CGExprComplex.cpp revision 4967a710c84587c654b56c828382219c3937dacb
1//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with complex types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/StmtVisitor.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/Function.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/MDBuilder.h"
24#include "llvm/IR/Metadata.h"
25#include <algorithm>
26using namespace clang;
27using namespace CodeGen;
28
29//===----------------------------------------------------------------------===//
30//                        Complex Expression Emitter
31//===----------------------------------------------------------------------===//
32
33typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
34
35/// Return the complex type that we are meant to emit.
36static const ComplexType *getComplexType(QualType type) {
37  type = type.getCanonicalType();
38  if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39    return comp;
40  } else {
41    return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42  }
43}
44
45namespace  {
46class ComplexExprEmitter
47  : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48  CodeGenFunction &CGF;
49  CGBuilderTy &Builder;
50  bool IgnoreReal;
51  bool IgnoreImag;
52public:
53  ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
54    : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
55  }
56
57
58  //===--------------------------------------------------------------------===//
59  //                               Utilities
60  //===--------------------------------------------------------------------===//
61
62  bool TestAndClearIgnoreReal() {
63    bool I = IgnoreReal;
64    IgnoreReal = false;
65    return I;
66  }
67  bool TestAndClearIgnoreImag() {
68    bool I = IgnoreImag;
69    IgnoreImag = false;
70    return I;
71  }
72
73  /// EmitLoadOfLValue - Given an expression with complex type that represents a
74  /// value l-value, this method emits the address of the l-value, then loads
75  /// and returns the result.
76  ComplexPairTy EmitLoadOfLValue(const Expr *E) {
77    return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78  }
79
80  ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
81
82  /// EmitStoreOfComplex - Store the specified real/imag parts into the
83  /// specified value pointer.
84  void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
85
86  /// Emit a cast from complex value Val to DestType.
87  ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
88                                         QualType DestType, SourceLocation Loc);
89  /// Emit a cast from scalar value Val to DestType.
90  ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
91                                        QualType DestType, SourceLocation Loc);
92
93  //===--------------------------------------------------------------------===//
94  //                            Visitor Methods
95  //===--------------------------------------------------------------------===//
96
97  ComplexPairTy Visit(Expr *E) {
98    ApplyDebugLocation DL(CGF, E);
99    return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
100  }
101
102  ComplexPairTy VisitStmt(Stmt *S) {
103    S->dump(CGF.getContext().getSourceManager());
104    llvm_unreachable("Stmt can't have complex result type!");
105  }
106  ComplexPairTy VisitExpr(Expr *S);
107  ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
108  ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109    return Visit(GE->getResultExpr());
110  }
111  ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112  ComplexPairTy
113  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114    return Visit(PE->getReplacement());
115  }
116
117  // l-values.
118  ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
119    if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
120      if (result.isReference())
121        return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
122                                E->getExprLoc());
123
124      llvm::Constant *pair = result.getValue();
125      return ComplexPairTy(pair->getAggregateElement(0U),
126                           pair->getAggregateElement(1U));
127    }
128    return EmitLoadOfLValue(E);
129  }
130  ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
131    return EmitLoadOfLValue(E);
132  }
133  ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
134    return CGF.EmitObjCMessageExpr(E).getComplexVal();
135  }
136  ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
137  ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
138  ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
139    if (E->isGLValue())
140      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
141    return CGF.getOpaqueRValueMapping(E).getComplexVal();
142  }
143
144  ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
145    return CGF.EmitPseudoObjectRValue(E).getComplexVal();
146  }
147
148  // FIXME: CompoundLiteralExpr
149
150  ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
151  ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
152    // Unlike for scalars, we don't have to worry about function->ptr demotion
153    // here.
154    return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
155  }
156  ComplexPairTy VisitCastExpr(CastExpr *E) {
157    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
158      CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
159    return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
160  }
161  ComplexPairTy VisitCallExpr(const CallExpr *E);
162  ComplexPairTy VisitStmtExpr(const StmtExpr *E);
163
164  // Operators.
