1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ANDROID_LAYER_H
18#define ANDROID_LAYER_H
19
20#include <stdint.h>
21#include <sys/types.h>
22
23#include <EGL/egl.h>
24#include <EGL/eglext.h>
25
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Timers.h>
29
30#include <ui/FrameStats.h>
31#include <ui/GraphicBuffer.h>
32#include <ui/PixelFormat.h>
33#include <ui/Region.h>
34
35#include <gui/ISurfaceComposerClient.h>
36
37#include <private/gui/LayerState.h>
38
39#include <list>
40
41#include "FrameTracker.h"
42#include "Client.h"
43#include "LayerVector.h"
44#include "MonitoredProducer.h"
45#include "SurfaceFlinger.h"
46#include "SurfaceFlingerConsumer.h"
47#include "Transform.h"
48
49#include "DisplayHardware/HWComposer.h"
50#include "DisplayHardware/HWComposerBufferCache.h"
51#include "RenderEngine/Mesh.h"
52#include "RenderEngine/Texture.h"
53
54namespace android {
55
56// ---------------------------------------------------------------------------
57
58class Client;
59class Colorizer;
60class DisplayDevice;
61class GraphicBuffer;
62class SurfaceFlinger;
63
64// ---------------------------------------------------------------------------
65
66/*
67 * A new BufferQueue and a new SurfaceFlingerConsumer are created when the
68 * Layer is first referenced.
69 *
70 * This also implements onFrameAvailable(), which notifies SurfaceFlinger
71 * that new data has arrived.
72 */
73class Layer : public SurfaceFlingerConsumer::ContentsChangedListener {
74    static int32_t sSequence;
75
76public:
77    mutable bool contentDirty;
78    // regions below are in window-manager space
79    Region visibleRegion;
80    Region coveredRegion;
81    Region visibleNonTransparentRegion;
82    Region surfaceDamageRegion;
83
84    // Layer serial number.  This gives layers an explicit ordering, so we
85    // have a stable sort order when their layer stack and Z-order are
86    // the same.
87    int32_t sequence;
88
89    enum { // flags for doTransaction()
90        eDontUpdateGeometryState = 0x00000001,
91        eVisibleRegion = 0x00000002,
92    };
93
94    struct Geometry {
95        uint32_t w;
96        uint32_t h;
97        Transform transform;
98
99        inline bool operator ==(const Geometry& rhs) const {
100            return (w == rhs.w && h == rhs.h) &&
101                    (transform.tx() == rhs.transform.tx()) &&
102                    (transform.ty() == rhs.transform.ty());
103        }
104        inline bool operator !=(const Geometry& rhs) const {
105            return !operator ==(rhs);
106        }
107    };
108
109    struct State {
110        Geometry active;
111        Geometry requested;
112        int32_t z;
113
114        // The identifier of the layer stack this layer belongs to. A layer can
115        // only be associated to a single layer stack. A layer stack is a
116        // z-ordered group of layers which can be associated to one or more
117        // displays. Using the same layer stack on different displays is a way
118        // to achieve mirroring.
119        uint32_t layerStack;
120
121#ifdef USE_HWC2
122        float alpha;
123#else
124        uint8_t alpha;
125#endif
126        uint8_t flags;
127        uint8_t mask;
128        uint8_t reserved[2];
129        int32_t sequence; // changes when visible regions can change
130        bool modified;
131
132        // Crop is expressed in layer space coordinate.
133        Rect crop;
134        Rect requestedCrop;
135
136        // finalCrop is expressed in display space coordinate.
137        Rect finalCrop;
138        Rect requestedFinalCrop;
139
140        // If set, defers this state update until the identified Layer
141        // receives a frame with the given frameNumber
142        wp<Layer> barrierLayer;
143        uint64_t frameNumber;
144
145        // the transparentRegion hint is a bit special, it's latched only
146        // when we receive a buffer -- this is because it's "content"
147        // dependent.
