Transform bufferOrientation(mCurrentTransform);
618    Transform transform(tr * s.active.transform * bufferOrientation);
619
620    if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
621        /*
622         * the code below applies the primary display's inverse transform to the
623         * buffer
624         */
625        uint32_t invTransform =
626                DisplayDevice::getPrimaryDisplayOrientationTransform();
627        // calculate the inverse transform
628        if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
629            invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
630                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
631        }
632        // and apply to the current transform
633        transform = Transform(invTransform) * transform;
634    }
635
636    // this gives us only the "orientation" component of the transform
637    const uint32_t orientation = transform.getOrientation();
638#ifdef USE_HWC2
639    if (orientation & Transform::ROT_INVALID) {
640        // we can only handle simple transformation
641        hwcInfo.forceClientComposition = true;
642    } else {
643        auto transform = static_cast<HWC2::Transform>(orientation);
644        auto error = hwcLayer->setTransform(transform);
645        ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: "
646                "%s (%d)", mName.string(), to_string(transform).c_str(),
647                to_string(error).c_str(), static_cast<int32_t>(error));
648    }
649#else
650    if (orientation & Transform::ROT_INVALID) {
651        // we can only handle simple transformation
652        layer.setSkip(true);
653    } else {
654        layer.setTransform(orientation);
655    }
656#endif
657}
658
659#ifdef USE_HWC2
660void Layer::forceClientComposition(int32_t hwcId) {
661    if (mHwcLayers.count(hwcId) == 0) {
662        ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId);
663        return;
664    }
665
666    mHwcLayers[hwcId].forceClientComposition = true;
667}
668#endif
669
670#ifdef USE_HWC2
671void Layer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
672    // Apply this display's projection's viewport to the visible region
673    // before giving it to the HWC HAL.
674    const Transform& tr = displayDevice->getTransform();
675    const auto& viewport = displayDevice->getViewport();
676    Region visible = tr.transform(visibleRegion.intersect(viewport));
677    auto hwcId = displayDevice->getHwcDisplayId();
678    auto& hwcLayer = mHwcLayers[hwcId].layer;
679    auto error = hwcLayer->setVisibleRegion(visible);
680    if (error != HWC2::Error::None) {
681        ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
682                to_string(error).c_str(), static_cast<int32_t>(error));
683        visible.dump(LOG_TAG);
684    }
685
686    error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
687    if (error != HWC2::Error::None) {
688        ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
689                to_string(error).c_str(), static_cast<int32_t>(error));
690        surfaceDamageRegion.dump(LOG_TAG);
691    }
692
693    // Sideband layers
694    if (mSidebandStream.get()) {
695        setCompositionType(hwcId, HWC2::Composition::Sideband);
696        ALOGV("[%s] Requesting Sideband composition", mName.string());
697        error = hwcLayer->setSidebandStream(mSidebandStream->handle());
698        if (error != HWC2::Error::None) {
699            ALOGE("[%s] Failed to set sideband stream %p: %s (%d)",
700                    mName.string(), mSidebandStream->handle(),
701                    to_string(error).c_str(), static_cast<int32_t>(error));
702        }
703        return;
704    }
705
706    // Client layers
707    if (mHwcLayers[hwcId].forceClientComposition ||
708            (mActiveBuffer != nullptr && mActiveBuffer->handle == nullptr)) {
709        ALOGV("[%s] Requesting Client composition", mName.string());
710        setCompositionType(hwcId, HWC2::Composition::Client);
711        return;
712    }
713
714    // SolidColor layers
715    if (mActiveBuffer == nullptr) {
716        setCompositionType(hwcId, HWC2::Composition::SolidColor);
717
718        // For now, we only support black for DimLayer
719        error = hwcLayer->setColor({0, 0, 0, 255});
720        if (error != HWC2::Error::None) {
721            ALOGE("[%s] Failed to set color: %s (%d)", mName.string(),
722                    to_string(error).c_str(), static_cast<int32_t>(error));
723        }
724
725        // Clear out the transform, because it doesn't make sense absent a
726        // source buffer
727        error = hwcLayer->setTransform(HWC2::Transform::None);
728        if (error != HWC2::Error::None) {
729            ALOGE("[%s] Failed to clear transform: %s (%d)", mName.string(),
730                    to_string(error).c_str(), static_cast<int32_t>(error));
731        }
732
733        return;
734    }
735
736    // Device or Cursor layers
737    if (mPotentialCursor) {
738        ALOGV("[%s] Requesting Cursor composition", mName.string());
739        setCompositionType(hwcId, HWC2::Composition::Cursor);
740    } else {
741        ALOGV("[%s] Requesting Device composition", mName.string());
742        setCompositionType(hwcId, HWC2::Composition::Device);
743    }
744
745    auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence();
746    error = hwcLayer->setBuffer(mActiveBuffer->handle, acquireFence);
747    if (error != HWC2::Error::None) {
748        ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
749                mActiveBuffer->handle, to_string(error).c_str(),
750                static_cast<int32_t>(error));
751    }
752}
753#else
754void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
755        HWComposer::HWCLayerInterface& layer) {
756    // we have to set the visible region on every frame because
757    // we currently free it during onLayerDisplayed(), which is called
758    // after HWComposer::commit() -- every frame.
759    // Apply this display's projection's viewport to the visible region
760    // before giving it to the HWC HAL.
761    const Transform& tr = hw->getTransform();
762    Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
763    layer.setVisibleRegionScreen(visible);
764    layer.setSurfaceDamage(surfaceDamageRegion);
765    mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER);
766
767    if (mSidebandStream.get()) {
768        layer.setSidebandStream(mSidebandStream);
769    } else {
770        // NOTE: buffer can be NULL if the client never drew into this
771        // layer yet, or if we ran out of memory
772        layer.setBuffer(mActiveBuffer);
773    }
774}
775#endif
776
777#ifdef USE_HWC2
778void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) {
779    auto hwcId = displayDevice->getHwcDisplayId();
780    if (mHwcLayers.count(hwcId) == 0 ||
781            getCompositionType(hwcId) != HWC2::Composition::Cursor) {
782        return;
783    }
784
785    // This gives us only the "orientation" component of the transform
786    const State& s(getCurrentState());
787
788    // Apply the layer's transform, followed by the display's global transform
789    // Here we're guaranteed that the layer's transform preserves rects
790    Rect win(s.active.w, s.active.h);
791    if (!s.crop.isEmpty()) {
792        win.intersect(s.crop, &win);
793    }
794    // Subtract the transparent region and snap to the bounds
795    Rect bounds = reduce(win, s.activeTransparentRegion);
796    Rect frame(s.active.transform.transform(bounds));
797    frame.intersect(displayDevice->getViewport(), &frame);
798    if (!s.finalCrop.isEmpty()) {
799        frame.intersect(s.finalCrop, &frame);
800    }
801    auto& displayTransform(displayDevice->getTransform());
802    auto position = displayTransform.transform(frame);
803
804    auto error = mHwcLayers[hwcId].layer->setCursorPosition(position.left,
805            position.top);
806    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position "
807            "to (%d, %d): %s (%d)", mName.string(), position.left,
808            position.top, to_string(error).c_str(),
809            static_cast<int32_t>(error));
810}
811#else
812void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */,
813        HWComposer::HWCLayerInterface& layer) {
814    int fenceFd = -1;
815
816    // TODO: there is a possible optimization here: we only need to set the
817    // acquire fence the first time a new buffer is acquired on EACH display.
