SurfaceFlinger.cpp revision b60314a12f3336b27d73920805ab07cbc498d857
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdlib.h>
20#include <stdio.h>
21#include <stdint.h>
22#include <unistd.h>
23#include <fcntl.h>
24#include <errno.h>
25#include <math.h>
26#include <limits.h>
27#include <sys/types.h>
28#include <sys/stat.h>
29#include <sys/ioctl.h>
30
31#include <cutils/log.h>
32#include <cutils/properties.h>
33
34#include <binder/IPCThreadState.h>
35#include <binder/IServiceManager.h>
36#include <binder/MemoryHeapBase.h>
37#include <binder/PermissionCache.h>
38
39#include <gui/IDisplayEventConnection.h>
40
41#include <utils/String8.h>
42#include <utils/String16.h>
43#include <utils/StopWatch.h>
44#include <utils/Trace.h>
45
46#include <ui/GraphicBufferAllocator.h>
47#include <ui/PixelFormat.h>
48
49#include <GLES/gl.h>
50
51#include "clz.h"
52#include "DdmConnection.h"
53#include "EventThread.h"
54#include "GLExtensions.h"
55#include "Layer.h"
56#include "LayerDim.h"
57#include "LayerScreenshot.h"
58#include "SurfaceFlinger.h"
59
60#include "DisplayHardware/DisplayHardware.h"
61#include "DisplayHardware/HWComposer.h"
62
63#include <private/android_filesystem_config.h>
64#include <private/gui/SharedBufferStack.h>
65
66#define EGL_VERSION_HW_ANDROID  0x3143
67
68#define DISPLAY_COUNT       1
69
70namespace android {
71// ---------------------------------------------------------------------------
72
73const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76const String16 sDump("android.permission.DUMP");
77
78// ---------------------------------------------------------------------------
79
80SurfaceFlinger::SurfaceFlinger()
81    :   BnSurfaceComposer(), Thread(false),
82        mTransactionFlags(0),
83        mTransationPending(false),
84        mLayersRemoved(false),
85        mBootTime(systemTime()),
86        mVisibleRegionsDirty(false),
87        mHwWorkListDirty(false),
88        mElectronBeamAnimationMode(0),
89        mDebugRegion(0),
90        mDebugBackground(0),
91        mDebugDDMS(0),
92        mDebugDisableHWC(0),
93        mDebugDisableTransformHint(0),
94        mDebugInSwapBuffers(0),
95        mLastSwapBufferTime(0),
96        mDebugInTransaction(0),
97        mLastTransactionTime(0),
98        mBootFinished(false),
99        mSecureFrameBuffer(0)
100{
101    init();
102}
103
104void SurfaceFlinger::init()
105{
106    ALOGI("SurfaceFlinger is starting");
107
108    // debugging stuff...
109    char value[PROPERTY_VALUE_MAX];
110
111    property_get("debug.sf.showupdates", value, "0");
112    mDebugRegion = atoi(value);
113
114    property_get("debug.sf.showbackground", value, "0");
115    mDebugBackground = atoi(value);
116
117#ifdef DDMS_DEBUGGING
118    property_get("debug.sf.ddms", value, "0");
119    mDebugDDMS = atoi(value);
120    if (mDebugDDMS) {
121        DdmConnection::start(getServiceName());
122    }
123#endif
124
125    ALOGI_IF(mDebugRegion,       "showupdates enabled");
126    ALOGI_IF(mDebugBackground,   "showbackground enabled");
127    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
128}
129
130void SurfaceFlinger::onFirstRef()
131{
132    mEventQueue.init(this);
133
134    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
135
136    // Wait for the main thread to be done with its initialization
137    mReadyToRunBarrier.wait();
138}
139
140
141SurfaceFlinger::~SurfaceFlinger()
142{
143    glDeleteTextures(1, &mWormholeTexName);
144}
145
146void SurfaceFlinger::binderDied(const wp<IBinder>& who)
147{
148    // the window manager died on us. prepare its eulogy.
149
150    // reset screen orientation
151    Vector<ComposerState> state;
152    setTransactionState(state, eOrientationDefault, 0);
153
154    // restart the boot-animation
155    property_set("ctl.start", "bootanim");
156}
157
158sp<IMemoryHeap> SurfaceFlinger::getCblk() const
159{
160    return mServerHeap;
161}
162
163sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
164{
165    sp<ISurfaceComposerClient> bclient;
166    sp<Client> client(new Client(this));
167    status_t err = client->initCheck();
168    if (err == NO_ERROR) {
169        bclient = client;
170    }
171    return bclient;
172}
173
174sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
175{
176    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
177    return gba;
178}
179
180const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
181{
182    ALOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
183    const GraphicPlane& plane(mGraphicPlanes[dpy]);
184    return plane;
185}
186
187GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
188{
189    return const_cast<GraphicPlane&>(
190        const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
191}
192
193void SurfaceFlinger::bootFinished()
194{
195    const nsecs_t now = systemTime();
196    const nsecs_t duration = now - mBootTime;
197    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
198    mBootFinished = true;
199
200    // wait patiently for the window manager death
201    const String16 name("window");
202    sp<IBinder> window(defaultServiceManager()->getService(name));
203    if (window != 0) {
204        window->linkToDeath(this);
205    }
206
207    // stop boot animation
208    property_set("ctl.stop", "bootanim");
209}
210
211static inline uint16_t pack565(int r, int g, int b) {
212    return (r<<11)|(g<<5)|b;
213}
214
215status_t SurfaceFlinger::readyToRun()
216{
217    ALOGI(   "SurfaceFlinger's main thread ready to run. "
218            "Initializing graphics H/W...");
219
220    // we only support one display currently
221    int dpy = 0;
222
223    {
224        // initialize the main display
225        GraphicPlane& plane(graphicPlane(dpy));
226        DisplayHardware* const hw = new DisplayHardware(this, dpy);
227        plane.setDisplayHardware(hw);
228    }
229
230    // create the shared control-block
231    mServerHeap = new MemoryHeapBase(4096,
232            MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
233    ALOGE_IF(mServerHeap==0, "can't create shared memory dealer");
234
235    mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
236    ALOGE_IF(mServerCblk==0, "can't get to shared control block's address");
237
238    new(mServerCblk) surface_flinger_cblk_t;
239
240    // initialize primary screen
241    // (other display should be initialized in the same manner, but
242    // asynchronously, as they could come and go. None of this is supported
243    // yet).
244    const GraphicPlane& plane(graphicPlane(dpy));
245    const DisplayHardware& hw = plane.displayHardware();
246    const uint32_t w = hw.getWidth();
247    const uint32_t h = hw.getHeight();
248    const uint32_t f = hw.getFormat();
249    hw.makeCurrent();
250
251    // initialize the shared control block
252    mServerCblk->connected |= 1<<dpy;
253    display_cblk_t* dcblk = mServerCblk->displays + dpy;
254    memset(dcblk, 0, sizeof(display_cblk_t));
255    dcblk->w            = plane.getWidth();
256    dcblk->h            = plane.getHeight();
257    dcblk->format       = f;
258    dcblk->orientation  = ISurfaceComposer::eOrientationDefault;
259    dcblk->xdpi         = hw.getDpiX();
260    dcblk->ydpi         = hw.getDpiY();
261    dcblk->fps          = hw.getRefreshRate();
262    dcblk->density      = hw.getDensity();
263
264    // Initialize OpenGL|ES
265    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
266    glPixelStorei(GL_PACK_ALIGNMENT, 4);
267    glEnableClientState(GL_VERTEX_ARRAY);
268    glEnable(GL_SCISSOR_TEST);
269    glShadeModel(GL_FLAT);
270    glDisable(GL_DITHER);
271    glDisable(GL_CULL_FACE);
272
273    const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
274    const uint16_t g1 = pack565(0x17,0x2f,0x17);
275    const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
276    glGenTextures(1, &mWormholeTexName);
277    glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
278    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
279    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
280    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
281    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
282    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
283            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
284
285    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
286    glGenTextures(1, &mProtectedTexName);
287    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
288    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
289    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
290    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
291    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
292    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
293            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
294
295    glViewport(0, 0, w, h);
296    glMatrixMode(GL_PROJECTION);
297    glLoadIdentity();
298    // put the origin in the left-bottom corner
299    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
300
301
302    // start the EventThread
303    mEventThread = new EventThread(this);
304    mEventQueue.setEventThread(mEventThread);
305    hw.startSleepManagement();
306
307    /*
308     *  We're now ready to accept clients...
309     */
310
311    mReadyToRunBarrier.open();
312
313    // start boot animation
314    property_set("ctl.start", "bootanim");
315
316    return NO_ERROR;
317}
318
319// ----------------------------------------------------------------------------
320
321bool SurfaceFlinger::authenticateSurfaceTexture(
322        const sp<ISurfaceTexture>& surfaceTexture) const {
323    Mutex::Autolock _l(mStateLock);
324    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
325
326    // Check the visible layer list for the ISurface
327    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
328    size_t count = currentLayers.size();
329    for (size_t i=0 ; i<count ; i++) {
330        const sp<LayerBase>& layer(currentLayers[i]);
331        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
332        if (lbc != NULL) {
333            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
334            if (lbcBinder == surfaceTextureBinder) {
335                return true;
336            }
337        }
338    }
339
340    // Check the layers in the purgatory.  This check is here so that if a
341    // SurfaceTexture gets destroyed before all the clients are done using it,
342    // the error will not be reported as "surface XYZ is not authenticated", but
343    // will instead fail later on when the client tries to use the surface,
344    // which should be reported as "surface XYZ returned an -ENODEV".  The
345    // purgatorized layers are no less authentic than the visible ones, so this
346    // should not cause any harm.
347    size_t purgatorySize =  mLayerPurgatory.size();
348    for (size_t i=0 ; i<purgatorySize ; i++) {
349        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
350        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
351        if (lbc != NULL) {
352            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
353            if (lbcBinder == surfaceTextureBinder) {
354                return true;
355            }
356        }
357    }
358
359    return false;
360}
361
362// ----------------------------------------------------------------------------
363
364sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
365    return mEventThread->createEventConnection();
366}
367
368// ----------------------------------------------------------------------------
369
370void SurfaceFlinger::waitForEvent() {
371    mEventQueue.waitMessage();
372}
373
374void SurfaceFlinger::signalTransaction() {
375    mEventQueue.invalidate();
376}
377
378void SurfaceFlinger::signalLayerUpdate() {
379    mEventQueue.invalidate();
380}
381
382void SurfaceFlinger::signalRefresh() {
383    mEventQueue.refresh();
384}
385
386status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
387        nsecs_t reltime, uint32_t flags) {
388    return mEventQueue.postMessage(msg, reltime);
389}
390
391status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
392        nsecs_t reltime, uint32_t flags) {
393    status_t res = mEventQueue.postMessage(msg, reltime);
394    if (res == NO_ERROR) {
395        msg->wait();
396    }
397    return res;
398}
399
400bool SurfaceFlinger::threadLoop()
401{
402    waitForEvent();
403    return true;
404}
405
406void SurfaceFlinger::onMessageReceived(int32_t what)
407{
408    ATRACE_CALL();
409    switch (what) {
410        case MessageQueue::REFRESH: {
411//        case MessageQueue::INVALIDATE: {
412            // if we're in a global transaction, don't do anything.
