CGExprCXX.cpp revision f85e193739c953358c865005855253af4f68a497
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with code generation of C++ expressions
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CGDebugInfo.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/Support/CallSite.h"
21
22using namespace clang;
23using namespace CodeGen;
24
25RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
26                                          llvm::Value *Callee,
27                                          ReturnValueSlot ReturnValue,
28                                          llvm::Value *This,
29                                          llvm::Value *VTT,
30                                          CallExpr::const_arg_iterator ArgBeg,
31                                          CallExpr::const_arg_iterator ArgEnd) {
32  assert(MD->isInstance() &&
33         "Trying to emit a member call expr on a static method!");
34
35  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
36
37  CallArgList Args;
38
39  // Push the this ptr.
40  Args.add(RValue::get(This), MD->getThisType(getContext()));
41
42  // If there is a VTT parameter, emit it.
43  if (VTT) {
44    QualType T = getContext().getPointerType(getContext().VoidPtrTy);
45    Args.add(RValue::get(VTT), T);
46  }
47
48  // And the rest of the call args
49  EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
50
51  QualType ResultType = FPT->getResultType();
52  return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
53                                                 FPT->getExtInfo()),
54                  Callee, ReturnValue, Args, MD);
55}
56
57static const CXXRecordDecl *getMostDerivedClassDecl(const Expr *Base) {
58  const Expr *E = Base;
59
60  while (true) {
61    E = E->IgnoreParens();
62    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
63      if (CE->getCastKind() == CK_DerivedToBase ||
64          CE->getCastKind() == CK_UncheckedDerivedToBase ||
65          CE->getCastKind() == CK_NoOp) {
66        E = CE->getSubExpr();
67        continue;
68      }
69    }
70
71    break;
72  }
73
74  QualType DerivedType = E->getType();
75  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
76    DerivedType = PTy->getPointeeType();
77
78  return cast<CXXRecordDecl>(DerivedType->castAs<RecordType>()->getDecl());
79}
80
81// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
82// quite what we want.
83static const Expr *skipNoOpCastsAndParens(const Expr *E) {
84  while (true) {
85    if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
86      E = PE->getSubExpr();
87      continue;
88    }
89
90    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
91      if (CE->getCastKind() == CK_NoOp) {
92        E = CE->getSubExpr();
93        continue;
94      }
95    }
96    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
97      if (UO->getOpcode() == UO_Extension) {
98        E = UO->getSubExpr();
99        continue;
100      }
101    }
102    return E;
103  }
104}
105
106/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
107/// expr can be devirtualized.
108static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
109                                               const Expr *Base,
110                                               const CXXMethodDecl *MD) {
111
112  // When building with -fapple-kext, all calls must go through the vtable since
113  // the kernel linker can do runtime patching of vtables.
114  if (Context.getLangOptions().AppleKext)
115    return false;
116
117  // If the most derived class is marked final, we know that no subclass can
118  // override this member function and so we can devirtualize it. For example:
119  //
120  // struct A { virtual void f(); }
121  // struct B final : A { };
122  //
123  // void f(B *b) {
124  //   b->f();
125  // }
126  //
127  const CXXRecordDecl *MostDerivedClassDecl = getMostDerivedClassDecl(Base);
128  if (MostDerivedClassDecl->hasAttr<FinalAttr>())
129    return true;
130
131  // If the member function is marked 'final', we know that it can't be
132  // overridden and can therefore devirtualize it.
133  if (MD->hasAttr<FinalAttr>())
134    return true;
135
136  // Similarly, if the class itself is marked 'final' it can't be overridden
137  // and we can therefore devirtualize the member function call.
138  if (MD->getParent()->hasAttr<FinalAttr>())
139    return true;
140
141  Base = skipNoOpCastsAndParens(Base);
142  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
143    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
144      // This is a record decl. We know the type and can devirtualize it.
145      return VD->getType()->isRecordType();
146    }
147
148    return false;
149  }
150
151  // We can always devirtualize calls on temporary object expressions.
152  if (isa<CXXConstructExpr>(Base))
153    return true;
154
155  // And calls on bound temporaries.
156  if (isa<CXXBindTemporaryExpr>(Base))
157    return true;
158
159  // Check if this is a call expr that returns a record type.
160  if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
161    return CE->getCallReturnType()->isRecordType();
162
163  // We can't devirtualize the call.
164  return false;
165}
166
167// Note: This function also emit constructor calls to support a MSVC
168// extensions allowing explicit constructor function call.
169RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
170                                              ReturnValueSlot ReturnValue) {
171  const Expr *callee = CE->getCallee()->IgnoreParens();
172
173  if (isa<BinaryOperator>(callee))
174    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
175
176  const MemberExpr *ME = cast<MemberExpr>(callee);
177  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
178
179  CGDebugInfo *DI = getDebugInfo();
180  if (DI && CGM.getCodeGenOpts().LimitDebugInfo
181      && !isa<CallExpr>(ME->getBase())) {
182    QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
183    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
184      DI->getOrCreateRecordType(PTy->getPointeeType(),
185                                MD->getParent()->getLocation());
186    }
187  }
188
189  if (MD->isStatic()) {
190    // The method is static, emit it as we would a regular call.
191    llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
192    return EmitCall(getContext().getPointerType(MD->getType()), Callee,
193                    ReturnValue, CE->arg_begin(), CE->arg_end());
194  }
195
196  // Compute the object pointer.
197  llvm::Value *This;
198  if (ME->isArrow())
199    This = EmitScalarExpr(ME->getBase());
200  else
201    This = EmitLValue(ME->getBase()).getAddress();
202
203  if (MD->isTrivial()) {
204    if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
205    if (isa<CXXConstructorDecl>(MD) &&
206        cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
207      return RValue::get(0);
208
209    if (MD->isCopyAssignmentOperator()) {
210      // We don't like to generate the trivial copy assignment operator when
211      // it isn't necessary; just produce the proper effect here.
212      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
213      EmitAggregateCopy(This, RHS, CE->getType());
214      return RValue::get(This);
215    }
216
217    if (isa<CXXConstructorDecl>(MD) &&
218        cast<CXXConstructorDecl>(MD)->isCopyConstructor()) {
219      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
220      EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
221                                     CE->arg_begin(), CE->arg_end());
222      return RValue::get(This);
223    }
224    llvm_unreachable("unknown trivial member function");
225  }
226
227  // Compute the function type we're calling.
228  const CGFunctionInfo *FInfo = 0;
229  if (isa<CXXDestructorDecl>(MD))
230    FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXDestructorDecl>(MD),
231                                           Dtor_Complete);
232  else if (isa<CXXConstructorDecl>(MD))
233    FInfo = &CGM.getTypes().getFunctionInfo(cast<CXXConstructorDecl>(MD),
234                                            Ctor_Complete);
235  else
236    FInfo = &CGM.getTypes().getFunctionInfo(MD);
237
238  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
239  const llvm::Type *Ty
240    = CGM.getTypes().GetFunctionType(*FInfo, FPT->isVariadic());
241
242  // C++ [class.virtual]p12:
243  //   Explicit qualification with the scope operator (5.1) suppresses the
244  //   virtual call mechanism.
245  //
246  // We also don't emit a virtual call if the base expression has a record type
247  // because then we know what the type is.
