hashtable_policy.h revision 11cd02dfb91661c65134cac258cf5924270e9d2b
1// Internal policy header for unordered_set and unordered_map -*- C++ -*-
2
3// Copyright (C) 2010-2014 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/hashtable_policy.h
26 *  This is an internal header file, included by other library headers.
27 *  Do not attempt to use it directly.
28 *  @headername{unordered_map,unordered_set}
29 */
30
31#ifndef _HASHTABLE_POLICY_H
32#define _HASHTABLE_POLICY_H 1
33
34namespace std _GLIBCXX_VISIBILITY(default)
35{
36_GLIBCXX_BEGIN_NAMESPACE_VERSION
37
38  template<typename _Key, typename _Value, typename _Alloc,
39	   typename _ExtractKey, typename _Equal,
40	   typename _H1, typename _H2, typename _Hash,
41	   typename _RehashPolicy, typename _Traits>
42    class _Hashtable;
43
44_GLIBCXX_END_NAMESPACE_VERSION
45
46namespace __detail
47{
48_GLIBCXX_BEGIN_NAMESPACE_VERSION
49
50  /**
51   *  @defgroup hashtable-detail Base and Implementation Classes
52   *  @ingroup unordered_associative_containers
53   *  @{
54   */
55  template<typename _Key, typename _Value,
56	   typename _ExtractKey, typename _Equal,
57	   typename _H1, typename _H2, typename _Hash, typename _Traits>
58    struct _Hashtable_base;
59
60  // Helper function: return distance(first, last) for forward
61  // iterators, or 0 for input iterators.
62  template<class _Iterator>
63    inline typename std::iterator_traits<_Iterator>::difference_type
64    __distance_fw(_Iterator __first, _Iterator __last,
65		  std::input_iterator_tag)
66    { return 0; }
67
68  template<class _Iterator>
69    inline typename std::iterator_traits<_Iterator>::difference_type
70    __distance_fw(_Iterator __first, _Iterator __last,
71		  std::forward_iterator_tag)
72    { return std::distance(__first, __last); }
73
74  template<class _Iterator>
75    inline typename std::iterator_traits<_Iterator>::difference_type
76    __distance_fw(_Iterator __first, _Iterator __last)
77    {
78      typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
79      return __distance_fw(__first, __last, _Tag());
80    }
81
82  // Helper type used to detect whether the hash functor is noexcept.
83  template <typename _Key, typename _Hash>
84    struct __is_noexcept_hash : std::integral_constant<bool,
85	noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
86    { };
87
88  struct _Identity
89  {
90    template<typename _Tp>
91      _Tp&&
92      operator()(_Tp&& __x) const
93      { return std::forward<_Tp>(__x); }
94  };
95
96  struct _Select1st
97  {
98    template<typename _Tp>
99      auto
100      operator()(_Tp&& __x) const
101      -> decltype(std::get<0>(std::forward<_Tp>(__x)))
102      { return std::get<0>(std::forward<_Tp>(__x)); }
103  };
104
105  template<typename _NodeAlloc>
106    struct _Hashtable_alloc;
107
108  // Functor recycling a pool of nodes and using allocation once the pool is
109  // empty.
110  template<typename _NodeAlloc>
111    struct _ReuseOrAllocNode
112    {
113    private:
114      using __node_alloc_type = _NodeAlloc;
115      using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
116      using __value_alloc_type = typename __hashtable_alloc::__value_alloc_type;
117      using __value_alloc_traits =
118	typename __hashtable_alloc::__value_alloc_traits;
119      using __node_alloc_traits =
120	typename __hashtable_alloc::__node_alloc_traits;
121      using __node_type = typename __hashtable_alloc::__node_type;
122
123    public:
124      _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
125	: _M_nodes(__nodes), _M_h(__h) { }
126      _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
127
128      ~_ReuseOrAllocNode()
129      { _M_h._M_deallocate_nodes(_M_nodes); }
130
131      template<typename _Arg>
132	__node_type*
133	operator()(_Arg&& __arg) const
134	{
135	  if (_M_nodes)
136	    {
137	      __node_type* __node = _M_nodes;
138	      _M_nodes = _M_nodes->_M_next();
139	      __node->_M_nxt = nullptr;
140	      __value_alloc_type __a(_M_h._M_node_allocator());
141	      __value_alloc_traits::destroy(__a, __node->_M_valptr());
142	      __try
143		{
144		  __value_alloc_traits::construct(__a, __node->_M_valptr(),
145						  std::forward<_Arg>(__arg));
146		}
147	      __catch(...)
148		{
149		  __node->~__node_type();
150		  __node_alloc_traits::deallocate(_M_h._M_node_allocator(),
151						  __node, 1);
152		  __throw_exception_again;
153		}
154	      return __node;
155	    }
156	  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
157	}
158
159    private:
160      mutable __node_type* _M_nodes;
161      __hashtable_alloc& _M_h;
162    };
163
164  // Functor similar to the previous one but without any pool of nodes to
165  // recycle.
166  template<typename _NodeAlloc>
167    struct _AllocNode
168    {
169    private:
170      using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
171      using __node_type = typename __hashtable_alloc::__node_type;
172
173    public:
174      _AllocNode(__hashtable_alloc& __h)
175	: _M_h(__h) { }
176
177      template<typename _Arg>
178	__node_type*
179	operator()(_Arg&& __arg) const
180	{ return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
181
182    private:
183      __hashtable_alloc& _M_h;
184    };
185
186  // Auxiliary types used for all instantiations of _Hashtable nodes
187  // and iterators.
188
189  /**
190   *  struct _Hashtable_traits
191   *
192   *  Important traits for hash tables.
193   *
194   *  @tparam _Cache_hash_code  Boolean value. True if the value of
195   *  the hash function is stored along with the value. This is a
196   *  time-space tradeoff.  Storing it may improve lookup speed by
197   *  reducing the number of times we need to call the _Equal
198   *  function.
199   *
200   *  @tparam _Constant_iterators  Boolean value. True if iterator and
201   *  const_iterator are both constant iterator types. This is true
202   *  for unordered_set and unordered_multiset, false for
203   *  unordered_map and unordered_multimap.
204   *
205   *  @tparam _Unique_keys  Boolean value. True if the return value
206   *  of _Hashtable::count(k) is always at most one, false if it may
207   *  be an arbitrary number. This is true for unordered_set and
208   *  unordered_map, false for unordered_multiset and
209   *  unordered_multimap.
210   */
211  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
212    struct _Hashtable_traits
213    {
214      template<bool _Cond>
215	using __bool_constant = integral_constant<bool, _Cond>;
216
217      using __hash_cached = __bool_constant<_Cache_hash_code>;
218      using __constant_iterators = __bool_constant<_Constant_iterators>;
219      using __unique_keys = __bool_constant<_Unique_keys>;
220    };
221
222  /**
223   *  struct _Hash_node_base
224   *
225   *  Nodes, used to wrap elements stored in the hash table.  A policy
226   *  template parameter of class template _Hashtable controls whether
227   *  nodes also store a hash code. In some cases (e.g. strings) this
228   *  may be a performance win.
229   */
230  struct _Hash_node_base
231  {
232    _Hash_node_base* _M_nxt;
233
234    _Hash_node_base() noexcept : _M_nxt() { }
235
236    _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
237  };
238
239  /**
240   *  struct _Hash_node_value_base
241   *
242   *  Node type with the value to store.
243   */
244  template<typename _Value>
245    struct _Hash_node_value_base : _Hash_node_base
246    {
247      typedef _Value value_type;
248
249      __gnu_cxx::__aligned_buffer<_Value> _M_storage;
250
251      _Value*
252      _M_valptr() noexcept
253      { return _M_storage._M_ptr(); }
254
255      const _Value*
256      _M_valptr() const noexcept
257      { return _M_storage._M_ptr(); }
258
259      _Value&
260      _M_v() noexcept
261      { return *_M_valptr(); }
262
263      const _Value&
264      _M_v() const noexcept
265      { return *_M_valptr(); }
266    };
267
268  /**
269   *  Primary template struct _Hash_node.
