CGObjCMac.cpp revision 8b54999a831bb195c08541ca995ef0505c96193f
1//===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This provides Objective-C code generation targeting the Apple runtime. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CGObjCRuntime.h" 15#include "CGBlocks.h" 16#include "CGCleanup.h" 17#include "CGRecordLayout.h" 18#include "CodeGenFunction.h" 19#include "CodeGenModule.h" 20#include "clang/AST/ASTContext.h" 21#include "clang/AST/Decl.h" 22#include "clang/AST/DeclObjC.h" 23#include "clang/AST/RecordLayout.h" 24#include "clang/AST/StmtObjC.h" 25#include "clang/Basic/LangOptions.h" 26#include "clang/CodeGen/CGFunctionInfo.h" 27#include "clang/Frontend/CodeGenOptions.h" 28#include "llvm/ADT/DenseSet.h" 29#include "llvm/ADT/SetVector.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/SmallString.h" 32#include "llvm/IR/DataLayout.h" 33#include "llvm/IR/InlineAsm.h" 34#include "llvm/IR/IntrinsicInst.h" 35#include "llvm/IR/LLVMContext.h" 36#include "llvm/IR/Module.h" 37#include "llvm/Support/CallSite.h" 38#include "llvm/Support/raw_ostream.h" 39#include <cstdio> 40 41using namespace clang; 42using namespace CodeGen; 43 44namespace { 45 46// FIXME: We should find a nicer way to make the labels for metadata, string 47// concatenation is lame. 48 49class ObjCCommonTypesHelper { 50protected: 51 llvm::LLVMContext &VMContext; 52 53private: 54 // The types of these functions don't really matter because we 55 // should always bitcast before calling them. 56 57 /// id objc_msgSend (id, SEL, ...) 58 /// 59 /// The default messenger, used for sends whose ABI is unchanged from 60 /// the all-integer/pointer case. 61 llvm::Constant *getMessageSendFn() const { 62 // Add the non-lazy-bind attribute, since objc_msgSend is likely to 63 // be called a lot. 64 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 65 return 66 CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 67 params, true), 68 "objc_msgSend", 69 llvm::AttributeSet::get(CGM.getLLVMContext(), 70 llvm::AttributeSet::FunctionIndex, 71 llvm::Attribute::NonLazyBind)); 72 } 73 74 /// void objc_msgSend_stret (id, SEL, ...) 75 /// 76 /// The messenger used when the return value is an aggregate returned 77 /// by indirect reference in the first argument, and therefore the 78 /// self and selector parameters are shifted over by one. 79 llvm::Constant *getMessageSendStretFn() const { 80 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 81 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, 82 params, true), 83 "objc_msgSend_stret"); 84 85 } 86 87 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...) 88 /// 89 /// The messenger used when the return value is returned on the x87 90 /// floating-point stack; without a special entrypoint, the nil case 91 /// would be unbalanced. 92 llvm::Constant *getMessageSendFpretFn() const { 93 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 94 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy, 95 params, true), 96 "objc_msgSend_fpret"); 97 98 } 99 100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...) 101 /// 102 /// The messenger used when the return value is returned in two values on the 103 /// x87 floating point stack; without a special entrypoint, the nil case 104 /// would be unbalanced. Only used on 64-bit X86. 105 llvm::Constant *getMessageSendFp2retFn() const { 106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext); 108 llvm::Type *resultType = 109 llvm::StructType::get(longDoubleType, longDoubleType, NULL); 110 111 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType, 112 params, true), 113 "objc_msgSend_fp2ret"); 114 } 115 116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...) 117 /// 118 /// The messenger used for super calls, which have different dispatch 119 /// semantics. The class passed is the superclass of the current 120 /// class. 121 llvm::Constant *getMessageSendSuperFn() const { 122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 123 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 124 params, true), 125 "objc_msgSendSuper"); 126 } 127 128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...) 129 /// 130 /// A slightly different messenger used for super calls. The class 131 /// passed is the current class. 132 llvm::Constant *getMessageSendSuperFn2() const { 133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy }; 134 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 135 params, true), 136 "objc_msgSendSuper2"); 137 } 138 139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super, 140 /// SEL op, ...) 141 /// 142 /// The messenger used for super calls which return an aggregate indirectly. 143 llvm::Constant *getMessageSendSuperStretFn() const { 144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 145 return CGM.CreateRuntimeFunction( 146 llvm::FunctionType::get(CGM.VoidTy, params, true), 147 "objc_msgSendSuper_stret"); 148 } 149 150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super, 151 /// SEL op, ...) 152 /// 153 /// objc_msgSendSuper_stret with the super2 semantics. 154 llvm::Constant *getMessageSendSuperStretFn2() const { 155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy }; 156 return CGM.CreateRuntimeFunction( 157 llvm::FunctionType::get(CGM.VoidTy, params, true), 158 "objc_msgSendSuper2_stret"); 159 } 160 161 llvm::Constant *getMessageSendSuperFpretFn() const { 162 // There is no objc_msgSendSuper_fpret? How can that work? 163 return getMessageSendSuperFn(); 164 } 165 166 llvm::Constant *getMessageSendSuperFpretFn2() const { 167 // There is no objc_msgSendSuper_fpret? How can that work? 168 return getMessageSendSuperFn2(); 169 } 170 171protected: 172 CodeGen::CodeGenModule &CGM; 173 174public: 175 llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy; 176 llvm::Type *Int8PtrTy, *Int8PtrPtrTy; 177 178 /// ObjectPtrTy - LLVM type for object handles (typeof(id)) 179 llvm::Type *ObjectPtrTy; 180 181 /// PtrObjectPtrTy - LLVM type for id * 182 llvm::Type *PtrObjectPtrTy; 183 184 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL)) 185 llvm::Type *SelectorPtrTy; 186 187private: 188 /// ProtocolPtrTy - LLVM type for external protocol handles 189 /// (typeof(Protocol)) 190 llvm::Type *ExternalProtocolPtrTy; 191 192public: 193 llvm::Type *getExternalProtocolPtrTy() { 194 if (!ExternalProtocolPtrTy) { 195 // FIXME: It would be nice to unify this with the opaque type, so that the 196 // IR comes out a bit cleaner. 197 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 198 ASTContext &Ctx = CGM.getContext(); 199 llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType()); 200 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T); 201 } 202 203 return ExternalProtocolPtrTy; 204 } 205 206 // SuperCTy - clang type for struct objc_super. 207 QualType SuperCTy; 208 // SuperPtrCTy - clang type for struct objc_super *. 209 QualType SuperPtrCTy; 210 211 /// SuperTy - LLVM type for struct objc_super. 212 llvm::StructType *SuperTy; 213 /// SuperPtrTy - LLVM type for struct objc_super *. 214 llvm::Type *SuperPtrTy; 215 216 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t 217 /// in GCC parlance). 218 llvm::StructType *PropertyTy; 219 220 /// PropertyListTy - LLVM type for struct objc_property_list 221 /// (_prop_list_t in GCC parlance). 222 llvm::StructType *PropertyListTy; 223 /// PropertyListPtrTy - LLVM type for struct objc_property_list*. 224 llvm::Type *PropertyListPtrTy; 225 226 // MethodTy - LLVM type for struct objc_method. 227 llvm::StructType *MethodTy; 228 229 /// CacheTy - LLVM type for struct objc_cache. 230 llvm::Type *CacheTy; 231 /// CachePtrTy - LLVM type for struct objc_cache *. 232 llvm::Type *CachePtrTy; 233 234 llvm::Constant *getGetPropertyFn() { 235 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 236 ASTContext &Ctx = CGM.getContext(); 237 // id objc_getProperty (id, SEL, ptrdiff_t, bool) 238 SmallVector<CanQualType,4> Params; 239 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 240 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 241 Params.push_back(IdType); 242 Params.push_back(SelType); 243 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 244 Params.push_back(Ctx.BoolTy); 245 llvm::FunctionType *FTy = 246 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(IdType, Params, 247 FunctionType::ExtInfo(), 248 RequiredArgs::All)); 249 return CGM.CreateRuntimeFunction(FTy, "objc_getProperty"); 250 } 251 252 llvm::Constant *getSetPropertyFn() { 253 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 254 ASTContext &Ctx = CGM.getContext(); 255 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool) 256 SmallVector<CanQualType,6> Params; 257 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 258 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 259 Params.push_back(IdType); 260 Params.push_back(SelType); 261 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 262 Params.push_back(IdType); 263 Params.push_back(Ctx.BoolTy); 264 Params.push_back(Ctx.BoolTy); 265 llvm::FunctionType *FTy = 266 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, Params, 267 FunctionType::ExtInfo(), 268 RequiredArgs::All)); 269 return CGM.CreateRuntimeFunction(FTy, "objc_setProperty"); 270 } 271 272 llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) { 273 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 274 ASTContext &Ctx = CGM.getContext(); 275 // void objc_setProperty_atomic(id self, SEL _cmd, 276 // id newValue, ptrdiff_t offset); 277 // void objc_setProperty_nonatomic(id self, SEL _cmd, 278 // id newValue, ptrdiff_t offset); 279 // void objc_setProperty_atomic_copy(id self, SEL _cmd, 280 // id newValue, ptrdiff_t offset); 281 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd, 282 // id newValue, ptrdiff_t offset); 283 284 SmallVector<CanQualType,4> Params; 285 CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType()); 286 CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType()); 287 Params.push_back(IdType); 288 Params.push_back(SelType); 289 Params.push_back(IdType); 290 Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified()); 291 llvm::FunctionType *FTy = 292 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, Params, 293 FunctionType::ExtInfo(), 294 RequiredArgs::All)); 295 const char *name; 296 if (atomic && copy) 297 name = "objc_setProperty_atomic_copy"; 298 else if (atomic && !copy) 299 name = "objc_setProperty_atomic"; 300 else if (!atomic && copy) 301 name = "objc_setProperty_nonatomic_copy"; 302 else 303 name = "objc_setProperty_nonatomic"; 304 305 return CGM.CreateRuntimeFunction(FTy, name); 306 } 307 308 llvm::Constant *getCopyStructFn() { 309 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 310 ASTContext &Ctx = CGM.getContext(); 311 // void objc_copyStruct (void *, const void *, size_t, bool, bool) 312 SmallVector<CanQualType,5> Params; 313 Params.push_back(Ctx.VoidPtrTy); 314 Params.push_back(Ctx.VoidPtrTy); 315 Params.push_back(Ctx.LongTy); 316 Params.push_back(Ctx.BoolTy); 317 Params.push_back(Ctx.BoolTy); 318 llvm::FunctionType *FTy = 319 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, Params, 320 FunctionType::ExtInfo(), 321 RequiredArgs::All)); 322 return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct"); 323 } 324 325 /// This routine declares and returns address of: 326 /// void objc_copyCppObjectAtomic( 327 /// void *dest, const void *src, 328 /// void (*copyHelper) (void *dest, const void *source)); 329 llvm::Constant *getCppAtomicObjectFunction() { 330 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 331 ASTContext &Ctx = CGM.getContext(); 332 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper); 333 SmallVector<CanQualType,3> Params; 334 Params.push_back(Ctx.VoidPtrTy); 335 Params.push_back(Ctx.VoidPtrTy); 336 Params.push_back(Ctx.VoidPtrTy); 337 llvm::FunctionType *FTy = 338 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, Params, 339 FunctionType::ExtInfo(), 340 RequiredArgs::All)); 341 return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic"); 342 } 343 344 llvm::Constant *getEnumerationMutationFn() { 345 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 346 ASTContext &Ctx = CGM.getContext(); 347 // void objc_enumerationMutation (id) 348 SmallVector<CanQualType,1> Params; 349 Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType())); 350 llvm::FunctionType *FTy = 351 Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, Params, 352 FunctionType::ExtInfo(), 353 RequiredArgs::All)); 354 return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation"); 355 } 356 357 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function. 358 llvm::Constant *getGcReadWeakFn() { 359 // id objc_read_weak (id *) 360 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() }; 361 llvm::FunctionType *FTy = 362 llvm::FunctionType::get(ObjectPtrTy, args, false); 363 return CGM.CreateRuntimeFunction(FTy, "objc_read_weak"); 364 } 365 366 /// GcAssignWeakFn -- LLVM objc_assign_weak function. 367 llvm::Constant *getGcAssignWeakFn() { 368 // id objc_assign_weak (id, id *) 369 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 370 llvm::FunctionType *FTy = 371 llvm::FunctionType::get(ObjectPtrTy, args, false); 372 return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak"); 373 } 374 375 /// GcAssignGlobalFn -- LLVM objc_assign_global function. 376 llvm::Constant *getGcAssignGlobalFn() { 377 // id objc_assign_global(id, id *) 378 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 379 llvm::FunctionType *FTy = 380 llvm::FunctionType::get(ObjectPtrTy, args, false); 381 return CGM.CreateRuntimeFunction(FTy, "objc_assign_global"); 382 } 383 384 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function. 385 llvm::Constant *getGcAssignThreadLocalFn() { 386 // id objc_assign_threadlocal(id src, id * dest) 387 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 388 llvm::FunctionType *FTy = 389 llvm::FunctionType::get(ObjectPtrTy, args, false); 390 return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal"); 391 } 392 393 /// GcAssignIvarFn -- LLVM objc_assign_ivar function. 394 llvm::Constant *getGcAssignIvarFn() { 395 // id objc_assign_ivar(id, id *, ptrdiff_t) 396 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(), 397 CGM.PtrDiffTy }; 398 llvm::FunctionType *FTy = 399 llvm::FunctionType::get(ObjectPtrTy, args, false); 400 return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar"); 401 } 402 403 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function. 404 llvm::Constant *GcMemmoveCollectableFn() { 405 // void *objc_memmove_collectable(void *dst, const void *src, size_t size) 406 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy }; 407 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false); 408 return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable"); 409 } 410 411 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function. 412 llvm::Constant *getGcAssignStrongCastFn() { 413 // id objc_assign_strongCast(id, id *) 414 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() }; 415 llvm::FunctionType *FTy = 416 llvm::FunctionType::get(ObjectPtrTy, args, false); 417 return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast"); 418 } 419 420 /// ExceptionThrowFn - LLVM objc_exception_throw function. 421 llvm::Constant *getExceptionThrowFn() { 422 // void objc_exception_throw(id) 423 llvm::Type *args[] = { ObjectPtrTy }; 424 llvm::FunctionType *FTy = 425 llvm::FunctionType::get(CGM.VoidTy, args, false); 426 return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw"); 427 } 428 429 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function. 430 llvm::Constant *getExceptionRethrowFn() { 431 // void objc_exception_rethrow(void) 432 llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); 433 return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow"); 434 } 435 436 /// SyncEnterFn - LLVM object_sync_enter function. 437 llvm::Constant *getSyncEnterFn() { 438 // int objc_sync_enter (id) 439 llvm::Type *args[] = { ObjectPtrTy }; 440 llvm::FunctionType *FTy = 441 llvm::FunctionType::get(CGM.IntTy, args, false); 442 return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter"); 443 } 444 445 /// SyncExitFn - LLVM object_sync_exit function. 446 llvm::Constant *getSyncExitFn() { 447 // int objc_sync_exit (id) 448 llvm::Type *args[] = { ObjectPtrTy }; 449 llvm::FunctionType *FTy = 450 llvm::FunctionType::get(CGM.IntTy, args, false); 451 return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit"); 452 } 453 454 llvm::Constant *getSendFn(bool IsSuper) const { 455 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn(); 456 } 457 458 llvm::Constant *getSendFn2(bool IsSuper) const { 459 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn(); 460 } 461 462 llvm::Constant *getSendStretFn(bool IsSuper) const { 463 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn(); 464 } 465 466 llvm::Constant *getSendStretFn2(bool IsSuper) const { 467 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn(); 468 } 469 470 llvm::Constant *getSendFpretFn(bool IsSuper) const { 471 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn(); 472 } 473 474 llvm::Constant *getSendFpretFn2(bool IsSuper) const { 475 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn(); 476 } 477 478 llvm::Constant *getSendFp2retFn(bool IsSuper) const { 479 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn(); 480 } 481 482 llvm::Constant *getSendFp2RetFn2(bool IsSuper) const { 483 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn(); 484 } 485 486 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm); 487 ~ObjCCommonTypesHelper(){} 488}; 489 490/// ObjCTypesHelper - Helper class that encapsulates lazy 491/// construction of varies types used during ObjC generation. 492class ObjCTypesHelper : public ObjCCommonTypesHelper { 493public: 494 /// SymtabTy - LLVM type for struct objc_symtab. 495 llvm::StructType *SymtabTy; 496 /// SymtabPtrTy - LLVM type for struct objc_symtab *. 497 llvm::Type *SymtabPtrTy; 498 /// ModuleTy - LLVM type for struct objc_module. 499 llvm::StructType *ModuleTy; 500 501 /// ProtocolTy - LLVM type for struct objc_protocol. 502 llvm::StructType *ProtocolTy; 503 /// ProtocolPtrTy - LLVM type for struct objc_protocol *. 504 llvm::Type *ProtocolPtrTy; 505 /// ProtocolExtensionTy - LLVM type for struct 506 /// objc_protocol_extension. 507 llvm::StructType *ProtocolExtensionTy; 508 /// ProtocolExtensionTy - LLVM type for struct 509 /// objc_protocol_extension *. 510 llvm::Type *ProtocolExtensionPtrTy; 511 /// MethodDescriptionTy - LLVM type for struct 512 /// objc_method_description. 513 llvm::StructType *MethodDescriptionTy; 514 /// MethodDescriptionListTy - LLVM type for struct 515 /// objc_method_description_list. 516 llvm::StructType *MethodDescriptionListTy; 517 /// MethodDescriptionListPtrTy - LLVM type for struct 518 /// objc_method_description_list *. 519 llvm::Type *MethodDescriptionListPtrTy; 520 /// ProtocolListTy - LLVM type for struct objc_property_list. 521 llvm::StructType *ProtocolListTy; 522 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*. 523 llvm::Type *ProtocolListPtrTy; 524 /// CategoryTy - LLVM type for struct objc_category. 525 llvm::StructType *CategoryTy; 526 /// ClassTy - LLVM type for struct objc_class. 527 llvm::StructType *ClassTy; 528 /// ClassPtrTy - LLVM type for struct objc_class *. 529 llvm::Type *ClassPtrTy; 530 /// ClassExtensionTy - LLVM type for struct objc_class_ext. 531 llvm::StructType *ClassExtensionTy; 532 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *. 533 llvm::Type *ClassExtensionPtrTy; 534 // IvarTy - LLVM type for struct objc_ivar. 535 llvm::StructType *IvarTy; 536 /// IvarListTy - LLVM type for struct objc_ivar_list. 537 llvm::Type *IvarListTy; 538 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *. 539 llvm::Type *IvarListPtrTy; 540 /// MethodListTy - LLVM type for struct objc_method_list. 541 llvm::Type *MethodListTy; 542 /// MethodListPtrTy - LLVM type for struct objc_method_list *. 543 llvm::Type *MethodListPtrTy; 544 545 /// ExceptionDataTy - LLVM type for struct _objc_exception_data. 546 llvm::Type *ExceptionDataTy; 547 548 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function. 549 llvm::Constant *getExceptionTryEnterFn() { 550 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 551 return CGM.CreateRuntimeFunction( 552 llvm::FunctionType::get(CGM.VoidTy, params, false), 553 "objc_exception_try_enter"); 554 } 555 556 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function. 557 llvm::Constant *getExceptionTryExitFn() { 558 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 559 return CGM.CreateRuntimeFunction( 560 llvm::FunctionType::get(CGM.VoidTy, params, false), 561 "objc_exception_try_exit"); 562 } 563 564 /// ExceptionExtractFn - LLVM objc_exception_extract function. 565 llvm::Constant *getExceptionExtractFn() { 566 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() }; 567 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 568 params, false), 569 "objc_exception_extract"); 570 } 571 572 /// ExceptionMatchFn - LLVM objc_exception_match function. 573 llvm::Constant *getExceptionMatchFn() { 574 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy }; 575 return CGM.CreateRuntimeFunction( 576 llvm::FunctionType::get(CGM.Int32Ty, params, false), 577 "objc_exception_match"); 578 579 } 580 581 /// SetJmpFn - LLVM _setjmp function. 582 llvm::Constant *getSetJmpFn() { 583 // This is specifically the prototype for x86. 