248  bool UseVirtualCall;
249  UseVirtualCall = MD->isVirtual() && !ME->hasQualifier()
250                   && !canDevirtualizeMemberFunctionCalls(getContext(),
251                                                          ME->getBase(), MD);
252  llvm::Value *Callee;
253  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
254    if (UseVirtualCall) {
255      Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
256    } else {
257      if (getContext().getLangOptions().AppleKext &&
258          MD->isVirtual() &&
259          ME->hasQualifier())
260        Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
261      else
262        Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
263    }
264  } else if (const CXXConstructorDecl *Ctor =
265               dyn_cast<CXXConstructorDecl>(MD)) {
266    Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
267  } else if (UseVirtualCall) {
268      Callee = BuildVirtualCall(MD, This, Ty);
269  } else {
270    if (getContext().getLangOptions().AppleKext &&
271        MD->isVirtual() &&
272        ME->hasQualifier())
273      Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
274    else
275      Callee = CGM.GetAddrOfFunction(MD, Ty);
276  }
277
278  return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
279                           CE->arg_begin(), CE->arg_end());
280}
281
282RValue
283CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
284                                              ReturnValueSlot ReturnValue) {
285  const BinaryOperator *BO =
286      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
287  const Expr *BaseExpr = BO->getLHS();
288  const Expr *MemFnExpr = BO->getRHS();
289
290  const MemberPointerType *MPT =
291    MemFnExpr->getType()->castAs<MemberPointerType>();
292
293  const FunctionProtoType *FPT =
294    MPT->getPointeeType()->castAs<FunctionProtoType>();
295  const CXXRecordDecl *RD =
296    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
297
298  // Get the member function pointer.
299  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
300
301  // Emit the 'this' pointer.
302  llvm::Value *This;
303
304  if (BO->getOpcode() == BO_PtrMemI)
305    This = EmitScalarExpr(BaseExpr);
306  else
307    This = EmitLValue(BaseExpr).getAddress();
308
309  // Ask the ABI to load the callee.  Note that This is modified.
310  llvm::Value *Callee =
311    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
312
313  CallArgList Args;
314
315  QualType ThisType =
316    getContext().getPointerType(getContext().getTagDeclType(RD));
317
318  // Push the this ptr.
319  Args.add(RValue::get(This), ThisType);
320
321  // And the rest of the call args
322  EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
323  return EmitCall(CGM.getTypes().getFunctionInfo(Args, FPT), Callee,
324                  ReturnValue, Args);
325}
326
327RValue
328CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
329                                               const CXXMethodDecl *MD,
330                                               ReturnValueSlot ReturnValue) {
331  assert(MD->isInstance() &&
332         "Trying to emit a member call expr on a static method!");
333  LValue LV = EmitLValue(E->getArg(0));
334  llvm::Value *This = LV.getAddress();
335
336  if (MD->isCopyAssignmentOperator()) {
337    const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(MD->getDeclContext());
338    if (ClassDecl->hasTrivialCopyAssignment()) {
339      assert(!ClassDecl->hasUserDeclaredCopyAssignment() &&
340             "EmitCXXOperatorMemberCallExpr - user declared copy assignment");
341      llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
342      QualType Ty = E->getType();
343      EmitAggregateCopy(This, Src, Ty);
344      return RValue::get(This);
345    }
346  }
347
348  llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
349  return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
350                           E->arg_begin() + 1, E->arg_end());
351}
352
353void
354CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
355                                      AggValueSlot Dest) {
356  assert(!Dest.isIgnored() && "Must have a destination!");
357  const CXXConstructorDecl *CD = E->getConstructor();
358
359  // If we require zero initialization before (or instead of) calling the
360  // constructor, as can be the case with a non-user-provided default
361  // constructor, emit the zero initialization now, unless destination is
362  // already zeroed.
363  if (E->requiresZeroInitialization() && !Dest.isZeroed())
364    EmitNullInitialization(Dest.getAddr(), E->getType());
365
366  // If this is a call to a trivial default constructor, do nothing.
367  if (CD->isTrivial() && CD->isDefaultConstructor())
368    return;
369
370  // Elide the constructor if we're constructing from a temporary.
371  // The temporary check is required because Sema sets this on NRVO
372  // returns.
373  if (getContext().getLangOptions().ElideConstructors && E->isElidable()) {
374    assert(getContext().hasSameUnqualifiedType(E->getType(),
375                                               E->getArg(0)->getType()));
376    if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
377      EmitAggExpr(E->getArg(0), Dest);
378      return;
379    }
380  }
381
382  const ConstantArrayType *Array
383    = getContext().getAsConstantArrayType(E->getType());
384  if (Array) {
385    QualType BaseElementTy = getContext().getBaseElementType(Array);
386    const llvm::Type *BasePtr = ConvertType(BaseElementTy);
387    BasePtr = llvm::PointerType::getUnqual(BasePtr);
388    llvm::Value *BaseAddrPtr =
389      Builder.CreateBitCast(Dest.getAddr(), BasePtr);
390
391    EmitCXXAggrConstructorCall(CD, Array, BaseAddrPtr,
392                               E->arg_begin(), E->arg_end());
393  }
394  else {
395    CXXCtorType Type = Ctor_Complete;
396    bool ForVirtualBase = false;
397
398    switch (E->getConstructionKind()) {
399     case CXXConstructExpr::CK_Delegating:
400      // We should be emitting a constructor; GlobalDecl will assert this
401      Type = CurGD.getCtorType();
402      break;
403
404     case CXXConstructExpr::CK_Complete:
405      Type = Ctor_Complete;
406      break;
407
408     case CXXConstructExpr::CK_VirtualBase:
409      ForVirtualBase = true;
410      // fall-through
411
412     case CXXConstructExpr::CK_NonVirtualBase:
413      Type = Ctor_Base;
414    }
415
416    // Call the constructor.
417    EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
418                           E->arg_begin(), E->arg_end());
419  }
420}
421
422void
423CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
424                                            llvm::Value *Src,
425                                            const Expr *Exp) {
426  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
427    Exp = E->getSubExpr();
428  assert(isa<CXXConstructExpr>(Exp) &&
429         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
430  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
431  const CXXConstructorDecl *CD = E->getConstructor();
432  RunCleanupsScope Scope(*this);
433
434  // If we require zero initialization before (or instead of) calling the
435  // constructor, as can be the case with a non-user-provided default
436  // constructor, emit the zero initialization now.
437  // FIXME. Do I still need this for a copy ctor synthesis?
438  if (E->requiresZeroInitialization())
439    EmitNullInitialization(Dest, E->getType());
440
441  assert(!getContext().getAsConstantArrayType(E->getType())
442         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
443  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
444                                 E->arg_begin(), E->arg_end());
445}
446
447static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
448                                        const CXXNewExpr *E) {
449  if (!E->isArray())
450    return CharUnits::Zero();
451
452  // No cookie is required if the operator new[] being used is the
453  // reserved placement operator new[].
454  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
455    return CharUnits::Zero();
456
457  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
458}
459
460static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
461                                        const CXXNewExpr *e,
462                                        llvm::Value *&numElements,
463                                        llvm::Value *&sizeWithoutCookie) {
464  QualType type = e->getAllocatedType();
465
466  if (!e->isArray()) {
467    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
468    sizeWithoutCookie
469      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
470    return sizeWithoutCookie;
471  }
472
473  // The width of size_t.
474  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
475
476  // Figure out the cookie size.