270   */
271  template<typename _Value, bool _Cache_hash_code>
272    struct _Hash_node;
273
274  /**
275   *  Specialization for nodes with caches, struct _Hash_node.
276   *
277   *  Base class is __detail::_Hash_node_value_base.
278   */
279  template<typename _Value>
280    struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
281    {
282      std::size_t  _M_hash_code;
283
284      _Hash_node*
285      _M_next() const noexcept
286      { return static_cast<_Hash_node*>(this->_M_nxt); }
287    };
288
289  /**
290   *  Specialization for nodes without caches, struct _Hash_node.
291   *
292   *  Base class is __detail::_Hash_node_value_base.
293   */
294  template<typename _Value>
295    struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
296    {
297      _Hash_node*
298      _M_next() const noexcept
299      { return static_cast<_Hash_node*>(this->_M_nxt); }
300    };
301
302  /// Base class for node iterators.
303  template<typename _Value, bool _Cache_hash_code>
304    struct _Node_iterator_base
305    {
306      using __node_type = _Hash_node<_Value, _Cache_hash_code>;
307
308      __node_type*  _M_cur;
309
310      _Node_iterator_base(__node_type* __p) noexcept
311      : _M_cur(__p) { }
312
313      void
314      _M_incr() noexcept
315      { _M_cur = _M_cur->_M_next(); }
316    };
317
318  template<typename _Value, bool _Cache_hash_code>
319    inline bool
320    operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
321	       const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
322    noexcept
323    { return __x._M_cur == __y._M_cur; }
324
325  template<typename _Value, bool _Cache_hash_code>
326    inline bool
327    operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
328	       const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
329    noexcept
330    { return __x._M_cur != __y._M_cur; }
331
332  /// Node iterators, used to iterate through all the hashtable.
333  template<typename _Value, bool __constant_iterators, bool __cache>
334    struct _Node_iterator
335    : public _Node_iterator_base<_Value, __cache>
336    {
337    private:
338      using __base_type = _Node_iterator_base<_Value, __cache>;
339      using __node_type = typename __base_type::__node_type;
340
341    public:
342      typedef _Value					value_type;
343      typedef std::ptrdiff_t				difference_type;
344      typedef std::forward_iterator_tag			iterator_category;
345
346      using pointer = typename std::conditional<__constant_iterators,
347						const _Value*, _Value*>::type;
348
349      using reference = typename std::conditional<__constant_iterators,
350						  const _Value&, _Value&>::type;
351
352      _Node_iterator() noexcept
353      : __base_type(0) { }
354
355      explicit
356      _Node_iterator(__node_type* __p) noexcept
357      : __base_type(__p) { }
358
359      reference
360      operator*() const noexcept
361      { return this->_M_cur->_M_v(); }
362
363      pointer
364      operator->() const noexcept
365      { return this->_M_cur->_M_valptr(); }
366
367      _Node_iterator&
368      operator++() noexcept
369      {
370	this->_M_incr();
371	return *this;
372      }
373
374      _Node_iterator
375      operator++(int) noexcept
376      {
377	_Node_iterator __tmp(*this);
378	this->_M_incr();
379	return __tmp;
380      }
381    };
382
383  /// Node const_iterators, used to iterate through all the hashtable.
384  template<typename _Value, bool __constant_iterators, bool __cache>
385    struct _Node_const_iterator
386    : public _Node_iterator_base<_Value, __cache>
387    {
388    private:
389      using __base_type = _Node_iterator_base<_Value, __cache>;
390      using __node_type = typename __base_type::__node_type;
391
392    public:
393      typedef _Value					value_type;
394      typedef std::ptrdiff_t				difference_type;
395      typedef std::forward_iterator_tag			iterator_category;
396
397      typedef const _Value*				pointer;
398      typedef const _Value&				reference;
399
400      _Node_const_iterator() noexcept
401      : __base_type(0) { }
402
403      explicit
404      _Node_const_iterator(__node_type* __p) noexcept
405      : __base_type(__p) { }
406
407      _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
408			   __cache>& __x) noexcept
409      : __base_type(__x._M_cur) { }
410
411      reference
412      operator*() const noexcept
413      { return this->_M_cur->_M_v(); }
414
415      pointer
416      operator->() const noexcept
417      { return this->_M_cur->_M_valptr(); }
418
419      _Node_const_iterator&
420      operator++() noexcept
421      {
422	this->_M_incr();
423	return *this;
424      }
425
426      _Node_const_iterator
427      operator++(int) noexcept
428      {
429	_Node_const_iterator __tmp(*this);
430	this->_M_incr();
431	return __tmp;
432      }
433    };
434
435  // Many of class template _Hashtable's template parameters are policy
436  // classes.  These are defaults for the policies.
437
438  /// Default range hashing function: use division to fold a large number
439  /// into the range [0, N).
440  struct _Mod_range_hashing
441  {
442    typedef std::size_t first_argument_type;
443    typedef std::size_t second_argument_type;
444    typedef std::size_t result_type;
445
446    result_type
447    operator()(first_argument_type __num,
448	       second_argument_type __den) const noexcept
449    { return __num % __den; }
450  };
451
452  /// Default ranged hash function H.  In principle it should be a
453  /// function object composed from objects of type H1 and H2 such that
454  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
455  /// h1 and h2.  So instead we'll just use a tag to tell class template
456  /// hashtable to do that composition.
457  struct _Default_ranged_hash { };
458
459  /// Default value for rehash policy.  Bucket size is (usually) the
460  /// smallest prime that keeps the load factor small enough.
461  struct _Prime_rehash_policy
462  {
463    _Prime_rehash_policy(float __z = 1.0)
464    : _M_max_load_factor(__z), _M_next_resize(0) { }
465
466    float
467    max_load_factor() const noexcept
468    { return _M_max_load_factor; }
469
470    // Return a bucket size no smaller than n.
471    std::size_t
472    _M_next_bkt(std::size_t __n) const;
473
474    // Return a bucket count appropriate for n elements
475    std::size_t
476    _M_bkt_for_elements(std::size_t __n) const
477    { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
478
479    // __n_bkt is current bucket count, __n_elt is current element count,
480    // and __n_ins is number of elements to be inserted.  Do we need to
481    // increase bucket count?  If so, return make_pair(true, n), where n
482    // is the new bucket count.  If not, return make_pair(false, 0).
483    std::pair<bool, std::size_t>
484    _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
485		   std::size_t __n_ins) const;
486
487    typedef std::size_t _State;
488
489    _State
490    _M_state() const
491    { return _M_next_resize; }
492
493    void
494    _M_reset() noexcept
495    { _M_next_resize = 0; }
496
497    void
498    _M_reset(_State __state)
499    { _M_next_resize = __state; }
500
501    enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
502
503    static const std::size_t _S_growth_factor = 2;
504
505    float		_M_max_load_factor;
506    mutable std::size_t	_M_next_resize;
507  };
508
509  // Base classes for std::_Hashtable.  We define these base classes
510  // because in some cases we want to do different things depending on
511  // the value of a policy class.  In some cases the policy class
512  // affects which member functions and nested typedefs are defined;
513  // we handle that by specializing base class templates.  Several of
514  // the base class templates need to access other members of class
515  // template _Hashtable, so we use a variant of the "Curiously
516  // Recurring Template Pattern" (CRTP) technique.
517
518  /**
519   *  Primary class template _Map_base.
520   *
521   *  If the hashtable has a value type of the form pair<T1, T2> and a
522   *  key extraction policy (_ExtractKey) that returns the first part
523   *  of the pair, the hashtable gets a mapped_type typedef.  If it
524   *  satisfies those criteria and also has unique keys, then it also
525   *  gets an operator[].
526   */
527  template<typename _Key, typename _Value, typename _Alloc,
528	   typename _ExtractKey, typename _Equal,
529	   typename _H1, typename _H2, typename _Hash,
530	   typename _RehashPolicy, typename _Traits,
531	   bool _Unique_keys = _Traits::__unique_keys::value>
532    struct _Map_base { };
533
534  /// Partial specialization, __unique_keys set to false.