413            const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
414            uint32_t transactionFlags = peekTransactionFlags(mask);
415            if (CC_UNLIKELY(transactionFlags)) {
416                handleTransaction(transactionFlags);
417            }
418
419            // post surfaces (if needed)
420            handlePageFlip();
421
422//            signalRefresh();
423//
424//        } break;
425//
426//        case MessageQueue::REFRESH: {
427
428            handleRefresh();
429
430            const DisplayHardware& hw(graphicPlane(0).displayHardware());
431
432//            if (mDirtyRegion.isEmpty()) {
433//                return;
434//            }
435
436            if (CC_UNLIKELY(mHwWorkListDirty)) {
437                // build the h/w work list
438                handleWorkList();
439            }
440
441            if (CC_LIKELY(hw.canDraw())) {
442                // repaint the framebuffer (if needed)
443                handleRepaint();
444                // inform the h/w that we're done compositing
445                hw.compositionComplete();
446                postFramebuffer();
447            } else {
448                // pretend we did the post
449                hw.compositionComplete();
450            }
451
452        } break;
453    }
454}
455
456void SurfaceFlinger::postFramebuffer()
457{
458    ATRACE_CALL();
459    // mSwapRegion can be empty here is some cases, for instance if a hidden
460    // or fully transparent window is updating.
461    // in that case, we need to flip anyways to not risk a deadlock with
462    // h/w composer.
463
464    const DisplayHardware& hw(graphicPlane(0).displayHardware());
465    const nsecs_t now = systemTime();
466    mDebugInSwapBuffers = now;
467    hw.flip(mSwapRegion);
468
469    size_t numLayers = mVisibleLayersSortedByZ.size();
470    for (size_t i = 0; i < numLayers; i++) {
471        mVisibleLayersSortedByZ[i]->onLayerDisplayed();
472    }
473
474    mLastSwapBufferTime = systemTime() - now;
475    mDebugInSwapBuffers = 0;
476    mSwapRegion.clear();
477}
478
479void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
480{
481    ATRACE_CALL();
482
483    Mutex::Autolock _l(mStateLock);
484    const nsecs_t now = systemTime();
485    mDebugInTransaction = now;
486
487    // Here we're guaranteed that some transaction flags are set
488    // so we can call handleTransactionLocked() unconditionally.
489    // We call getTransactionFlags(), which will also clear the flags,
490    // with mStateLock held to guarantee that mCurrentState won't change
491    // until the transaction is committed.
492
493    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
494    transactionFlags = getTransactionFlags(mask);
495    handleTransactionLocked(transactionFlags);
496
497    mLastTransactionTime = systemTime() - now;
498    mDebugInTransaction = 0;
499    invalidateHwcGeometry();
500    // here the transaction has been committed
501}
502
503void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
504{
505    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
506    const size_t count = currentLayers.size();
507
508    /*
509     * Traversal of the children
510     * (perform the transaction for each of them if needed)
511     */
512
513    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
514    if (layersNeedTransaction) {
515        for (size_t i=0 ; i<count ; i++) {
516            const sp<LayerBase>& layer = currentLayers[i];
517            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
518            if (!trFlags) continue;
519
520            const uint32_t flags = layer->doTransaction(0);
521            if (flags & Layer::eVisibleRegion)
522                mVisibleRegionsDirty = true;
523        }
524    }
525
526    /*
527     * Perform our own transaction if needed
528     */
529
530    if (transactionFlags & eTransactionNeeded) {
531        if (mCurrentState.orientation != mDrawingState.orientation) {
532            // the orientation has changed, recompute all visible regions
533            // and invalidate everything.
534
535            const int dpy = 0;
536            const int orientation = mCurrentState.orientation;
537            // Currently unused: const uint32_t flags = mCurrentState.orientationFlags;
538            GraphicPlane& plane(graphicPlane(dpy));
539            plane.setOrientation(orientation);
540
541            // update the shared control block
542            const DisplayHardware& hw(plane.displayHardware());
543            volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
544            dcblk->orientation = orientation;
545            dcblk->w = plane.getWidth();
546            dcblk->h = plane.getHeight();
547
548            mVisibleRegionsDirty = true;
549            mDirtyRegion.set(hw.bounds());
550        }
551
552        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
553            // layers have been added
554            mVisibleRegionsDirty = true;
555        }
556
557        // some layers might have been removed, so
558        // we need to update the regions they're exposing.
559        if (mLayersRemoved) {
560            mLayersRemoved = false;
561            mVisibleRegionsDirty = true;
562            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
563            const size_t count = previousLayers.size();
564            for (size_t i=0 ; i<count ; i++) {
565                const sp<LayerBase>& layer(previousLayers[i]);
566                if (currentLayers.indexOf( layer ) < 0) {
567                    // this layer is not visible anymore
568                    mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen);
569                }
570            }
571        }
572    }
573
574    commitTransaction();
575}
576
577void SurfaceFlinger::computeVisibleRegions(
578    const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
579{
580    ATRACE_CALL();
581
582    const GraphicPlane& plane(graphicPlane(0));
583    const Transform& planeTransform(plane.transform());
584    const DisplayHardware& hw(plane.displayHardware());
585    const Region screenRegion(hw.bounds());
586
587    Region aboveOpaqueLayers;
588    Region aboveCoveredLayers;
589    Region dirty;
590
591    bool secureFrameBuffer = false;
592
593    size_t i = currentLayers.size();
594    while (i--) {
595        const sp<LayerBase>& layer = currentLayers[i];
596        layer->validateVisibility(planeTransform);
597
598        // start with the whole surface at its current location
599        const Layer::State& s(layer->drawingState());
600
601        /*
602         * opaqueRegion: area of a surface that is fully opaque.
603         */
604        Region opaqueRegion;
605
606        /*
607         * visibleRegion: area of a surface that is visible on screen
608         * and not fully transparent. This is essentially the layer's
609         * footprint minus the opaque regions above it.
610         * Areas covered by a translucent surface are considered visible.
611         */
612        Region visibleRegion;
613
614        /*
615         * coveredRegion: area of a surface that is covered by all
616         * visible regions above it (which includes the translucent areas).
617         */
618        Region coveredRegion;
619
620
621        // handle hidden surfaces by setting the visible region to empty
622        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
623            const bool translucent = !layer->isOpaque();
624            const Rect bounds(layer->visibleBounds());
625            visibleRegion.set(bounds);
626            visibleRegion.andSelf(screenRegion);
627            if (!visibleRegion.isEmpty()) {
628                // Remove the transparent area from the visible region
629                if (translucent) {
630                    visibleRegion.subtractSelf(layer->transparentRegionScreen);
631                }
632
633                // compute the opaque region
634                const int32_t layerOrientation = layer->getOrientation();
635                if (s.alpha==255 && !translucent &&
636                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
637                    // the opaque region is the layer's footprint
638                    opaqueRegion = visibleRegion;
639                }
640            }
641        }
642
643        // Clip the covered region to the visible region
644        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
645
646        // Update aboveCoveredLayers for next (lower) layer
647        aboveCoveredLayers.orSelf(visibleRegion);
648
649        // subtract the opaque region covered by the layers above us
650        visibleRegion.subtractSelf(aboveOpaqueLayers);
651
652        // compute this layer's dirty region
653        if (layer->contentDirty) {
654            // we need to invalidate the whole region
655            dirty = visibleRegion;
656            // as well, as the old visible region
657            dirty.orSelf(layer->visibleRegionScreen);
658            layer->contentDirty = false;
659        } else {
660            /* compute the exposed region:
661             *   the exposed region consists of two components:
662             *   1) what's VISIBLE now and was COVERED before
663             *   2) what's EXPOSED now less what was EXPOSED before
664             *
665             * note that (1) is conservative, we start with the whole
666             * visible region but only keep what used to be covered by
667             * something -- which mean it may have been exposed.
668             *
669             * (2) handles areas that were not covered by anything but got
670             * exposed because of a resize.
671             */
672            const Region newExposed = visibleRegion - coveredRegion;
673            const Region oldVisibleRegion = layer->visibleRegionScreen;
674            const Region oldCoveredRegion = layer->coveredRegionScreen;
675            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
676            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
677        }
678        dirty.subtractSelf(aboveOpaqueLayers);
679
680        // accumulate to the screen dirty region
681        dirtyRegion.orSelf(dirty);
682
683        // Update aboveOpaqueLayers for next (lower) layer
684        aboveOpaqueLayers.orSelf(opaqueRegion);
685
686        // Store the visible region is screen space
687        layer->setVisibleRegion(visibleRegion);
688        layer->setCoveredRegion(coveredRegion);
689
690        // If a secure layer is partially visible, lock-down the screen!
