Layer.cpp revision 3569f1fe4e7faf64720c6e023bfdf76347f5b2b6
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17//#define LOG_NDEBUG 0
18#undef LOG_TAG
19#define LOG_TAG "Layer"
20#define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22#include <stdlib.h>
23#include <stdint.h>
24#include <sys/types.h>
25#include <math.h>
26
27#include <cutils/compiler.h>
28#include <cutils/native_handle.h>
29#include <cutils/properties.h>
30
31#include <utils/Errors.h>
32#include <utils/Log.h>
33#include <utils/NativeHandle.h>
34#include <utils/StopWatch.h>
35#include <utils/Trace.h>
36
37#include <ui/GraphicBuffer.h>
38#include <ui/PixelFormat.h>
39
40#include <gui/BufferItem.h>
41#include <gui/Surface.h>
42
43#include "clz.h"
44#include "Colorizer.h"
45#include "DisplayDevice.h"
46#include "Layer.h"
47#include "MonitoredProducer.h"
48#include "SurfaceFlinger.h"
49
50#include "DisplayHardware/HWComposer.h"
51
52#include "RenderEngine/RenderEngine.h"
53
54#include <mutex>
55
56#define DEBUG_RESIZE    0
57
58namespace android {
59
60// ---------------------------------------------------------------------------
61
62int32_t Layer::sSequence = 1;
63
64Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
65        const String8& name, uint32_t w, uint32_t h, uint32_t flags)
66    :   contentDirty(false),
67        sequence(uint32_t(android_atomic_inc(&sSequence))),
68        mFlinger(flinger),
69        mTextureName(-1U),
70        mPremultipliedAlpha(true),
71        mName("unnamed"),
72        mFormat(PIXEL_FORMAT_NONE),
73        mTransactionFlags(0),
74        mPendingStateMutex(),
75        mPendingStates(),
76        mQueuedFrames(0),
77        mSidebandStreamChanged(false),
78        mCurrentTransform(0),
79        mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
80        mOverrideScalingMode(-1),
81        mCurrentOpacity(true),
82        mCurrentFrameNumber(0),
83        mRefreshPending(false),
84        mFrameLatencyNeeded(false),
85        mFiltering(false),
86        mNeedsFiltering(false),
87        mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2),
88#ifndef USE_HWC2
89        mIsGlesComposition(false),
90#endif
91        mProtectedByApp(false),
92        mHasSurface(false),
93        mClientRef(client),
94        mPotentialCursor(false),
95        mQueueItemLock(),
96        mQueueItemCondition(),
97        mQueueItems(),
98        mLastFrameNumberReceived(0),
99        mUpdateTexImageFailed(false),
100        mAutoRefresh(false),
101        mFreezePositionUpdates(false)
102{
103#ifdef USE_HWC2
104    ALOGV("Creating Layer %s", name.string());
105#endif
106
107    mCurrentCrop.makeInvalid();
108    mFlinger->getRenderEngine().genTextures(1, &mTextureName);
109    mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
110
111    uint32_t layerFlags = 0;
112    if (flags & ISurfaceComposerClient::eHidden)
113        layerFlags |= layer_state_t::eLayerHidden;
114    if (flags & ISurfaceComposerClient::eOpaque)
115        layerFlags |= layer_state_t::eLayerOpaque;
116    if (flags & ISurfaceComposerClient::eSecure)
117        layerFlags |= layer_state_t::eLayerSecure;
118
119    if (flags & ISurfaceComposerClient::eNonPremultiplied)
120        mPremultipliedAlpha = false;
121
122    mName = name;
123
124    mCurrentState.active.w = w;
125    mCurrentState.active.h = h;
126    mCurrentState.active.transform.set(0, 0);
127    mCurrentState.crop.makeInvalid();
128    mCurrentState.finalCrop.makeInvalid();
129    mCurrentState.z = 0;
130#ifdef USE_HWC2
131    mCurrentState.alpha = 1.0f;
132#else
133    mCurrentState.alpha = 0xFF;
134#endif
135    mCurrentState.layerStack = 0;
136    mCurrentState.flags = layerFlags;
137    mCurrentState.sequence = 0;
138    mCurrentState.requested = mCurrentState.active;
139
140    // drawing state & current state are identical
141    mDrawingState = mCurrentState;
142
143#ifdef USE_HWC2
144    const auto& hwc = flinger->getHwComposer();
145    const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY);
146    nsecs_t displayPeriod = activeConfig->getVsyncPeriod();
147#else
148    nsecs_t displayPeriod =
149            flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
150#endif
151    mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
152}
153
154void Layer::onFirstRef() {
155    // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
156    sp<IGraphicBufferProducer> producer;
157    sp<IGraphicBufferConsumer> consumer;
158    BufferQueue::createBufferQueue(&producer, &consumer);
159    mProducer = new MonitoredProducer(producer, mFlinger);
160    mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName,
161            this);
162    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
163    mSurfaceFlingerConsumer->setContentsChangedListener(this);
164    mSurfaceFlingerConsumer->setName(mName);
165
166#ifndef TARGET_DISABLE_TRIPLE_BUFFERING
167    mProducer->setMaxDequeuedBufferCount(2);
168#endif
169
170    const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
171    updateTransformHint(hw);
172}
173
174Layer::~Layer() {
175  sp<Client> c(mClientRef.promote());
176    if (c != 0) {
177        c->detachLayer(this);
178    }
179
180    for (auto& point : mRemoteSyncPoints) {
181        point->setTransactionApplied();
182    }
183    for (auto& point : mLocalSyncPoints) {
184        point->setFrameAvailable();
185    }
186    mFlinger->deleteTextureAsync(mTextureName);
187    mFrameTracker.logAndResetStats(mName);
188}
189
190// ---------------------------------------------------------------------------
191// callbacks
192// ---------------------------------------------------------------------------
193
194#ifdef USE_HWC2
195void Layer::onLayerDisplayed(const sp<Fence>& releaseFence) {
196    if (mHwcLayers.empty()) {
197        return;
198    }
199    mSurfaceFlingerConsumer->setReleaseFence(releaseFence);
200}
201#else
202void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */,
203        HWComposer::HWCLayerInterface* layer) {
204    if (layer) {
205        layer->onDisplayed();
206        mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
207    }
208}
209#endif
210
211void Layer::onFrameAvailable(const BufferItem& item) {
212    // Add this buffer from our internal queue tracker
213    { // Autolock scope
214        Mutex::Autolock lock(mQueueItemLock);
215
216        // Reset the frame number tracker when we receive the first buffer after
217        // a frame number reset
218        if (item.mFrameNumber == 1) {
219            mLastFrameNumberReceived = 0;
220        }
221
222        // Ensure that callbacks are handled in order
223        while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
224            status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
225                    ms2ns(500));
226            if (result != NO_ERROR) {
227                ALOGE("[%s] Timed out waiting on callback", mName.string());
228            }
229        }
230
231        mQueueItems.push_back(item);
232        android_atomic_inc(&mQueuedFrames);
233
234        // Wake up any pending callbacks
235        mLastFrameNumberReceived = item.mFrameNumber;
236        mQueueItemCondition.broadcast();
237    }
238
239    mFlinger->signalLayerUpdate();
240}
241
242void Layer::onFrameReplaced(const BufferItem& item) {
243    { // Autolock scope
244        Mutex::Autolock lock(mQueueItemLock);
245
246        // Ensure that callbacks are handled in order
247        while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
248            status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
249                    ms2ns(500));
250            if (result != NO_ERROR) {
251                ALOGE("[%s] Timed out waiting on callback", mName.string());
252            }
253        }
254
255        if (mQueueItems.empty()) {
256            ALOGE("Can't replace a frame on an empty queue");
257            return;
258        }
259        mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
260
261        // Wake up any pending callbacks
262        mLastFrameNumberReceived = item.mFrameNumber;
263        mQueueItemCondition.broadcast();
264    }
265}
266
267void Layer::onSidebandStreamChanged() {
268    if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
269        // mSidebandStreamChanged was false
270        mFlinger->signalLayerUpdate();
271    }
272}
273
274// called with SurfaceFlinger::mStateLock from the drawing thread after
275// the layer has been remove from the current state list (and just before
276// it's removed from the drawing state list)
277void Layer::onRemoved() {
278    mSurfaceFlingerConsumer->abandon();
279}
280
281// ---------------------------------------------------------------------------
282// set-up
283// ---------------------------------------------------------------------------
284
285const String8& Layer::getName() const {
286    return mName;
287}
288
289status_t Layer::setBuffers( uint32_t w, uint32_t h,
290                            PixelFormat format, uint32_t flags)
291{
292    uint32_t const maxSurfaceDims = min(
293            mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
294
295    // never allow a surface larger than what our underlying GL implementation
296    // can handle.
297    if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
298        ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
299        return BAD_VALUE;
300    }
301
302    mFormat = format;
303
304    mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
305    mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
306    mCurrentOpacity = getOpacityForFormat(format);
307
308    mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
309    mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
310    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
311
312    return NO_ERROR;
313}
314
315/*
316 * The layer handle is just a BBinder object passed to the client
317 * (remote process) -- we don't keep any reference on our side such that
318 * the dtor is called when the remote side let go of its reference.
319 *
320 * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
321 * this layer when the handle is destroyed.