535  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
536	   typename _H1, typename _H2, typename _Hash,
537	   typename _RehashPolicy, typename _Traits>
538    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
539		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
540    {
541      using mapped_type = typename std::tuple_element<1, _Pair>::type;
542    };
543
544  /// Partial specialization, __unique_keys set to true.
545  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
546	   typename _H1, typename _H2, typename _Hash,
547	   typename _RehashPolicy, typename _Traits>
548    struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
549		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
550    {
551    private:
552      using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
553							 _Select1st,
554							_Equal, _H1, _H2, _Hash,
555							  _Traits>;
556
557      using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
558				     _Select1st, _Equal,
559				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
560
561      using __hash_code = typename __hashtable_base::__hash_code;
562      using __node_type = typename __hashtable_base::__node_type;
563
564    public:
565      using key_type = typename __hashtable_base::key_type;
566      using iterator = typename __hashtable_base::iterator;
567      using mapped_type = typename std::tuple_element<1, _Pair>::type;
568
569      mapped_type&
570      operator[](const key_type& __k);
571
572      mapped_type&
573      operator[](key_type&& __k);
574
575      // _GLIBCXX_RESOLVE_LIB_DEFECTS
576      // DR 761. unordered_map needs an at() member function.
577      mapped_type&
578      at(const key_type& __k);
579
580      const mapped_type&
581      at(const key_type& __k) const;
582    };
583
584  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
585	   typename _H1, typename _H2, typename _Hash,
586	   typename _RehashPolicy, typename _Traits>
587    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
588		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
589		       ::mapped_type&
590    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
591	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
592    operator[](const key_type& __k)
593    {
594      __hashtable* __h = static_cast<__hashtable*>(this);
595      __hash_code __code = __h->_M_hash_code(__k);
596      std::size_t __n = __h->_M_bucket_index(__k, __code);
597      __node_type* __p = __h->_M_find_node(__n, __k, __code);
598
599      if (!__p)
600	{
601	  __p = __h->_M_allocate_node(std::piecewise_construct,
602				      std::tuple<const key_type&>(__k),
603				      std::tuple<>());
604	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
605	}
606
607      return __p->_M_v().second;
608    }
609
610  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
611	   typename _H1, typename _H2, typename _Hash,
612	   typename _RehashPolicy, typename _Traits>
613    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
614		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
615		       ::mapped_type&
616    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
617	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
618    operator[](key_type&& __k)
619    {
620      __hashtable* __h = static_cast<__hashtable*>(this);
621      __hash_code __code = __h->_M_hash_code(__k);
622      std::size_t __n = __h->_M_bucket_index(__k, __code);
623      __node_type* __p = __h->_M_find_node(__n, __k, __code);
624
625      if (!__p)
626	{
627	  __p = __h->_M_allocate_node(std::piecewise_construct,
628				      std::forward_as_tuple(std::move(__k)),
629				      std::tuple<>());
630	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
631	}
632
633      return __p->_M_v().second;
634    }
635
636  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
637	   typename _H1, typename _H2, typename _Hash,
638	   typename _RehashPolicy, typename _Traits>
639    typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
640		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
641		       ::mapped_type&
642    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
643	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
644    at(const key_type& __k)
645    {
646      __hashtable* __h = static_cast<__hashtable*>(this);
647      __hash_code __code = __h->_M_hash_code(__k);
648      std::size_t __n = __h->_M_bucket_index(__k, __code);
649      __node_type* __p = __h->_M_find_node(__n, __k, __code);
650
651      if (!__p)
652	__throw_out_of_range(__N("_Map_base::at"));
653      return __p->_M_v().second;
654    }
655
656  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
657	   typename _H1, typename _H2, typename _Hash,
658	   typename _RehashPolicy, typename _Traits>
659    const typename _Map_base<_Key, _Pair, _Alloc, _Select1st,
660			     _Equal, _H1, _H2, _Hash, _RehashPolicy,
661			     _Traits, true>::mapped_type&
662    _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
663	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
664    at(const key_type& __k) const
665    {
666      const __hashtable* __h = static_cast<const __hashtable*>(this);
667      __hash_code __code = __h->_M_hash_code(__k);
668      std::size_t __n = __h->_M_bucket_index(__k, __code);
669      __node_type* __p = __h->_M_find_node(__n, __k, __code);
670
671      if (!__p)
672	__throw_out_of_range(__N("_Map_base::at"));
673      return __p->_M_v().second;
674    }
675
676  /**
677   *  Primary class template _Insert_base.
678   *
679   *  insert member functions appropriate to all _Hashtables.
680   */
681  template<typename _Key, typename _Value, typename _Alloc,
682	   typename _ExtractKey, typename _Equal,
683	   typename _H1, typename _H2, typename _Hash,
684	   typename _RehashPolicy, typename _Traits>
685    struct _Insert_base
686    {
687    protected:
688      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
689				     _Equal, _H1, _H2, _Hash,
690				     _RehashPolicy, _Traits>;
691
692      using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
693					       _Equal, _H1, _H2, _Hash,
694					       _Traits>;
695
696      using value_type = typename __hashtable_base::value_type;
697      using iterator = typename __hashtable_base::iterator;
698      using const_iterator =  typename __hashtable_base::const_iterator;
699      using size_type = typename __hashtable_base::size_type;
700
701      using __unique_keys = typename __hashtable_base::__unique_keys;
702      using __ireturn_type = typename __hashtable_base::__ireturn_type;
703      using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
704      using __node_alloc_type =
705	typename __alloctr_rebind<_Alloc, __node_type>::__type;
706      using __node_gen_type = _AllocNode<__node_alloc_type>;
707
708      __hashtable&
709      _M_conjure_hashtable()
710      { return *(static_cast<__hashtable*>(this)); }
711
712      template<typename _InputIterator, typename _NodeGetter>
713	void
714	_M_insert_range(_InputIterator __first, _InputIterator __last,
715			const _NodeGetter&);
716
717    public:
718      __ireturn_type
719      insert(const value_type& __v)
720      {
721	__hashtable& __h = _M_conjure_hashtable();
722	__node_gen_type __node_gen(__h);
723	return __h._M_insert(__v, __node_gen, __unique_keys());
724      }
725
726      iterator
727      insert(const_iterator __hint, const value_type& __v)
728      {
729	__hashtable& __h = _M_conjure_hashtable();
730	__node_gen_type __node_gen(__h);
731	return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
732      }
733
734      void
735      insert(initializer_list<value_type> __l)
736      { this->insert(__l.begin(), __l.end()); }
737
738      template<typename _InputIterator>
739	void
740	insert(_InputIterator __first, _InputIterator __last)
741	{
742	  __hashtable& __h = _M_conjure_hashtable();
743	  __node_gen_type __node_gen(__h);
744	  return _M_insert_range(__first, __last, __node_gen);
745	}
746    };
747
748  template<typename _Key, typename _Value, typename _Alloc,
749	   typename _ExtractKey, typename _Equal,
750	   typename _H1, typename _H2, typename _Hash,
751	   typename _RehashPolicy, typename _Traits>
752    template<typename _InputIterator, typename _NodeGetter>
753      void
754      _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
755		    _RehashPolicy, _Traits>::
756      _M_insert_range(_InputIterator __first, _InputIterator __last,
757		      const _NodeGetter& __node_gen)
758      {
759	using __rehash_type = typename __hashtable::__rehash_type;
760	using __rehash_state = typename __hashtable::__rehash_state;
761	using pair_type = std::pair<bool, std::size_t>;
762
763	size_type __n_elt = __detail::__distance_fw(__first, __last);
764
765	__hashtable& __h = _M_conjure_hashtable();
766	__rehash_type& __rehash = __h._M_rehash_policy;
767	const __rehash_state& __saved_state = __rehash._M_state();
768	pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
769							__h._M_element_count,
770							__n_elt);
771
772	if (__do_rehash.first)
773	  __h._M_rehash(__do_rehash.second, __saved_state);
774
775	for (; __first != __last; ++__first)
776	  __h._M_insert(*__first, __node_gen, __unique_keys());
777      }
778
779  /**
780   *  Primary class template _Insert.
