Searched defs:Using (Results 1 - 9 of 9) sorted by relevance

/external/clang/test/SemaCXX/
H A Dcxx11-user-defined-literals.cpp69 namespace Using { namespace
/external/clang/unittests/ASTMatchers/
H A DASTMatchersTraversalTest.cpp202 static const char Using[] = "template <typename T>" local
213 EXPECT_TRUE(matches(Using, unresolvedUsingTypenameDecl(hasName("Foo"))));
215 EXPECT_TRUE(matches(Using, parmVarDecl(hasType(namedDecl(hasName("Foo"))))));
/external/google-breakpad/src/testing/scripts/generator/cpp/
H A Dast.py203 class Using(Node): class in inherits:Node
682 # Using a deque should be even better since we access from both sides.
1581 return Using(tokens[0].start, tokens[0].end, tokens)
/external/googletest/googlemock/scripts/generator/cpp/
H A Dast.py204 class Using(Node): class in inherits:Node
683 # Using a deque should be even better since we access from both sides.
1591 return Using(tokens[0].start, tokens[0].end, tokens)
/external/v8/testing/gmock/scripts/generator/cpp/
H A Dast.py204 class Using(Node): class in inherits:Node
683 # Using a deque should be even better since we access from both sides.
1591 return Using(tokens[0].start, tokens[0].end, tokens)
/external/clang/include/clang/AST/
H A DDeclCXX.h2859 UsingDecl *Using, NamedDecl *Target);
2864 SourceLocation Loc, UsingDecl *Using,
2866 return new (C, DC) UsingShadowDecl(UsingShadow, C, DC, Loc, Using, Target);
2947 UsingDecl *Using, NamedDecl *Target,
2949 : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc, Using,
2972 UsingDecl *Using, NamedDecl *Target,
3062 : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3168 static bool classofKind(Kind K) { return K == Using; }
2863 Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target) argument
2946 ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target, bool TargetInVirtualBase) argument
/external/python/cpython2/Lib/pydoc_data/
H A Dtopics.py43 'identifiers': u'\nIdentifiers and keywords\n************************\n\nIdentifiers (also referred to as *names*) are described by the\nfollowing lexical definitions:\n\n identifier ::= (letter|"_") (letter | digit | "_")*\n letter ::= lowercase | uppercase\n lowercase ::= "a"..."z"\n uppercase ::= "A"..."Z"\n digit ::= "0"..."9"\n\nIdentifiers are unlimited in length. Case is significant.\n\n\nKeywords\n========\n\nThe following identifiers are used as reserved words, or *keywords* of\nthe language, and cannot be used as ordinary identifiers. They must\nbe spelled exactly as written here:\n\n and del from not while\n as elif global or with\n assert else if pass yield\n break except import print\n class exec in raise\n continue finally is return\n def for lambda try\n\nChanged in version 2.4: "None" became a constant and is now recognized\nby the compiler as a name for the built-in object "None". Although it\nis not a keyword, you cannot assign a different object to it.\n\nChanged in version 2.5: Using "as" and "with" as identifiers triggers\na warning. To use them as keywords, enable the "with_statement"\nfuture feature .\n\nChanged in version 2.6: "as" and "with" are full keywords.\n\n\nReserved classes of identifiers\n===============================\n\nCertain classes of identifiers (besides keywords) have special\nmeanings. These classes are identified by the patterns of leading and\ntrailing underscore characters:\n\n"_*"\n Not imported by "from module import *". The special identifier "_"\n is used in the interactive interpreter to store the result of the\n last evaluation; it is stored in the "__builtin__" module. When\n not in interactive mode, "_" has no special meaning and is not\n defined. See section The import statement.\n\n Note: The name "_" is often used in conjunction with\n internationalization; refer to the documentation for the\n "gettext" module for more information on this convention.\n\n"__*__"\n System-defined names. These names are defined by the interpreter\n and its implementation (including the standard library). Current\n system names are discussed in the Special method names section and\n elsewhere. More will likely be defined in future versions of\n Python. *Any* use of "__*__" names, in any context, that does not\n follow explicitly documented use, is subject to breakage without\n warning.\n\n"__*"\n Class-private names. Names in this category, when used within the\n context of a class definition, are re-written to use a mangled form\n to help avoid name clashes between "private" attributes of base and\n derived classes. See section Identifiers (Names).\n', namespace