322 */
323class Layer::Handle : public BBinder, public LayerCleaner {
324    public:
325        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
326            : LayerCleaner(flinger, layer), owner(layer) {}
327
328        wp<Layer> owner;
329};
330
331sp<IBinder> Layer::getHandle() {
332    Mutex::Autolock _l(mLock);
333
334    LOG_ALWAYS_FATAL_IF(mHasSurface,
335            "Layer::getHandle() has already been called");
336
337    mHasSurface = true;
338
339    return new Handle(mFlinger, this);
340}
341
342sp<IGraphicBufferProducer> Layer::getProducer() const {
343    return mProducer;
344}
345
346// ---------------------------------------------------------------------------
347// h/w composer set-up
348// ---------------------------------------------------------------------------
349
350Rect Layer::getContentCrop() const {
351    // this is the crop rectangle that applies to the buffer
352    // itself (as opposed to the window)
353    Rect crop;
354    if (!mCurrentCrop.isEmpty()) {
355        // if the buffer crop is defined, we use that
356        crop = mCurrentCrop;
357    } else if (mActiveBuffer != NULL) {
358        // otherwise we use the whole buffer
359        crop = mActiveBuffer->getBounds();
360    } else {
361        // if we don't have a buffer yet, we use an empty/invalid crop
362        crop.makeInvalid();
363    }
364    return crop;
365}
366
367static Rect reduce(const Rect& win, const Region& exclude) {
368    if (CC_LIKELY(exclude.isEmpty())) {
369        return win;
370    }
371    if (exclude.isRect()) {
372        return win.reduce(exclude.getBounds());
373    }
374    return Region(win).subtract(exclude).getBounds();
375}
376
377Rect Layer::computeBounds() const {
378    const Layer::State& s(getDrawingState());
379    return computeBounds(s.activeTransparentRegion);
380}
381
382Rect Layer::computeBounds(const Region& activeTransparentRegion) const {
383    const Layer::State& s(getDrawingState());
384    Rect win(s.active.w, s.active.h);
385
386    if (!s.crop.isEmpty()) {
387        win.intersect(s.crop, &win);
388    }
389    // subtract the transparent region and snap to the bounds
390    return reduce(win, activeTransparentRegion);
391}
392
393FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
394    // the content crop is the area of the content that gets scaled to the
395    // layer's size.
396    FloatRect crop(getContentCrop());
397
398    // the crop is the area of the window that gets cropped, but not
399    // scaled in any ways.
400    const State& s(getDrawingState());
401
402    // apply the projection's clipping to the window crop in
403    // layerstack space, and convert-back to layer space.
404    // if there are no window scaling involved, this operation will map to full
405    // pixels in the buffer.
406    // FIXME: the 3 lines below can produce slightly incorrect clipping when we have
407    // a viewport clipping and a window transform. we should use floating point to fix this.
408
409    Rect activeCrop(s.active.w, s.active.h);
410    if (!s.crop.isEmpty()) {
411        activeCrop = s.crop;
412    }
413
414    activeCrop = s.active.transform.transform(activeCrop);
415    if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) {
416        activeCrop.clear();
417    }
418    if (!s.finalCrop.isEmpty()) {
419        if(!activeCrop.intersect(s.finalCrop, &activeCrop)) {
420            activeCrop.clear();
421        }
422    }
423    activeCrop = s.active.transform.inverse().transform(activeCrop);
424
425    // This needs to be here as transform.transform(Rect) computes the
426    // transformed rect and then takes the bounding box of the result before
427    // returning. This means
428    // transform.inverse().transform(transform.transform(Rect)) != Rect
429    // in which case we need to make sure the final rect is clipped to the
430    // display bounds.
431    if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
432        activeCrop.clear();
433    }
434
435    // subtract the transparent region and snap to the bounds
436    activeCrop = reduce(activeCrop, s.activeTransparentRegion);
437
438    // Transform the window crop to match the buffer coordinate system,
439    // which means using the inverse of the current transform set on the
440    // SurfaceFlingerConsumer.
441    uint32_t invTransform = mCurrentTransform;
442    if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
443        /*
444         * the code below applies the primary display's inverse transform to the
445         * buffer
446         */
447        uint32_t invTransformOrient =
448                DisplayDevice::getPrimaryDisplayOrientationTransform();
449        // calculate the inverse transform
450        if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) {
451            invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
452                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
453        }
454        // and apply to the current transform
455        invTransform = (Transform(invTransformOrient) * Transform(invTransform))
456                .getOrientation();
457    }
458
459    int winWidth = s.active.w;
460    int winHeight = s.active.h;
461    if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
462        // If the activeCrop has been rotate the ends are rotated but not
463        // the space itself so when transforming ends back we can't rely on
464        // a modification of the axes of rotation. To account for this we
465        // need to reorient the inverse rotation in terms of the current
466        // axes of rotation.
467        bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
468        bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
469        if (is_h_flipped == is_v_flipped) {
470            invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
471                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
472        }
473        winWidth = s.active.h;
474        winHeight = s.active.w;
475    }
476    const Rect winCrop = activeCrop.transform(
477            invTransform, s.active.w, s.active.h);
478
479    // below, crop is intersected with winCrop expressed in crop's coordinate space
480    float xScale = crop.getWidth()  / float(winWidth);
481    float yScale = crop.getHeight() / float(winHeight);
482
483    float insetL = winCrop.left                 * xScale;
484    float insetT = winCrop.top                  * yScale;
485    float insetR = (winWidth - winCrop.right )  * xScale;
486    float insetB = (winHeight - winCrop.bottom) * yScale;
487
488    crop.left   += insetL;
489    crop.top    += insetT;
490    crop.right  -= insetR;
491    crop.bottom -= insetB;
492
493    return crop;
494}
495
496#ifdef USE_HWC2
497void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice)
498#else
499void Layer::setGeometry(
500    const sp<const DisplayDevice>& hw,
501        HWComposer::HWCLayerInterface& layer)
502#endif
503{
504#ifdef USE_HWC2
505    const auto hwcId = displayDevice->getHwcDisplayId();
506    auto& hwcInfo = mHwcLayers[hwcId];
507#else
508    layer.setDefaultState();
509#endif
510
511    // enable this layer
512#ifdef USE_HWC2
513    hwcInfo.forceClientComposition = false;
514
515    if (isSecure() && !displayDevice->isSecure()) {
516        hwcInfo.forceClientComposition = true;
517    }
518
519    auto& hwcLayer = hwcInfo.layer;
520#else
521    layer.setSkip(false);
522
523    if (isSecure() && !hw->isSecure()) {
524        layer.setSkip(true);
525    }
526#endif
527
528    // this gives us only the "orientation" component of the transform
529    const State& s(getDrawingState());
530#ifdef USE_HWC2
531    if (!isOpaque(s) || s.alpha != 1.0f) {
532        auto blendMode = mPremultipliedAlpha ?
533                HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage;
534        auto error = hwcLayer->setBlendMode(blendMode);
535        ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:"
536                " %s (%d)", mName.string(), to_string(blendMode).c_str(),
537                to_string(error).c_str(), static_cast<int32_t>(error));
538    }
539#else
540    if (!isOpaque(s) || s.alpha != 0xFF) {
541        layer.setBlending(mPremultipliedAlpha ?
542                HWC_BLENDING_PREMULT :
543                HWC_BLENDING_COVERAGE);
544    }
545#endif
546
547    // apply the layer's transform, followed by the display's global transform
548    // here we're guaranteed that the layer's transform preserves rects
549    Region activeTransparentRegion(s.activeTransparentRegion);
550    if (!s.crop.isEmpty()) {
551        Rect activeCrop(s.crop);
552        activeCrop = s.active.transform.transform(activeCrop);
553#ifdef USE_HWC2
554        if(!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) {
555#else
556        if(!activeCrop.intersect(hw->getViewport(), &activeCrop)) {
557#endif
558            activeCrop.clear();
559        }
560        activeCrop = s.active.transform.inverse().transform(activeCrop);
561        // This needs to be here as transform.transform(Rect) computes the
562        // transformed rect and then takes the bounding box of the result before
563        // returning. This means
564        // transform.inverse().transform(transform.transform(Rect)) != Rect
565        // in which case we need to make sure the final rect is clipped to the
566        // display bounds.
567        if(!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) {
568            activeCrop.clear();
569        }
570        // mark regions outside the crop as transparent
571        activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top));
572        activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom,
573                s.active.w, s.active.h));
574        activeTransparentRegion.orSelf(Rect(0, activeCrop.top,
575                activeCrop.left, activeCrop.bottom));
576        activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top,
577                s.active.w, activeCrop.bottom));
578    }
579    Rect frame(s.active.transform.transform(computeBounds(activeTransparentRegion)));
580    if (!s.finalCrop.isEmpty()) {
581        if(!frame.intersect(s.finalCrop, &frame)) {
582            frame.clear();
583        }
584    }
585#ifdef USE_HWC2
586    if (!frame.intersect(displayDevice->getViewport(), &frame)) {
587        frame.clear();
588    }
589    const Transform& tr(displayDevice->getTransform());
590    Rect transformedFrame = tr.transform(frame);
591    auto error = hwcLayer->setDisplayFrame(transformedFrame);
592    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set display frame "
593            "[%d, %d, %d, %d]: %s (%d)", mName.string(), transformedFrame.left,
594            transformedFrame.top, transformedFrame.right,
595            transformedFrame.bottom, to_string(error).c_str(),
596            static_cast<int32_t>(error));
597
598    FloatRect sourceCrop = computeCrop(displayDevice);
599    error = hwcLayer->setSourceCrop(sourceCrop);
600    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set source crop "
601            "[%.3f, %.3f, %.3f, %.3f]: %s (%d)", mName.string(),
602            sourceCrop.left, sourceCrop.top, sourceCrop.right,
603            sourceCrop.bottom, to_string(error).c_str(),
604            static_cast<int32_t>(error));
605
606    error = hwcLayer->setPlaneAlpha(s.alpha);
607    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: "
608            "%s (%d)", mName.string(), s.alpha, to_string(error).c_str(),
609            static_cast<int32_t>(error));
610
611    error = hwcLayer->setZOrder(s.z);
612    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)",
613            mName.string(), s.z, to_string(error).c_str(),
614            static_cast<int32_t>(error));
615#else
616    if (!frame.intersect(hw->getViewport(), &frame)) {
617        frame.clear();
618    }
619    const Transform& tr(hw->getTransform());
620    layer.setFrame(tr.transform(frame));
621    layer.setCrop(computeCrop(hw));
622    layer.setPlaneAlpha(s.alpha);
623#endif
624
625    /*
626     * Transformations are applied in this order:
627     * 1) buffer orientation/flip/mirror
628     * 2) state transformation (window manager)
629     * 3) layer orientation (screen orientation)
630     * (NOTE: the matrices are multiplied in reverse order)
631     */
632
633    const Transform bufferOrientation(mCurrentTransform);
634    Transform transform(tr * s.active.transform * bufferOrientation);
635
636    if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
637        /*
638         * the code below applies the primary display's inverse transform to the
639         * buffer
640         */
641        uint32_t invTransform =
642                DisplayDevice::getPrimaryDisplayOrientationTransform();
643        // calculate the inverse transform
644        if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
645            invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
646                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
647        }
648        // and apply to the current transform
649        transform = Transform(invTransform) * transform;
650    }
651
652    // this gives us only the "orientation" component of the transform
653    const uint32_t orientation = transform.getOrientation();
654#ifdef USE_HWC2
655    if (orientation & Transform::ROT_INVALID) {
656        // we can only handle simple transformation
657        hwcInfo.forceClientComposition = true;
658    } else {
659        auto transform = static_cast<HWC2::Transform>(orientation);
660        auto error = hwcLayer->setTransform(transform);
661        ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: "
662                "%s (%d)", mName.string(), to_string(transform).c_str(),
663                to_string(error).c_str(), static_cast<int32_t>(error));
664    }
665#else
666    if (orientation & Transform::ROT_INVALID) {
667        // we can only handle simple transformation
668        layer.setSkip(true);
669    } else {
670        layer.setTransform(orientation);
671    }
672#endif
673}
674
675#ifdef USE_HWC2
676void Layer::forceClientComposition(int32_t hwcId) {
677    if (mHwcLayers.count(hwcId) == 0) {
678        ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId);
679        return;
680    }
681
682    mHwcLayers[hwcId].forceClientComposition = true;
683}
684#endif
685
686#ifdef USE_HWC2
687void Layer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
688    // Apply this display's projection's viewport to the visible region
689    // before giving it to the HWC HAL.