781   *
782   *  Select insert member functions appropriate to _Hashtable policy choices.
783   */
784  template<typename _Key, typename _Value, typename _Alloc,
785	   typename _ExtractKey, typename _Equal,
786	   typename _H1, typename _H2, typename _Hash,
787	   typename _RehashPolicy, typename _Traits,
788	   bool _Constant_iterators = _Traits::__constant_iterators::value,
789	   bool _Unique_keys = _Traits::__unique_keys::value>
790    struct _Insert;
791
792  /// Specialization.
793  template<typename _Key, typename _Value, typename _Alloc,
794	   typename _ExtractKey, typename _Equal,
795	   typename _H1, typename _H2, typename _Hash,
796	   typename _RehashPolicy, typename _Traits>
797    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
798		   _RehashPolicy, _Traits, true, true>
799    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
800			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
801    {
802      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
803					_Equal, _H1, _H2, _Hash,
804					_RehashPolicy, _Traits>;
805      using value_type = typename __base_type::value_type;
806      using iterator = typename __base_type::iterator;
807      using const_iterator =  typename __base_type::const_iterator;
808
809      using __unique_keys = typename __base_type::__unique_keys;
810      using __hashtable = typename __base_type::__hashtable;
811      using __node_gen_type = typename __base_type::__node_gen_type;
812
813      using __base_type::insert;
814
815      std::pair<iterator, bool>
816      insert(value_type&& __v)
817      {
818	__hashtable& __h = this->_M_conjure_hashtable();
819	__node_gen_type __node_gen(__h);
820	return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
821      }
822
823      iterator
824      insert(const_iterator __hint, value_type&& __v)
825      {
826	__hashtable& __h = this->_M_conjure_hashtable();
827	__node_gen_type __node_gen(__h);
828	return __h._M_insert(__hint, std::move(__v), __node_gen,
829			     __unique_keys());
830      }
831    };
832
833  /// Specialization.
834  template<typename _Key, typename _Value, typename _Alloc,
835	   typename _ExtractKey, typename _Equal,
836	   typename _H1, typename _H2, typename _Hash,
837	   typename _RehashPolicy, typename _Traits>
838    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
839		   _RehashPolicy, _Traits, true, false>
840    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
841			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
842    {
843      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
844					_Equal, _H1, _H2, _Hash,
845					_RehashPolicy, _Traits>;
846      using value_type = typename __base_type::value_type;
847      using iterator = typename __base_type::iterator;
848      using const_iterator =  typename __base_type::const_iterator;
849
850      using __unique_keys = typename __base_type::__unique_keys;
851      using __hashtable = typename __base_type::__hashtable;
852      using __node_gen_type = typename __base_type::__node_gen_type;
853
854      using __base_type::insert;
855
856      iterator
857      insert(value_type&& __v)
858      {
859	__hashtable& __h = this->_M_conjure_hashtable();
860	__node_gen_type __node_gen(__h);
861	return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
862      }
863
864      iterator
865      insert(const_iterator __hint, value_type&& __v)
866      {
867	__hashtable& __h = this->_M_conjure_hashtable();
868	__node_gen_type __node_gen(__h);
869	return __h._M_insert(__hint, std::move(__v), __node_gen,
870			     __unique_keys());
871      }
872    };
873
874  /// Specialization.
875  template<typename _Key, typename _Value, typename _Alloc,
876	   typename _ExtractKey, typename _Equal,
877	   typename _H1, typename _H2, typename _Hash,
878	   typename _RehashPolicy, typename _Traits, bool _Unique_keys>
879    struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
880		   _RehashPolicy, _Traits, false, _Unique_keys>
881    : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
882			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
883    {
884      using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
885				       _Equal, _H1, _H2, _Hash,
886				       _RehashPolicy, _Traits>;
887      using value_type = typename __base_type::value_type;
888      using iterator = typename __base_type::iterator;
889      using const_iterator =  typename __base_type::const_iterator;
890
891      using __unique_keys = typename __base_type::__unique_keys;
892      using __hashtable = typename __base_type::__hashtable;
893      using __ireturn_type = typename __base_type::__ireturn_type;
894
895      using __base_type::insert;
896
897      template<typename _Pair>
898	using __is_cons = std::is_constructible<value_type, _Pair&&>;
899
900      template<typename _Pair>
901	using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
902
903      template<typename _Pair>
904	using _IFconsp = typename _IFcons<_Pair>::type;
905
906      template<typename _Pair, typename = _IFconsp<_Pair>>
907	__ireturn_type
908	insert(_Pair&& __v)
909	{
910	  __hashtable& __h = this->_M_conjure_hashtable();
911	  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
912	}
913
914      template<typename _Pair, typename = _IFconsp<_Pair>>
915	iterator
916	insert(const_iterator __hint, _Pair&& __v)
917	{
918	  __hashtable& __h = this->_M_conjure_hashtable();
919	  return __h._M_emplace(__hint, __unique_keys(),
920				std::forward<_Pair>(__v));
921	}
922   };
923
924  /**
925   *  Primary class template  _Rehash_base.
926   *
927   *  Give hashtable the max_load_factor functions and reserve iff the
928   *  rehash policy is _Prime_rehash_policy.
929  */
930  template<typename _Key, typename _Value, typename _Alloc,
931	   typename _ExtractKey, typename _Equal,
932	   typename _H1, typename _H2, typename _Hash,
933	   typename _RehashPolicy, typename _Traits>
934    struct _Rehash_base;
935
936  /// Specialization.
937  template<typename _Key, typename _Value, typename _Alloc,
938	   typename _ExtractKey, typename _Equal,
939	   typename _H1, typename _H2, typename _Hash, typename _Traits>
940    struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
941			_H1, _H2, _Hash, _Prime_rehash_policy, _Traits>
942    {
943      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
944				     _Equal, _H1, _H2, _Hash,
945				     _Prime_rehash_policy, _Traits>;
946
947      float
948      max_load_factor() const noexcept
949      {
950	const __hashtable* __this = static_cast<const __hashtable*>(this);
951	return __this->__rehash_policy().max_load_factor();
952      }
953
954      void
955      max_load_factor(float __z)
956      {
957	__hashtable* __this = static_cast<__hashtable*>(this);
958	__this->__rehash_policy(_Prime_rehash_policy(__z));
959      }
960
961      void
962      reserve(std::size_t __n)
963      {
964	__hashtable* __this = static_cast<__hashtable*>(this);
965	__this->rehash(__builtin_ceil(__n / max_load_factor()));
966      }
967    };
968
969  /**
970   *  Primary class template _Hashtable_ebo_helper.
971   *
972   *  Helper class using EBO when it is not forbidden (the type is not
973   *  final) and when it is worth it (the type is empty.)
974   */
975  template<int _Nm, typename _Tp,
976	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
977    struct _Hashtable_ebo_helper;
978
979  /// Specialization using EBO.
980  template<int _Nm, typename _Tp>
981    struct _Hashtable_ebo_helper<_Nm, _Tp, true>
982    : private _Tp
983    {
984      _Hashtable_ebo_helper() = default;
985
986      template<typename _OtherTp>
987	_Hashtable_ebo_helper(_OtherTp&& __tp)
988	  : _Tp(std::forward<_OtherTp>(__tp))
989	{ }
990
991      static const _Tp&
992      _S_cget(const _Hashtable_ebo_helper& __eboh)
993      { return static_cast<const _Tp&>(__eboh); }
994
995      static _Tp&
996      _S_get(_Hashtable_ebo_helper& __eboh)
997      { return static_cast<_Tp&>(__eboh); }
998    };
999
1000  /// Specialization not using EBO.
