111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Copyright (c) 2015-2016 The Khronos Group Inc.
211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//
311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Permission is hereby granted, free of charge, to any person obtaining a
411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// copy of this software and/or associated documentation files (the
511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// "Materials"), to deal in the Materials without restriction, including
611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// without limitation the rights to use, copy, modify, merge, publish,
711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// distribute, sublicense, and/or sell copies of the Materials, and to
811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// permit persons to whom the Materials are furnished to do so, subject to
911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// the following conditions:
1011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//
1111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// The above copyright notice and this permission notice shall be included
1211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// in all copies or substantial portions of the Materials.
1311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//
1411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
1511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
1611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
1711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//    https://www.khronos.org/registry/
1811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//
1911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
2011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
2111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
2211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
2311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
2411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
2511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
2611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
2711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_
2811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#define LIBSPIRV_UTIL_HEX_FLOAT_H_
2911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
3011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#include <cassert>
3111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#include <cctype>
3211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#include <cmath>
3311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#include <cstdint>
3411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#include <iomanip>
3511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#include <limits>
3611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
3711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#include "bitutils.h"
3811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
3911cd02dfb91661c65134cac258cf5924270e9d2Dan Albertnamespace spvutils {
4011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
4111cd02dfb91661c65134cac258cf5924270e9d2Dan Albertclass Float16 {
4211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert public:
4311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  Float16(uint16_t v) : val(v) {}
4411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  Float16() = default;
4511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isNan(const Float16& val) {
4611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0);
4711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
4811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns true if the given value is any kind of infinity.
4911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isInfinity(const Float16& val) {
5011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0);
5111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
5211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  Float16(const Float16& other) { val = other.val; }
5311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint16_t get_value() const { return val; }
5411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
5511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the maximum normal value.
5611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static Float16 max() { return Float16(0x7bff); }
5711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the lowest normal value.
5811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static Float16 lowest() { return Float16(0xfbff); }
5911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
6011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert private:
6111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint16_t val;
6211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
6311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
6411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// To specialize this type, you must override uint_type to define
6511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// an unsigned integer that can fit your floating point type.
6611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// You must also add a isNan function that returns true if
6711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// a value is Nan.
6811cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T>
6911cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct FloatProxyTraits {
7011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = void;
7111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
7211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
7311cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
7411cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct FloatProxyTraits<float> {
7511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = uint32_t;
7611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isNan(float f) { return std::isnan(f); }
7711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns true if the given value is any kind of infinity.
7811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isInfinity(float f) { return std::isinf(f); }
7911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the maximum normal value.
8011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static float max() { return std::numeric_limits<float>::max(); }
8111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the lowest normal value.
8211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static float lowest() { return std::numeric_limits<float>::lowest(); }
8311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
8411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
8511cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
8611cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct FloatProxyTraits<double> {
8711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = uint64_t;
8811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isNan(double f) { return std::isnan(f); }
8911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns true if the given value is any kind of infinity.
9011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isInfinity(double f) { return std::isinf(f); }
9111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the maximum normal value.
9211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static double max() { return std::numeric_limits<double>::max(); }
9311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the lowest normal value.
9411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static double lowest() { return std::numeric_limits<double>::lowest(); }
9511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
9611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
9711cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
9811cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct FloatProxyTraits<Float16> {
9911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = uint16_t;
10011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isNan(Float16 f) { return Float16::isNan(f); }
10111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns true if the given value is any kind of infinity.
10211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static bool isInfinity(Float16 f) { return Float16::isInfinity(f); }
10311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the maximum normal value.
10411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static Float16 max() { return Float16::max(); }
10511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the lowest normal value.
10611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static Float16 lowest() { return Float16::lowest(); }
10711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
10811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
10911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Since copying a floating point number (especially if it is NaN)
11011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// does not guarantee that bits are preserved, this class lets us
11111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// store the type and use it as a float when necessary.
11211cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T>
11311cd02dfb91661c65134cac258cf5924270e9d2Dan Albertclass FloatProxy {
11411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert public:
11511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = typename FloatProxyTraits<T>::uint_type;
11611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
11711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Since this is to act similar to the normal floats,
11811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // do not initialize the data by default.
11911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  FloatProxy() = default;
12011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
12111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Intentionally non-explicit. This is a proxy type so
12211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // implicit conversions allow us to use it more transparently.
12311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); }
12411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
12511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Intentionally non-explicit. This is a proxy type so
12611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // implicit conversions allow us to use it more transparently.
12711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  FloatProxy(uint_type val) { data_ = val; }
12811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
12911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // This is helpful to have and is guaranteed not to stomp bits.
13011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  FloatProxy<T> operator-() const {
13111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return static_cast<uint_type>(data_ ^
13211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                  (uint_type(0x1) << (sizeof(T) * 8 - 1)));
13311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
13411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
13511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the data as a floating point value.
13611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  T getAsFloat() const { return BitwiseCast<T>(data_); }
13711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
13811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the raw data.
13911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type data() const { return data_; }
14011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
14111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns true if the value represents any type of NaN.
14211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); }
14311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns true if the value represents any type of infinity.
14411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); }
14511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
14611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the maximum normal value.
14711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static FloatProxy<T> max() {
14811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return FloatProxy<T>(FloatProxyTraits<T>::max());
14911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
15011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the lowest normal value.