477  llvm::APInt cookieSize(sizeWidth,
478                         CalculateCookiePadding(CGF, e).getQuantity());
479
480  // Emit the array size expression.
481  // We multiply the size of all dimensions for NumElements.
482  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
483  numElements = CGF.EmitScalarExpr(e->getArraySize());
484  assert(isa<llvm::IntegerType>(numElements->getType()));
485
486  // The number of elements can be have an arbitrary integer type;
487  // essentially, we need to multiply it by a constant factor, add a
488  // cookie size, and verify that the result is representable as a
489  // size_t.  That's just a gloss, though, and it's wrong in one
490  // important way: if the count is negative, it's an error even if
491  // the cookie size would bring the total size >= 0.
492  bool isSigned
493    = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
494  const llvm::IntegerType *numElementsType
495    = cast<llvm::IntegerType>(numElements->getType());
496  unsigned numElementsWidth = numElementsType->getBitWidth();
497
498  // Compute the constant factor.
499  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
500  while (const ConstantArrayType *CAT
501             = CGF.getContext().getAsConstantArrayType(type)) {
502    type = CAT->getElementType();
503    arraySizeMultiplier *= CAT->getSize();
504  }
505
506  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
507  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
508  typeSizeMultiplier *= arraySizeMultiplier;
509
510  // This will be a size_t.
511  llvm::Value *size;
512
513  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
514  // Don't bloat the -O0 code.
515  if (llvm::ConstantInt *numElementsC =
516        dyn_cast<llvm::ConstantInt>(numElements)) {
517    const llvm::APInt &count = numElementsC->getValue();
518
519    bool hasAnyOverflow = false;
520
521    // If 'count' was a negative number, it's an overflow.
522    if (isSigned && count.isNegative())
523      hasAnyOverflow = true;
524
525    // We want to do all this arithmetic in size_t.  If numElements is
526    // wider than that, check whether it's already too big, and if so,
527    // overflow.
528    else if (numElementsWidth > sizeWidth &&
529             numElementsWidth - sizeWidth > count.countLeadingZeros())
530      hasAnyOverflow = true;
531
532    // Okay, compute a count at the right width.
533    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
534
535    // Scale numElements by that.  This might overflow, but we don't
536    // care because it only overflows if allocationSize does, too, and
537    // if that overflows then we shouldn't use this.
538    numElements = llvm::ConstantInt::get(CGF.SizeTy,
539                                         adjustedCount * arraySizeMultiplier);
540
541    // Compute the size before cookie, and track whether it overflowed.
542    bool overflow;
543    llvm::APInt allocationSize
544      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
545    hasAnyOverflow |= overflow;
546
547    // Add in the cookie, and check whether it's overflowed.
548    if (cookieSize != 0) {
549      // Save the current size without a cookie.  This shouldn't be
550      // used if there was overflow.
551      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
552
553      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
554      hasAnyOverflow |= overflow;
555    }
556
557    // On overflow, produce a -1 so operator new will fail.
558    if (hasAnyOverflow) {
559      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
560    } else {
561      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
562    }
563
564  // Otherwise, we might need to use the overflow intrinsics.
565  } else {
566    // There are up to four conditions we need to test for:
567    // 1) if isSigned, we need to check whether numElements is negative;
568    // 2) if numElementsWidth > sizeWidth, we need to check whether
569    //   numElements is larger than something representable in size_t;
570    // 3) we need to compute
571    //      sizeWithoutCookie := numElements * typeSizeMultiplier
572    //    and check whether it overflows; and
573    // 4) if we need a cookie, we need to compute
574    //      size := sizeWithoutCookie + cookieSize
575    //    and check whether it overflows.
576
577    llvm::Value *hasOverflow = 0;
578
579    // If numElementsWidth > sizeWidth, then one way or another, we're
580    // going to have to do a comparison for (2), and this happens to
581    // take care of (1), too.
582    if (numElementsWidth > sizeWidth) {
583      llvm::APInt threshold(numElementsWidth, 1);
584      threshold <<= sizeWidth;
585
586      llvm::Value *thresholdV
587        = llvm::ConstantInt::get(numElementsType, threshold);
588
589      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
590      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
591
592    // Otherwise, if we're signed, we want to sext up to size_t.
593    } else if (isSigned) {
594      if (numElementsWidth < sizeWidth)
595        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
596
597      // If there's a non-1 type size multiplier, then we can do the
598      // signedness check at the same time as we do the multiply
599      // because a negative number times anything will cause an
600      // unsigned overflow.  Otherwise, we have to do it here.
601      if (typeSizeMultiplier == 1)
602        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
603                                      llvm::ConstantInt::get(CGF.SizeTy, 0));
604
605    // Otherwise, zext up to size_t if necessary.
606    } else if (numElementsWidth < sizeWidth) {
607      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
608    }
609
610    assert(numElements->getType() == CGF.SizeTy);
611
612    size = numElements;
613
614    // Multiply by the type size if necessary.  This multiplier
615    // includes all the factors for nested arrays.
616    //
617    // This step also causes numElements to be scaled up by the
618    // nested-array factor if necessary.  Overflow on this computation
619    // can be ignored because the result shouldn't be used if
620    // allocation fails.
621    if (typeSizeMultiplier != 1) {
622      const llvm::Type *intrinsicTypes[] = { CGF.SizeTy };
623      llvm::Value *umul_with_overflow
624        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow,
625                               intrinsicTypes, 1);
626
627      llvm::Value *tsmV =
628        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
629      llvm::Value *result =
630        CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
631
632      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
633      if (hasOverflow)
634        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
635      else
636        hasOverflow = overflowed;
637
638      size = CGF.Builder.CreateExtractValue(result, 0);
639
640      // Also scale up numElements by the array size multiplier.
641      if (arraySizeMultiplier != 1) {
642        // If the base element type size is 1, then we can re-use the
643        // multiply we just did.
644        if (typeSize.isOne()) {
645          assert(arraySizeMultiplier == typeSizeMultiplier);
646          numElements = size;
647
648        // Otherwise we need a separate multiply.
649        } else {
650          llvm::Value *asmV =
651            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
652          numElements = CGF.Builder.CreateMul(numElements, asmV);
653        }
654      }
655    } else {
656      // numElements doesn't need to be scaled.
657      assert(arraySizeMultiplier == 1);
658    }
659
660    // Add in the cookie size if necessary.
661    if (cookieSize != 0) {
662      sizeWithoutCookie = size;
663
664      const llvm::Type *intrinsicTypes[] = { CGF.SizeTy };
665      llvm::Value *uadd_with_overflow
666        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow,
667                               intrinsicTypes, 1);
668
669      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
670      llvm::Value *result =
671        CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
672
673      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
674      if (hasOverflow)
675        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
676      else
677        hasOverflow = overflowed;
678
679      size = CGF.Builder.CreateExtractValue(result, 0);
680    }
681
682    // If we had any possibility of dynamic overflow, make a select to
683    // overwrite 'size' with an all-ones value, which should cause
684    // operator new to throw.