818
819    if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) {
820        sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
821        if (fence->isValid()) {
822            fenceFd = fence->dup();
823            if (fenceFd == -1) {
824                ALOGW("failed to dup layer fence, skipping sync: %d", errno);
825            }
826        }
827    }
828    layer.setAcquireFenceFd(fenceFd);
829}
830
831Rect Layer::getPosition(
832    const sp<const DisplayDevice>& hw)
833{
834    // this gives us only the "orientation" component of the transform
835    const State& s(getCurrentState());
836
837    // apply the layer's transform, followed by the display's global transform
838    // here we're guaranteed that the layer's transform preserves rects
839    Rect win(s.active.w, s.active.h);
840    if (!s.crop.isEmpty()) {
841        win.intersect(s.crop, &win);
842    }
843    // subtract the transparent region and snap to the bounds
844    Rect bounds = reduce(win, s.activeTransparentRegion);
845    Rect frame(s.active.transform.transform(bounds));
846    frame.intersect(hw->getViewport(), &frame);
847    if (!s.finalCrop.isEmpty()) {
848        frame.intersect(s.finalCrop, &frame);
849    }
850    const Transform& tr(hw->getTransform());
851    return Rect(tr.transform(frame));
852}
853#endif
854
855// ---------------------------------------------------------------------------
856// drawing...
857// ---------------------------------------------------------------------------
858
859void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
860    onDraw(hw, clip, false);
861}
862
863void Layer::draw(const sp<const DisplayDevice>& hw,
864        bool useIdentityTransform) const {
865    onDraw(hw, Region(hw->bounds()), useIdentityTransform);
866}
867
868void Layer::draw(const sp<const DisplayDevice>& hw) const {
869    onDraw(hw, Region(hw->bounds()), false);
870}
871
872void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
873        bool useIdentityTransform) const
874{
875    ATRACE_CALL();
876
877    if (CC_UNLIKELY(mActiveBuffer == 0)) {
878        // the texture has not been created yet, this Layer has
879        // in fact never been drawn into. This happens frequently with
880        // SurfaceView because the WindowManager can't know when the client
881        // has drawn the first time.
882
883        // If there is nothing under us, we paint the screen in black, otherwise
884        // we just skip this update.
885
886        // figure out if there is something below us
887        Region under;
888        const SurfaceFlinger::LayerVector& drawingLayers(
889                mFlinger->mDrawingState.layersSortedByZ);
890        const size_t count = drawingLayers.size();
891        for (size_t i=0 ; i<count ; ++i) {
892            const sp<Layer>& layer(drawingLayers[i]);
893            if (layer.get() == static_cast<Layer const*>(this))
894                break;
895            under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
896        }
897        // if not everything below us is covered, we plug the holes!
898        Region holes(clip.subtract(under));
899        if (!holes.isEmpty()) {
900            clearWithOpenGL(hw, holes, 0, 0, 0, 1);
901        }
902        return;
903    }
904
905    // Bind the current buffer to the GL texture, and wait for it to be
906    // ready for us to draw into.
907    status_t err = mSurfaceFlingerConsumer->bindTextureImage();
908    if (err != NO_ERROR) {
909        ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
910        // Go ahead and draw the buffer anyway; no matter what we do the screen
911        // is probably going to have something visibly wrong.
912    }
913
914    bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
915
916    RenderEngine& engine(mFlinger->getRenderEngine());
917
918    if (!blackOutLayer) {
919        // TODO: we could be more subtle with isFixedSize()
920        const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
921
922        // Query the texture matrix given our current filtering mode.
923        float textureMatrix[16];
924        mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
925        mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
926
927        if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
928
929            /*
930             * the code below applies the primary display's inverse transform to
931             * the texture transform
932             */
933
934            // create a 4x4 transform matrix from the display transform flags
935            const mat4 flipH(-1,0,0,0,  0,1,0,0, 0,0,1,0, 1,0,0,1);
936            const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1);
937            const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1);
938
939            mat4 tr;
940            uint32_t transform =
941                    DisplayDevice::getPrimaryDisplayOrientationTransform();
942            if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90)
943                tr = tr * rot90;
944            if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H)
945                tr = tr * flipH;
946            if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V)
947                tr = tr * flipV;
948
949            // calculate the inverse
950            tr = inverse(tr);
951
952            // and finally apply it to the original texture matrix
953            const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
954            memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
955        }
956
957        // Set things up for texturing.
958        mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight());
959        mTexture.setFiltering(useFiltering);
960        mTexture.setMatrix(textureMatrix);
961
962        engine.setupLayerTexturing(mTexture);
963    } else {
964        engine.setupLayerBlackedOut();
965    }
966    drawWithOpenGL(hw, clip, useIdentityTransform);
967    engine.disableTexturing();
968}
969
970
971void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw,
972        const Region& /* clip */, float red, float green, float blue,
973        float alpha) const
974{
975    RenderEngine& engine(mFlinger->getRenderEngine());
976    computeGeometry(hw, mMesh, false);
977    engine.setupFillWithColor(red, green, blue, alpha);
978    engine.drawMesh(mMesh);
979}
980
981void Layer::clearWithOpenGL(
982        const sp<const DisplayDevice>& hw, const Region& clip) const {
983    clearWithOpenGL(hw, clip, 0,0,0,0);
984}
985
986void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw,
987        const Region& /* clip */, bool useIdentityTransform) const {
988    const State& s(getDrawingState());
989
990    computeGeometry(hw, mMesh, useIdentityTransform);
991
992    /*
993     * NOTE: the way we compute the texture coordinates here produces
994     * different results than when we take the HWC path -- in the later case
995     * the "source crop" is rounded to texel boundaries.
996     * This can produce significantly different results when the texture
997     * is scaled by a large amount.
998     *
999     * The GL code below is more logical (imho), and the difference with
1000     * HWC is due to a limitation of the HWC API to integers -- a question
1001     * is suspend is whether we should ignore this problem or revert to
1002     * GL composition when a buffer scaling is applied (maybe with some
1003     * minimal value)? Or, we could make GL behave like HWC -- but this feel
1004     * like more of a hack.
