Layer.cpp revision c2e41222bf02a6579763974f82d65875cfa43481
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdlib.h>
20#include <stdint.h>
21#include <sys/types.h>
22#include <math.h>
23
24#include <cutils/compiler.h>
25#include <cutils/native_handle.h>
26#include <cutils/properties.h>
27
28#include <utils/Errors.h>
29#include <utils/Log.h>
30#include <utils/StopWatch.h>
31#include <utils/Trace.h>
32
33#include <ui/GraphicBuffer.h>
34#include <ui/PixelFormat.h>
35
36#include <gui/Surface.h>
37
38#include "clz.h"
39#include "Colorizer.h"
40#include "DisplayDevice.h"
41#include "Layer.h"
42#include "SurfaceFlinger.h"
43#include "SurfaceTextureLayer.h"
44
45#include "DisplayHardware/HWComposer.h"
46
47#include "RenderEngine/RenderEngine.h"
48
49#define DEBUG_RESIZE    0
50
51namespace android {
52
53// ---------------------------------------------------------------------------
54
55int32_t Layer::sSequence = 1;
56
57Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
58        const String8& name, uint32_t w, uint32_t h, uint32_t flags)
59    :   contentDirty(false),
60        sequence(uint32_t(android_atomic_inc(&sSequence))),
61        mFlinger(flinger),
62        mTextureName(-1U),
63        mPremultipliedAlpha(true),
64        mName("unnamed"),
65        mDebug(false),
66        mFormat(PIXEL_FORMAT_NONE),
67        mOpaqueLayer(true),
68        mTransactionFlags(0),
69        mQueuedFrames(0),
70        mCurrentTransform(0),
71        mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
72        mCurrentOpacity(true),
73        mRefreshPending(false),
74        mFrameLatencyNeeded(false),
75        mFiltering(false),
76        mNeedsFiltering(false),
77        mSecure(false),
78        mProtectedByApp(false),
79        mHasSurface(false),
80        mClientRef(client)
81{
82    mCurrentCrop.makeInvalid();
83    glGenTextures(1, &mTextureName);
84
85    uint32_t layerFlags = 0;
86    if (flags & ISurfaceComposerClient::eHidden)
87        layerFlags = layer_state_t::eLayerHidden;
88
89    if (flags & ISurfaceComposerClient::eNonPremultiplied)
90        mPremultipliedAlpha = false;
91
92    mName = name;
93
94    mCurrentState.active.w = w;
95    mCurrentState.active.h = h;
96    mCurrentState.active.crop.makeInvalid();
97    mCurrentState.z = 0;
98    mCurrentState.alpha = 0xFF;
99    mCurrentState.layerStack = 0;
100    mCurrentState.flags = layerFlags;
101    mCurrentState.sequence = 0;
102    mCurrentState.transform.set(0, 0);
103    mCurrentState.requested = mCurrentState.active;
104
105    // drawing state & current state are identical
106    mDrawingState = mCurrentState;
107
108    nsecs_t displayPeriod =
109            flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
110    mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
111}
112
113void Layer::onFirstRef()
114{
115    // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
116    mBufferQueue = new SurfaceTextureLayer(mFlinger);
117    mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(mBufferQueue, mTextureName,
118            GL_TEXTURE_EXTERNAL_OES, false);
119
120    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
121    mSurfaceFlingerConsumer->setFrameAvailableListener(this);
122    mSurfaceFlingerConsumer->setName(mName);
123
124#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
125#warning "disabling triple buffering"
126    mSurfaceFlingerConsumer->setDefaultMaxBufferCount(2);
127#else
128    mSurfaceFlingerConsumer->setDefaultMaxBufferCount(3);
129#endif
130
131    const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
132    updateTransformHint(hw);
133}
134
135Layer::~Layer() {
136    sp<Client> c(mClientRef.promote());
137    if (c != 0) {
138        c->detachLayer(this);
139    }
140    mFlinger->deleteTextureAsync(mTextureName);
141    mFrameTracker.logAndResetStats(mName);
142}
143
144// ---------------------------------------------------------------------------
145// callbacks
146// ---------------------------------------------------------------------------
147
148void Layer::onLayerDisplayed(const sp<const DisplayDevice>& hw,
149        HWComposer::HWCLayerInterface* layer) {
150    if (layer) {
151        layer->onDisplayed();
152        mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
153    }
154}
155
156void Layer::onFrameAvailable() {
157    android_atomic_inc(&mQueuedFrames);
158    mFlinger->signalLayerUpdate();
159}
160
161// called with SurfaceFlinger::mStateLock from the drawing thread after
162// the layer has been remove from the current state list (and just before
163// it's removed from the drawing state list)
164void Layer::onRemoved() {
165    mSurfaceFlingerConsumer->abandon();
166}
167
168// ---------------------------------------------------------------------------
169// set-up
170// ---------------------------------------------------------------------------
171
172const String8& Layer::getName() const {
173    return mName;
174}
175
176status_t Layer::setBuffers( uint32_t w, uint32_t h,
177                            PixelFormat format, uint32_t flags)
178{
179    uint32_t const maxSurfaceDims = min(
180            mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
181
182    // never allow a surface larger than what our underlying GL implementation
183    // can handle.