148        Region activeTransparentRegion;
149        Region requestedTransparentRegion;
150        android_dataspace dataSpace;
151
152        uint32_t appId;
153        uint32_t type;
154
155        // If non-null, a Surface this Surface's Z-order is interpreted relative to.
156        wp<Layer> zOrderRelativeOf;
157
158        // A list of surfaces whose Z-order is interpreted relative to ours.
159        SortedVector<wp<Layer>> zOrderRelatives;
160    };
161
162    // -----------------------------------------------------------------------
163
164    Layer(SurfaceFlinger* flinger, const sp<Client>& client,
165            const String8& name, uint32_t w, uint32_t h, uint32_t flags);
166
167    virtual ~Layer();
168
169    // the this layer's size and format
170    status_t setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags);
171
172    // ------------------------------------------------------------------------
173    // Geometry setting functions.
174    //
175    // The following group of functions are used to specify the layers
176    // bounds, and the mapping of the texture on to those bounds. According
177    // to various settings changes to them may apply immediately, or be delayed until
178    // a pending resize is completed by the producer submitting a buffer. For example
179    // if we were to change the buffer size, and update the matrix ahead of the
180    // new buffer arriving, then we would be stretching the buffer to a different
181    // aspect before and after the buffer arriving, which probably isn't what we wanted.
182    //
183    // The first set of geometry functions are controlled by the scaling mode, described
184    // in window.h. The scaling mode may be set by the client, as it submits buffers.
185    // This value may be overriden through SurfaceControl, with setOverrideScalingMode.
186    //
187    // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
188    // matrix updates will not be applied while a resize is pending
189    // and the size and transform will remain in their previous state
190    // until a new buffer is submitted. If the scaling mode is another value
191    // then the old-buffer will immediately be scaled to the pending size
192    // and the new matrix will be immediately applied following this scaling
193    // transformation.
194
195    // Set the default buffer size for the assosciated Producer, in pixels. This is
196    // also the rendered size of the layer prior to any transformations. Parent
197    // or local matrix transformations will not affect the size of the buffer,
198    // but may affect it's on-screen size or clipping.
199    bool setSize(uint32_t w, uint32_t h);
200    // Set a 2x2 transformation matrix on the layer. This transform
201    // will be applied after parent transforms, but before any final
202    // producer specified transform.
203    bool setMatrix(const layer_state_t::matrix22_t& matrix);
204
205    // This second set of geometry attributes are controlled by
206    // setGeometryAppliesWithResize, and their default mode is to be
207    // immediate. If setGeometryAppliesWithResize is specified
208    // while a resize is pending, then update of these attributes will
209    // be delayed until the resize completes.
210
211    // setPosition operates in parent buffer space (pre parent-transform) or display
212    // space for top-level layers.
213    bool setPosition(float x, float y, bool immediate);
214    // Buffer space
215    bool setCrop(const Rect& crop, bool immediate);
216    // Parent buffer space/display space
217    bool setFinalCrop(const Rect& crop, bool immediate);
218
219    // TODO(b/38182121): Could we eliminate the various latching modes by
220    // using the layer hierarchy?
221    // -----------------------------------------------------------------------
222    bool setLayer(int32_t z);
223    bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
224
225#ifdef USE_HWC2
226    bool setAlpha(float alpha);
227#else
228    bool setAlpha(uint8_t alpha);
229#endif
230    bool setTransparentRegionHint(const Region& transparent);
231    bool setFlags(uint8_t flags, uint8_t mask);
232    bool setLayerStack(uint32_t layerStack);
233    bool setDataSpace(android_dataspace dataSpace);
234    uint32_t getLayerStack() const;
235    void deferTransactionUntil(const sp<IBinder>& barrierHandle, uint64_t frameNumber);
236    void deferTransactionUntil(const sp<Layer>& barrierLayer, uint64_t frameNumber);
237    bool setOverrideScalingMode(int32_t overrideScalingMode);
238    void setInfo(uint32_t type, uint32_t appId);
239    bool reparentChildren(const sp<IBinder>& layer);
240    bool detachChildren();
241
242    // If we have received a new buffer this frame, we will pass its surface
243    // damage down to hardware composer. Otherwise, we must send a region with
244    // one empty rect.