15111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static FloatProxy<T> lowest() {
15211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return FloatProxy<T>(FloatProxyTraits<T>::lowest());
15311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
15411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
15511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert private:
15611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type data_;
15711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
15811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
15911cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T>
16011cd02dfb91661c65134cac258cf5924270e9d2Dan Albertbool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) {
16111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return first.data() == second.data();
16211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
16311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
16411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Reads a FloatProxy value as a normal float from a stream.
16511cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T>
16611cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstd::istream& operator>>(std::istream& is, FloatProxy<T>& value) {
16711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  T float_val;
16811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  is >> float_val;
16911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  value = FloatProxy<T>(float_val);
17011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return is;
17111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
17211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
17311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// This is an example traits. It is not meant to be used in practice, but will
17411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// be the default for any non-specialized type.
17511cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T>
17611cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct HexFloatTraits {
17711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Integer type that can store this hex-float.
17811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = void;
17911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Signed integer type that can store this hex-float.
18011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using int_type = void;
18111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The numerical type that this HexFloat represents.
18211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using underlying_type = void;
18311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The type needed to construct the underlying type.
18411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using native_type = void;
18511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The number of bits that are actually relevant in the uint_type.
18611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // This allows us to deal with, for example, 24-bit values in a 32-bit
18711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // integer.
18811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t num_used_bits = 0;
18911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Number of bits that represent the exponent.
19011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t num_exponent_bits = 0;
19111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Number of bits that represent the fractional part.
19211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t num_fraction_bits = 0;
19311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The bias of the exponent. (How much we need to subtract from the stored
19411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // value to get the correct value.)
19511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t exponent_bias = 0;
19611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
19711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
19811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Traits for IEEE float.
19911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// 1 sign bit, 8 exponent bits, 23 fractional bits.
20011cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
20111cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct HexFloatTraits<FloatProxy<float>> {
20211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = uint32_t;
20311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using int_type = int32_t;
20411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using underlying_type = FloatProxy<float>;
20511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using native_type = float;
20611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_used_bits = 32;
20711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_exponent_bits = 8;
20811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_fraction_bits = 23;
20911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type exponent_bias = 127;
21011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
21111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
21211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Traits for IEEE double.
21311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// 1 sign bit, 11 exponent bits, 52 fractional bits.
21411cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
21511cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct HexFloatTraits<FloatProxy<double>> {
21611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = uint64_t;
21711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using int_type = int64_t;
21811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using underlying_type = FloatProxy<double>;
21911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using native_type = double;
22011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_used_bits = 64;
22111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_exponent_bits = 11;
22211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_fraction_bits = 52;
22311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type exponent_bias = 1023;
22411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
22511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
22611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Traits for IEEE half.
22711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// 1 sign bit, 5 exponent bits, 10 fractional bits.
22811cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
22911cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstruct HexFloatTraits<FloatProxy<Float16>> {
23011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = uint16_t;
23111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using int_type = int16_t;
23211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using underlying_type = uint16_t;
23311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using native_type = uint16_t;
23411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_used_bits = 16;
23511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_exponent_bits = 5;
23611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type num_fraction_bits = 10;
23711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type exponent_bias = 15;
23811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
23911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
24011cd02dfb91661c65134cac258cf5924270e9d2Dan Albertenum class round_direction {
24111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  kToZero,
24211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  kToNearestEven,
24311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  kToPositiveInfinity,
24411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  kToNegativeInfinity,
24511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  max = kToNegativeInfinity
24611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
24711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
24811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Template class that houses a floating pointer number.
24911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// It exposes a number of constants based on the provided traits to
25011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// assist in interpreting the bits of the value.
25111cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T, typename Traits = HexFloatTraits<T>>
25211cd02dfb91661c65134cac258cf5924270e9d2Dan Albertclass HexFloat {
25311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert public:
25411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = typename Traits::uint_type;
25511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using int_type = typename Traits::int_type;
25611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using underlying_type = typename Traits::underlying_type;
25711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using native_type = typename Traits::native_type;
25811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
25911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  explicit HexFloat(T f) : value_(f) {}
26011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
26111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  T value() const { return value_; }
26211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  void set_value(T f) { value_ = f; }
26311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
26411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // These are all written like this because it is convenient to have
26511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // compile-time constants for all of these values.
26611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
26711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Pass-through values to save typing.
26811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t num_used_bits = Traits::num_used_bits;
26911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t exponent_bias = Traits::exponent_bias;
27011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t num_exponent_bits = Traits::num_exponent_bits;
27111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t num_fraction_bits = Traits::num_fraction_bits;
27211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
27311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Number of bits to shift left to set the highest relevant bit.
27411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t top_bit_left_shift = num_used_bits - 1;
27511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // How many nibbles (hex characters) the fractional part takes up.
27611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4;
27711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // If the fractional part does not fit evenly into a hex character (4-bits)
27811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // then we have to left-shift to get rid of leading 0s. This is the amount
27911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // we have to shift (might be 0).
28011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t num_overflow_bits =
28111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      fraction_nibbles * 4 - num_fraction_bits;
28211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
28311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The representation of the fraction, not the actual bits. This
28411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // includes the leading bit that is usually implicit.
28511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type fraction_represent_mask =
28611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      spvutils::SetBits<uint_type, 0,
28711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                        num_fraction_bits + num_overflow_bits>::get;
28811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
28911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The topmost bit in the nibble-aligned fraction.
29011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type fraction_top_bit =
29111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      uint_type(1) << (num_fraction_bits + num_overflow_bits - 1);
29211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
29311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The least significant bit in the exponent, which is also the bit
29411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // immediately to the left of the significand.