184    if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
185        ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
186        return BAD_VALUE;
187    }
188
189    mFormat = format;
190
191    mSecure = (flags & ISurfaceComposerClient::eSecure) ? true : false;
192    mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
193    mOpaqueLayer = (flags & ISurfaceComposerClient::eOpaque);
194    mCurrentOpacity = getOpacityForFormat(format);
195
196    mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
197    mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
198    mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
199
200    return NO_ERROR;
201}
202
203sp<IBinder> Layer::getHandle() {
204    Mutex::Autolock _l(mLock);
205
206    LOG_ALWAYS_FATAL_IF(mHasSurface,
207            "Layer::getHandle() has already been called");
208
209    mHasSurface = true;
210
211    /*
212     * The layer handle is just a BBinder object passed to the client
213     * (remote process) -- we don't keep any reference on our side such that
214     * the dtor is called when the remote side let go of its reference.
215     *
216     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
217     * this layer when the handle is destroyed.
218     */
219
220    class Handle : public BBinder, public LayerCleaner {
221        wp<const Layer> mOwner;
222    public:
223        Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
224            : LayerCleaner(flinger, layer), mOwner(layer) {
225        }
226    };
227
228    return new Handle(mFlinger, this);
229}
230
231sp<IGraphicBufferProducer> Layer::getBufferQueue() const {
232    return mBufferQueue;
233}
234
235// ---------------------------------------------------------------------------
236// h/w composer set-up
237// ---------------------------------------------------------------------------
238
239Rect Layer::getContentCrop() const {
240    // this is the crop rectangle that applies to the buffer
241    // itself (as opposed to the window)
242    Rect crop;
243    if (!mCurrentCrop.isEmpty()) {
244        // if the buffer crop is defined, we use that
245        crop = mCurrentCrop;
246    } else if (mActiveBuffer != NULL) {
247        // otherwise we use the whole buffer
248        crop = mActiveBuffer->getBounds();
249    } else {
250        // if we don't have a buffer yet, we use an empty/invalid crop
251        crop.makeInvalid();
252    }
253    return crop;
254}
255
256static Rect reduce(const Rect& win, const Region& exclude) {
257    if (CC_LIKELY(exclude.isEmpty())) {
258        return win;
259    }
260    if (exclude.isRect()) {
261        return win.reduce(exclude.getBounds());
262    }
263    return Region(win).subtract(exclude).getBounds();
264}
265
266Rect Layer::computeBounds() const {
267    const Layer::State& s(getDrawingState());
268    Rect win(s.active.w, s.active.h);
269    if (!s.active.crop.isEmpty()) {
270        win.intersect(s.active.crop, &win);
271    }
272    // subtract the transparent region and snap to the bounds
273    return reduce(win, s.activeTransparentRegion);
274}
275
276FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
277    // the content crop is the area of the content that gets scaled to the
278    // layer's size.
279    FloatRect crop(getContentCrop());
280
281    // the active.crop is the area of the window that gets cropped, but not
282    // scaled in any ways.
283    const State& s(getDrawingState());
284
285    // apply the projection's clipping to the window crop in
286    // layerstack space, and convert-back to layer space.
287    // if there are no window scaling involved, this operation will map to full
288    // pixels in the buffer.
289    // FIXME: the 3 lines below can produce slightly incorrect clipping when we have
290    // a viewport clipping and a window transform. we should use floating point to fix this.
291    Rect activeCrop(s.transform.transform(s.active.crop));
292    activeCrop.intersect(hw->getViewport(), &activeCrop);
293    activeCrop = s.transform.inverse().transform(activeCrop);
294
295    // paranoia: make sure the window-crop is constrained in the
296    // window's bounds
297    activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop);
298
299    // subtract the transparent region and snap to the bounds
300    activeCrop = reduce(activeCrop, s.activeTransparentRegion);
301
302    if (!activeCrop.isEmpty()) {
303        // Transform the window crop to match the buffer coordinate system,
304        // which means using the inverse of the current transform set on the
305        // SurfaceFlingerConsumer.
306        uint32_t invTransform = mCurrentTransform;
307        int winWidth = s.active.w;
308        int winHeight = s.active.h;
309        if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
310            invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
311                    NATIVE_WINDOW_TRANSFORM_FLIP_H;
312            winWidth = s.active.h;
313            winHeight = s.active.w;
314        }
315        const Rect winCrop = activeCrop.transform(
316                invTransform, s.active.w, s.active.h);
317
318        // below, crop is intersected with winCrop expressed in crop's coordinate space
319        float xScale = crop.getWidth()  / float(winWidth);
320        float yScale = crop.getHeight() / float(winHeight);
321
322        float insetL = winCrop.left                 * xScale;
323        float insetT = winCrop.top                  * yScale;
324        float insetR = (winWidth  - winCrop.right ) * xScale;
325        float insetB = (winHeight - winCrop.bottom) * yScale;
326
327        crop.left   += insetL;
328        crop.top    += insetT;
329        crop.right  -= insetR;
330        crop.bottom -= insetB;
331    }
332    return crop;
333}
334
335void Layer::setGeometry(
336    const sp<const DisplayDevice>& hw,
337        HWComposer::HWCLayerInterface& layer)
338{
339    layer.setDefaultState();
340
341    // enable this layer
342    layer.setSkip(false);
343
344    if (isSecure() && !hw->isSecure()) {
345        layer.setSkip(true);
346    }
347
348    // this gives us only the "orientation" component of the transform
349    const State& s(getDrawingState());
350    if (!isOpaque() || s.alpha != 0xFF) {
351        layer.setBlending(mPremultipliedAlpha ?