690    const Transform& tr = displayDevice->getTransform();
691    const auto& viewport = displayDevice->getViewport();
692    Region visible = tr.transform(visibleRegion.intersect(viewport));
693    auto hwcId = displayDevice->getHwcDisplayId();
694    auto& hwcLayer = mHwcLayers[hwcId].layer;
695    auto error = hwcLayer->setVisibleRegion(visible);
696    if (error != HWC2::Error::None) {
697        ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
698                to_string(error).c_str(), static_cast<int32_t>(error));
699        visible.dump(LOG_TAG);
700    }
701
702    error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
703    if (error != HWC2::Error::None) {
704        ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
705                to_string(error).c_str(), static_cast<int32_t>(error));
706        surfaceDamageRegion.dump(LOG_TAG);
707    }
708
709    // Sideband layers
710    if (mSidebandStream.get()) {
711        setCompositionType(hwcId, HWC2::Composition::Sideband);
712        ALOGV("[%s] Requesting Sideband composition", mName.string());
713        error = hwcLayer->setSidebandStream(mSidebandStream->handle());
714        if (error != HWC2::Error::None) {
715            ALOGE("[%s] Failed to set sideband stream %p: %s (%d)",
716                    mName.string(), mSidebandStream->handle(),
717                    to_string(error).c_str(), static_cast<int32_t>(error));
718        }
719        return;
720    }
721
722    // Client or SolidColor layers
723    if (mActiveBuffer == nullptr || mActiveBuffer->handle == nullptr ||
724            mHwcLayers[hwcId].forceClientComposition) {
725        // TODO: This also includes solid color layers, but no API exists to
726        // setup a solid color layer yet
727        ALOGV("[%s] Requesting Client composition", mName.string());
728        setCompositionType(hwcId, HWC2::Composition::Client);
729        return;
730    }
731
732    // Device or Cursor layers
733    if (mPotentialCursor) {
734        ALOGV("[%s] Requesting Cursor composition", mName.string());
735        setCompositionType(hwcId, HWC2::Composition::Cursor);
736    } else {
737        ALOGV("[%s] Requesting Device composition", mName.string());
738        setCompositionType(hwcId, HWC2::Composition::Device);
739    }
740
741    auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence();
742    error = hwcLayer->setBuffer(mActiveBuffer->handle, acquireFence);
743    if (error != HWC2::Error::None) {
744        ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
745                mActiveBuffer->handle, to_string(error).c_str(),
746                static_cast<int32_t>(error));
747    }
748}
749#else
750void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
751        HWComposer::HWCLayerInterface& layer) {
752    // we have to set the visible region on every frame because
753    // we currently free it during onLayerDisplayed(), which is called
754    // after HWComposer::commit() -- every frame.
755    // Apply this display's projection's viewport to the visible region
756    // before giving it to the HWC HAL.
757    const Transform& tr = hw->getTransform();
758    Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
759    layer.setVisibleRegionScreen(visible);
760    layer.setSurfaceDamage(surfaceDamageRegion);
761    mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER);
762
763    if (mSidebandStream.get()) {
764        layer.setSidebandStream(mSidebandStream);
765    } else {
766        // NOTE: buffer can be NULL if the client never drew into this
767        // layer yet, or if we ran out of memory
768        layer.setBuffer(mActiveBuffer);
769    }
770}
771#endif
772
773#ifdef USE_HWC2
774void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) {
775    auto hwcId = displayDevice->getHwcDisplayId();
776    if (mHwcLayers.count(hwcId) == 0 ||
777            getCompositionType(hwcId) != HWC2::Composition::Cursor) {
778        return;
779    }
780
781    // This gives us only the "orientation" component of the transform
782    const State& s(getCurrentState());
783
784    // Apply the layer's transform, followed by the display's global transform
785    // Here we're guaranteed that the layer's transform preserves rects
786    Rect win(s.active.w, s.active.h);
787    if (!s.crop.isEmpty()) {
788        win.intersect(s.crop, &win);
789    }
790    // Subtract the transparent region and snap to the bounds
791    Rect bounds = reduce(win, s.activeTransparentRegion);
792    Rect frame(s.active.transform.transform(bounds));
793    frame.intersect(displayDevice->getViewport(), &frame);
794    if (!s.finalCrop.isEmpty()) {
795        frame.intersect(s.finalCrop, &frame);
796    }
797    auto& displayTransform(displayDevice->getTransform());
798    auto position = displayTransform.transform(frame);
799
800    auto error = mHwcLayers[hwcId].layer->setCursorPosition(position.left,
801            position.top);
802    ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position "
803            "to (%d, %d): %s (%d)", mName.string(), position.left,
804            position.top, to_string(error).c_str(),
805            static_cast<int32_t>(error));
806}
807#else
808void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */,
809        HWComposer::HWCLayerInterface& layer) {
810    int fenceFd = -1;
811
812    // TODO: there is a possible optimization here: we only need to set the
813    // acquire fence the first time a new buffer is acquired on EACH display.
814
815    if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) {
816        sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
817        if (fence->isValid()) {
818            fenceFd = fence->dup();
819            if (fenceFd == -1) {
820                ALOGW("failed to dup layer fence, skipping sync: %d", errno);
821            }
822        }
823    }
824    layer.setAcquireFenceFd(fenceFd);
825}
826
827Rect Layer::getPosition(
828    const sp<const DisplayDevice>& hw)
829{
830    // this gives us only the "orientation" component of the transform
831    const State& s(getCurrentState());
832
833    // apply the layer's transform, followed by the display's global transform
834    // here we're guaranteed that the layer's transform preserves rects
835    Rect win(s.active.w, s.active.h);
836    if (!s.crop.isEmpty()) {
837        win.intersect(s.crop, &win);
838    }
839    // subtract the transparent region and snap to the bounds
840    Rect bounds = reduce(win, s.activeTransparentRegion);
841    Rect frame(s.active.transform.transform(bounds));
842    frame.intersect(hw->getViewport(), &frame);
843    if (!s.finalCrop.isEmpty()) {
844        frame.intersect(s.finalCrop, &frame);
845    }
846    const Transform& tr(hw->getTransform());
847    return Rect(tr.transform(frame));
848}
849#endif
850
851// ---------------------------------------------------------------------------
852// drawing...
853// ---------------------------------------------------------------------------
854
855void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
856    onDraw(hw, clip, false);
857}
858
859void Layer::draw(const sp<const DisplayDevice>& hw,
860        bool useIdentityTransform) const {
861    onDraw(hw, Region(hw->bounds()), useIdentityTransform);
862}
863
864void Layer::draw(const sp<const DisplayDevice>& hw) const {
865    onDraw(hw, Region(hw->bounds()), false);
866}
867
868void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
869        bool useIdentityTransform) const
870{
871    ATRACE_CALL();
872
873    if (CC_UNLIKELY(mActiveBuffer == 0)) {
874        // the texture has not been created yet, this Layer has
875        // in fact never been drawn into. This happens frequently with
876        // SurfaceView because the WindowManager can't know when the client
877        // has drawn the first time.
878
879        // If there is nothing under us, we paint the screen in black, otherwise
880        // we just skip this update.
881
882        // figure out if there is something below us
883        Region under;
884        const SurfaceFlinger::LayerVector& drawingLayers(
885                mFlinger->mDrawingState.layersSortedByZ);
886        const size_t count = drawingLayers.size();
887        for (size_t i=0 ; i<count ; ++i) {
888            const sp<Layer>& layer(drawingLayers[i]);
889            if (layer.get() == static_cast<Layer const*>(this))
890                break;
891            under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
892        }
893        // if not everything below us is covered, we plug the holes!
894        Region holes(clip.subtract(under));
895        if (!holes.isEmpty()) {
896            clearWithOpenGL(hw, holes, 0, 0, 0, 1);
897        }
898        return;
899    }
900
901    // Bind the current buffer to the GL texture, and wait for it to be
902    // ready for us to draw into.