165  ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
166                                   bool isInc, bool isPre) {
167    LValue LV = CGF.EmitLValue(E->getSubExpr());
168    return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
169  }
170  ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
171    return VisitPrePostIncDec(E, false, false);
172  }
173  ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
174    return VisitPrePostIncDec(E, true, false);
175  }
176  ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
177    return VisitPrePostIncDec(E, false, true);
178  }
179  ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
180    return VisitPrePostIncDec(E, true, true);
181  }
182  ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
183  ComplexPairTy VisitUnaryPlus     (const UnaryOperator *E) {
184    TestAndClearIgnoreReal();
185    TestAndClearIgnoreImag();
186    return Visit(E->getSubExpr());
187  }
188  ComplexPairTy VisitUnaryMinus    (const UnaryOperator *E);
189  ComplexPairTy VisitUnaryNot      (const UnaryOperator *E);
190  // LNot,Real,Imag never return complex.
191  ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
192    return Visit(E->getSubExpr());
193  }
194  ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
195    return Visit(DAE->getExpr());
196  }
197  ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
198    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
199    return Visit(DIE->getExpr());
200  }
201  ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
202    CGF.enterFullExpression(E);
203    CodeGenFunction::RunCleanupsScope Scope(CGF);
204    return Visit(E->getSubExpr());
205  }
206  ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
207    assert(E->getType()->isAnyComplexType() && "Expected complex type!");
208    QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
209    llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
210    return ComplexPairTy(Null, Null);
211  }
212  ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
213    assert(E->getType()->isAnyComplexType() && "Expected complex type!");
214    QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
215    llvm::Constant *Null =
216                       llvm::Constant::getNullValue(CGF.ConvertType(Elem));
217    return ComplexPairTy(Null, Null);
218  }
219
220  struct BinOpInfo {
221    ComplexPairTy LHS;
222    ComplexPairTy RHS;
223    QualType Ty;  // Computation Type.
224  };
225
226  BinOpInfo EmitBinOps(const BinaryOperator *E);
227  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
228                                  ComplexPairTy (ComplexExprEmitter::*Func)
229                                  (const BinOpInfo &),
230                                  RValue &Val);
231  ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
232                                   ComplexPairTy (ComplexExprEmitter::*Func)
233                                   (const BinOpInfo &));
234
235  ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
236  ComplexPairTy EmitBinSub(const BinOpInfo &Op);
237  ComplexPairTy EmitBinMul(const BinOpInfo &Op);
238  ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
239
240  ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
241                                        const BinOpInfo &Op);
242
243  ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
244    return EmitBinAdd(EmitBinOps(E));
245  }
246  ComplexPairTy VisitBinSub(const BinaryOperator *E) {
247    return EmitBinSub(EmitBinOps(E));
248  }
249  ComplexPairTy VisitBinMul(const BinaryOperator *E) {
250    return EmitBinMul(EmitBinOps(E));
251  }
252  ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
253    return EmitBinDiv(EmitBinOps(E));
254  }
255
256  // Compound assignments.
257  ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
258    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
259  }
260  ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
261    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
262  }
263  ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
264    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
265  }
266  ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
267    return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
268  }
269
270  // GCC rejects rem/and/or/xor for integer complex.
271  // Logical and/or always return int, never complex.
272
273  // No comparisons produce a complex result.
274
275  LValue EmitBinAssignLValue(const BinaryOperator *E,
276                             ComplexPairTy &Val);
277  ComplexPairTy VisitBinAssign     (const BinaryOperator *E);
278  ComplexPairTy VisitBinComma      (const BinaryOperator *E);
279
280
281  ComplexPairTy
282  VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
283  ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
284
285  ComplexPairTy VisitInitListExpr(InitListExpr *E);
286
287  ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
288    return EmitLoadOfLValue(E);
289  }
290
291  ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
292
293  ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
294    return CGF.EmitAtomicExpr(E).getComplexVal();
295  }
296};
297}  // end anonymous namespace.
298
299//===----------------------------------------------------------------------===//
300//                                Utilities
301//===----------------------------------------------------------------------===//
302
303Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
304                                                 QualType complexType) {
305  CharUnits offset = CharUnits::Zero();
306  return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
307}
308
309Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
310                                                 QualType complexType) {
311  QualType eltType = complexType->castAs<ComplexType>()->getElementType();
312  CharUnits offset = getContext().getTypeSizeInChars(eltType);
313  return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
314}
315
316/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
317/// load the real and imaginary pieces, returning them as Real/Imag.
318ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
319                                                   SourceLocation loc) {
320  assert(lvalue.isSimple() && "non-simple complex l-value?");
321  if (lvalue.getType()->isAtomicType())
322    return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
323
324  Address SrcPtr = lvalue.getAddress();
325  bool isVolatile = lvalue.isVolatileQualified();
326
327  llvm::Value *Real = nullptr, *Imag = nullptr;
328
329  if (!IgnoreReal || isVolatile) {
330    Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
331    Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
332  }
333
334  if (!IgnoreImag || isVolatile) {
335    Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
336    Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
337  }
338
339  return ComplexPairTy(Real, Imag);
340}
341
342/// EmitStoreOfComplex - Store the specified real/imag parts into the
343/// specified value pointer.
344void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
345                                            bool isInit) {
346  if (lvalue.getType()->isAtomicType() ||
347      (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
348    return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
349
350  Address Ptr = lvalue.getAddress();
351  Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
352  Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
353
354  Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
355  Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
356}
357
358
359
360//===----------------------------------------------------------------------===//
361//                            Visitor Methods
362//===----------------------------------------------------------------------===//
363
364ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
365  CGF.ErrorUnsupported(E, "complex expression");
366  llvm::Type *EltTy =
367    CGF.ConvertType(getComplexType(E->getType())->getElementType());
368  llvm::Value *U = llvm::UndefValue::get(EltTy);
369  return ComplexPairTy(U, U);
370}
371
372ComplexPairTy ComplexExprEmitter::
373VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
374  llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
375  return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
376}
377
378
379ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
380  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
381    return EmitLoadOfLValue(E);
382
383  return CGF.EmitCallExpr(E).getComplexVal();
384}
385
386ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
387  CodeGenFunction::StmtExprEvaluation eval(CGF);
388  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
389  assert(RetAlloca.isValid() && "Expected complex return value");
390  return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
391                          E->getExprLoc());
392}
393
394/// Emit a cast from complex value Val to DestType.
395ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
396                                                           QualType SrcType,
397                                                           QualType DestType,
398                                                           SourceLocation Loc) {
399  // Get the src/dest element type.
400  SrcType = SrcType->castAs<ComplexType>()->getElementType();
401  DestType = DestType->castAs<ComplexType>()->getElementType();
402
403  // C99 6.3.1.6: When a value of complex type is converted to another
404  // complex type, both the real and imaginary parts follow the conversion
405  // rules for the corresponding real types.
406  Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
407  Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
408  return Val;
409}
410
411ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
412                                                          QualType SrcType,
413                                                          QualType DestType,
414                                                          SourceLocation Loc) {
415  // Convert the input element to the element type of the complex.
416  DestType = DestType->castAs<ComplexType>()->getElementType();
417  Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
418
419  // Return (realval, 0).
420  return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
421}
422
423ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
424                                           QualType DestTy) {
425  switch (CK) {
426  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
427
428  // Atomic to non-atomic casts may be more than a no-op for some platforms and
429  // for some types.