691        if (layer->isSecure() && !visibleRegion.isEmpty()) {
692            secureFrameBuffer = true;
693        }
694    }
695
696    // invalidate the areas where a layer was removed
697    dirtyRegion.orSelf(mDirtyRegionRemovedLayer);
698    mDirtyRegionRemovedLayer.clear();
699
700    mSecureFrameBuffer = secureFrameBuffer;
701    opaqueRegion = aboveOpaqueLayers;
702}
703
704
705void SurfaceFlinger::commitTransaction()
706{
707    if (!mLayersPendingRemoval.isEmpty()) {
708        // Notify removed layers now that they can't be drawn from
709        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
710            mLayersPendingRemoval[i]->onRemoved();
711        }
712        mLayersPendingRemoval.clear();
713    }
714
715    mDrawingState = mCurrentState;
716    mTransationPending = false;
717    mTransactionCV.broadcast();
718}
719
720void SurfaceFlinger::handlePageFlip()
721{
722    ATRACE_CALL();
723    const DisplayHardware& hw = graphicPlane(0).displayHardware();
724    const Region screenRegion(hw.bounds());
725
726    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
727    const bool visibleRegions = lockPageFlip(currentLayers);
728
729        if (visibleRegions || mVisibleRegionsDirty) {
730            Region opaqueRegion;
731            computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
732
733            /*
734             *  rebuild the visible layer list
735             */
736            const size_t count = currentLayers.size();
737            mVisibleLayersSortedByZ.clear();
738            mVisibleLayersSortedByZ.setCapacity(count);
739            for (size_t i=0 ; i<count ; i++) {
740                if (!currentLayers[i]->visibleRegionScreen.isEmpty())
741                    mVisibleLayersSortedByZ.add(currentLayers[i]);
742            }
743
744            mWormholeRegion = screenRegion.subtract(opaqueRegion);
745            mVisibleRegionsDirty = false;
746            invalidateHwcGeometry();
747        }
748
749    unlockPageFlip(currentLayers);
750
751    mDirtyRegion.orSelf(getAndClearInvalidateRegion());
752    mDirtyRegion.andSelf(screenRegion);
753}
754
755void SurfaceFlinger::invalidateHwcGeometry()
756{
757    mHwWorkListDirty = true;
758}
759
760bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
761{
762    bool recomputeVisibleRegions = false;
763    size_t count = currentLayers.size();
764    sp<LayerBase> const* layers = currentLayers.array();
765    for (size_t i=0 ; i<count ; i++) {
766        const sp<LayerBase>& layer(layers[i]);
767        layer->lockPageFlip(recomputeVisibleRegions);
768    }
769    return recomputeVisibleRegions;
770}
771
772void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
773{
774    const GraphicPlane& plane(graphicPlane(0));
775    const Transform& planeTransform(plane.transform());
776    const size_t count = currentLayers.size();
777    sp<LayerBase> const* layers = currentLayers.array();
778    for (size_t i=0 ; i<count ; i++) {
779        const sp<LayerBase>& layer(layers[i]);
780        layer->unlockPageFlip(planeTransform, mDirtyRegion);
781    }
782}
783
784void SurfaceFlinger::handleRefresh()
785{
786    bool needInvalidate = false;
787    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
788    const size_t count = currentLayers.size();
789    for (size_t i=0 ; i<count ; i++) {
790        const sp<LayerBase>& layer(currentLayers[i]);
791        if (layer->onPreComposition()) {
792            needInvalidate = true;
793        }
794    }
795    if (needInvalidate) {
796        signalLayerUpdate();
797    }
798}
799
800
801void SurfaceFlinger::handleWorkList()
802{
803    mHwWorkListDirty = false;
804    HWComposer& hwc(graphicPlane(0).displayHardware().getHwComposer());
805    if (hwc.initCheck() == NO_ERROR) {
806        const Vector< sp<LayerBase> >& currentLayers(mVisibleLayersSortedByZ);
807        const size_t count = currentLayers.size();
808        hwc.createWorkList(count);
809        hwc_layer_t* const cur(hwc.getLayers());
810        for (size_t i=0 ; cur && i<count ; i++) {
811            currentLayers[i]->setGeometry(&cur[i]);
812            if (mDebugDisableHWC || mDebugRegion) {
813                cur[i].compositionType = HWC_FRAMEBUFFER;
814                cur[i].flags |= HWC_SKIP_LAYER;
815            }
816        }
817    }
818}
819
820void SurfaceFlinger::handleRepaint()
821{
822    ATRACE_CALL();
823
824    // compute the invalid region
825    mSwapRegion.orSelf(mDirtyRegion);
826
827    if (CC_UNLIKELY(mDebugRegion)) {
828        debugFlashRegions();
829    }
830
831    // set the frame buffer
832    const DisplayHardware& hw(graphicPlane(0).displayHardware());
833    glMatrixMode(GL_MODELVIEW);
834    glLoadIdentity();
835
836    uint32_t flags = hw.getFlags();
837    if ((flags & DisplayHardware::SWAP_RECTANGLE) ||
838        (flags & DisplayHardware::BUFFER_PRESERVED))
839    {
840        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
841        // takes a rectangle, we must make sure to update that whole
842        // rectangle in that case
843        if (flags & DisplayHardware::SWAP_RECTANGLE) {
844            // TODO: we really should be able to pass a region to
845            // SWAP_RECTANGLE so that we don't have to redraw all this.
846            mDirtyRegion.set(mSwapRegion.bounds());
847        } else {
848            // in the BUFFER_PRESERVED case, obviously, we can update only
849            // what's needed and nothing more.
850            // NOTE: this is NOT a common case, as preserving the backbuffer
851            // is costly and usually involves copying the whole update back.
852        }
853    } else {
854        if (flags & DisplayHardware::PARTIAL_UPDATES) {
855            // We need to redraw the rectangle that will be updated
856            // (pushed to the framebuffer).
857            // This is needed because PARTIAL_UPDATES only takes one
858            // rectangle instead of a region (see DisplayHardware::flip())
859            mDirtyRegion.set(mSwapRegion.bounds());
860        } else {
861            // we need to redraw everything (the whole screen)
862            mDirtyRegion.set(hw.bounds());
863            mSwapRegion = mDirtyRegion;
864        }
865    }
866
867    setupHardwareComposer(mDirtyRegion);
868    composeSurfaces(mDirtyRegion);
869
870    // update the swap region and clear the dirty region
871    mSwapRegion.orSelf(mDirtyRegion);
872    mDirtyRegion.clear();
873}
874
875void SurfaceFlinger::setupHardwareComposer(Region& dirtyInOut)
876{
877    const DisplayHardware& hw(graphicPlane(0).displayHardware());
878    HWComposer& hwc(hw.getHwComposer());
879    hwc_layer_t* const cur(hwc.getLayers());
880    if (!cur) {
881        return;
882    }
883
884    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
885    size_t count = layers.size();
886
887    ALOGE_IF(hwc.getNumLayers() != count,
888            "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
889            hwc.getNumLayers(), count);
890
891    // just to be extra-safe, use the smallest count
892    if (hwc.initCheck() == NO_ERROR) {
893        count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
894    }
895
896    /*
897     *  update the per-frame h/w composer data for each layer
898     *  and build the transparent region of the FB
899     */
900    for (size_t i=0 ; i<count ; i++) {
901        const sp<LayerBase>& layer(layers[i]);
902        layer->setPerFrameData(&cur[i]);
903    }
904    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
905    status_t err = hwc.prepare();
906    ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
907
908    if (err == NO_ERROR) {
909        // what's happening here is tricky.
910        // we want to clear all the layers with the CLEAR_FB flags
911        // that are opaque.
912        // however, since some GPU are efficient at preserving
913        // the backbuffer, we want to take advantage of that so we do the
914        // clear only in the dirty region (other areas will be preserved
915        // on those GPUs).
916        //   NOTE: on non backbuffer preserving GPU, the dirty region
917        //   has already been expanded as needed, so the code is correct
918        //   there too.
919        //
920        // However, the content of the framebuffer cannot be trusted when
921        // we switch to/from FB/OVERLAY, in which case we need to
922        // expand the dirty region to those areas too.
923        //
924        // Note also that there is a special case when switching from
925        // "no layers in FB" to "some layers in FB", where we need to redraw
926        // the entire FB, since some areas might contain uninitialized
927        // data.
928        //
929        // Also we want to make sure to not clear areas that belong to
930        // layers above that won't redraw (we would just be erasing them),
931        // that is, we can't erase anything outside the dirty region.
932
933        Region transparent;
934
935        if (!fbLayerCount && hwc.getLayerCount(HWC_FRAMEBUFFER)) {
936            transparent.set(hw.getBounds());
937            dirtyInOut = transparent;
938        } else {
939            for (size_t i=0 ; i<count ; i++) {
940                const sp<LayerBase>& layer(layers[i]);
941                if ((cur[i].hints & HWC_HINT_CLEAR_FB) && layer->isOpaque()) {
942                    transparent.orSelf(layer->visibleRegionScreen);
943                }
944                bool isOverlay = (cur[i].compositionType != HWC_FRAMEBUFFER);
945                if (isOverlay != layer->isOverlay()) {
946                    // we transitioned to/from overlay, so add this layer
947                    // to the dirty region so the framebuffer can be either
948                    // cleared or redrawn.
949                    dirtyInOut.orSelf(layer->visibleRegionScreen);
950                }
951                layer->setOverlay(isOverlay);
952            }
953            // don't erase stuff outside the dirty region
954            transparent.andSelf(dirtyInOut);
955        }
956
957        /*
958         *  clear the area of the FB that need to be transparent
959         */
960        if (!transparent.isEmpty()) {
961            glClearColor(0,0,0,0);
962            Region::const_iterator it = transparent.begin();
963            Region::const_iterator const end = transparent.end();
964            const int32_t height = hw.getHeight();
965            while (it != end) {
966                const Rect& r(*it++);
967                const GLint sy = height - (r.top + r.height());
968                glScissor(r.left, sy, r.width(), r.height());
969                glClear(GL_COLOR_BUFFER_BIT);
970            }
971        }
972    }
973}
974
975void SurfaceFlinger::composeSurfaces(const Region& dirty)
976{
977    const DisplayHardware& hw(graphicPlane(0).displayHardware());
978    HWComposer& hwc(hw.getHwComposer());
979
980    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
981    if (CC_UNLIKELY(fbLayerCount && !mWormholeRegion.isEmpty())) {
982        // should never happen unless the window manager has a bug
983        // draw something...
984        drawWormhole();
985    }
986
987    /*
988     * and then, render the layers targeted at the framebuffer
989     */
990
991    hwc_layer_t* const cur(hwc.getLayers());
992    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
993    size_t count = layers.size();
994
995
996    // FIXME: workaround for b/6020860
997    if (hw.getFlags() & DisplayHardware::BUFFER_PRESERVED) {
998        for (size_t i=0 ; i<count ; i++) {
999            if (cur && (cur[i].compositionType == HWC_FRAMEBUFFER)) {
1000                glEnable(GL_SCISSOR_TEST);
1001                glScissor(0,0,0,0);
1002                glClear(GL_COLOR_BUFFER_BIT);
1003                break;
1004            }
1005        }
1006    }
1007    // FIXME: bug6020860 for b/6020860
1008
1009
1010    for (size_t i=0 ; i<count ; i++) {
1011        if (cur && (cur[i].compositionType != HWC_FRAMEBUFFER)) {
1012            continue;
1013        }
1014        const sp<LayerBase>& layer(layers[i]);
1015        const Region clip(dirty.intersect(layer->visibleRegionScreen));
1016        if (!clip.isEmpty()) {
1017            layer->draw(clip);
1018        }
1019    }
1020}
1021
1022void SurfaceFlinger::debugFlashRegions()
1023{
1024    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1025    const uint32_t flags = hw.getFlags();
1026    const int32_t height = hw.getHeight();
1027    if (mSwapRegion.isEmpty()) {
1028        return;
1029    }
1030
1031    if (!((flags & DisplayHardware::SWAP_RECTANGLE) ||
1032            (flags & DisplayHardware::BUFFER_PRESERVED))) {
1033        const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1034                mDirtyRegion.bounds() : hw.bounds());
1035        composeSurfaces(repaint);
1036    }
1037
1038    glDisable(GL_TEXTURE_EXTERNAL_OES);
1039    glDisable(GL_TEXTURE_2D);
1040    glDisable(GL_BLEND);
1041    glDisable(GL_SCISSOR_TEST);
1042
1043    static int toggle = 0;
1044    toggle = 1 - toggle;
1045    if (toggle) {
1046        glColor4f(1, 0, 1, 1);
1047    } else {
1048        glColor4f(1, 1, 0, 1);
1049    }
1050
1051    Region::const_iterator it = mDirtyRegion.begin();
1052    Region::const_iterator const end = mDirtyRegion.end();
1053    while (it != end) {
1054        const Rect& r = *it++;
1055        GLfloat vertices[][2] = {
1056                { r.left,  height - r.top },
1057                { r.left,  height - r.bottom },
1058                { r.right, height - r.bottom },
1059                { r.right, height - r.top }
1060        };
1061        glVertexPointer(2, GL_FLOAT, 0, vertices);
1062        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1063    }
1064
1065    hw.flip(mSwapRegion);
1066
1067    if (mDebugRegion > 1)
1068        usleep(mDebugRegion * 1000);
1069
1070    glEnable(GL_SCISSOR_TEST);
1071}
1072
1073void SurfaceFlinger::drawWormhole() const
1074{
1075    const Region region(mWormholeRegion.intersect(mDirtyRegion));
1076    if (region.isEmpty())
1077        return;
1078
1079    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1080    const int32_t width = hw.getWidth();
1081    const int32_t height = hw.getHeight();
1082
1083    if (CC_LIKELY(!mDebugBackground)) {
1084        glClearColor(0,0,0,0);
1085        Region::const_iterator it = region.begin();
1086        Region::const_iterator const end = region.end();
1087        while (it != end) {
1088            const Rect& r = *it++;
1089            const GLint sy = height - (r.top + r.height());
1090            glScissor(r.left, sy, r.width(), r.height());
1091            glClear(GL_COLOR_BUFFER_BIT);
1092        }
1093    } else {
1094        const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
1095                { width, height }, { 0, height }  };
1096        const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 },  { 1, 1 }, { 0, 1 } };
1097
1098        glVertexPointer(2, GL_SHORT, 0, vertices);
1099        glTexCoordPointer(2, GL_SHORT, 0, tcoords);
1100        glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1101
1102        glDisable(GL_TEXTURE_EXTERNAL_OES);
1103        glEnable(GL_TEXTURE_2D);
1104        glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
1105        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1106        glMatrixMode(GL_TEXTURE);
1107        glLoadIdentity();
1108
1109        glDisable(GL_BLEND);
1110
1111        glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
1112        Region::const_iterator it = region.begin();
1113        Region::const_iterator const end = region.end();
1114        while (it != end) {
1115            const Rect& r = *it++;
1116            const GLint sy = height - (r.top + r.height());
1117            glScissor(r.left, sy, r.width(), r.height());
1118            glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1119        }
1120        glDisableClientState(GL_TEXTURE_COORD_ARRAY);
1121        glDisable(GL_TEXTURE_2D);
1122        glLoadIdentity();
1123        glMatrixMode(GL_MODELVIEW);
1124    }
1125}
1126
1127status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
1128{
1129    Mutex::Autolock _l(mStateLock);
1130    addLayer_l(layer);
1131    setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1132    return NO_ERROR;
1133}
1134
1135status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
1136{
1137    ssize_t i = mCurrentState.layersSortedByZ.add(layer);
1138    return (i < 0) ? status_t(i) : status_t(NO_ERROR);
1139}
1140
1141ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1142        const sp<LayerBaseClient>& lbc)
1143{
1144    // attach this layer to the client
1145    size_t name = client->attachLayer(lbc);
1146
1147    Mutex::Autolock _l(mStateLock);
1148
1149    // add this layer to the current state list
1150    addLayer_l(lbc);
1151
1152    return ssize_t(name);
1153}
1154
1155status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1156{
1157    Mutex::Autolock _l(mStateLock);
1158    status_t err = purgatorizeLayer_l(layer);
1159    if (err == NO_ERROR)
1160        setTransactionFlags(eTransactionNeeded);
1161    return err;
1162}
1163
1164status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1165{
1166    sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
1167    if (lbc != 0) {
1168        mLayerMap.removeItem( lbc->getSurfaceBinder() );
1169    }
1170    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1171    if (index >= 0) {
1172        mLayersRemoved = true;
1173        return NO_ERROR;
1174    }
1175    return status_t(index);
1176}
1177
1178status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1179{
1180    // First add the layer to the purgatory list, which makes sure it won't
1181    // go away, then remove it from the main list (through a transaction).