584 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() }; 585 return 586 CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty, 587 params, false), 588 "_setjmp", 589 llvm::AttributeSet::get(CGM.getLLVMContext(), 590 llvm::AttributeSet::FunctionIndex, 591 llvm::Attribute::NonLazyBind)); 592 } 593 594public: 595 ObjCTypesHelper(CodeGen::CodeGenModule &cgm); 596 ~ObjCTypesHelper() {} 597}; 598 599/// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's 600/// modern abi 601class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper { 602public: 603 604 // MethodListnfABITy - LLVM for struct _method_list_t 605 llvm::StructType *MethodListnfABITy; 606 607 // MethodListnfABIPtrTy - LLVM for struct _method_list_t* 608 llvm::Type *MethodListnfABIPtrTy; 609 610 // ProtocolnfABITy = LLVM for struct _protocol_t 611 llvm::StructType *ProtocolnfABITy; 612 613 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t* 614 llvm::Type *ProtocolnfABIPtrTy; 615 616 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list 617 llvm::StructType *ProtocolListnfABITy; 618 619 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list* 620 llvm::Type *ProtocolListnfABIPtrTy; 621 622 // ClassnfABITy - LLVM for struct _class_t 623 llvm::StructType *ClassnfABITy; 624 625 // ClassnfABIPtrTy - LLVM for struct _class_t* 626 llvm::Type *ClassnfABIPtrTy; 627 628 // IvarnfABITy - LLVM for struct _ivar_t 629 llvm::StructType *IvarnfABITy; 630 631 // IvarListnfABITy - LLVM for struct _ivar_list_t 632 llvm::StructType *IvarListnfABITy; 633 634 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t* 635 llvm::Type *IvarListnfABIPtrTy; 636 637 // ClassRonfABITy - LLVM for struct _class_ro_t 638 llvm::StructType *ClassRonfABITy; 639 640 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 641 llvm::Type *ImpnfABITy; 642 643 // CategorynfABITy - LLVM for struct _category_t 644 llvm::StructType *CategorynfABITy; 645 646 // New types for nonfragile abi messaging. 647 648 // MessageRefTy - LLVM for: 649 // struct _message_ref_t { 650 // IMP messenger; 651 // SEL name; 652 // }; 653 llvm::StructType *MessageRefTy; 654 // MessageRefCTy - clang type for struct _message_ref_t 655 QualType MessageRefCTy; 656 657 // MessageRefPtrTy - LLVM for struct _message_ref_t* 658 llvm::Type *MessageRefPtrTy; 659 // MessageRefCPtrTy - clang type for struct _message_ref_t* 660 QualType MessageRefCPtrTy; 661 662 // MessengerTy - Type of the messenger (shown as IMP above) 663 llvm::FunctionType *MessengerTy; 664 665 // SuperMessageRefTy - LLVM for: 666 // struct _super_message_ref_t { 667 // SUPER_IMP messenger; 668 // SEL name; 669 // }; 670 llvm::StructType *SuperMessageRefTy; 671 672 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 673 llvm::Type *SuperMessageRefPtrTy; 674 675 llvm::Constant *getMessageSendFixupFn() { 676 // id objc_msgSend_fixup(id, struct message_ref_t*, ...) 677 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 678 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 679 params, true), 680 "objc_msgSend_fixup"); 681 } 682 683 llvm::Constant *getMessageSendFpretFixupFn() { 684 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...) 685 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 686 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 687 params, true), 688 "objc_msgSend_fpret_fixup"); 689 } 690 691 llvm::Constant *getMessageSendStretFixupFn() { 692 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...) 693 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy }; 694 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 695 params, true), 696 "objc_msgSend_stret_fixup"); 697 } 698 699 llvm::Constant *getMessageSendSuper2FixupFn() { 700 // id objc_msgSendSuper2_fixup (struct objc_super *, 701 // struct _super_message_ref_t*, ...) 702 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 703 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 704 params, true), 705 "objc_msgSendSuper2_fixup"); 706 } 707 708 llvm::Constant *getMessageSendSuper2StretFixupFn() { 709 // id objc_msgSendSuper2_stret_fixup(struct objc_super *, 710 // struct _super_message_ref_t*, ...) 711 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy }; 712 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy, 713 params, true), 714 "objc_msgSendSuper2_stret_fixup"); 715 } 716 717 llvm::Constant *getObjCEndCatchFn() { 718 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false), 719 "objc_end_catch"); 720 721 } 722 723 llvm::Constant *getObjCBeginCatchFn() { 724 llvm::Type *params[] = { Int8PtrTy }; 725 return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy, 726 params, false), 727 "objc_begin_catch"); 728 } 729 730 llvm::StructType *EHTypeTy; 731 llvm::Type *EHTypePtrTy; 732 733 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm); 734 ~ObjCNonFragileABITypesHelper(){} 735}; 736 737class CGObjCCommonMac : public CodeGen::CGObjCRuntime { 738public: 739 // FIXME - accessibility 740 class GC_IVAR { 741 public: 742 unsigned ivar_bytepos; 743 unsigned ivar_size; 744 GC_IVAR(unsigned bytepos = 0, unsigned size = 0) 745 : ivar_bytepos(bytepos), ivar_size(size) {} 746 747 // Allow sorting based on byte pos. 748 bool operator<(const GC_IVAR &b) const { 749 return ivar_bytepos < b.ivar_bytepos; 750 } 751 }; 752 753 class SKIP_SCAN { 754 public: 755 unsigned skip; 756 unsigned scan; 757 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0) 758 : skip(_skip), scan(_scan) {} 759 }; 760 761 /// opcode for captured block variables layout 'instructions'. 762 /// In the following descriptions, 'I' is the value of the immediate field. 763 /// (field following the opcode). 764 /// 765 enum BLOCK_LAYOUT_OPCODE { 766 /// An operator which affects how the following layout should be 767 /// interpreted. 768 /// I == 0: Halt interpretation and treat everything else as 769 /// a non-pointer. Note that this instruction is equal 770 /// to '\0'. 771 /// I != 0: Currently unused. 772 BLOCK_LAYOUT_OPERATOR = 0, 773 774 /// The next I+1 bytes do not contain a value of object pointer type. 775 /// Note that this can leave the stream unaligned, meaning that 776 /// subsequent word-size instructions do not begin at a multiple of 777 /// the pointer size. 778 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1, 779 780 /// The next I+1 words do not contain a value of object pointer type. 781 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for 782 /// when the required skip quantity is a multiple of the pointer size. 783 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2, 784 785 /// The next I+1 words are __strong pointers to Objective-C 786 /// objects or blocks. 787 BLOCK_LAYOUT_STRONG = 3, 788 789 /// The next I+1 words are pointers to __block variables. 790 BLOCK_LAYOUT_BYREF = 4, 791 792 /// The next I+1 words are __weak pointers to Objective-C 793 /// objects or blocks. 794 BLOCK_LAYOUT_WEAK = 5, 795 796 /// The next I+1 words are __unsafe_unretained pointers to 797 /// Objective-C objects or blocks. 798 BLOCK_LAYOUT_UNRETAINED = 6 799 800 /// The next I+1 words are block or object pointers with some 801 /// as-yet-unspecified ownership semantics. If we add more 802 /// flavors of ownership semantics, values will be taken from 803 /// this range. 804 /// 805 /// This is included so that older tools can at least continue 806 /// processing the layout past such things. 807 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10, 808 809 /// All other opcodes are reserved. Halt interpretation and 810 /// treat everything else as opaque. 811 }; 812 813 class RUN_SKIP { 814 public: 815 enum BLOCK_LAYOUT_OPCODE opcode; 816 CharUnits block_var_bytepos; 817 CharUnits block_var_size; 818 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR, 819 CharUnits BytePos = CharUnits::Zero(), 820 CharUnits Size = CharUnits::Zero()) 821 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {} 822 823 // Allow sorting based on byte pos. 824 bool operator<(const RUN_SKIP &b) const { 825 return block_var_bytepos < b.block_var_bytepos; 826 } 827 }; 828 829protected: 830 llvm::LLVMContext &VMContext; 831 // FIXME! May not be needing this after all. 832 unsigned ObjCABI; 833 834 // gc ivar layout bitmap calculation helper caches. 835 SmallVector<GC_IVAR, 16> SkipIvars; 836 SmallVector<GC_IVAR, 16> IvarsInfo; 837 838 // arc/mrr layout of captured block literal variables. 839 SmallVector<RUN_SKIP, 16> RunSkipBlockVars; 840 841 /// LazySymbols - Symbols to generate a lazy reference for. See 842 /// DefinedSymbols and FinishModule(). 843 llvm::SetVector<IdentifierInfo*> LazySymbols; 844 845 /// DefinedSymbols - External symbols which are defined by this 846 /// module. The symbols in this list and LazySymbols are used to add 847 /// special linker symbols which ensure that Objective-C modules are 848 /// linked properly. 849 llvm::SetVector<IdentifierInfo*> DefinedSymbols; 850 851 /// ClassNames - uniqued class names. 852 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassNames; 853 854 /// MethodVarNames - uniqued method variable names. 855 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames; 856 857 /// DefinedCategoryNames - list of category names in form Class_Category. 858 llvm::SetVector<std::string> DefinedCategoryNames; 859 860 /// MethodVarTypes - uniqued method type signatures. We have to use 861 /// a StringMap here because have no other unique reference. 862 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes; 863 864 /// MethodDefinitions - map of methods which have been defined in 865 /// this translation unit. 866 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions; 867 868 /// PropertyNames - uniqued method variable names. 869 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames; 870 871 /// ClassReferences - uniqued class references. 872 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences; 873 874 /// SelectorReferences - uniqued selector references. 875 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences; 876 877 /// Protocols - Protocols for which an objc_protocol structure has 878 /// been emitted. Forward declarations are handled by creating an 879 /// empty structure whose initializer is filled in when/if defined. 880 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols; 881 882 /// DefinedProtocols - Protocols which have actually been 883 /// defined. We should not need this, see FIXME in GenerateProtocol. 884 llvm::DenseSet<IdentifierInfo*> DefinedProtocols; 885 886 /// DefinedClasses - List of defined classes. 887 SmallVector<llvm::GlobalValue*, 16> DefinedClasses; 888 889 /// DefinedNonLazyClasses - List of defined "non-lazy" classes. 890 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses; 891 892 /// DefinedCategories - List of defined categories. 893 SmallVector<llvm::GlobalValue*, 16> DefinedCategories; 894 895 /// DefinedNonLazyCategories - List of defined "non-lazy" categories. 896 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories; 897 898 /// GetNameForMethod - Return a name for the given method. 899 /// \param[out] NameOut - The return value. 900 void GetNameForMethod(const ObjCMethodDecl *OMD, 901 const ObjCContainerDecl *CD, 902 SmallVectorImpl<char> &NameOut); 903 904 /// GetMethodVarName - Return a unique constant for the given 905 /// selector's name. The return value has type char *. 906 llvm::Constant *GetMethodVarName(Selector Sel); 907 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident); 908 909 /// GetMethodVarType - Return a unique constant for the given 910 /// method's type encoding string. The return value has type char *. 911 912 // FIXME: This is a horrible name. 913 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D, 914 bool Extended = false); 915 llvm::Constant *GetMethodVarType(const FieldDecl *D); 916 917 /// GetPropertyName - Return a unique constant for the given 918 /// name. The return value has type char *. 919 llvm::Constant *GetPropertyName(IdentifierInfo *Ident); 920 921 // FIXME: This can be dropped once string functions are unified. 922 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD, 923 const Decl *Container); 924 925 /// GetClassName - Return a unique constant for the given selector's 926 /// name. The return value has type char *. 927 llvm::Constant *GetClassName(IdentifierInfo *Ident); 928 929 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD); 930 931 /// BuildIvarLayout - Builds ivar layout bitmap for the class 932 /// implementation for the __strong or __weak case. 933 /// 934 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI, 935 bool ForStrongLayout); 936 937 llvm::Constant *BuildIvarLayoutBitmap(std::string &BitMap); 938 939 void BuildAggrIvarRecordLayout(const RecordType *RT, 940 unsigned int BytePos, bool ForStrongLayout, 941 bool &HasUnion); 942 void BuildAggrIvarLayout(const ObjCImplementationDecl *OI, 943 const llvm::StructLayout *Layout, 944 const RecordDecl *RD, 945 ArrayRef<const FieldDecl*> RecFields, 946 unsigned int BytePos, bool ForStrongLayout, 947 bool &HasUnion); 948 949 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout); 950 951 void UpdateRunSkipBlockVars(bool IsByref, 952 Qualifiers::ObjCLifetime LifeTime, 953 CharUnits FieldOffset, 954 CharUnits FieldSize); 955 956 void BuildRCBlockVarRecordLayout(const RecordType *RT, 957 CharUnits BytePos, bool &HasUnion, 958 bool ByrefLayout=false); 959 960 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 961 const RecordDecl *RD, 962 ArrayRef<const FieldDecl*> RecFields, 963 CharUnits BytePos, bool &HasUnion, 964 bool ByrefLayout); 965 966 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout); 967 968 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout); 969 970 971 /// GetIvarLayoutName - Returns a unique constant for the given 972 /// ivar layout bitmap. 973 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident, 974 const ObjCCommonTypesHelper &ObjCTypes); 975 976 /// EmitPropertyList - Emit the given property list. The return 977 /// value has type PropertyListPtrTy. 978 llvm::Constant *EmitPropertyList(Twine Name, 979 const Decl *Container, 980 const ObjCContainerDecl *OCD, 981 const ObjCCommonTypesHelper &ObjCTypes); 982 983 /// EmitProtocolMethodTypes - Generate the array of extended method type 984 /// strings. The return value has type Int8PtrPtrTy. 985 llvm::Constant *EmitProtocolMethodTypes(Twine Name, 986 ArrayRef<llvm::Constant*> MethodTypes, 987 const ObjCCommonTypesHelper &ObjCTypes); 988 989 /// PushProtocolProperties - Push protocol's property on the input stack. 990 void PushProtocolProperties( 991 llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet, 992 SmallVectorImpl<llvm::Constant*> &Properties, 993 const Decl *Container, 994 const ObjCProtocolDecl *PROTO, 995 const ObjCCommonTypesHelper &ObjCTypes); 996 997 /// GetProtocolRef - Return a reference to the internal protocol 998 /// description, creating an empty one if it has not been 999 /// defined. The return value has type ProtocolPtrTy. 1000 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD); 1001 1002 /// CreateMetadataVar - Create a global variable with internal 1003 /// linkage for use by the Objective-C runtime. 1004 /// 1005 /// This is a convenience wrapper which not only creates the 1006 /// variable, but also sets the section and alignment and adds the 1007 /// global to the "llvm.used" list. 1008 /// 1009 /// \param Name - The variable name. 1010 /// \param Init - The variable initializer; this is also used to 1011 /// define the type of the variable. 1012 /// \param Section - The section the variable should go into, or 0. 1013 /// \param Align - The alignment for the variable, or 0. 1014 /// \param AddToUsed - Whether the variable should be added to 1015 /// "llvm.used". 1016 llvm::GlobalVariable *CreateMetadataVar(Twine Name, 1017 llvm::Constant *Init, 1018 const char *Section, 1019 unsigned Align, 1020 bool AddToUsed); 1021 1022 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1023 ReturnValueSlot Return, 1024 QualType ResultType, 1025 llvm::Value *Sel, 1026 llvm::Value *Arg0, 1027 QualType Arg0Ty, 1028 bool IsSuper, 1029 const CallArgList &CallArgs, 1030 const ObjCMethodDecl *OMD, 1031 const ObjCCommonTypesHelper &ObjCTypes); 1032 1033 /// EmitImageInfo - Emit the image info marker used to encode some module 1034 /// level information. 1035 void EmitImageInfo(); 1036 1037public: 1038 CGObjCCommonMac(CodeGen::CodeGenModule &cgm) : 1039 CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { } 1040 1041 virtual llvm::Constant *GenerateConstantString(const StringLiteral *SL); 1042 1043 virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD, 1044 const ObjCContainerDecl *CD=0); 1045 1046 virtual void GenerateProtocol(const ObjCProtocolDecl *PD); 1047 1048 /// GetOrEmitProtocol - Get the protocol object for the given 1049 /// declaration, emitting it if necessary. The return value has type 1050 /// ProtocolPtrTy. 1051 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0; 1052 1053 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1054 /// object for the given declaration, emitting it if needed. These 1055 /// forward references will be filled in with empty bodies if no 1056 /// definition is seen. The return value has type ProtocolPtrTy. 1057 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0; 1058 virtual llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM, 1059 const CGBlockInfo &blockInfo); 1060 virtual llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM, 1061 const CGBlockInfo &blockInfo); 1062 1063 virtual llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM, 1064 QualType T); 1065}; 1066 1067class CGObjCMac : public CGObjCCommonMac { 1068private: 1069 ObjCTypesHelper ObjCTypes; 1070 1071 /// EmitModuleInfo - Another marker encoding module level 1072 /// information. 1073 void EmitModuleInfo(); 1074 1075 /// EmitModuleSymols - Emit module symbols, the list of defined 1076 /// classes and categories. The result has type SymtabPtrTy. 1077 llvm::Constant *EmitModuleSymbols(); 1078 1079 /// FinishModule - Write out global data structures at the end of 1080 /// processing a translation unit. 1081 void FinishModule(); 1082 1083 /// EmitClassExtension - Generate the class extension structure used 1084 /// to store the weak ivar layout and properties. The return value 1085 /// has type ClassExtensionPtrTy. 1086 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID); 1087 1088 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1089 /// for the given class. 1090 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1091 const ObjCInterfaceDecl *ID); 1092 1093 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1094 IdentifierInfo *II); 1095 1096 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF); 1097 1098 /// EmitSuperClassRef - Emits reference to class's main metadata class. 1099 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID); 1100 1101 /// EmitIvarList - Emit the ivar list for the given 1102 /// implementation. If ForClass is true the list of class ivars 1103 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1104 /// interface ivars will be emitted. The return value has type 1105 /// IvarListPtrTy. 1106 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID, 1107 bool ForClass); 1108 1109 /// EmitMetaClass - Emit a forward reference to the class structure 1110 /// for the metaclass of the given interface. The return value has 1111 /// type ClassPtrTy. 1112 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID); 1113 1114 /// EmitMetaClass - Emit a class structure for the metaclass of the 1115 /// given implementation. The return value has type ClassPtrTy. 1116 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID, 1117 llvm::Constant *Protocols, 1118 ArrayRef<llvm::Constant*> Methods); 1119 1120 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1121 1122 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1123 1124 /// EmitMethodList - Emit the method list for the given 1125 /// implementation. The return value has type MethodListPtrTy. 1126 llvm::Constant *EmitMethodList(Twine Name, 1127 const char *Section, 1128 ArrayRef<llvm::Constant*> Methods); 1129 1130 /// EmitMethodDescList - Emit a method description list for a list of 1131 /// method declarations. 1132 /// - TypeName: The name for the type containing the methods. 1133 /// - IsProtocol: True iff these methods are for a protocol. 1134 /// - ClassMethds: True iff these are class methods. 1135 /// - Required: When true, only "required" methods are 1136 /// listed. Similarly, when false only "optional" methods are 1137 /// listed. For classes this should always be true. 1138 /// - begin, end: The method list to output. 1139 /// 1140 /// The return value has type MethodDescriptionListPtrTy. 1141 llvm::Constant *EmitMethodDescList(Twine Name, 1142 const char *Section, 1143 ArrayRef<llvm::Constant*> Methods); 1144 1145 /// GetOrEmitProtocol - Get the protocol object for the given 1146 /// declaration, emitting it if necessary. The return value has type 1147 /// ProtocolPtrTy. 1148 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD); 1149 1150 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1151 /// object for the given declaration, emitting it if needed. These 1152 /// forward references will be filled in with empty bodies if no 1153 /// definition is seen. The return value has type ProtocolPtrTy. 1154 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD); 1155 1156 /// EmitProtocolExtension - Generate the protocol extension 1157 /// structure used to store optional instance and class methods, and 1158 /// protocol properties. The return value has type 1159 /// ProtocolExtensionPtrTy. 1160 llvm::Constant * 1161 EmitProtocolExtension(const ObjCProtocolDecl *PD, 1162 ArrayRef<llvm::Constant*> OptInstanceMethods, 1163 ArrayRef<llvm::Constant*> OptClassMethods, 1164 ArrayRef<llvm::Constant*> MethodTypesExt); 1165 1166 /// EmitProtocolList - Generate the list of referenced 1167 /// protocols. The return value has type ProtocolListPtrTy. 1168 llvm::Constant *EmitProtocolList(Twine Name, 1169 ObjCProtocolDecl::protocol_iterator begin, 1170 ObjCProtocolDecl::protocol_iterator end); 1171 1172 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1173 /// for the given selector. 