903    status_t err = mSurfaceFlingerConsumer->bindTextureImage();
904    if (err != NO_ERROR) {
905        ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
906        // Go ahead and draw the buffer anyway; no matter what we do the screen
907        // is probably going to have something visibly wrong.
908    }
909
910    bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
911
912    RenderEngine& engine(mFlinger->getRenderEngine());
913
914    if (!blackOutLayer) {
915        // TODO: we could be more subtle with isFixedSize()
916        const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
917
918        // Query the texture matrix given our current filtering mode.
919        float textureMatrix[16];
920        mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
921        mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
922
923        if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
924
925            /*
926             * the code below applies the primary display's inverse transform to
927             * the texture transform
928             */
929
930            // create a 4x4 transform matrix from the display transform flags
931            const mat4 flipH(-1,0,0,0,  0,1,0,0, 0,0,1,0, 1,0,0,1);
932            const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1);
933            const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1);
934
935            mat4 tr;
936            uint32_t transform =
937                    DisplayDevice::getPrimaryDisplayOrientationTransform();
938            if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90)
939                tr = tr * rot90;
940            if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H)
941                tr = tr * flipH;
942            if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V)
943                tr = tr * flipV;
944
945            // calculate the inverse
946            tr = inverse(tr);
947
948            // and finally apply it to the original texture matrix
949            const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
950            memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
951        }
952
953        // Set things up for texturing.
954        mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight());
955        mTexture.setFiltering(useFiltering);
956        mTexture.setMatrix(textureMatrix);
957
958        engine.setupLayerTexturing(mTexture);
959    } else {
960        engine.setupLayerBlackedOut();
961    }
962    drawWithOpenGL(hw, clip, useIdentityTransform);
963    engine.disableTexturing();
964}
965
966
967void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw,
968        const Region& /* clip */, float red, float green, float blue,
969        float alpha) const
970{
971    RenderEngine& engine(mFlinger->getRenderEngine());
972    computeGeometry(hw, mMesh, false);
973    engine.setupFillWithColor(red, green, blue, alpha);
974    engine.drawMesh(mMesh);
975}
976
977void Layer::clearWithOpenGL(
978        const sp<const DisplayDevice>& hw, const Region& clip) const {
979    clearWithOpenGL(hw, clip, 0,0,0,0);
980}
981
982void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw,
983        const Region& /* clip */, bool useIdentityTransform) const {
984    const State& s(getDrawingState());
985
986    computeGeometry(hw, mMesh, useIdentityTransform);
987
988    /*
989     * NOTE: the way we compute the texture coordinates here produces
990     * different results than when we take the HWC path -- in the later case
991     * the "source crop" is rounded to texel boundaries.
992     * This can produce significantly different results when the texture
993     * is scaled by a large amount.
994     *
995     * The GL code below is more logical (imho), and the difference with
996     * HWC is due to a limitation of the HWC API to integers -- a question
997     * is suspend is whether we should ignore this problem or revert to
998     * GL composition when a buffer scaling is applied (maybe with some
999     * minimal value)? Or, we could make GL behave like HWC -- but this feel
1000     * like more of a hack.
1001     */
1002    Rect win(computeBounds());
1003
1004    if (!s.finalCrop.isEmpty()) {
1005        win = s.active.transform.transform(win);
1006        if (!win.intersect(s.finalCrop, &win)) {
1007            win.clear();
1008        }
1009        win = s.active.transform.inverse().transform(win);
1010        if (!win.intersect(computeBounds(), &win)) {
1011            win.clear();
1012        }
1013    }
1014
1015    float left   = float(win.left)   / float(s.active.w);
1016    float top    = float(win.top)    / float(s.active.h);
1017    float right  = float(win.right)  / float(s.active.w);
1018    float bottom = float(win.bottom) / float(s.active.h);
1019
1020    // TODO: we probably want to generate the texture coords with the mesh
1021    // here we assume that we only have 4 vertices
1022    Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>());
1023    texCoords[0] = vec2(left, 1.0f - top);
1024    texCoords[1] = vec2(left, 1.0f - bottom);
1025    texCoords[2] = vec2(right, 1.0f - bottom);
1026    texCoords[3] = vec2(right, 1.0f - top);
1027
1028    RenderEngine& engine(mFlinger->getRenderEngine());
1029    engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), s.alpha);
1030    engine.drawMesh(mMesh);
1031    engine.disableBlending();
1032}
1033
1034#ifdef USE_HWC2
1035void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type,
1036        bool callIntoHwc) {
1037    if (mHwcLayers.count(hwcId) == 0) {
1038        ALOGE("setCompositionType called without a valid HWC layer");
1039        return;
1040    }
1041    auto& hwcInfo = mHwcLayers[hwcId];
1042    auto& hwcLayer = hwcInfo.layer;
1043    ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(),
1044            to_string(type).c_str(), static_cast<int>(callIntoHwc));
1045    if (hwcInfo.compositionType != type) {
1046        ALOGV("    actually setting");
1047        hwcInfo.compositionType = type;
1048        if (callIntoHwc) {
1049            auto error = hwcLayer->setCompositionType(type);
1050            ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set "
1051                    "composition type %s: %s (%d)", mName.string(),
1052                    to_string(type).c_str(), to_string(error).c_str(),
1053                    static_cast<int32_t>(error));
1054        }
1055    }
1056}
1057
1058HWC2::Composition Layer::getCompositionType(int32_t hwcId) const {
1059    if (mHwcLayers.count(hwcId) == 0) {
1060        ALOGE("getCompositionType called without a valid HWC layer");
1061        return HWC2::Composition::Invalid;
1062    }
1063    return mHwcLayers.at(hwcId).compositionType;
1064}
1065
1066void Layer::setClearClientTarget(int32_t hwcId, bool clear) {
1067    if (mHwcLayers.count(hwcId) == 0) {
1068        ALOGE("setClearClientTarget called without a valid HWC layer");
1069        return;
1070    }
1071    mHwcLayers[hwcId].clearClientTarget = clear;
1072}
1073
1074bool Layer::getClearClientTarget(int32_t hwcId) const {
1075    if (mHwcLayers.count(hwcId) == 0) {
1076        ALOGE("getClearClientTarget called without a valid HWC layer");
1077        return false;
1078    }
1079    return mHwcLayers.at(hwcId).clearClientTarget;
1080}
1081#endif
1082
1083uint32_t Layer::getProducerStickyTransform() const {
1084    int producerStickyTransform = 0;
1085    int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
1086    if (ret != OK) {
1087        ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
1088                strerror(-ret), ret);
1089        return 0;
1090    }
1091    return static_cast<uint32_t>(producerStickyTransform);
1092}
1093
1094bool Layer::latchUnsignaledBuffers() {
1095    static bool propertyLoaded = false;
1096    static bool latch = false;
1097    static std::mutex mutex;
1098    std::lock_guard<std::mutex> lock(mutex);
1099    if (!propertyLoaded) {
1100        char value[PROPERTY_VALUE_MAX] = {};
1101        property_get("debug.sf.latch_unsignaled", value, "0");
1102        latch = atoi(value);
1103        propertyLoaded = true;
1104    }
1105    return latch;
1106}
1107
1108uint64_t Layer::getHeadFrameNumber() const {
1109    Mutex::Autolock lock(mQueueItemLock);
1110    if (!mQueueItems.empty()) {
1111        return mQueueItems[0].mFrameNumber;
1112    } else {
1113        return mCurrentFrameNumber;
1114    }
1115}
1116
1117bool Layer::headFenceHasSignaled() const {
1118#ifdef USE_HWC2
1119    if (latchUnsignaledBuffers()) {
1120        return true;
1121    }
1122
1123    Mutex::Autolock lock(mQueueItemLock);
1124    if (mQueueItems.empty()) {
1125        return true;
1126    }
1127    if (mQueueItems[0].mIsDroppable) {
1128        // Even though this buffer's fence may not have signaled yet, it could
1129        // be replaced by another buffer before it has a chance to, which means
1130        // that it's possible to get into a situation where a buffer is never
1131        // able to be latched. To avoid this, grab this buffer anyway.
1132        return true;
1133    }
1134    return mQueueItems[0].mFence->getSignalTime() != INT64_MAX;
1135#else
1136    return true;
1137#endif
1138}
1139
1140bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) {
1141    if (point->getFrameNumber() <= mCurrentFrameNumber) {
1142        // Don't bother with a SyncPoint, since we've already latched the
1143        // relevant frame
1144        return false;
1145    }
1146
1147    Mutex::Autolock lock(mLocalSyncPointMutex);
1148    mLocalSyncPoints.push_back(point);
1149    return true;
1150}
1151
1152void Layer::setFiltering(bool filtering) {
1153    mFiltering = filtering;
1154}
1155
1156bool Layer::getFiltering() const {
1157    return mFiltering;
1158}
1159
1160// As documented in libhardware header, formats in the range
1161// 0x100 - 0x1FF are specific to the HAL implementation, and
1162// are known to have no alpha channel
1163// TODO: move definition for device-specific range into
1164// hardware.h, instead of using hard-coded values here.