73 'typesmapping': u'\nMapping Types --- "dict"\n************************\n\nA *mapping* object maps *hashable* values to arbitrary objects.\nMappings are mutable objects. There is currently only one standard\nmapping type, the *dictionary*. (For other containers see the built\nin "list", "set", and "tuple" classes, and the "collections" module.)\n\nA dictionary\'s keys are *almost* arbitrary values. Values that are\nnot *hashable*, that is, values containing lists, dictionaries or\nother mutable types (that are compared by value rather than by object\nidentity) may not be used as keys. Numeric types used for keys obey\nthe normal rules for numeric comparison: if two numbers compare equal\n(such as "1" and "1.0") then they can be used interchangeably to index\nthe same dictionary entry. (Note however, that since computers store\nfloating-point numbers as approximations it is usually unwise to use\nthem as dictionary keys.)\n\nDictionaries can be created by placing a comma-separated list of "key:\nvalue" pairs within braces, for example: "{\'jack\': 4098, \'sjoerd\':\n4127}" or "{4098: \'jack\', 4127: \'sjoerd\'}", or by the "dict"\nconstructor.\n\nclass dict(**kwarg)\nclass dict(mapping, **kwarg)\nclass dict(iterable, **kwarg)\n\n Return a new dictionary initialized from an optional positional\n argument and a possibly empty set of keyword arguments.\n\n If no positional argument is given, an empty dictionary is created.\n If a positional argument is given and it is a mapping object, a\n dictionary is created with the same key-value pairs as the mapping\n object. Otherwise, the positional argument must be an *iterable*\n object. Each item in the iterable must itself be an iterable with\n exactly two objects. The first object of each item becomes a key\n in the new dictionary, and the second object the corresponding\n value. If a key occurs more than once, the last value for that key\n becomes the corresponding value in the new dictionary.\n\n If keyword arguments are given, the keyword arguments and their\n values are added to the dictionary created from the positional\n argument. If a key being added is already present, the value from\n the keyword argument replaces the value from the positional\n argument.\n\n To illustrate, the following examples all return a dictionary equal\n to "{"one": 1, "two": 2, "three": 3}":\n\n >>> a = dict(one=1, two=2, three=3)\n >>> b = {\'one\': 1, \'two\': 2, \'three\': 3}\n >>> c = dict(zip([\'one\', \'two\', \'three\'], [1, 2, 3]))\n >>> d = dict([(\'two\', 2), (\'one\', 1), (\'three\', 3)])\n >>> e = dict({\'three\': 3, \'one\': 1, \'two\': 2})\n >>> a == b == c == d == e\n True\n\n Providing keyword arguments as in the first example only works for\n keys that are valid Python identifiers. Otherwise, any valid keys\n can be used.\n\n New in version 2.2.\n\n Changed in version 2.3: Support for building a dictionary from\n keyword arguments added.\n\n These are the operations that dictionaries support (and therefore,\n custom mapping types should support too):\n\n len(d)\n\n Return the number of items in the dictionary *d*.\n\n d[key]\n\n Return the item of *d* with key *key*. Raises a "KeyError" if\n *key* is not in the map.\n\n If a subclass of dict defines a method "__missing__()" and *key*\n is not present, the "d[key]" operation calls that method with\n the key *key* as argument. The "d[key]" operation then returns\n or raises whatever is returned or raised by the\n "__missing__(key)" call. No other operations or methods invoke\n "__missing__()". If "__missing__()" is not defined, "KeyError"\n is raised. "__missing__()" must be a method; it cannot be an\n instance variable:\n\n >>> class Counter(dict):\n ... def __missing__(self, key):\n ... return 0\n >>> c = Counter()\n >>> c[\'red\']\n 0\n >>> c[\'red\'] += 1\n >>> c[\'red\']\n 1\n\n The example above shows part of the implementation of\n "collections.Counter". A different "__missing__" method is used\n by "collections.defaultdict".\n\n New in version 2.5: Recognition of __missing__ methods of dict\n subclasses.\n\n d[key] = value\n\n Set "d[key]" to *value*.\n\n del d[key]\n\n Remove "d[key]" from *d*. Raises a "KeyError" if *key* is not\n in the map.\n\n key in d\n\n Return "True" if *d* has a key *key*, else "False".\n\n New in version 2.2.\n\n key not in d\n\n Equivalent to "not key in d".\n\n New in version 2.2.\n\n iter(d)\n\n Return an iterator over the keys of the dictionary. This is a\n shortcut for "iterkeys()".\n\n clear()\n\n Remove all items from the dictionary.\n\n copy()\n\n Return a shallow copy of the dictionary.\n\n fromkeys(seq[, value])\n\n Create a new dictionary with keys from *seq* and values set to\n *value*.\n\n "fromkeys()" is a class method that returns a new dictionary.\n *value* defaults to "None".\n\n New in version 2.3.\n\n get(key[, default])\n\n Return the value for *key* if *key* is in the dictionary, else\n *default*. If *default* is not given, it defaults to "None", so\n that this method never raises a "KeyError".