430  case CK_AtomicToNonAtomic:
431  case CK_NonAtomicToAtomic:
432  case CK_NoOp:
433  case CK_LValueToRValue:
434  case CK_UserDefinedConversion:
435    return Visit(Op);
436
437  case CK_LValueBitCast: {
438    LValue origLV = CGF.EmitLValue(Op);
439    Address V = origLV.getAddress();
440    V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
441    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
442  }
443
444  case CK_BitCast:
445  case CK_BaseToDerived:
446  case CK_DerivedToBase:
447  case CK_UncheckedDerivedToBase:
448  case CK_Dynamic:
449  case CK_ToUnion:
450  case CK_ArrayToPointerDecay:
451  case CK_FunctionToPointerDecay:
452  case CK_NullToPointer:
453  case CK_NullToMemberPointer:
454  case CK_BaseToDerivedMemberPointer:
455  case CK_DerivedToBaseMemberPointer:
456  case CK_MemberPointerToBoolean:
457  case CK_ReinterpretMemberPointer:
458  case CK_ConstructorConversion:
459  case CK_IntegralToPointer:
460  case CK_PointerToIntegral:
461  case CK_PointerToBoolean:
462  case CK_ToVoid:
463  case CK_VectorSplat:
464  case CK_IntegralCast:
465  case CK_BooleanToSignedIntegral:
466  case CK_IntegralToBoolean:
467  case CK_IntegralToFloating:
468  case CK_FloatingToIntegral:
469  case CK_FloatingToBoolean:
470  case CK_FloatingCast:
471  case CK_CPointerToObjCPointerCast:
472  case CK_BlockPointerToObjCPointerCast:
473  case CK_AnyPointerToBlockPointerCast:
474  case CK_ObjCObjectLValueCast:
475  case CK_FloatingComplexToReal:
476  case CK_FloatingComplexToBoolean:
477  case CK_IntegralComplexToReal:
478  case CK_IntegralComplexToBoolean:
479  case CK_ARCProduceObject:
480  case CK_ARCConsumeObject:
481  case CK_ARCReclaimReturnedObject:
482  case CK_ARCExtendBlockObject:
483  case CK_CopyAndAutoreleaseBlockObject:
484  case CK_BuiltinFnToFnPtr:
485  case CK_ZeroToOCLEvent:
486  case CK_AddressSpaceConversion:
487    llvm_unreachable("invalid cast kind for complex value");
488
489  case CK_FloatingRealToComplex:
490  case CK_IntegralRealToComplex:
491    return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
492                                   DestTy, Op->getExprLoc());
493
494  case CK_FloatingComplexCast:
495  case CK_FloatingComplexToIntegralComplex:
496  case CK_IntegralComplexCast:
497  case CK_IntegralComplexToFloatingComplex:
498    return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
499                                    Op->getExprLoc());
500  }
501
502  llvm_unreachable("unknown cast resulting in complex value");
503}
504
505ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
506  TestAndClearIgnoreReal();
507  TestAndClearIgnoreImag();
508  ComplexPairTy Op = Visit(E->getSubExpr());
509
510  llvm::Value *ResR, *ResI;
511  if (Op.first->getType()->isFloatingPointTy()) {
512    ResR = Builder.CreateFNeg(Op.first,  "neg.r");
513    ResI = Builder.CreateFNeg(Op.second, "neg.i");
514  } else {
515    ResR = Builder.CreateNeg(Op.first,  "neg.r");
516    ResI = Builder.CreateNeg(Op.second, "neg.i");
517  }
518  return ComplexPairTy(ResR, ResI);
519}
520
521ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
522  TestAndClearIgnoreReal();
523  TestAndClearIgnoreImag();
524  // ~(a+ib) = a + i*-b
525  ComplexPairTy Op = Visit(E->getSubExpr());
526  llvm::Value *ResI;
527  if (Op.second->getType()->isFloatingPointTy())
528    ResI = Builder.CreateFNeg(Op.second, "conj.i");
529  else
530    ResI = Builder.CreateNeg(Op.second, "conj.i");
531
532  return ComplexPairTy(Op.first, ResI);
533}
534
535ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
536  llvm::Value *ResR, *ResI;
537
538  if (Op.LHS.first->getType()->isFloatingPointTy()) {
539    ResR = Builder.CreateFAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
540    if (Op.LHS.second && Op.RHS.second)
541      ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
542    else
543      ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
544    assert(ResI && "Only one operand may be real!");
545  } else {
546    ResR = Builder.CreateAdd(Op.LHS.first,  Op.RHS.first,  "add.r");
547    assert(Op.LHS.second && Op.RHS.second &&
548           "Both operands of integer complex operators must be complex!");
549    ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
550  }
551  return ComplexPairTy(ResR, ResI);
552}
553
554ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
555  llvm::Value *ResR, *ResI;
556  if (Op.LHS.first->getType()->isFloatingPointTy()) {
557    ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
558    if (Op.LHS.second && Op.RHS.second)
559      ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
560    else
561      ResI = Op.LHS.second ? Op.LHS.second
562                           : Builder.CreateFNeg(Op.RHS.second, "sub.i");
563    assert(ResI && "Only one operand may be real!");
564  } else {
565    ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
566    assert(Op.LHS.second && Op.RHS.second &&
567           "Both operands of integer complex operators must be complex!");
568    ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
569  }
570  return ComplexPairTy(ResR, ResI);
571}
572
573/// \brief Emit a libcall for a binary operation on complex types.
574ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
575                                                          const BinOpInfo &Op) {
576  CallArgList Args;
577  Args.add(RValue::get(Op.LHS.first),
578           Op.Ty->castAs<ComplexType>()->getElementType());
579  Args.add(RValue::get(Op.LHS.second),
580           Op.Ty->castAs<ComplexType>()->getElementType());
581  Args.add(RValue::get(Op.RHS.first),
582           Op.Ty->castAs<ComplexType>()->getElementType());
583  Args.add(RValue::get(Op.RHS.second),
584           Op.Ty->castAs<ComplexType>()->getElementType());
585
586  // We *must* use the full CG function call building logic here because the
587  // complex type has special ABI handling. We also should not forget about
588  // special calling convention which may be used for compiler builtins.
589
590  // We create a function qualified type to state that this call does not have
591  // any exceptions.
592  FunctionProtoType::ExtProtoInfo EPI;
593  EPI = EPI.withExceptionSpec(
594      FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
595  SmallVector<QualType, 4> ArgsQTys(
596      4, Op.Ty->castAs<ComplexType>()->getElementType());
597  QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
598  const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
599      Args, cast<FunctionType>(FQTy.getTypePtr()), false);
600
601  llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
602  llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
603  llvm::Instruction *Call;
604
605  RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
606                            FQTy->getAs<FunctionProtoType>(), &Call);
607  cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
608  return Res.getComplexVal();
609}
610
611/// \brief Lookup the libcall name for a given floating point type complex
612/// multiply.
613static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
614  switch (Ty->getTypeID()) {
615  default:
616    llvm_unreachable("Unsupported floating point type!");
617  case llvm::Type::HalfTyID:
618    return "__mulhc3";
619  case llvm::Type::FloatTyID:
620    return "__mulsc3";
621  case llvm::Type::DoubleTyID:
622    return "__muldc3";
623  case llvm::Type::PPC_FP128TyID:
624    return "__multc3";
625  case llvm::Type::X86_FP80TyID:
626    return "__mulxc3";
627  case llvm::Type::FP128TyID:
628    return "__multc3";
629  }
630}
631
632// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
633// typed values.
634ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
635  using llvm::Value;
636  Value *ResR, *ResI;
637  llvm::MDBuilder MDHelper(CGF.getLLVMContext());
638
639  if (Op.LHS.first->getType()->isFloatingPointTy()) {
640    // The general formulation is:
641    // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
642    //
643    // But we can fold away components which would be zero due to a real
644    // operand according to C11 Annex G.5.1p2.
645    // FIXME: C11 also provides for imaginary types which would allow folding
646    // still more of this within the type system.
647
648    if (Op.LHS.second && Op.RHS.second) {
649      // If both operands are complex, emit the core math directly, and then
650      // test for NaNs. If we find NaNs in the result, we delegate to a libcall
651      // to carefully re-compute the correct infinity representation if
652      // possible. The expectation is that the presence of NaNs here is
653      // *extremely* rare, and so the cost of the libcall is almost irrelevant.
654      // This is good, because the libcall re-computes the core multiplication
655      // exactly the same as we do here and re-tests for NaNs in order to be
656      // a generic complex*complex libcall.
657
658      // First compute the four products.
659      Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
660      Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
661      Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
662      Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
663
664      // The real part is the difference of the first two, the imaginary part is
665      // the sum of the second.
666      ResR = Builder.CreateFSub(AC, BD, "mul_r");
667      ResI = Builder.CreateFAdd(AD, BC, "mul_i");
668
669      // Emit the test for the real part becoming NaN and create a branch to
670      // handle it. We test for NaN by comparing the number to itself.
671      Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
672      llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
673      llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
674      llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
675      llvm::BasicBlock *OrigBB = Branch->getParent();
676
677      // Give hint that we very much don't expect to see NaNs.
678      // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
679      llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
680      Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
681
682      // Now test the imaginary part and create its branch.
683      CGF.EmitBlock(INaNBB);
684      Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
685      llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
686      Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
687      Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
688
689      // Now emit the libcall on this slowest of the slow paths.