29511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type first_exponent_bit = uint_type(1)
29611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                              << (num_fraction_bits);
29711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
29811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The mask for the encoded fraction. It does not include the
29911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // implicit bit.
30011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type fraction_encode_mask =
30111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      spvutils::SetBits<uint_type, 0, num_fraction_bits>::get;
30211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
30311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The bit that is used as a sign.
30411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type sign_mask = uint_type(1) << top_bit_left_shift;
30511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
30611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The bits that represent the exponent.
30711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint_type exponent_mask =
30811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get;
30911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
31011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // How far left the exponent is shifted.
31111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t exponent_left_shift = num_fraction_bits;
31211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
31311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // How far from the right edge the fraction is shifted.
31411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const uint32_t fraction_right_shift =
31511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits;
31611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
31711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The maximum representable unbiased exponent.
31811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const int_type max_exponent =
31911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      (exponent_mask >> num_fraction_bits) - exponent_bias;
32011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The minimum representable exponent for normalized numbers.
32111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static const int_type min_exponent = -static_cast<int_type>(exponent_bias);
32211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
32311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the bits associated with the value.
32411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); }
32511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
32611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the bits associated with the value, without the leading sign bit.
32711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type getUnsignedBits() const {
32811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) &
32911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                  ~sign_mask);
33011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
33111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
33211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the bits associated with the exponent, shifted to start at the
33311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // lsb of the type.
33411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const uint_type getExponentBits() const {
33511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return static_cast<uint_type>((getBits() & exponent_mask) >>
33611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                  num_fraction_bits);
33711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
33811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
33911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the exponent in unbiased form. This is the exponent in the
34011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // human-friendly form.
34111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const int_type getUnbiasedExponent() const {
34211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return static_cast<int_type>(getExponentBits() - exponent_bias);
34311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
34411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
34511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns just the significand bits from the value.
34611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const uint_type getSignificandBits() const {
34711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return getBits() & fraction_encode_mask;
34811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
34911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
35011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // If the number was normalized, returns the unbiased exponent.
35111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // If the number was denormal, normalize the exponent first.
35211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const int_type getUnbiasedNormalizedExponent() const {
35311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0
35411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return 0;
35511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
35611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    int_type exp = getUnbiasedExponent();
35711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (exp == min_exponent) {  // We are in denorm land.
35811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      uint_type significand_bits = getSignificandBits();
35911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      while ((significand_bits & (first_exponent_bit >> 1)) == 0) {
36011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        significand_bits = static_cast<uint_type>(significand_bits << 1);
36111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        exp = static_cast<int_type>(exp - 1);
36211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      }
36311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand_bits &= fraction_encode_mask;
36411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
36511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return exp;
36611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
36711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
36811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the signficand after it has been normalized.
36911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const uint_type getNormalizedSignificand() const {
37011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    int_type unbiased_exponent = getUnbiasedNormalizedExponent();
37111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    uint_type significand = getSignificandBits();
37211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    for (int_type i = unbiased_exponent; i <= min_exponent; ++i) {
37311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand = static_cast<uint_type>(significand << 1);
37411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
37511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    significand &= fraction_encode_mask;
37611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return significand;
37711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
37811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
37911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns true if this number represents a negative value.
38011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool isNegative() const { return (getBits() & sign_mask) != 0; }
38111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
38211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Sets this HexFloat from the individual components.
38311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Note this assumes EVERY significand is normalized, and has an implicit
38411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // leading one. This means that the only way that this method will set 0,
38511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // is if you set a number so denormalized that it underflows.
38611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Do not use this method with raw bits extracted from a subnormal number,
38711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // since subnormals do not have an implicit leading 1 in the significand.
38811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The significand is also expected to be in the
38911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // lowest-most num_fraction_bits of the uint_type.
39011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // The exponent is expected to be unbiased, meaning an exponent of
39111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // 0 actually means 0.
39211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // If underflow_round_up is set, then on underflow, if a number is non-0
39311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // and would underflow, we round up to the smallest denorm.
39411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  void setFromSignUnbiasedExponentAndNormalizedSignificand(
39511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      bool negative, int_type exponent, uint_type significand,
39611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      bool round_denorm_up) {
39711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    bool significand_is_zero = significand == 0;
39811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
39911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (exponent <= min_exponent) {
40011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // If this was denormalized, then we have to shift the bit on, meaning
40111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // the significand is not zero.
40211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand_is_zero = false;
40311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand |= first_exponent_bit;
40411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand = static_cast<uint_type>(significand >> 1);
40511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
40611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
40711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    while (exponent < min_exponent) {
40811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand = static_cast<uint_type>(significand >> 1);
40911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      ++exponent;
41011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
41111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
41211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (exponent == min_exponent) {
41311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      if (significand == 0 && !significand_is_zero && round_denorm_up) {
41411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        significand = static_cast<uint_type>(0x1);
41511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      }
41611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
41711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
41811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    uint_type new_value = 0;
41911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (negative) {
42011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      new_value = static_cast<uint_type>(new_value | sign_mask);
42111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
42211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    exponent = static_cast<int_type>(exponent + exponent_bias);
42311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    assert(exponent >= 0);
42411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
42511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // put it all together
42611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    exponent = static_cast<uint_type>((exponent << exponent_left_shift) &
42711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                      exponent_mask);
42811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    significand = static_cast<uint_type>(significand & fraction_encode_mask);
42911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    new_value = static_cast<uint_type>(new_value | (exponent | significand));
43011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    value_ = BitwiseCast<T>(new_value);
43111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
43211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
43311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Increments the significand of this number by the given amount.