1001  template<int _Nm, typename _Tp>
1002    struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1003    {
1004      _Hashtable_ebo_helper() = default;
1005
1006      template<typename _OtherTp>
1007	_Hashtable_ebo_helper(_OtherTp&& __tp)
1008	  : _M_tp(std::forward<_OtherTp>(__tp))
1009	{ }
1010
1011      static const _Tp&
1012      _S_cget(const _Hashtable_ebo_helper& __eboh)
1013      { return __eboh._M_tp; }
1014
1015      static _Tp&
1016      _S_get(_Hashtable_ebo_helper& __eboh)
1017      { return __eboh._M_tp; }
1018
1019    private:
1020      _Tp _M_tp;
1021    };
1022
1023  /**
1024   *  Primary class template _Local_iterator_base.
1025   *
1026   *  Base class for local iterators, used to iterate within a bucket
1027   *  but not between buckets.
1028   */
1029  template<typename _Key, typename _Value, typename _ExtractKey,
1030	   typename _H1, typename _H2, typename _Hash,
1031	   bool __cache_hash_code>
1032    struct _Local_iterator_base;
1033
1034  /**
1035   *  Primary class template _Hash_code_base.
1036   *
1037   *  Encapsulates two policy issues that aren't quite orthogonal.
1038   *   (1) the difference between using a ranged hash function and using
1039   *       the combination of a hash function and a range-hashing function.
1040   *       In the former case we don't have such things as hash codes, so
1041   *       we have a dummy type as placeholder.
1042   *   (2) Whether or not we cache hash codes.  Caching hash codes is
1043   *       meaningless if we have a ranged hash function.
1044   *
1045   *  We also put the key extraction objects here, for convenience.
1046   *  Each specialization derives from one or more of the template
1047   *  parameters to benefit from Ebo. This is important as this type
1048   *  is inherited in some cases by the _Local_iterator_base type used
1049   *  to implement local_iterator and const_local_iterator. As with
1050   *  any iterator type we prefer to make it as small as possible.
1051   *
1052   *  Primary template is unused except as a hook for specializations.
1053   */
1054  template<typename _Key, typename _Value, typename _ExtractKey,
1055	   typename _H1, typename _H2, typename _Hash,
1056	   bool __cache_hash_code>
1057    struct _Hash_code_base;
1058
1059  /// Specialization: ranged hash function, no caching hash codes.  H1
1060  /// and H2 are provided but ignored.  We define a dummy hash code type.
1061  template<typename _Key, typename _Value, typename _ExtractKey,
1062	   typename _H1, typename _H2, typename _Hash>
1063    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1064    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1065      private _Hashtable_ebo_helper<1, _Hash>
1066    {
1067    private:
1068      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1069      using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1070
1071    protected:
1072      typedef void* 					__hash_code;
1073      typedef _Hash_node<_Value, false>			__node_type;
1074
1075      // We need the default constructor for the local iterators.
1076      _Hash_code_base() = default;
1077
1078      _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1079		      const _Hash& __h)
1080      : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1081
1082      __hash_code
1083      _M_hash_code(const _Key& __key) const
1084      { return 0; }
1085
1086      std::size_t
1087      _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1088      { return _M_ranged_hash()(__k, __n); }
1089
1090      std::size_t
1091      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1092	noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1093						   (std::size_t)0)) )
1094      { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1095
1096      void
1097      _M_store_code(__node_type*, __hash_code) const
1098      { }
1099
1100      void
1101      _M_copy_code(__node_type*, const __node_type*) const
1102      { }
1103
1104      void
1105      _M_swap(_Hash_code_base& __x)
1106      {
1107	std::swap(_M_extract(), __x._M_extract());
1108	std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1109      }
1110
1111      const _ExtractKey&
1112      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1113
1114      _ExtractKey&
1115      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1116
1117      const _Hash&
1118      _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1119
1120      _Hash&
1121      _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1122    };
1123
1124  // No specialization for ranged hash function while caching hash codes.
1125  // That combination is meaningless, and trying to do it is an error.
1126
1127  /// Specialization: ranged hash function, cache hash codes.  This
1128  /// combination is meaningless, so we provide only a declaration
1129  /// and no definition.
1130  template<typename _Key, typename _Value, typename _ExtractKey,
1131	   typename _H1, typename _H2, typename _Hash>
1132    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1133
1134  /// Specialization: hash function and range-hashing function, no
1135  /// caching of hash codes.
1136  /// Provides typedef and accessor required by C++ 11.
1137  template<typename _Key, typename _Value, typename _ExtractKey,
1138	   typename _H1, typename _H2>
1139    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1140			   _Default_ranged_hash, false>
1141    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1142      private _Hashtable_ebo_helper<1, _H1>,
1143      private _Hashtable_ebo_helper<2, _H2>
1144    {
1145    private:
1146      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1147      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1148      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1149
1150      // Gives the local iterator implementation access to _M_bucket_index().
1151      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1152					 _Default_ranged_hash, false>;
1153
1154    public:
1155      typedef _H1 					hasher;
1156
1157      hasher
1158      hash_function() const
1159      { return _M_h1(); }
1160
1161    protected:
1162      typedef std::size_t 				__hash_code;
1163      typedef _Hash_node<_Value, false>			__node_type;
1164
1165      // We need the default constructor for the local iterators.
1166      _Hash_code_base() = default;
1167
1168      _Hash_code_base(const _ExtractKey& __ex,
1169		      const _H1& __h1, const _H2& __h2,
1170		      const _Default_ranged_hash&)
1171      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1172
1173      __hash_code
1174      _M_hash_code(const _Key& __k) const
1175      { return _M_h1()(__k); }
1176
1177      std::size_t
1178      _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1179      { return _M_h2()(__c, __n); }
1180
1181      std::size_t
1182      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1183	noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1184		  && noexcept(declval<const _H2&>()((__hash_code)0,
1185						    (std::size_t)0)) )
1186      { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1187
1188      void
1189      _M_store_code(__node_type*, __hash_code) const
1190      { }
1191
1192      void
1193      _M_copy_code(__node_type*, const __node_type*) const
1194      { }
1195
1196      void
1197      _M_swap(_Hash_code_base& __x)
1198      {
1199	std::swap(_M_extract(), __x._M_extract());
1200	std::swap(_M_h1(), __x._M_h1());
1201	std::swap(_M_h2(), __x._M_h2());
1202      }
1203
1204      const _ExtractKey&
1205      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1206
1207      _ExtractKey&
1208      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1209
1210      const _H1&
1211      _M_h1() const { return __ebo_h1::_S_cget(*this); }
1212
1213      _H1&
1214      _M_h1() { return __ebo_h1::_S_get(*this); }
1215
1216      const _H2&
1217      _M_h2() const { return __ebo_h2::_S_cget(*this); }
1218
1219      _H2&
1220      _M_h2() { return __ebo_h2::_S_get(*this); }
1221    };
1222
1223  /// Specialization: hash function and range-hashing function,
1224  /// caching hash codes.  H is provided but ignored.  Provides
1225  /// typedef and accessor required by C++ 11.
1226  template<typename _Key, typename _Value, typename _ExtractKey,
1227	   typename _H1, typename _H2>
1228    struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1229			   _Default_ranged_hash, true>
1230    : private _Hashtable_ebo_helper<0, _ExtractKey>,
1231      private _Hashtable_ebo_helper<1, _H1>,
1232      private _Hashtable_ebo_helper<2, _H2>
1233    {
1234    private:
1235      // Gives the local iterator implementation access to _M_h2().