245    void useSurfaceDamage();
246    void useEmptyDamage();
247
248    uint32_t getTransactionFlags(uint32_t flags);
249    uint32_t setTransactionFlags(uint32_t flags);
250
251    void computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
252            bool useIdentityTransform) const;
253    Rect computeBounds(const Region& activeTransparentRegion) const;
254    Rect computeBounds() const;
255
256    int32_t getSequence() const { return sequence; }
257
258    // -----------------------------------------------------------------------
259    // Virtuals
260
261    virtual const char* getTypeId() const { return "Layer"; }
262
263    /*
264     * isOpaque - true if this surface is opaque
265     *
266     * This takes into account the buffer format (i.e. whether or not the
267     * pixel format includes an alpha channel) and the "opaque" flag set
268     * on the layer.  It does not examine the current plane alpha value.
269     */
270    virtual bool isOpaque(const Layer::State& s) const;
271
272    /*
273     * isSecure - true if this surface is secure, that is if it prevents
274     * screenshots or VNC servers.
275     */
276    virtual bool isSecure() const;
277
278    /*
279     * isProtected - true if the layer may contain protected content in the
280     * GRALLOC_USAGE_PROTECTED sense.
281     */
282    virtual bool isProtected() const;
283
284    /*
285     * isVisible - true if this layer is visible, false otherwise
286     */
287    virtual bool isVisible() const;
288
289    /*
290     * isHiddenByPolicy - true if this layer has been forced invisible.
291     * just because this is false, doesn't mean isVisible() is true.
292     * For example if this layer has no active buffer, it may not be hidden by
293     * policy, but it still can not be visible.
294     */
295    virtual bool isHiddenByPolicy() const;
296
297    /*
298     * isFixedSize - true if content has a fixed size
299     */
300    virtual bool isFixedSize() const;
301
302protected:
303    /*
304     * onDraw - draws the surface.
305     */
306    virtual void onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
307            bool useIdentityTransform) const;
308
309public:
310    // -----------------------------------------------------------------------
311
312#ifdef USE_HWC2
313    void setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z);
314    void forceClientComposition(int32_t hwcId);
315    void setPerFrameData(const sp<const DisplayDevice>& displayDevice);
316
317    android_dataspace getDataSpace() const;
318
319    // callIntoHwc exists so we can update our local state and call
320    // acceptDisplayChanges without unnecessarily updating the device's state
321    void setCompositionType(int32_t hwcId, HWC2::Composition type,
322            bool callIntoHwc = true);
323    HWC2::Composition getCompositionType(int32_t hwcId) const;
324
325    void setClearClientTarget(int32_t hwcId, bool clear);
326    bool getClearClientTarget(int32_t hwcId) const;
327
328    void updateCursorPosition(const sp<const DisplayDevice>& hw);
329#else
330    void setGeometry(const sp<const DisplayDevice>& hw,
331            HWComposer::HWCLayerInterface& layer);
332    void setPerFrameData(const sp<const DisplayDevice>& hw,
333            HWComposer::HWCLayerInterface& layer);
334    void setAcquireFence(const sp<const DisplayDevice>& hw,
335            HWComposer::HWCLayerInterface& layer);
336
337    Rect getPosition(const sp<const DisplayDevice>& hw);
338#endif
339
340    /*
341     * called after page-flip
342     */
343#ifdef USE_HWC2
344    void onLayerDisplayed(const sp<Fence>& releaseFence);
345#else
346    void onLayerDisplayed(const sp<const DisplayDevice>& hw,
347            HWComposer::HWCLayerInterface* layer);
348#endif
349
350    bool shouldPresentNow(const DispSync& dispSync) const;
351
352    /*
353     * called before composition.
354     * returns true if the layer has pending updates.