43411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // If this would spill the significand into the implicit bit,
43511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // carry is set to true and the significand is shifted to fit into
43611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // the correct location, otherwise carry is set to false.
43711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // All significands and to_increment are assumed to be within the bounds
43811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // for a valid significand.
43911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static uint_type incrementSignificand(uint_type significand,
44011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                        uint_type to_increment, bool* carry) {
44111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    significand = static_cast<uint_type>(significand + to_increment);
44211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    *carry = false;
44311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (significand & first_exponent_bit) {
44411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      *carry = true;
44511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // The implicit 1-bit will have carried, so we should zero-out the
44611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // top bit and shift back.
44711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand = static_cast<uint_type>(significand & ~first_exponent_bit);
44811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      significand = static_cast<uint_type>(significand >> 1);
44911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
45011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return significand;
45111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
45211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
45311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // These exist because MSVC throws warnings on negative right-shifts
45411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // even if they are not going to be executed. Eg:
45511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // constant_number < 0? 0: constant_number
45611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // These convert the negative left-shifts into right shifts.
45711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
45811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  template <int_type N, typename enable = void>
45911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  struct negatable_left_shift {
46011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static uint_type val(uint_type val) {
46111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return static_cast<uint_type>(val >> -N);
46211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
46311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  };
46411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
46511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  template <int_type N>
46611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> {
46711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static uint_type val(uint_type val) {
46811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return static_cast<uint_type>(val << N);
46911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
47011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  };
47111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
47211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  template <int_type N, typename enable = void>
47311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  struct negatable_right_shift {
47411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static uint_type val(uint_type val) {
47511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return static_cast<uint_type>(val << -N);
47611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
47711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  };
47811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
47911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  template <int_type N>
48011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> {
48111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static uint_type val(uint_type val) {
48211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return static_cast<uint_type>(val >> N);
48311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
48411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  };
48511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
48611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Returns the significand, rounded to fit in a significand in
48711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // other_T. This is shifted so that the most significant
48811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // bit of the rounded number lines up with the most significant bit
48911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // of the returned significand.
49011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  template <typename other_T>
49111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  typename other_T::uint_type getRoundedNormalizedSignificand(
49211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      round_direction dir, bool* carry_bit) {
49311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    using other_uint_type = typename other_T::uint_type;
49411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static const int_type num_throwaway_bits =
49511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        static_cast<int_type>(num_fraction_bits) -
49611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        static_cast<int_type>(other_T::num_fraction_bits);
49711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
49811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static const uint_type last_significant_bit =
49911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        (num_throwaway_bits < 0)
50011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert            ? 0
50111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert            : negatable_left_shift<num_throwaway_bits>::val(1u);
50211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static const uint_type first_rounded_bit =
50311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        (num_throwaway_bits < 1)
50411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert            ? 0
50511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert            : negatable_left_shift<num_throwaway_bits - 1>::val(1u);
50611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
50711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static const uint_type throwaway_mask_bits =
50811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        num_throwaway_bits > 0 ? num_throwaway_bits : 0;
50911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    static const uint_type throwaway_mask =
51011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get;
51111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
51211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    *carry_bit = false;
51311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    other_uint_type out_val = 0;
51411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    uint_type significand = getNormalizedSignificand();
51511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // If we are up-casting, then we just have to shift to the right location.
51611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (num_throwaway_bits <= 0) {
51711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      out_val = static_cast<other_uint_type>(significand);
51811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits);
51911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      out_val = static_cast<other_uint_type>(out_val << shift_amount);
52011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return out_val;
52111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
52211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
52311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // If every non-representable bit is 0, then we don't have any casting to
52411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // do.
52511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if ((significand & throwaway_mask) == 0) {
52611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return static_cast<other_uint_type>(
52711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          negatable_right_shift<num_throwaway_bits>::val(significand));
52811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
52911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
53011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    bool round_away_from_zero = false;
53111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // We actually have to narrow the significand here, so we have to follow the
53211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // rounding rules.
53311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    switch (dir) {
53411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      case round_direction::kToZero:
53511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        break;
53611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      case round_direction::kToPositiveInfinity:
53711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        round_away_from_zero = !isNegative();
53811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        break;
53911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      case round_direction::kToNegativeInfinity:
54011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        round_away_from_zero = isNegative();
54111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        break;
54211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      case round_direction::kToNearestEven:
54311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        // Have to round down, round bit is 0
54411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        if ((first_rounded_bit & significand) == 0) {
54511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          break;
54611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        }
54711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) {
54811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // If any subsequent bit of the rounded portion is non-0 then we round
54911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // up.
55011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          round_away_from_zero = true;
55111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          break;
55211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        }
55311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        // We are exactly half-way between 2 numbers, pick even.
55411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        if ((significand & last_significant_bit) != 0) {
55511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // 1 for our last bit, round up.
55611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          round_away_from_zero = true;
55711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          break;
55811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        }
55911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        break;
56011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
56111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
56211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (round_away_from_zero) {
56311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return static_cast<other_uint_type>(
56411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          negatable_right_shift<num_throwaway_bits>::val(incrementSignificand(
56511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              significand, last_significant_bit, carry_bit)));
56611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else {
56711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return static_cast<other_uint_type>(
56811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          negatable_right_shift<num_throwaway_bits>::val(significand));
56911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
57011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
57111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
57211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Casts this value to another HexFloat. If the cast is widening,
57311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // then round_dir is ignored. If the cast is narrowing, then
57411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // the result is rounded in the direction specified.