1182    ssize_t err = removeLayer_l(layerBase);
1183    if (err >= 0) {
1184        mLayerPurgatory.add(layerBase);
1185    }
1186
1187    mLayersPendingRemoval.push(layerBase);
1188
1189    // it's possible that we don't find a layer, because it might
1190    // have been destroyed already -- this is not technically an error
1191    // from the user because there is a race between Client::destroySurface(),
1192    // ~Client() and ~ISurface().
1193    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1194}
1195
1196status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
1197{
1198    layer->forceVisibilityTransaction();
1199    setTransactionFlags(eTraversalNeeded);
1200    return NO_ERROR;
1201}
1202
1203uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1204{
1205    return android_atomic_release_load(&mTransactionFlags);
1206}
1207
1208uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1209{
1210    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1211}
1212
1213uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1214{
1215    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1216    if ((old & flags)==0) { // wake the server up
1217        signalTransaction();
1218    }
1219    return old;
1220}
1221
1222
1223void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& state,
1224        int orientation, uint32_t flags) {
1225    Mutex::Autolock _l(mStateLock);
1226
1227    uint32_t transactionFlags = 0;
1228    if (mCurrentState.orientation != orientation) {
1229        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1230            mCurrentState.orientation = orientation;
1231            transactionFlags |= eTransactionNeeded;
1232        } else if (orientation != eOrientationUnchanged) {
1233            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1234                    orientation);
1235        }
1236    }
1237
1238    const size_t count = state.size();
1239    for (size_t i=0 ; i<count ; i++) {
1240        const ComposerState& s(state[i]);
1241        sp<Client> client( static_cast<Client *>(s.client.get()) );
1242        transactionFlags |= setClientStateLocked(client, s.state);
1243    }
1244
1245    if (transactionFlags) {
1246        // this triggers the transaction
1247        setTransactionFlags(transactionFlags);
1248
1249        // if this is a synchronous transaction, wait for it to take effect
1250        // before returning.
1251        if (flags & eSynchronous) {
1252            mTransationPending = true;
1253        }
1254        while (mTransationPending) {
1255            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1256            if (CC_UNLIKELY(err != NO_ERROR)) {
1257                // just in case something goes wrong in SF, return to the
1258                // called after a few seconds.
1259                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1260                mTransationPending = false;
1261                break;
1262            }
1263        }
1264    }
1265}
1266
1267sp<ISurface> SurfaceFlinger::createSurface(
1268        ISurfaceComposerClient::surface_data_t* params,
1269        const String8& name,
1270        const sp<Client>& client,
1271        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1272        uint32_t flags)
1273{
1274    sp<LayerBaseClient> layer;
1275    sp<ISurface> surfaceHandle;
1276
1277    if (int32_t(w|h) < 0) {
1278        ALOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
1279                int(w), int(h));
1280        return surfaceHandle;
1281    }
1282
1283    //ALOGD("createSurface for (%d x %d), name=%s", w, h, name.string());
1284    sp<Layer> normalLayer;
1285    switch (flags & eFXSurfaceMask) {
1286        case eFXSurfaceNormal:
1287            normalLayer = createNormalSurface(client, d, w, h, flags, format);
1288            layer = normalLayer;
1289            break;
1290        case eFXSurfaceBlur:
1291            // for now we treat Blur as Dim, until we can implement it
1292            // efficiently.
1293        case eFXSurfaceDim:
1294            layer = createDimSurface(client, d, w, h, flags);
1295            break;
1296        case eFXSurfaceScreenshot:
1297            layer = createScreenshotSurface(client, d, w, h, flags);
1298            break;
1299    }
1300
1301    if (layer != 0) {
1302        layer->initStates(w, h, flags);
1303        layer->setName(name);
1304        ssize_t token = addClientLayer(client, layer);
1305
1306        surfaceHandle = layer->getSurface();
1307        if (surfaceHandle != 0) {
1308            params->token = token;
1309            params->identity = layer->getIdentity();
1310            if (normalLayer != 0) {
1311                Mutex::Autolock _l(mStateLock);
1312                mLayerMap.add(layer->getSurfaceBinder(), normalLayer);
1313            }
1314        }
1315
1316        setTransactionFlags(eTransactionNeeded);
1317    }
1318
1319    return surfaceHandle;
1320}
1321
1322sp<Layer> SurfaceFlinger::createNormalSurface(
1323        const sp<Client>& client, DisplayID display,
1324        uint32_t w, uint32_t h, uint32_t flags,
1325        PixelFormat& format)
1326{
1327    // initialize the surfaces
1328    switch (format) { // TODO: take h/w into account
1329    case PIXEL_FORMAT_TRANSPARENT:
1330    case PIXEL_FORMAT_TRANSLUCENT:
1331        format = PIXEL_FORMAT_RGBA_8888;
1332        break;
1333    case PIXEL_FORMAT_OPAQUE:
1334#ifdef NO_RGBX_8888
1335        format = PIXEL_FORMAT_RGB_565;
1336#else
1337        format = PIXEL_FORMAT_RGBX_8888;
1338#endif
1339        break;
1340    }
1341
1342#ifdef NO_RGBX_8888
1343    if (format == PIXEL_FORMAT_RGBX_8888)
1344        format = PIXEL_FORMAT_RGBA_8888;
1345#endif
1346
1347    sp<Layer> layer = new Layer(this, display, client);
1348    status_t err = layer->setBuffers(w, h, format, flags);
1349    if (CC_LIKELY(err != NO_ERROR)) {
1350        ALOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
1351        layer.clear();
1352    }
1353    return layer;
1354}
1355
1356sp<LayerDim> SurfaceFlinger::createDimSurface(
1357        const sp<Client>& client, DisplayID display,
1358        uint32_t w, uint32_t h, uint32_t flags)
1359{
1360    sp<LayerDim> layer = new LayerDim(this, display, client);
1361    return layer;
1362}
1363
1364sp<LayerScreenshot> SurfaceFlinger::createScreenshotSurface(
1365        const sp<Client>& client, DisplayID display,
1366        uint32_t w, uint32_t h, uint32_t flags)
1367{
1368    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1369    return layer;
1370}
1371
1372status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
1373{
1374    /*
1375     * called by the window manager, when a surface should be marked for
1376     * destruction.
1377     *
1378     * The surface is removed from the current and drawing lists, but placed
1379     * in the purgatory queue, so it's not destroyed right-away (we need
1380     * to wait for all client's references to go away first).
1381     */
1382
1383    status_t err = NAME_NOT_FOUND;
1384    Mutex::Autolock _l(mStateLock);
1385    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1386
1387    if (layer != 0) {
1388        err = purgatorizeLayer_l(layer);
1389        if (err == NO_ERROR) {
1390            setTransactionFlags(eTransactionNeeded);
1391        }
1392    }
1393    return err;
1394}
1395
1396status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
1397{
1398    // called by ~ISurface() when all references are gone
1399    status_t err = NO_ERROR;
1400    sp<LayerBaseClient> l(layer.promote());
1401    if (l != NULL) {
1402        Mutex::Autolock _l(mStateLock);
1403        err = removeLayer_l(l);
1404        if (err == NAME_NOT_FOUND) {
1405            // The surface wasn't in the current list, which means it was
1406            // removed already, which means it is in the purgatory,
1407            // and need to be removed from there.