1236      friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1237					 _Default_ranged_hash, true>;
1238
1239      using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1240      using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1241      using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1242
1243    public:
1244      typedef _H1 					hasher;
1245
1246      hasher
1247      hash_function() const
1248      { return _M_h1(); }
1249
1250    protected:
1251      typedef std::size_t 				__hash_code;
1252      typedef _Hash_node<_Value, true>			__node_type;
1253
1254      _Hash_code_base(const _ExtractKey& __ex,
1255		      const _H1& __h1, const _H2& __h2,
1256		      const _Default_ranged_hash&)
1257      : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1258
1259      __hash_code
1260      _M_hash_code(const _Key& __k) const
1261      { return _M_h1()(__k); }
1262
1263      std::size_t
1264      _M_bucket_index(const _Key&, __hash_code __c,
1265		      std::size_t __n) const
1266      { return _M_h2()(__c, __n); }
1267
1268      std::size_t
1269      _M_bucket_index(const __node_type* __p, std::size_t __n) const
1270	noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1271						 (std::size_t)0)) )
1272      { return _M_h2()(__p->_M_hash_code, __n); }
1273
1274      void
1275      _M_store_code(__node_type* __n, __hash_code __c) const
1276      { __n->_M_hash_code = __c; }
1277
1278      void
1279      _M_copy_code(__node_type* __to, const __node_type* __from) const
1280      { __to->_M_hash_code = __from->_M_hash_code; }
1281
1282      void
1283      _M_swap(_Hash_code_base& __x)
1284      {
1285	std::swap(_M_extract(), __x._M_extract());
1286	std::swap(_M_h1(), __x._M_h1());
1287	std::swap(_M_h2(), __x._M_h2());
1288      }
1289
1290      const _ExtractKey&
1291      _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1292
1293      _ExtractKey&
1294      _M_extract() { return __ebo_extract_key::_S_get(*this); }
1295
1296      const _H1&
1297      _M_h1() const { return __ebo_h1::_S_cget(*this); }
1298
1299      _H1&
1300      _M_h1() { return __ebo_h1::_S_get(*this); }
1301
1302      const _H2&
1303      _M_h2() const { return __ebo_h2::_S_cget(*this); }
1304
1305      _H2&
1306      _M_h2() { return __ebo_h2::_S_get(*this); }
1307    };
1308
1309  /**
1310   *  Primary class template _Equal_helper.
1311   *
1312   */
1313  template <typename _Key, typename _Value, typename _ExtractKey,
1314	    typename _Equal, typename _HashCodeType,
1315	    bool __cache_hash_code>
1316  struct _Equal_helper;
1317
1318  /// Specialization.
1319  template<typename _Key, typename _Value, typename _ExtractKey,
1320	   typename _Equal, typename _HashCodeType>
1321  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1322  {
1323    static bool
1324    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1325	      const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1326    { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1327  };
1328
1329  /// Specialization.
1330  template<typename _Key, typename _Value, typename _ExtractKey,
1331	   typename _Equal, typename _HashCodeType>
1332  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1333  {
1334    static bool
1335    _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1336	      const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1337    { return __eq(__k, __extract(__n->_M_v())); }
1338  };
1339
1340
1341  /// Partial specialization used when nodes contain a cached hash code.
1342  template<typename _Key, typename _Value, typename _ExtractKey,
1343	   typename _H1, typename _H2, typename _Hash>
1344    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1345				_H1, _H2, _Hash, true>
1346    : private _Hashtable_ebo_helper<0, _H2>
1347    {
1348    protected:
1349      using __base_type = _Hashtable_ebo_helper<0, _H2>;
1350      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1351					       _H1, _H2, _Hash, true>;
1352
1353      _Local_iterator_base() = default;
1354      _Local_iterator_base(const __hash_code_base& __base,
1355			   _Hash_node<_Value, true>* __p,
1356			   std::size_t __bkt, std::size_t __bkt_count)
1357      : __base_type(__base._M_h2()),
1358	_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1359
1360      void
1361      _M_incr()
1362      {
1363	_M_cur = _M_cur->_M_next();
1364	if (_M_cur)
1365	  {
1366	    std::size_t __bkt
1367	      = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1368					   _M_bucket_count);
1369	    if (__bkt != _M_bucket)
1370	      _M_cur = nullptr;
1371	  }
1372      }
1373
1374      _Hash_node<_Value, true>*  _M_cur;
1375      std::size_t _M_bucket;
1376      std::size_t _M_bucket_count;
1377
1378    public:
1379      const void*
1380      _M_curr() const { return _M_cur; }  // for equality ops
1381
1382      std::size_t
1383      _M_get_bucket() const { return _M_bucket; }  // for debug mode
1384    };
1385
1386  // Uninitialized storage for a _Hash_code_base.
1387  // This type is DefaultConstructible and Assignable even if the
1388  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1389  // can be DefaultConstructible and Assignable.
1390  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1391    struct _Hash_code_storage
1392    {
1393      __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1394
1395      _Tp*
1396      _M_h() { return _M_storage._M_ptr(); }
1397
1398      const _Tp*
1399      _M_h() const { return _M_storage._M_ptr(); }
1400    };
1401
1402  // Empty partial specialization for empty _Hash_code_base types.
1403  template<typename _Tp>
1404    struct _Hash_code_storage<_Tp, true>
1405    {
1406      static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1407
1408      // As _Tp is an empty type there will be no bytes written/read through
1409      // the cast pointer, so no strict-aliasing violation.
1410      _Tp*
1411      _M_h() { return reinterpret_cast<_Tp*>(this); }
1412
1413      const _Tp*
1414      _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1415    };
1416
1417  template<typename _Key, typename _Value, typename _ExtractKey,
1418	   typename _H1, typename _H2, typename _Hash>
1419    using __hash_code_for_local_iter
1420      = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1421					   _H1, _H2, _Hash, false>>;
1422
1423  // Partial specialization used when hash codes are not cached
1424  template<typename _Key, typename _Value, typename _ExtractKey,
1425	   typename _H1, typename _H2, typename _Hash>
1426    struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1427				_H1, _H2, _Hash, false>
1428    : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1429    {
1430    protected:
1431      using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1432					       _H1, _H2, _Hash, false>;
1433
1434      _Local_iterator_base() : _M_bucket_count(-1) { }
1435
1436      _Local_iterator_base(const __hash_code_base& __base,
1437			   _Hash_node<_Value, false>* __p,
1438			   std::size_t __bkt, std::size_t __bkt_count)
1439      : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1440      { _M_init(__base); }
1441
1442      ~_Local_iterator_base()
1443      {
1444	if (_M_bucket_count != -1)
1445	  _M_destroy();
1446      }
1447
1448      _Local_iterator_base(const _Local_iterator_base& __iter)
1449      : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1450        _M_bucket_count(__iter._M_bucket_count)
1451      {
1452	if (_M_bucket_count != -1)
1453	  _M_init(*__iter._M_h());
1454      }
1455
1456      _Local_iterator_base&
1457      operator=(const _Local_iterator_base& __iter)
1458      {
1459	if (_M_bucket_count != -1)
1460	  _M_destroy();
1461	_M_cur = __iter._M_cur;
1462	_M_bucket = __iter._M_bucket;
1463	_M_bucket_count = __iter._M_bucket_count;
1464	if (_M_bucket_count != -1)
1465	  _M_init(*__iter._M_h());
1466	return *this;
1467      }
1468
1469      void
1470      _M_incr()
1471      {
1472	_M_cur = _M_cur->_M_next();
1473	if (_M_cur)
1474	  {
1475	    std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1476							      _M_bucket_count);
1477	    if (__bkt != _M_bucket)
1478	      _M_cur = nullptr;
1479	  }
1480      }
1481
1482      _Hash_node<_Value, false>*  _M_cur;
1483      std::size_t _M_bucket;
1484      std::size_t _M_bucket_count;
1485
1486      void
1487      _M_init(const __hash_code_base& __base)
1488      { ::new(this->_M_h()) __hash_code_base(__base); }
1489
1490      void
1491      _M_destroy() { this->_M_h()->~__hash_code_base(); }
1492
1493    public:
1494      const void*
1495      _M_curr() const { return _M_cur; }  // for equality ops and debug mode
1496
1497      std::size_t
1498      _M_get_bucket() const { return _M_bucket; }  // for debug mode