685    if (hasOverflow)
686      size = CGF.Builder.CreateSelect(hasOverflow,
687                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
688                                      size);
689  }
690
691  if (cookieSize == 0)
692    sizeWithoutCookie = size;
693  else
694    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
695
696  return size;
697}
698
699static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const CXXNewExpr *E,
700                                    llvm::Value *NewPtr) {
701
702  assert(E->getNumConstructorArgs() == 1 &&
703         "Can only have one argument to initializer of POD type.");
704
705  const Expr *Init = E->getConstructorArg(0);
706  QualType AllocType = E->getAllocatedType();
707
708  unsigned Alignment =
709    CGF.getContext().getTypeAlignInChars(AllocType).getQuantity();
710  if (!CGF.hasAggregateLLVMType(AllocType))
711    CGF.EmitScalarInit(Init, 0, NewPtr, false, AllocType.isVolatileQualified(),
712                       Alignment, AllocType);
713  else if (AllocType->isAnyComplexType())
714    CGF.EmitComplexExprIntoAddr(Init, NewPtr,
715                                AllocType.isVolatileQualified());
716  else {
717    AggValueSlot Slot
718      = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), true);
719    CGF.EmitAggExpr(Init, Slot);
720  }
721}
722
723void
724CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
725                                         llvm::Value *NewPtr,
726                                         llvm::Value *NumElements) {
727  // We have a POD type.
728  if (E->getNumConstructorArgs() == 0)
729    return;
730
731  const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
732
733  // Create a temporary for the loop index and initialize it with 0.
734  llvm::Value *IndexPtr = CreateTempAlloca(SizeTy, "loop.index");
735  llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
736  Builder.CreateStore(Zero, IndexPtr);
737
738  // Start the loop with a block that tests the condition.
739  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
740  llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
741
742  EmitBlock(CondBlock);
743
744  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
745
746  // Generate: if (loop-index < number-of-elements fall to the loop body,
747  // otherwise, go to the block after the for-loop.
748  llvm::Value *Counter = Builder.CreateLoad(IndexPtr);
749  llvm::Value *IsLess = Builder.CreateICmpULT(Counter, NumElements, "isless");
750  // If the condition is true, execute the body.
751  Builder.CreateCondBr(IsLess, ForBody, AfterFor);
752
753  EmitBlock(ForBody);
754
755  llvm::BasicBlock *ContinueBlock = createBasicBlock("for.inc");
756  // Inside the loop body, emit the constructor call on the array element.
757  Counter = Builder.CreateLoad(IndexPtr);
758  llvm::Value *Address = Builder.CreateInBoundsGEP(NewPtr, Counter,
759                                                   "arrayidx");
760  StoreAnyExprIntoOneUnit(*this, E, Address);
761
762  EmitBlock(ContinueBlock);
763
764  // Emit the increment of the loop counter.
765  llvm::Value *NextVal = llvm::ConstantInt::get(SizeTy, 1);
766  Counter = Builder.CreateLoad(IndexPtr);
767  NextVal = Builder.CreateAdd(Counter, NextVal, "inc");
768  Builder.CreateStore(NextVal, IndexPtr);
769
770  // Finally, branch back up to the condition for the next iteration.
771  EmitBranch(CondBlock);
772
773  // Emit the fall-through block.
774  EmitBlock(AfterFor, true);
775}
776
777static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
778                           llvm::Value *NewPtr, llvm::Value *Size) {
779  CGF.EmitCastToVoidPtr(NewPtr);
780  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
781  CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
782                           Alignment.getQuantity(), false);
783}
784
785static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
786                               llvm::Value *NewPtr,
787                               llvm::Value *NumElements,
788                               llvm::Value *AllocSizeWithoutCookie) {
789  if (E->isArray()) {
790    if (CXXConstructorDecl *Ctor = E->getConstructor()) {
791      bool RequiresZeroInitialization = false;
792      if (Ctor->getParent()->hasTrivialDefaultConstructor()) {
793        // If new expression did not specify value-initialization, then there
794        // is no initialization.
795        if (!E->hasInitializer() || Ctor->getParent()->isEmpty())
796          return;
797
798        if (CGF.CGM.getTypes().isZeroInitializable(E->getAllocatedType())) {
799          // Optimization: since zero initialization will just set the memory
800          // to all zeroes, generate a single memset to do it in one shot.
801          EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
802                         AllocSizeWithoutCookie);
803          return;
804        }
805
806        RequiresZeroInitialization = true;
807      }
808
809      CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
810                                     E->constructor_arg_begin(),
811                                     E->constructor_arg_end(),
812                                     RequiresZeroInitialization);
813      return;
814    } else if (E->getNumConstructorArgs() == 1 &&
815               isa<ImplicitValueInitExpr>(E->getConstructorArg(0))) {
816      // Optimization: since zero initialization will just set the memory
817      // to all zeroes, generate a single memset to do it in one shot.
818      EmitZeroMemSet(CGF, E->getAllocatedType(), NewPtr,
819                     AllocSizeWithoutCookie);
820      return;
821    } else {
822      CGF.EmitNewArrayInitializer(E, NewPtr, NumElements);
823      return;
824    }
825  }
826
827  if (CXXConstructorDecl *Ctor = E->getConstructor()) {
828    // Per C++ [expr.new]p15, if we have an initializer, then we're performing
829    // direct initialization. C++ [dcl.init]p5 requires that we
830    // zero-initialize storage if there are no user-declared constructors.
831    if (E->hasInitializer() &&
832        !Ctor->getParent()->hasUserDeclaredConstructor() &&
833        !Ctor->getParent()->isEmpty())
834      CGF.EmitNullInitialization(NewPtr, E->getAllocatedType());
835
836    CGF.EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
837                               NewPtr, E->constructor_arg_begin(),
838                               E->constructor_arg_end());
839
840    return;
841  }
842  // We have a POD type.
843  if (E->getNumConstructorArgs() == 0)
844    return;
845
846  StoreAnyExprIntoOneUnit(CGF, E, NewPtr);
847}
848
849namespace {
850  /// A cleanup to call the given 'operator delete' function upon
851  /// abnormal exit from a new expression.
852  class CallDeleteDuringNew : public EHScopeStack::Cleanup {
853    size_t NumPlacementArgs;
854    const FunctionDecl *OperatorDelete;
855    llvm::Value *Ptr;
856    llvm::Value *AllocSize;
857
858    RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
859
860  public:
861    static size_t getExtraSize(size_t NumPlacementArgs) {
862      return NumPlacementArgs * sizeof(RValue);
863    }
864
865    CallDeleteDuringNew(size_t NumPlacementArgs,
866                        const FunctionDecl *OperatorDelete,
867                        llvm::Value *Ptr,
868                        llvm::Value *AllocSize)
869      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
870        Ptr(Ptr), AllocSize(AllocSize) {}
871
872    void setPlacementArg(unsigned I, RValue Arg) {
873      assert(I < NumPlacementArgs && "index out of range");
874      getPlacementArgs()[I] = Arg;
875    }
876
877    void Emit(CodeGenFunction &CGF, bool IsForEH) {
878      const FunctionProtoType *FPT
879        = OperatorDelete->getType()->getAs<FunctionProtoType>();
880      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
881             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
882
883      CallArgList DeleteArgs;
884
885      // The first argument is always a void*.
886      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
887      DeleteArgs.add(RValue::get(Ptr), *AI++);
888
889      // A member 'operator delete' can take an extra 'size_t' argument.
890      if (FPT->getNumArgs() == NumPlacementArgs + 2)
891        DeleteArgs.add(RValue::get(AllocSize), *AI++);
892
893      // Pass the rest of the arguments, which must match exactly.