57511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // This number will retain Nan and Inf values.
57611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // It will also saturate to Inf if the number overflows, and
57711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // underflow to (0 or min depending on rounding) if the number underflows.
57811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  template <typename other_T>
57911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  void castTo(other_T& other, round_direction round_dir) {
58011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    other = other_T(static_cast<typename other_T::native_type>(0));
58111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    bool negate = isNegative();
58211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (getUnsignedBits() == 0) {
58311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      if (negate) {
58411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        other.set_value(-other.value());
58511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      }
58611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return;
58711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
58811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    uint_type significand = getSignificandBits();
58911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    bool carried = false;
59011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    typename other_T::uint_type rounded_significand =
59111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        getRoundedNormalizedSignificand<other_T>(round_dir, &carried);
59211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
59311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    int_type exponent = getUnbiasedExponent();
59411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (exponent == min_exponent) {
59511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // If we are denormal, normalize the exponent, so that we can encode
59611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // easily.
59711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      exponent = static_cast<int_type>(exponent + 1);
59811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0;
59911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert           check_bit = static_cast<uint_type>(check_bit >> 1)) {
60011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        exponent = static_cast<int_type>(exponent - 1);
60111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        if (check_bit & significand) break;
60211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      }
60311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
60411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
60511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    bool is_nan =
60611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        (getBits() & exponent_mask) == exponent_mask && significand != 0;
60711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    bool is_inf =
60811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        !is_nan &&
60911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) ||
61011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert         (significand == 0 && (getBits() & exponent_mask) == exponent_mask));
61111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
61211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // If we are Nan or Inf we should pass that through.
61311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (is_inf) {
61411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      other.set_value(BitwiseCast<typename other_T::underlying_type>(
61511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          static_cast<typename other_T::uint_type>(
61611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              (negate ? other_T::sign_mask : 0) | other_T::exponent_mask)));
61711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return;
61811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
61911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (is_nan) {
62011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      typename other_T::uint_type shifted_significand;
62111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      shifted_significand = static_cast<typename other_T::uint_type>(
62211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          negatable_left_shift<
62311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              static_cast<int_type>(other_T::num_fraction_bits) -
62411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              static_cast<int_type>(num_fraction_bits)>::val(significand));
62511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
62611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // We are some sort of Nan. We try to keep the bit-pattern of the Nan
62711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // as close as possible. If we had to shift off bits so we are 0, then we
62811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // just set the last bit.
62911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      other.set_value(BitwiseCast<typename other_T::underlying_type>(
63011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          static_cast<typename other_T::uint_type>(
63111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              (negate ? other_T::sign_mask : 0) | other_T::exponent_mask |
63211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              (shifted_significand == 0 ? 0x1 : shifted_significand))));
63311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return;
63411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
63511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
63611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    bool round_underflow_up =
63711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        isNegative() ? round_dir == round_direction::kToNegativeInfinity
63811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                     : round_dir == round_direction::kToPositiveInfinity;
63911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    using other_int_type = typename other_T::int_type;
64011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // setFromSignUnbiasedExponentAndNormalizedSignificand will
64111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // zero out any underflowing value (but retain the sign).
64211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    other.setFromSignUnbiasedExponentAndNormalizedSignificand(
64311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        negate, static_cast<other_int_type>(exponent), rounded_significand,
64411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        round_underflow_up);
64511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return;
64611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
64711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
64811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert private:
64911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  T value_;
65011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
65111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static_assert(num_used_bits ==
65211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                    Traits::num_exponent_bits + Traits::num_fraction_bits + 1,
65311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                "The number of bits do not fit");
65411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match");
65511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert};
65611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
65711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Returns 4 bits represented by the hex character.
65811cd02dfb91661c65134cac258cf5924270e9d2Dan Albertinline uint8_t get_nibble_from_character(int character) {
65911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const char* dec = "0123456789";
66011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const char* lower = "abcdef";
66111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const char* upper = "ABCDEF";
66211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const char* p = nullptr;
66311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if ((p = strchr(dec, character))) {
66411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return static_cast<uint8_t>(p - dec);
66511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  } else if ((p = strchr(lower, character))) {
66611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return static_cast<uint8_t>(p - lower + 0xa);
66711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  } else if ((p = strchr(upper, character))) {
66811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return static_cast<uint8_t>(p - upper + 0xa);
66911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
67011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
67111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  assert(false && "This was called with a non-hex character");
67211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return 0;
67311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
67411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
67511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Outputs the given HexFloat to the stream.
67611cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T, typename Traits>
67711cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstd::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) {
67811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using HF = HexFloat<T, Traits>;
67911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = typename HF::uint_type;
68011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using int_type = typename HF::int_type;
68111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
68211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static_assert(HF::num_used_bits != 0,
68311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                "num_used_bits must be non-zero for a valid float");
68411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static_assert(HF::num_exponent_bits != 0,
68511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                "num_exponent_bits must be non-zero for a valid float");
68611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  static_assert(HF::num_fraction_bits != 0,
68711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                "num_fractin_bits must be non-zero for a valid float");
68811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
68911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value());
69011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const char* const sign = (bits & HF::sign_mask) ? "-" : "";
69111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const uint_type exponent = static_cast<uint_type>(
69211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      (bits & HF::exponent_mask) >> HF::num_fraction_bits);
69311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
69411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask)
69511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                              << HF::num_overflow_bits);
69611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
69711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const bool is_zero = exponent == 0 && fraction == 0;
69811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const bool is_denorm = exponent == 0 && !is_zero;
69911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
70011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // exponent contains the biased exponent we have to convert it back into
70111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // the normal range.