1005     */
1006    Rect win(computeBounds());
1007
1008    if (!s.finalCrop.isEmpty()) {
1009        win = s.active.transform.transform(win);
1010        if (!win.intersect(s.finalCrop, &win)) {
1011            win.clear();
1012        }
1013        win = s.active.transform.inverse().transform(win);
1014        if (!win.intersect(computeBounds(), &win)) {
1015            win.clear();
1016        }
1017    }
1018
1019    float left   = float(win.left)   / float(s.active.w);
1020    float top    = float(win.top)    / float(s.active.h);
1021    float right  = float(win.right)  / float(s.active.w);
1022    float bottom = float(win.bottom) / float(s.active.h);
1023
1024    // TODO: we probably want to generate the texture coords with the mesh
1025    // here we assume that we only have 4 vertices
1026    Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>());
1027    texCoords[0] = vec2(left, 1.0f - top);
1028    texCoords[1] = vec2(left, 1.0f - bottom);
1029    texCoords[2] = vec2(right, 1.0f - bottom);
1030    texCoords[3] = vec2(right, 1.0f - top);
1031
1032    RenderEngine& engine(mFlinger->getRenderEngine());
1033    engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), s.alpha);
1034    engine.drawMesh(mMesh);
1035    engine.disableBlending();
1036}
1037
1038#ifdef USE_HWC2
1039void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type,
1040        bool callIntoHwc) {
1041    if (mHwcLayers.count(hwcId) == 0) {
1042        ALOGE("setCompositionType called without a valid HWC layer");
1043        return;
1044    }
1045    auto& hwcInfo = mHwcLayers[hwcId];
1046    auto& hwcLayer = hwcInfo.layer;
1047    ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(),
1048            to_string(type).c_str(), static_cast<int>(callIntoHwc));
1049    if (hwcInfo.compositionType != type) {
1050        ALOGV("    actually setting");
1051        hwcInfo.compositionType = type;
1052        if (callIntoHwc) {
1053            auto error = hwcLayer->setCompositionType(type);
1054            ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set "
1055                    "composition type %s: %s (%d)", mName.string(),
1056                    to_string(type).c_str(), to_string(error).c_str(),
1057                    static_cast<int32_t>(error));
1058        }
1059    }
1060}
1061
1062HWC2::Composition Layer::getCompositionType(int32_t hwcId) const {
1063    if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
1064        // If we're querying the composition type for a display that does not
1065        // have a HWC counterpart, then it will always be Client
1066        return HWC2::Composition::Client;
1067    }
1068    if (mHwcLayers.count(hwcId) == 0) {
1069        ALOGE("getCompositionType called with an invalid HWC layer");
1070        return HWC2::Composition::Invalid;
1071    }
1072    return mHwcLayers.at(hwcId).compositionType;
1073}
1074
1075void Layer::setClearClientTarget(int32_t hwcId, bool clear) {
1076    if (mHwcLayers.count(hwcId) == 0) {
1077        ALOGE("setClearClientTarget called without a valid HWC layer");
1078        return;
1079    }
1080    mHwcLayers[hwcId].clearClientTarget = clear;
1081}
1082
1083bool Layer::getClearClientTarget(int32_t hwcId) const {
1084    if (mHwcLayers.count(hwcId) == 0) {
1085        ALOGE("getClearClientTarget called without a valid HWC layer");
1086        return false;
1087    }
1088    return mHwcLayers.at(hwcId).clearClientTarget;
1089}
1090#endif
1091
1092uint32_t Layer::getProducerStickyTransform() const {
1093    int producerStickyTransform = 0;
1094    int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
1095    if (ret != OK) {
1096        ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
1097                strerror(-ret), ret);
1098        return 0;
1099    }
1100    return static_cast<uint32_t>(producerStickyTransform);
1101}
1102
1103bool Layer::latchUnsignaledBuffers() {
1104    static bool propertyLoaded = false;
1105    static bool latch = false;
1106    static std::mutex mutex;
1107    std::lock_guard<std::mutex> lock(mutex);
1108    if (!propertyLoaded) {
1109        char value[PROPERTY_VALUE_MAX] = {};
1110        property_get("debug.sf.latch_unsignaled", value, "0");
1111        latch = atoi(value);
1112        propertyLoaded = true;
1113    }
1114    return latch;
1115}
1116
1117uint64_t Layer::getHeadFrameNumber() const {
1118    Mutex::Autolock lock(mQueueItemLock);
1119    if (!mQueueItems.empty()) {
1120        return mQueueItems[0].mFrameNumber;
1121    } else {
1122        return mCurrentFrameNumber;
1123    }
1124}
1125
1126bool Layer::headFenceHasSignaled() const {
1127#ifdef USE_HWC2
1128    if (latchUnsignaledBuffers()) {
1129        return true;
1130    }
1131
1132    Mutex::Autolock lock(mQueueItemLock);
1133    if (mQueueItems.empty()) {
1134        return true;
1135    }
1136    if (mQueueItems[0].mIsDroppable) {
1137        // Even though this buffer's fence may not have signaled yet, it could
1138        // be replaced by another buffer before it has a chance to, which means
1139        // that it's possible to get into a situation where a buffer is never
1140        // able to be latched. To avoid this, grab this buffer anyway.
1141        return true;
1142    }
1143    return mQueueItems[0].mFence->getSignalTime() != INT64_MAX;
1144#else
1145    return true;
1146#endif
1147}
1148
1149bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
1150    if (point->getFrameNumber() <= mCurrentFrameNumber) {
1151        // Don't bother with a SyncPoint, since we've already latched the
1152        // relevant frame
1153        return false;
1154    }
1155
1156    Mutex::Autolock lock(mLocalSyncPointMutex);
1157    mLocalSyncPoints.push_back(point);
1158    return true;
1159}
1160
1161void Layer::setFiltering(bool filtering) {
1162    mFiltering = filtering;
1163}
1164
1165bool Layer::getFiltering() const {
1166    return mFiltering;
1167}
1168
1169// As documented in libhardware header, formats in the range
1170// 0x100 - 0x1FF are specific to the HAL implementation, and
1171// are known to have no alpha channel
1172// TODO: move definition for device-specific range into
1173// hardware.h, instead of using hard-coded values here.
1174#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
1175
1176bool Layer::getOpacityForFormat(uint32_t format) {
1177    if (HARDWARE_IS_DEVICE_FORMAT(format)) {
1178        return true;
1179    }
1180    switch (format) {
1181        case HAL_PIXEL_FORMAT_RGBA_8888:
1182        case HAL_PIXEL_FORMAT_BGRA_8888:
1183            return false;
1184    }
1185    // in all other case, we have no blending (also for unknown formats)
1186    return true;
1187}
1188
1189// ----------------------------------------------------------------------------
1190// local state
1191// ----------------------------------------------------------------------------
1192
1193static void boundPoint(vec2* point, const Rect& crop) {
1194    if (point->x < crop.left) {
1195        point->x = crop.left;
1196    }
1197    if (point->x > crop.right) {
1198        point->x = crop.right;
1199    }
1200    if (point->y < crop.top) {
1201        point->y = crop.top;
1202    }
1203    if (point->y > crop.bottom) {
1204        point->y = crop.bottom;
1205    }
1206}
1207
1208void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
1209        bool useIdentityTransform) const
1210{
1211    const Layer::State& s(getDrawingState());
1212    const Transform tr(hw->getTransform());
1213    const uint32_t hw_h = hw->getHeight();
1214    Rect win(s.active.w, s.active.h);
1215    if (!s.crop.isEmpty()) {
1216        win.intersect(s.crop, &win);
1217    }
1218    // subtract the transparent region and snap to the bounds
1219    win = reduce(win, s.activeTransparentRegion);
1220
1221    vec2 lt = vec2(win.left, win.top);
1222    vec2 lb = vec2(win.left, win.bottom);
1223    vec2 rb = vec2(win.right, win.bottom);
1224    vec2 rt = vec2(win.right, win.top);
1225
1226    if (!useIdentityTransform) {
1227        lt = s.active.transform.transform(lt);
1228        lb = s.active.transform.transform(lb);
1229        rb = s.active.transform.transform(rb);
1230        rt = s.active.transform.transform(rt);
1231    }
1232
1233    if (!s.finalCrop.isEmpty()) {
1234        boundPoint(&lt, s.finalCrop);
1235        boundPoint(&lb, s.finalCrop);
1236        boundPoint(&rb, s.finalCrop);
1237        boundPoint(&rt, s.finalCrop);
1238    }
1239
1240    Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
1241    position[0] = tr.transform(lt);
1242    position[1] = tr.transform(lb);
1243    position[2] = tr.transform(rb);
1244    position[3] = tr.transform(rt);
1245    for (size_t i=0 ; i<4 ; i++) {
1246        position[i].y = hw_h - position[i].y;
1247    }
1248}
1249
1250bool Layer::isOpaque(const Layer::State& s) const
1251{
1252    // if we don't have a buffer yet, we're translucent regardless of the
1253    // layer's opaque flag.