1499    };
1500
1501  template<typename _Key, typename _Value, typename _ExtractKey,
1502	   typename _H1, typename _H2, typename _Hash, bool __cache>
1503    inline bool
1504    operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1505					  _H1, _H2, _Hash, __cache>& __x,
1506	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1507					  _H1, _H2, _Hash, __cache>& __y)
1508    { return __x._M_curr() == __y._M_curr(); }
1509
1510  template<typename _Key, typename _Value, typename _ExtractKey,
1511	   typename _H1, typename _H2, typename _Hash, bool __cache>
1512    inline bool
1513    operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1514					  _H1, _H2, _Hash, __cache>& __x,
1515	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1516					  _H1, _H2, _Hash, __cache>& __y)
1517    { return __x._M_curr() != __y._M_curr(); }
1518
1519  /// local iterators
1520  template<typename _Key, typename _Value, typename _ExtractKey,
1521	   typename _H1, typename _H2, typename _Hash,
1522	   bool __constant_iterators, bool __cache>
1523    struct _Local_iterator
1524    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1525				  _H1, _H2, _Hash, __cache>
1526    {
1527    private:
1528      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1529					       _H1, _H2, _Hash, __cache>;
1530      using __hash_code_base = typename __base_type::__hash_code_base;
1531    public:
1532      typedef _Value					value_type;
1533      typedef typename std::conditional<__constant_iterators,
1534					const _Value*, _Value*>::type
1535						       pointer;
1536      typedef typename std::conditional<__constant_iterators,
1537					const _Value&, _Value&>::type
1538						       reference;
1539      typedef std::ptrdiff_t				difference_type;
1540      typedef std::forward_iterator_tag			iterator_category;
1541
1542      _Local_iterator() = default;
1543
1544      _Local_iterator(const __hash_code_base& __base,
1545		      _Hash_node<_Value, __cache>* __p,
1546		      std::size_t __bkt, std::size_t __bkt_count)
1547	: __base_type(__base, __p, __bkt, __bkt_count)
1548      { }
1549
1550      reference
1551      operator*() const
1552      { return this->_M_cur->_M_v(); }
1553
1554      pointer
1555      operator->() const
1556      { return this->_M_cur->_M_valptr(); }
1557
1558      _Local_iterator&
1559      operator++()
1560      {
1561	this->_M_incr();
1562	return *this;
1563      }
1564
1565      _Local_iterator
1566      operator++(int)
1567      {
1568	_Local_iterator __tmp(*this);
1569	this->_M_incr();
1570	return __tmp;
1571      }
1572    };
1573
1574  /// local const_iterators
1575  template<typename _Key, typename _Value, typename _ExtractKey,
1576	   typename _H1, typename _H2, typename _Hash,
1577	   bool __constant_iterators, bool __cache>
1578    struct _Local_const_iterator
1579    : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1580				  _H1, _H2, _Hash, __cache>
1581    {
1582    private:
1583      using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1584					       _H1, _H2, _Hash, __cache>;
1585      using __hash_code_base = typename __base_type::__hash_code_base;
1586
1587    public:
1588      typedef _Value					value_type;
1589      typedef const _Value*				pointer;
1590      typedef const _Value&				reference;
1591      typedef std::ptrdiff_t				difference_type;
1592      typedef std::forward_iterator_tag			iterator_category;
1593
1594      _Local_const_iterator() = default;
1595
1596      _Local_const_iterator(const __hash_code_base& __base,
1597			    _Hash_node<_Value, __cache>* __p,
1598			    std::size_t __bkt, std::size_t __bkt_count)
1599	: __base_type(__base, __p, __bkt, __bkt_count)
1600      { }
1601
1602      _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1603						  _H1, _H2, _Hash,
1604						  __constant_iterators,
1605						  __cache>& __x)
1606	: __base_type(__x)
1607      { }
1608
1609      reference
1610      operator*() const
1611      { return this->_M_cur->_M_v(); }
1612
1613      pointer
1614      operator->() const
1615      { return this->_M_cur->_M_valptr(); }
1616
1617      _Local_const_iterator&
1618      operator++()
1619      {
1620	this->_M_incr();
1621	return *this;
1622      }
1623
1624      _Local_const_iterator
1625      operator++(int)
1626      {
1627	_Local_const_iterator __tmp(*this);
1628	this->_M_incr();
1629	return __tmp;
1630      }
1631    };
1632
1633  /**
1634   *  Primary class template _Hashtable_base.
1635   *
1636   *  Helper class adding management of _Equal functor to
1637   *  _Hash_code_base type.
1638   *
1639   *  Base class templates are:
1640   *    - __detail::_Hash_code_base
1641   *    - __detail::_Hashtable_ebo_helper
1642   */
1643  template<typename _Key, typename _Value,
1644	   typename _ExtractKey, typename _Equal,
1645	   typename _H1, typename _H2, typename _Hash, typename _Traits>
1646  struct _Hashtable_base
1647  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1648			   _Traits::__hash_cached::value>,
1649    private _Hashtable_ebo_helper<0, _Equal>
1650  {
1651  public:
1652    typedef _Key					key_type;
1653    typedef _Value					value_type;
1654    typedef _Equal					key_equal;
1655    typedef std::size_t					size_type;
1656    typedef std::ptrdiff_t				difference_type;
1657
1658    using __traits_type = _Traits;
1659    using __hash_cached = typename __traits_type::__hash_cached;
1660    using __constant_iterators = typename __traits_type::__constant_iterators;
1661    using __unique_keys = typename __traits_type::__unique_keys;
1662
1663    using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1664					     _H1, _H2, _Hash,
1665					     __hash_cached::value>;
1666
1667    using __hash_code = typename __hash_code_base::__hash_code;
1668    using __node_type = typename __hash_code_base::__node_type;
1669
1670    using iterator = __detail::_Node_iterator<value_type,
1671					      __constant_iterators::value,
1672					      __hash_cached::value>;
1673
1674    using const_iterator = __detail::_Node_const_iterator<value_type,
1675						   __constant_iterators::value,
1676						   __hash_cached::value>;
1677
1678    using local_iterator = __detail::_Local_iterator<key_type, value_type,
1679						  _ExtractKey, _H1, _H2, _Hash,
1680						  __constant_iterators::value,
1681						     __hash_cached::value>;
1682
1683    using const_local_iterator = __detail::_Local_const_iterator<key_type,
1684								 value_type,
1685					_ExtractKey, _H1, _H2, _Hash,
1686					__constant_iterators::value,
1687					__hash_cached::value>;
1688
1689    using __ireturn_type = typename std::conditional<__unique_keys::value,
1690						     std::pair<iterator, bool>,
1691						     iterator>::type;
1692  private:
1693    using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1694    using _EqualHelper =  _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1695					__hash_code, __hash_cached::value>;
1696
1697  protected:
1698    _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1699		    const _Hash& __hash, const _Equal& __eq)
1700    : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1701    { }
1702
1703    bool
1704    _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1705    {
1706      return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1707				     __k, __c, __n);
1708    }
1709
1710    void
1711    _M_swap(_Hashtable_base& __x)
1712    {
1713      __hash_code_base::_M_swap(__x);
1714      std::swap(_M_eq(), __x._M_eq());
1715    }
1716
1717    const _Equal&
1718    _M_eq() const { return _EqualEBO::_S_cget(*this); }
1719
1720    _Equal&
1721    _M_eq() { return _EqualEBO::_S_get(*this); }
1722  };
1723
1724  /**
1725   *  struct _Equality_base.
1726   *
1727   *  Common types and functions for class _Equality.
1728   */
1729  struct _Equality_base
1730  {
1731  protected:
1732    template<typename _Uiterator>
1733      static bool
1734      _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1735  };
1736
1737  // See std::is_permutation in N3068.
1738  template<typename _Uiterator>
1739    bool
1740    _Equality_base::
1741    _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1742		      _Uiterator __first2)
1743    {
1744      for (; __first1 != __last1; ++__first1, ++__first2)
1745	if (!(*__first1 == *__first2))
1746	  break;
1747
1748      if (__first1 == __last1)
1749	return true;
1750
1751      _Uiterator __last2 = __first2;
1752      std::advance(__last2, std::distance(__first1, __last1));
1753
1754      for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1755	{
1756	  _Uiterator __tmp =  __first1;
1757	  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1758	    ++__tmp;
1759
1760	  // We've seen this one before.