1408            ssize_t idx = mLayerPurgatory.remove(l);
1409            ALOGE_IF(idx < 0,
1410                    "layer=%p is not in the purgatory list", l.get());
1411        }
1412        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1413                "error removing layer=%p (%s)", l.get(), strerror(-err));
1414    }
1415    return err;
1416}
1417
1418uint32_t SurfaceFlinger::setClientStateLocked(
1419        const sp<Client>& client,
1420        const layer_state_t& s)
1421{
1422    uint32_t flags = 0;
1423    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1424    if (layer != 0) {
1425        const uint32_t what = s.what;
1426        if (what & ePositionChanged) {
1427            if (layer->setPosition(s.x, s.y))
1428                flags |= eTraversalNeeded;
1429        }
1430        if (what & eLayerChanged) {
1431            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1432            if (layer->setLayer(s.z)) {
1433                mCurrentState.layersSortedByZ.removeAt(idx);
1434                mCurrentState.layersSortedByZ.add(layer);
1435                // we need traversal (state changed)
1436                // AND transaction (list changed)
1437                flags |= eTransactionNeeded|eTraversalNeeded;
1438            }
1439        }
1440        if (what & eSizeChanged) {
1441            if (layer->setSize(s.w, s.h)) {
1442                flags |= eTraversalNeeded;
1443            }
1444        }
1445        if (what & eAlphaChanged) {
1446            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1447                flags |= eTraversalNeeded;
1448        }
1449        if (what & eMatrixChanged) {
1450            if (layer->setMatrix(s.matrix))
1451                flags |= eTraversalNeeded;
1452        }
1453        if (what & eTransparentRegionChanged) {
1454            if (layer->setTransparentRegionHint(s.transparentRegion))
1455                flags |= eTraversalNeeded;
1456        }
1457        if (what & eVisibilityChanged) {
1458            if (layer->setFlags(s.flags, s.mask))
1459                flags |= eTraversalNeeded;
1460        }
1461    }
1462    return flags;
1463}
1464
1465// ---------------------------------------------------------------------------
1466
1467void SurfaceFlinger::onScreenAcquired() {
1468    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1469    hw.acquireScreen();
1470    // this is a temporary work-around, eventually this should be called
1471    // by the power-manager
1472    SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
1473    mDirtyRegion.set(hw.bounds());
1474    // from this point on, SF will priocess updates again
1475}
1476
1477void SurfaceFlinger::onScreenReleased() {
1478    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1479    if (hw.isScreenAcquired()) {
1480        mDirtyRegion.set(hw.bounds());
1481        hw.releaseScreen();
1482        // from this point on, SF will stop drawing
1483    }
1484}
1485
1486void SurfaceFlinger::screenAcquired() {
1487    class MessageScreenAcquired : public MessageBase {
1488        SurfaceFlinger* flinger;
1489    public:
1490        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1491        virtual bool handler() {
1492            flinger->onScreenAcquired();
1493            return true;
1494        }
1495    };
1496    sp<MessageBase> msg = new MessageScreenAcquired(this);
1497    postMessageSync(msg);
1498}
1499
1500void SurfaceFlinger::screenReleased() {
1501    class MessageScreenReleased : public MessageBase {
1502        SurfaceFlinger* flinger;
1503    public:
1504        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1505        virtual bool handler() {
1506            flinger->onScreenReleased();
1507            return true;
1508        }
1509    };
1510    sp<MessageBase> msg = new MessageScreenReleased(this);
1511    postMessageSync(msg);
1512}
1513
1514// ---------------------------------------------------------------------------
1515
1516status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1517{
1518    const size_t SIZE = 4096;
1519    char buffer[SIZE];
1520    String8 result;
1521
1522    if (!PermissionCache::checkCallingPermission(sDump)) {
1523        snprintf(buffer, SIZE, "Permission Denial: "
1524                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1525                IPCThreadState::self()->getCallingPid(),
1526                IPCThreadState::self()->getCallingUid());
1527        result.append(buffer);
1528    } else {
1529        // Try to get the main lock, but don't insist if we can't
1530        // (this would indicate SF is stuck, but we want to be able to
1531        // print something in dumpsys).
1532        int retry = 3;
1533        while (mStateLock.tryLock()<0 && --retry>=0) {
1534            usleep(1000000);
1535        }
1536        const bool locked(retry >= 0);
1537        if (!locked) {
1538            snprintf(buffer, SIZE,
1539                    "SurfaceFlinger appears to be unresponsive, "
1540                    "dumping anyways (no locks held)\n");
1541            result.append(buffer);
1542        }
1543
1544        bool dumpAll = true;
1545        size_t index = 0;
1546        size_t numArgs = args.size();
1547        if (numArgs) {
1548            if ((index < numArgs) &&
1549                    (args[index] == String16("--list"))) {
1550                index++;
1551                listLayersLocked(args, index, result, buffer, SIZE);
1552                dumpAll = false;
1553            }
1554
1555            if ((index < numArgs) &&
1556                    (args[index] == String16("--latency"))) {
1557                index++;
1558                dumpStatsLocked(args, index, result, buffer, SIZE);
1559                dumpAll = false;
1560            }
1561
1562            if ((index < numArgs) &&
1563                    (args[index] == String16("--latency-clear"))) {
1564                index++;
1565                clearStatsLocked(args, index, result, buffer, SIZE);
1566                dumpAll = false;
1567            }
1568        }
1569
1570        if (dumpAll) {
1571            dumpAllLocked(result, buffer, SIZE);
1572        }
1573
1574        if (locked) {
1575            mStateLock.unlock();
1576        }
1577    }
1578    write(fd, result.string(), result.size());
1579    return NO_ERROR;
1580}
1581
1582void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1583        String8& result, char* buffer, size_t SIZE) const
1584{
1585    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1586    const size_t count = currentLayers.size();
1587    for (size_t i=0 ; i<count ; i++) {
1588        const sp<LayerBase>& layer(currentLayers[i]);
1589        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1590        result.append(buffer);
1591    }
1592}
1593
1594void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1595        String8& result, char* buffer, size_t SIZE) const
1596{
1597    String8 name;
1598    if (index < args.size()) {
1599        name = String8(args[index]);
1600        index++;
1601    }
1602
1603    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1604    const size_t count = currentLayers.size();
1605    for (size_t i=0 ; i<count ; i++) {
1606        const sp<LayerBase>& layer(currentLayers[i]);
1607        if (name.isEmpty()) {
1608            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1609            result.append(buffer);
1610        }
1611        if (name.isEmpty() || (name == layer->getName())) {
1612            layer->dumpStats(result, buffer, SIZE);
1613        }
1614    }
1615}
1616
1617void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1618        String8& result, char* buffer, size_t SIZE) const
1619{
1620    String8 name;
1621    if (index < args.size()) {
1622        name = String8(args[index]);
1623        index++;
1624    }
1625
1626    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1627    const size_t count = currentLayers.size();
1628    for (size_t i=0 ; i<count ; i++) {
1629        const sp<LayerBase>& layer(currentLayers[i]);
1630        if (name.isEmpty() || (name == layer->getName())) {
1631            layer->clearStats();
1632        }
1633    }
1634}
1635
1636void SurfaceFlinger::dumpAllLocked(
1637        String8& result, char* buffer, size_t SIZE) const
1638{
1639    // figure out if we're stuck somewhere
1640    const nsecs_t now = systemTime();
1641    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1642    const nsecs_t inTransaction(mDebugInTransaction);
1643    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1644    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1645
1646    /*
1647     * Dump the visible layer list
1648     */
1649    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1650    const size_t count = currentLayers.size();
1651    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1652    result.append(buffer);
1653    for (size_t i=0 ; i<count ; i++) {
1654        const sp<LayerBase>& layer(currentLayers[i]);
1655        layer->dump(result, buffer, SIZE);
1656    }
1657
1658    /*
1659     * Dump the layers in the purgatory
1660     */
1661
1662    const size_t purgatorySize = mLayerPurgatory.size();
1663    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1664    result.append(buffer);
1665    for (size_t i=0 ; i<purgatorySize ; i++) {
1666        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1667        layer->shortDump(result, buffer, SIZE);
1668    }
1669
1670    /*
1671     * Dump SurfaceFlinger global state
1672     */
1673
1674    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1675    result.append(buffer);
1676
1677    const GLExtensions& extensions(GLExtensions::getInstance());
1678    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1679            extensions.getVendor(),
1680            extensions.getRenderer(),
1681            extensions.getVersion());
1682    result.append(buffer);
1683
1684    snprintf(buffer, SIZE, "EGL : %s\n",
1685            eglQueryString(graphicPlane(0).getEGLDisplay(),
1686                    EGL_VERSION_HW_ANDROID));
1687    result.append(buffer);
1688
1689    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1690    result.append(buffer);
1691
1692    mWormholeRegion.dump(result, "WormholeRegion");
1693    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1694    snprintf(buffer, SIZE,
1695            "  orientation=%d, canDraw=%d\n",
1696            mCurrentState.orientation, hw.canDraw());
1697    result.append(buffer);
1698    snprintf(buffer, SIZE,
1699            "  last eglSwapBuffers() time: %f us\n"
1700            "  last transaction time     : %f us\n"
1701            "  transaction-flags         : %08x\n"
1702            "  refresh-rate              : %f fps\n"
1703            "  x-dpi                     : %f\n"
1704            "  y-dpi                     : %f\n"
1705            "  density                   : %f\n",
1706            mLastSwapBufferTime/1000.0,
1707            mLastTransactionTime/1000.0,
1708            mTransactionFlags,
1709            hw.getRefreshRate(),
1710            hw.getDpiX(),
1711            hw.getDpiY(),
1712            hw.getDensity());
1713    result.append(buffer);
1714
1715    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1716            inSwapBuffersDuration/1000.0);
1717    result.append(buffer);
1718
1719    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1720            inTransactionDuration/1000.0);
1721    result.append(buffer);
1722
1723    /*
1724     * VSYNC state
1725     */
1726    mEventThread->dump(result, buffer, SIZE);
1727
1728    /*
1729     * Dump HWComposer state
1730     */
1731    HWComposer& hwc(hw.getHwComposer());
1732    snprintf(buffer, SIZE, "h/w composer state:\n");
1733    result.append(buffer);
1734    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1735            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1736                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1737    result.append(buffer);
1738    hwc.dump(result, buffer, SIZE, mVisibleLayersSortedByZ);
1739
1740    /*
1741     * Dump gralloc state
1742     */
1743    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1744    alloc.dump(result);
1745    hw.dump(result);
1746}
1747
1748status_t SurfaceFlinger::onTransact(
1749    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1750{
1751    switch (code) {
1752        case CREATE_CONNECTION:
1753        case SET_TRANSACTION_STATE:
1754        case SET_ORIENTATION:
1755        case BOOT_FINISHED:
1756        case TURN_ELECTRON_BEAM_OFF:
1757        case TURN_ELECTRON_BEAM_ON:
1758        {
1759            // codes that require permission check
1760            IPCThreadState* ipc = IPCThreadState::self();
1761            const int pid = ipc->getCallingPid();
1762            const int uid = ipc->getCallingUid();
1763            if ((uid != AID_GRAPHICS) &&
1764                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1765                ALOGE("Permission Denial: "
1766                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1767                return PERMISSION_DENIED;
1768            }
1769            break;
1770        }
1771        case CAPTURE_SCREEN:
1772        {
1773            // codes that require permission check
1774            IPCThreadState* ipc = IPCThreadState::self();
1775            const int pid = ipc->getCallingPid();
1776            const int uid = ipc->getCallingUid();
1777            if ((uid != AID_GRAPHICS) &&
1778                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1779                ALOGE("Permission Denial: "
1780                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1781                return PERMISSION_DENIED;
1782            }
1783            break;
1784        }
1785    }
1786
1787    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1788    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1789        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1790        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1791            IPCThreadState* ipc = IPCThreadState::self();
1792            const int pid = ipc->getCallingPid();
1793            const int uid = ipc->getCallingUid();
1794            ALOGE("Permission Denial: "
1795                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1796            return PERMISSION_DENIED;
1797        }
1798        int n;
1799        switch (code) {
1800            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1801            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1802                return NO_ERROR;
1803            case 1002:  // SHOW_UPDATES
1804                n = data.readInt32();
1805                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1806                invalidateHwcGeometry();
1807                repaintEverything();
1808                return NO_ERROR;
1809            case 1003:  // SHOW_BACKGROUND
1810                n = data.readInt32();
1811                mDebugBackground = n ? 1 : 0;
1812                return NO_ERROR;
1813            case 1004:{ // repaint everything
1814                repaintEverything();
1815                return NO_ERROR;
1816            }
1817            case 1005:{ // force transaction
1818                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1819                return NO_ERROR;
1820            }
1821            case 1006:{ // send empty update
1822                signalRefresh();
1823                return NO_ERROR;
1824            }
1825            case 1008:  // toggle use of hw composer
1826                n = data.readInt32();
1827                mDebugDisableHWC = n ? 1 : 0;
1828                invalidateHwcGeometry();
1829                repaintEverything();
1830                return NO_ERROR;
1831            case 1009:  // toggle use of transform hint
1832                n = data.readInt32();
1833                mDebugDisableTransformHint = n ? 1 : 0;
1834                invalidateHwcGeometry();
1835                repaintEverything();
1836                return NO_ERROR;
1837            case 1010:  // interrogate.