1174 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel, 1175 bool lval=false); 1176 1177public: 1178 CGObjCMac(CodeGen::CodeGenModule &cgm); 1179 1180 virtual llvm::Function *ModuleInitFunction(); 1181 1182 virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1183 ReturnValueSlot Return, 1184 QualType ResultType, 1185 Selector Sel, 1186 llvm::Value *Receiver, 1187 const CallArgList &CallArgs, 1188 const ObjCInterfaceDecl *Class, 1189 const ObjCMethodDecl *Method); 1190 1191 virtual CodeGen::RValue 1192 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1193 ReturnValueSlot Return, 1194 QualType ResultType, 1195 Selector Sel, 1196 const ObjCInterfaceDecl *Class, 1197 bool isCategoryImpl, 1198 llvm::Value *Receiver, 1199 bool IsClassMessage, 1200 const CallArgList &CallArgs, 1201 const ObjCMethodDecl *Method); 1202 1203 virtual llvm::Value *GetClass(CodeGenFunction &CGF, 1204 const ObjCInterfaceDecl *ID); 1205 1206 virtual llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel, 1207 bool lval = false); 1208 1209 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1210 /// untyped one. 1211 virtual llvm::Value *GetSelector(CodeGenFunction &CGF, 1212 const ObjCMethodDecl *Method); 1213 1214 virtual llvm::Constant *GetEHType(QualType T); 1215 1216 virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD); 1217 1218 virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl); 1219 1220 virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {} 1221 1222 virtual llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1223 const ObjCProtocolDecl *PD); 1224 1225 virtual llvm::Constant *GetPropertyGetFunction(); 1226 virtual llvm::Constant *GetPropertySetFunction(); 1227 virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1228 bool copy); 1229 virtual llvm::Constant *GetGetStructFunction(); 1230 virtual llvm::Constant *GetSetStructFunction(); 1231 virtual llvm::Constant *GetCppAtomicObjectGetFunction(); 1232 virtual llvm::Constant *GetCppAtomicObjectSetFunction(); 1233 virtual llvm::Constant *EnumerationMutationFunction(); 1234 1235 virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1236 const ObjCAtTryStmt &S); 1237 virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1238 const ObjCAtSynchronizedStmt &S); 1239 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S); 1240 virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 1241 const ObjCAtThrowStmt &S, 1242 bool ClearInsertionPoint=true); 1243 virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1244 llvm::Value *AddrWeakObj); 1245 virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1246 llvm::Value *src, llvm::Value *dst); 1247 virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1248 llvm::Value *src, llvm::Value *dest, 1249 bool threadlocal = false); 1250 virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1251 llvm::Value *src, llvm::Value *dest, 1252 llvm::Value *ivarOffset); 1253 virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1254 llvm::Value *src, llvm::Value *dest); 1255 virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1256 llvm::Value *dest, llvm::Value *src, 1257 llvm::Value *size); 1258 1259 virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 1260 QualType ObjectTy, 1261 llvm::Value *BaseValue, 1262 const ObjCIvarDecl *Ivar, 1263 unsigned CVRQualifiers); 1264 virtual llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1265 const ObjCInterfaceDecl *Interface, 1266 const ObjCIvarDecl *Ivar); 1267 1268 /// GetClassGlobal - Return the global variable for the Objective-C 1269 /// class of the given name. 1270 virtual llvm::GlobalVariable *GetClassGlobal(const std::string &Name) { 1271 llvm_unreachable("CGObjCMac::GetClassGlobal"); 1272 } 1273}; 1274 1275class CGObjCNonFragileABIMac : public CGObjCCommonMac { 1276private: 1277 ObjCNonFragileABITypesHelper ObjCTypes; 1278 llvm::GlobalVariable* ObjCEmptyCacheVar; 1279 llvm::GlobalVariable* ObjCEmptyVtableVar; 1280 1281 /// SuperClassReferences - uniqued super class references. 1282 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences; 1283 1284 /// MetaClassReferences - uniqued meta class references. 1285 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences; 1286 1287 /// EHTypeReferences - uniqued class ehtype references. 1288 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences; 1289 1290 /// VTableDispatchMethods - List of methods for which we generate 1291 /// vtable-based message dispatch. 1292 llvm::DenseSet<Selector> VTableDispatchMethods; 1293 1294 /// DefinedMetaClasses - List of defined meta-classes. 1295 std::vector<llvm::GlobalValue*> DefinedMetaClasses; 1296 1297 /// isVTableDispatchedSelector - Returns true if SEL is a 1298 /// vtable-based selector. 1299 bool isVTableDispatchedSelector(Selector Sel); 1300 1301 /// FinishNonFragileABIModule - Write out global data structures at the end of 1302 /// processing a translation unit. 1303 void FinishNonFragileABIModule(); 1304 1305 /// AddModuleClassList - Add the given list of class pointers to the 1306 /// module with the provided symbol and section names. 1307 void AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 1308 const char *SymbolName, 1309 const char *SectionName); 1310 1311 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags, 1312 unsigned InstanceStart, 1313 unsigned InstanceSize, 1314 const ObjCImplementationDecl *ID); 1315 llvm::GlobalVariable * BuildClassMetaData(std::string &ClassName, 1316 llvm::Constant *IsAGV, 1317 llvm::Constant *SuperClassGV, 1318 llvm::Constant *ClassRoGV, 1319 bool HiddenVisibility); 1320 1321 llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD); 1322 1323 llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD); 1324 1325 /// EmitMethodList - Emit the method list for the given 1326 /// implementation. The return value has type MethodListnfABITy. 1327 llvm::Constant *EmitMethodList(Twine Name, 1328 const char *Section, 1329 ArrayRef<llvm::Constant*> Methods); 1330 /// EmitIvarList - Emit the ivar list for the given 1331 /// implementation. If ForClass is true the list of class ivars 1332 /// (i.e. metaclass ivars) is emitted, otherwise the list of 1333 /// interface ivars will be emitted. The return value has type 1334 /// IvarListnfABIPtrTy. 1335 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID); 1336 1337 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 1338 const ObjCIvarDecl *Ivar, 1339 unsigned long int offset); 1340 1341 /// GetOrEmitProtocol - Get the protocol object for the given 1342 /// declaration, emitting it if necessary. The return value has type 1343 /// ProtocolPtrTy. 1344 virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD); 1345 1346 /// GetOrEmitProtocolRef - Get a forward reference to the protocol 1347 /// object for the given declaration, emitting it if needed. These 1348 /// forward references will be filled in with empty bodies if no 1349 /// definition is seen. The return value has type ProtocolPtrTy. 1350 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD); 1351 1352 /// EmitProtocolList - Generate the list of referenced 1353 /// protocols. The return value has type ProtocolListPtrTy. 1354 llvm::Constant *EmitProtocolList(Twine Name, 1355 ObjCProtocolDecl::protocol_iterator begin, 1356 ObjCProtocolDecl::protocol_iterator end); 1357 1358 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF, 1359 ReturnValueSlot Return, 1360 QualType ResultType, 1361 Selector Sel, 1362 llvm::Value *Receiver, 1363 QualType Arg0Ty, 1364 bool IsSuper, 1365 const CallArgList &CallArgs, 1366 const ObjCMethodDecl *Method); 1367 1368 /// GetClassGlobal - Return the global variable for the Objective-C 1369 /// class of the given name. 1370 llvm::GlobalVariable *GetClassGlobal(const std::string &Name); 1371 1372 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1373 /// for the given class reference. 1374 llvm::Value *EmitClassRef(CodeGenFunction &CGF, 1375 const ObjCInterfaceDecl *ID); 1376 1377 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF, 1378 IdentifierInfo *II); 1379 1380 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF); 1381 1382 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy, 1383 /// for the given super class reference. 1384 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF, 1385 const ObjCInterfaceDecl *ID); 1386 1387 /// EmitMetaClassRef - Return a Value * of the address of _class_t 1388 /// meta-data 1389 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF, 1390 const ObjCInterfaceDecl *ID); 1391 1392 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for 1393 /// the given ivar. 1394 /// 1395 llvm::GlobalVariable * ObjCIvarOffsetVariable( 1396 const ObjCInterfaceDecl *ID, 1397 const ObjCIvarDecl *Ivar); 1398 1399 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy, 1400 /// for the given selector. 1401 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel, 1402 bool lval=false); 1403 1404 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C 1405 /// interface. The return value has type EHTypePtrTy. 1406 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID, 1407 bool ForDefinition); 1408 1409 const char *getMetaclassSymbolPrefix() const { 1410 return "OBJC_METACLASS_$_"; 1411 } 1412 1413 const char *getClassSymbolPrefix() const { 1414 return "OBJC_CLASS_$_"; 1415 } 1416 1417 void GetClassSizeInfo(const ObjCImplementationDecl *OID, 1418 uint32_t &InstanceStart, 1419 uint32_t &InstanceSize); 1420 1421 // Shamelessly stolen from Analysis/CFRefCount.cpp 1422 Selector GetNullarySelector(const char* name) const { 1423 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1424 return CGM.getContext().Selectors.getSelector(0, &II); 1425 } 1426 1427 Selector GetUnarySelector(const char* name) const { 1428 IdentifierInfo* II = &CGM.getContext().Idents.get(name); 1429 return CGM.getContext().Selectors.getSelector(1, &II); 1430 } 1431 1432 /// ImplementationIsNonLazy - Check whether the given category or 1433 /// class implementation is "non-lazy". 1434 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const; 1435 1436 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF, 1437 const ObjCInterfaceDecl *ID, 1438 const ObjCIvarDecl *IV) { 1439 // Annotate the load as an invariant load iff the object type is the type, 1440 // or a derived type, of the class containing the ivar within an ObjC 1441 // method. This check is needed because the ivar offset is a lazily 1442 // initialised value that may depend on objc_msgSend to perform a fixup on 1443 // the first message dispatch. 1444 // 1445 // An additional opportunity to mark the load as invariant arises when the 1446 // base of the ivar access is a parameter to an Objective C method. 1447 // However, because the parameters are not available in the current 1448 // interface, we cannot perform this check. 1449 if (CGF.CurFuncDecl && isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 1450 if (IV->getContainingInterface()->isSuperClassOf(ID)) 1451 return true; 1452 return false; 1453 } 1454 1455public: 1456 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm); 1457 // FIXME. All stubs for now! 1458 virtual llvm::Function *ModuleInitFunction(); 1459 1460 virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1461 ReturnValueSlot Return, 1462 QualType ResultType, 1463 Selector Sel, 1464 llvm::Value *Receiver, 1465 const CallArgList &CallArgs, 1466 const ObjCInterfaceDecl *Class, 1467 const ObjCMethodDecl *Method); 1468 1469 virtual CodeGen::RValue 1470 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1471 ReturnValueSlot Return, 1472 QualType ResultType, 1473 Selector Sel, 1474 const ObjCInterfaceDecl *Class, 1475 bool isCategoryImpl, 1476 llvm::Value *Receiver, 1477 bool IsClassMessage, 1478 const CallArgList &CallArgs, 1479 const ObjCMethodDecl *Method); 1480 1481 virtual llvm::Value *GetClass(CodeGenFunction &CGF, 1482 const ObjCInterfaceDecl *ID); 1483 1484 virtual llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel, 1485 bool lvalue = false) 1486 { return EmitSelector(CGF, Sel, lvalue); } 1487 1488 /// The NeXT/Apple runtimes do not support typed selectors; just emit an 1489 /// untyped one. 1490 virtual llvm::Value *GetSelector(CodeGenFunction &CGF, 1491 const ObjCMethodDecl *Method) 1492 { return EmitSelector(CGF, Method->getSelector()); } 1493 1494 virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD); 1495 1496 virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl); 1497 1498 virtual void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {} 1499 1500 virtual llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF, 1501 const ObjCProtocolDecl *PD); 1502 1503 virtual llvm::Constant *GetEHType(QualType T); 1504 1505 virtual llvm::Constant *GetPropertyGetFunction() { 1506 return ObjCTypes.getGetPropertyFn(); 1507 } 1508 virtual llvm::Constant *GetPropertySetFunction() { 1509 return ObjCTypes.getSetPropertyFn(); 1510 } 1511 1512 virtual llvm::Constant *GetOptimizedPropertySetFunction(bool atomic, 1513 bool copy) { 1514 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 1515 } 1516 1517 virtual llvm::Constant *GetSetStructFunction() { 1518 return ObjCTypes.getCopyStructFn(); 1519 } 1520 virtual llvm::Constant *GetGetStructFunction() { 1521 return ObjCTypes.getCopyStructFn(); 1522 } 1523 virtual llvm::Constant *GetCppAtomicObjectSetFunction() { 1524 return ObjCTypes.getCppAtomicObjectFunction(); 1525 } 1526 virtual llvm::Constant *GetCppAtomicObjectGetFunction() { 1527 return ObjCTypes.getCppAtomicObjectFunction(); 1528 } 1529 1530 virtual llvm::Constant *EnumerationMutationFunction() { 1531 return ObjCTypes.getEnumerationMutationFn(); 1532 } 1533 1534 virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, 1535 const ObjCAtTryStmt &S); 1536 virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 1537 const ObjCAtSynchronizedStmt &S); 1538 virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 1539 const ObjCAtThrowStmt &S, 1540 bool ClearInsertionPoint=true); 1541 virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 1542 llvm::Value *AddrWeakObj); 1543 virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 1544 llvm::Value *src, llvm::Value *dst); 1545 virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 1546 llvm::Value *src, llvm::Value *dest, 1547 bool threadlocal = false); 1548 virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 1549 llvm::Value *src, llvm::Value *dest, 1550 llvm::Value *ivarOffset); 1551 virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 1552 llvm::Value *src, llvm::Value *dest); 1553 virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 1554 llvm::Value *dest, llvm::Value *src, 1555 llvm::Value *size); 1556 virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 1557 QualType ObjectTy, 1558 llvm::Value *BaseValue, 1559 const ObjCIvarDecl *Ivar, 1560 unsigned CVRQualifiers); 1561 virtual llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 1562 const ObjCInterfaceDecl *Interface, 1563 const ObjCIvarDecl *Ivar); 1564}; 1565 1566/// A helper class for performing the null-initialization of a return 1567/// value. 1568struct NullReturnState { 1569 llvm::BasicBlock *NullBB; 1570 NullReturnState() : NullBB(0) {} 1571 1572 /// Perform a null-check of the given receiver. 1573 void init(CodeGenFunction &CGF, llvm::Value *receiver) { 1574 // Make blocks for the null-receiver and call edges. 1575 NullBB = CGF.createBasicBlock("msgSend.null-receiver"); 1576 llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call"); 1577 1578 // Check for a null receiver and, if there is one, jump to the 1579 // null-receiver block. There's no point in trying to avoid it: 1580 // we're always going to put *something* there, because otherwise 1581 // we shouldn't have done this null-check in the first place. 1582 llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver); 1583 CGF.Builder.CreateCondBr(isNull, NullBB, callBB); 1584 1585 // Otherwise, start performing the call. 1586 CGF.EmitBlock(callBB); 1587 } 1588 1589 /// Complete the null-return operation. It is valid to call this 1590 /// regardless of whether 'init' has been called. 1591 RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType, 1592 const CallArgList &CallArgs, 1593 const ObjCMethodDecl *Method) { 1594 // If we never had to do a null-check, just use the raw result. 1595 if (!NullBB) return result; 1596 1597 // The continuation block. This will be left null if we don't have an 1598 // IP, which can happen if the method we're calling is marked noreturn. 1599 llvm::BasicBlock *contBB = 0; 1600 1601 // Finish the call path. 1602 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock(); 1603 if (callBB) { 1604 contBB = CGF.createBasicBlock("msgSend.cont"); 1605 CGF.Builder.CreateBr(contBB); 1606 } 1607 1608 // Okay, start emitting the null-receiver block. 1609 CGF.EmitBlock(NullBB); 1610 1611 // Release any consumed arguments we've got. 1612 if (Method) { 1613 CallArgList::const_iterator I = CallArgs.begin(); 1614 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1615 e = Method->param_end(); i != e; ++i, ++I) { 1616 const ParmVarDecl *ParamDecl = (*i); 1617 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1618 RValue RV = I->RV; 1619 assert(RV.isScalar() && 1620 "NullReturnState::complete - arg not on object"); 1621 CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); 1622 } 1623 } 1624 } 1625 1626 // The phi code below assumes that we haven't needed any control flow yet. 1627 assert(CGF.Builder.GetInsertBlock() == NullBB); 1628 1629 // If we've got a void return, just jump to the continuation block. 1630 if (result.isScalar() && resultType->isVoidType()) { 1631 // No jumps required if the message-send was noreturn. 1632 if (contBB) CGF.EmitBlock(contBB); 1633 return result; 1634 } 1635 1636 // If we've got a scalar return, build a phi. 1637 if (result.isScalar()) { 1638 // Derive the null-initialization value. 1639 llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType); 1640 1641 // If no join is necessary, just flow out. 1642 if (!contBB) return RValue::get(null); 1643 1644 // Otherwise, build a phi. 1645 CGF.EmitBlock(contBB); 1646 llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2); 1647 phi->addIncoming(result.getScalarVal(), callBB); 1648 phi->addIncoming(null, NullBB); 1649 return RValue::get(phi); 1650 } 1651 1652 // If we've got an aggregate return, null the buffer out. 1653 // FIXME: maybe we should be doing things differently for all the 1654 // cases where the ABI has us returning (1) non-agg values in 1655 // memory or (2) agg values in registers. 1656 if (result.isAggregate()) { 1657 assert(result.isAggregate() && "null init of non-aggregate result?"); 1658 CGF.EmitNullInitialization(result.getAggregateAddr(), resultType); 1659 if (contBB) CGF.EmitBlock(contBB); 1660 return result; 1661 } 1662 1663 // Complex types. 1664 CGF.EmitBlock(contBB); 1665 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal(); 1666 1667 // Find the scalar type and its zero value. 1668 llvm::Type *scalarTy = callResult.first->getType(); 1669 llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy); 1670 1671 // Build phis for both coordinates. 1672 llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2); 1673 real->addIncoming(callResult.first, callBB); 1674 real->addIncoming(scalarZero, NullBB); 1675 llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2); 1676 imag->addIncoming(callResult.second, callBB); 1677 imag->addIncoming(scalarZero, NullBB); 1678 return RValue::getComplex(real, imag); 1679 } 1680}; 1681 1682} // end anonymous namespace 1683 1684/* *** Helper Functions *** */ 1685 1686/// getConstantGEP() - Help routine to construct simple GEPs. 1687static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext, 1688 llvm::Constant *C, 1689 unsigned idx0, 1690 unsigned idx1) { 1691 llvm::Value *Idxs[] = { 1692 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0), 1693 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1) 1694 }; 1695 return llvm::ConstantExpr::getGetElementPtr(C, Idxs); 1696} 1697 1698/// hasObjCExceptionAttribute - Return true if this class or any super 1699/// class has the __objc_exception__ attribute. 1700static bool hasObjCExceptionAttribute(ASTContext &Context, 1701 const ObjCInterfaceDecl *OID) { 1702 if (OID->hasAttr<ObjCExceptionAttr>()) 1703 return true; 1704 if (const ObjCInterfaceDecl *Super = OID->getSuperClass()) 1705 return hasObjCExceptionAttribute(Context, Super); 1706 return false; 1707} 1708 1709/* *** CGObjCMac Public Interface *** */ 1710 1711CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm), 1712 ObjCTypes(cgm) { 1713 ObjCABI = 1; 1714 EmitImageInfo(); 1715} 1716 1717/// GetClass - Return a reference to the class for the given interface 1718/// decl. 1719llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF, 1720 const ObjCInterfaceDecl *ID) { 1721 return EmitClassRef(CGF, ID); 1722} 1723 1724/// GetSelector - Return the pointer to the unique'd string for this selector. 1725llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel, 1726 bool lval) { 1727 return EmitSelector(CGF, Sel, lval); 1728} 1729llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl 1730 *Method) { 1731 return EmitSelector(CGF, Method->getSelector()); 1732} 1733 1734llvm::Constant *CGObjCMac::GetEHType(QualType T) { 1735 if (T->isObjCIdType() || 1736 T->isObjCQualifiedIdType()) { 1737 return CGM.GetAddrOfRTTIDescriptor( 1738 CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true); 1739 } 1740 if (T->isObjCClassType() || 1741 T->isObjCQualifiedClassType()) { 1742 return CGM.GetAddrOfRTTIDescriptor( 1743 CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true); 1744 } 1745 if (T->isObjCObjectPointerType()) 1746 return CGM.GetAddrOfRTTIDescriptor(T, /*ForEH=*/true); 1747 1748 llvm_unreachable("asking for catch type for ObjC type in fragile runtime"); 1749} 1750 1751/// Generate a constant CFString object. 1752/* 1753 struct __builtin_CFString { 1754 const int *isa; // point to __CFConstantStringClassReference 1755 int flags; 1756 const char *str; 1757 long length; 1758 }; 1759*/ 1760 1761/// or Generate a constant NSString object. 1762/* 1763 struct __builtin_NSString { 1764 const int *isa; // point to __NSConstantStringClassReference 1765 const char *str; 1766 unsigned int length; 1767 }; 1768*/ 1769 1770llvm::Constant *CGObjCCommonMac::GenerateConstantString( 1771 const StringLiteral *SL) { 1772 return (CGM.getLangOpts().NoConstantCFStrings == 0 ? 1773 CGM.GetAddrOfConstantCFString(SL) : 1774 CGM.GetAddrOfConstantString(SL)); 1775} 1776 1777enum { 1778 kCFTaggedObjectID_Integer = (1 << 1) + 1 1779}; 1780 1781/// Generates a message send where the super is the receiver. This is 1782/// a message send to self with special delivery semantics indicating 1783/// which class's method should be called. 