355     */
356    bool onPreComposition(nsecs_t refreshStartTime);
357
358    /*
359     * called after composition.
360     * returns true if the layer latched a new buffer this frame.
361     */
362    bool onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
363            const std::shared_ptr<FenceTime>& presentFence,
364            const CompositorTiming& compositorTiming);
365
366#ifdef USE_HWC2
367    // If a buffer was replaced this frame, release the former buffer
368    void releasePendingBuffer(nsecs_t dequeueReadyTime);
369#endif
370
371    /*
372     * draw - performs some global clipping optimizations
373     * and calls onDraw().
374     */
375    void draw(const sp<const DisplayDevice>& hw, const Region& clip) const;
376    void draw(const sp<const DisplayDevice>& hw, bool useIdentityTransform) const;
377    void draw(const sp<const DisplayDevice>& hw) const;
378
379    /*
380     * doTransaction - process the transaction. This is a good place to figure
381     * out which attributes of the surface have changed.
382     */
383    uint32_t doTransaction(uint32_t transactionFlags);
384
385    /*
386     * setVisibleRegion - called to set the new visible region. This gives
387     * a chance to update the new visible region or record the fact it changed.
388     */
389    void setVisibleRegion(const Region& visibleRegion);
390
391    /*
392     * setCoveredRegion - called when the covered region changes. The covered
393     * region corresponds to any area of the surface that is covered
394     * (transparently or not) by another surface.
395     */
396    void setCoveredRegion(const Region& coveredRegion);
397
398    /*
399     * setVisibleNonTransparentRegion - called when the visible and
400     * non-transparent region changes.
401     */
402    void setVisibleNonTransparentRegion(const Region&
403            visibleNonTransparentRegion);
404
405    /*
406     * latchBuffer - called each time the screen is redrawn and returns whether
407     * the visible regions need to be recomputed (this is a fairly heavy
408     * operation, so this should be set only if needed). Typically this is used
409     * to figure out if the content or size of a surface has changed.
410     */
411    Region latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime);
412
413    bool isPotentialCursor() const { return mPotentialCursor;}
414
415    /*
416     * called with the state lock when the surface is removed from the
417     * current list
418     */
419    void onRemoved();
420
421
422    // Updates the transform hint in our SurfaceFlingerConsumer to match
423    // the current orientation of the display device.
424    void updateTransformHint(const sp<const DisplayDevice>& hw) const;
425
426    /*
427     * returns the rectangle that crops the content of the layer and scales it
428     * to the layer's size.
429     */
430    Rect getContentCrop() const;
431
432    /*
433     * Returns if a frame is queued.
434     */
435    bool hasQueuedFrame() const { return mQueuedFrames > 0 ||
436            mSidebandStreamChanged || mAutoRefresh; }
437
438#ifdef USE_HWC2
439    // -----------------------------------------------------------------------
440
441    bool hasHwcLayer(int32_t hwcId) {
442        if (mHwcLayers.count(hwcId) == 0) {
443            return false;
444        }
445        if (mHwcLayers[hwcId].layer->isAbandoned()) {
446            ALOGI("Erasing abandoned layer %s on %d", mName.string(), hwcId);
447            mHwcLayers.erase(hwcId);
448            return false;
449        }
450        return true;
451    }
452
453    std::shared_ptr<HWC2::Layer> getHwcLayer(int32_t hwcId) {
454        if (mHwcLayers.count(hwcId) == 0) {
455            return nullptr;
456        }
457        return mHwcLayers[hwcId].layer;
458    }
459
460    void setHwcLayer(int32_t hwcId, std::shared_ptr<HWC2::Layer>&& layer) {
461        if (layer) {
462            mHwcLayers[hwcId].layer = layer;
463        } else {
464            mHwcLayers.erase(hwcId);
465        }
466    }
467
468    void clearHwcLayers() {
469        mHwcLayers.clear();
470    }
471
472#endif