1254    if (mActiveBuffer == 0) {
1255        return false;
1256    }
1257
1258    // if the layer has the opaque flag, then we're always opaque,
1259    // otherwise we use the current buffer's format.
1260    return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
1261}
1262
1263bool Layer::isSecure() const
1264{
1265    const Layer::State& s(mDrawingState);
1266    return (s.flags & layer_state_t::eLayerSecure);
1267}
1268
1269bool Layer::isProtected() const
1270{
1271    const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
1272    return (activeBuffer != 0) &&
1273            (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
1274}
1275
1276bool Layer::isFixedSize() const {
1277    return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
1278}
1279
1280bool Layer::isCropped() const {
1281    return !mCurrentCrop.isEmpty();
1282}
1283
1284bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
1285    return mNeedsFiltering || hw->needsFiltering();
1286}
1287
1288void Layer::setVisibleRegion(const Region& visibleRegion) {
1289    // always called from main thread
1290    this->visibleRegion = visibleRegion;
1291}
1292
1293void Layer::setCoveredRegion(const Region& coveredRegion) {
1294    // always called from main thread
1295    this->coveredRegion = coveredRegion;
1296}
1297
1298void Layer::setVisibleNonTransparentRegion(const Region&
1299        setVisibleNonTransparentRegion) {
1300    // always called from main thread
1301    this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
1302}
1303
1304// ----------------------------------------------------------------------------
1305// transaction
1306// ----------------------------------------------------------------------------
1307
1308void Layer::pushPendingState() {
1309    if (!mCurrentState.modified) {
1310        return;
1311    }
1312
1313    // If this transaction is waiting on the receipt of a frame, generate a sync
1314    // point and send it to the remote layer.
1315    if (mCurrentState.handle != nullptr) {
1316        sp<IBinder> strongBinder = mCurrentState.handle.promote();
1317        sp<Handle> handle = nullptr;
1318        sp<Layer> handleLayer = nullptr;
1319        if (strongBinder != nullptr) {
1320            handle = static_cast<Handle*>(strongBinder.get());
1321            handleLayer = handle->owner.promote();
1322        }
1323        if (strongBinder == nullptr || handleLayer == nullptr) {
1324            ALOGE("[%s] Unable to promote Layer handle", mName.string());
1325            // If we can't promote the layer we are intended to wait on,
1326            // then it is expired or otherwise invalid. Allow this transaction
1327            // to be applied as per normal (no synchronization).
1328            mCurrentState.handle = nullptr;
1329        } else {
1330            auto syncPoint = std::make_shared<SyncPoint>(
1331                    mCurrentState.frameNumber);
1332            if (handleLayer->addSyncPoint(syncPoint)) {
1333                mRemoteSyncPoints.push_back(std::move(syncPoint));
1334            } else {
1335                // We already missed the frame we're supposed to synchronize
1336                // on, so go ahead and apply the state update
1337                mCurrentState.handle = nullptr;
1338            }
1339        }
1340
1341        // Wake us up to check if the frame has been received
1342        setTransactionFlags(eTransactionNeeded);
1343    }
1344    mPendingStates.push_back(mCurrentState);
1345}
1346
1347void Layer::popPendingState(State* stateToCommit) {
1348    auto oldFlags = stateToCommit->flags;
1349    *stateToCommit = mPendingStates[0];
1350    stateToCommit->flags = (oldFlags & ~stateToCommit->mask) |
1351            (stateToCommit->flags & stateToCommit->mask);
1352
1353    mPendingStates.removeAt(0);
1354}
1355
1356bool Layer::applyPendingStates(State* stateToCommit) {
1357    bool stateUpdateAvailable = false;
1358    while (!mPendingStates.empty()) {
1359        if (mPendingStates[0].handle != nullptr) {
1360            if (mRemoteSyncPoints.empty()) {
1361                // If we don't have a sync point for this, apply it anyway. It
1362                // will be visually wrong, but it should keep us from getting
1363                // into too much trouble.
1364                ALOGE("[%s] No local sync point found", mName.string());
1365                popPendingState(stateToCommit);
1366                stateUpdateAvailable = true;
1367                continue;
1368            }
1369
1370            if (mRemoteSyncPoints.front()->getFrameNumber() !=
1371                    mPendingStates[0].frameNumber) {
1372                ALOGE("[%s] Unexpected sync point frame number found",
1373                        mName.string());
1374
1375                // Signal our end of the sync point and then dispose of it
1376                mRemoteSyncPoints.front()->setTransactionApplied();
1377                mRemoteSyncPoints.pop_front();
1378                continue;
1379            }
1380
1381            if (mRemoteSyncPoints.front()->frameIsAvailable()) {
1382                // Apply the state update
1383                popPendingState(stateToCommit);
1384                stateUpdateAvailable = true;
1385
1386                // Signal our end of the sync point and then dispose of it
1387                mRemoteSyncPoints.front()->setTransactionApplied();
1388                mRemoteSyncPoints.pop_front();
1389            } else {
1390                break;
1391            }
1392        } else {
1393            popPendingState(stateToCommit);
1394            stateUpdateAvailable = true;
1395        }
1396    }
1397
1398    // If we still have pending updates, wake SurfaceFlinger back up and point
1399    // it at this layer so we can process them
1400    if (!mPendingStates.empty()) {
1401        setTransactionFlags(eTransactionNeeded);
1402        mFlinger->setTransactionFlags(eTraversalNeeded);
1403    }
1404
1405    mCurrentState.modified = false;
1406    return stateUpdateAvailable;
1407}
1408
1409void Layer::notifyAvailableFrames() {
1410    auto headFrameNumber = getHeadFrameNumber();
1411    bool headFenceSignaled = headFenceHasSignaled();
1412    Mutex::Autolock lock(mLocalSyncPointMutex);
1413    for (auto& point : mLocalSyncPoints) {
1414        if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
1415            point->setFrameAvailable();
1416        }
1417    }
1418}
1419
1420uint32_t Layer::doTransaction(uint32_t flags) {
1421    ATRACE_CALL();
1422
1423    pushPendingState();
1424    Layer::State c = getCurrentState();
1425    if (!applyPendingStates(&c)) {
1426        return 0;
1427    }
1428
1429    const Layer::State& s(getDrawingState());
1430
1431    const bool sizeChanged = (c.requested.w != s.requested.w) ||
1432                             (c.requested.h != s.requested.h);
1433
1434    if (sizeChanged) {
1435        // the size changed, we need to ask our client to request a new buffer
1436        ALOGD_IF(DEBUG_RESIZE,
1437                "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
1438                "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
1439                "            requested={ wh={%4u,%4u} }}\n"
1440                "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
1441                "            requested={ wh={%4u,%4u} }}\n",
1442                this, getName().string(), mCurrentTransform,
1443                getEffectiveScalingMode(),
1444                c.active.w, c.active.h,
1445                c.crop.left,
1446                c.crop.top,
1447                c.crop.right,
1448                c.crop.bottom,
1449                c.crop.getWidth(),
1450                c.crop.getHeight(),
1451                c.requested.w, c.requested.h,
1452                s.active.w, s.active.h,
1453                s.crop.left,
1454                s.crop.top,
1455                s.crop.right,
1456                s.crop.bottom,
1457                s.crop.getWidth(),
1458                s.crop.getHeight(),
1459                s.requested.w, s.requested.h);
1460
1461        // record the new size, form this point on, when the client request
1462        // a buffer, it'll get the new size.