1165#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
1166
1167bool Layer::getOpacityForFormat(uint32_t format) {
1168    if (HARDWARE_IS_DEVICE_FORMAT(format)) {
1169        return true;
1170    }
1171    switch (format) {
1172        case HAL_PIXEL_FORMAT_RGBA_8888:
1173        case HAL_PIXEL_FORMAT_BGRA_8888:
1174            return false;
1175    }
1176    // in all other case, we have no blending (also for unknown formats)
1177    return true;
1178}
1179
1180// ----------------------------------------------------------------------------
1181// local state
1182// ----------------------------------------------------------------------------
1183
1184static void boundPoint(vec2* point, const Rect& crop) {
1185    if (point->x < crop.left) {
1186        point->x = crop.left;
1187    }
1188    if (point->x > crop.right) {
1189        point->x = crop.right;
1190    }
1191    if (point->y < crop.top) {
1192        point->y = crop.top;
1193    }
1194    if (point->y > crop.bottom) {
1195        point->y = crop.bottom;
1196    }
1197}
1198
1199void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
1200        bool useIdentityTransform) const
1201{
1202    const Layer::State& s(getDrawingState());
1203    const Transform tr(hw->getTransform());
1204    const uint32_t hw_h = hw->getHeight();
1205    Rect win(s.active.w, s.active.h);
1206    if (!s.crop.isEmpty()) {
1207        win.intersect(s.crop, &win);
1208    }
1209    // subtract the transparent region and snap to the bounds
1210    win = reduce(win, s.activeTransparentRegion);
1211
1212    vec2 lt = vec2(win.left, win.top);
1213    vec2 lb = vec2(win.left, win.bottom);
1214    vec2 rb = vec2(win.right, win.bottom);
1215    vec2 rt = vec2(win.right, win.top);
1216
1217    if (!useIdentityTransform) {
1218        lt = s.active.transform.transform(lt);
1219        lb = s.active.transform.transform(lb);
1220        rb = s.active.transform.transform(rb);
1221        rt = s.active.transform.transform(rt);
1222    }
1223
1224    if (!s.finalCrop.isEmpty()) {
1225        boundPoint(&lt, s.finalCrop);
1226        boundPoint(&lb, s.finalCrop);
1227        boundPoint(&rb, s.finalCrop);
1228        boundPoint(&rt, s.finalCrop);
1229    }
1230
1231    Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
1232    position[0] = tr.transform(lt);
1233    position[1] = tr.transform(lb);
1234    position[2] = tr.transform(rb);
1235    position[3] = tr.transform(rt);
1236    for (size_t i=0 ; i<4 ; i++) {
1237        position[i].y = hw_h - position[i].y;
1238    }
1239}
1240
1241bool Layer::isOpaque(const Layer::State& s) const
1242{
1243    // if we don't have a buffer yet, we're translucent regardless of the
1244    // layer's opaque flag.
1245    if (mActiveBuffer == 0) {
1246        return false;
1247    }
1248
1249    // if the layer has the opaque flag, then we're always opaque,
1250    // otherwise we use the current buffer's format.
1251    return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
1252}
1253
1254bool Layer::isSecure() const
1255{
1256    const Layer::State& s(mDrawingState);
1257    return (s.flags & layer_state_t::eLayerSecure);
1258}
1259
1260bool Layer::isProtected() const
1261{
1262    const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
1263    return (activeBuffer != 0) &&
1264            (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
1265}
1266
1267bool Layer::isFixedSize() const {
1268    return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
1269}
1270
1271bool Layer::isCropped() const {
1272    return !mCurrentCrop.isEmpty();
1273}
1274
1275bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
1276    return mNeedsFiltering || hw->needsFiltering();
1277}
1278
1279void Layer::setVisibleRegion(const Region& visibleRegion) {
1280    // always called from main thread
1281    this->visibleRegion = visibleRegion;
1282}
1283
1284void Layer::setCoveredRegion(const Region& coveredRegion) {
1285    // always called from main thread
1286    this->coveredRegion = coveredRegion;
1287}
1288
1289void Layer::setVisibleNonTransparentRegion(const Region&
1290        setVisibleNonTransparentRegion) {
1291    // always called from main thread
1292    this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
1293}
1294
1295// ----------------------------------------------------------------------------
1296// transaction
1297// ----------------------------------------------------------------------------
1298
1299void Layer::pushPendingState() {
1300    if (!mCurrentState.modified) {
1301        return;
1302    }
1303
1304    // If this transaction is waiting on the receipt of a frame, generate a sync
1305    // point and send it to the remote layer.
1306    if (mCurrentState.handle != nullptr) {
1307        sp<Handle> handle = static_cast<Handle*>(mCurrentState.handle.get());
1308        sp<Layer> handleLayer = handle->owner.promote();
1309        if (handleLayer == nullptr) {
1310            ALOGE("[%s] Unable to promote Layer handle", mName.string());
1311            // If we can't promote the layer we are intended to wait on,
1312            // then it is expired or otherwise invalid. Allow this transaction
1313            // to be applied as per normal (no synchronization).
1314            mCurrentState.handle = nullptr;
1315        } else {
1316            auto syncPoint = std::make_shared<SyncPoint>(
1317                    mCurrentState.frameNumber);
1318            if (handleLayer->addSyncPoint(syncPoint)) {
1319                mRemoteSyncPoints.push_back(std::move(syncPoint));
1320            } else {
1321                // We already missed the frame we're supposed to synchronize
1322                // on, so go ahead and apply the state update
1323                mCurrentState.handle = nullptr;
1324            }
1325        }
1326
1327        // Wake us up to check if the frame has been received
1328        setTransactionFlags(eTransactionNeeded);
1329    }
1330    mPendingStates.push_back(mCurrentState);
1331}
1332
1333void Layer::popPendingState(State* stateToCommit) {
1334    auto oldFlags = stateToCommit->flags;
1335    *stateToCommit = mPendingStates[0];
1336    stateToCommit->flags = (oldFlags & ~stateToCommit->mask) |
1337            (stateToCommit->flags & stateToCommit->mask);
1338
1339    mPendingStates.removeAt(0);
1340}
1341
1342bool Layer::applyPendingStates(State* stateToCommit) {
1343    bool stateUpdateAvailable = false;
1344    while (!mPendingStates.empty()) {
1345        if (mPendingStates[0].handle != nullptr) {
1346            if (mRemoteSyncPoints.empty()) {
1347                // If we don't have a sync point for this, apply it anyway. It
1348                // will be visually wrong, but it should keep us from getting
1349                // into too much trouble.
1350                ALOGE("[%s] No local sync point found", mName.string());
1351                popPendingState(stateToCommit);
1352                stateUpdateAvailable = true;
1353                continue;
1354            }
1355
1356            if (mRemoteSyncPoints.front()->getFrameNumber() !=
1357                    mPendingStates[0].frameNumber) {
1358                ALOGE("[%s] Unexpected sync point frame number found",
1359                        mName.string());
1360
1361                // Signal our end of the sync point and then dispose of it
1362                mRemoteSyncPoints.front()->setTransactionApplied();
1363                mRemoteSyncPoints.pop_front();
1364                continue;
1365            }
1366
1367            if (mRemoteSyncPoints.front()->frameIsAvailable()) {
1368                // Apply the state update
1369                popPendingState(stateToCommit);
1370                stateUpdateAvailable = true;
1371
1372                // Signal our end of the sync point and then dispose of it
1373                mRemoteSyncPoints.front()->setTransactionApplied();
1374                mRemoteSyncPoints.pop_front();
1375            } else {
1376                break;
1377            }
1378        } else {
1379            popPendingState(stateToCommit);
1380            stateUpdateAvailable = true;
1381        }
1382    }
1383
1384    // If we still have pending updates, wake SurfaceFlinger back up and point
1385    // it at this layer so we can process them
1386    if (!mPendingStates.empty()) {
1387        setTransactionFlags(eTransactionNeeded);
1388        mFlinger->setTransactionFlags(eTraversalNeeded);
1389    }
1390
1391    mCurrentState.modified = false;
1392    return stateUpdateAvailable;
1393}
1394
1395void Layer::notifyAvailableFrames() {
1396    auto headFrameNumber = getHeadFrameNumber();
1397    bool headFenceSignaled = headFenceHasSignaled();
1398    Mutex::Autolock lock(mLocalSyncPointMutex);
1399    for (auto& point : mLocalSyncPoints) {
1400        if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
1401            point->setFrameAvailable();
1402        }
1403    }
1404}
1405
1406uint32_t Layer::doTransaction(uint32_t flags) {
1407    ATRACE_CALL();
1408
1409    pushPendingState();
1410    Layer::State c = getCurrentState();
1411    if (!applyPendingStates(&c)) {
1412        return 0;
1413    }
1414
1415    const Layer::State& s(getDrawingState());
1416
1417    const bool sizeChanged = (c.requested.w != s.requested.w) ||
1418                             (c.requested.h != s.requested.h);
1419
1420    if (sizeChanged) {
1421        // the size changed, we need to ask our client to request a new buffer
1422        ALOGD_IF(DEBUG_RESIZE,
1423                "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
1424                "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
1425                "            requested={ wh={%4u,%4u} }}\n"
1426                "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
1427                "            requested={ wh={%4u,%4u} }}\n",
1428                this, getName().string(), mCurrentTransform,
1429                getEffectiveScalingMode(),
1430                c.active.w, c.active.h,
1431                c.crop.left,
1432                c.crop.top,
1433                c.crop.right,
1434                c.crop.bottom,
1435                c.crop.getWidth(),
1436                c.crop.getHeight(),
1437                c.requested.w, c.requested.h,
1438                s.active.w, s.active.h,
1439                s.crop.left,
1440                s.crop.top,
1441                s.crop.right,
1442                s.crop.bottom,
1443                s.crop.getWidth(),
1444                s.crop.getHeight(),
1445                s.requested.w, s.requested.h);
1446
1447        // record the new size, form this point on, when the client request
1448        // a buffer, it'll get the new size.
1449        mSurfaceFlingerConsumer->setDefaultBufferSize(
1450                c.requested.w, c.requested.h);
1451    }
1452
1453    const bool resizePending = (c.requested.w != c.active.w) ||
1454            (c.requested.h != c.active.h);
1455    if (!isFixedSize()) {
1456        if (resizePending && mSidebandStream == NULL) {
1457            // don't let Layer::doTransaction update the drawing state
1458            // if we have a pending resize, unless we are in fixed-size mode.
1459            // the drawing state will be updated only once we receive a buffer
1460            // with the correct size.
1461            //
1462            // in particular, we want to make sure the clip (which is part
1463            // of the geometry state) is latched together with the size but is
1464            // latched immediately when no resizing is involved.