473    // -----------------------------------------------------------------------
474
475    void clearWithOpenGL(const sp<const DisplayDevice>& hw) const;
476    void setFiltering(bool filtering);
477    bool getFiltering() const;
478
479    // only for debugging
480    inline const sp<GraphicBuffer>& getActiveBuffer() const { return mActiveBuffer; }
481
482    inline  const State&    getDrawingState() const { return mDrawingState; }
483    inline  const State&    getCurrentState() const { return mCurrentState; }
484    inline  State&          getCurrentState()       { return mCurrentState; }
485
486
487    /* always call base class first */
488    void dump(String8& result, Colorizer& colorizer) const;
489#ifdef USE_HWC2
490    static void miniDumpHeader(String8& result);
491    void miniDump(String8& result, int32_t hwcId) const;
492#endif
493    void dumpFrameStats(String8& result) const;
494    void dumpFrameEvents(String8& result);
495    void clearFrameStats();
496    void logFrameStats();
497    void getFrameStats(FrameStats* outStats) const;
498
499    std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool forceFlush);
500
501    void onDisconnect();
502    void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
503            FrameEventHistoryDelta* outDelta);
504
505    bool getTransformToDisplayInverse() const;
506
507    Transform getTransform() const;
508
509    // Returns the Alpha of the Surface, accounting for the Alpha
510    // of parent Surfaces in the hierarchy (alpha's will be multiplied
511    // down the hierarchy).
512#ifdef USE_HWC2
513    float getAlpha() const;
514#else
515    uint8_t getAlpha() const;
516#endif
517
518    void traverseInReverseZOrder(LayerVector::StateSet stateSet,
519                                 const LayerVector::Visitor& visitor);
520    void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
521
522    size_t getChildrenCount() const;
523    void addChild(const sp<Layer>& layer);
524    // Returns index if removed, or negative value otherwise
525    // for symmetry with Vector::remove
526    ssize_t removeChild(const sp<Layer>& layer);
527    sp<Layer> getParent() const { return mCurrentParent.promote(); }
528    bool hasParent() const { return getParent() != nullptr; }
529
530    Rect computeScreenBounds(bool reduceTransparentRegion = true) const;
531    bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
532
533    // Copy the current list of children to the drawing state. Called by
534    // SurfaceFlinger to complete a transaction.
535    void commitChildList();
536
537    int32_t getZ() const;
538protected:
539    // constant
540    sp<SurfaceFlinger> mFlinger;
541    /*
542     * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
543     * is called.
544     */
545    class LayerCleaner {
546        sp<SurfaceFlinger> mFlinger;
547        wp<Layer> mLayer;
548    protected:
549        ~LayerCleaner() {
550            // destroy client resources
551            mFlinger->onLayerDestroyed(mLayer);
552        }
553    public:
554        LayerCleaner(const sp<SurfaceFlinger>& flinger,
555                const sp<Layer>& layer)
556            : mFlinger(flinger), mLayer(layer) {
557        }
558    };
559
560
561    virtual void onFirstRef();
562
563
564
565private:
566    friend class SurfaceInterceptor;
567    // Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
568    virtual void onFrameAvailable(const BufferItem& item) override;
569    virtual void onFrameReplaced(const BufferItem& item) override;
570    virtual void onSidebandStreamChanged() override;
571
572    void commitTransaction(const State& stateToCommit);
573
574    // needsLinearFiltering - true if this surface's state requires filtering
575    bool needsFiltering(const sp<const DisplayDevice>& hw) const;
576
577    uint32_t getEffectiveUsage(uint32_t usage) const;
578
579    FloatRect computeCrop(const sp<const DisplayDevice>& hw) const;
580    // Compute the initial crop as specified by parent layers and the SurfaceControl
581    // for this layer. Does not include buffer crop from the IGraphicBufferProducer
582    // client, as that should not affect child clipping. Returns in screen space.