1784CodeGen::RValue 1785CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 1786 ReturnValueSlot Return, 1787 QualType ResultType, 1788 Selector Sel, 1789 const ObjCInterfaceDecl *Class, 1790 bool isCategoryImpl, 1791 llvm::Value *Receiver, 1792 bool IsClassMessage, 1793 const CodeGen::CallArgList &CallArgs, 1794 const ObjCMethodDecl *Method) { 1795 // Create and init a super structure; this is a (receiver, class) 1796 // pair we will pass to objc_msgSendSuper. 1797 llvm::Value *ObjCSuper = 1798 CGF.CreateTempAlloca(ObjCTypes.SuperTy, "objc_super"); 1799 llvm::Value *ReceiverAsObject = 1800 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 1801 CGF.Builder.CreateStore(ReceiverAsObject, 1802 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 1803 1804 // If this is a class message the metaclass is passed as the target. 1805 llvm::Value *Target; 1806 if (IsClassMessage) { 1807 if (isCategoryImpl) { 1808 // Message sent to 'super' in a class method defined in a category 1809 // implementation requires an odd treatment. 1810 // If we are in a class method, we must retrieve the 1811 // _metaclass_ for the current class, pointed at by 1812 // the class's "isa" pointer. The following assumes that 1813 // isa" is the first ivar in a class (which it must be). 1814 Target = EmitClassRef(CGF, Class->getSuperClass()); 1815 Target = CGF.Builder.CreateStructGEP(Target, 0); 1816 Target = CGF.Builder.CreateLoad(Target); 1817 } else { 1818 llvm::Value *MetaClassPtr = EmitMetaClassRef(Class); 1819 llvm::Value *SuperPtr = CGF.Builder.CreateStructGEP(MetaClassPtr, 1); 1820 llvm::Value *Super = CGF.Builder.CreateLoad(SuperPtr); 1821 Target = Super; 1822 } 1823 } 1824 else if (isCategoryImpl) 1825 Target = EmitClassRef(CGF, Class->getSuperClass()); 1826 else { 1827 llvm::Value *ClassPtr = EmitSuperClassRef(Class); 1828 ClassPtr = CGF.Builder.CreateStructGEP(ClassPtr, 1); 1829 Target = CGF.Builder.CreateLoad(ClassPtr); 1830 } 1831 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 1832 // ObjCTypes types. 1833 llvm::Type *ClassTy = 1834 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 1835 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 1836 CGF.Builder.CreateStore(Target, 1837 CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 1838 return EmitMessageSend(CGF, Return, ResultType, 1839 EmitSelector(CGF, Sel), 1840 ObjCSuper, ObjCTypes.SuperPtrCTy, 1841 true, CallArgs, Method, ObjCTypes); 1842} 1843 1844/// Generate code for a message send expression. 1845CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 1846 ReturnValueSlot Return, 1847 QualType ResultType, 1848 Selector Sel, 1849 llvm::Value *Receiver, 1850 const CallArgList &CallArgs, 1851 const ObjCInterfaceDecl *Class, 1852 const ObjCMethodDecl *Method) { 1853 return EmitMessageSend(CGF, Return, ResultType, 1854 EmitSelector(CGF, Sel), 1855 Receiver, CGF.getContext().getObjCIdType(), 1856 false, CallArgs, Method, ObjCTypes); 1857} 1858 1859CodeGen::RValue 1860CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF, 1861 ReturnValueSlot Return, 1862 QualType ResultType, 1863 llvm::Value *Sel, 1864 llvm::Value *Arg0, 1865 QualType Arg0Ty, 1866 bool IsSuper, 1867 const CallArgList &CallArgs, 1868 const ObjCMethodDecl *Method, 1869 const ObjCCommonTypesHelper &ObjCTypes) { 1870 CallArgList ActualArgs; 1871 if (!IsSuper) 1872 Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy); 1873 ActualArgs.add(RValue::get(Arg0), Arg0Ty); 1874 ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType()); 1875 ActualArgs.addFrom(CallArgs); 1876 1877 // If we're calling a method, use the formal signature. 1878 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs); 1879 1880 if (Method) 1881 assert(CGM.getContext().getCanonicalType(Method->getResultType()) == 1882 CGM.getContext().getCanonicalType(ResultType) && 1883 "Result type mismatch!"); 1884 1885 NullReturnState nullReturn; 1886 1887 llvm::Constant *Fn = NULL; 1888 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 1889 if (!IsSuper) nullReturn.init(CGF, Arg0); 1890 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper) 1891 : ObjCTypes.getSendStretFn(IsSuper); 1892 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) { 1893 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper) 1894 : ObjCTypes.getSendFpretFn(IsSuper); 1895 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) { 1896 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper) 1897 : ObjCTypes.getSendFp2retFn(IsSuper); 1898 } else { 1899 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper) 1900 : ObjCTypes.getSendFn(IsSuper); 1901 } 1902 1903 bool requiresnullCheck = false; 1904 if (CGM.getLangOpts().ObjCAutoRefCount && Method) 1905 for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(), 1906 e = Method->param_end(); i != e; ++i) { 1907 const ParmVarDecl *ParamDecl = (*i); 1908 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 1909 if (!nullReturn.NullBB) 1910 nullReturn.init(CGF, Arg0); 1911 requiresnullCheck = true; 1912 break; 1913 } 1914 } 1915 1916 Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType); 1917 RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs); 1918 return nullReturn.complete(CGF, rvalue, ResultType, CallArgs, 1919 requiresnullCheck ? Method : 0); 1920} 1921 1922static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT) { 1923 if (FQT.isObjCGCStrong()) 1924 return Qualifiers::Strong; 1925 1926 if (FQT.isObjCGCWeak() || FQT.getObjCLifetime() == Qualifiers::OCL_Weak) 1927 return Qualifiers::Weak; 1928 1929 // check for __unsafe_unretained 1930 if (FQT.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) 1931 return Qualifiers::GCNone; 1932 1933 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 1934 return Qualifiers::Strong; 1935 1936 if (const PointerType *PT = FQT->getAs<PointerType>()) 1937 return GetGCAttrTypeForType(Ctx, PT->getPointeeType()); 1938 1939 return Qualifiers::GCNone; 1940} 1941 1942llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM, 1943 const CGBlockInfo &blockInfo) { 1944 1945 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 1946 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 1947 !CGM.getLangOpts().ObjCAutoRefCount) 1948 return nullPtr; 1949 1950 bool hasUnion = false; 1951 SkipIvars.clear(); 1952 IvarsInfo.clear(); 1953 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 1954 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 1955 1956 // __isa is the first field in block descriptor and must assume by runtime's 1957 // convention that it is GC'able. 1958 IvarsInfo.push_back(GC_IVAR(0, 1)); 1959 1960 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 1961 1962 // Calculate the basic layout of the block structure. 1963 const llvm::StructLayout *layout = 1964 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 1965 1966 // Ignore the optional 'this' capture: C++ objects are not assumed 1967 // to be GC'ed. 1968 1969 // Walk the captured variables. 1970 for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), 1971 ce = blockDecl->capture_end(); ci != ce; ++ci) { 1972 const VarDecl *variable = ci->getVariable(); 1973 QualType type = variable->getType(); 1974 1975 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 1976 1977 // Ignore constant captures. 1978 if (capture.isConstant()) continue; 1979 1980 uint64_t fieldOffset = layout->getElementOffset(capture.getIndex()); 1981 1982 // __block variables are passed by their descriptor address. 1983 if (ci->isByRef()) { 1984 IvarsInfo.push_back(GC_IVAR(fieldOffset, /*size in words*/ 1)); 1985 continue; 1986 } 1987 1988 assert(!type->isArrayType() && "array variable should not be caught"); 1989 if (const RecordType *record = type->getAs<RecordType>()) { 1990 BuildAggrIvarRecordLayout(record, fieldOffset, true, hasUnion); 1991 continue; 1992 } 1993 1994 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type); 1995 unsigned fieldSize = CGM.getContext().getTypeSize(type); 1996 1997 if (GCAttr == Qualifiers::Strong) 1998 IvarsInfo.push_back(GC_IVAR(fieldOffset, 1999 fieldSize / WordSizeInBits)); 2000 else if (GCAttr == Qualifiers::GCNone || GCAttr == Qualifiers::Weak) 2001 SkipIvars.push_back(GC_IVAR(fieldOffset, 2002 fieldSize / ByteSizeInBits)); 2003 } 2004 2005 if (IvarsInfo.empty()) 2006 return nullPtr; 2007 2008 // Sort on byte position; captures might not be allocated in order, 2009 // and unions can do funny things. 2010 llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end()); 2011 llvm::array_pod_sort(SkipIvars.begin(), SkipIvars.end()); 2012 2013 std::string BitMap; 2014 llvm::Constant *C = BuildIvarLayoutBitmap(BitMap); 2015 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2016 printf("\n block variable layout for block: "); 2017 const unsigned char *s = (const unsigned char*)BitMap.c_str(); 2018 for (unsigned i = 0, e = BitMap.size(); i < e; i++) 2019 if (!(s[i] & 0xf0)) 2020 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 2021 else 2022 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 2023 printf("\n"); 2024 } 2025 2026 return C; 2027} 2028 2029/// getBlockCaptureLifetime - This routine returns life time of the captured 2030/// block variable for the purpose of block layout meta-data generation. FQT is 2031/// the type of the variable captured in the block. 2032Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT, 2033 bool ByrefLayout) { 2034 if (CGM.getLangOpts().ObjCAutoRefCount) 2035 return FQT.getObjCLifetime(); 2036 2037 // MRR. 2038 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType()) 2039 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong; 2040 2041 return Qualifiers::OCL_None; 2042} 2043 2044void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref, 2045 Qualifiers::ObjCLifetime LifeTime, 2046 CharUnits FieldOffset, 2047 CharUnits FieldSize) { 2048 // __block variables are passed by their descriptor address. 2049 if (IsByref) 2050 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset, 2051 FieldSize)); 2052 else if (LifeTime == Qualifiers::OCL_Strong) 2053 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset, 2054 FieldSize)); 2055 else if (LifeTime == Qualifiers::OCL_Weak) 2056 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset, 2057 FieldSize)); 2058 else if (LifeTime == Qualifiers::OCL_ExplicitNone) 2059 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset, 2060 FieldSize)); 2061 else 2062 RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES, 2063 FieldOffset, 2064 FieldSize)); 2065} 2066 2067void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout, 2068 const RecordDecl *RD, 2069 ArrayRef<const FieldDecl*> RecFields, 2070 CharUnits BytePos, bool &HasUnion, 2071 bool ByrefLayout) { 2072 bool IsUnion = (RD && RD->isUnion()); 2073 CharUnits MaxUnionSize = CharUnits::Zero(); 2074 const FieldDecl *MaxField = 0; 2075 const FieldDecl *LastFieldBitfieldOrUnnamed = 0; 2076 CharUnits MaxFieldOffset = CharUnits::Zero(); 2077 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero(); 2078 2079 if (RecFields.empty()) 2080 return; 2081 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2082 2083 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 2084 const FieldDecl *Field = RecFields[i]; 2085 // Note that 'i' here is actually the field index inside RD of Field, 2086 // although this dependency is hidden. 2087 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 2088 CharUnits FieldOffset = 2089 CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i)); 2090 2091 // Skip over unnamed or bitfields 2092 if (!Field->getIdentifier() || Field->isBitField()) { 2093 LastFieldBitfieldOrUnnamed = Field; 2094 LastBitfieldOrUnnamedOffset = FieldOffset; 2095 continue; 2096 } 2097 2098 LastFieldBitfieldOrUnnamed = 0; 2099 QualType FQT = Field->getType(); 2100 if (FQT->isRecordType() || FQT->isUnionType()) { 2101 if (FQT->isUnionType()) 2102 HasUnion = true; 2103 2104 BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(), 2105 BytePos + FieldOffset, HasUnion); 2106 continue; 2107 } 2108 2109 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2110 const ConstantArrayType *CArray = 2111 dyn_cast_or_null<ConstantArrayType>(Array); 2112 uint64_t ElCount = CArray->getSize().getZExtValue(); 2113 assert(CArray && "only array with known element size is supported"); 2114 FQT = CArray->getElementType(); 2115 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 2116 const ConstantArrayType *CArray = 2117 dyn_cast_or_null<ConstantArrayType>(Array); 2118 ElCount *= CArray->getSize().getZExtValue(); 2119 FQT = CArray->getElementType(); 2120 } 2121 2122 assert(!FQT->isUnionType() && 2123 "layout for array of unions not supported"); 2124 if (FQT->isRecordType() && ElCount) { 2125 int OldIndex = RunSkipBlockVars.size() - 1; 2126 const RecordType *RT = FQT->getAs<RecordType>(); 2127 BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset, 2128 HasUnion); 2129 2130 // Replicate layout information for each array element. Note that 2131 // one element is already done. 2132 uint64_t ElIx = 1; 2133 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) { 2134 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT); 2135 for (int i = OldIndex+1; i <= FirstIndex; ++i) 2136 RunSkipBlockVars.push_back( 2137 RUN_SKIP(RunSkipBlockVars[i].opcode, 2138 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx, 2139 RunSkipBlockVars[i].block_var_size)); 2140 } 2141 continue; 2142 } 2143 } 2144 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType()); 2145 if (IsUnion) { 2146 CharUnits UnionIvarSize = FieldSize; 2147 if (UnionIvarSize > MaxUnionSize) { 2148 MaxUnionSize = UnionIvarSize; 2149 MaxField = Field; 2150 MaxFieldOffset = FieldOffset; 2151 } 2152 } else { 2153 UpdateRunSkipBlockVars(false, 2154 getBlockCaptureLifetime(FQT, ByrefLayout), 2155 BytePos + FieldOffset, 2156 FieldSize); 2157 } 2158 } 2159 2160 if (LastFieldBitfieldOrUnnamed) { 2161 if (LastFieldBitfieldOrUnnamed->isBitField()) { 2162 // Last field was a bitfield. Must update the info. 2163 uint64_t BitFieldSize 2164 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 2165 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) + 2166 ((BitFieldSize % ByteSizeInBits) != 0); 2167 CharUnits Size = CharUnits::fromQuantity(UnsSize); 2168 Size += LastBitfieldOrUnnamedOffset; 2169 UpdateRunSkipBlockVars(false, 2170 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2171 ByrefLayout), 2172 BytePos + LastBitfieldOrUnnamedOffset, 2173 Size); 2174 } else { 2175 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 2176 // Last field was unnamed. Must update skip info. 2177 CharUnits FieldSize 2178 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType()); 2179 UpdateRunSkipBlockVars(false, 2180 getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(), 2181 ByrefLayout), 2182 BytePos + LastBitfieldOrUnnamedOffset, 2183 FieldSize); 2184 } 2185 } 2186 2187 if (MaxField) 2188 UpdateRunSkipBlockVars(false, 2189 getBlockCaptureLifetime(MaxField->getType(), ByrefLayout), 2190 BytePos + MaxFieldOffset, 2191 MaxUnionSize); 2192} 2193 2194void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT, 2195 CharUnits BytePos, 2196 bool &HasUnion, 2197 bool ByrefLayout) { 2198 const RecordDecl *RD = RT->getDecl(); 2199 SmallVector<const FieldDecl*, 16> Fields; 2200 for (RecordDecl::field_iterator i = RD->field_begin(), 2201 e = RD->field_end(); i != e; ++i) 2202 Fields.push_back(*i); 2203 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 2204 const llvm::StructLayout *RecLayout = 2205 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 2206 2207 BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout); 2208} 2209 2210/// InlineLayoutInstruction - This routine produce an inline instruction for the 2211/// block variable layout if it can. If not, it returns 0. Rules are as follow: 2212/// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world, 2213/// an inline layout of value 0x0000000000000xyz is interpreted as follows: 2214/// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by 2215/// y captured object of BLOCK_LAYOUT_BYREF. Followed by 2216/// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero 2217/// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no 2218/// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured. 2219uint64_t CGObjCCommonMac::InlineLayoutInstruction( 2220 SmallVectorImpl<unsigned char> &Layout) { 2221 uint64_t Result = 0; 2222 if (Layout.size() <= 3) { 2223 unsigned size = Layout.size(); 2224 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0; 2225 unsigned char inst; 2226 enum BLOCK_LAYOUT_OPCODE opcode ; 2227 switch (size) { 2228 case 3: 2229 inst = Layout[0]; 2230 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2231 if (opcode == BLOCK_LAYOUT_STRONG) 2232 strong_word_count = (inst & 0xF)+1; 2233 else 2234 return 0; 2235 inst = Layout[1]; 2236 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2237 if (opcode == BLOCK_LAYOUT_BYREF) 2238 byref_word_count = (inst & 0xF)+1; 2239 else 2240 return 0; 2241 inst = Layout[2]; 2242 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2243 if (opcode == BLOCK_LAYOUT_WEAK) 2244 weak_word_count = (inst & 0xF)+1; 2245 else 2246 return 0; 2247 break; 2248 2249 case 2: 2250 inst = Layout[0]; 2251 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2252 if (opcode == BLOCK_LAYOUT_STRONG) { 2253 strong_word_count = (inst & 0xF)+1; 2254 inst = Layout[1]; 2255 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2256 if (opcode == BLOCK_LAYOUT_BYREF) 2257 byref_word_count = (inst & 0xF)+1; 2258 else if (opcode == BLOCK_LAYOUT_WEAK) 2259 weak_word_count = (inst & 0xF)+1; 2260 else 2261 return 0; 2262 } 2263 else if (opcode == BLOCK_LAYOUT_BYREF) { 2264 byref_word_count = (inst & 0xF)+1; 2265 inst = Layout[1]; 2266 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2267 if (opcode == BLOCK_LAYOUT_WEAK) 2268 weak_word_count = (inst & 0xF)+1; 2269 else 2270 return 0; 2271 } 2272 else 2273 return 0; 2274 break; 2275 2276 case 1: 2277 inst = Layout[0]; 2278 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2279 if (opcode == BLOCK_LAYOUT_STRONG) 2280 strong_word_count = (inst & 0xF)+1; 2281 else if (opcode == BLOCK_LAYOUT_BYREF) 2282 byref_word_count = (inst & 0xF)+1; 2283 else if (opcode == BLOCK_LAYOUT_WEAK) 2284 weak_word_count = (inst & 0xF)+1; 2285 else 2286 return 0; 2287 break; 2288 2289 default: 2290 return 0; 2291 } 2292 2293 // Cannot inline when any of the word counts is 15. Because this is one less 2294 // than the actual work count (so 15 means 16 actual word counts), 2295 // and we can only display 0 thru 15 word counts. 2296 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16) 2297 return 0; 2298 2299 unsigned count = 2300 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0); 2301 2302 if (size == count) { 2303 if (strong_word_count) 2304 Result = strong_word_count; 2305 Result <<= 4; 2306 if (byref_word_count) 2307 Result += byref_word_count; 2308 Result <<= 4; 2309 if (weak_word_count) 2310 Result += weak_word_count; 2311 } 2312 } 2313 return Result; 2314} 2315 2316llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) { 2317 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2318 if (RunSkipBlockVars.empty()) 2319 return nullPtr; 2320 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2321 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2322 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2323 2324 // Sort on byte position; captures might not be allocated in order, 2325 // and unions can do funny things. 2326 llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end()); 2327 SmallVector<unsigned char, 16> Layout; 2328 2329 unsigned size = RunSkipBlockVars.size(); 2330 for (unsigned i = 0; i < size; i++) { 2331 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode; 2332 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos; 2333 CharUnits end_byte_pos = start_byte_pos; 2334 unsigned j = i+1; 2335 while (j < size) { 2336 if (opcode == RunSkipBlockVars[j].opcode) { 2337 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos; 2338 i++; 2339 } 2340 else 2341 break; 2342 } 2343 CharUnits size_in_bytes = 2344 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size; 2345 if (j < size) { 2346 CharUnits gap = 2347 RunSkipBlockVars[j].block_var_bytepos - 2348 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size; 2349 size_in_bytes += gap; 2350 } 2351 CharUnits residue_in_bytes = CharUnits::Zero(); 2352 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) { 2353 residue_in_bytes = size_in_bytes % WordSizeInBytes; 2354 size_in_bytes -= residue_in_bytes; 2355 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS; 2356 } 2357 2358 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes; 2359 while (size_in_words >= 16) { 2360 // Note that value in imm. is one less that the actual 2361 // value. So, 0xf means 16 words follow! 2362 unsigned char inst = (opcode << 4) | 0xf; 2363 Layout.push_back(inst); 2364 size_in_words -= 16; 2365 } 2366 if (size_in_words > 0) { 2367 // Note that value in imm. is one less that the actual 2368 // value. So, we subtract 1 away! 2369 unsigned char inst = (opcode << 4) | (size_in_words-1); 2370 Layout.push_back(inst); 2371 } 2372 if (residue_in_bytes > CharUnits::Zero()) { 2373 unsigned char inst = 2374 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1); 2375 Layout.push_back(inst); 2376 } 2377 } 2378 2379 int e = Layout.size()-1; 2380 while (e >= 0) { 2381 unsigned char inst = Layout[e--]; 2382 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2383 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS) 2384 Layout.pop_back(); 2385 else 2386 break; 2387 } 2388 2389 uint64_t Result = InlineLayoutInstruction(Layout); 2390 if (Result != 0) { 2391 // Block variable layout instruction has been inlined. 