352                HWC_BLENDING_PREMULT :
353                HWC_BLENDING_COVERAGE);
354    }
355
356    // apply the layer's transform, followed by the display's global transform
357    // here we're guaranteed that the layer's transform preserves rects
358    Rect frame(s.transform.transform(computeBounds()));
359    frame.intersect(hw->getViewport(), &frame);
360    const Transform& tr(hw->getTransform());
361    layer.setFrame(tr.transform(frame));
362    layer.setCrop(computeCrop(hw));
363    layer.setPlaneAlpha(s.alpha);
364
365    /*
366     * Transformations are applied in this order:
367     * 1) buffer orientation/flip/mirror
368     * 2) state transformation (window manager)
369     * 3) layer orientation (screen orientation)
370     * (NOTE: the matrices are multiplied in reverse order)
371     */
372
373    const Transform bufferOrientation(mCurrentTransform);
374    const Transform transform(tr * s.transform * bufferOrientation);
375
376    // this gives us only the "orientation" component of the transform
377    const uint32_t orientation = transform.getOrientation();
378    if (orientation & Transform::ROT_INVALID) {
379        // we can only handle simple transformation
380        layer.setSkip(true);
381    } else {
382        layer.setTransform(orientation);
383    }
384}
385
386void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
387        HWComposer::HWCLayerInterface& layer) {
388    // we have to set the visible region on every frame because
389    // we currently free it during onLayerDisplayed(), which is called
390    // after HWComposer::commit() -- every frame.
391    // Apply this display's projection's viewport to the visible region
392    // before giving it to the HWC HAL.
393    const Transform& tr = hw->getTransform();
394    Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
395    layer.setVisibleRegionScreen(visible);
396
397    // NOTE: buffer can be NULL if the client never drew into this
398    // layer yet, or if we ran out of memory
399    layer.setBuffer(mActiveBuffer);
400}
401
402void Layer::setAcquireFence(const sp<const DisplayDevice>& hw,
403        HWComposer::HWCLayerInterface& layer) {
404    int fenceFd = -1;
405
406    // TODO: there is a possible optimization here: we only need to set the
407    // acquire fence the first time a new buffer is acquired on EACH display.
408
409    if (layer.getCompositionType() == HWC_OVERLAY) {
410        sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
411        if (fence->isValid()) {
412            fenceFd = fence->dup();
413            if (fenceFd == -1) {
414                ALOGW("failed to dup layer fence, skipping sync: %d", errno);
415            }
416        }
417    }
418    layer.setAcquireFenceFd(fenceFd);
419}
420
421// ---------------------------------------------------------------------------
422// drawing...
423// ---------------------------------------------------------------------------
424
425void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
426    onDraw(hw, clip);
427}
428
429void Layer::draw(const sp<const DisplayDevice>& hw) {
430    onDraw( hw, Region(hw->bounds()) );
431}
432
433void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip) const
434{
435    ATRACE_CALL();
436
437    if (CC_UNLIKELY(mActiveBuffer == 0)) {
438        // the texture has not been created yet, this Layer has
439        // in fact never been drawn into. This happens frequently with
440        // SurfaceView because the WindowManager can't know when the client
441        // has drawn the first time.
442
443        // If there is nothing under us, we paint the screen in black, otherwise
444        // we just skip this update.
445
446        // figure out if there is something below us
447        Region under;
448        const SurfaceFlinger::LayerVector& drawingLayers(
449                mFlinger->mDrawingState.layersSortedByZ);
450        const size_t count = drawingLayers.size();
451        for (size_t i=0 ; i<count ; ++i) {
452            const sp<Layer>& layer(drawingLayers[i]);
453            if (layer.get() == static_cast<Layer const*>(this))
454                break;
455            under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
456        }
457        // if not everything below us is covered, we plug the holes!
458        Region holes(clip.subtract(under));
459        if (!holes.isEmpty()) {
460            clearWithOpenGL(hw, holes, 0, 0, 0, 1);
461        }
462        return;
463    }
464
465    // Bind the current buffer to the GL texture, and wait for it to be
466    // ready for us to draw into.
467    status_t err = mSurfaceFlingerConsumer->bindTextureImage();
468    if (err != NO_ERROR) {
469        ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
470        // Go ahead and draw the buffer anyway; no matter what we do the screen
471        // is probably going to have something visibly wrong.