\n\n has_key(key)\n\n Test for the presence of *key* in the dictionary. "has_key()"\n is deprecated in favor of "key in d".\n\n items()\n\n Return a copy of the dictionary\'s list of "(key, value)" pairs.\n\n **CPython implementation detail:** Keys and values are listed in\n an arbitrary order which is non-random, varies across Python\n implementations, and depends on the dictionary\'s history of\n insertions and deletions.\n\n If "items()", "keys()", "values()", "iteritems()", "iterkeys()",\n and "itervalues()" are called with no intervening modifications\n to the dictionary, the lists will directly correspond. This\n allows the creation of "(value, key)" pairs using "zip()":\n "pairs = zip(d.values(), d.keys())". The same relationship\n holds for the "iterkeys()" and "itervalues()" methods: "pairs =\n zip(d.itervalues(), d.iterkeys())" provides the same value for\n "pairs". Another way to create the same list is "pairs = [(v, k)\n for (k, v) in d.iteritems()]".\n\n iteritems()\n\n Return an iterator over the dictionary\'s "(key, value)" pairs.\n See the note for "dict.items()".\n\n Using "iteritems()" while adding or deleting entries in the\n dictionary may raise a "RuntimeError" or fail to iterate over\n all entries.\n\n New in version 2.2.\n\n iterkeys()\n\n Return an iterator over the dictionary\'s keys. See the note for\n "dict.items()".\n\n Using "iterkeys()" while adding or deleting entries in the\n dictionary may raise a "RuntimeError" or fail to iterate over\n all entries.\n\n New in version 2.2.\n\n itervalues()\n\n Return an iterator over the dictionary\'s values. See the note\n for "dict.items()".\n\n Using "itervalues()" while adding or deleting entries in the\n dictionary may raise a "RuntimeError" or fail to iterate over\n all entries.\n\n New in version 2.2.\n\n keys()\n\n Return a copy of the dictionary\'s list of keys. See the note\n for "dict.items()".\n\n pop(key[, default])\n\n If *key* is in the dictionary, remove it and return its value,\n else return *default*. If *default* is not given and *key* is\n not in the dictionary, a "KeyError" is raised.\n\n New in version 2.3.\n\n popitem()\n\n Remove and return an arbitrary "(key, value)" pair from the\n dictionary.\n\n "popitem()" is useful to destructively iterate over a\n dictionary, as often used in set algorithms. If the dictionary\n is empty, calling "popitem()" raises a "KeyError".\n\n setdefault(key[, default])\n\n If *key* is in the dictionary, return its value. If not, insert\n *key* with a value of *default* and return *default*. *default*\n defaults to "None".\n\n update([other])\n\n Update the dictionary with the key/value pairs from *other*,\n overwriting existing keys. Return "None".\n\n "update()" accepts either another dictionary object or an\n iterable of key/value pairs (as tuples or other iterables of\n length two). If keyword arguments are specified, the dictionary\n is then updated with those key/value pairs: "d.update(red=1,\n blue=2)".\n\n Changed in version 2.4: Allowed the argument to be an iterable\n of key/value pairs and allowed keyword arguments.\n\n values()\n\n Return a copy of the dictionary\'s list of values. See the note\n for "dict.items()".\n\n viewitems()\n\n Return a new view of the dictionary\'s items ("(key, value)"\n pairs). See below for documentation of view objects.\n\n New in version 2.7.\n\n viewkeys()\n\n Return a new view of the dictionary\'s keys. See below for\n documentation of view objects.\n\n New in version 2.7.\n\n viewvalues()\n\n Return a new view of the dictionary\'s values. See below for\n documentation of view objects.\n\n New in version 2.7.\n\n Dictionaries compare equal if and only if they have the same "(key,\n value)" pairs.\n\n\nDictionary view objects\n=======================\n\nThe objects returned by "dict.viewkeys()", "dict.viewvalues()" and\n"dict.viewitems()" are *view objects*. They provide a dynamic view on\nthe dictionary\'s entries, which means that when the dictionary\nchanges, the view reflects these changes.\n\nDictionary views can be iterated over to yield their respective data,\nand support membership tests:\n\nlen(dictview)\n\n Return the number of entries in the dictionary.\n\niter(dictview)\n\n Return an iterator over the keys, values or items (represented as\n tuples of "(key, value)") in the dictionary.\n\n Keys and values are iterated over in an arbitrary order which is\n non-random, varies across Python implementations, and depends on\n the dictionary\'s history of insertions and deletions. If keys,\n values and items views are iterated over with no intervening\n modifications to the dictionary, the order of items will directly\n correspond. This allows the creation of "(value, key)" pairs using\n "zip()": "pairs = zip(d.values(), d.keys())". Another way to\n create the same list is "pairs = [(v, k) for (k, v) in d.items()]".