70211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias);
70311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // If the number is all zeros, then we actually have to NOT shift the
70411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // exponent.
70511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  int_exponent = is_zero ? 0 : int_exponent;
70611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
70711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // If we are denorm, then start shifting, and decreasing the exponent until
70811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // our leading bit is 1.
70911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
71011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (is_denorm) {
71111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    while ((fraction & HF::fraction_top_bit) == 0) {
71211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      fraction = static_cast<uint_type>(fraction << 1);
71311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      int_exponent = static_cast<int_type>(int_exponent - 1);
71411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
71511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // Since this is denormalized, we have to consume the leading 1 since it
71611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // will end up being implicit.
71711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1
71811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction &= HF::fraction_represent_mask;
71911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
72011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
72111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type fraction_nibbles = HF::fraction_nibbles;
72211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // We do not have to display any trailing 0s, since this represents the
72311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // fractional part.
72411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  while (fraction_nibbles > 0 && (fraction & 0xF) == 0) {
72511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // Shift off any trailing values;
72611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction = static_cast<uint_type>(fraction >> 4);
72711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    --fraction_nibbles;
72811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
72911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
73011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const auto saved_flags = os.flags();
73111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const auto saved_fill = os.fill();
73211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
73311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  os << sign << "0x" << (is_zero ? '0' : '1');
73411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (fraction_nibbles) {
73511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // Make sure to keep the leading 0s in place, since this is the fractional
73611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // part.
73711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    os << "." << std::setw(static_cast<int>(fraction_nibbles))
73811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert       << std::setfill('0') << std::hex << fraction;
73911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
74011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent;
74111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
74211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  os.flags(saved_flags);
74311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  os.fill(saved_fill);
74411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
74511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return os;
74611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
74711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
74811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Returns true if negate_value is true and the next character on the
74911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// input stream is a plus or minus sign.  In that case we also set the fail bit
75011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// on the stream and set the value to the zero value for its type.
75111cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T, typename Traits>
75211cd02dfb91661c65134cac258cf5924270e9d2Dan Albertinline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value,
75311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                        HexFloat<T, Traits>& value) {
75411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (negate_value) {
75511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    auto next_char = is.peek();
75611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (next_char == '-' || next_char == '+') {
75711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // Fail the parse.  Emulate standard behaviour by setting the value to
75811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // the zero value, and set the fail bit on the stream.
75911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0});
76011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is.setstate(std::ios_base::failbit);
76111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return true;
76211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
76311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
76411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return false;
76511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
76611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
76711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Parses a floating point number from the given stream and stores it into the
76811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// value parameter.
76911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// If negate_value is true then the number may not have a leading minus or
77011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// plus, and if it successfully parses, then the number is negated before
77111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// being stored into the value parameter.
77211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// If the value cannot be correctly parsed or overflows the target floating
77311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// point type, then set the fail bit on the stream.
77411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// TODO(dneto): Promise C++11 standard behavior in how the value is set in
77511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// the error case, but only after all target platforms implement it correctly.
77611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// In particular, the Microsoft C++ runtime appears to be out of spec.
77711cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T, typename Traits>
77811cd02dfb91661c65134cac258cf5924270e9d2Dan Albertinline std::istream& ParseNormalFloat(std::istream& is, bool negate_value,
77911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                      HexFloat<T, Traits>& value) {
78011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (RejectParseDueToLeadingSign(is, negate_value, value)) {
78111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return is;
78211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
78311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  T val;
78411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  is >> val;
78511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (negate_value) {
78611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    val = -val;
78711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
78811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  value.set_value(val);
78911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // In the failure case, map -0.0 to 0.0.
79011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (is.fail() && value.getUnsignedBits() == 0u) {
79111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0});
79211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
79311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (val.isInfinity()) {
79411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // Fail the parse.  Emulate standard behaviour by setting the value to
79511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // the closest normal value, and set the fail bit on the stream.
79611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    value.set_value((value.isNegative() | negate_value) ? T::lowest()
79711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                                        : T::max());
79811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.setstate(std::ios_base::failbit);
79911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
80011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return is;
80111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
80211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
80311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Specialization of ParseNormalFloat for FloatProxy<Float16> values.
80411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// This will parse the float as it were a 32-bit floating point number,
80511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// and then round it down to fit into a Float16 value.
80611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// The number is rounded towards zero.
80711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// If negate_value is true then the number may not have a leading minus or
80811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// plus, and if it successfully parses, then the number is negated before
80911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// being stored into the value parameter.
81011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// If the value cannot be correctly parsed or overflows the target floating
81111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// point type, then set the fail bit on the stream.
81211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// TODO(dneto): Promise C++11 standard behavior in how the value is set in
81311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// the error case, but only after all target platforms implement it correctly.
81411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// In particular, the Microsoft C++ runtime appears to be out of spec.
81511cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
81611cd02dfb91661c65134cac258cf5924270e9d2Dan Albertinline std::istream&
81711cd02dfb91661c65134cac258cf5924270e9d2Dan AlbertParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>(
81811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    std::istream& is, bool negate_value,
81911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) {
82011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // First parse as a 32-bit float.