1463        mSurfaceFlingerConsumer->setDefaultBufferSize(
1464                c.requested.w, c.requested.h);
1465    }
1466
1467    const bool resizePending = (c.requested.w != c.active.w) ||
1468            (c.requested.h != c.active.h);
1469    if (!isFixedSize()) {
1470        if (resizePending && mSidebandStream == NULL) {
1471            // don't let Layer::doTransaction update the drawing state
1472            // if we have a pending resize, unless we are in fixed-size mode.
1473            // the drawing state will be updated only once we receive a buffer
1474            // with the correct size.
1475            //
1476            // in particular, we want to make sure the clip (which is part
1477            // of the geometry state) is latched together with the size but is
1478            // latched immediately when no resizing is involved.
1479            //
1480            // If a sideband stream is attached, however, we want to skip this
1481            // optimization so that transactions aren't missed when a buffer
1482            // never arrives
1483
1484            flags |= eDontUpdateGeometryState;
1485        }
1486    }
1487
1488    // always set active to requested, unless we're asked not to
1489    // this is used by Layer, which special cases resizes.
1490    if (flags & eDontUpdateGeometryState)  {
1491    } else {
1492        Layer::State& editCurrentState(getCurrentState());
1493        if (mFreezePositionUpdates) {
1494            float tx = c.active.transform.tx();
1495            float ty = c.active.transform.ty();
1496            c.active = c.requested;
1497            c.active.transform.set(tx, ty);
1498            editCurrentState.active = c.active;
1499        } else {
1500            editCurrentState.active = editCurrentState.requested;
1501            c.active = c.requested;
1502        }
1503    }
1504
1505    if (s.active != c.active) {
1506        // invalidate and recompute the visible regions if needed
1507        flags |= Layer::eVisibleRegion;
1508    }
1509
1510    if (c.sequence != s.sequence) {
1511        // invalidate and recompute the visible regions if needed
1512        flags |= eVisibleRegion;
1513        this->contentDirty = true;
1514
1515        // we may use linear filtering, if the matrix scales us
1516        const uint8_t type = c.active.transform.getType();
1517        mNeedsFiltering = (!c.active.transform.preserveRects() ||
1518                (type >= Transform::SCALE));
1519    }
1520
1521    // If the layer is hidden, signal and clear out all local sync points so
1522    // that transactions for layers depending on this layer's frames becoming
1523    // visible are not blocked
1524    if (c.flags & layer_state_t::eLayerHidden) {
1525        Mutex::Autolock lock(mLocalSyncPointMutex);
1526        for (auto& point : mLocalSyncPoints) {
1527            point->setFrameAvailable();
1528        }
1529        mLocalSyncPoints.clear();
1530    }
1531
1532    // Commit the transaction
1533    commitTransaction(c);
1534    return flags;
1535}
1536
1537void Layer::commitTransaction(const State& stateToCommit) {
1538    mDrawingState = stateToCommit;
1539}
1540
1541uint32_t Layer::getTransactionFlags(uint32_t flags) {
1542    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1543}
1544
1545uint32_t Layer::setTransactionFlags(uint32_t flags) {
1546    return android_atomic_or(flags, &mTransactionFlags);
1547}
1548
1549bool Layer::setPosition(float x, float y, bool immediate) {
1550    if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y)
1551        return false;
1552    mCurrentState.sequence++;
1553
1554    // We update the requested and active position simultaneously because
1555    // we want to apply the position portion of the transform matrix immediately,
1556    // but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
1557    mCurrentState.requested.transform.set(x, y);
1558    if (immediate && !mFreezePositionUpdates) {
1559        mCurrentState.active.transform.set(x, y);
1560    }
1561    mFreezePositionUpdates = mFreezePositionUpdates || !immediate;
1562
1563    mCurrentState.modified = true;
1564    setTransactionFlags(eTransactionNeeded);
1565    return true;
1566}
1567
1568bool Layer::setLayer(uint32_t z) {
1569    if (mCurrentState.z == z)
1570        return false;
1571    mCurrentState.sequence++;
1572    mCurrentState.z = z;
1573    mCurrentState.modified = true;
1574    setTransactionFlags(eTransactionNeeded);
1575    return true;
1576}
1577bool Layer::setSize(uint32_t w, uint32_t h) {
1578    if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
1579        return false;
1580    mCurrentState.requested.w = w;
1581    mCurrentState.requested.h = h;
1582    mCurrentState.modified = true;
1583    setTransactionFlags(eTransactionNeeded);
1584    return true;
1585}
1586#ifdef USE_HWC2
1587bool Layer::setAlpha(float alpha) {
1588#else
1589bool Layer::setAlpha(uint8_t alpha) {
1590#endif
1591    if (mCurrentState.alpha == alpha)
1592        return false;
1593    mCurrentState.sequence++;
1594    mCurrentState.alpha = alpha;
1595    mCurrentState.modified = true;
1596    setTransactionFlags(eTransactionNeeded);
1597    return true;
1598}
1599bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
1600    mCurrentState.sequence++;
1601    mCurrentState.requested.transform.set(
1602            matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
1603    mCurrentState.modified = true;
1604    setTransactionFlags(eTransactionNeeded);
1605    return true;
1606}
1607bool Layer::setTransparentRegionHint(const Region& transparent) {
1608    mCurrentState.requestedTransparentRegion = transparent;
1609    mCurrentState.modified = true;
1610    setTransactionFlags(eTransactionNeeded);
1611    return true;
1612}
1613bool Layer::setFlags(uint8_t flags, uint8_t mask) {
1614    const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
1615    if (mCurrentState.flags == newFlags)
1616        return false;
1617    mCurrentState.sequence++;
1618    mCurrentState.flags = newFlags;
1619    mCurrentState.mask = mask;
1620    mCurrentState.modified = true;
1621    setTransactionFlags(eTransactionNeeded);
1622    return true;
1623}
1624
1625bool Layer::setCrop(const Rect& crop, bool immediate) {
1626    if (mCurrentState.crop == crop)
1627        return false;
1628    mCurrentState.sequence++;
1629    mCurrentState.requestedCrop = crop;
1630    if (immediate) {
1631        mCurrentState.crop = crop;
1632    }
1633    mCurrentState.modified = true;
1634    setTransactionFlags(eTransactionNeeded);
1635    return true;
1636}
1637bool Layer::setFinalCrop(const Rect& crop) {
1638    if (mCurrentState.finalCrop == crop)
1639        return false;
1640    mCurrentState.sequence++;
1641    mCurrentState.finalCrop = crop;
1642    mCurrentState.modified = true;
1643    setTransactionFlags(eTransactionNeeded);
1644    return true;
1645}
1646
1647bool Layer::setOverrideScalingMode(int32_t scalingMode) {
1648    if (scalingMode == mOverrideScalingMode)
1649        return false;
1650    mOverrideScalingMode = scalingMode;
1651    setTransactionFlags(eTransactionNeeded);
1652    return true;
1653}
1654
1655uint32_t Layer::getEffectiveScalingMode() const {
1656    if (mOverrideScalingMode >= 0) {
1657      return mOverrideScalingMode;
1658    }
1659    return mCurrentScalingMode;
1660}
1661
1662bool Layer::setLayerStack(uint32_t layerStack) {
1663    if (mCurrentState.layerStack == layerStack)
1664        return false;
1665    mCurrentState.sequence++;
1666    mCurrentState.layerStack = layerStack;
1667    mCurrentState.modified = true;
1668    setTransactionFlags(eTransactionNeeded);
1669    return true;
1670}
1671
1672void Layer::deferTransactionUntil(const sp<IBinder>& handle,
1673        uint64_t frameNumber) {
1674    mCurrentState.handle = handle;
1675    mCurrentState.frameNumber = frameNumber;
1676    // We don't set eTransactionNeeded, because just receiving a deferral
1677    // request without any other state updates shouldn't actually induce a delay
1678    mCurrentState.modified = true;
1679    pushPendingState();
1680    mCurrentState.handle = nullptr;
1681    mCurrentState.frameNumber = 0;
1682    mCurrentState.modified = false;
1683}
1684
1685void Layer::useSurfaceDamage() {
1686    if (mFlinger->mForceFullDamage) {
1687        surfaceDamageRegion = Region::INVALID_REGION;
1688    } else {
1689        surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage();
1690    }
1691}
1692
1693void Layer::useEmptyDamage() {
1694    surfaceDamageRegion.clear();
1695}
1696
1697// ----------------------------------------------------------------------------
1698// pageflip handling...