2392 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2393 if (ComputeByrefLayout) 2394 printf("\n Inline instruction for BYREF variable layout: "); 2395 else 2396 printf("\n Inline instruction for block variable layout: "); 2397 printf("0x0%" PRIx64 "\n", Result); 2398 } 2399 if (WordSizeInBytes == 8) { 2400 const llvm::APInt Instruction(64, Result); 2401 return llvm::Constant::getIntegerValue(CGM.Int64Ty, Instruction); 2402 } 2403 else { 2404 const llvm::APInt Instruction(32, Result); 2405 return llvm::Constant::getIntegerValue(CGM.Int32Ty, Instruction); 2406 } 2407 } 2408 2409 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0; 2410 Layout.push_back(inst); 2411 std::string BitMap; 2412 for (unsigned i = 0, e = Layout.size(); i != e; i++) 2413 BitMap += Layout[i]; 2414 2415 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 2416 if (ComputeByrefLayout) 2417 printf("\n BYREF variable layout: "); 2418 else 2419 printf("\n block variable layout: "); 2420 for (unsigned i = 0, e = BitMap.size(); i != e; i++) { 2421 unsigned char inst = BitMap[i]; 2422 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4); 2423 unsigned delta = 1; 2424 switch (opcode) { 2425 case BLOCK_LAYOUT_OPERATOR: 2426 printf("BL_OPERATOR:"); 2427 delta = 0; 2428 break; 2429 case BLOCK_LAYOUT_NON_OBJECT_BYTES: 2430 printf("BL_NON_OBJECT_BYTES:"); 2431 break; 2432 case BLOCK_LAYOUT_NON_OBJECT_WORDS: 2433 printf("BL_NON_OBJECT_WORD:"); 2434 break; 2435 case BLOCK_LAYOUT_STRONG: 2436 printf("BL_STRONG:"); 2437 break; 2438 case BLOCK_LAYOUT_BYREF: 2439 printf("BL_BYREF:"); 2440 break; 2441 case BLOCK_LAYOUT_WEAK: 2442 printf("BL_WEAK:"); 2443 break; 2444 case BLOCK_LAYOUT_UNRETAINED: 2445 printf("BL_UNRETAINED:"); 2446 break; 2447 } 2448 // Actual value of word count is one more that what is in the imm. 2449 // field of the instruction 2450 printf("%d", (inst & 0xf) + delta); 2451 if (i < e-1) 2452 printf(", "); 2453 else 2454 printf("\n"); 2455 } 2456 } 2457 2458 llvm::GlobalVariable * Entry = 2459 CreateMetadataVar("\01L_OBJC_CLASS_NAME_", 2460 llvm::ConstantDataArray::getString(VMContext, BitMap,false), 2461 "__TEXT,__objc_classname,cstring_literals", 1, true); 2462 return getConstantGEP(VMContext, Entry, 0, 0); 2463} 2464 2465llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM, 2466 const CGBlockInfo &blockInfo) { 2467 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2468 2469 RunSkipBlockVars.clear(); 2470 bool hasUnion = false; 2471 2472 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 2473 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 2474 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits; 2475 2476 const BlockDecl *blockDecl = blockInfo.getBlockDecl(); 2477 2478 // Calculate the basic layout of the block structure. 2479 const llvm::StructLayout *layout = 2480 CGM.getDataLayout().getStructLayout(blockInfo.StructureType); 2481 2482 // Ignore the optional 'this' capture: C++ objects are not assumed 2483 // to be GC'ed. 2484 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero()) 2485 UpdateRunSkipBlockVars(false, Qualifiers::OCL_None, 2486 blockInfo.BlockHeaderForcedGapOffset, 2487 blockInfo.BlockHeaderForcedGapSize); 2488 // Walk the captured variables. 2489 for (BlockDecl::capture_const_iterator ci = blockDecl->capture_begin(), 2490 ce = blockDecl->capture_end(); ci != ce; ++ci) { 2491 const VarDecl *variable = ci->getVariable(); 2492 QualType type = variable->getType(); 2493 2494 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable); 2495 2496 // Ignore constant captures. 2497 if (capture.isConstant()) continue; 2498 2499 CharUnits fieldOffset = 2500 CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex())); 2501 2502 assert(!type->isArrayType() && "array variable should not be caught"); 2503 if (!ci->isByRef()) 2504 if (const RecordType *record = type->getAs<RecordType>()) { 2505 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion); 2506 continue; 2507 } 2508 CharUnits fieldSize; 2509 if (ci->isByRef()) 2510 fieldSize = CharUnits::fromQuantity(WordSizeInBytes); 2511 else 2512 fieldSize = CGM.getContext().getTypeSizeInChars(type); 2513 UpdateRunSkipBlockVars(ci->isByRef(), getBlockCaptureLifetime(type, false), 2514 fieldOffset, fieldSize); 2515 } 2516 return getBitmapBlockLayout(false); 2517} 2518 2519 2520llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM, 2521 QualType T) { 2522 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC); 2523 assert(!T->isArrayType() && "__block array variable should not be caught"); 2524 CharUnits fieldOffset; 2525 RunSkipBlockVars.clear(); 2526 bool hasUnion = false; 2527 if (const RecordType *record = T->getAs<RecordType>()) { 2528 BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */); 2529 llvm::Constant *Result = getBitmapBlockLayout(true); 2530 return Result; 2531 } 2532 llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy); 2533 return nullPtr; 2534} 2535 2536llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF, 2537 const ObjCProtocolDecl *PD) { 2538 // FIXME: I don't understand why gcc generates this, or where it is 2539 // resolved. Investigate. Its also wasteful to look this up over and over. 2540 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2541 2542 return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD), 2543 ObjCTypes.getExternalProtocolPtrTy()); 2544} 2545 2546void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) { 2547 // FIXME: We shouldn't need this, the protocol decl should contain enough 2548 // information to tell us whether this was a declaration or a definition. 2549 DefinedProtocols.insert(PD->getIdentifier()); 2550 2551 // If we have generated a forward reference to this protocol, emit 2552 // it now. Otherwise do nothing, the protocol objects are lazily 2553 // emitted. 2554 if (Protocols.count(PD->getIdentifier())) 2555 GetOrEmitProtocol(PD); 2556} 2557 2558llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) { 2559 if (DefinedProtocols.count(PD->getIdentifier())) 2560 return GetOrEmitProtocol(PD); 2561 2562 return GetOrEmitProtocolRef(PD); 2563} 2564 2565/* 2566// APPLE LOCAL radar 4585769 - Objective-C 1.0 extensions 2567struct _objc_protocol { 2568struct _objc_protocol_extension *isa; 2569char *protocol_name; 2570struct _objc_protocol_list *protocol_list; 2571struct _objc__method_prototype_list *instance_methods; 2572struct _objc__method_prototype_list *class_methods 2573}; 2574 2575See EmitProtocolExtension(). 2576*/ 2577llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) { 2578 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 2579 2580 // Early exit if a defining object has already been generated. 2581 if (Entry && Entry->hasInitializer()) 2582 return Entry; 2583 2584 // Use the protocol definition, if there is one. 2585 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 2586 PD = Def; 2587 2588 // FIXME: I don't understand why gcc generates this, or where it is 2589 // resolved. Investigate. Its also wasteful to look this up over and over. 2590 LazySymbols.insert(&CGM.getContext().Idents.get("Protocol")); 2591 2592 // Construct method lists. 2593 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 2594 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 2595 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 2596 for (ObjCProtocolDecl::instmeth_iterator 2597 i = PD->instmeth_begin(), e = PD->instmeth_end(); i != e; ++i) { 2598 ObjCMethodDecl *MD = *i; 2599 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2600 if (!C) 2601 return GetOrEmitProtocolRef(PD); 2602 2603 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2604 OptInstanceMethods.push_back(C); 2605 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2606 } else { 2607 InstanceMethods.push_back(C); 2608 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2609 } 2610 } 2611 2612 for (ObjCProtocolDecl::classmeth_iterator 2613 i = PD->classmeth_begin(), e = PD->classmeth_end(); i != e; ++i) { 2614 ObjCMethodDecl *MD = *i; 2615 llvm::Constant *C = GetMethodDescriptionConstant(MD); 2616 if (!C) 2617 return GetOrEmitProtocolRef(PD); 2618 2619 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 2620 OptClassMethods.push_back(C); 2621 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 2622 } else { 2623 ClassMethods.push_back(C); 2624 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 2625 } 2626 } 2627 2628 MethodTypesExt.insert(MethodTypesExt.end(), 2629 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 2630 2631 llvm::Constant *Values[] = { 2632 EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods, 2633 MethodTypesExt), 2634 GetClassName(PD->getIdentifier()), 2635 EmitProtocolList("\01L_OBJC_PROTOCOL_REFS_" + PD->getName(), 2636 PD->protocol_begin(), 2637 PD->protocol_end()), 2638 EmitMethodDescList("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(), 2639 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2640 InstanceMethods), 2641 EmitMethodDescList("\01L_OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(), 2642 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2643 ClassMethods) 2644 }; 2645 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 2646 Values); 2647 2648 if (Entry) { 2649 // Already created, fix the linkage and update the initializer. 2650 Entry->setLinkage(llvm::GlobalValue::InternalLinkage); 2651 Entry->setInitializer(Init); 2652 } else { 2653 Entry = 2654 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, false, 2655 llvm::GlobalValue::InternalLinkage, 2656 Init, 2657 "\01L_OBJC_PROTOCOL_" + PD->getName()); 2658 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2659 // FIXME: Is this necessary? Why only for protocol? 2660 Entry->setAlignment(4); 2661 2662 Protocols[PD->getIdentifier()] = Entry; 2663 } 2664 CGM.AddUsedGlobal(Entry); 2665 2666 return Entry; 2667} 2668 2669llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) { 2670 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 2671 2672 if (!Entry) { 2673 // We use the initializer as a marker of whether this is a forward 2674 // reference or not. At module finalization we add the empty 2675 // contents for protocols which were referenced but never defined. 2676 Entry = 2677 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, false, 2678 llvm::GlobalValue::ExternalLinkage, 2679 0, 2680 "\01L_OBJC_PROTOCOL_" + PD->getName()); 2681 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip"); 2682 // FIXME: Is this necessary? Why only for protocol? 2683 Entry->setAlignment(4); 2684 } 2685 2686 return Entry; 2687} 2688 2689/* 2690 struct _objc_protocol_extension { 2691 uint32_t size; 2692 struct objc_method_description_list *optional_instance_methods; 2693 struct objc_method_description_list *optional_class_methods; 2694 struct objc_property_list *instance_properties; 2695 const char ** extendedMethodTypes; 2696 }; 2697*/ 2698llvm::Constant * 2699CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD, 2700 ArrayRef<llvm::Constant*> OptInstanceMethods, 2701 ArrayRef<llvm::Constant*> OptClassMethods, 2702 ArrayRef<llvm::Constant*> MethodTypesExt) { 2703 uint64_t Size = 2704 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy); 2705 llvm::Constant *Values[] = { 2706 llvm::ConstantInt::get(ObjCTypes.IntTy, Size), 2707 EmitMethodDescList("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" 2708 + PD->getName(), 2709 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2710 OptInstanceMethods), 2711 EmitMethodDescList("\01L_OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(), 2712 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2713 OptClassMethods), 2714 EmitPropertyList("\01L_OBJC_$_PROP_PROTO_LIST_" + PD->getName(), 0, PD, 2715 ObjCTypes), 2716 EmitProtocolMethodTypes("\01L_OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(), 2717 MethodTypesExt, ObjCTypes) 2718 }; 2719 2720 // Return null if no extension bits are used. 2721 if (Values[1]->isNullValue() && Values[2]->isNullValue() && 2722 Values[3]->isNullValue() && Values[4]->isNullValue()) 2723 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 2724 2725 llvm::Constant *Init = 2726 llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values); 2727 2728 // No special section, but goes in llvm.used 2729 return CreateMetadataVar("\01L_OBJC_PROTOCOLEXT_" + PD->getName(), 2730 Init, 2731 0, 0, true); 2732} 2733 2734/* 2735 struct objc_protocol_list { 2736 struct objc_protocol_list *next; 2737 long count; 2738 Protocol *list[]; 2739 }; 2740*/ 2741llvm::Constant * 2742CGObjCMac::EmitProtocolList(Twine Name, 2743 ObjCProtocolDecl::protocol_iterator begin, 2744 ObjCProtocolDecl::protocol_iterator end) { 2745 SmallVector<llvm::Constant *, 16> ProtocolRefs; 2746 2747 for (; begin != end; ++begin) 2748 ProtocolRefs.push_back(GetProtocolRef(*begin)); 2749 2750 // Just return null for empty protocol lists 2751 if (ProtocolRefs.empty()) 2752 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2753 2754 // This list is null terminated. 2755 ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy)); 2756 2757 llvm::Constant *Values[3]; 2758 // This field is only used by the runtime. 2759 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2760 Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, 2761 ProtocolRefs.size() - 1); 2762 Values[2] = 2763 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy, 2764 ProtocolRefs.size()), 2765 ProtocolRefs); 2766 2767 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2768 llvm::GlobalVariable *GV = 2769 CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2770 4, false); 2771 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy); 2772} 2773 2774void CGObjCCommonMac:: 2775PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet, 2776 SmallVectorImpl<llvm::Constant *> &Properties, 2777 const Decl *Container, 2778 const ObjCProtocolDecl *PROTO, 2779 const ObjCCommonTypesHelper &ObjCTypes) { 2780 for (ObjCProtocolDecl::protocol_iterator P = PROTO->protocol_begin(), 2781 E = PROTO->protocol_end(); P != E; ++P) 2782 PushProtocolProperties(PropertySet, Properties, Container, (*P), ObjCTypes); 2783 for (ObjCContainerDecl::prop_iterator I = PROTO->prop_begin(), 2784 E = PROTO->prop_end(); I != E; ++I) { 2785 const ObjCPropertyDecl *PD = *I; 2786 if (!PropertySet.insert(PD->getIdentifier())) 2787 continue; 2788 llvm::Constant *Prop[] = { 2789 GetPropertyName(PD->getIdentifier()), 2790 GetPropertyTypeString(PD, Container) 2791 }; 2792 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop)); 2793 } 2794} 2795 2796/* 2797 struct _objc_property { 2798 const char * const name; 2799 const char * const attributes; 2800 }; 2801 2802 struct _objc_property_list { 2803 uint32_t entsize; // sizeof (struct _objc_property) 2804 uint32_t prop_count; 2805 struct _objc_property[prop_count]; 2806 }; 2807*/ 2808llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name, 2809 const Decl *Container, 2810 const ObjCContainerDecl *OCD, 2811 const ObjCCommonTypesHelper &ObjCTypes) { 2812 SmallVector<llvm::Constant *, 16> Properties; 2813 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet; 2814 for (ObjCContainerDecl::prop_iterator I = OCD->prop_begin(), 2815 E = OCD->prop_end(); I != E; ++I) { 2816 const ObjCPropertyDecl *PD = *I; 2817 PropertySet.insert(PD->getIdentifier()); 2818 llvm::Constant *Prop[] = { 2819 GetPropertyName(PD->getIdentifier()), 2820 GetPropertyTypeString(PD, Container) 2821 }; 2822 Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, 2823 Prop)); 2824 } 2825 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) { 2826 for (ObjCInterfaceDecl::all_protocol_iterator 2827 P = OID->all_referenced_protocol_begin(), 2828 E = OID->all_referenced_protocol_end(); P != E; ++P) 2829 PushProtocolProperties(PropertySet, Properties, Container, (*P), 2830 ObjCTypes); 2831 } 2832 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) { 2833 for (ObjCCategoryDecl::protocol_iterator P = CD->protocol_begin(), 2834 E = CD->protocol_end(); P != E; ++P) 2835 PushProtocolProperties(PropertySet, Properties, Container, (*P), 2836 ObjCTypes); 2837 } 2838 2839 // Return null for empty list. 2840 if (Properties.empty()) 2841 return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2842 2843 unsigned PropertySize = 2844 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy); 2845 llvm::Constant *Values[3]; 2846 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize); 2847 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size()); 2848 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy, 2849 Properties.size()); 2850 Values[2] = llvm::ConstantArray::get(AT, Properties); 2851 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2852 2853 llvm::GlobalVariable *GV = 2854 CreateMetadataVar(Name, Init, 2855 (ObjCABI == 2) ? "__DATA, __objc_const" : 2856 "__OBJC,__property,regular,no_dead_strip", 2857 (ObjCABI == 2) ? 8 : 4, 2858 true); 2859 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy); 2860} 2861 2862llvm::Constant * 2863CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name, 2864 ArrayRef<llvm::Constant*> MethodTypes, 2865 const ObjCCommonTypesHelper &ObjCTypes) { 2866 // Return null for empty list. 2867 if (MethodTypes.empty()) 2868 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy); 2869 2870 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 2871 MethodTypes.size()); 2872 llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes); 2873 2874 llvm::GlobalVariable *GV = 2875 CreateMetadataVar(Name, Init, 2876 (ObjCABI == 2) ? "__DATA, __objc_const" : 0, 2877 (ObjCABI == 2) ? 8 : 4, 2878 true); 2879 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy); 2880} 2881 2882/* 2883 struct objc_method_description_list { 2884 int count; 2885 struct objc_method_description list[]; 2886 }; 2887*/ 2888llvm::Constant * 2889CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 2890 llvm::Constant *Desc[] = { 2891 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 2892 ObjCTypes.SelectorPtrTy), 2893 GetMethodVarType(MD) 2894 }; 2895 if (!Desc[1]) 2896 return 0; 2897 2898 return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy, 2899 Desc); 2900} 2901 2902llvm::Constant * 2903CGObjCMac::EmitMethodDescList(Twine Name, const char *Section, 2904 ArrayRef<llvm::Constant*> Methods) { 2905 // Return null for empty list. 2906 if (Methods.empty()) 2907 return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 2908 2909 llvm::Constant *Values[2]; 2910 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 2911 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy, 2912 Methods.size()); 2913 Values[1] = llvm::ConstantArray::get(AT, Methods); 2914 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 2915 2916 llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true); 2917 return llvm::ConstantExpr::getBitCast(GV, 2918 ObjCTypes.MethodDescriptionListPtrTy); 2919} 2920 2921/* 2922 struct _objc_category { 2923 char *category_name; 2924 char *class_name; 2925 struct _objc_method_list *instance_methods; 2926 struct _objc_method_list *class_methods; 2927 struct _objc_protocol_list *protocols; 2928 uint32_t size; // <rdar://4585769> 2929 struct _objc_property_list *instance_properties; 2930 }; 2931*/ 2932void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 2933 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy); 2934 2935 // FIXME: This is poor design, the OCD should have a pointer to the category 2936 // decl. Additionally, note that Category can be null for the @implementation 2937 // w/o an @interface case. Sema should just create one for us as it does for 2938 // @implementation so everyone else can live life under a clear blue sky. 2939 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 2940 const ObjCCategoryDecl *Category = 2941 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 2942 2943 SmallString<256> ExtName; 2944 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_' 2945 << OCD->getName(); 2946 2947 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 2948 for (ObjCCategoryImplDecl::instmeth_iterator 2949 i = OCD->instmeth_begin(), e = OCD->instmeth_end(); i != e; ++i) { 2950 // Instance methods should always be defined. 2951 InstanceMethods.push_back(GetMethodConstant(*i)); 2952 } 2953 for (ObjCCategoryImplDecl::classmeth_iterator 2954 i = OCD->classmeth_begin(), e = OCD->classmeth_end(); i != e; ++i) { 2955 // Class methods should always be defined. 2956 ClassMethods.push_back(GetMethodConstant(*i)); 2957 } 2958 2959 llvm::Constant *Values[7]; 2960 Values[0] = GetClassName(OCD->getIdentifier()); 2961 Values[1] = GetClassName(Interface->getIdentifier()); 2962 LazySymbols.insert(Interface->getIdentifier()); 2963 Values[2] = 2964 EmitMethodList("\01L_OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(), 2965 "__OBJC,__cat_inst_meth,regular,no_dead_strip", 2966 InstanceMethods); 2967 Values[3] = 2968 EmitMethodList("\01L_OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(), 2969 "__OBJC,__cat_cls_meth,regular,no_dead_strip", 2970 ClassMethods); 2971 if (Category) { 2972 Values[4] = 2973 EmitProtocolList("\01L_OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(), 2974 Category->protocol_begin(), 2975 Category->protocol_end()); 2976 } else { 2977 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 2978 } 2979 Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 2980 2981 // If there is no category @interface then there can be no properties. 2982 if (Category) { 2983 Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 2984 OCD, Category, ObjCTypes); 2985 } else { 2986 Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 2987 } 2988 2989 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy, 2990 Values); 2991 2992 llvm::GlobalVariable *GV = 2993 CreateMetadataVar("\01L_OBJC_CATEGORY_" + ExtName.str(), Init, 2994 "__OBJC,__category,regular,no_dead_strip", 2995 4, true); 2996 DefinedCategories.push_back(GV); 2997 DefinedCategoryNames.insert(ExtName.str()); 2998 // method definition entries must be clear for next implementation. 2999 MethodDefinitions.clear(); 3000} 3001 3002enum FragileClassFlags { 3003 FragileABI_Class_Factory = 0x00001, 3004 FragileABI_Class_Meta = 0x00002, 3005 FragileABI_Class_HasCXXStructors = 0x02000, 3006 FragileABI_Class_Hidden = 0x20000 3007}; 3008 3009enum NonFragileClassFlags { 3010 /// Is a meta-class. 3011 NonFragileABI_Class_Meta = 0x00001, 3012 3013 /// Is a root class. 