1838                reply->writeInt32(0);
1839                reply->writeInt32(0);
1840                reply->writeInt32(mDebugRegion);
1841                reply->writeInt32(mDebugBackground);
1842                reply->writeInt32(mDebugDisableHWC);
1843                return NO_ERROR;
1844            case 1013: {
1845                Mutex::Autolock _l(mStateLock);
1846                const DisplayHardware& hw(graphicPlane(0).displayHardware());
1847                reply->writeInt32(hw.getPageFlipCount());
1848            }
1849            return NO_ERROR;
1850        }
1851    }
1852    return err;
1853}
1854
1855void SurfaceFlinger::repaintEverything() {
1856    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1857    const Rect bounds(hw.getBounds());
1858    setInvalidateRegion(Region(bounds));
1859    signalTransaction();
1860}
1861
1862void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1863    Mutex::Autolock _l(mInvalidateLock);
1864    mInvalidateRegion = reg;
1865}
1866
1867Region SurfaceFlinger::getAndClearInvalidateRegion() {
1868    Mutex::Autolock _l(mInvalidateLock);
1869    Region reg(mInvalidateRegion);
1870    mInvalidateRegion.clear();
1871    return reg;
1872}
1873
1874// ---------------------------------------------------------------------------
1875
1876status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1877        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1878{
1879    Mutex::Autolock _l(mStateLock);
1880    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1881}
1882
1883status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1884        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1885{
1886    if (!GLExtensions::getInstance().haveFramebufferObject())
1887        return INVALID_OPERATION;
1888
1889    // get screen geometry
1890    const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
1891    const uint32_t hw_w = hw.getWidth();
1892    const uint32_t hw_h = hw.getHeight();
1893    GLfloat u = 1;
1894    GLfloat v = 1;
1895
1896    // make sure to clear all GL error flags
1897    while ( glGetError() != GL_NO_ERROR ) ;
1898
1899    // create a FBO
1900    GLuint name, tname;
1901    glGenTextures(1, &tname);
1902    glBindTexture(GL_TEXTURE_2D, tname);
1903    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1904            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1905    if (glGetError() != GL_NO_ERROR) {
1906        while ( glGetError() != GL_NO_ERROR ) ;
1907        GLint tw = (2 << (31 - clz(hw_w)));
1908        GLint th = (2 << (31 - clz(hw_h)));
1909        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1910                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1911        u = GLfloat(hw_w) / tw;
1912        v = GLfloat(hw_h) / th;
1913    }
1914    glGenFramebuffersOES(1, &name);
1915    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
1916    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
1917            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
1918
1919    // redraw the screen entirely...
1920    glDisable(GL_TEXTURE_EXTERNAL_OES);
1921    glDisable(GL_TEXTURE_2D);
1922    glDisable(GL_SCISSOR_TEST);
1923    glClearColor(0,0,0,1);
1924    glClear(GL_COLOR_BUFFER_BIT);
1925    glEnable(GL_SCISSOR_TEST);
1926    glMatrixMode(GL_MODELVIEW);
1927    glLoadIdentity();
1928    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
1929    const size_t count = layers.size();
1930    for (size_t i=0 ; i<count ; ++i) {
1931        const sp<LayerBase>& layer(layers[i]);
1932        layer->drawForSreenShot();
1933    }
1934
1935    hw.compositionComplete();
1936
1937    // back to main framebuffer
1938    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
1939    glDisable(GL_SCISSOR_TEST);
1940    glDeleteFramebuffersOES(1, &name);
1941
1942    *textureName = tname;
1943    *uOut = u;
1944    *vOut = v;
1945    return NO_ERROR;
1946}
1947
1948// ---------------------------------------------------------------------------
1949
1950status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
1951{
1952    // get screen geometry
1953    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1954    const uint32_t hw_w = hw.getWidth();
1955    const uint32_t hw_h = hw.getHeight();
1956    const Region screenBounds(hw.getBounds());
1957
1958    GLfloat u, v;
1959    GLuint tname;
1960    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
1961    if (result != NO_ERROR) {
1962        return result;
1963    }
1964
1965    GLfloat vtx[8];
1966    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
1967    glBindTexture(GL_TEXTURE_2D, tname);
1968    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1969    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1970    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1971    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1972    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1973    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
1974    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1975    glVertexPointer(2, GL_FLOAT, 0, vtx);
1976
1977    /*
1978     * Texture coordinate mapping
1979     *
1980     *                 u
1981     *    1 +----------+---+
1982     *      |     |    |   |  image is inverted
1983     *      |     V    |   |  w.r.t. the texture
1984     *  1-v +----------+   |  coordinates
1985     *      |              |
1986     *      |              |
1987     *      |              |
1988     *    0 +--------------+
1989     *      0              1
1990     *
1991     */
1992
1993    class s_curve_interpolator {
1994        const float nbFrames, s, v;
1995    public:
1996        s_curve_interpolator(int nbFrames, float s)
1997        : nbFrames(1.0f / (nbFrames-1)), s(s),
1998          v(1.0f + expf(-s + 0.5f*s)) {
1999        }
2000        float operator()(int f) {
2001            const float x = f * nbFrames;
2002            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2003        }
2004    };
2005
2006    class v_stretch {
2007        const GLfloat hw_w, hw_h;
2008    public:
2009        v_stretch(uint32_t hw_w, uint32_t hw_h)
2010        : hw_w(hw_w), hw_h(hw_h) {
2011        }
2012        void operator()(GLfloat* vtx, float v) {
2013            const GLfloat w = hw_w + (hw_w * v);
2014            const GLfloat h = hw_h - (hw_h * v);
2015            const GLfloat x = (hw_w - w) * 0.5f;
2016            const GLfloat y = (hw_h - h) * 0.5f;
2017            vtx[0] = x;         vtx[1] = y;
2018            vtx[2] = x;         vtx[3] = y + h;
2019            vtx[4] = x + w;     vtx[5] = y + h;
2020            vtx[6] = x + w;     vtx[7] = y;
2021        }
2022    };
2023
2024    class h_stretch {
2025        const GLfloat hw_w, hw_h;
2026    public:
2027        h_stretch(uint32_t hw_w, uint32_t hw_h)
2028        : hw_w(hw_w), hw_h(hw_h) {
2029        }
2030        void operator()(GLfloat* vtx, float v) {
2031            const GLfloat w = hw_w - (hw_w * v);
2032            const GLfloat h = 1.0f;
2033            const GLfloat x = (hw_w - w) * 0.5f;
2034            const GLfloat y = (hw_h - h) * 0.5f;
2035            vtx[0] = x;         vtx[1] = y;
2036            vtx[2] = x;         vtx[3] = y + h;
2037            vtx[4] = x + w;     vtx[5] = y + h;
2038            vtx[6] = x + w;     vtx[7] = y;
2039        }
2040    };
2041
2042    // the full animation is 24 frames
2043    char value[PROPERTY_VALUE_MAX];
2044    property_get("debug.sf.electron_frames", value, "24");
2045    int nbFrames = (atoi(value) + 1) >> 1;
2046    if (nbFrames <= 0) // just in case
2047        nbFrames = 24;
2048
2049    s_curve_interpolator itr(nbFrames, 7.5f);
2050    s_curve_interpolator itg(nbFrames, 8.0f);
2051    s_curve_interpolator itb(nbFrames, 8.5f);
2052
2053    v_stretch vverts(hw_w, hw_h);
2054
2055    glMatrixMode(GL_TEXTURE);
2056    glLoadIdentity();
2057    glMatrixMode(GL_MODELVIEW);
2058    glLoadIdentity();
2059
2060    glEnable(GL_BLEND);
2061    glBlendFunc(GL_ONE, GL_ONE);
2062    for (int i=0 ; i<nbFrames ; i++) {
2063        float x, y, w, h;
2064        const float vr = itr(i);
2065        const float vg = itg(i);
2066        const float vb = itb(i);
2067
2068        // clear screen
2069        glColorMask(1,1,1,1);
2070        glClear(GL_COLOR_BUFFER_BIT);
2071        glEnable(GL_TEXTURE_2D);
2072
2073        // draw the red plane
2074        vverts(vtx, vr);
2075        glColorMask(1,0,0,1);
2076        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2077
2078        // draw the green plane
2079        vverts(vtx, vg);
2080        glColorMask(0,1,0,1);
2081        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2082
2083        // draw the blue plane
2084        vverts(vtx, vb);
2085        glColorMask(0,0,1,1);
2086        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2087
2088        // draw the white highlight (we use the last vertices)
2089        glDisable(GL_TEXTURE_2D);
2090        glColorMask(1,1,1,1);
2091        glColor4f(vg, vg, vg, 1);
2092        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2093        hw.flip(screenBounds);
2094    }
2095
2096    h_stretch hverts(hw_w, hw_h);
2097    glDisable(GL_BLEND);
2098    glDisable(GL_TEXTURE_2D);
2099    glColorMask(1,1,1,1);
2100    for (int i=0 ; i<nbFrames ; i++) {
2101        const float v = itg(i);
2102        hverts(vtx, v);
2103        glClear(GL_COLOR_BUFFER_BIT);
2104        glColor4f(1-v, 1-v, 1-v, 1);
2105        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2106        hw.flip(screenBounds);
2107    }
2108
2109    glColorMask(1,1,1,1);
2110    glEnable(GL_SCISSOR_TEST);
2111    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2112    glDeleteTextures(1, &tname);
2113    glDisable(GL_TEXTURE_2D);
2114    glDisable(GL_BLEND);
2115    return NO_ERROR;
2116}
2117
2118status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2119{
2120    status_t result = PERMISSION_DENIED;
2121
2122    if (!GLExtensions::getInstance().haveFramebufferObject())
2123        return INVALID_OPERATION;
2124
2125
2126    // get screen geometry
2127    const DisplayHardware& hw(graphicPlane(0).displayHardware());
2128    const uint32_t hw_w = hw.getWidth();
2129    const uint32_t hw_h = hw.getHeight();
2130    const Region screenBounds(hw.bounds());
2131
2132    GLfloat u, v;