1699// ----------------------------------------------------------------------------
1700
1701bool Layer::shouldPresentNow(const DispSync& dispSync) const {
1702    if (mSidebandStreamChanged || mAutoRefresh) {
1703        return true;
1704    }
1705
1706    Mutex::Autolock lock(mQueueItemLock);
1707    if (mQueueItems.empty()) {
1708        return false;
1709    }
1710    auto timestamp = mQueueItems[0].mTimestamp;
1711    nsecs_t expectedPresent =
1712            mSurfaceFlingerConsumer->computeExpectedPresent(dispSync);
1713
1714    // Ignore timestamps more than a second in the future
1715    bool isPlausible = timestamp < (expectedPresent + s2ns(1));
1716    ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible "
1717            "relative to expectedPresent %" PRId64, mName.string(), timestamp,
1718            expectedPresent);
1719
1720    bool isDue = timestamp < expectedPresent;
1721    return isDue || !isPlausible;
1722}
1723
1724bool Layer::onPreComposition() {
1725    mRefreshPending = false;
1726    return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
1727}
1728
1729bool Layer::onPostComposition() {
1730    bool frameLatencyNeeded = mFrameLatencyNeeded;
1731    if (mFrameLatencyNeeded) {
1732        nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
1733        mFrameTracker.setDesiredPresentTime(desiredPresentTime);
1734
1735        sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence();
1736        if (frameReadyFence->isValid()) {
1737            mFrameTracker.setFrameReadyFence(frameReadyFence);
1738        } else {
1739            // There was no fence for this frame, so assume that it was ready
1740            // to be presented at the desired present time.
1741            mFrameTracker.setFrameReadyTime(desiredPresentTime);
1742        }
1743
1744        const HWComposer& hwc = mFlinger->getHwComposer();
1745#ifdef USE_HWC2
1746        sp<Fence> presentFence = hwc.getRetireFence(HWC_DISPLAY_PRIMARY);
1747#else
1748        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
1749#endif
1750        if (presentFence->isValid()) {
1751            mFrameTracker.setActualPresentFence(presentFence);
1752        } else {
1753            // The HWC doesn't support present fences, so use the refresh
1754            // timestamp instead.
1755            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
1756            mFrameTracker.setActualPresentTime(presentTime);
1757        }
1758
1759        mFrameTracker.advanceFrame();
1760        mFrameLatencyNeeded = false;
1761    }
1762    return frameLatencyNeeded;
1763}
1764
1765#ifdef USE_HWC2
1766void Layer::releasePendingBuffer() {
1767    mSurfaceFlingerConsumer->releasePendingBuffer();
1768}
1769#endif
1770
1771bool Layer::isVisible() const {
1772    const Layer::State& s(mDrawingState);
1773#ifdef USE_HWC2
1774    return !(s.flags & layer_state_t::eLayerHidden) && s.alpha > 0.0f
1775            && (mActiveBuffer != NULL || mSidebandStream != NULL);
1776#else
1777    return !(s.flags & layer_state_t::eLayerHidden) && s.alpha
1778            && (mActiveBuffer != NULL || mSidebandStream != NULL);
1779#endif
1780}
1781
1782Region Layer::latchBuffer(bool& recomputeVisibleRegions)
1783{
1784    ATRACE_CALL();
1785
1786    if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
1787        // mSidebandStreamChanged was true
1788        mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream();
1789        if (mSidebandStream != NULL) {
1790            setTransactionFlags(eTransactionNeeded);
1791            mFlinger->setTransactionFlags(eTraversalNeeded);
1792        }
1793        recomputeVisibleRegions = true;
1794
1795        const State& s(getDrawingState());
1796        return s.active.transform.transform(Region(Rect(s.active.w, s.active.h)));
1797    }
1798
1799    Region outDirtyRegion;
1800    if (mQueuedFrames > 0 || mAutoRefresh) {
1801
1802        // if we've already called updateTexImage() without going through
1803        // a composition step, we have to skip this layer at this point
1804        // because we cannot call updateTeximage() without a corresponding
1805        // compositionComplete() call.
1806        // we'll trigger an update in onPreComposition().
1807        if (mRefreshPending) {
1808            return outDirtyRegion;
1809        }
1810
1811        // If the head buffer's acquire fence hasn't signaled yet, return and
1812        // try again later
1813        if (!headFenceHasSignaled()) {
1814            mFlinger->signalLayerUpdate();
1815            return outDirtyRegion;
1816        }
1817
1818        // Capture the old state of the layer for comparisons later
1819        const State& s(getDrawingState());
1820        const bool oldOpacity = isOpaque(s);
1821        sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
1822
1823        struct Reject : public SurfaceFlingerConsumer::BufferRejecter {
1824            Layer::State& front;
1825            Layer::State& current;
1826            bool& recomputeVisibleRegions;
1827            bool stickyTransformSet;
1828            const char* name;
1829            int32_t overrideScalingMode;
1830            bool& freezePositionUpdates;
1831
1832            Reject(Layer::State& front, Layer::State& current,
1833                    bool& recomputeVisibleRegions, bool stickySet,
1834                    const char* name,
1835                    int32_t overrideScalingMode,
1836                    bool& freezePositionUpdates)
1837                : front(front), current(current),
1838                  recomputeVisibleRegions(recomputeVisibleRegions),
1839                  stickyTransformSet(stickySet),
1840                  name(name),
1841                  overrideScalingMode(overrideScalingMode),
1842                  freezePositionUpdates(freezePositionUpdates) {
1843            }
1844
1845            virtual bool reject(const sp<GraphicBuffer>& buf,
1846                    const BufferItem& item) {
1847                if (buf == NULL) {
1848                    return false;
1849                }
1850
1851                uint32_t bufWidth  = buf->getWidth();
1852                uint32_t bufHeight = buf->getHeight();
1853
1854                // check that we received a buffer of the right size
1855                // (Take the buffer's orientation into account)
1856                if (item.mTransform & Transform::ROT_90) {
1857                    swap(bufWidth, bufHeight);
1858                }
1859
1860                int actualScalingMode = overrideScalingMode >= 0 ?
1861                        overrideScalingMode : item.mScalingMode;
1862                bool isFixedSize = actualScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
1863                if (front.active != front.requested) {
1864
1865                    if (isFixedSize ||
1866                            (bufWidth == front.requested.w &&
1867                             bufHeight == front.requested.h))
1868                    {
1869                        // Here we pretend the transaction happened by updating the
1870                        // current and drawing states. Drawing state is only accessed
1871                        // in this thread, no need to have it locked
1872                        front.active = front.requested;
1873
1874                        // We also need to update the current state so that
1875                        // we don't end-up overwriting the drawing state with
1876                        // this stale current state during the next transaction
1877                        //
1878                        // NOTE: We don't need to hold the transaction lock here
1879                        // because State::active is only accessed from this thread.