690      CGF.EmitBlock(LibCallBB);
691      Value *LibCallR, *LibCallI;
692      std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
693          getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
694      Builder.CreateBr(ContBB);
695
696      // Finally continue execution by phi-ing together the different
697      // computation paths.
698      CGF.EmitBlock(ContBB);
699      llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
700      RealPHI->addIncoming(ResR, OrigBB);
701      RealPHI->addIncoming(ResR, INaNBB);
702      RealPHI->addIncoming(LibCallR, LibCallBB);
703      llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
704      ImagPHI->addIncoming(ResI, OrigBB);
705      ImagPHI->addIncoming(ResI, INaNBB);
706      ImagPHI->addIncoming(LibCallI, LibCallBB);
707      return ComplexPairTy(RealPHI, ImagPHI);
708    }
709    assert((Op.LHS.second || Op.RHS.second) &&
710           "At least one operand must be complex!");
711
712    // If either of the operands is a real rather than a complex, the
713    // imaginary component is ignored when computing the real component of the
714    // result.
715    ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
716
717    ResI = Op.LHS.second
718               ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
719               : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
720  } else {
721    assert(Op.LHS.second && Op.RHS.second &&
722           "Both operands of integer complex operators must be complex!");
723    Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
724    Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
725    ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
726
727    Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
728    Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
729    ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
730  }
731  return ComplexPairTy(ResR, ResI);
732}
733
734// See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
735// typed values.
736ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
737  llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
738  llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
739
740
741  llvm::Value *DSTr, *DSTi;
742  if (LHSr->getType()->isFloatingPointTy()) {
743    // If we have a complex operand on the RHS, we delegate to a libcall to
744    // handle all of the complexities and minimize underflow/overflow cases.
745    //
746    // FIXME: We would be able to avoid the libcall in many places if we
747    // supported imaginary types in addition to complex types.
748    if (RHSi) {
749      BinOpInfo LibCallOp = Op;
750      // If LHS was a real, supply a null imaginary part.
751      if (!LHSi)
752        LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
753
754      StringRef LibCallName;
755      switch (LHSr->getType()->getTypeID()) {
756      default:
757        llvm_unreachable("Unsupported floating point type!");
758      case llvm::Type::HalfTyID:
759        return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
760      case llvm::Type::FloatTyID:
761        return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
762      case llvm::Type::DoubleTyID:
763        return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
764      case llvm::Type::PPC_FP128TyID:
765        return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
766      case llvm::Type::X86_FP80TyID:
767        return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
768      case llvm::Type::FP128TyID:
769        return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
770      }
771    }
772    assert(LHSi && "Can have at most one non-complex operand!");
773
774    DSTr = Builder.CreateFDiv(LHSr, RHSr);
775    DSTi = Builder.CreateFDiv(LHSi, RHSr);
776  } else {
777    assert(Op.LHS.second && Op.RHS.second &&
778           "Both operands of integer complex operators must be complex!");
779    // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
780    llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
781    llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
782    llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
783
784    llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
785    llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
786    llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
787
788    llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
789    llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
790    llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
791
792    if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
793      DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
794      DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
795    } else {
796      DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
797      DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
798    }
799  }
800
801  return ComplexPairTy(DSTr, DSTi);
802}
803
804ComplexExprEmitter::BinOpInfo
805ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
806  TestAndClearIgnoreReal();
807  TestAndClearIgnoreImag();
808  BinOpInfo Ops;
809  if (E->getLHS()->getType()->isRealFloatingType())
810    Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
811  else
812    Ops.LHS = Visit(E->getLHS());
813  if (E->getRHS()->getType()->isRealFloatingType())
814    Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
815  else
816    Ops.RHS = Visit(E->getRHS());
817
818  Ops.Ty = E->getType();
819  return Ops;
820}
821
822
823LValue ComplexExprEmitter::
824EmitCompoundAssignLValue(const CompoundAssignOperator *E,
825          ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
826                         RValue &Val) {
827  TestAndClearIgnoreReal();
828  TestAndClearIgnoreImag();
829  QualType LHSTy = E->getLHS()->getType();
830  if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
831    LHSTy = AT->getValueType();
832
833  BinOpInfo OpInfo;
834
835  // Load the RHS and LHS operands.