82111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  HexFloat<FloatProxy<float>> float_val(0.0f);
82211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  ParseNormalFloat(is, negate_value, float_val);
82311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
82411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Then convert to 16-bit float, saturating at infinities, and
82511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // rounding toward zero.
82611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  float_val.castTo(value, round_direction::kToZero);
82711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
82811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the
82911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // fail bit and set the lowest or highest value.
83011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (Float16::isInfinity(value.value().getAsFloat())) {
83111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    value.set_value(value.isNegative() ? Float16::lowest() : Float16::max());
83211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.setstate(std::ios_base::failbit);
83311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
83411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return is;
83511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
83611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
83711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Reads a HexFloat from the given stream.
83811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// If the float is not encoded as a hex-float then it will be parsed
83911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// as a regular float.
84011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// This may fail if your stream does not support at least one unget.
84111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Nan values can be encoded with "0x1.<not zero>p+exponent_bias".
84211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// This would normally overflow a float and round to
84311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// infinity but this special pattern is the exact representation for a NaN,
84411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// and therefore is actually encoded as the correct NaN. To encode inf,
84511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// either 0x0p+exponent_bias can be specified or any exponent greater than
84611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// exponent_bias.
84711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Examples using IEEE 32-bit float encoding.
84811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//    0x1.0p+128 (+inf)
84911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//    -0x1.0p-128 (-inf)
85011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//
85111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//    0x1.1p+128 (+Nan)
85211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//    -0x1.1p+128 (-Nan)
85311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//
85411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//    0x1p+129 (+inf)
85511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert//    -0x1p+129 (-inf)
85611cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T, typename Traits>
85711cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstd::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) {
85811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using HF = HexFloat<T, Traits>;
85911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using uint_type = typename HF::uint_type;
86011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  using int_type = typename HF::int_type;
86111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
86211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  value.set_value(static_cast<typename HF::native_type>(0.f));
86311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
86411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (is.flags() & std::ios::skipws) {
86511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // If the user wants to skip whitespace , then we should obey that.
86611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    while (std::isspace(is.peek())) {
86711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is.get();
86811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
86911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
87011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
87111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  auto next_char = is.peek();
87211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool negate_value = false;
87311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
87411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (next_char != '-' && next_char != '0') {
87511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return ParseNormalFloat(is, negate_value, value);
87611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
87711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
87811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (next_char == '-') {
87911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    negate_value = true;
88011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.get();
88111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    next_char = is.peek();
88211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
88311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
88411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (next_char == '0') {
88511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.get();  // We may have to unget this.
88611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    auto maybe_hex_start = is.peek();
88711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (maybe_hex_start != 'x' && maybe_hex_start != 'X') {
88811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is.unget();
88911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return ParseNormalFloat(is, negate_value, value);
89011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else {
89111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is.get();  // Throw away the 'x';
89211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
89311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  } else {
89411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    return ParseNormalFloat(is, negate_value, value);
89511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
89611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
89711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // This "looks" like a hex-float so treat it as one.
89811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool seen_p = false;
89911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool seen_dot = false;
90011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type fraction_index = 0;
90111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
90211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type fraction = 0;
90311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  int_type exponent = HF::exponent_bias;
90411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
90511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Strip off leading zeros so we don't have to special-case them later.
90611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  while ((next_char = is.peek()) == '0') {
90711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.get();
90811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
90911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
91011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool is_denorm =
91111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      true;  // Assume denorm "representation" until we hear otherwise.
91211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert             // NB: This does not mean the value is actually denorm,
91311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert             // it just means that it was written 0.
91411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool bits_written = false;  // Stays false until we write a bit.
91511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  while (!seen_p && !seen_dot) {
91611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // Handle characters that are left of the fractional part.
91711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (next_char == '.') {
91811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      seen_dot = true;
91911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else if (next_char == 'p') {
92011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      seen_p = true;
92111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else if (::isxdigit(next_char)) {
92211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // We know this is not denormalized since we have stripped all leading
92311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // zeroes and we are not a ".".
92411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is_denorm = false;
92511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      int number = get_nibble_from_character(next_char);
92611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      for (int i = 0; i < 4; ++i, number <<= 1) {
92711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        uint_type write_bit = (number & 0x8) ? 0x1 : 0x0;
92811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        if (bits_written) {
92911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // If we are here the bits represented belong in the fractional
93011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // part of the float, and we have to adjust the exponent accordingly.
93111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          fraction = static_cast<uint_type>(
93211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              fraction |
93311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              static_cast<uint_type>(
93411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                  write_bit << (HF::top_bit_left_shift - fraction_index++)));
93511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          exponent = static_cast<int_type>(exponent + 1);
93611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        }
93711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        bits_written |= write_bit != 0;
93811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      }
93911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else {
94011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // We have not found our exponent yet, so we have to fail.
94111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is.setstate(std::ios::failbit);
94211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return is;
94311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
94411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.get();
94511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    next_char = is.peek();
94611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
94711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bits_written = false;
94811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  while (seen_dot && !seen_p) {
94911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    // Handle only fractional parts now.
95011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (next_char == 'p') {
95111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      seen_p = true;
95211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else if (::isxdigit(next_char)) {
95311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      int number = get_nibble_from_character(next_char);
95411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      for (int i = 0; i < 4; ++i, number <<= 1) {
95511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        uint_type write_bit = (number & 0x8) ? 0x01 : 0x00;
95611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        bits_written |= write_bit != 0;
95711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        if (is_denorm && !bits_written) {
95811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // Handle modifying the exponent here this way we can handle
95911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // an arbitrary number of hex values without overflowing our
96011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          // integer.