894      for (unsigned I = 0; I != NumPlacementArgs; ++I)
895        DeleteArgs.add(getPlacementArgs()[I], *AI++);
896
897      // Call 'operator delete'.
898      CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
899                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
900                   ReturnValueSlot(), DeleteArgs, OperatorDelete);
901    }
902  };
903
904  /// A cleanup to call the given 'operator delete' function upon
905  /// abnormal exit from a new expression when the new expression is
906  /// conditional.
907  class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
908    size_t NumPlacementArgs;
909    const FunctionDecl *OperatorDelete;
910    DominatingValue<RValue>::saved_type Ptr;
911    DominatingValue<RValue>::saved_type AllocSize;
912
913    DominatingValue<RValue>::saved_type *getPlacementArgs() {
914      return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
915    }
916
917  public:
918    static size_t getExtraSize(size_t NumPlacementArgs) {
919      return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
920    }
921
922    CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
923                                   const FunctionDecl *OperatorDelete,
924                                   DominatingValue<RValue>::saved_type Ptr,
925                              DominatingValue<RValue>::saved_type AllocSize)
926      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
927        Ptr(Ptr), AllocSize(AllocSize) {}
928
929    void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
930      assert(I < NumPlacementArgs && "index out of range");
931      getPlacementArgs()[I] = Arg;
932    }
933
934    void Emit(CodeGenFunction &CGF, bool IsForEH) {
935      const FunctionProtoType *FPT
936        = OperatorDelete->getType()->getAs<FunctionProtoType>();
937      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
938             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
939
940      CallArgList DeleteArgs;
941
942      // The first argument is always a void*.
943      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
944      DeleteArgs.add(Ptr.restore(CGF), *AI++);
945
946      // A member 'operator delete' can take an extra 'size_t' argument.
947      if (FPT->getNumArgs() == NumPlacementArgs + 2) {
948        RValue RV = AllocSize.restore(CGF);
949        DeleteArgs.add(RV, *AI++);
950      }
951
952      // Pass the rest of the arguments, which must match exactly.
953      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
954        RValue RV = getPlacementArgs()[I].restore(CGF);
955        DeleteArgs.add(RV, *AI++);
956      }
957
958      // Call 'operator delete'.
959      CGF.EmitCall(CGF.CGM.getTypes().getFunctionInfo(DeleteArgs, FPT),
960                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
961                   ReturnValueSlot(), DeleteArgs, OperatorDelete);
962    }
963  };
964}
965
966/// Enter a cleanup to call 'operator delete' if the initializer in a
967/// new-expression throws.
968static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
969                                  const CXXNewExpr *E,
970                                  llvm::Value *NewPtr,
971                                  llvm::Value *AllocSize,
972                                  const CallArgList &NewArgs) {
973  // If we're not inside a conditional branch, then the cleanup will
974  // dominate and we can do the easier (and more efficient) thing.
975  if (!CGF.isInConditionalBranch()) {
976    CallDeleteDuringNew *Cleanup = CGF.EHStack
977      .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
978                                                 E->getNumPlacementArgs(),
979                                                 E->getOperatorDelete(),
980                                                 NewPtr, AllocSize);
981    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
982      Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
983
984    return;
985  }
986
987  // Otherwise, we need to save all this stuff.
988  DominatingValue<RValue>::saved_type SavedNewPtr =
989    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
990  DominatingValue<RValue>::saved_type SavedAllocSize =
991    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
992
993  CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
994    .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(InactiveEHCleanup,
995                                                 E->getNumPlacementArgs(),
996                                                 E->getOperatorDelete(),
997                                                 SavedNewPtr,
998                                                 SavedAllocSize);
999  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1000    Cleanup->setPlacementArg(I,
1001                     DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1002
1003  CGF.ActivateCleanupBlock(CGF.EHStack.stable_begin());
1004}
1005
1006llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1007  // The element type being allocated.
1008  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1009
1010  // 1. Build a call to the allocation function.
1011  FunctionDecl *allocator = E->getOperatorNew();
1012  const FunctionProtoType *allocatorType =
1013    allocator->getType()->castAs<FunctionProtoType>();
1014
1015  CallArgList allocatorArgs;
1016
1017  // The allocation size is the first argument.
1018  QualType sizeType = getContext().getSizeType();
1019
1020  llvm::Value *numElements = 0;
1021  llvm::Value *allocSizeWithoutCookie = 0;
1022  llvm::Value *allocSize =
1023    EmitCXXNewAllocSize(*this, E, numElements, allocSizeWithoutCookie);
1024
1025  allocatorArgs.add(RValue::get(allocSize), sizeType);
1026
1027  // Emit the rest of the arguments.
1028  // FIXME: Ideally, this should just use EmitCallArgs.
1029  CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1030
1031  // First, use the types from the function type.
1032  // We start at 1 here because the first argument (the allocation size)
1033  // has already been emitted.
1034  for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1035       ++i, ++placementArg) {
1036    QualType argType = allocatorType->getArgType(i);
1037
1038    assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1039                                               placementArg->getType()) &&
1040           "type mismatch in call argument!");
1041
1042    EmitCallArg(allocatorArgs, *placementArg, argType);
1043  }
1044
1045  // Either we've emitted all the call args, or we have a call to a
1046  // variadic function.
1047  assert((placementArg == E->placement_arg_end() ||
1048          allocatorType->isVariadic()) &&
1049         "Extra arguments to non-variadic function!");
1050
1051  // If we still have any arguments, emit them using the type of the argument.
1052  for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1053       placementArg != placementArgsEnd; ++placementArg) {
1054    EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1055  }
1056
1057  // Emit the allocation call.  If the allocator is a global placement
1058  // operator, just "inline" it directly.
1059  RValue RV;
1060  if (allocator->isReservedGlobalPlacementOperator()) {
1061    assert(allocatorArgs.size() == 2);
1062    RV = allocatorArgs[1].RV;
1063    // TODO: kill any unnecessary computations done for the size
1064    // argument.
1065  } else {
1066    RV = EmitCall(CGM.getTypes().getFunctionInfo(allocatorArgs, allocatorType),
1067                  CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
1068                  allocatorArgs, allocator);
1069  }
1070
1071  // Emit a null check on the allocation result if the allocation
1072  // function is allowed to return null (because it has a non-throwing
1073  // exception spec; for this part, we inline
1074  // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1075  // interesting initializer.
1076  bool nullCheck = allocatorType->isNothrow(getContext()) &&
1077    !(allocType.isPODType(getContext()) && !E->hasInitializer());
1078
1079  llvm::BasicBlock *nullCheckBB = 0;
1080  llvm::BasicBlock *contBB = 0;
1081
1082  llvm::Value *allocation = RV.getScalarVal();
1083  unsigned AS =
1084    cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
1085
1086  // The null-check means that the initializer is conditionally
1087  // evaluated.
1088  ConditionalEvaluation conditional(*this);
1089
1090  if (nullCheck) {
1091    conditional.begin(*this);
1092
1093    nullCheckBB = Builder.GetInsertBlock();
1094    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1095    contBB = createBasicBlock("new.cont");
1096
1097    llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1098    Builder.CreateCondBr(isNull, contBB, notNullBB);
1099    EmitBlock(notNullBB);
1100  }
1101
1102  assert((allocSize == allocSizeWithoutCookie) ==
1103         CalculateCookiePadding(*this, E).isZero());
1104  if (allocSize != allocSizeWithoutCookie) {
1105    assert(E->isArray());
1106    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1107                                                       numElements,
1108                                                       E, allocType);
1109  }
1110
1111  // If there's an operator delete, enter a cleanup to call it if an
1112  // exception is thrown.