1465            //
1466            // If a sideband stream is attached, however, we want to skip this
1467            // optimization so that transactions aren't missed when a buffer
1468            // never arrives
1469
1470            flags |= eDontUpdateGeometryState;
1471        }
1472    }
1473
1474    // always set active to requested, unless we're asked not to
1475    // this is used by Layer, which special cases resizes.
1476    if (flags & eDontUpdateGeometryState)  {
1477    } else {
1478        Layer::State& editCurrentState(getCurrentState());
1479        if (mFreezePositionUpdates) {
1480            float tx = c.active.transform.tx();
1481            float ty = c.active.transform.ty();
1482            c.active = c.requested;
1483            c.active.transform.set(tx, ty);
1484            editCurrentState.active = c.active;
1485        } else {
1486            editCurrentState.active = editCurrentState.requested;
1487            c.active = c.requested;
1488        }
1489    }
1490
1491    if (s.active != c.active) {
1492        // invalidate and recompute the visible regions if needed
1493        flags |= Layer::eVisibleRegion;
1494    }
1495
1496    if (c.sequence != s.sequence) {
1497        // invalidate and recompute the visible regions if needed
1498        flags |= eVisibleRegion;
1499        this->contentDirty = true;
1500
1501        // we may use linear filtering, if the matrix scales us
1502        const uint8_t type = c.active.transform.getType();
1503        mNeedsFiltering = (!c.active.transform.preserveRects() ||
1504                (type >= Transform::SCALE));
1505    }
1506
1507    // If the layer is hidden, signal and clear out all local sync points so
1508    // that transactions for layers depending on this layer's frames becoming
1509    // visible are not blocked
1510    if (c.flags & layer_state_t::eLayerHidden) {
1511        Mutex::Autolock lock(mLocalSyncPointMutex);
1512        for (auto& point : mLocalSyncPoints) {
1513            point->setFrameAvailable();
1514        }
1515        mLocalSyncPoints.clear();
1516    }
1517
1518    // Commit the transaction
1519    commitTransaction(c);
1520    return flags;
1521}
1522
1523void Layer::commitTransaction(const State& stateToCommit) {
1524    mDrawingState = stateToCommit;
1525}
1526
1527uint32_t Layer::getTransactionFlags(uint32_t flags) {
1528    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1529}
1530
1531uint32_t Layer::setTransactionFlags(uint32_t flags) {
1532    return android_atomic_or(flags, &mTransactionFlags);
1533}
1534
1535bool Layer::setPosition(float x, float y, bool immediate) {
1536    if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y)
1537        return false;
1538    mCurrentState.sequence++;
1539
1540    // We update the requested and active position simultaneously because
1541    // we want to apply the position portion of the transform matrix immediately,
1542    // but still delay scaling when resizing a SCALING_MODE_FREEZE layer.
1543    mCurrentState.requested.transform.set(x, y);
1544    if (immediate && !mFreezePositionUpdates) {
1545        mCurrentState.active.transform.set(x, y);
1546    }
1547    mFreezePositionUpdates = mFreezePositionUpdates || !immediate;
1548
1549    mCurrentState.modified = true;
1550    setTransactionFlags(eTransactionNeeded);
1551    return true;
1552}
1553
1554bool Layer::setLayer(uint32_t z) {
1555    if (mCurrentState.z == z)
1556        return false;
1557    mCurrentState.sequence++;
1558    mCurrentState.z = z;
1559    mCurrentState.modified = true;
1560    setTransactionFlags(eTransactionNeeded);
1561    return true;
1562}
1563bool Layer::setSize(uint32_t w, uint32_t h) {
1564    if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
1565        return false;
1566    mCurrentState.requested.w = w;
1567    mCurrentState.requested.h = h;
1568    mCurrentState.modified = true;
1569    setTransactionFlags(eTransactionNeeded);
1570    return true;
1571}
1572#ifdef USE_HWC2
1573bool Layer::setAlpha(float alpha) {
1574#else
1575bool Layer::setAlpha(uint8_t alpha) {
1576#endif
1577    if (mCurrentState.alpha == alpha)
1578        return false;
1579    mCurrentState.sequence++;
1580    mCurrentState.alpha = alpha;
1581    mCurrentState.modified = true;
1582    setTransactionFlags(eTransactionNeeded);
1583    return true;
1584}
1585bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
1586    mCurrentState.sequence++;
1587    mCurrentState.requested.transform.set(
1588            matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
1589    mCurrentState.modified = true;
1590    setTransactionFlags(eTransactionNeeded);
1591    return true;
1592}
1593bool Layer::setTransparentRegionHint(const Region& transparent) {
1594    mCurrentState.requestedTransparentRegion = transparent;
1595    mCurrentState.modified = true;
1596    setTransactionFlags(eTransactionNeeded);
1597    return true;
1598}
1599bool Layer::setFlags(uint8_t flags, uint8_t mask) {
1600    const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
1601    if (mCurrentState.flags == newFlags)
1602        return false;
1603    mCurrentState.sequence++;
1604    mCurrentState.flags = newFlags;
1605    mCurrentState.mask = mask;
1606    mCurrentState.modified = true;
1607    setTransactionFlags(eTransactionNeeded);
1608    return true;
1609}
1610
1611bool Layer::setCrop(const Rect& crop, bool immediate) {
1612    if (mCurrentState.crop == crop)
1613        return false;
1614    mCurrentState.sequence++;
1615    mCurrentState.requestedCrop = crop;
1616    if (immediate) {
1617        mCurrentState.crop = crop;
1618    }
1619    mCurrentState.modified = true;
1620    setTransactionFlags(eTransactionNeeded);
1621    return true;
1622}
1623bool Layer::setFinalCrop(const Rect& crop) {
1624    if (mCurrentState.finalCrop == crop)
1625        return false;
1626    mCurrentState.sequence++;
1627    mCurrentState.finalCrop = crop;
1628    mCurrentState.modified = true;
1629    setTransactionFlags(eTransactionNeeded);
1630    return true;
1631}
1632
1633bool Layer::setOverrideScalingMode(int32_t scalingMode) {
1634    if (scalingMode == mOverrideScalingMode)
1635        return false;
1636    mOverrideScalingMode = scalingMode;
1637    setTransactionFlags(eTransactionNeeded);
1638    return true;
1639}
1640
1641uint32_t Layer::getEffectiveScalingMode() const {
1642    if (mOverrideScalingMode >= 0) {
1643      return mOverrideScalingMode;
1644    }
1645    return mCurrentScalingMode;
1646}
1647
1648bool Layer::setLayerStack(uint32_t layerStack) {
1649    if (mCurrentState.layerStack == layerStack)
1650        return false;
1651    mCurrentState.sequence++;
1652    mCurrentState.layerStack = layerStack;
1653    mCurrentState.modified = true;
1654    setTransactionFlags(eTransactionNeeded);
1655    return true;
1656}
1657
1658void Layer::deferTransactionUntil(const sp<IBinder>& handle,
1659        uint64_t frameNumber) {
1660    mCurrentState.handle = handle;
1661    mCurrentState.frameNumber = frameNumber;
1662    // We don't set eTransactionNeeded, because just receiving a deferral
1663    // request without any other state updates shouldn't actually induce a delay
1664    mCurrentState.modified = true;
1665    pushPendingState();
1666    mCurrentState.handle = nullptr;
1667    mCurrentState.frameNumber = 0;
1668    mCurrentState.modified = false;
1669}
1670
1671void Layer::useSurfaceDamage() {
1672    if (mFlinger->mForceFullDamage) {
1673        surfaceDamageRegion = Region::INVALID_REGION;
1674    } else {
1675        surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage();
1676    }
1677}
1678
1679void Layer::useEmptyDamage() {
1680    surfaceDamageRegion.clear();
1681}
1682
1683// ----------------------------------------------------------------------------
1684// pageflip handling...
1685// ----------------------------------------------------------------------------
1686
1687bool Layer::shouldPresentNow(const DispSync& dispSync) const {
1688    if (mSidebandStreamChanged || mAutoRefresh) {
1689        return true;
1690    }
1691
1692    Mutex::Autolock lock(mQueueItemLock);
1693    if (mQueueItems.empty()) {
1694        return false;
1695    }
1696    auto timestamp = mQueueItems[0].mTimestamp;
1697    nsecs_t expectedPresent =
1698            mSurfaceFlingerConsumer->computeExpectedPresent(dispSync);
1699
1700    // Ignore timestamps more than a second in the future
1701    bool isPlausible = timestamp < (expectedPresent + s2ns(1));
1702    ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible "
1703            "relative to expectedPresent %" PRId64, mName.string(), timestamp,
1704            expectedPresent);
1705
1706    bool isDue = timestamp < expectedPresent;
1707    return isDue || !isPlausible;
1708}
1709
1710bool Layer::onPreComposition() {
1711    mRefreshPending = false;
1712    return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh;
1713}
1714
1715bool Layer::onPostComposition() {
1716    bool frameLatencyNeeded = mFrameLatencyNeeded;
1717    if (mFrameLatencyNeeded) {
1718        nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
1719        mFrameTracker.setDesiredPresentTime(desiredPresentTime);
1720
1721        sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence();
1722        if (frameReadyFence->isValid()) {
1723            mFrameTracker.setFrameReadyFence(frameReadyFence);
1724        } else {
1725            // There was no fence for this frame, so assume that it was ready
1726            // to be presented at the desired present time.
1727            mFrameTracker.setFrameReadyTime(desiredPresentTime);
1728        }
1729
1730        const HWComposer& hwc = mFlinger->getHwComposer();
1731#ifdef USE_HWC2
1732        sp<Fence> presentFence = hwc.getRetireFence(HWC_DISPLAY_PRIMARY);
1733#else
1734        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
1735#endif
1736        if (presentFence->isValid()) {
1737            mFrameTracker.setActualPresentFence(presentFence);
1738        } else {
1739            // The HWC doesn't support present fences, so use the refresh
1740            // timestamp instead.