3014 NonFragileABI_Class_Root = 0x00002, 3015 3016 /// Has a C++ constructor and destructor. 3017 NonFragileABI_Class_HasCXXStructors = 0x00004, 3018 3019 /// Has hidden visibility. 3020 NonFragileABI_Class_Hidden = 0x00010, 3021 3022 /// Has the exception attribute. 3023 NonFragileABI_Class_Exception = 0x00020, 3024 3025 /// (Obsolete) ARC-specific: this class has a .release_ivars method 3026 NonFragileABI_Class_HasIvarReleaser = 0x00040, 3027 3028 /// Class implementation was compiled under ARC. 3029 NonFragileABI_Class_CompiledByARC = 0x00080, 3030 3031 /// Class has non-trivial destructors, but zero-initialization is okay. 3032 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100 3033}; 3034 3035/* 3036 struct _objc_class { 3037 Class isa; 3038 Class super_class; 3039 const char *name; 3040 long version; 3041 long info; 3042 long instance_size; 3043 struct _objc_ivar_list *ivars; 3044 struct _objc_method_list *methods; 3045 struct _objc_cache *cache; 3046 struct _objc_protocol_list *protocols; 3047 // Objective-C 1.0 extensions (<rdr://4585769>) 3048 const char *ivar_layout; 3049 struct _objc_class_ext *ext; 3050 }; 3051 3052 See EmitClassExtension(); 3053*/ 3054void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) { 3055 DefinedSymbols.insert(ID->getIdentifier()); 3056 3057 std::string ClassName = ID->getNameAsString(); 3058 // FIXME: Gross 3059 ObjCInterfaceDecl *Interface = 3060 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface()); 3061 llvm::Constant *Protocols = 3062 EmitProtocolList("\01L_OBJC_CLASS_PROTOCOLS_" + ID->getName(), 3063 Interface->all_referenced_protocol_begin(), 3064 Interface->all_referenced_protocol_end()); 3065 unsigned Flags = FragileABI_Class_Factory; 3066 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) 3067 Flags |= FragileABI_Class_HasCXXStructors; 3068 unsigned Size = 3069 CGM.getContext().getASTObjCImplementationLayout(ID).getSize().getQuantity(); 3070 3071 // FIXME: Set CXX-structors flag. 3072 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3073 Flags |= FragileABI_Class_Hidden; 3074 3075 SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods; 3076 for (ObjCImplementationDecl::instmeth_iterator 3077 i = ID->instmeth_begin(), e = ID->instmeth_end(); i != e; ++i) { 3078 // Instance methods should always be defined. 3079 InstanceMethods.push_back(GetMethodConstant(*i)); 3080 } 3081 for (ObjCImplementationDecl::classmeth_iterator 3082 i = ID->classmeth_begin(), e = ID->classmeth_end(); i != e; ++i) { 3083 // Class methods should always be defined. 3084 ClassMethods.push_back(GetMethodConstant(*i)); 3085 } 3086 3087 for (ObjCImplementationDecl::propimpl_iterator 3088 i = ID->propimpl_begin(), e = ID->propimpl_end(); i != e; ++i) { 3089 ObjCPropertyImplDecl *PID = *i; 3090 3091 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3092 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3093 3094 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 3095 if (llvm::Constant *C = GetMethodConstant(MD)) 3096 InstanceMethods.push_back(C); 3097 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 3098 if (llvm::Constant *C = GetMethodConstant(MD)) 3099 InstanceMethods.push_back(C); 3100 } 3101 } 3102 3103 llvm::Constant *Values[12]; 3104 Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods); 3105 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) { 3106 // Record a reference to the super class. 3107 LazySymbols.insert(Super->getIdentifier()); 3108 3109 Values[ 1] = 3110 llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()), 3111 ObjCTypes.ClassPtrTy); 3112 } else { 3113 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3114 } 3115 Values[ 2] = GetClassName(ID->getIdentifier()); 3116 // Version is always 0. 3117 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3118 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3119 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 3120 Values[ 6] = EmitIvarList(ID, false); 3121 Values[ 7] = 3122 EmitMethodList("\01L_OBJC_INSTANCE_METHODS_" + ID->getName(), 3123 "__OBJC,__inst_meth,regular,no_dead_strip", 3124 InstanceMethods); 3125 // cache is always NULL. 3126 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3127 Values[ 9] = Protocols; 3128 Values[10] = BuildIvarLayout(ID, true); 3129 Values[11] = EmitClassExtension(ID); 3130 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3131 Values); 3132 std::string Name("\01L_OBJC_CLASS_"); 3133 Name += ClassName; 3134 const char *Section = "__OBJC,__class,regular,no_dead_strip"; 3135 // Check for a forward reference. 3136 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 3137 if (GV) { 3138 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3139 "Forward metaclass reference has incorrect type."); 3140 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 3141 GV->setInitializer(Init); 3142 GV->setSection(Section); 3143 GV->setAlignment(4); 3144 CGM.AddUsedGlobal(GV); 3145 } 3146 else 3147 GV = CreateMetadataVar(Name, Init, Section, 4, true); 3148 DefinedClasses.push_back(GV); 3149 // method definition entries must be clear for next implementation. 3150 MethodDefinitions.clear(); 3151} 3152 3153llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID, 3154 llvm::Constant *Protocols, 3155 ArrayRef<llvm::Constant*> Methods) { 3156 unsigned Flags = FragileABI_Class_Meta; 3157 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy); 3158 3159 if (ID->getClassInterface()->getVisibility() == HiddenVisibility) 3160 Flags |= FragileABI_Class_Hidden; 3161 3162 llvm::Constant *Values[12]; 3163 // The isa for the metaclass is the root of the hierarchy. 3164 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 3165 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 3166 Root = Super; 3167 Values[ 0] = 3168 llvm::ConstantExpr::getBitCast(GetClassName(Root->getIdentifier()), 3169 ObjCTypes.ClassPtrTy); 3170 // The super class for the metaclass is emitted as the name of the 3171 // super class. The runtime fixes this up to point to the 3172 // *metaclass* for the super class. 3173 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) { 3174 Values[ 1] = 3175 llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()), 3176 ObjCTypes.ClassPtrTy); 3177 } else { 3178 Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy); 3179 } 3180 Values[ 2] = GetClassName(ID->getIdentifier()); 3181 // Version is always 0. 3182 Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 3183 Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags); 3184 Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size); 3185 Values[ 6] = EmitIvarList(ID, true); 3186 Values[ 7] = 3187 EmitMethodList("\01L_OBJC_CLASS_METHODS_" + ID->getNameAsString(), 3188 "__OBJC,__cls_meth,regular,no_dead_strip", 3189 Methods); 3190 // cache is always NULL. 3191 Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy); 3192 Values[ 9] = Protocols; 3193 // ivar_layout for metaclass is always NULL. 3194 Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3195 // The class extension is always unused for metaclasses. 3196 Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3197 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy, 3198 Values); 3199 3200 std::string Name("\01L_OBJC_METACLASS_"); 3201 Name += ID->getName(); 3202 3203 // Check for a forward reference. 3204 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 3205 if (GV) { 3206 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3207 "Forward metaclass reference has incorrect type."); 3208 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 3209 GV->setInitializer(Init); 3210 } else { 3211 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3212 llvm::GlobalValue::InternalLinkage, 3213 Init, Name); 3214 } 3215 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip"); 3216 GV->setAlignment(4); 3217 CGM.AddUsedGlobal(GV); 3218 3219 return GV; 3220} 3221 3222llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) { 3223 std::string Name = "\01L_OBJC_METACLASS_" + ID->getNameAsString(); 3224 3225 // FIXME: Should we look these up somewhere other than the module. Its a bit 3226 // silly since we only generate these while processing an implementation, so 3227 // exactly one pointer would work if know when we entered/exitted an 3228 // implementation block. 3229 3230 // Check for an existing forward reference. 3231 // Previously, metaclass with internal linkage may have been defined. 3232 // pass 'true' as 2nd argument so it is returned. 3233 if (llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, 3234 true)) { 3235 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3236 "Forward metaclass reference has incorrect type."); 3237 return GV; 3238 } else { 3239 // Generate as an external reference to keep a consistent 3240 // module. This will be patched up when we emit the metaclass. 3241 return new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3242 llvm::GlobalValue::ExternalLinkage, 3243 0, 3244 Name); 3245 } 3246} 3247 3248llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) { 3249 std::string Name = "\01L_OBJC_CLASS_" + ID->getNameAsString(); 3250 3251 if (llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, 3252 true)) { 3253 assert(GV->getType()->getElementType() == ObjCTypes.ClassTy && 3254 "Forward class metadata reference has incorrect type."); 3255 return GV; 3256 } else { 3257 return new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false, 3258 llvm::GlobalValue::ExternalLinkage, 3259 0, 3260 Name); 3261 } 3262} 3263 3264/* 3265 struct objc_class_ext { 3266 uint32_t size; 3267 const char *weak_ivar_layout; 3268 struct _objc_property_list *properties; 3269 }; 3270*/ 3271llvm::Constant * 3272CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID) { 3273 uint64_t Size = 3274 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy); 3275 3276 llvm::Constant *Values[3]; 3277 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 3278 Values[1] = BuildIvarLayout(ID, false); 3279 Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 3280 ID, ID->getClassInterface(), ObjCTypes); 3281 3282 // Return null if no extension bits are used. 3283 if (Values[1]->isNullValue() && Values[2]->isNullValue()) 3284 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy); 3285 3286 llvm::Constant *Init = 3287 llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values); 3288 return CreateMetadataVar("\01L_OBJC_CLASSEXT_" + ID->getName(), 3289 Init, "__OBJC,__class_ext,regular,no_dead_strip", 3290 4, true); 3291} 3292 3293/* 3294 struct objc_ivar { 3295 char *ivar_name; 3296 char *ivar_type; 3297 int ivar_offset; 3298 }; 3299 3300 struct objc_ivar_list { 3301 int ivar_count; 3302 struct objc_ivar list[count]; 3303 }; 3304*/ 3305llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID, 3306 bool ForClass) { 3307 std::vector<llvm::Constant*> Ivars; 3308 3309 // When emitting the root class GCC emits ivar entries for the 3310 // actual class structure. It is not clear if we need to follow this 3311 // behavior; for now lets try and get away with not doing it. If so, 3312 // the cleanest solution would be to make up an ObjCInterfaceDecl 3313 // for the class. 3314 if (ForClass) 3315 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3316 3317 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 3318 3319 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 3320 IVD; IVD = IVD->getNextIvar()) { 3321 // Ignore unnamed bit-fields. 3322 if (!IVD->getDeclName()) 3323 continue; 3324 llvm::Constant *Ivar[] = { 3325 GetMethodVarName(IVD->getIdentifier()), 3326 GetMethodVarType(IVD), 3327 llvm::ConstantInt::get(ObjCTypes.IntTy, 3328 ComputeIvarBaseOffset(CGM, OID, IVD)) 3329 }; 3330 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar)); 3331 } 3332 3333 // Return null for empty list. 3334 if (Ivars.empty()) 3335 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy); 3336 3337 llvm::Constant *Values[2]; 3338 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 3339 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy, 3340 Ivars.size()); 3341 Values[1] = llvm::ConstantArray::get(AT, Ivars); 3342 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3343 3344 llvm::GlobalVariable *GV; 3345 if (ForClass) 3346 GV = CreateMetadataVar("\01L_OBJC_CLASS_VARIABLES_" + ID->getName(), 3347 Init, "__OBJC,__class_vars,regular,no_dead_strip", 3348 4, true); 3349 else 3350 GV = CreateMetadataVar("\01L_OBJC_INSTANCE_VARIABLES_" + ID->getName(), 3351 Init, "__OBJC,__instance_vars,regular,no_dead_strip", 3352 4, true); 3353 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy); 3354} 3355 3356/* 3357 struct objc_method { 3358 SEL method_name; 3359 char *method_types; 3360 void *method; 3361 }; 3362 3363 struct objc_method_list { 3364 struct objc_method_list *obsolete; 3365 int count; 3366 struct objc_method methods_list[count]; 3367 }; 3368*/ 3369 3370/// GetMethodConstant - Return a struct objc_method constant for the 3371/// given method if it has been defined. The result is null if the 3372/// method has not been defined. The return value has type MethodPtrTy. 3373llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) { 3374 llvm::Function *Fn = GetMethodDefinition(MD); 3375 if (!Fn) 3376 return 0; 3377 3378 llvm::Constant *Method[] = { 3379 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 3380 ObjCTypes.SelectorPtrTy), 3381 GetMethodVarType(MD), 3382 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 3383 }; 3384 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 3385} 3386 3387llvm::Constant *CGObjCMac::EmitMethodList(Twine Name, 3388 const char *Section, 3389 ArrayRef<llvm::Constant*> Methods) { 3390 // Return null for empty list. 3391 if (Methods.empty()) 3392 return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy); 3393 3394 llvm::Constant *Values[3]; 3395 Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 3396 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 3397 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 3398 Methods.size()); 3399 Values[2] = llvm::ConstantArray::get(AT, Methods); 3400 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 3401 3402 llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true); 3403 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy); 3404} 3405 3406llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD, 3407 const ObjCContainerDecl *CD) { 3408 SmallString<256> Name; 3409 GetNameForMethod(OMD, CD, Name); 3410 3411 CodeGenTypes &Types = CGM.getTypes(); 3412 llvm::FunctionType *MethodTy = 3413 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD)); 3414 llvm::Function *Method = 3415 llvm::Function::Create(MethodTy, 3416 llvm::GlobalValue::InternalLinkage, 3417 Name.str(), 3418 &CGM.getModule()); 3419 MethodDefinitions.insert(std::make_pair(OMD, Method)); 3420 3421 return Method; 3422} 3423 3424llvm::GlobalVariable * 3425CGObjCCommonMac::CreateMetadataVar(Twine Name, 3426 llvm::Constant *Init, 3427 const char *Section, 3428 unsigned Align, 3429 bool AddToUsed) { 3430 llvm::Type *Ty = Init->getType(); 3431 llvm::GlobalVariable *GV = 3432 new llvm::GlobalVariable(CGM.getModule(), Ty, false, 3433 llvm::GlobalValue::InternalLinkage, Init, Name); 3434 if (Section) 3435 GV->setSection(Section); 3436 if (Align) 3437 GV->setAlignment(Align); 3438 if (AddToUsed) 3439 CGM.AddUsedGlobal(GV); 3440 return GV; 3441} 3442 3443llvm::Function *CGObjCMac::ModuleInitFunction() { 3444 // Abuse this interface function as a place to finalize. 3445 FinishModule(); 3446 return NULL; 3447} 3448 3449llvm::Constant *CGObjCMac::GetPropertyGetFunction() { 3450 return ObjCTypes.getGetPropertyFn(); 3451} 3452 3453llvm::Constant *CGObjCMac::GetPropertySetFunction() { 3454 return ObjCTypes.getSetPropertyFn(); 3455} 3456 3457llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic, 3458 bool copy) { 3459 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy); 3460} 3461 3462llvm::Constant *CGObjCMac::GetGetStructFunction() { 3463 return ObjCTypes.getCopyStructFn(); 3464} 3465llvm::Constant *CGObjCMac::GetSetStructFunction() { 3466 return ObjCTypes.getCopyStructFn(); 3467} 3468 3469llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() { 3470 return ObjCTypes.getCppAtomicObjectFunction(); 3471} 3472llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() { 3473 return ObjCTypes.getCppAtomicObjectFunction(); 3474} 3475 3476llvm::Constant *CGObjCMac::EnumerationMutationFunction() { 3477 return ObjCTypes.getEnumerationMutationFn(); 3478} 3479 3480void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) { 3481 return EmitTryOrSynchronizedStmt(CGF, S); 3482} 3483 3484void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF, 3485 const ObjCAtSynchronizedStmt &S) { 3486 return EmitTryOrSynchronizedStmt(CGF, S); 3487} 3488 3489namespace { 3490 struct PerformFragileFinally : EHScopeStack::Cleanup { 3491 const Stmt &S; 3492 llvm::Value *SyncArgSlot; 3493 llvm::Value *CallTryExitVar; 3494 llvm::Value *ExceptionData; 3495 ObjCTypesHelper &ObjCTypes; 3496 PerformFragileFinally(const Stmt *S, 3497 llvm::Value *SyncArgSlot, 3498 llvm::Value *CallTryExitVar, 3499 llvm::Value *ExceptionData, 3500 ObjCTypesHelper *ObjCTypes) 3501 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar), 3502 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {} 3503 3504 void Emit(CodeGenFunction &CGF, Flags flags) { 3505 // Check whether we need to call objc_exception_try_exit. 3506 // In optimized code, this branch will always be folded. 3507 llvm::BasicBlock *FinallyCallExit = 3508 CGF.createBasicBlock("finally.call_exit"); 3509 llvm::BasicBlock *FinallyNoCallExit = 3510 CGF.createBasicBlock("finally.no_call_exit"); 3511 CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar), 3512 FinallyCallExit, FinallyNoCallExit); 3513 3514 CGF.EmitBlock(FinallyCallExit); 3515 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(), 3516 ExceptionData); 3517 3518 CGF.EmitBlock(FinallyNoCallExit); 3519 3520 if (isa<ObjCAtTryStmt>(S)) { 3521 if (const ObjCAtFinallyStmt* FinallyStmt = 3522 cast<ObjCAtTryStmt>(S).getFinallyStmt()) { 3523 // Don't try to do the @finally if this is an EH cleanup. 3524 if (flags.isForEHCleanup()) return; 3525 3526 // Save the current cleanup destination in case there's 3527 // control flow inside the finally statement. 3528 llvm::Value *CurCleanupDest = 3529 CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot()); 3530 3531 CGF.EmitStmt(FinallyStmt->getFinallyBody()); 3532 3533 if (CGF.HaveInsertPoint()) { 3534 CGF.Builder.CreateStore(CurCleanupDest, 3535 CGF.getNormalCleanupDestSlot()); 3536 } else { 3537 // Currently, the end of the cleanup must always exist. 3538 CGF.EnsureInsertPoint(); 3539 } 3540 } 3541 } else { 3542 // Emit objc_sync_exit(expr); as finally's sole statement for 3543 // @synchronized. 3544 llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot); 3545 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg); 3546 } 3547 } 3548 }; 3549 3550 class FragileHazards { 3551 CodeGenFunction &CGF; 3552 SmallVector<llvm::Value*, 20> Locals; 3553 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry; 3554 3555 llvm::InlineAsm *ReadHazard; 3556 llvm::InlineAsm *WriteHazard; 3557 3558 llvm::FunctionType *GetAsmFnType(); 3559 3560 void collectLocals(); 3561 void emitReadHazard(CGBuilderTy &Builder); 3562 3563 public: 3564 FragileHazards(CodeGenFunction &CGF); 3565 3566 void emitWriteHazard(); 3567 void emitHazardsInNewBlocks(); 3568 }; 3569} 3570 3571/// Create the fragile-ABI read and write hazards based on the current 3572/// state of the function, which is presumed to be immediately prior 3573/// to a @try block. These hazards are used to maintain correct 3574/// semantics in the face of optimization and the fragile ABI's 3575/// cavalier use of setjmp/longjmp. 3576FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) { 3577 collectLocals(); 3578 3579 if (Locals.empty()) return; 3580 3581 // Collect all the blocks in the function. 3582 for (llvm::Function::iterator 3583 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I) 3584 BlocksBeforeTry.insert(&*I); 3585 3586 llvm::FunctionType *AsmFnTy = GetAsmFnType(); 3587 3588 // Create a read hazard for the allocas. This inhibits dead-store 3589 // optimizations and forces the values to memory. This hazard is 3590 // inserted before any 'throwing' calls in the protected scope to 3591 // reflect the possibility that the variables might be read from the 3592 // catch block if the call throws. 3593 { 3594 std::string Constraint; 3595 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3596 if (I) Constraint += ','; 3597 Constraint += "*m"; 3598 } 3599 3600 ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3601 } 3602 3603 // Create a write hazard for the allocas. This inhibits folding 3604 // loads across the hazard. This hazard is inserted at the 3605 // beginning of the catch path to reflect the possibility that the 3606 // variables might have been written within the protected scope. 3607 { 3608 std::string Constraint; 3609 for (unsigned I = 0, E = Locals.size(); I != E; ++I) { 3610 if (I) Constraint += ','; 3611 Constraint += "=*m"; 3612 } 3613 3614 WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false); 3615 } 3616} 3617 3618/// Emit a write hazard at the current location. 3619void FragileHazards::emitWriteHazard() { 3620 if (Locals.empty()) return; 3621 3622 CGF.EmitNounwindRuntimeCall(WriteHazard, Locals); 3623} 3624 3625void FragileHazards::emitReadHazard(CGBuilderTy &Builder) { 3626 assert(!Locals.empty()); 3627 llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals); 3628 call->setDoesNotThrow(); 3629 call->setCallingConv(CGF.getRuntimeCC()); 3630} 3631 3632/// Emit read hazards in all the protected blocks, i.e. all the blocks 3633/// which have been inserted since the beginning of the try. 3634void FragileHazards::emitHazardsInNewBlocks() { 3635 if (Locals.empty()) return; 3636 3637 CGBuilderTy Builder(CGF.getLLVMContext()); 3638 3639 // Iterate through all blocks, skipping those prior to the try. 3640 for (llvm::Function::iterator 3641 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) { 3642 llvm::BasicBlock &BB = *FI; 3643 if (BlocksBeforeTry.count(&BB)) continue; 3644 3645 // Walk through all the calls in the block. 