1880                        current.active = front.active;
1881                        current.modified = true;
1882
1883                        // recompute visible region
1884                        recomputeVisibleRegions = true;
1885                    }
1886
1887                    ALOGD_IF(DEBUG_RESIZE,
1888                            "[%s] latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n"
1889                            "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
1890                            "            requested={ wh={%4u,%4u} }}\n",
1891                            name,
1892                            bufWidth, bufHeight, item.mTransform, item.mScalingMode,
1893                            front.active.w, front.active.h,
1894                            front.crop.left,
1895                            front.crop.top,
1896                            front.crop.right,
1897                            front.crop.bottom,
1898                            front.crop.getWidth(),
1899                            front.crop.getHeight(),
1900                            front.requested.w, front.requested.h);
1901                }
1902
1903                if (!isFixedSize && !stickyTransformSet) {
1904                    if (front.active.w != bufWidth ||
1905                        front.active.h != bufHeight) {
1906                        // reject this buffer
1907                        ALOGE("[%s] rejecting buffer: "
1908                                "bufWidth=%d, bufHeight=%d, front.active.{w=%d, h=%d}",
1909                                name, bufWidth, bufHeight, front.active.w, front.active.h);
1910                        return true;
1911                    }
1912                }
1913
1914                // if the transparent region has changed (this test is
1915                // conservative, but that's fine, worst case we're doing
1916                // a bit of extra work), we latch the new one and we
1917                // trigger a visible-region recompute.
1918                if (!front.activeTransparentRegion.isTriviallyEqual(
1919                        front.requestedTransparentRegion)) {
1920                    front.activeTransparentRegion = front.requestedTransparentRegion;
1921
1922                    // We also need to update the current state so that
1923                    // we don't end-up overwriting the drawing state with
1924                    // this stale current state during the next transaction
1925                    //
1926                    // NOTE: We don't need to hold the transaction lock here
1927                    // because State::active is only accessed from this thread.
1928                    current.activeTransparentRegion = front.activeTransparentRegion;
1929
1930                    // recompute visible region
1931                    recomputeVisibleRegions = true;
1932                }
1933
1934                if (front.crop != front.requestedCrop) {
1935                    front.crop = front.requestedCrop;
1936                    current.crop = front.requestedCrop;
1937                    recomputeVisibleRegions = true;
1938                }
1939                freezePositionUpdates = false;
1940
1941                return false;
1942            }
1943        };
1944
1945        Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
1946                getProducerStickyTransform() != 0, mName.string(),
1947                mOverrideScalingMode, mFreezePositionUpdates);
1948
1949
1950        // Check all of our local sync points to ensure that all transactions
1951        // which need to have been applied prior to the frame which is about to
1952        // be latched have signaled
1953
1954        auto headFrameNumber = getHeadFrameNumber();
1955        bool matchingFramesFound = false;
1956        bool allTransactionsApplied = true;
1957        {
1958            Mutex::Autolock lock(mLocalSyncPointMutex);
1959            for (auto& point : mLocalSyncPoints) {
1960                if (point->getFrameNumber() > headFrameNumber) {
1961                    break;
1962                }
1963
1964                matchingFramesFound = true;
1965
1966                if (!point->frameIsAvailable()) {
1967                    // We haven't notified the remote layer that the frame for
1968                    // this point is available yet. Notify it now, and then
1969                    // abort this attempt to latch.
1970                    point->setFrameAvailable();
1971                    allTransactionsApplied = false;
1972                    break;
1973                }
1974
1975                allTransactionsApplied &= point->transactionIsApplied();
1976            }
1977        }
1978
1979        if (matchingFramesFound && !allTransactionsApplied) {
1980            mFlinger->signalLayerUpdate();
1981            return outDirtyRegion;
1982        }
1983
1984        // This boolean is used to make sure that SurfaceFlinger's shadow copy
1985        // of the buffer queue isn't modified when the buffer queue is returning
1986        // BufferItem's that weren't actually queued. This can happen in shared
1987        // buffer mode.
1988        bool queuedBuffer = false;
1989        status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r,
1990                mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer,
1991                mLastFrameNumberReceived);
1992        if (updateResult == BufferQueue::PRESENT_LATER) {
1993            // Producer doesn't want buffer to be displayed yet.  Signal a
1994            // layer update so we check again at the next opportunity.
1995            mFlinger->signalLayerUpdate();
1996            return outDirtyRegion;
1997        } else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) {
1998            // If the buffer has been rejected, remove it from the shadow queue
1999            // and return early
2000            if (queuedBuffer) {
2001                Mutex::Autolock lock(mQueueItemLock);
2002                mQueueItems.removeAt(0);
2003                android_atomic_dec(&mQueuedFrames);
2004            }
2005            return outDirtyRegion;
2006        } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
2007            // This can occur if something goes wrong when trying to create the
2008            // EGLImage for this buffer. If this happens, the buffer has already
2009            // been released, so we need to clean up the queue and bug out
2010            // early.
2011            if (queuedBuffer) {
2012                Mutex::Autolock lock(mQueueItemLock);
2013                mQueueItems.clear();
2014                android_atomic_and(0, &mQueuedFrames);
2015            }
2016
2017            // Once we have hit this state, the shadow queue may no longer
2018            // correctly reflect the incoming BufferQueue's contents, so even if
2019            // updateTexImage starts working, the only safe course of action is
2020            // to continue to ignore updates.
2021            mUpdateTexImageFailed = true;
2022
2023            return outDirtyRegion;
2024        }
2025
2026        if (queuedBuffer) {
2027            // Autolock scope
2028            auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
2029
2030            Mutex::Autolock lock(mQueueItemLock);
2031
2032            // Remove any stale buffers that have been dropped during
2033            // updateTexImage
2034            while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
2035                mQueueItems.removeAt(0);
2036                android_atomic_dec(&mQueuedFrames);
2037            }
2038
2039            mQueueItems.removeAt(0);
2040        }
2041
2042
2043        // Decrement the queued-frames count.  Signal another event if we
2044        // have more frames pending.
2045        if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1)
2046                || mAutoRefresh) {
2047            mFlinger->signalLayerUpdate();
2048        }
2049
2050        if (updateResult != NO_ERROR) {
2051            // something happened!
2052            recomputeVisibleRegions = true;
2053            return outDirtyRegion;
2054        }
2055
2056        // update the active buffer
2057        mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer();
2058        if (mActiveBuffer == NULL) {
2059            // this can only happen if the very first buffer was rejected.
2060            return outDirtyRegion;
2061        }
2062
2063        mRefreshPending = true;
2064        mFrameLatencyNeeded = true;
2065        if (oldActiveBuffer == NULL) {
2066             // the first time we receive a buffer, we need to trigger a
2067             // geometry invalidation.