472    }
473
474    bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
475
476    RenderEngine& engine(mFlinger->getRenderEngine());
477
478    if (!blackOutLayer) {
479        // TODO: we could be more subtle with isFixedSize()
480        const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
481
482        // Query the texture matrix given our current filtering mode.
483        float textureMatrix[16];
484        mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
485        mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
486
487        // Set things up for texturing.
488        engine.setupLayerTexturing(mTextureName, useFiltering, textureMatrix);
489    } else {
490        engine.setupLayerBlackedOut();
491    }
492    drawWithOpenGL(hw, clip);
493    engine.disableTexturing();
494}
495
496
497void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw, const Region& clip,
498        GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) const
499{
500    LayerMesh mesh;
501    computeGeometry(hw, &mesh);
502
503    mFlinger->getRenderEngine().clearWithColor(
504        mesh.getVertices(), mesh.getVertexCount(),
505        red, green, blue, alpha);
506}
507
508void Layer::clearWithOpenGL(
509        const sp<const DisplayDevice>& hw, const Region& clip) const {
510    clearWithOpenGL(hw, clip, 0,0,0,0);
511}
512
513void Layer::drawWithOpenGL(
514        const sp<const DisplayDevice>& hw, const Region& clip) const {
515    const uint32_t fbHeight = hw->getHeight();
516    const State& s(getDrawingState());
517
518    LayerMesh mesh;
519    computeGeometry(hw, &mesh);
520
521    /*
522     * NOTE: the way we compute the texture coordinates here produces
523     * different results than when we take the HWC path -- in the later case
524     * the "source crop" is rounded to texel boundaries.
525     * This can produce significantly different results when the texture
526     * is scaled by a large amount.
527     *
528     * The GL code below is more logical (imho), and the difference with
529     * HWC is due to a limitation of the HWC API to integers -- a question
530     * is suspend is wether we should ignore this problem or revert to
531     * GL composition when a buffer scaling is applied (maybe with some
532     * minimal value)? Or, we could make GL behave like HWC -- but this feel
533     * like more of a hack.
534     */
535    const Rect win(computeBounds());
536
537    GLfloat left   = GLfloat(win.left)   / GLfloat(s.active.w);
538    GLfloat top    = GLfloat(win.top)    / GLfloat(s.active.h);
539    GLfloat right  = GLfloat(win.right)  / GLfloat(s.active.w);
540    GLfloat bottom = GLfloat(win.bottom) / GLfloat(s.active.h);
541
542    // TODO: we probably want to generate the texture coords with the mesh
543    // here we assume that we only have 4 vertices
544    float texCoords[4][2];
545    texCoords[0][0] = left;
546    texCoords[0][1] = top;
547    texCoords[1][0] = left;
548    texCoords[1][1] = bottom;
549    texCoords[2][0] = right;
550    texCoords[2][1] = bottom;
551    texCoords[3][0] = right;
552    texCoords[3][1] = top;
553    for (int i = 0; i < 4; i++) {
554        texCoords[i][1] = 1.0f - texCoords[i][1];
555    }
556
557    RenderEngine& engine(mFlinger->getRenderEngine());
558    engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(), s.alpha);
559    engine.drawMesh2D(mesh.getVertices(), texCoords, mesh.getVertexCount());
560    engine.disableBlending();
561}
562
563void Layer::setFiltering(bool filtering) {
564    mFiltering = filtering;
565}
566
567bool Layer::getFiltering() const {
568    return mFiltering;
569}
570
571// As documented in libhardware header, formats in the range
572// 0x100 - 0x1FF are specific to the HAL implementation, and
573// are known to have no alpha channel
574// TODO: move definition for device-specific range into
575// hardware.h, instead of using hard-coded values here.
576#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
577
578bool Layer::getOpacityForFormat(uint32_t format) {
579    if (HARDWARE_IS_DEVICE_FORMAT(format)) {
580        return true;
581    }
582    switch (format) {
583        case HAL_PIXEL_FORMAT_RGBA_8888:
584        case HAL_PIXEL_FORMAT_BGRA_8888:
585        case HAL_PIXEL_FORMAT_sRGB_A_8888:
586            return false;
587    }
588    // in all other case, we have no blending (also for unknown formats)
589    return true;
590}
591
592// ----------------------------------------------------------------------------
593// local state
594// ----------------------------------------------------------------------------
595
596void Layer::computeGeometry(const sp<const DisplayDevice>& hw, LayerMesh* mesh) const
597{
598    const Layer::State& s(getDrawingState());
599    const Transform tr(hw->getTransform() * s.transform);
600    const uint32_t hw_h = hw->getHeight();
601    Rect win(s.active.w, s.active.h);
602    if (!s.active.crop.isEmpty()) {
603        win.intersect(s.active.crop, &win);
604    }
605    // subtract the transparent region and snap to the bounds
606    win = reduce(win, s.activeTransparentRegion);
607    if (mesh) {
608        tr.transform(mesh->mVertices[0], win.left,  win.top);
609        tr.transform(mesh->mVertices[1], win.left,  win.bottom);
610        tr.transform(mesh->mVertices[2], win.right, win.bottom);
611        tr.transform(mesh->mVertices[3], win.right, win.top);
612        for (size_t i=0 ; i<4 ; i++) {
613            mesh->mVertices[i][1] = hw_h - mesh->mVertices[i][1];
614        }
615    }
616}
617
618bool Layer::isOpaque() const
619{
620    // if we don't have a buffer yet, we're translucent regardless of the
621    // layer's opaque flag.