1113  EHScopeStack::stable_iterator operatorDeleteCleanup;
1114  if (E->getOperatorDelete() &&
1115      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1116    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1117    operatorDeleteCleanup = EHStack.stable_begin();
1118  }
1119
1120  const llvm::Type *elementPtrTy
1121    = ConvertTypeForMem(allocType)->getPointerTo(AS);
1122  llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1123
1124  if (E->isArray()) {
1125    EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
1126
1127    // NewPtr is a pointer to the base element type.  If we're
1128    // allocating an array of arrays, we'll need to cast back to the
1129    // array pointer type.
1130    const llvm::Type *resultType = ConvertTypeForMem(E->getType());
1131    if (result->getType() != resultType)
1132      result = Builder.CreateBitCast(result, resultType);
1133  } else {
1134    EmitNewInitializer(*this, E, result, numElements, allocSizeWithoutCookie);
1135  }
1136
1137  // Deactivate the 'operator delete' cleanup if we finished
1138  // initialization.
1139  if (operatorDeleteCleanup.isValid())
1140    DeactivateCleanupBlock(operatorDeleteCleanup);
1141
1142  if (nullCheck) {
1143    conditional.end(*this);
1144
1145    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1146    EmitBlock(contBB);
1147
1148    llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1149    PHI->addIncoming(result, notNullBB);
1150    PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1151                     nullCheckBB);
1152
1153    result = PHI;
1154  }
1155
1156  return result;
1157}
1158
1159void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1160                                     llvm::Value *Ptr,
1161                                     QualType DeleteTy) {
1162  assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1163
1164  const FunctionProtoType *DeleteFTy =
1165    DeleteFD->getType()->getAs<FunctionProtoType>();
1166
1167  CallArgList DeleteArgs;
1168
1169  // Check if we need to pass the size to the delete operator.
1170  llvm::Value *Size = 0;
1171  QualType SizeTy;
1172  if (DeleteFTy->getNumArgs() == 2) {
1173    SizeTy = DeleteFTy->getArgType(1);
1174    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1175    Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1176                                  DeleteTypeSize.getQuantity());
1177  }
1178
1179  QualType ArgTy = DeleteFTy->getArgType(0);
1180  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1181  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1182
1183  if (Size)
1184    DeleteArgs.add(RValue::get(Size), SizeTy);
1185
1186  // Emit the call to delete.
1187  EmitCall(CGM.getTypes().getFunctionInfo(DeleteArgs, DeleteFTy),
1188           CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
1189           DeleteArgs, DeleteFD);
1190}
1191
1192namespace {
1193  /// Calls the given 'operator delete' on a single object.
1194  struct CallObjectDelete : EHScopeStack::Cleanup {
1195    llvm::Value *Ptr;
1196    const FunctionDecl *OperatorDelete;
1197    QualType ElementType;
1198
1199    CallObjectDelete(llvm::Value *Ptr,
1200                     const FunctionDecl *OperatorDelete,
1201                     QualType ElementType)
1202      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1203
1204    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1205      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1206    }
1207  };
1208}
1209
1210/// Emit the code for deleting a single object.
1211static void EmitObjectDelete(CodeGenFunction &CGF,
1212                             const FunctionDecl *OperatorDelete,
1213                             llvm::Value *Ptr,
1214                             QualType ElementType) {
1215  // Find the destructor for the type, if applicable.  If the
1216  // destructor is virtual, we'll just emit the vcall and return.
1217  const CXXDestructorDecl *Dtor = 0;
1218  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1219    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1220    if (!RD->hasTrivialDestructor()) {
1221      Dtor = RD->getDestructor();
1222
1223      if (Dtor->isVirtual()) {
1224        const llvm::Type *Ty =
1225          CGF.getTypes().GetFunctionType(CGF.getTypes().getFunctionInfo(Dtor,
1226                                                               Dtor_Complete),
1227                                         /*isVariadic=*/false);
1228
1229        llvm::Value *Callee
1230          = CGF.BuildVirtualCall(Dtor, Dtor_Deleting, Ptr, Ty);
1231        CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
1232                              0, 0);
1233
1234        // The dtor took care of deleting the object.
1235        return;
1236      }
1237    }
1238  }
1239
1240  // Make sure that we call delete even if the dtor throws.
1241  // This doesn't have to a conditional cleanup because we're going
1242  // to pop it off in a second.
1243  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1244                                            Ptr, OperatorDelete, ElementType);
1245
1246  if (Dtor)
1247    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1248                              /*ForVirtualBase=*/false, Ptr);
1249  else if (CGF.getLangOptions().ObjCAutoRefCount &&
1250           ElementType->isObjCLifetimeType()) {
1251    switch (ElementType.getObjCLifetime()) {
1252    case Qualifiers::OCL_None:
1253    case Qualifiers::OCL_ExplicitNone:
1254    case Qualifiers::OCL_Autoreleasing:
1255      break;
1256
1257    case Qualifiers::OCL_Strong: {
1258      // Load the pointer value.
1259      llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1260                                             ElementType.isVolatileQualified());
1261
1262      CGF.EmitARCRelease(PtrValue, /*precise*/ true);
1263      break;
1264    }
1265
1266    case Qualifiers::OCL_Weak:
1267      CGF.EmitARCDestroyWeak(Ptr);
1268      break;
1269    }
1270  }
1271
1272  CGF.PopCleanupBlock();
1273}
1274
1275namespace {
1276  /// Calls the given 'operator delete' on an array of objects.
1277  struct CallArrayDelete : EHScopeStack::Cleanup {
1278    llvm::Value *Ptr;
1279    const FunctionDecl *OperatorDelete;
1280    llvm::Value *NumElements;
1281    QualType ElementType;
1282    CharUnits CookieSize;
1283
1284    CallArrayDelete(llvm::Value *Ptr,
1285                    const FunctionDecl *OperatorDelete,
1286                    llvm::Value *NumElements,
1287                    QualType ElementType,
1288                    CharUnits CookieSize)
1289      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1290        ElementType(ElementType), CookieSize(CookieSize) {}
1291
1292    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1293      const FunctionProtoType *DeleteFTy =
1294        OperatorDelete->getType()->getAs<FunctionProtoType>();
1295      assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1296
1297      CallArgList Args;
1298
1299      // Pass the pointer as the first argument.
1300      QualType VoidPtrTy = DeleteFTy->getArgType(0);
1301      llvm::Value *DeletePtr
1302        = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1303      Args.add(RValue::get(DeletePtr), VoidPtrTy);
1304
1305      // Pass the original requested size as the second argument.
1306      if (DeleteFTy->getNumArgs() == 2) {
1307        QualType size_t = DeleteFTy->getArgType(1);
1308        const llvm::IntegerType *SizeTy
1309          = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1310
1311        CharUnits ElementTypeSize =
1312          CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1313
1314        // The size of an element, multiplied by the number of elements.
1315        llvm::Value *Size
1316          = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1317        Size = CGF.Builder.CreateMul(Size, NumElements);
1318
1319        // Plus the size of the cookie if applicable.