583    Rect computeInitialCrop(const sp<const DisplayDevice>& hw) const;
584    bool isCropped() const;
585    static bool getOpacityForFormat(uint32_t format);
586
587    // drawing
588    void clearWithOpenGL(const sp<const DisplayDevice>& hw,
589            float r, float g, float b, float alpha) const;
590    void drawWithOpenGL(const sp<const DisplayDevice>& hw,
591            bool useIdentityTransform) const;
592
593    // Temporary - Used only for LEGACY camera mode.
594    uint32_t getProducerStickyTransform() const;
595
596    // Loads the corresponding system property once per process
597    static bool latchUnsignaledBuffers();
598
599    void setParent(const sp<Layer>& layer);
600
601    LayerVector makeTraversalList(LayerVector::StateSet stateSet);
602    void addZOrderRelative(const wp<Layer>& relative);
603    void removeZOrderRelative(const wp<Layer>& relative);
604
605    // -----------------------------------------------------------------------
606
607    class SyncPoint
608    {
609    public:
610        explicit SyncPoint(uint64_t frameNumber) : mFrameNumber(frameNumber),
611                mFrameIsAvailable(false), mTransactionIsApplied(false) {}
612
613        uint64_t getFrameNumber() const {
614            return mFrameNumber;
615        }
616
617        bool frameIsAvailable() const {
618            return mFrameIsAvailable;
619        }
620
621        void setFrameAvailable() {
622            mFrameIsAvailable = true;
623        }
624
625        bool transactionIsApplied() const {
626            return mTransactionIsApplied;
627        }
628
629        void setTransactionApplied() {
630            mTransactionIsApplied = true;
631        }
632
633    private:
634        const uint64_t mFrameNumber;
635        std::atomic<bool> mFrameIsAvailable;
636        std::atomic<bool> mTransactionIsApplied;
637    };
638
639    // SyncPoints which will be signaled when the correct frame is at the head
640    // of the queue and dropped after the frame has been latched. Protected by
641    // mLocalSyncPointMutex.
642    Mutex mLocalSyncPointMutex;
643    std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
644
645    // SyncPoints which will be signaled and then dropped when the transaction
646    // is applied
647    std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
648
649    uint64_t getHeadFrameNumber() const;
650    bool headFenceHasSignaled() const;
651
652    // Returns false if the relevant frame has already been latched
653    bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
654
655    void pushPendingState();
656    void popPendingState(State* stateToCommit);
657    bool applyPendingStates(State* stateToCommit);
658
659    void clearSyncPoints();
660
661    // Returns mCurrentScaling mode (originating from the
662    // Client) or mOverrideScalingMode mode (originating from
663    // the Surface Controller) if set.
664    uint32_t getEffectiveScalingMode() const;
665public:
666    /*
667     * The layer handle is just a BBinder object passed to the client
668     * (remote process) -- we don't keep any reference on our side such that
669     * the dtor is called when the remote side let go of its reference.
670     *
671     * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
672     * this layer when the handle is destroyed.
673     */
674    class Handle : public BBinder, public LayerCleaner {
675        public:
676            Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
677                : LayerCleaner(flinger, layer), owner(layer) {}
678
679            wp<Layer> owner;
680    };
681
682    sp<IBinder> getHandle();
683    sp<IGraphicBufferProducer> getProducer() const;
684    const String8& getName() const;
685    void notifyAvailableFrames();
686private:
687
688    // -----------------------------------------------------------------------
689
690    // Check all of the local sync points to ensure that all transactions
691    // which need to have been applied prior to the frame which is about to
692    // be latched have signaled
693    bool allTransactionsSignaled();
694
695    // constants
696    sp<SurfaceFlingerConsumer> mSurfaceFlingerConsumer;
697    sp<IGraphicBufferProducer> mProducer;
698    uint32_t mTextureName;      // from GLES
699    bool mPremultipliedAlpha;
700    String8 mName;
701    PixelFormat mFormat;
702
703    // these are protected by an external lock
704    State mCurrentState;
705    State mDrawingState;
706    volatile int32_t mTransactionFlags;
707
708    // Accessed from main thread and binder threads
709    Mutex mPendingStateMutex;
710    Vector<State> mPendingStates;
711
712    // thread-safe
713    volatile int32_t mQueuedFrames;
714    volatile int32_t mSidebandStreamChanged; // used like an atomic boolean
715
716    // Timestamp history for UIAutomation. Thread safe.