622    if (mActiveBuffer == 0) {
623        return false;
624    }
625
626    // if the layer has the opaque flag, then we're always opaque,
627    // otherwise we use the current buffer's format.
628    return mOpaqueLayer || mCurrentOpacity;
629}
630
631bool Layer::isProtected() const
632{
633    const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
634    return (activeBuffer != 0) &&
635            (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
636}
637
638bool Layer::isFixedSize() const {
639    return mCurrentScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
640}
641
642bool Layer::isCropped() const {
643    return !mCurrentCrop.isEmpty();
644}
645
646bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
647    return mNeedsFiltering || hw->needsFiltering();
648}
649
650void Layer::setVisibleRegion(const Region& visibleRegion) {
651    // always called from main thread
652    this->visibleRegion = visibleRegion;
653}
654
655void Layer::setCoveredRegion(const Region& coveredRegion) {
656    // always called from main thread
657    this->coveredRegion = coveredRegion;
658}
659
660void Layer::setVisibleNonTransparentRegion(const Region&
661        setVisibleNonTransparentRegion) {
662    // always called from main thread
663    this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
664}
665
666// ----------------------------------------------------------------------------
667// transaction
668// ----------------------------------------------------------------------------
669
670uint32_t Layer::doTransaction(uint32_t flags) {
671    ATRACE_CALL();
672
673    const Layer::State& s(getDrawingState());
674    const Layer::State& c(getCurrentState());
675
676    const bool sizeChanged = (c.requested.w != s.requested.w) ||
677                             (c.requested.h != s.requested.h);
678
679    if (sizeChanged) {
680        // the size changed, we need to ask our client to request a new buffer
681        ALOGD_IF(DEBUG_RESIZE,
682                "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
683                "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
684                "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n"
685                "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
686                "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
687                this, getName().string(), mCurrentTransform, mCurrentScalingMode,
688                c.active.w, c.active.h,
689                c.active.crop.left,
690                c.active.crop.top,
691                c.active.crop.right,
692                c.active.crop.bottom,
693                c.active.crop.getWidth(),
694                c.active.crop.getHeight(),
695                c.requested.w, c.requested.h,
696                c.requested.crop.left,
697                c.requested.crop.top,
698                c.requested.crop.right,
699                c.requested.crop.bottom,
700                c.requested.crop.getWidth(),
701                c.requested.crop.getHeight(),
702                s.active.w, s.active.h,
703                s.active.crop.left,
704                s.active.crop.top,
705                s.active.crop.right,
706                s.active.crop.bottom,
707                s.active.crop.getWidth(),
708                s.active.crop.getHeight(),
709                s.requested.w, s.requested.h,
710                s.requested.crop.left,
711                s.requested.crop.top,
712                s.requested.crop.right,
713                s.requested.crop.bottom,
714                s.requested.crop.getWidth(),
715                s.requested.crop.getHeight());
716
717        // record the new size, form this point on, when the client request
718        // a buffer, it'll get the new size.
719        mSurfaceFlingerConsumer->setDefaultBufferSize(
720                c.requested.w, c.requested.h);
721    }
722
723    if (!isFixedSize()) {
724
725        const bool resizePending = (c.requested.w != c.active.w) ||
726                                   (c.requested.h != c.active.h);
727
728        if (resizePending) {
729            // don't let Layer::doTransaction update the drawing state
730            // if we have a pending resize, unless we are in fixed-size mode.
731            // the drawing state will be updated only once we receive a buffer
732            // with the correct size.
733            //
734            // in particular, we want to make sure the clip (which is part
735            // of the geometry state) is latched together with the size but is
736            // latched immediately when no resizing is involved.
737
738            flags |= eDontUpdateGeometryState;
739        }
740    }
741
742    // always set active to requested, unless we're asked not to
743    // this is used by Layer, which special cases resizes.