1320        if (!CookieSize.isZero()) {
1321          llvm::Value *CookieSizeV
1322            = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1323          Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1324        }
1325
1326        Args.add(RValue::get(Size), size_t);
1327      }
1328
1329      // Emit the call to delete.
1330      CGF.EmitCall(CGF.getTypes().getFunctionInfo(Args, DeleteFTy),
1331                   CGF.CGM.GetAddrOfFunction(OperatorDelete),
1332                   ReturnValueSlot(), Args, OperatorDelete);
1333    }
1334  };
1335}
1336
1337/// Emit the code for deleting an array of objects.
1338static void EmitArrayDelete(CodeGenFunction &CGF,
1339                            const CXXDeleteExpr *E,
1340                            llvm::Value *Ptr,
1341                            QualType ElementType) {
1342  llvm::Value *NumElements = 0;
1343  llvm::Value *AllocatedPtr = 0;
1344  CharUnits CookieSize;
1345  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr, E, ElementType,
1346                                      NumElements, AllocatedPtr, CookieSize);
1347
1348  assert(AllocatedPtr && "ReadArrayCookie didn't set AllocatedPtr");
1349
1350  // Make sure that we call delete even if one of the dtors throws.
1351  const FunctionDecl *OperatorDelete = E->getOperatorDelete();
1352  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1353                                           AllocatedPtr, OperatorDelete,
1354                                           NumElements, ElementType,
1355                                           CookieSize);
1356
1357  if (const CXXRecordDecl *RD = ElementType->getAsCXXRecordDecl()) {
1358    if (!RD->hasTrivialDestructor()) {
1359      assert(NumElements && "ReadArrayCookie didn't find element count"
1360                            " for a class with destructor");
1361      CGF.EmitCXXAggrDestructorCall(RD->getDestructor(), NumElements, Ptr);
1362    }
1363  } else if (CGF.getLangOptions().ObjCAutoRefCount &&
1364             ElementType->isObjCLifetimeType() &&
1365             (ElementType.getObjCLifetime() == Qualifiers::OCL_Strong ||
1366              ElementType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
1367    bool IsStrong = ElementType.getObjCLifetime() == Qualifiers::OCL_Strong;
1368    const llvm::Type *SizeLTy = CGF.ConvertType(CGF.getContext().getSizeType());
1369    llvm::Value *One = llvm::ConstantInt::get(SizeLTy, 1);
1370
1371    // Create a temporary for the loop index and initialize it with count of
1372    // array elements.
1373    llvm::Value *IndexPtr = CGF.CreateTempAlloca(SizeLTy, "loop.index");
1374
1375    // Store the number of elements in the index pointer.
1376    CGF.Builder.CreateStore(NumElements, IndexPtr);
1377
1378    // Start the loop with a block that tests the condition.
1379    llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
1380    llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
1381
1382    CGF.EmitBlock(CondBlock);
1383
1384    llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
1385
1386    // Generate: if (loop-index != 0 fall to the loop body,
1387    // otherwise, go to the block after the for-loop.
1388    llvm::Value* zeroConstant = llvm::Constant::getNullValue(SizeLTy);
1389    llvm::Value *Counter = CGF.Builder.CreateLoad(IndexPtr);
1390    llvm::Value *IsNE = CGF.Builder.CreateICmpNE(Counter, zeroConstant,
1391                                                 "isne");
1392    // If the condition is true, execute the body.
1393    CGF.Builder.CreateCondBr(IsNE, ForBody, AfterFor);
1394
1395    CGF.EmitBlock(ForBody);
1396
1397    llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
1398    // Inside the loop body, emit the constructor call on the array element.
1399    Counter = CGF.Builder.CreateLoad(IndexPtr);
1400    Counter = CGF.Builder.CreateSub(Counter, One);
1401    llvm::Value *Address = CGF.Builder.CreateInBoundsGEP(Ptr, Counter,
1402                                                         "arrayidx");
1403    if (IsStrong)
1404      CGF.EmitARCRelease(CGF.Builder.CreateLoad(Address,
1405                                          ElementType.isVolatileQualified()),
1406                         /*precise*/ true);
1407    else
1408      CGF.EmitARCDestroyWeak(Address);
1409
1410    CGF.EmitBlock(ContinueBlock);
1411
1412    // Emit the decrement of the loop counter.
1413    Counter = CGF.Builder.CreateLoad(IndexPtr);
1414    Counter = CGF.Builder.CreateSub(Counter, One, "dec");
1415    CGF.Builder.CreateStore(Counter, IndexPtr);
1416
1417    // Finally, branch back up to the condition for the next iteration.
1418    CGF.EmitBranch(CondBlock);
1419
1420    // Emit the fall-through block.
1421    CGF.EmitBlock(AfterFor, true);
1422  }
1423
1424  CGF.PopCleanupBlock();
1425}
1426
1427void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1428
1429  // Get at the argument before we performed the implicit conversion
1430  // to void*.
1431  const Expr *Arg = E->getArgument();
1432  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) {
1433    if (ICE->getCastKind() != CK_UserDefinedConversion &&
1434        ICE->getType()->isVoidPointerType())
1435      Arg = ICE->getSubExpr();
1436    else
1437      break;
1438  }
1439
1440  llvm::Value *Ptr = EmitScalarExpr(Arg);
1441
1442  // Null check the pointer.
1443  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1444  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1445
1446  llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1447
1448  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1449  EmitBlock(DeleteNotNull);
1450
1451  // We might be deleting a pointer to array.  If so, GEP down to the
1452  // first non-array element.
1453  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1454  QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1455  if (DeleteTy->isConstantArrayType()) {
1456    llvm::Value *Zero = Builder.getInt32(0);
1457    llvm::SmallVector<llvm::Value*,8> GEP;
1458
1459    GEP.push_back(Zero); // point at the outermost array
1460
1461    // For each layer of array type we're pointing at:
1462    while (const ConstantArrayType *Arr
1463             = getContext().getAsConstantArrayType(DeleteTy)) {
1464      // 1. Unpeel the array type.
1465      DeleteTy = Arr->getElementType();
1466
1467      // 2. GEP to the first element of the array.
1468      GEP.push_back(Zero);
1469    }
1470
1471    Ptr = Builder.CreateInBoundsGEP(Ptr, GEP.begin(), GEP.end(), "del.first");
1472  }
1473
1474  assert(ConvertTypeForMem(DeleteTy) ==
1475         cast<llvm::PointerType>(Ptr->getType())->getElementType());
1476
1477  if (E->isArrayForm()) {
1478    EmitArrayDelete(*this, E, Ptr, DeleteTy);
1479  } else {
1480    EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy);
1481  }
1482
1483  EmitBlock(DeleteEnd);
1484}
1485
1486static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1487  // void __cxa_bad_typeid();
1488
1489  const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
1490  const llvm::FunctionType *FTy =
1491  llvm::FunctionType::get(VoidTy, false);
1492
1493  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1494}
1495
1496static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1497  llvm::Value *Fn = getBadTypeidFn(CGF);
1498  CGF.EmitCallOrInvoke(Fn, 0, 0).setDoesNotReturn();
1499  CGF.Builder.CreateUnreachable();
1500}
1501
1502static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1503                                         const Expr *E,
1504                                         const llvm::Type *StdTypeInfoPtrTy) {
1505  // Get the vtable pointer.