3646 for (llvm::BasicBlock::iterator 3647 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) { 3648 llvm::Instruction &I = *BI; 3649 3650 // Ignore instructions that aren't non-intrinsic calls. 3651 // These are the only calls that can possibly call longjmp. 3652 if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue; 3653 if (isa<llvm::IntrinsicInst>(I)) 3654 continue; 3655 3656 // Ignore call sites marked nounwind. This may be questionable, 3657 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'. 3658 llvm::CallSite CS(&I); 3659 if (CS.doesNotThrow()) continue; 3660 3661 // Insert a read hazard before the call. This will ensure that 3662 // any writes to the locals are performed before making the 3663 // call. If the call throws, then this is sufficient to 3664 // guarantee correctness as long as it doesn't also write to any 3665 // locals. 3666 Builder.SetInsertPoint(&BB, BI); 3667 emitReadHazard(Builder); 3668 } 3669 } 3670} 3671 3672static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) { 3673 if (V) S.insert(V); 3674} 3675 3676void FragileHazards::collectLocals() { 3677 // Compute a set of allocas to ignore. 3678 llvm::DenseSet<llvm::Value*> AllocasToIgnore; 3679 addIfPresent(AllocasToIgnore, CGF.ReturnValue); 3680 addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest); 3681 3682 // Collect all the allocas currently in the function. This is 3683 // probably way too aggressive. 3684 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock(); 3685 for (llvm::BasicBlock::iterator 3686 I = Entry.begin(), E = Entry.end(); I != E; ++I) 3687 if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I)) 3688 Locals.push_back(&*I); 3689} 3690 3691llvm::FunctionType *FragileHazards::GetAsmFnType() { 3692 SmallVector<llvm::Type *, 16> tys(Locals.size()); 3693 for (unsigned i = 0, e = Locals.size(); i != e; ++i) 3694 tys[i] = Locals[i]->getType(); 3695 return llvm::FunctionType::get(CGF.VoidTy, tys, false); 3696} 3697 3698/* 3699 3700 Objective-C setjmp-longjmp (sjlj) Exception Handling 3701 -- 3702 3703 A catch buffer is a setjmp buffer plus: 3704 - a pointer to the exception that was caught 3705 - a pointer to the previous exception data buffer 3706 - two pointers of reserved storage 3707 Therefore catch buffers form a stack, with a pointer to the top 3708 of the stack kept in thread-local storage. 3709 3710 objc_exception_try_enter pushes a catch buffer onto the EH stack. 3711 objc_exception_try_exit pops the given catch buffer, which is 3712 required to be the top of the EH stack. 3713 objc_exception_throw pops the top of the EH stack, writes the 3714 thrown exception into the appropriate field, and longjmps 3715 to the setjmp buffer. It crashes the process (with a printf 3716 and an abort()) if there are no catch buffers on the stack. 3717 objc_exception_extract just reads the exception pointer out of the 3718 catch buffer. 3719 3720 There's no reason an implementation couldn't use a light-weight 3721 setjmp here --- something like __builtin_setjmp, but API-compatible 3722 with the heavyweight setjmp. This will be more important if we ever 3723 want to implement correct ObjC/C++ exception interactions for the 3724 fragile ABI. 3725 3726 Note that for this use of setjmp/longjmp to be correct, we may need 3727 to mark some local variables volatile: if a non-volatile local 3728 variable is modified between the setjmp and the longjmp, it has 3729 indeterminate value. For the purposes of LLVM IR, it may be 3730 sufficient to make loads and stores within the @try (to variables 3731 declared outside the @try) volatile. This is necessary for 3732 optimized correctness, but is not currently being done; this is 3733 being tracked as rdar://problem/8160285 3734 3735 The basic framework for a @try-catch-finally is as follows: 3736 { 3737 objc_exception_data d; 3738 id _rethrow = null; 3739 bool _call_try_exit = true; 3740 3741 objc_exception_try_enter(&d); 3742 if (!setjmp(d.jmp_buf)) { 3743 ... try body ... 3744 } else { 3745 // exception path 3746 id _caught = objc_exception_extract(&d); 3747 3748 // enter new try scope for handlers 3749 if (!setjmp(d.jmp_buf)) { 3750 ... match exception and execute catch blocks ... 3751 3752 // fell off end, rethrow. 3753 _rethrow = _caught; 3754 ... jump-through-finally to finally_rethrow ... 3755 } else { 3756 // exception in catch block 3757 _rethrow = objc_exception_extract(&d); 3758 _call_try_exit = false; 3759 ... jump-through-finally to finally_rethrow ... 3760 } 3761 } 3762 ... jump-through-finally to finally_end ... 3763 3764 finally: 3765 if (_call_try_exit) 3766 objc_exception_try_exit(&d); 3767 3768 ... finally block .... 3769 ... dispatch to finally destination ... 3770 3771 finally_rethrow: 3772 objc_exception_throw(_rethrow); 3773 3774 finally_end: 3775 } 3776 3777 This framework differs slightly from the one gcc uses, in that gcc 3778 uses _rethrow to determine if objc_exception_try_exit should be called 3779 and if the object should be rethrown. This breaks in the face of 3780 throwing nil and introduces unnecessary branches. 3781 3782 We specialize this framework for a few particular circumstances: 3783 3784 - If there are no catch blocks, then we avoid emitting the second 3785 exception handling context. 3786 3787 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id 3788 e)) we avoid emitting the code to rethrow an uncaught exception. 3789 3790 - FIXME: If there is no @finally block we can do a few more 3791 simplifications. 3792 3793 Rethrows and Jumps-Through-Finally 3794 -- 3795 3796 '@throw;' is supported by pushing the currently-caught exception 3797 onto ObjCEHStack while the @catch blocks are emitted. 3798 3799 Branches through the @finally block are handled with an ordinary 3800 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC 3801 exceptions are not compatible with C++ exceptions, and this is 3802 hardly the only place where this will go wrong. 3803 3804 @synchronized(expr) { stmt; } is emitted as if it were: 3805 id synch_value = expr; 3806 objc_sync_enter(synch_value); 3807 @try { stmt; } @finally { objc_sync_exit(synch_value); } 3808*/ 3809 3810void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 3811 const Stmt &S) { 3812 bool isTry = isa<ObjCAtTryStmt>(S); 3813 3814 // A destination for the fall-through edges of the catch handlers to 3815 // jump to. 3816 CodeGenFunction::JumpDest FinallyEnd = 3817 CGF.getJumpDestInCurrentScope("finally.end"); 3818 3819 // A destination for the rethrow edge of the catch handlers to jump 3820 // to. 3821 CodeGenFunction::JumpDest FinallyRethrow = 3822 CGF.getJumpDestInCurrentScope("finally.rethrow"); 3823 3824 // For @synchronized, call objc_sync_enter(sync.expr). The 3825 // evaluation of the expression must occur before we enter the 3826 // @synchronized. We can't avoid a temp here because we need the 3827 // value to be preserved. If the backend ever does liveness 3828 // correctly after setjmp, this will be unnecessary. 3829 llvm::Value *SyncArgSlot = 0; 3830 if (!isTry) { 3831 llvm::Value *SyncArg = 3832 CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr()); 3833 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy); 3834 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg); 3835 3836 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(), "sync.arg"); 3837 CGF.Builder.CreateStore(SyncArg, SyncArgSlot); 3838 } 3839 3840 // Allocate memory for the setjmp buffer. This needs to be kept 3841 // live throughout the try and catch blocks. 3842 llvm::Value *ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy, 3843 "exceptiondata.ptr"); 3844 3845 // Create the fragile hazards. Note that this will not capture any 3846 // of the allocas required for exception processing, but will 3847 // capture the current basic block (which extends all the way to the 3848 // setjmp call) as "before the @try". 3849 FragileHazards Hazards(CGF); 3850 3851 // Create a flag indicating whether the cleanup needs to call 3852 // objc_exception_try_exit. This is true except when 3853 // - no catches match and we're branching through the cleanup 3854 // just to rethrow the exception, or 3855 // - a catch matched and we're falling out of the catch handler. 3856 // The setjmp-safety rule here is that we should always store to this 3857 // variable in a place that dominates the branch through the cleanup 3858 // without passing through any setjmps. 3859 llvm::Value *CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), 3860 "_call_try_exit"); 3861 3862 // A slot containing the exception to rethrow. Only needed when we 3863 // have both a @catch and a @finally. 3864 llvm::Value *PropagatingExnVar = 0; 3865 3866 // Push a normal cleanup to leave the try scope. 3867 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S, 3868 SyncArgSlot, 3869 CallTryExitVar, 3870 ExceptionData, 3871 &ObjCTypes); 3872 3873 // Enter a try block: 3874 // - Call objc_exception_try_enter to push ExceptionData on top of 3875 // the EH stack. 3876 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), ExceptionData); 3877 3878 // - Call setjmp on the exception data buffer. 3879 llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0); 3880 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero }; 3881 llvm::Value *SetJmpBuffer = 3882 CGF.Builder.CreateGEP(ExceptionData, GEPIndexes, "setjmp_buffer"); 3883 llvm::CallInst *SetJmpResult = 3884 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result"); 3885 SetJmpResult->setCanReturnTwice(); 3886 3887 // If setjmp returned 0, enter the protected block; otherwise, 3888 // branch to the handler. 3889 llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try"); 3890 llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler"); 3891 llvm::Value *DidCatch = 3892 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 3893 CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock); 3894 3895 // Emit the protected block. 3896 CGF.EmitBlock(TryBlock); 3897 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 3898 CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody() 3899 : cast<ObjCAtSynchronizedStmt>(S).getSynchBody()); 3900 3901 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP(); 3902 3903 // Emit the exception handler block. 3904 CGF.EmitBlock(TryHandler); 3905 3906 // Don't optimize loads of the in-scope locals across this point. 3907 Hazards.emitWriteHazard(); 3908 3909 // For a @synchronized (or a @try with no catches), just branch 3910 // through the cleanup to the rethrow block. 3911 if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) { 3912 // Tell the cleanup not to re-pop the exit. 3913 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 3914 CGF.EmitBranchThroughCleanup(FinallyRethrow); 3915 3916 // Otherwise, we have to match against the caught exceptions. 3917 } else { 3918 // Retrieve the exception object. We may emit multiple blocks but 3919 // nothing can cross this so the value is already in SSA form. 3920 llvm::CallInst *Caught = 3921 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 3922 ExceptionData, "caught"); 3923 3924 // Push the exception to rethrow onto the EH value stack for the 3925 // benefit of any @throws in the handlers. 3926 CGF.ObjCEHValueStack.push_back(Caught); 3927 3928 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S); 3929 3930 bool HasFinally = (AtTryStmt->getFinallyStmt() != 0); 3931 3932 llvm::BasicBlock *CatchBlock = 0; 3933 llvm::BasicBlock *CatchHandler = 0; 3934 if (HasFinally) { 3935 // Save the currently-propagating exception before 3936 // objc_exception_try_enter clears the exception slot. 3937 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(), 3938 "propagating_exception"); 3939 CGF.Builder.CreateStore(Caught, PropagatingExnVar); 3940 3941 // Enter a new exception try block (in case a @catch block 3942 // throws an exception). 3943 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(), 3944 ExceptionData); 3945 3946 llvm::CallInst *SetJmpResult = 3947 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(), 3948 SetJmpBuffer, "setjmp.result"); 3949 SetJmpResult->setCanReturnTwice(); 3950 3951 llvm::Value *Threw = 3952 CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception"); 3953 3954 CatchBlock = CGF.createBasicBlock("catch"); 3955 CatchHandler = CGF.createBasicBlock("catch_for_catch"); 3956 CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock); 3957 3958 CGF.EmitBlock(CatchBlock); 3959 } 3960 3961 CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar); 3962 3963 // Handle catch list. As a special case we check if everything is 3964 // matched and avoid generating code for falling off the end if 3965 // so. 3966 bool AllMatched = false; 3967 for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) { 3968 const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I); 3969 3970 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl(); 3971 const ObjCObjectPointerType *OPT = 0; 3972 3973 // catch(...) always matches. 3974 if (!CatchParam) { 3975 AllMatched = true; 3976 } else { 3977 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>(); 3978 3979 // catch(id e) always matches under this ABI, since only 3980 // ObjC exceptions end up here in the first place. 3981 // FIXME: For the time being we also match id<X>; this should 3982 // be rejected by Sema instead. 3983 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType())) 3984 AllMatched = true; 3985 } 3986 3987 // If this is a catch-all, we don't need to test anything. 3988 if (AllMatched) { 3989 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 3990 3991 if (CatchParam) { 3992 CGF.EmitAutoVarDecl(*CatchParam); 3993 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 3994 3995 // These types work out because ConvertType(id) == i8*. 3996 CGF.Builder.CreateStore(Caught, CGF.GetAddrOfLocalVar(CatchParam)); 3997 } 3998 3999 CGF.EmitStmt(CatchStmt->getCatchBody()); 4000 4001 // The scope of the catch variable ends right here. 4002 CatchVarCleanups.ForceCleanup(); 4003 4004 CGF.EmitBranchThroughCleanup(FinallyEnd); 4005 break; 4006 } 4007 4008 assert(OPT && "Unexpected non-object pointer type in @catch"); 4009 const ObjCObjectType *ObjTy = OPT->getObjectType(); 4010 4011 // FIXME: @catch (Class c) ? 4012 ObjCInterfaceDecl *IDecl = ObjTy->getInterface(); 4013 assert(IDecl && "Catch parameter must have Objective-C type!"); 4014 4015 // Check if the @catch block matches the exception object. 4016 llvm::Value *Class = EmitClassRef(CGF, IDecl); 4017 4018 llvm::Value *matchArgs[] = { Class, Caught }; 4019 llvm::CallInst *Match = 4020 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(), 4021 matchArgs, "match"); 4022 4023 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match"); 4024 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next"); 4025 4026 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"), 4027 MatchedBlock, NextCatchBlock); 4028 4029 // Emit the @catch block. 4030 CGF.EmitBlock(MatchedBlock); 4031 4032 // Collect any cleanups for the catch variable. The scope lasts until 4033 // the end of the catch body. 4034 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF); 4035 4036 CGF.EmitAutoVarDecl(*CatchParam); 4037 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?"); 4038 4039 // Initialize the catch variable. 4040 llvm::Value *Tmp = 4041 CGF.Builder.CreateBitCast(Caught, 4042 CGF.ConvertType(CatchParam->getType())); 4043 CGF.Builder.CreateStore(Tmp, CGF.GetAddrOfLocalVar(CatchParam)); 4044 4045 CGF.EmitStmt(CatchStmt->getCatchBody()); 4046 4047 // We're done with the catch variable. 4048 CatchVarCleanups.ForceCleanup(); 4049 4050 CGF.EmitBranchThroughCleanup(FinallyEnd); 4051 4052 CGF.EmitBlock(NextCatchBlock); 4053 } 4054 4055 CGF.ObjCEHValueStack.pop_back(); 4056 4057 // If nothing wanted anything to do with the caught exception, 4058 // kill the extract call. 4059 if (Caught->use_empty()) 4060 Caught->eraseFromParent(); 4061 4062 if (!AllMatched) 4063 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4064 4065 if (HasFinally) { 4066 // Emit the exception handler for the @catch blocks. 4067 CGF.EmitBlock(CatchHandler); 4068 4069 // In theory we might now need a write hazard, but actually it's 4070 // unnecessary because there's no local-accessing code between 4071 // the try's write hazard and here. 4072 //Hazards.emitWriteHazard(); 4073 4074 // Extract the new exception and save it to the 4075 // propagating-exception slot. 4076 assert(PropagatingExnVar); 4077 llvm::CallInst *NewCaught = 4078 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4079 ExceptionData, "caught"); 4080 CGF.Builder.CreateStore(NewCaught, PropagatingExnVar); 4081 4082 // Don't pop the catch handler; the throw already did. 4083 CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar); 4084 CGF.EmitBranchThroughCleanup(FinallyRethrow); 4085 } 4086 } 4087 4088 // Insert read hazards as required in the new blocks. 4089 Hazards.emitHazardsInNewBlocks(); 4090 4091 // Pop the cleanup. 4092 CGF.Builder.restoreIP(TryFallthroughIP); 4093 if (CGF.HaveInsertPoint()) 4094 CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar); 4095 CGF.PopCleanupBlock(); 4096 CGF.EmitBlock(FinallyEnd.getBlock(), true); 4097 4098 // Emit the rethrow block. 4099 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); 4100 CGF.EmitBlock(FinallyRethrow.getBlock(), true); 4101 if (CGF.HaveInsertPoint()) { 4102 // If we have a propagating-exception variable, check it. 4103 llvm::Value *PropagatingExn; 4104 if (PropagatingExnVar) { 4105 PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar); 4106 4107 // Otherwise, just look in the buffer for the exception to throw. 4108 } else { 4109 llvm::CallInst *Caught = 4110 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(), 4111 ExceptionData); 4112 PropagatingExn = Caught; 4113 } 4114 4115 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(), 4116 PropagatingExn); 4117 CGF.Builder.CreateUnreachable(); 4118 } 4119 4120 CGF.Builder.restoreIP(SavedIP); 4121} 4122 4123void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 4124 const ObjCAtThrowStmt &S, 4125 bool ClearInsertionPoint) { 4126 llvm::Value *ExceptionAsObject; 4127 4128 if (const Expr *ThrowExpr = S.getThrowExpr()) { 4129 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 4130 ExceptionAsObject = 4131 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 4132 } else { 4133 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) && 4134 "Unexpected rethrow outside @catch block."); 4135 ExceptionAsObject = CGF.ObjCEHValueStack.back(); 4136 } 4137 4138 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject) 4139 ->setDoesNotReturn(); 4140 CGF.Builder.CreateUnreachable(); 4141 4142 // Clear the insertion point to indicate we are in unreachable code. 4143 if (ClearInsertionPoint) 4144 CGF.Builder.ClearInsertionPoint(); 4145} 4146 4147/// EmitObjCWeakRead - Code gen for loading value of a __weak 4148/// object: objc_read_weak (id *src) 4149/// 4150llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF, 4151 llvm::Value *AddrWeakObj) { 4152 llvm::Type* DestTy = 4153 cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType(); 4154 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, 4155 ObjCTypes.PtrObjectPtrTy); 4156 llvm::Value *read_weak = 4157 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 4158 AddrWeakObj, "weakread"); 4159 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 4160 return read_weak; 4161} 4162 4163/// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 4164/// objc_assign_weak (id src, id *dst) 4165/// 4166void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 4167 llvm::Value *src, llvm::Value *dst) { 4168 llvm::Type * SrcTy = src->getType(); 4169 if (!isa<llvm::PointerType>(SrcTy)) { 4170 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4171 assert(Size <= 8 && "does not support size > 8"); 4172 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4173 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4174 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4175 } 4176 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4177 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4178 llvm::Value *args[] = { src, dst }; 4179 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 4180 args, "weakassign"); 4181 return; 4182} 4183 4184/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 4185/// objc_assign_global (id src, id *dst) 4186/// 4187void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 4188 llvm::Value *src, llvm::Value *dst, 4189 bool threadlocal) { 4190 llvm::Type * SrcTy = src->getType(); 4191 if (!isa<llvm::PointerType>(SrcTy)) { 4192 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4193 assert(Size <= 8 && "does not support size > 8"); 4194 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4195 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4196 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4197 } 4198 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4199 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4200 llvm::Value *args[] = { src, dst }; 4201 if (!threadlocal) 4202 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 4203 args, "globalassign"); 4204 else 4205 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 4206 args, "threadlocalassign"); 4207 return; 4208} 4209 4210/// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 4211/// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset) 4212/// 4213void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 4214 llvm::Value *src, llvm::Value *dst, 4215 llvm::Value *ivarOffset) { 4216 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL"); 4217 llvm::Type * SrcTy = src->getType(); 4218 if (!isa<llvm::PointerType>(SrcTy)) { 4219 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4220 assert(Size <= 8 && "does not support size > 8"); 4221 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4222 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4223 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4224 } 4225 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4226 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4227 llvm::Value *args[] = { src, dst, ivarOffset }; 4228 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 4229 return; 4230} 4231 4232/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 4233/// objc_assign_strongCast (id src, id *dst) 4234/// 4235void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF, 4236 llvm::Value *src, llvm::Value *dst) { 4237 llvm::Type * SrcTy = src->getType(); 4238 if (!isa<llvm::PointerType>(SrcTy)) { 4239 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4240 assert(Size <= 8 && "does not support size > 8"); 4241 src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 4242 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy); 4243 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 4244 } 4245 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 4246 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 4247 llvm::Value *args[] = { src, dst }; 4248 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 4249 args, "weakassign"); 4250 return; 4251} 4252 4253void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF, 4254 llvm::Value *DestPtr, 4255 llvm::Value *SrcPtr, 4256 llvm::Value *size) { 4257 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 4258 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 4259 llvm::Value *args[] = { DestPtr, SrcPtr, size }; 4260 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 4261} 4262 4263/// EmitObjCValueForIvar - Code Gen for ivar reference. 