2133    GLuint tname;
2134    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2135    if (result != NO_ERROR) {
2136        return result;
2137    }
2138
2139    GLfloat vtx[8];
2140    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2141    glBindTexture(GL_TEXTURE_2D, tname);
2142    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2143    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2144    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2145    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2146    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2147    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2148    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2149    glVertexPointer(2, GL_FLOAT, 0, vtx);
2150
2151    class s_curve_interpolator {
2152        const float nbFrames, s, v;
2153    public:
2154        s_curve_interpolator(int nbFrames, float s)
2155        : nbFrames(1.0f / (nbFrames-1)), s(s),
2156          v(1.0f + expf(-s + 0.5f*s)) {
2157        }
2158        float operator()(int f) {
2159            const float x = f * nbFrames;
2160            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2161        }
2162    };
2163
2164    class v_stretch {
2165        const GLfloat hw_w, hw_h;
2166    public:
2167        v_stretch(uint32_t hw_w, uint32_t hw_h)
2168        : hw_w(hw_w), hw_h(hw_h) {
2169        }
2170        void operator()(GLfloat* vtx, float v) {
2171            const GLfloat w = hw_w + (hw_w * v);
2172            const GLfloat h = hw_h - (hw_h * v);
2173            const GLfloat x = (hw_w - w) * 0.5f;
2174            const GLfloat y = (hw_h - h) * 0.5f;
2175            vtx[0] = x;         vtx[1] = y;
2176            vtx[2] = x;         vtx[3] = y + h;
2177            vtx[4] = x + w;     vtx[5] = y + h;
2178            vtx[6] = x + w;     vtx[7] = y;
2179        }
2180    };
2181
2182    class h_stretch {
2183        const GLfloat hw_w, hw_h;
2184    public:
2185        h_stretch(uint32_t hw_w, uint32_t hw_h)
2186        : hw_w(hw_w), hw_h(hw_h) {
2187        }
2188        void operator()(GLfloat* vtx, float v) {
2189            const GLfloat w = hw_w - (hw_w * v);
2190            const GLfloat h = 1.0f;
2191            const GLfloat x = (hw_w - w) * 0.5f;
2192            const GLfloat y = (hw_h - h) * 0.5f;
2193            vtx[0] = x;         vtx[1] = y;
2194            vtx[2] = x;         vtx[3] = y + h;
2195            vtx[4] = x + w;     vtx[5] = y + h;
2196            vtx[6] = x + w;     vtx[7] = y;
2197        }
2198    };
2199
2200    // the full animation is 12 frames
2201    int nbFrames = 8;
2202    s_curve_interpolator itr(nbFrames, 7.5f);
2203    s_curve_interpolator itg(nbFrames, 8.0f);
2204    s_curve_interpolator itb(nbFrames, 8.5f);
2205
2206    h_stretch hverts(hw_w, hw_h);
2207    glDisable(GL_BLEND);
2208    glDisable(GL_TEXTURE_2D);
2209    glColorMask(1,1,1,1);
2210    for (int i=nbFrames-1 ; i>=0 ; i--) {
2211        const float v = itg(i);
2212        hverts(vtx, v);
2213        glClear(GL_COLOR_BUFFER_BIT);
2214        glColor4f(1-v, 1-v, 1-v, 1);
2215        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2216        hw.flip(screenBounds);
2217    }
2218
2219    nbFrames = 4;
2220    v_stretch vverts(hw_w, hw_h);
2221    glEnable(GL_BLEND);
2222    glBlendFunc(GL_ONE, GL_ONE);
2223    for (int i=nbFrames-1 ; i>=0 ; i--) {
2224        float x, y, w, h;
2225        const float vr = itr(i);
2226        const float vg = itg(i);
2227        const float vb = itb(i);
2228
2229        // clear screen
2230        glColorMask(1,1,1,1);
2231        glClear(GL_COLOR_BUFFER_BIT);
2232        glEnable(GL_TEXTURE_2D);
2233
2234        // draw the red plane
2235        vverts(vtx, vr);
2236        glColorMask(1,0,0,1);
2237        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2238
2239        // draw the green plane
2240        vverts(vtx, vg);
2241        glColorMask(0,1,0,1);
2242        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2243
2244        // draw the blue plane
2245        vverts(vtx, vb);
2246        glColorMask(0,0,1,1);
2247        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2248
2249        hw.flip(screenBounds);
2250    }
2251
2252    glColorMask(1,1,1,1);
2253    glEnable(GL_SCISSOR_TEST);
2254    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2255    glDeleteTextures(1, &tname);
2256    glDisable(GL_TEXTURE_2D);
2257    glDisable(GL_BLEND);
2258
2259    return NO_ERROR;
2260}
2261
2262// ---------------------------------------------------------------------------
2263
2264status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2265{
2266    DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2267    if (!hw.canDraw()) {
2268        // we're already off
2269        return NO_ERROR;
2270    }
2271
2272    // turn off hwc while we're doing the animation
2273    hw.getHwComposer().disable();
2274    // and make sure to turn it back on (if needed) next time we compose
2275    invalidateHwcGeometry();
2276
2277    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2278        electronBeamOffAnimationImplLocked();
2279    }
2280
2281    // always clear the whole screen at the end of the animation
2282    glClearColor(0,0,0,1);
2283    glDisable(GL_SCISSOR_TEST);
2284    glClear(GL_COLOR_BUFFER_BIT);
2285    glEnable(GL_SCISSOR_TEST);
2286    hw.flip( Region(hw.bounds()) );
2287
2288    return NO_ERROR;
2289}
2290
2291status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2292{
2293    class MessageTurnElectronBeamOff : public MessageBase {
2294        SurfaceFlinger* flinger;
2295        int32_t mode;
2296        status_t result;
2297    public:
2298        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2299            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2300        }
2301        status_t getResult() const {
2302            return result;
2303        }
2304        virtual bool handler() {
2305            Mutex::Autolock _l(flinger->mStateLock);
2306            result = flinger->turnElectronBeamOffImplLocked(mode);
2307            return true;
2308        }
2309    };
2310
2311    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2312    status_t res = postMessageSync(msg);
2313    if (res == NO_ERROR) {
2314        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2315
2316        // work-around: when the power-manager calls us we activate the
2317        // animation. eventually, the "on" animation will be called
2318        // by the power-manager itself
2319        mElectronBeamAnimationMode = mode;
2320    }
2321    return res;
2322}
2323
2324// ---------------------------------------------------------------------------
2325
2326status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2327{
2328    DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2329    if (hw.canDraw()) {
2330        // we're already on
2331        return NO_ERROR;
2332    }
2333    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2334        electronBeamOnAnimationImplLocked();
2335    }
2336
2337    // make sure to redraw the whole screen when the animation is done
2338    mDirtyRegion.set(hw.bounds());
2339    signalTransaction();
2340
2341    return NO_ERROR;
2342}
2343
2344status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2345{
2346    class MessageTurnElectronBeamOn : public MessageBase {
2347        SurfaceFlinger* flinger;
2348        int32_t mode;
2349        status_t result;
2350    public:
2351        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2352            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2353        }
2354        status_t getResult() const {
2355            return result;
2356        }
2357        virtual bool handler() {
2358            Mutex::Autolock _l(flinger->mStateLock);
2359            result = flinger->turnElectronBeamOnImplLocked(mode);
2360            return true;
2361        }
2362    };
2363
2364    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2365    return NO_ERROR;
2366}
2367
2368// ---------------------------------------------------------------------------
2369
2370status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2371        sp<IMemoryHeap>* heap,
2372        uint32_t* w, uint32_t* h, PixelFormat* f,
2373        uint32_t sw, uint32_t sh,
2374        uint32_t minLayerZ, uint32_t maxLayerZ)
2375{
2376    ATRACE_CALL();
2377
2378    status_t result = PERMISSION_DENIED;
2379
2380    // only one display supported for now
2381    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2382        return BAD_VALUE;
2383
2384    if (!GLExtensions::getInstance().haveFramebufferObject())
2385        return INVALID_OPERATION;
2386
2387    // get screen geometry
2388    const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
2389    const uint32_t hw_w = hw.getWidth();
2390    const uint32_t hw_h = hw.getHeight();
2391
2392    if ((sw > hw_w) || (sh > hw_h))
2393        return BAD_VALUE;
2394
2395    sw = (!sw) ? hw_w : sw;
2396    sh = (!sh) ? hw_h : sh;
2397    const size_t size = sw * sh * 4;
2398
2399    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2400    //        sw, sh, minLayerZ, maxLayerZ);
2401
2402    // make sure to clear all GL error flags
2403    while ( glGetError() != GL_NO_ERROR ) ;
2404
2405    // create a FBO
2406    GLuint name, tname;
2407    glGenRenderbuffersOES(1, &tname);
2408    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2409    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2410
2411    glGenFramebuffersOES(1, &name);
2412    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2413    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2414            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2415
2416    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2417
2418    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2419
2420        // invert everything, b/c glReadPixel() below will invert the FB
2421        glViewport(0, 0, sw, sh);
2422        glScissor(0, 0, sw, sh);
2423        glEnable(GL_SCISSOR_TEST);
2424        glMatrixMode(GL_PROJECTION);
2425        glPushMatrix();
2426        glLoadIdentity();
2427        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2428        glMatrixMode(GL_MODELVIEW);
2429
2430        // redraw the screen entirely...