744    if (flags & eDontUpdateGeometryState)  {
745    } else {
746        Layer::State& editCurrentState(getCurrentState());
747        editCurrentState.active = c.requested;
748    }
749
750    if (s.active != c.active) {
751        // invalidate and recompute the visible regions if needed
752        flags |= Layer::eVisibleRegion;
753    }
754
755    if (c.sequence != s.sequence) {
756        // invalidate and recompute the visible regions if needed
757        flags |= eVisibleRegion;
758        this->contentDirty = true;
759
760        // we may use linear filtering, if the matrix scales us
761        const uint8_t type = c.transform.getType();
762        mNeedsFiltering = (!c.transform.preserveRects() ||
763                (type >= Transform::SCALE));
764    }
765
766    // Commit the transaction
767    commitTransaction();
768    return flags;
769}
770
771void Layer::commitTransaction() {
772    mDrawingState = mCurrentState;
773}
774
775uint32_t Layer::getTransactionFlags(uint32_t flags) {
776    return android_atomic_and(~flags, &mTransactionFlags) & flags;
777}
778
779uint32_t Layer::setTransactionFlags(uint32_t flags) {
780    return android_atomic_or(flags, &mTransactionFlags);
781}
782
783bool Layer::setPosition(float x, float y) {
784    if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
785        return false;
786    mCurrentState.sequence++;
787    mCurrentState.transform.set(x, y);
788    setTransactionFlags(eTransactionNeeded);
789    return true;
790}
791bool Layer::setLayer(uint32_t z) {
792    if (mCurrentState.z == z)
793        return false;
794    mCurrentState.sequence++;
795    mCurrentState.z = z;
796    setTransactionFlags(eTransactionNeeded);
797    return true;
798}
799bool Layer::setSize(uint32_t w, uint32_t h) {
800    if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
801        return false;
802    mCurrentState.requested.w = w;
803    mCurrentState.requested.h = h;
804    setTransactionFlags(eTransactionNeeded);
805    return true;
806}
807bool Layer::setAlpha(uint8_t alpha) {
808    if (mCurrentState.alpha == alpha)
809        return false;
810    mCurrentState.sequence++;
811    mCurrentState.alpha = alpha;
812    setTransactionFlags(eTransactionNeeded);
813    return true;
814}
815bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
816    mCurrentState.sequence++;
817    mCurrentState.transform.set(
818            matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
819    setTransactionFlags(eTransactionNeeded);
820    return true;
821}
822bool Layer::setTransparentRegionHint(const Region& transparent) {
823    mCurrentState.requestedTransparentRegion = transparent;
824    setTransactionFlags(eTransactionNeeded);
825    return true;
826}
827bool Layer::setFlags(uint8_t flags, uint8_t mask) {
828    const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
829    if (mCurrentState.flags == newFlags)
830        return false;
831    mCurrentState.sequence++;
832    mCurrentState.flags = newFlags;
833    setTransactionFlags(eTransactionNeeded);
834    return true;
835}
836bool Layer::setCrop(const Rect& crop) {
837    if (mCurrentState.requested.crop == crop)
838        return false;
839    mCurrentState.sequence++;
840    mCurrentState.requested.crop = crop;
841    setTransactionFlags(eTransactionNeeded);
842    return true;
843}
844
845bool Layer::setLayerStack(uint32_t layerStack) {
846    if (mCurrentState.layerStack == layerStack)
847        return false;
848    mCurrentState.sequence++;
849    mCurrentState.layerStack = layerStack;
850    setTransactionFlags(eTransactionNeeded);
851    return true;
852}
853
854// ----------------------------------------------------------------------------
855// pageflip handling...
856// ----------------------------------------------------------------------------
857
858bool Layer::onPreComposition() {
859    mRefreshPending = false;
860    return mQueuedFrames > 0;
861}
862
863void Layer::onPostComposition() {
864    if (mFrameLatencyNeeded) {
865        nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
866        mFrameTracker.setDesiredPresentTime(desiredPresentTime);
867
868        sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence();
869        if (frameReadyFence->isValid()) {
870            mFrameTracker.setFrameReadyFence(frameReadyFence);
871        } else {
872            // There was no fence for this frame, so assume that it was ready
873            // to be presented at the desired present time.
874            mFrameTracker.setFrameReadyTime(desiredPresentTime);
875        }
876
877        const HWComposer& hwc = mFlinger->getHwComposer();
878        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
879        if (presentFence->isValid()) {
880            mFrameTracker.setActualPresentFence(presentFence);
881        } else {
882            // The HWC doesn't support present fences, so use the refresh
883            // timestamp instead.
884            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
885            mFrameTracker.setActualPresentTime(presentTime);
886        }
887
888        mFrameTracker.advanceFrame();
889        mFrameLatencyNeeded = false;
890    }
891}
892
893bool Layer::isVisible() const {
894    const Layer::State& s(mDrawingState);
895    return !(s.flags & layer_state_t::eLayerHidden) && s.alpha
896            && (mActiveBuffer != NULL);
897}
898
899Region Layer::latchBuffer(bool& recomputeVisibleRegions)
900{
901    ATRACE_CALL();
902
903    Region outDirtyRegion;
904    if (mQueuedFrames > 0) {
905
906        // if we've already called updateTexImage() without going through
907        // a composition step, we have to skip this layer at this point
908        // because we cannot call updateTeximage() without a corresponding
909        // compositionComplete() call.
910        // we'll trigger an update in onPreComposition().