1741            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
1742            mFrameTracker.setActualPresentTime(presentTime);
1743        }
1744
1745        mFrameTracker.advanceFrame();
1746        mFrameLatencyNeeded = false;
1747    }
1748    return frameLatencyNeeded;
1749}
1750
1751#ifdef USE_HWC2
1752void Layer::releasePendingBuffer() {
1753    mSurfaceFlingerConsumer->releasePendingBuffer();
1754}
1755#endif
1756
1757bool Layer::isVisible() const {
1758    const Layer::State& s(mDrawingState);
1759#ifdef USE_HWC2
1760    return !(s.flags & layer_state_t::eLayerHidden) && s.alpha > 0.0f
1761            && (mActiveBuffer != NULL || mSidebandStream != NULL);
1762#else
1763    return !(s.flags & layer_state_t::eLayerHidden) && s.alpha
1764            && (mActiveBuffer != NULL || mSidebandStream != NULL);
1765#endif
1766}
1767
1768Region Layer::latchBuffer(bool& recomputeVisibleRegions)
1769{
1770    ATRACE_CALL();
1771
1772    if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
1773        // mSidebandStreamChanged was true
1774        mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream();
1775        if (mSidebandStream != NULL) {
1776            setTransactionFlags(eTransactionNeeded);
1777            mFlinger->setTransactionFlags(eTraversalNeeded);
1778        }
1779        recomputeVisibleRegions = true;
1780
1781        const State& s(getDrawingState());
1782        return s.active.transform.transform(Region(Rect(s.active.w, s.active.h)));
1783    }
1784
1785    Region outDirtyRegion;
1786    if (mQueuedFrames > 0 || mAutoRefresh) {
1787
1788        // if we've already called updateTexImage() without going through
1789        // a composition step, we have to skip this layer at this point
1790        // because we cannot call updateTeximage() without a corresponding
1791        // compositionComplete() call.
1792        // we'll trigger an update in onPreComposition().
1793        if (mRefreshPending) {
1794            return outDirtyRegion;
1795        }
1796
1797        // If the head buffer's acquire fence hasn't signaled yet, return and
1798        // try again later
1799        if (!headFenceHasSignaled()) {
1800            mFlinger->signalLayerUpdate();
1801            return outDirtyRegion;
1802        }
1803
1804        // Capture the old state of the layer for comparisons later
1805        const State& s(getDrawingState());
1806        const bool oldOpacity = isOpaque(s);
1807        sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
1808
1809        struct Reject : public SurfaceFlingerConsumer::BufferRejecter {
1810            Layer::State& front;
1811            Layer::State& current;
1812            bool& recomputeVisibleRegions;
1813            bool stickyTransformSet;
1814            const char* name;
1815            int32_t overrideScalingMode;
1816            bool& freezePositionUpdates;
1817
1818            Reject(Layer::State& front, Layer::State& current,
1819                    bool& recomputeVisibleRegions, bool stickySet,
1820                    const char* name,
1821                    int32_t overrideScalingMode,
1822                    bool& freezePositionUpdates)
1823                : front(front), current(current),
1824                  recomputeVisibleRegions(recomputeVisibleRegions),
1825                  stickyTransformSet(stickySet),
1826                  name(name),
1827                  overrideScalingMode(overrideScalingMode),
1828                  freezePositionUpdates(freezePositionUpdates) {
1829            }
1830
1831            virtual bool reject(const sp<GraphicBuffer>& buf,
1832                    const BufferItem& item) {
1833                if (buf == NULL) {
1834                    return false;
1835                }
1836
1837                uint32_t bufWidth  = buf->getWidth();
1838                uint32_t bufHeight = buf->getHeight();
1839
1840                // check that we received a buffer of the right size
1841                // (Take the buffer's orientation into account)
1842                if (item.mTransform & Transform::ROT_90) {
1843                    swap(bufWidth, bufHeight);
1844                }
1845
1846                int actualScalingMode = overrideScalingMode >= 0 ?
1847                        overrideScalingMode : item.mScalingMode;
1848                bool isFixedSize = actualScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
1849                if (front.active != front.requested) {
1850
1851                    if (isFixedSize ||
1852                            (bufWidth == front.requested.w &&
1853                             bufHeight == front.requested.h))
1854                    {
1855                        // Here we pretend the transaction happened by updating the
1856                        // current and drawing states. Drawing state is only accessed
1857                        // in this thread, no need to have it locked
1858                        front.active = front.requested;
1859
1860                        // We also need to update the current state so that
1861                        // we don't end-up overwriting the drawing state with
1862                        // this stale current state during the next transaction
1863                        //
1864                        // NOTE: We don't need to hold the transaction lock here
1865                        // because State::active is only accessed from this thread.
1866                        current.active = front.active;
1867                        current.modified = true;
1868
1869                        // recompute visible region
1870                        recomputeVisibleRegions = true;
1871                    }
1872
1873                    ALOGD_IF(DEBUG_RESIZE,
1874                            "[%s] latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n"
1875                            "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
1876                            "            requested={ wh={%4u,%4u} }}\n",
1877                            name,
1878                            bufWidth, bufHeight, item.mTransform, item.mScalingMode,
1879                            front.active.w, front.active.h,
1880                            front.crop.left,
1881                            front.crop.top,
1882                            front.crop.right,
1883                            front.crop.bottom,
1884                            front.crop.getWidth(),
1885                            front.crop.getHeight(),
1886                            front.requested.w, front.requested.h);
1887                }
1888
1889                if (!isFixedSize && !stickyTransformSet) {
1890                    if (front.active.w != bufWidth ||
1891                        front.active.h != bufHeight) {
1892                        // reject this buffer
1893                        ALOGE("[%s] rejecting buffer: "
1894                                "bufWidth=%d, bufHeight=%d, front.active.{w=%d, h=%d}",
1895                                name, bufWidth, bufHeight, front.active.w, front.active.h);
1896                        return true;
1897                    }
1898                }
1899
1900                // if the transparent region has changed (this test is
1901                // conservative, but that's fine, worst case we're doing
1902                // a bit of extra work), we latch the new one and we
1903                // trigger a visible-region recompute.
1904                if (!front.activeTransparentRegion.isTriviallyEqual(
1905                        front.requestedTransparentRegion)) {
1906                    front.activeTransparentRegion = front.requestedTransparentRegion;
1907
1908                    // We also need to update the current state so that
1909                    // we don't end-up overwriting the drawing state with
1910                    // this stale current state during the next transaction
1911                    //
1912                    // NOTE: We don't need to hold the transaction lock here
1913                    // because State::active is only accessed from this thread.
1914                    current.activeTransparentRegion = front.activeTransparentRegion;
1915
1916                    // recompute visible region
1917                    recomputeVisibleRegions = true;
1918                }
1919
1920                if (front.crop != front.requestedCrop) {
1921                    front.crop = front.requestedCrop;
1922                    current.crop = front.requestedCrop;
1923                    recomputeVisibleRegions = true;
1924                }
1925                freezePositionUpdates = false;
1926
1927                return false;
1928            }
1929        };
1930
1931        Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
1932                getProducerStickyTransform() != 0, mName.string(),
1933                mOverrideScalingMode, mFreezePositionUpdates);
1934
1935
1936        // Check all of our local sync points to ensure that all transactions
1937        // which need to have been applied prior to the frame which is about to
1938        // be latched have signaled
1939
1940        auto headFrameNumber = getHeadFrameNumber();
1941        bool matchingFramesFound = false;
1942        bool allTransactionsApplied = true;
1943        {
1944            Mutex::Autolock lock(mLocalSyncPointMutex);
1945            for (auto& point : mLocalSyncPoints) {
1946                if (point->getFrameNumber() > headFrameNumber) {
1947                    break;
1948                }
1949
1950                matchingFramesFound = true;
1951
1952                if (!point->frameIsAvailable()) {
1953                    // We haven't notified the remote layer that the frame for
1954                    // this point is available yet. Notify it now, and then
1955                    // abort this attempt to latch.
1956                    point->setFrameAvailable();
1957                    allTransactionsApplied = false;
1958                    break;
1959                }
1960
1961                allTransactionsApplied &= point->transactionIsApplied();
1962            }
1963        }
1964
1965        if (matchingFramesFound && !allTransactionsApplied) {
1966            mFlinger->signalLayerUpdate();
1967            return outDirtyRegion;
1968        }
1969
1970        // This boolean is used to make sure that SurfaceFlinger's shadow copy
1971        // of the buffer queue isn't modified when the buffer queue is returning
1972        // BufferItem's that weren't actually queued. This can happen in shared
1973        // buffer mode.
1974        bool queuedBuffer = false;
1975        status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r,
1976                mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer,
1977                mLastFrameNumberReceived);
1978        if (updateResult == BufferQueue::PRESENT_LATER) {
1979            // Producer doesn't want buffer to be displayed yet.  Signal a
1980            // layer update so we check again at the next opportunity.
1981            mFlinger->signalLayerUpdate();
1982            return outDirtyRegion;
1983        } else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) {
1984            // If the buffer has been rejected, remove it from the shadow queue
1985            // and return early
1986            if (queuedBuffer) {
1987                Mutex::Autolock lock(mQueueItemLock);
1988                mQueueItems.removeAt(0);
1989                android_atomic_dec(&mQueuedFrames);
1990            }
1991            return outDirtyRegion;
1992        } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
1993            // This can occur if something goes wrong when trying to create the
1994            // EGLImage for this buffer. If this happens, the buffer has already
1995            // been released, so we need to clean up the queue and bug out
1996            // early.
1997            if (queuedBuffer) {
1998                Mutex::Autolock lock(mQueueItemLock);
1999                mQueueItems.clear();
2000                android_atomic_and(0, &mQueuedFrames);
2001            }
2002
2003            // Once we have hit this state, the shadow queue may no longer
2004            // correctly reflect the incoming BufferQueue's contents, so even if
2005            // updateTexImage starts working, the only safe course of action is
2006            // to continue to ignore updates.