\n\n Iterating views while adding or deleting entries in the dictionary\n may raise a "RuntimeError" or fail to iterate over all entries.\n\nx in dictview\n\n Return "True" if *x* is in the underlying dictionary\'s keys, values\n or items (in the latter case, *x* should be a "(key, value)"\n tuple).\n\nKeys views are set-like since their entries are unique and hashable.\nIf all values are hashable, so that (key, value) pairs are unique and\nhashable, then the items view is also set-like. (Values views are not\ntreated as set-like since the entries are generally not unique.) Then\nthese set operations are available ("other" refers either to another\nview or a set):\n\ndictview & other\n\n Return the intersection of the dictview and the other object as a\n new set.\n\ndictview | other\n\n Return the union of the dictview and the other object as a new set.\n\ndictview - other\n\n Return the difference between the dictview and the other object\n (all elements in *dictview* that aren\'t in *other*) as a new set.\n\ndictview ^ other\n\n Return the symmetric difference (all elements either in *dictview*\n or *other*, but not in both) of the dictview and the other object\n as a new set.\n\nAn example of dictionary view usage:\n\n >>> dishes = {\'eggs\': 2, \'sausage\': 1, \'bacon\': 1, \'spam\': 500}\n >>> keys = dishes.viewkeys()\n >>> values = dishes.viewvalues()\n\n >>> # iteration\n >>> n = 0\n >>> for val in values:\n ... n += val\n >>> print(n)\n 504\n\n >>> # keys and values are iterated over in the same order\n >>> list(keys)\n [\'eggs\', \'bacon\', \'sausage\', \'spam\']\n >>> list(values)\n [2, 1, 1, 500]\n\n >>> # view objects are dynamic and reflect dict changes\n >>> del dishes[\'eggs\']\n >>> del dishes[\'sausage\']\n >>> list(keys)\n [\'spam\', \'bacon\']\n\n >>> # set operations\n >>> keys & {\'eggs\', \'bacon\', \'salad\'}\n {\'bacon\'}\n',
81 'yield': u'\nThe "yield" statement\n*********************\n\n yield_stmt ::= yield_expression\n\nThe "yield" statement is only used when defining a generator function,\nand is only used in the body of the generator function. Using a\n"yield" statement in a function definition is sufficient to cause that\ndefinition to create a generator function instead of a normal\nfunction.\n\nWhen a generator function is called, it returns an iterator known as a\ngenerator iterator, or more commonly, a generator. The body of the\ngenerator function is executed by calling the generator\'s "next()"\nmethod repeatedly until it raises an exception.\n\nWhen a "yield" statement is executed, the state of the generator is\nfrozen and the value of "expression_list" is returned to "next()"\'s\ncaller. By "frozen" we mean that all local state is retained,\nincluding the current bindings of local variables, the instruction\npointer, and the internal evaluation stack: enough information is\nsaved so that the next time "next()" is invoked, the function can\nproceed exactly as if the "yield" statement were just another external\ncall.\n\nAs of Python version 2.5, the "yield" statement is now allowed in the\n"try" clause of a "try" ... "finally" construct. If the generator is\nnot resumed before it is finalized (by reaching a zero reference count\nor by being garbage collected), the generator-iterator\'s "close()"\nmethod will be called, allowing any pending "finally" clauses to\nexecute.\n\nFor full details of "yield" semantics, refer to the Yield expressions\nsection.\n\nNote: In Python 2.2, the "yield" statement was only allowed when the\n "generators" feature has been enabled. This "__future__" import\n statement was used to enable the feature:\n\n from __future__ import generators\n\nSee also:\n\n **PEP 255** - Simple Generators\n The proposal for adding generators and the "yield" statement to\n Python.\n\n **PEP 342** - Coroutines via Enhanced Generators\n The proposal that, among other generator enhancements, proposed\n allowing "yield" to appear inside a "try" ... "finally" block.\n'}
/external/clang/lib/Sema/
H A DSemaDeclCXX.cpp871 case Decl::Using:
7891 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig, argument
7924 Diag(Using->getLocation(),
7926 << Using->getQualifierLoc().getSourceRange();
7931 Diag(Using->getQualifierLoc().getBeginLoc(),
7933 << Using->getQualifier()
7935 << Using->getQualifierLoc().getSourceRange();
7988 Diag(Using->getLocation(), diag::err_using_decl_conflict);
8000 Diag(Using->getLocation(), diag::err_using_decl_conflict);
8015 Diag(Using
[all...]
H A DTreeTransform.h11632 UsingDecl *Using = cast<UsingDecl>(D); local
11633 assert(Using->hasTypename() &&
11637 assert(++Using->shadow_begin() == Using->shadow_end());
11638 Ty = cast<TypeDecl>((*Using->shadow_begin())->getTargetDecl());

Completed in 974 milliseconds