717    FrameTracker mFrameTracker;
718
719    // Timestamp history for the consumer to query.
720    // Accessed by both consumer and producer on main and binder threads.
721    Mutex mFrameEventHistoryMutex;
722    ConsumerFrameEventHistory mFrameEventHistory;
723    FenceTimeline mAcquireTimeline;
724    FenceTimeline mReleaseTimeline;
725
726    // main thread
727    int mActiveBufferSlot;
728    sp<GraphicBuffer> mActiveBuffer;
729    sp<NativeHandle> mSidebandStream;
730    Rect mCurrentCrop;
731    uint32_t mCurrentTransform;
732    uint32_t mCurrentScalingMode;
733    // We encode unset as -1.
734    int32_t mOverrideScalingMode;
735    bool mCurrentOpacity;
736    bool mBufferLatched = false;  // TODO: Use mActiveBuffer?
737    std::atomic<uint64_t> mCurrentFrameNumber;
738    uint64_t mPreviousFrameNumber; // Only accessed on the main thread.
739    bool mRefreshPending;
740    bool mFrameLatencyNeeded;
741    // Whether filtering is forced on or not
742    bool mFiltering;
743    // Whether filtering is needed b/c of the drawingstate
744    bool mNeedsFiltering;
745    // The mesh used to draw the layer in GLES composition mode
746    mutable Mesh mMesh;
747    // The texture used to draw the layer in GLES composition mode
748    mutable Texture mTexture;
749
750#ifdef USE_HWC2
751    // HWC items, accessed from the main thread
752    struct HWCInfo {
753        HWCInfo()
754          : layer(),
755            forceClientComposition(false),
756            compositionType(HWC2::Composition::Invalid),
757            clearClientTarget(false) {}
758
759        std::shared_ptr<HWC2::Layer> layer;
760        bool forceClientComposition;
761        HWC2::Composition compositionType;
762        bool clearClientTarget;
763        Rect displayFrame;
764        FloatRect sourceCrop;
765        HWComposerBufferCache bufferCache;
766    };
767
768    // A layer can be attached to multiple displays when operating in mirror mode
769    // (a.k.a: when several displays are attached with equal layerStack). In this
770    // case we need to keep track. In non-mirror mode, a layer will have only one
771    // HWCInfo. This map key is a display layerStack.
772    std::unordered_map<int32_t, HWCInfo> mHwcLayers;
773#else
774    bool mIsGlesComposition;
775#endif
776
777    // page-flip thread (currently main thread)
778    bool mProtectedByApp; // application requires protected path to external sink
779
780    // protected by mLock
781    mutable Mutex mLock;
782    // Set to true once we've returned this surface's handle
783    mutable bool mHasSurface;
784    const wp<Client> mClientRef;
785
786    // This layer can be a cursor on some displays.
787    bool mPotentialCursor;
788
789    // Local copy of the queued contents of the incoming BufferQueue
790    mutable Mutex mQueueItemLock;
791    Condition mQueueItemCondition;
792    Vector<BufferItem> mQueueItems;
793    std::atomic<uint64_t> mLastFrameNumberReceived;
794    bool mUpdateTexImageFailed; // This is only accessed on the main thread.
795
796    bool mAutoRefresh;
797    bool mFreezeGeometryUpdates;
798
799    // Child list about to be committed/used for editing.
800    LayerVector mCurrentChildren;
801    // Child list used for rendering.
802    LayerVector mDrawingChildren;
803
804    wp<Layer> mCurrentParent;
805    wp<Layer> mDrawingParent;
806};
807
808// ---------------------------------------------------------------------------
809
810}; // namespace android
811
812#endif // ANDROID_LAYER_H
813