2007            mUpdateTexImageFailed = true;
2008
2009            return outDirtyRegion;
2010        }
2011
2012        if (queuedBuffer) {
2013            // Autolock scope
2014            auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
2015
2016            Mutex::Autolock lock(mQueueItemLock);
2017
2018            // Remove any stale buffers that have been dropped during
2019            // updateTexImage
2020            while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
2021                mQueueItems.removeAt(0);
2022                android_atomic_dec(&mQueuedFrames);
2023            }
2024
2025            mQueueItems.removeAt(0);
2026        }
2027
2028
2029        // Decrement the queued-frames count.  Signal another event if we
2030        // have more frames pending.
2031        if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1)
2032                || mAutoRefresh) {
2033            mFlinger->signalLayerUpdate();
2034        }
2035
2036        if (updateResult != NO_ERROR) {
2037            // something happened!
2038            recomputeVisibleRegions = true;
2039            return outDirtyRegion;
2040        }
2041
2042        // update the active buffer
2043        mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer();
2044        if (mActiveBuffer == NULL) {
2045            // this can only happen if the very first buffer was rejected.
2046            return outDirtyRegion;
2047        }
2048
2049        mRefreshPending = true;
2050        mFrameLatencyNeeded = true;
2051        if (oldActiveBuffer == NULL) {
2052             // the first time we receive a buffer, we need to trigger a
2053             // geometry invalidation.
2054            recomputeVisibleRegions = true;
2055         }
2056
2057        Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
2058        const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
2059        const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
2060        if ((crop != mCurrentCrop) ||
2061            (transform != mCurrentTransform) ||
2062            (scalingMode != mCurrentScalingMode))
2063        {
2064            mCurrentCrop = crop;
2065            mCurrentTransform = transform;
2066            mCurrentScalingMode = scalingMode;
2067            recomputeVisibleRegions = true;
2068        }
2069
2070        if (oldActiveBuffer != NULL) {
2071            uint32_t bufWidth  = mActiveBuffer->getWidth();
2072            uint32_t bufHeight = mActiveBuffer->getHeight();
2073            if (bufWidth != uint32_t(oldActiveBuffer->width) ||
2074                bufHeight != uint32_t(oldActiveBuffer->height)) {
2075                recomputeVisibleRegions = true;
2076            }
2077        }
2078
2079        mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
2080        if (oldOpacity != isOpaque(s)) {
2081            recomputeVisibleRegions = true;
2082        }
2083
2084        mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
2085
2086        // Remove any sync points corresponding to the buffer which was just
2087        // latched
2088        {
2089            Mutex::Autolock lock(mLocalSyncPointMutex);
2090            auto point = mLocalSyncPoints.begin();
2091            while (point != mLocalSyncPoints.end()) {
2092                if (!(*point)->frameIsAvailable() ||
2093                        !(*point)->transactionIsApplied()) {
2094                    // This sync point must have been added since we started
2095                    // latching. Don't drop it yet.
2096                    ++point;
2097                    continue;
2098                }
2099
2100                if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
2101                    point = mLocalSyncPoints.erase(point);
2102                } else {
2103                    ++point;
2104                }
2105            }
2106        }
2107
2108        // FIXME: postedRegion should be dirty & bounds
2109        Region dirtyRegion(Rect(s.active.w, s.active.h));
2110
2111        // transform the dirty region to window-manager space
2112        outDirtyRegion = (s.active.transform.transform(dirtyRegion));
2113    }
2114    return outDirtyRegion;
2115}
2116
2117uint32_t Layer::getEffectiveUsage(uint32_t usage) const
2118{
2119    // TODO: should we do something special if mSecure is set?
2120    if (mProtectedByApp) {
2121        // need a hardware-protected path to external video sink
2122        usage |= GraphicBuffer::USAGE_PROTECTED;
2123    }
2124    if (mPotentialCursor) {
2125        usage |= GraphicBuffer::USAGE_CURSOR;
2126    }
2127    usage |= GraphicBuffer::USAGE_HW_COMPOSER;
2128    return usage;
2129}
2130
2131void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
2132    uint32_t orientation = 0;
2133    if (!mFlinger->mDebugDisableTransformHint) {
2134        // The transform hint is used to improve performance, but we can
2135        // only have a single transform hint, it cannot
2136        // apply to all displays.
2137        const Transform& planeTransform(hw->getTransform());
2138        orientation = planeTransform.getOrientation();
2139        if (orientation & Transform::ROT_INVALID) {
2140            orientation = 0;
2141        }
2142    }
2143    mSurfaceFlingerConsumer->setTransformHint(orientation);
2144}
2145
2146// ----------------------------------------------------------------------------
2147// debugging
2148// ----------------------------------------------------------------------------
2149
2150void Layer::dump(String8& result, Colorizer& colorizer) const
2151{
2152    const Layer::State& s(getDrawingState());
2153
2154    colorizer.colorize(result, Colorizer::GREEN);
2155    result.appendFormat(
2156            "+ %s %p (%s)\n",
2157            getTypeId(), this, getName().string());
2158    colorizer.reset(result);
2159
2160    s.activeTransparentRegion.dump(result, "transparentRegion");
2161    visibleRegion.dump(result, "visibleRegion");
2162    surfaceDamageRegion.dump(result, "surfaceDamageRegion");
2163    sp<Client> client(mClientRef.promote());
2164
2165    result.appendFormat(            "      "
2166            "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), "
2167            "crop=(%4d,%4d,%4d,%4d), finalCrop=(%4d,%4d,%4d,%4d), "
2168            "isOpaque=%1d, invalidate=%1d, "
2169#ifdef USE_HWC2
2170            "alpha=%.3f, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
2171#else
2172            "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
2173#endif
2174            "      client=%p\n",
2175            s.layerStack, s.z, s.active.transform.tx(), s.active.transform.ty(), s.active.w, s.active.h,
2176            s.crop.left, s.crop.top,
2177            s.crop.right, s.crop.bottom,
2178            s.finalCrop.left, s.finalCrop.top,
2179            s.finalCrop.right, s.finalCrop.bottom,
2180            isOpaque(s), contentDirty,
2181            s.alpha, s.flags,
2182            s.active.transform[0][0], s.active.transform[0][1],
2183            s.active.transform[1][0], s.active.transform[1][1],
2184            client.get());
2185
2186    sp<const GraphicBuffer> buf0(mActiveBuffer);
2187    uint32_t w0=0, h0=0, s0=0, f0=0;
2188    if (buf0 != 0) {
2189        w0 = buf0->getWidth();
2190        h0 = buf0->getHeight();
2191        s0 = buf0->getStride();
2192        f0 = buf0->format;
2193    }
2194    result.appendFormat(
2195            "      "
2196            "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
2197            " queued-frames=%d, mRefreshPending=%d\n",
2198            mFormat, w0, h0, s0,f0,
2199            mQueuedFrames, mRefreshPending);
2200
2201    if (mSurfaceFlingerConsumer != 0) {
2202        mSurfaceFlingerConsumer->dump(result, "            ");
2203    }
2204}
2205
2206void Layer::dumpFrameStats(String8& result) const {
2207    mFrameTracker.dumpStats(result);
2208}
2209
2210void Layer::clearFrameStats() {
2211    mFrameTracker.clearStats();
2212}
2213
2214void Layer::logFrameStats() {
2215    mFrameTracker.logAndResetStats(mName);
2216}
2217
2218void Layer::getFrameStats(FrameStats* outStats) const {
2219    mFrameTracker.getStats(outStats);
2220}
2221
2222void Layer::getFenceData(String8* outName, uint64_t* outFrameNumber,
2223        bool* outIsGlesComposition, nsecs_t* outPostedTime,
2224        sp<Fence>* outAcquireFence, sp<Fence>* outPrevReleaseFence) const {
2225    *outName = mName;
2226    *outFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
2227
2228#ifdef USE_HWC2
2229    *outIsGlesComposition = mHwcLayers.count(HWC_DISPLAY_PRIMARY) ?
2230            mHwcLayers.at(HWC_DISPLAY_PRIMARY).compositionType ==
2231            HWC2::Composition::Client : true;
2232#else
2233    *outIsGlesComposition = mIsGlesComposition;
2234#endif
2235    *outPostedTime = mSurfaceFlingerConsumer->getTimestamp();
2236    *outAcquireFence = mSurfaceFlingerConsumer->getCurrentFence();
2237    *outPrevReleaseFence = mSurfaceFlingerConsumer->getPrevReleaseFence();
2238}
2239
2240std::vector<OccupancyTracker::Segment> Layer::getOccupancyHistory(
2241        bool forceFlush) {
2242    std::vector<OccupancyTracker::Segment> history;
2243    status_t result = mSurfaceFlingerConsumer->getOccupancyHistory(forceFlush,
2244            &history);
2245    if (result != NO_ERROR) {
2246        ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(),
2247                result);
2248        return {};
2249    }
2250    return history;
2251}
2252
2253bool Layer::getTransformToDisplayInverse() const {
2254    return mSurfaceFlingerConsumer->getTransformToDisplayInverse();
2255}
2256
2257// ---------------------------------------------------------------------------
2258
2259Layer::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger,
2260        const sp<Layer>& layer)
2261    : mFlinger(flinger), mLayer(layer) {
2262}
2263
2264Layer::LayerCleaner::~LayerCleaner() {
2265    // destroy client resources
2266    mFlinger->onLayerDestroyed(mLayer);
2267}
2268
2269// ---------------------------------------------------------------------------
2270}; // namespace android
2271
2272#if defined(__gl_h_)
2273#error "don't include gl/gl.h in this file"
2274#endif
2275
2276#if defined(__gl2_h_)
2277#error "don't include gl2/gl2.h in this file"
2278#endif
2279