911        if (mRefreshPending) {
912            return outDirtyRegion;
913        }
914
915        // Capture the old state of the layer for comparisons later
916        const bool oldOpacity = isOpaque();
917        sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
918
919        struct Reject : public SurfaceFlingerConsumer::BufferRejecter {
920            Layer::State& front;
921            Layer::State& current;
922            bool& recomputeVisibleRegions;
923            Reject(Layer::State& front, Layer::State& current,
924                    bool& recomputeVisibleRegions)
925                : front(front), current(current),
926                  recomputeVisibleRegions(recomputeVisibleRegions) {
927            }
928
929            virtual bool reject(const sp<GraphicBuffer>& buf,
930                    const IGraphicBufferConsumer::BufferItem& item) {
931                if (buf == NULL) {
932                    return false;
933                }
934
935                uint32_t bufWidth  = buf->getWidth();
936                uint32_t bufHeight = buf->getHeight();
937
938                // check that we received a buffer of the right size
939                // (Take the buffer's orientation into account)
940                if (item.mTransform & Transform::ROT_90) {
941                    swap(bufWidth, bufHeight);
942                }
943
944                bool isFixedSize = item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
945                if (front.active != front.requested) {
946
947                    if (isFixedSize ||
948                            (bufWidth == front.requested.w &&
949                             bufHeight == front.requested.h))
950                    {
951                        // Here we pretend the transaction happened by updating the
952                        // current and drawing states. Drawing state is only accessed
953                        // in this thread, no need to have it locked
954                        front.active = front.requested;
955
956                        // We also need to update the current state so that
957                        // we don't end-up overwriting the drawing state with
958                        // this stale current state during the next transaction
959                        //
960                        // NOTE: We don't need to hold the transaction lock here
961                        // because State::active is only accessed from this thread.
962                        current.active = front.active;
963
964                        // recompute visible region
965                        recomputeVisibleRegions = true;
966                    }
967
968                    ALOGD_IF(DEBUG_RESIZE,
969                            "latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n"
970                            "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
971                            "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
972                            bufWidth, bufHeight, item.mTransform, item.mScalingMode,
973                            front.active.w, front.active.h,
974                            front.active.crop.left,
975                            front.active.crop.top,
976                            front.active.crop.right,
977                            front.active.crop.bottom,
978                            front.active.crop.getWidth(),
979                            front.active.crop.getHeight(),
980                            front.requested.w, front.requested.h,
981                            front.requested.crop.left,
982                            front.requested.crop.top,
983                            front.requested.crop.right,
984                            front.requested.crop.bottom,
985                            front.requested.crop.getWidth(),
986                            front.requested.crop.getHeight());
987                }
988
989                if (!isFixedSize) {
990                    if (front.active.w != bufWidth ||
991                        front.active.h != bufHeight) {
992                        // reject this buffer
993                        return true;
994                    }
995                }
996
997                // if the transparent region has changed (this test is
998                // conservative, but that's fine, worst case we're doing
999                // a bit of extra work), we latch the new one and we
1000                // trigger a visible-region recompute.
1001                if (!front.activeTransparentRegion.isTriviallyEqual(
1002                        front.requestedTransparentRegion)) {
1003                    front.activeTransparentRegion = front.requestedTransparentRegion;
1004
1005                    // We also need to update the current state so that
1006                    // we don't end-up overwriting the drawing state with
1007                    // this stale current state during the next transaction
1008                    //
1009                    // NOTE: We don't need to hold the transaction lock here
1010                    // because State::active is only accessed from this thread.
1011                    current.activeTransparentRegion = front.activeTransparentRegion;
1012
1013                    // recompute visible region
1014                    recomputeVisibleRegions = true;
1015                }
1016
1017                return false;
1018            }
1019        };
1020
1021
1022        Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions);
1023
1024        status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r);
1025        if (updateResult == BufferQueue::PRESENT_LATER) {
1026            // Producer doesn't want buffer to be displayed yet.  Signal a
1027            // layer update so we check again at the next opportunity.
1028            mFlinger->signalLayerUpdate();
1029            return outDirtyRegion;
1030        }
1031
1032        // Decrement the queued-frames count.  Signal another event if we
1033        // have more frames pending.
1034        if (android_atomic_dec(&mQueuedFrames) > 1) {
1035            mFlinger->signalLayerUpdate();
1036        }
1037
1038        if (updateResult != NO_ERROR) {
1039            // something happened!
1040            recomputeVisibleRegions = true;
1041            return outDirtyRegion;
1042        }
1043
1044        // update the active buffer
1045        mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer();
1046        if (mActiveBuffer == NULL) {
1047            // this can only happen if the very first buffer was rejected.
1048            return outDirtyRegion;
1049        }
1050
1051        mRefreshPending = true;
1052        mFrameLatencyNeeded = true;
1053        if (oldActiveBuffer == NULL) {
1054             // the first time we receive a buffer, we need to trigger a
1055             // geometry invalidation.