836  // __block variables need to have the rhs evaluated first, plus this should
837  // improve codegen a little.
838  OpInfo.Ty = E->getComputationResultType();
839  QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
840
841  // The RHS should have been converted to the computation type.
842  if (E->getRHS()->getType()->isRealFloatingType()) {
843    assert(
844        CGF.getContext()
845            .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
846    OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
847  } else {
848    assert(CGF.getContext()
849               .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
850    OpInfo.RHS = Visit(E->getRHS());
851  }
852
853  LValue LHS = CGF.EmitLValue(E->getLHS());
854
855  // Load from the l-value and convert it.
856  SourceLocation Loc = E->getExprLoc();
857  if (LHSTy->isAnyComplexType()) {
858    ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
859    OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
860  } else {
861    llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
862    // For floating point real operands we can directly pass the scalar form
863    // to the binary operator emission and potentially get more efficient code.
864    if (LHSTy->isRealFloatingType()) {
865      if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
866        LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
867      OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
868    } else {
869      OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
870    }
871  }
872
873  // Expand the binary operator.
874  ComplexPairTy Result = (this->*Func)(OpInfo);
875
876  // Truncate the result and store it into the LHS lvalue.
877  if (LHSTy->isAnyComplexType()) {
878    ComplexPairTy ResVal =
879        EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
880    EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
881    Val = RValue::getComplex(ResVal);
882  } else {
883    llvm::Value *ResVal =
884        CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
885    CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
886    Val = RValue::get(ResVal);
887  }
888
889  return LHS;
890}
891
892// Compound assignments.
893ComplexPairTy ComplexExprEmitter::
894EmitCompoundAssign(const CompoundAssignOperator *E,
895                   ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
896  RValue Val;
897  LValue LV = EmitCompoundAssignLValue(E, Func, Val);
898
899  // The result of an assignment in C is the assigned r-value.
900  if (!CGF.getLangOpts().CPlusPlus)
901    return Val.getComplexVal();
902
903  // If the lvalue is non-volatile, return the computed value of the assignment.
904  if (!LV.isVolatileQualified())
905    return Val.getComplexVal();
906
907  return EmitLoadOfLValue(LV, E->getExprLoc());
908}
909
910LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
911                                               ComplexPairTy &Val) {
912  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
913                                                 E->getRHS()->getType()) &&
914         "Invalid assignment");
915  TestAndClearIgnoreReal();
916  TestAndClearIgnoreImag();
917
918  // Emit the RHS.  __block variables need the RHS evaluated first.
919  Val = Visit(E->getRHS());
920
921  // Compute the address to store into.
922  LValue LHS = CGF.EmitLValue(E->getLHS());
923
924  // Store the result value into the LHS lvalue.
925  EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
926
927  return LHS;
928}
929
930ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
931  ComplexPairTy Val;
932  LValue LV = EmitBinAssignLValue(E, Val);
933
934  // The result of an assignment in C is the assigned r-value.
935  if (!CGF.getLangOpts().CPlusPlus)
936    return Val;
937
938  // If the lvalue is non-volatile, return the computed value of the assignment.
939  if (!LV.isVolatileQualified())
940    return Val;
941
942  return EmitLoadOfLValue(LV, E->getExprLoc());
943}
944
945ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
946  CGF.EmitIgnoredExpr(E->getLHS());
947  return Visit(E->getRHS());
948}
949
950ComplexPairTy ComplexExprEmitter::
951VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
952  TestAndClearIgnoreReal();
953  TestAndClearIgnoreImag();
954  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
955  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
956  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
957
958  // Bind the common expression if necessary.
959  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
960
961
962  CodeGenFunction::ConditionalEvaluation eval(CGF);
963  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
964                           CGF.getProfileCount(E));
965
966  eval.begin(CGF);
967  CGF.EmitBlock(LHSBlock);
968  CGF.incrementProfileCounter(E);
969  ComplexPairTy LHS = Visit(E->getTrueExpr());
970  LHSBlock = Builder.GetInsertBlock();
971  CGF.EmitBranch(ContBlock);
972  eval.end(CGF);
973
974  eval.begin(CGF);
975  CGF.EmitBlock(RHSBlock);
976  ComplexPairTy RHS = Visit(E->getFalseExpr());
977  RHSBlock = Builder.GetInsertBlock();
978  CGF.EmitBlock(ContBlock);
979  eval.end(CGF);
980
981  // Create a PHI node for the real part.