96111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          exponent = static_cast<int_type>(exponent - 1);
96211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        } else {
96311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          fraction = static_cast<uint_type>(
96411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              fraction |
96511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert              static_cast<uint_type>(
96611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                  write_bit << (HF::top_bit_left_shift - fraction_index++)));
96711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        }
96811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      }
96911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else {
97011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // We still have not found our 'p' exponent yet, so this is not a valid
97111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // hex-float.
97211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is.setstate(std::ios::failbit);
97311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      return is;
97411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
97511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.get();
97611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    next_char = is.peek();
97711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
97811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
97911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool seen_sign = false;
98011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  int8_t exponent_sign = 1;
98111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  int_type written_exponent = 0;
98211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  while (true) {
98311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if ((next_char == '-' || next_char == '+')) {
98411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      if (seen_sign) {
98511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        is.setstate(std::ios::failbit);
98611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert        return is;
98711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      }
98811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      seen_sign = true;
98911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      exponent_sign = (next_char == '-') ? -1 : 1;
99011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else if (::isdigit(next_char)) {
99111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // Hex-floats express their exponent as decimal.
99211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      written_exponent = static_cast<int_type>(written_exponent * 10);
99311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      written_exponent =
99411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert          static_cast<int_type>(written_exponent + (next_char - '0'));
99511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } else {
99611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      break;
99711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
99811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    is.get();
99911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    next_char = is.peek();
100011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
100111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
100211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  written_exponent = static_cast<int_type>(written_exponent * exponent_sign);
100311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  exponent = static_cast<int_type>(exponent + written_exponent);
100411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
100511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  bool is_zero = is_denorm && (fraction == 0);
100611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (is_denorm && !is_zero) {
100711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction = static_cast<uint_type>(fraction << 1);
100811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    exponent = static_cast<int_type>(exponent - 1);
100911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  } else if (is_zero) {
101011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    exponent = 0;
101111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
101211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
101311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (exponent <= 0 && !is_zero) {
101411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction = static_cast<uint_type>(fraction >> 1);
101511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift;
101611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
101711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
101811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask;
101911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
102011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  const int_type max_exponent =
102111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      SetBits<uint_type, 0, HF::num_exponent_bits>::get;
102211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
102311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // Handle actual denorm numbers
102411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  while (exponent < 0 && !is_zero) {
102511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction = static_cast<uint_type>(fraction >> 1);
102611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    exponent = static_cast<int_type>(exponent + 1);
102711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
102811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction &= HF::fraction_encode_mask;
102911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    if (fraction == 0) {
103011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      // We have underflowed our fraction. We should clamp to zero.
103111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      is_zero = true;
103211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      exponent = 0;
103311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    }
103411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
103511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
103611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  // We have overflowed so we should be inf/-inf.
103711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  if (exponent > max_exponent) {
103811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    exponent = max_exponent;
103911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    fraction = 0;
104011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
104111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
104211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type output_bits = static_cast<uint_type>(
104311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift);
104411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  output_bits |= fraction;
104511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
104611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  uint_type shifted_exponent = static_cast<uint_type>(
104711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      static_cast<uint_type>(exponent << HF::exponent_left_shift) &
104811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      HF::exponent_mask);
104911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  output_bits |= shifted_exponent;
105011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
105111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  T output_float = spvutils::BitwiseCast<T>(output_bits);
105211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  value.set_value(output_float);
105311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
105411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return is;
105511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
105611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
105711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Writes a FloatProxy value to a stream.
105811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// Zero and normal numbers are printed in the usual notation, but with
105911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// enough digits to fully reproduce the value.  Other values (subnormal,
106011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert// NaN, and infinity) are printed as a hex float.
106111cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <typename T>
106211cd02dfb91661c65134cac258cf5924270e9d2Dan Albertstd::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) {
106311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  auto float_val = value.getAsFloat();
106411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  switch (std::fpclassify(float_val)) {
106511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    case FP_ZERO:
106611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    case FP_NORMAL: {
106711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      auto saved_precision = os.precision();
106811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      os.precision(std::numeric_limits<T>::digits10);
106911cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      os << float_val;
107011cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      os.precision(saved_precision);
107111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    } break;
107211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert    default:
107311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      os << HexFloat<FloatProxy<T>>(value);
107411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert      break;
107511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  }
107611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return os;
107711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
107811cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
107911cd02dfb91661c65134cac258cf5924270e9d2Dan Alberttemplate <>
108011cd02dfb91661c65134cac258cf5924270e9d2Dan Albertinline std::ostream& operator<<<Float16>(std::ostream& os,
108111cd02dfb91661c65134cac258cf5924270e9d2Dan Albert                                         const FloatProxy<Float16>& value) {
108211cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  os << HexFloat<FloatProxy<Float16>>(value);
108311cd02dfb91661c65134cac258cf5924270e9d2Dan Albert  return os;
108411cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
108511cd02dfb91661c65134cac258cf5924270e9d2Dan Albert}
108611cd02dfb91661c65134cac258cf5924270e9d2Dan Albert
108711cd02dfb91661c65134cac258cf5924270e9d2Dan Albert#endif  // LIBSPIRV_UTIL_HEX_FLOAT_H_
1088