1761	  if (__tmp != __it1)
1762	    continue;
1763
1764	  std::ptrdiff_t __n2 = 0;
1765	  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1766	    if (*__tmp == *__it1)
1767	      ++__n2;
1768
1769	  if (!__n2)
1770	    return false;
1771
1772	  std::ptrdiff_t __n1 = 0;
1773	  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1774	    if (*__tmp == *__it1)
1775	      ++__n1;
1776
1777	  if (__n1 != __n2)
1778	    return false;
1779	}
1780      return true;
1781    }
1782
1783  /**
1784   *  Primary class template  _Equality.
1785   *
1786   *  This is for implementing equality comparison for unordered
1787   *  containers, per N3068, by John Lakos and Pablo Halpern.
1788   *  Algorithmically, we follow closely the reference implementations
1789   *  therein.
1790   */
1791  template<typename _Key, typename _Value, typename _Alloc,
1792	   typename _ExtractKey, typename _Equal,
1793	   typename _H1, typename _H2, typename _Hash,
1794	   typename _RehashPolicy, typename _Traits,
1795	   bool _Unique_keys = _Traits::__unique_keys::value>
1796    struct _Equality;
1797
1798  /// Specialization.
1799  template<typename _Key, typename _Value, typename _Alloc,
1800	   typename _ExtractKey, typename _Equal,
1801	   typename _H1, typename _H2, typename _Hash,
1802	   typename _RehashPolicy, typename _Traits>
1803    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1804		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1805    {
1806      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1807				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1808
1809      bool
1810      _M_equal(const __hashtable&) const;
1811    };
1812
1813  template<typename _Key, typename _Value, typename _Alloc,
1814	   typename _ExtractKey, typename _Equal,
1815	   typename _H1, typename _H2, typename _Hash,
1816	   typename _RehashPolicy, typename _Traits>
1817    bool
1818    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1819	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1820    _M_equal(const __hashtable& __other) const
1821    {
1822      const __hashtable* __this = static_cast<const __hashtable*>(this);
1823
1824      if (__this->size() != __other.size())
1825	return false;
1826
1827      for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1828	{
1829	  const auto __ity = __other.find(_ExtractKey()(*__itx));
1830	  if (__ity == __other.end() || !bool(*__ity == *__itx))
1831	    return false;
1832	}
1833      return true;
1834    }
1835
1836  /// Specialization.
1837  template<typename _Key, typename _Value, typename _Alloc,
1838	   typename _ExtractKey, typename _Equal,
1839	   typename _H1, typename _H2, typename _Hash,
1840	   typename _RehashPolicy, typename _Traits>
1841    struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1842		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1843    : public _Equality_base
1844    {
1845      using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1846				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1847
1848      bool
1849      _M_equal(const __hashtable&) const;
1850    };
1851
1852  template<typename _Key, typename _Value, typename _Alloc,
1853	   typename _ExtractKey, typename _Equal,
1854	   typename _H1, typename _H2, typename _Hash,
1855	   typename _RehashPolicy, typename _Traits>
1856    bool
1857    _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1858	      _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1859    _M_equal(const __hashtable& __other) const
1860    {
1861      const __hashtable* __this = static_cast<const __hashtable*>(this);
1862
1863      if (__this->size() != __other.size())
1864	return false;
1865
1866      for (auto __itx = __this->begin(); __itx != __this->end();)
1867	{
1868	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1869	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1870
1871	  if (std::distance(__xrange.first, __xrange.second)
1872	      != std::distance(__yrange.first, __yrange.second))
1873	    return false;
1874
1875	  if (!_S_is_permutation(__xrange.first, __xrange.second,
1876				 __yrange.first))
1877	    return false;
1878
1879	  __itx = __xrange.second;
1880	}
1881      return true;
1882    }
1883
1884  /**
1885   * This type deals with all allocation and keeps an allocator instance through
1886   * inheritance to benefit from EBO when possible.
1887   */
1888  template<typename _NodeAlloc>
1889    struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1890    {
1891    private:
1892      using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1893    public:
1894      using __node_type = typename _NodeAlloc::value_type;
1895      using __node_alloc_type = _NodeAlloc;
1896      // Use __gnu_cxx to benefit from _S_always_equal and al.
1897      using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1898
1899      using __value_type = typename __node_type::value_type;
1900      using __value_alloc_type =
1901	typename __alloctr_rebind<__node_alloc_type, __value_type>::__type;
1902      using __value_alloc_traits = std::allocator_traits<__value_alloc_type>;
1903
1904      using __node_base = __detail::_Hash_node_base;
1905      using __bucket_type = __node_base*;
1906      using __bucket_alloc_type =
1907	typename __alloctr_rebind<__node_alloc_type, __bucket_type>::__type;
1908      using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
1909
1910      _Hashtable_alloc(const _Hashtable_alloc&) = default;
1911      _Hashtable_alloc(_Hashtable_alloc&&) = default;
1912
1913      template<typename _Alloc>
1914	_Hashtable_alloc(_Alloc&& __a)
1915	  : __ebo_node_alloc(std::forward<_Alloc>(__a))
1916	{ }
1917
1918      __node_alloc_type&
1919      _M_node_allocator()
1920      { return __ebo_node_alloc::_S_get(*this); }
1921
1922      const __node_alloc_type&
1923      _M_node_allocator() const
1924      { return __ebo_node_alloc::_S_cget(*this); }
1925
1926      template<typename... _Args>
1927	__node_type*
1928	_M_allocate_node(_Args&&... __args);
1929
1930      void
1931      _M_deallocate_node(__node_type* __n);
1932
1933      // Deallocate the linked list of nodes pointed to by __n
1934      void
1935      _M_deallocate_nodes(__node_type* __n);
1936
1937      __bucket_type*
1938      _M_allocate_buckets(std::size_t __n);
1939
1940      void
1941      _M_deallocate_buckets(__bucket_type*, std::size_t __n);
1942    };
1943
1944  // Definitions of class template _Hashtable_alloc's out-of-line member
1945  // functions.
1946  template<typename _NodeAlloc>
1947    template<typename... _Args>
1948      typename _Hashtable_alloc<_NodeAlloc>::__node_type*
1949      _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
1950      {
1951	auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
1952	__node_type* __n = std::__addressof(*__nptr);
1953	__try
1954	  {
1955	    __value_alloc_type __a(_M_node_allocator());
1956	    ::new ((void*)__n) __node_type;
1957	    __value_alloc_traits::construct(__a, __n->_M_valptr(),
1958					    std::forward<_Args>(__args)...);
1959	    return __n;
1960	  }
1961	__catch(...)
1962	  {
1963	    __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
1964	    __throw_exception_again;
1965	  }
1966      }
1967
1968  template<typename _NodeAlloc>
1969    void
1970    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
1971    {
1972      typedef typename __node_alloc_traits::pointer _Ptr;
1973      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
1974      __value_alloc_type __a(_M_node_allocator());
1975      __value_alloc_traits::destroy(__a, __n->_M_valptr());
1976      __n->~__node_type();
1977      __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
1978    }
1979
1980  template<typename _NodeAlloc>
1981    void
1982    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
1983    {
1984      while (__n)
1985	{
1986	  __node_type* __tmp = __n;
1987	  __n = __n->_M_next();
1988	  _M_deallocate_node(__tmp);
1989	}
1990    }
1991
1992  template<typename _NodeAlloc>
1993    typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
1994    _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
1995    {
1996      __bucket_alloc_type __alloc(_M_node_allocator());
1997
1998      auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
1999      __bucket_type* __p = std::__addressof(*__ptr);
2000      __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2001      return __p;
2002    }
2003
2004  template<typename _NodeAlloc>
2005    void
2006    _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2007							std::size_t __n)
2008    {
2009      typedef typename __bucket_alloc_traits::pointer _Ptr;
2010      auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2011      __bucket_alloc_type __alloc(_M_node_allocator());
2012      __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2013    }
2014
2015 //@} hashtable-detail
2016_GLIBCXX_END_NAMESPACE_VERSION
2017} // namespace __detail
2018} // namespace std
2019
2020#endif // _HASHTABLE_POLICY_H
2021