1056            recomputeVisibleRegions = true;
1057         }
1058
1059        Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
1060        const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
1061        const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
1062        if ((crop != mCurrentCrop) ||
1063            (transform != mCurrentTransform) ||
1064            (scalingMode != mCurrentScalingMode))
1065        {
1066            mCurrentCrop = crop;
1067            mCurrentTransform = transform;
1068            mCurrentScalingMode = scalingMode;
1069            recomputeVisibleRegions = true;
1070        }
1071
1072        if (oldActiveBuffer != NULL) {
1073            uint32_t bufWidth  = mActiveBuffer->getWidth();
1074            uint32_t bufHeight = mActiveBuffer->getHeight();
1075            if (bufWidth != uint32_t(oldActiveBuffer->width) ||
1076                bufHeight != uint32_t(oldActiveBuffer->height)) {
1077                recomputeVisibleRegions = true;
1078            }
1079        }
1080
1081        mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
1082        if (oldOpacity != isOpaque()) {
1083            recomputeVisibleRegions = true;
1084        }
1085
1086        // FIXME: postedRegion should be dirty & bounds
1087        const Layer::State& s(getDrawingState());
1088        Region dirtyRegion(Rect(s.active.w, s.active.h));
1089
1090        // transform the dirty region to window-manager space
1091        outDirtyRegion = (s.transform.transform(dirtyRegion));
1092    }
1093    return outDirtyRegion;
1094}
1095
1096uint32_t Layer::getEffectiveUsage(uint32_t usage) const
1097{
1098    // TODO: should we do something special if mSecure is set?
1099    if (mProtectedByApp) {
1100        // need a hardware-protected path to external video sink
1101        usage |= GraphicBuffer::USAGE_PROTECTED;
1102    }
1103    usage |= GraphicBuffer::USAGE_HW_COMPOSER;
1104    return usage;
1105}
1106
1107void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
1108    uint32_t orientation = 0;
1109    if (!mFlinger->mDebugDisableTransformHint) {
1110        // The transform hint is used to improve performance, but we can
1111        // only have a single transform hint, it cannot
1112        // apply to all displays.
1113        const Transform& planeTransform(hw->getTransform());
1114        orientation = planeTransform.getOrientation();
1115        if (orientation & Transform::ROT_INVALID) {
1116            orientation = 0;
1117        }
1118    }
1119    mSurfaceFlingerConsumer->setTransformHint(orientation);
1120}
1121
1122// ----------------------------------------------------------------------------
1123// debugging
1124// ----------------------------------------------------------------------------
1125
1126void Layer::dump(String8& result, Colorizer& colorizer) const
1127{
1128    const Layer::State& s(getDrawingState());
1129
1130    colorizer.colorize(result, Colorizer::GREEN);
1131    result.appendFormat(
1132            "+ %s %p (%s)\n",
1133            getTypeId(), this, getName().string());
1134    colorizer.reset(result);
1135
1136    s.activeTransparentRegion.dump(result, "transparentRegion");
1137    visibleRegion.dump(result, "visibleRegion");
1138    sp<Client> client(mClientRef.promote());
1139
1140    result.appendFormat(            "      "
1141            "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), crop=(%4d,%4d,%4d,%4d), "
1142            "isOpaque=%1d, invalidate=%1d, "
1143            "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
1144            "      client=%p\n",
1145            s.layerStack, s.z, s.transform.tx(), s.transform.ty(), s.active.w, s.active.h,
1146            s.active.crop.left, s.active.crop.top,
1147            s.active.crop.right, s.active.crop.bottom,
1148            isOpaque(), contentDirty,
1149            s.alpha, s.flags,
1150            s.transform[0][0], s.transform[0][1],
1151            s.transform[1][0], s.transform[1][1],
1152            client.get());
1153
1154    sp<const GraphicBuffer> buf0(mActiveBuffer);
1155    uint32_t w0=0, h0=0, s0=0, f0=0;
1156    if (buf0 != 0) {
1157        w0 = buf0->getWidth();
1158        h0 = buf0->getHeight();
1159        s0 = buf0->getStride();
1160        f0 = buf0->format;
1161    }
1162    result.appendFormat(
1163            "      "
1164            "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
1165            " queued-frames=%d, mRefreshPending=%d\n",
1166            mFormat, w0, h0, s0,f0,
1167            mQueuedFrames, mRefreshPending);
1168
1169    if (mSurfaceFlingerConsumer != 0) {
1170        mSurfaceFlingerConsumer->dump(result, "            ");
1171    }
1172}
1173
1174void Layer::dumpStats(String8& result) const {
1175    mFrameTracker.dump(result);
1176}
1177
1178void Layer::clearStats() {
1179    mFrameTracker.clear();
1180}
1181
1182void Layer::logFrameStats() {
1183    mFrameTracker.logAndResetStats(mName);
1184}
1185
1186// ---------------------------------------------------------------------------
1187
1188Layer::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger,
1189        const sp<Layer>& layer)
1190    : mFlinger(flinger), mLayer(layer) {
1191}
1192
1193Layer::LayerCleaner::~LayerCleaner() {
1194    // destroy client resources
1195    mFlinger->onLayerDestroyed(mLayer);
1196}
1197
1198// ---------------------------------------------------------------------------
1199
1200
1201}; // namespace android
1202