2068            recomputeVisibleRegions = true;
2069         }
2070
2071        Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
2072        const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
2073        const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
2074        if ((crop != mCurrentCrop) ||
2075            (transform != mCurrentTransform) ||
2076            (scalingMode != mCurrentScalingMode))
2077        {
2078            mCurrentCrop = crop;
2079            mCurrentTransform = transform;
2080            mCurrentScalingMode = scalingMode;
2081            recomputeVisibleRegions = true;
2082        }
2083
2084        if (oldActiveBuffer != NULL) {
2085            uint32_t bufWidth  = mActiveBuffer->getWidth();
2086            uint32_t bufHeight = mActiveBuffer->getHeight();
2087            if (bufWidth != uint32_t(oldActiveBuffer->width) ||
2088                bufHeight != uint32_t(oldActiveBuffer->height)) {
2089                recomputeVisibleRegions = true;
2090            }
2091        }
2092
2093        mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
2094        if (oldOpacity != isOpaque(s)) {
2095            recomputeVisibleRegions = true;
2096        }
2097
2098        mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
2099
2100        // Remove any sync points corresponding to the buffer which was just
2101        // latched
2102        {
2103            Mutex::Autolock lock(mLocalSyncPointMutex);
2104            auto point = mLocalSyncPoints.begin();
2105            while (point != mLocalSyncPoints.end()) {
2106                if (!(*point)->frameIsAvailable() ||
2107                        !(*point)->transactionIsApplied()) {
2108                    // This sync point must have been added since we started
2109                    // latching. Don't drop it yet.
2110                    ++point;
2111                    continue;
2112                }
2113
2114                if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
2115                    point = mLocalSyncPoints.erase(point);
2116                } else {
2117                    ++point;
2118                }
2119            }
2120        }
2121
2122        // FIXME: postedRegion should be dirty & bounds
2123        Region dirtyRegion(Rect(s.active.w, s.active.h));
2124
2125        // transform the dirty region to window-manager space
2126        outDirtyRegion = (s.active.transform.transform(dirtyRegion));
2127    }
2128    return outDirtyRegion;
2129}
2130
2131uint32_t Layer::getEffectiveUsage(uint32_t usage) const
2132{
2133    // TODO: should we do something special if mSecure is set?
2134    if (mProtectedByApp) {
2135        // need a hardware-protected path to external video sink
2136        usage |= GraphicBuffer::USAGE_PROTECTED;
2137    }
2138    if (mPotentialCursor) {
2139        usage |= GraphicBuffer::USAGE_CURSOR;
2140    }
2141    usage |= GraphicBuffer::USAGE_HW_COMPOSER;
2142    return usage;
2143}
2144
2145void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
2146    uint32_t orientation = 0;
2147    if (!mFlinger->mDebugDisableTransformHint) {
2148        // The transform hint is used to improve performance, but we can
2149        // only have a single transform hint, it cannot
2150        // apply to all displays.
2151        const Transform& planeTransform(hw->getTransform());
2152        orientation = planeTransform.getOrientation();
2153        if (orientation & Transform::ROT_INVALID) {
2154            orientation = 0;
2155        }
2156    }
2157    mSurfaceFlingerConsumer->setTransformHint(orientation);
2158}
2159
2160// ----------------------------------------------------------------------------
2161// debugging
2162// ----------------------------------------------------------------------------
2163
2164void Layer::dump(String8& result, Colorizer& colorizer) const
2165{
2166    const Layer::State& s(getDrawingState());
2167
2168    colorizer.colorize(result, Colorizer::GREEN);
2169    result.appendFormat(
2170            "+ %s %p (%s)\n",
2171            getTypeId(), this, getName().string());
2172    colorizer.reset(result);
2173
2174    s.activeTransparentRegion.dump(result, "transparentRegion");
2175    visibleRegion.dump(result, "visibleRegion");
2176    surfaceDamageRegion.dump(result, "surfaceDamageRegion");
2177    sp<Client> client(mClientRef.promote());
2178
2179    result.appendFormat(            "      "
2180            "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), "
2181            "crop=(%4d,%4d,%4d,%4d), finalCrop=(%4d,%4d,%4d,%4d), "
2182            "isOpaque=%1d, invalidate=%1d, "
2183#ifdef USE_HWC2
2184            "alpha=%.3f, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
2185#else
2186            "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
2187#endif
2188            "      client=%p\n",
2189            s.layerStack, s.z, s.active.transform.tx(), s.active.transform.ty(), s.active.w, s.active.h,
2190            s.crop.left, s.crop.top,
2191            s.crop.right, s.crop.bottom,
2192            s.finalCrop.left, s.finalCrop.top,
2193            s.finalCrop.right, s.finalCrop.bottom,
2194            isOpaque(s), contentDirty,
2195            s.alpha, s.flags,
2196            s.active.transform[0][0], s.active.transform[0][1],
2197            s.active.transform[1][0], s.active.transform[1][1],
2198            client.get());
2199
2200    sp<const GraphicBuffer> buf0(mActiveBuffer);
2201    uint32_t w0=0, h0=0, s0=0, f0=0;
2202    if (buf0 != 0) {
2203        w0 = buf0->getWidth();
2204        h0 = buf0->getHeight();
2205        s0 = buf0->getStride();
2206        f0 = buf0->format;
2207    }
2208    result.appendFormat(
2209            "      "
2210            "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
2211            " queued-frames=%d, mRefreshPending=%d\n",
2212            mFormat, w0, h0, s0,f0,
2213            mQueuedFrames, mRefreshPending);
2214
2215    if (mSurfaceFlingerConsumer != 0) {
2216        mSurfaceFlingerConsumer->dump(result, "            ");
2217    }
2218}
2219
2220void Layer::dumpFrameStats(String8& result) const {
2221    mFrameTracker.dumpStats(result);
2222}
2223
2224void Layer::clearFrameStats() {
2225    mFrameTracker.clearStats();
2226}
2227
2228void Layer::logFrameStats() {
2229    mFrameTracker.logAndResetStats(mName);
2230}
2231
2232void Layer::getFrameStats(FrameStats* outStats) const {
2233    mFrameTracker.getStats(outStats);
2234}
2235
2236void Layer::getFenceData(String8* outName, uint64_t* outFrameNumber,
2237        bool* outIsGlesComposition, nsecs_t* outPostedTime,
2238        sp<Fence>* outAcquireFence, sp<Fence>* outPrevReleaseFence) const {
2239    *outName = mName;
2240    *outFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
2241
2242#ifdef USE_HWC2
2243    *outIsGlesComposition = mHwcLayers.count(HWC_DISPLAY_PRIMARY) ?
2244            mHwcLayers.at(HWC_DISPLAY_PRIMARY).compositionType ==
2245            HWC2::Composition::Client : true;
2246#else
2247    *outIsGlesComposition = mIsGlesComposition;
2248#endif
2249    *outPostedTime = mSurfaceFlingerConsumer->getTimestamp();
2250    *outAcquireFence = mSurfaceFlingerConsumer->getCurrentFence();
2251    *outPrevReleaseFence = mSurfaceFlingerConsumer->getPrevReleaseFence();
2252}
2253
2254std::vector<OccupancyTracker::Segment> Layer::getOccupancyHistory(
2255        bool forceFlush) {
2256    std::vector<OccupancyTracker::Segment> history;
2257    status_t result = mSurfaceFlingerConsumer->getOccupancyHistory(forceFlush,
2258            &history);
2259    if (result != NO_ERROR) {
2260        ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(),
2261                result);
2262        return {};
2263    }
2264    return history;
2265}
2266
2267bool Layer::getTransformToDisplayInverse() const {
2268    return mSurfaceFlingerConsumer->getTransformToDisplayInverse();
2269}
2270
2271// ---------------------------------------------------------------------------
2272
2273}; // namespace android
2274
2275#if defined(__gl_h_)
2276#error "don't include gl/gl.h in this file"
2277#endif
2278
2279#if defined(__gl2_h_)
2280#error "don't include gl2/gl2.h in this file"
2281#endif
2282