982  llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
983  RealPN->addIncoming(LHS.first, LHSBlock);
984  RealPN->addIncoming(RHS.first, RHSBlock);
985
986  // Create a PHI node for the imaginary part.
987  llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
988  ImagPN->addIncoming(LHS.second, LHSBlock);
989  ImagPN->addIncoming(RHS.second, RHSBlock);
990
991  return ComplexPairTy(RealPN, ImagPN);
992}
993
994ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
995  return Visit(E->getChosenSubExpr());
996}
997
998ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
999    bool Ignore = TestAndClearIgnoreReal();
1000    (void)Ignore;
1001    assert (Ignore == false && "init list ignored");
1002    Ignore = TestAndClearIgnoreImag();
1003    (void)Ignore;
1004    assert (Ignore == false && "init list ignored");
1005
1006  if (E->getNumInits() == 2) {
1007    llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1008    llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1009    return ComplexPairTy(Real, Imag);
1010  } else if (E->getNumInits() == 1) {
1011    return Visit(E->getInit(0));
1012  }
1013
1014  // Empty init list intializes to null
1015  assert(E->getNumInits() == 0 && "Unexpected number of inits");
1016  QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1017  llvm::Type* LTy = CGF.ConvertType(Ty);
1018  llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1019  return ComplexPairTy(zeroConstant, zeroConstant);
1020}
1021
1022ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1023  Address ArgValue = Address::invalid();
1024  Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1025
1026  if (!ArgPtr.isValid()) {
1027    CGF.ErrorUnsupported(E, "complex va_arg expression");
1028    llvm::Type *EltTy =
1029      CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1030    llvm::Value *U = llvm::UndefValue::get(EltTy);
1031    return ComplexPairTy(U, U);
1032  }
1033
1034  return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1035                          E->getExprLoc());
1036}
1037
1038//===----------------------------------------------------------------------===//
1039//                         Entry Point into this File
1040//===----------------------------------------------------------------------===//
1041
1042/// EmitComplexExpr - Emit the computation of the specified expression of
1043/// complex type, ignoring the result.
1044ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1045                                               bool IgnoreImag) {
1046  assert(E && getComplexType(E->getType()) &&
1047         "Invalid complex expression to emit");
1048
1049  return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1050      .Visit(const_cast<Expr *>(E));
1051}
1052
1053void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1054                                                bool isInit) {
1055  assert(E && getComplexType(E->getType()) &&
1056         "Invalid complex expression to emit");
1057  ComplexExprEmitter Emitter(*this);
1058  ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1059  Emitter.EmitStoreOfComplex(Val, dest, isInit);
1060}
1061
1062/// EmitStoreOfComplex - Store a complex number into the specified l-value.
1063void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1064                                         bool isInit) {
1065  ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1066}
1067
1068/// EmitLoadOfComplex - Load a complex number from the specified address.
1069ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1070                                                 SourceLocation loc) {
1071  return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1072}
1073
1074LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1075  assert(E->getOpcode() == BO_Assign);
1076  ComplexPairTy Val; // ignored
1077  return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1078}
1079
1080typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1081    const ComplexExprEmitter::BinOpInfo &);
1082
1083static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1084  switch (Op) {
1085  case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1086  case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1087  case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1088  case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1089  default:
1090    llvm_unreachable("unexpected complex compound assignment");
1091  }
1092}
1093
1094LValue CodeGenFunction::
1095EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1096  CompoundFunc Op = getComplexOp(E->getOpcode());
1097  RValue Val;
1098  return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1099}
1100
1101LValue CodeGenFunction::
1102EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1103                                    llvm::Value *&Result) {
1104  CompoundFunc Op = getComplexOp(E->getOpcode());
1105  RValue Val;
1106  LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1107  Result = Val.getScalarVal();
1108  return Ret;
1109}
1110