2431        glClearColor(0,0,0,1);
2432        glClear(GL_COLOR_BUFFER_BIT);
2433
2434        const LayerVector& layers(mDrawingState.layersSortedByZ);
2435        const size_t count = layers.size();
2436        for (size_t i=0 ; i<count ; ++i) {
2437            const sp<LayerBase>& layer(layers[i]);
2438            const uint32_t flags = layer->drawingState().flags;
2439            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2440                const uint32_t z = layer->drawingState().z;
2441                if (z >= minLayerZ && z <= maxLayerZ) {
2442                    layer->drawForSreenShot();
2443                }
2444            }
2445        }
2446
2447        // XXX: this is needed on tegra
2448        glEnable(GL_SCISSOR_TEST);
2449        glScissor(0, 0, sw, sh);
2450
2451        // check for errors and return screen capture
2452        if (glGetError() != GL_NO_ERROR) {
2453            // error while rendering
2454            result = INVALID_OPERATION;
2455        } else {
2456            // allocate shared memory large enough to hold the
2457            // screen capture
2458            sp<MemoryHeapBase> base(
2459                    new MemoryHeapBase(size, 0, "screen-capture") );
2460            void* const ptr = base->getBase();
2461            if (ptr) {
2462                // capture the screen with glReadPixels()
2463                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2464                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2465                if (glGetError() == GL_NO_ERROR) {
2466                    *heap = base;
2467                    *w = sw;
2468                    *h = sh;
2469                    *f = PIXEL_FORMAT_RGBA_8888;
2470                    result = NO_ERROR;
2471                }
2472            } else {
2473                result = NO_MEMORY;
2474            }
2475        }
2476        glEnable(GL_SCISSOR_TEST);
2477        glViewport(0, 0, hw_w, hw_h);
2478        glMatrixMode(GL_PROJECTION);
2479        glPopMatrix();
2480        glMatrixMode(GL_MODELVIEW);
2481    } else {
2482        result = BAD_VALUE;
2483    }
2484
2485    // release FBO resources
2486    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2487    glDeleteRenderbuffersOES(1, &tname);
2488    glDeleteFramebuffersOES(1, &name);
2489
2490    hw.compositionComplete();
2491
2492    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2493
2494    return result;
2495}
2496
2497
2498status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2499        sp<IMemoryHeap>* heap,
2500        uint32_t* width, uint32_t* height, PixelFormat* format,
2501        uint32_t sw, uint32_t sh,
2502        uint32_t minLayerZ, uint32_t maxLayerZ)
2503{
2504    // only one display supported for now
2505    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2506        return BAD_VALUE;
2507
2508    if (!GLExtensions::getInstance().haveFramebufferObject())
2509        return INVALID_OPERATION;
2510
2511    class MessageCaptureScreen : public MessageBase {
2512        SurfaceFlinger* flinger;
2513        DisplayID dpy;
2514        sp<IMemoryHeap>* heap;
2515        uint32_t* w;
2516        uint32_t* h;
2517        PixelFormat* f;
2518        uint32_t sw;
2519        uint32_t sh;
2520        uint32_t minLayerZ;
2521        uint32_t maxLayerZ;
2522        status_t result;
2523    public:
2524        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2525                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2526                uint32_t sw, uint32_t sh,
2527                uint32_t minLayerZ, uint32_t maxLayerZ)
2528            : flinger(flinger), dpy(dpy),
2529              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2530              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2531              result(PERMISSION_DENIED)
2532        {
2533        }
2534        status_t getResult() const {
2535            return result;
2536        }
2537        virtual bool handler() {
2538            Mutex::Autolock _l(flinger->mStateLock);
2539
2540            // if we have secure windows, never allow the screen capture
2541            if (flinger->mSecureFrameBuffer)
2542                return true;
2543
2544            result = flinger->captureScreenImplLocked(dpy,
2545                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2546
2547            return true;
2548        }
2549    };
2550
2551    sp<MessageBase> msg = new MessageCaptureScreen(this,
2552            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2553    status_t res = postMessageSync(msg);
2554    if (res == NO_ERROR) {
2555        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2556    }
2557    return res;
2558}
2559
2560// ---------------------------------------------------------------------------
2561
2562sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
2563{
2564    sp<Layer> result;
2565    Mutex::Autolock _l(mStateLock);
2566    result = mLayerMap.valueFor( sur->asBinder() ).promote();
2567    return result;
2568}
2569
2570// ---------------------------------------------------------------------------
2571
2572Client::Client(const sp<SurfaceFlinger>& flinger)
2573    : mFlinger(flinger), mNameGenerator(1)
2574{
2575}
2576
2577Client::~Client()
2578{
2579    const size_t count = mLayers.size();
2580    for (size_t i=0 ; i<count ; i++) {
2581        sp<LayerBaseClient> layer(mLayers.valueAt(i).promote());
2582        if (layer != 0) {
2583            mFlinger->removeLayer(layer);
2584        }
2585    }
2586}
2587
2588status_t Client::initCheck() const {
2589    return NO_ERROR;
2590}
2591
2592size_t Client::attachLayer(const sp<LayerBaseClient>& layer)
2593{
2594    Mutex::Autolock _l(mLock);
2595    size_t name = mNameGenerator++;
2596    mLayers.add(name, layer);
2597    return name;
2598}
2599
2600void Client::detachLayer(const LayerBaseClient* layer)
2601{
2602    Mutex::Autolock _l(mLock);
2603    // we do a linear search here, because this doesn't happen often
2604    const size_t count = mLayers.size();
2605    for (size_t i=0 ; i<count ; i++) {
2606        if (mLayers.valueAt(i) == layer) {
2607            mLayers.removeItemsAt(i, 1);
2608            break;
2609        }
2610    }
2611}
2612sp<LayerBaseClient> Client::getLayerUser(int32_t i) const
2613{
2614    Mutex::Autolock _l(mLock);
2615    sp<LayerBaseClient> lbc;
2616    wp<LayerBaseClient> layer(mLayers.valueFor(i));
2617    if (layer != 0) {
2618        lbc = layer.promote();
2619        ALOGE_IF(lbc==0, "getLayerUser(name=%d) is dead", int(i));
2620    }
2621    return lbc;
2622}
2623
2624
2625status_t Client::onTransact(
2626    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2627{
2628    // these must be checked
2629     IPCThreadState* ipc = IPCThreadState::self();
2630     const int pid = ipc->getCallingPid();
2631     const int uid = ipc->getCallingUid();
2632     const int self_pid = getpid();
2633     if (CC_UNLIKELY(pid != self_pid && uid != AID_GRAPHICS && uid != 0)) {
2634         // we're called from a different process, do the real check
2635         if (!PermissionCache::checkCallingPermission(sAccessSurfaceFlinger))
2636         {
2637             ALOGE("Permission Denial: "
2638                     "can't openGlobalTransaction pid=%d, uid=%d", pid, uid);
2639             return PERMISSION_DENIED;
2640         }
2641     }
2642     return BnSurfaceComposerClient::onTransact(code, data, reply, flags);
2643}
2644
2645
2646sp<ISurface> Client::createSurface(
2647        ISurfaceComposerClient::surface_data_t* params,
2648        const String8& name,
2649        DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2650        uint32_t flags)
2651{
2652    /*
2653     * createSurface must be called from the GL thread so that it can
2654     * have access to the GL context.
2655     */
2656
2657    class MessageCreateSurface : public MessageBase {
2658        sp<ISurface> result;
2659        SurfaceFlinger* flinger;
2660        ISurfaceComposerClient::surface_data_t* params;
2661        Client* client;
2662        const String8& name;
2663        DisplayID display;
2664        uint32_t w, h;
2665        PixelFormat format;
2666        uint32_t flags;
2667    public:
2668        MessageCreateSurface(SurfaceFlinger* flinger,
2669                ISurfaceComposerClient::surface_data_t* params,
2670                const String8& name, Client* client,
2671                DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2672                uint32_t flags)
2673            : flinger(flinger), params(params), client(client), name(name),
2674              display(display), w(w), h(h), format(format), flags(flags)
2675        {
2676        }
2677        sp<ISurface> getResult() const { return result; }
2678        virtual bool handler() {
2679            result = flinger->createSurface(params, name, client,
2680                    display, w, h, format, flags);
2681            return true;
2682        }
2683    };
2684
2685    sp<MessageBase> msg = new MessageCreateSurface(mFlinger.get(),
2686            params, name, this, display, w, h, format, flags);
2687    mFlinger->postMessageSync(msg);
2688    return static_cast<MessageCreateSurface*>( msg.get() )->getResult();
2689}
2690status_t Client::destroySurface(SurfaceID sid) {
2691    return mFlinger->removeSurface(this, sid);
2692}
2693
2694// ---------------------------------------------------------------------------
2695
2696GraphicBufferAlloc::GraphicBufferAlloc() {}
2697
2698GraphicBufferAlloc::~GraphicBufferAlloc() {}
2699
2700sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2701        PixelFormat format, uint32_t usage, status_t* error) {
2702    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2703    status_t err = graphicBuffer->initCheck();
2704    *error = err;
2705    if (err != 0 || graphicBuffer->handle == 0) {
2706        if (err == NO_MEMORY) {
2707            GraphicBuffer::dumpAllocationsToSystemLog();
2708        }
2709        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2710             "failed (%s), handle=%p",
2711                w, h, strerror(-err), graphicBuffer->handle);
2712        return 0;
2713    }
2714    return graphicBuffer;
2715}
2716
2717// ---------------------------------------------------------------------------
2718
2719GraphicPlane::GraphicPlane()
2720    : mHw(0)
2721{
2722}
2723
2724GraphicPlane::~GraphicPlane() {
2725    delete mHw;
2726}
2727
2728bool GraphicPlane::initialized() const {
2729    return mHw ? true : false;
2730}
2731
2732int GraphicPlane::getWidth() const {
2733    return mWidth;
2734}
2735
2736int GraphicPlane::getHeight() const {
2737    return mHeight;
2738}
2739
2740void GraphicPlane::setDisplayHardware(DisplayHardware *hw)
2741{
2742    mHw = hw;
2743
2744    // initialize the display orientation transform.
2745    // it's a constant that should come from the display driver.
2746    int displayOrientation = ISurfaceComposer::eOrientationDefault;
2747    char property[PROPERTY_VALUE_MAX];
2748    if (property_get("ro.sf.hwrotation", property, NULL) > 0) {
2749        //displayOrientation
2750        switch (atoi(property)) {
2751        case 90:
2752            displayOrientation = ISurfaceComposer::eOrientation90;
2753            break;
2754        case 270:
2755            displayOrientation = ISurfaceComposer::eOrientation270;
2756            break;
2757        }
2758    }
2759
2760    const float w = hw->getWidth();
2761    const float h = hw->getHeight();
2762    GraphicPlane::orientationToTransfrom(displayOrientation, w, h,
2763            &mDisplayTransform);
2764    if (displayOrientation & ISurfaceComposer::eOrientationSwapMask) {
2765        mDisplayWidth = h;
2766        mDisplayHeight = w;
2767    } else {
2768        mDisplayWidth = w;
2769        mDisplayHeight = h;
2770    }
2771
2772    setOrientation(ISurfaceComposer::eOrientationDefault);
2773}
2774
2775status_t GraphicPlane::orientationToTransfrom(
2776        int orientation, int w, int h, Transform* tr)
2777{
2778    uint32_t flags = 0;
2779    switch (orientation) {
2780    case ISurfaceComposer::eOrientationDefault:
2781        flags = Transform::ROT_0;
2782        break;
2783    case ISurfaceComposer::eOrientation90:
2784        flags = Transform::ROT_90;
2785        break;
2786    case ISurfaceComposer::eOrientation180:
2787        flags = Transform::ROT_180;
2788        break;
2789    case ISurfaceComposer::eOrientation270:
2790        flags = Transform::ROT_270;
2791        break;
2792    default:
2793        return BAD_VALUE;
2794    }
2795    tr->set(flags, w, h);
2796    return NO_ERROR;
2797}
2798
2799status_t GraphicPlane::setOrientation(int orientation)
2800{
2801    // If the rotation can be handled in hardware, this is where
2802    // the magic should happen.
2803
2804    const DisplayHardware& hw(displayHardware());
2805    const float w = mDisplayWidth;
2806    const float h = mDisplayHeight;
2807    mWidth = int(w);
2808    mHeight = int(h);
2809
2810    Transform orientationTransform;
2811    GraphicPlane::orientationToTransfrom(orientation, w, h,
2812            &orientationTransform);
2813    if (orientation & ISurfaceComposer::eOrientationSwapMask) {
2814        mWidth = int(h);
2815        mHeight = int(w);
2816    }
2817
2818    mOrientation = orientation;
2819    mGlobalTransform = mDisplayTransform * orientationTransform;
2820    return NO_ERROR;
2821}
2822
2823const DisplayHardware& GraphicPlane::displayHardware() const {
2824    return *mHw;
2825}
2826
2827DisplayHardware& GraphicPlane::editDisplayHardware() {
2828    return *mHw;
2829}
2830
2831const Transform& GraphicPlane::transform() const {
2832    return mGlobalTransform;
2833}
2834
2835EGLDisplay GraphicPlane::getEGLDisplay() const {
2836    return mHw->getEGLDisplay();
2837}
2838
2839// ---------------------------------------------------------------------------
2840
2841}; // namespace android
2842