1506  llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1507
1508  // C++ [expr.typeid]p2:
1509  //   If the glvalue expression is obtained by applying the unary * operator to
1510  //   a pointer and the pointer is a null pointer value, the typeid expression
1511  //   throws the std::bad_typeid exception.
1512  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1513    if (UO->getOpcode() == UO_Deref) {
1514      llvm::BasicBlock *BadTypeidBlock =
1515        CGF.createBasicBlock("typeid.bad_typeid");
1516      llvm::BasicBlock *EndBlock =
1517        CGF.createBasicBlock("typeid.end");
1518
1519      llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1520      CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1521
1522      CGF.EmitBlock(BadTypeidBlock);
1523      EmitBadTypeidCall(CGF);
1524      CGF.EmitBlock(EndBlock);
1525    }
1526  }
1527
1528  llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1529                                        StdTypeInfoPtrTy->getPointerTo());
1530
1531  // Load the type info.
1532  Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1533  return CGF.Builder.CreateLoad(Value);
1534}
1535
1536llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1537  const llvm::Type *StdTypeInfoPtrTy =
1538    ConvertType(E->getType())->getPointerTo();
1539
1540  if (E->isTypeOperand()) {
1541    llvm::Constant *TypeInfo =
1542      CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1543    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1544  }
1545
1546  // C++ [expr.typeid]p2:
1547  //   When typeid is applied to a glvalue expression whose type is a
1548  //   polymorphic class type, the result refers to a std::type_info object
1549  //   representing the type of the most derived object (that is, the dynamic
1550  //   type) to which the glvalue refers.
1551  if (E->getExprOperand()->isGLValue()) {
1552    if (const RecordType *RT =
1553          E->getExprOperand()->getType()->getAs<RecordType>()) {
1554      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1555      if (RD->isPolymorphic())
1556        return EmitTypeidFromVTable(*this, E->getExprOperand(),
1557                                    StdTypeInfoPtrTy);
1558    }
1559  }
1560
1561  QualType OperandTy = E->getExprOperand()->getType();
1562  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1563                               StdTypeInfoPtrTy);
1564}
1565
1566static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1567  // void *__dynamic_cast(const void *sub,
1568  //                      const abi::__class_type_info *src,
1569  //                      const abi::__class_type_info *dst,
1570  //                      std::ptrdiff_t src2dst_offset);
1571
1572  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1573  const llvm::Type *PtrDiffTy =
1574    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1575
1576  const llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1577
1578  const llvm::FunctionType *FTy =
1579    llvm::FunctionType::get(Int8PtrTy, Args, false);
1580
1581  return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
1582}
1583
1584static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1585  // void __cxa_bad_cast();
1586
1587  const llvm::Type *VoidTy = llvm::Type::getVoidTy(CGF.getLLVMContext());
1588  const llvm::FunctionType *FTy =
1589    llvm::FunctionType::get(VoidTy, false);
1590
1591  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1592}
1593
1594static void EmitBadCastCall(CodeGenFunction &CGF) {
1595  llvm::Value *Fn = getBadCastFn(CGF);
1596  CGF.EmitCallOrInvoke(Fn, 0, 0).setDoesNotReturn();
1597  CGF.Builder.CreateUnreachable();
1598}
1599
1600static llvm::Value *
1601EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1602                    QualType SrcTy, QualType DestTy,
1603                    llvm::BasicBlock *CastEnd) {
1604  const llvm::Type *PtrDiffLTy =
1605    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1606  const llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1607
1608  if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1609    if (PTy->getPointeeType()->isVoidType()) {
1610      // C++ [expr.dynamic.cast]p7:
1611      //   If T is "pointer to cv void," then the result is a pointer to the
1612      //   most derived object pointed to by v.
1613
1614      // Get the vtable pointer.
1615      llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1616
1617      // Get the offset-to-top from the vtable.
1618      llvm::Value *OffsetToTop =
1619        CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1620      OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1621
1622      // Finally, add the offset to the pointer.
1623      Value = CGF.EmitCastToVoidPtr(Value);
1624      Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1625
1626      return CGF.Builder.CreateBitCast(Value, DestLTy);
1627    }
1628  }
1629
1630  QualType SrcRecordTy;
1631  QualType DestRecordTy;
1632
1633  if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1634    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1635    DestRecordTy = DestPTy->getPointeeType();
1636  } else {
1637    SrcRecordTy = SrcTy;
1638    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1639  }
1640
1641  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1642  assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1643
1644  llvm::Value *SrcRTTI =
1645    CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1646  llvm::Value *DestRTTI =
1647    CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1648
1649  // FIXME: Actually compute a hint here.
1650  llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
1651
1652  // Emit the call to __dynamic_cast.
1653  Value = CGF.EmitCastToVoidPtr(Value);
1654  Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
1655                                  SrcRTTI, DestRTTI, OffsetHint);
1656  Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1657
1658  /// C++ [expr.dynamic.cast]p9:
1659  ///   A failed cast to reference type throws std::bad_cast
1660  if (DestTy->isReferenceType()) {
1661    llvm::BasicBlock *BadCastBlock =
1662      CGF.createBasicBlock("dynamic_cast.bad_cast");
1663
1664    llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1665    CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1666
1667    CGF.EmitBlock(BadCastBlock);
1668    EmitBadCastCall(CGF);
1669  }
1670
1671  return Value;
1672}
1673
1674static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1675                                          QualType DestTy) {
1676  const llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1677  if (DestTy->isPointerType())
1678    return llvm::Constant::getNullValue(DestLTy);
1679
1680  /// C++ [expr.dynamic.cast]p9:
1681  ///   A failed cast to reference type throws std::bad_cast
1682  EmitBadCastCall(CGF);
1683
1684  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1685  return llvm::UndefValue::get(DestLTy);
1686}
1687
1688llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1689                                              const CXXDynamicCastExpr *DCE) {
1690  QualType DestTy = DCE->getTypeAsWritten();
1691
1692  if (DCE->isAlwaysNull())
1693    return EmitDynamicCastToNull(*this, DestTy);
1694
1695  QualType SrcTy = DCE->getSubExpr()->getType();
1696
1697  // C++ [expr.dynamic.cast]p4:
1698  //   If the value of v is a null pointer value in the pointer case, the result
1699  //   is the null pointer value of type T.
1700  bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1701
1702  llvm::BasicBlock *CastNull = 0;
1703  llvm::BasicBlock *CastNotNull = 0;
1704  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1705
1706  if (ShouldNullCheckSrcValue) {
1707    CastNull = createBasicBlock("dynamic_cast.null");
1708    CastNotNull = createBasicBlock("dynamic_cast.notnull");
1709
1710    llvm::Value *IsNull = Builder.CreateIsNull(Value);
1711    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1712    EmitBlock(CastNotNull);
1713  }
1714
1715  Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1716
1717  if (ShouldNullCheckSrcValue) {
1718    EmitBranch(CastEnd);
1719
1720    EmitBlock(CastNull);
1721    EmitBranch(CastEnd);
1722  }
1723
1724  EmitBlock(CastEnd);
1725
1726  if (ShouldNullCheckSrcValue) {
1727    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1728    PHI->addIncoming(Value, CastNotNull);
1729    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1730
1731    Value = PHI;
1732  }
1733
1734  return Value;
1735}
1736