4264/// 4265LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, 4266 QualType ObjectTy, 4267 llvm::Value *BaseValue, 4268 const ObjCIvarDecl *Ivar, 4269 unsigned CVRQualifiers) { 4270 const ObjCInterfaceDecl *ID = 4271 ObjectTy->getAs<ObjCObjectType>()->getInterface(); 4272 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 4273 EmitIvarOffset(CGF, ID, Ivar)); 4274} 4275 4276llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF, 4277 const ObjCInterfaceDecl *Interface, 4278 const ObjCIvarDecl *Ivar) { 4279 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar); 4280 return llvm::ConstantInt::get( 4281 CGM.getTypes().ConvertType(CGM.getContext().LongTy), 4282 Offset); 4283} 4284 4285/* *** Private Interface *** */ 4286 4287/// EmitImageInfo - Emit the image info marker used to encode some module 4288/// level information. 4289/// 4290/// See: <rdr://4810609&4810587&4810587> 4291/// struct IMAGE_INFO { 4292/// unsigned version; 4293/// unsigned flags; 4294/// }; 4295enum ImageInfoFlags { 4296 eImageInfo_FixAndContinue = (1 << 0), 4297 eImageInfo_GarbageCollected = (1 << 1), 4298 eImageInfo_GCOnly = (1 << 2), 4299 eImageInfo_OptimizedByDyld = (1 << 3), // FIXME: When is this set. 4300 4301 // A flag indicating that the module has no instances of a @synthesize of a 4302 // superclass variable. <rdar://problem/6803242> 4303 eImageInfo_CorrectedSynthesize = (1 << 4), 4304 eImageInfo_ImageIsSimulated = (1 << 5) 4305}; 4306 4307void CGObjCCommonMac::EmitImageInfo() { 4308 unsigned version = 0; // Version is unused? 4309 const char *Section = (ObjCABI == 1) ? 4310 "__OBJC, __image_info,regular" : 4311 "__DATA, __objc_imageinfo, regular, no_dead_strip"; 4312 4313 // Generate module-level named metadata to convey this information to the 4314 // linker and code-gen. 4315 llvm::Module &Mod = CGM.getModule(); 4316 4317 // Add the ObjC ABI version to the module flags. 4318 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI); 4319 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version", 4320 version); 4321 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section", 4322 llvm::MDString::get(VMContext,Section)); 4323 4324 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 4325 // Non-GC overrides those files which specify GC. 4326 Mod.addModuleFlag(llvm::Module::Override, 4327 "Objective-C Garbage Collection", (uint32_t)0); 4328 } else { 4329 // Add the ObjC garbage collection value. 4330 Mod.addModuleFlag(llvm::Module::Error, 4331 "Objective-C Garbage Collection", 4332 eImageInfo_GarbageCollected); 4333 4334 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 4335 // Add the ObjC GC Only value. 4336 Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only", 4337 eImageInfo_GCOnly); 4338 4339 // Require that GC be specified and set to eImageInfo_GarbageCollected. 4340 llvm::Value *Ops[2] = { 4341 llvm::MDString::get(VMContext, "Objective-C Garbage Collection"), 4342 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 4343 eImageInfo_GarbageCollected) 4344 }; 4345 Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only", 4346 llvm::MDNode::get(VMContext, Ops)); 4347 } 4348 } 4349 4350 // Indicate whether we're compiling this to run on a simulator. 4351 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 4352 if (Triple.isiOS() && 4353 (Triple.getArch() == llvm::Triple::x86 || 4354 Triple.getArch() == llvm::Triple::x86_64)) 4355 Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated", 4356 eImageInfo_ImageIsSimulated); 4357} 4358 4359// struct objc_module { 4360// unsigned long version; 4361// unsigned long size; 4362// const char *name; 4363// Symtab symtab; 4364// }; 4365 4366// FIXME: Get from somewhere 4367static const int ModuleVersion = 7; 4368 4369void CGObjCMac::EmitModuleInfo() { 4370 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy); 4371 4372 llvm::Constant *Values[] = { 4373 llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion), 4374 llvm::ConstantInt::get(ObjCTypes.LongTy, Size), 4375 // This used to be the filename, now it is unused. <rdr://4327263> 4376 GetClassName(&CGM.getContext().Idents.get("")), 4377 EmitModuleSymbols() 4378 }; 4379 CreateMetadataVar("\01L_OBJC_MODULES", 4380 llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values), 4381 "__OBJC,__module_info,regular,no_dead_strip", 4382 4, true); 4383} 4384 4385llvm::Constant *CGObjCMac::EmitModuleSymbols() { 4386 unsigned NumClasses = DefinedClasses.size(); 4387 unsigned NumCategories = DefinedCategories.size(); 4388 4389 // Return null if no symbols were defined. 4390 if (!NumClasses && !NumCategories) 4391 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy); 4392 4393 llvm::Constant *Values[5]; 4394 Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0); 4395 Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy); 4396 Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses); 4397 Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories); 4398 4399 // The runtime expects exactly the list of defined classes followed 4400 // by the list of defined categories, in a single array. 4401 SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories); 4402 for (unsigned i=0; i<NumClasses; i++) 4403 Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i], 4404 ObjCTypes.Int8PtrTy); 4405 for (unsigned i=0; i<NumCategories; i++) 4406 Symbols[NumClasses + i] = 4407 llvm::ConstantExpr::getBitCast(DefinedCategories[i], 4408 ObjCTypes.Int8PtrTy); 4409 4410 Values[4] = 4411 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 4412 Symbols.size()), 4413 Symbols); 4414 4415 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 4416 4417 llvm::GlobalVariable *GV = 4418 CreateMetadataVar("\01L_OBJC_SYMBOLS", Init, 4419 "__OBJC,__symbols,regular,no_dead_strip", 4420 4, true); 4421 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy); 4422} 4423 4424llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF, 4425 IdentifierInfo *II) { 4426 LazySymbols.insert(II); 4427 4428 llvm::GlobalVariable *&Entry = ClassReferences[II]; 4429 4430 if (!Entry) { 4431 llvm::Constant *Casted = 4432 llvm::ConstantExpr::getBitCast(GetClassName(II), 4433 ObjCTypes.ClassPtrTy); 4434 Entry = 4435 CreateMetadataVar("\01L_OBJC_CLASS_REFERENCES_", Casted, 4436 "__OBJC,__cls_refs,literal_pointers,no_dead_strip", 4437 4, true); 4438 } 4439 4440 return CGF.Builder.CreateLoad(Entry); 4441} 4442 4443llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF, 4444 const ObjCInterfaceDecl *ID) { 4445 return EmitClassRefFromId(CGF, ID->getIdentifier()); 4446} 4447 4448llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) { 4449 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 4450 return EmitClassRefFromId(CGF, II); 4451} 4452 4453llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel, 4454 bool lvalue) { 4455 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 4456 4457 if (!Entry) { 4458 llvm::Constant *Casted = 4459 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 4460 ObjCTypes.SelectorPtrTy); 4461 Entry = 4462 CreateMetadataVar("\01L_OBJC_SELECTOR_REFERENCES_", Casted, 4463 "__OBJC,__message_refs,literal_pointers,no_dead_strip", 4464 4, true); 4465 Entry->setExternallyInitialized(true); 4466 } 4467 4468 if (lvalue) 4469 return Entry; 4470 return CGF.Builder.CreateLoad(Entry); 4471} 4472 4473llvm::Constant *CGObjCCommonMac::GetClassName(IdentifierInfo *Ident) { 4474 llvm::GlobalVariable *&Entry = ClassNames[Ident]; 4475 4476 if (!Entry) 4477 Entry = CreateMetadataVar("\01L_OBJC_CLASS_NAME_", 4478 llvm::ConstantDataArray::getString(VMContext, 4479 Ident->getNameStart()), 4480 ((ObjCABI == 2) ? 4481 "__TEXT,__objc_classname,cstring_literals" : 4482 "__TEXT,__cstring,cstring_literals"), 4483 1, true); 4484 4485 return getConstantGEP(VMContext, Entry, 0, 0); 4486} 4487 4488llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) { 4489 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator 4490 I = MethodDefinitions.find(MD); 4491 if (I != MethodDefinitions.end()) 4492 return I->second; 4493 4494 return NULL; 4495} 4496 4497/// GetIvarLayoutName - Returns a unique constant for the given 4498/// ivar layout bitmap. 4499llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident, 4500 const ObjCCommonTypesHelper &ObjCTypes) { 4501 return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 4502} 4503 4504void CGObjCCommonMac::BuildAggrIvarRecordLayout(const RecordType *RT, 4505 unsigned int BytePos, 4506 bool ForStrongLayout, 4507 bool &HasUnion) { 4508 const RecordDecl *RD = RT->getDecl(); 4509 // FIXME - Use iterator. 4510 SmallVector<const FieldDecl*, 16> Fields; 4511 for (RecordDecl::field_iterator i = RD->field_begin(), 4512 e = RD->field_end(); i != e; ++i) 4513 Fields.push_back(*i); 4514 llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0)); 4515 const llvm::StructLayout *RecLayout = 4516 CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty)); 4517 4518 BuildAggrIvarLayout(0, RecLayout, RD, Fields, BytePos, 4519 ForStrongLayout, HasUnion); 4520} 4521 4522void CGObjCCommonMac::BuildAggrIvarLayout(const ObjCImplementationDecl *OI, 4523 const llvm::StructLayout *Layout, 4524 const RecordDecl *RD, 4525 ArrayRef<const FieldDecl*> RecFields, 4526 unsigned int BytePos, bool ForStrongLayout, 4527 bool &HasUnion) { 4528 bool IsUnion = (RD && RD->isUnion()); 4529 uint64_t MaxUnionIvarSize = 0; 4530 uint64_t MaxSkippedUnionIvarSize = 0; 4531 const FieldDecl *MaxField = 0; 4532 const FieldDecl *MaxSkippedField = 0; 4533 const FieldDecl *LastFieldBitfieldOrUnnamed = 0; 4534 uint64_t MaxFieldOffset = 0; 4535 uint64_t MaxSkippedFieldOffset = 0; 4536 uint64_t LastBitfieldOrUnnamedOffset = 0; 4537 uint64_t FirstFieldDelta = 0; 4538 4539 if (RecFields.empty()) 4540 return; 4541 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0); 4542 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth(); 4543 if (!RD && CGM.getLangOpts().ObjCAutoRefCount) { 4544 const FieldDecl *FirstField = RecFields[0]; 4545 FirstFieldDelta = 4546 ComputeIvarBaseOffset(CGM, OI, cast<ObjCIvarDecl>(FirstField)); 4547 } 4548 4549 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 4550 const FieldDecl *Field = RecFields[i]; 4551 uint64_t FieldOffset; 4552 if (RD) { 4553 // Note that 'i' here is actually the field index inside RD of Field, 4554 // although this dependency is hidden. 4555 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); 4556 FieldOffset = (RL.getFieldOffset(i) / ByteSizeInBits) - FirstFieldDelta; 4557 } else 4558 FieldOffset = 4559 ComputeIvarBaseOffset(CGM, OI, cast<ObjCIvarDecl>(Field)) - FirstFieldDelta; 4560 4561 // Skip over unnamed or bitfields 4562 if (!Field->getIdentifier() || Field->isBitField()) { 4563 LastFieldBitfieldOrUnnamed = Field; 4564 LastBitfieldOrUnnamedOffset = FieldOffset; 4565 continue; 4566 } 4567 4568 LastFieldBitfieldOrUnnamed = 0; 4569 QualType FQT = Field->getType(); 4570 if (FQT->isRecordType() || FQT->isUnionType()) { 4571 if (FQT->isUnionType()) 4572 HasUnion = true; 4573 4574 BuildAggrIvarRecordLayout(FQT->getAs<RecordType>(), 4575 BytePos + FieldOffset, 4576 ForStrongLayout, HasUnion); 4577 continue; 4578 } 4579 4580 if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 4581 const ConstantArrayType *CArray = 4582 dyn_cast_or_null<ConstantArrayType>(Array); 4583 uint64_t ElCount = CArray->getSize().getZExtValue(); 4584 assert(CArray && "only array with known element size is supported"); 4585 FQT = CArray->getElementType(); 4586 while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) { 4587 const ConstantArrayType *CArray = 4588 dyn_cast_or_null<ConstantArrayType>(Array); 4589 ElCount *= CArray->getSize().getZExtValue(); 4590 FQT = CArray->getElementType(); 4591 } 4592 4593 assert(!FQT->isUnionType() && 4594 "layout for array of unions not supported"); 4595 if (FQT->isRecordType() && ElCount) { 4596 int OldIndex = IvarsInfo.size() - 1; 4597 int OldSkIndex = SkipIvars.size() -1; 4598 4599 const RecordType *RT = FQT->getAs<RecordType>(); 4600 BuildAggrIvarRecordLayout(RT, BytePos + FieldOffset, 4601 ForStrongLayout, HasUnion); 4602 4603 // Replicate layout information for each array element. Note that 4604 // one element is already done. 4605 uint64_t ElIx = 1; 4606 for (int FirstIndex = IvarsInfo.size() - 1, 4607 FirstSkIndex = SkipIvars.size() - 1 ;ElIx < ElCount; ElIx++) { 4608 uint64_t Size = CGM.getContext().getTypeSize(RT)/ByteSizeInBits; 4609 for (int i = OldIndex+1; i <= FirstIndex; ++i) 4610 IvarsInfo.push_back(GC_IVAR(IvarsInfo[i].ivar_bytepos + Size*ElIx, 4611 IvarsInfo[i].ivar_size)); 4612 for (int i = OldSkIndex+1; i <= FirstSkIndex; ++i) 4613 SkipIvars.push_back(GC_IVAR(SkipIvars[i].ivar_bytepos + Size*ElIx, 4614 SkipIvars[i].ivar_size)); 4615 } 4616 continue; 4617 } 4618 } 4619 // At this point, we are done with Record/Union and array there of. 4620 // For other arrays we are down to its element type. 4621 Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), FQT); 4622 4623 unsigned FieldSize = CGM.getContext().getTypeSize(Field->getType()); 4624 if ((ForStrongLayout && GCAttr == Qualifiers::Strong) 4625 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) { 4626 if (IsUnion) { 4627 uint64_t UnionIvarSize = FieldSize / WordSizeInBits; 4628 if (UnionIvarSize > MaxUnionIvarSize) { 4629 MaxUnionIvarSize = UnionIvarSize; 4630 MaxField = Field; 4631 MaxFieldOffset = FieldOffset; 4632 } 4633 } else { 4634 IvarsInfo.push_back(GC_IVAR(BytePos + FieldOffset, 4635 FieldSize / WordSizeInBits)); 4636 } 4637 } else if ((ForStrongLayout && 4638 (GCAttr == Qualifiers::GCNone || GCAttr == Qualifiers::Weak)) 4639 || (!ForStrongLayout && GCAttr != Qualifiers::Weak)) { 4640 if (IsUnion) { 4641 // FIXME: Why the asymmetry? We divide by word size in bits on other 4642 // side. 4643 uint64_t UnionIvarSize = FieldSize / ByteSizeInBits; 4644 if (UnionIvarSize > MaxSkippedUnionIvarSize) { 4645 MaxSkippedUnionIvarSize = UnionIvarSize; 4646 MaxSkippedField = Field; 4647 MaxSkippedFieldOffset = FieldOffset; 4648 } 4649 } else { 4650 // FIXME: Why the asymmetry, we divide by byte size in bits here? 4651 SkipIvars.push_back(GC_IVAR(BytePos + FieldOffset, 4652 FieldSize / ByteSizeInBits)); 4653 } 4654 } 4655 } 4656 4657 if (LastFieldBitfieldOrUnnamed) { 4658 if (LastFieldBitfieldOrUnnamed->isBitField()) { 4659 // Last field was a bitfield. Must update skip info. 4660 uint64_t BitFieldSize 4661 = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext()); 4662 GC_IVAR skivar; 4663 skivar.ivar_bytepos = BytePos + LastBitfieldOrUnnamedOffset; 4664 skivar.ivar_size = (BitFieldSize / ByteSizeInBits) 4665 + ((BitFieldSize % ByteSizeInBits) != 0); 4666 SkipIvars.push_back(skivar); 4667 } else { 4668 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed"); 4669 // Last field was unnamed. Must update skip info. 4670 unsigned FieldSize 4671 = CGM.getContext().getTypeSize(LastFieldBitfieldOrUnnamed->getType()); 4672 SkipIvars.push_back(GC_IVAR(BytePos + LastBitfieldOrUnnamedOffset, 4673 FieldSize / ByteSizeInBits)); 4674 } 4675 } 4676 4677 if (MaxField) 4678 IvarsInfo.push_back(GC_IVAR(BytePos + MaxFieldOffset, 4679 MaxUnionIvarSize)); 4680 if (MaxSkippedField) 4681 SkipIvars.push_back(GC_IVAR(BytePos + MaxSkippedFieldOffset, 4682 MaxSkippedUnionIvarSize)); 4683} 4684 4685/// BuildIvarLayoutBitmap - This routine is the horsework for doing all 4686/// the computations and returning the layout bitmap (for ivar or blocks) in 4687/// the given argument BitMap string container. Routine reads 4688/// two containers, IvarsInfo and SkipIvars which are assumed to be 4689/// filled already by the caller. 4690llvm::Constant *CGObjCCommonMac::BuildIvarLayoutBitmap(std::string &BitMap) { 4691 unsigned int WordsToScan, WordsToSkip; 4692 llvm::Type *PtrTy = CGM.Int8PtrTy; 4693 4694 // Build the string of skip/scan nibbles 4695 SmallVector<SKIP_SCAN, 32> SkipScanIvars; 4696 unsigned int WordSize = 4697 CGM.getTypes().getDataLayout().getTypeAllocSize(PtrTy); 4698 if (IvarsInfo[0].ivar_bytepos == 0) { 4699 WordsToSkip = 0; 4700 WordsToScan = IvarsInfo[0].ivar_size; 4701 } else { 4702 WordsToSkip = IvarsInfo[0].ivar_bytepos/WordSize; 4703 WordsToScan = IvarsInfo[0].ivar_size; 4704 } 4705 for (unsigned int i=1, Last=IvarsInfo.size(); i != Last; i++) { 4706 unsigned int TailPrevGCObjC = 4707 IvarsInfo[i-1].ivar_bytepos + IvarsInfo[i-1].ivar_size * WordSize; 4708 if (IvarsInfo[i].ivar_bytepos == TailPrevGCObjC) { 4709 // consecutive 'scanned' object pointers. 4710 WordsToScan += IvarsInfo[i].ivar_size; 4711 } else { 4712 // Skip over 'gc'able object pointer which lay over each other. 4713 if (TailPrevGCObjC > IvarsInfo[i].ivar_bytepos) 4714 continue; 4715 // Must skip over 1 or more words. We save current skip/scan values 4716 // and start a new pair. 4717 SKIP_SCAN SkScan; 4718 SkScan.skip = WordsToSkip; 4719 SkScan.scan = WordsToScan; 4720 SkipScanIvars.push_back(SkScan); 4721 4722 // Skip the hole. 4723 SkScan.skip = (IvarsInfo[i].ivar_bytepos - TailPrevGCObjC) / WordSize; 4724 SkScan.scan = 0; 4725 SkipScanIvars.push_back(SkScan); 4726 WordsToSkip = 0; 4727 WordsToScan = IvarsInfo[i].ivar_size; 4728 } 4729 } 4730 if (WordsToScan > 0) { 4731 SKIP_SCAN SkScan; 4732 SkScan.skip = WordsToSkip; 4733 SkScan.scan = WordsToScan; 4734 SkipScanIvars.push_back(SkScan); 4735 } 4736 4737 if (!SkipIvars.empty()) { 4738 unsigned int LastIndex = SkipIvars.size()-1; 4739 int LastByteSkipped = 4740 SkipIvars[LastIndex].ivar_bytepos + SkipIvars[LastIndex].ivar_size; 4741 LastIndex = IvarsInfo.size()-1; 4742 int LastByteScanned = 4743 IvarsInfo[LastIndex].ivar_bytepos + 4744 IvarsInfo[LastIndex].ivar_size * WordSize; 4745 // Compute number of bytes to skip at the tail end of the last ivar scanned. 4746 if (LastByteSkipped > LastByteScanned) { 4747 unsigned int TotalWords = (LastByteSkipped + (WordSize -1)) / WordSize; 4748 SKIP_SCAN SkScan; 4749 SkScan.skip = TotalWords - (LastByteScanned/WordSize); 4750 SkScan.scan = 0; 4751 SkipScanIvars.push_back(SkScan); 4752 } 4753 } 4754 // Mini optimization of nibbles such that an 0xM0 followed by 0x0N is produced 4755 // as 0xMN. 4756 int SkipScan = SkipScanIvars.size()-1; 4757 for (int i = 0; i <= SkipScan; i++) { 4758 if ((i < SkipScan) && SkipScanIvars[i].skip && SkipScanIvars[i].scan == 0 4759 && SkipScanIvars[i+1].skip == 0 && SkipScanIvars[i+1].scan) { 4760 // 0xM0 followed by 0x0N detected. 4761 SkipScanIvars[i].scan = SkipScanIvars[i+1].scan; 4762 for (int j = i+1; j < SkipScan; j++) 4763 SkipScanIvars[j] = SkipScanIvars[j+1]; 4764 --SkipScan; 4765 } 4766 } 4767 4768 // Generate the string. 4769 for (int i = 0; i <= SkipScan; i++) { 4770 unsigned char byte; 4771 unsigned int skip_small = SkipScanIvars[i].skip % 0xf; 4772 unsigned int scan_small = SkipScanIvars[i].scan % 0xf; 4773 unsigned int skip_big = SkipScanIvars[i].skip / 0xf; 4774 unsigned int scan_big = SkipScanIvars[i].scan / 0xf; 4775 4776 // first skip big. 4777 for (unsigned int ix = 0; ix < skip_big; ix++) 4778 BitMap += (unsigned char)(0xf0); 4779 4780 // next (skip small, scan) 4781 if (skip_small) { 4782 byte = skip_small << 4; 4783 if (scan_big > 0) { 4784 byte |= 0xf; 4785 --scan_big; 4786 } else if (scan_small) { 4787 byte |= scan_small; 4788 scan_small = 0; 4789 } 4790 BitMap += byte; 4791 } 4792 // next scan big 4793 for (unsigned int ix = 0; ix < scan_big; ix++) 4794 BitMap += (unsigned char)(0x0f); 4795 // last scan small 4796 if (scan_small) { 4797 byte = scan_small; 4798 BitMap += byte; 4799 } 4800 } 4801 // null terminate string. 4802 unsigned char zero = 0; 4803 BitMap += zero; 4804 4805 llvm::GlobalVariable * Entry = 4806 CreateMetadataVar("\01L_OBJC_CLASS_NAME_", 4807 llvm::ConstantDataArray::getString(VMContext, BitMap,false), 4808 ((ObjCABI == 2) ? 4809 "__TEXT,__objc_classname,cstring_literals" : 4810 "__TEXT,__cstring,cstring_literals"), 4811 1, true); 4812 return getConstantGEP(VMContext, Entry, 0, 0); 4813} 4814 4815/// BuildIvarLayout - Builds ivar layout bitmap for the class 4816/// implementation for the __strong or __weak case. 4817/// The layout map displays which words in ivar list must be skipped 4818/// and which must be scanned by GC (see below). String is built of bytes. 4819/// Each byte is divided up in two nibbles (4-bit each). Left nibble is count 4820/// of words to skip and right nibble is count of words to scan. So, each 4821/// nibble represents up to 15 workds to skip or scan. Skipping the rest is 4822/// represented by a 0x00 byte which also ends the string. 4823/// 1. when ForStrongLayout is true, following ivars are scanned: 4824/// - id, Class 4825/// - object * 4826/// - __strong anything 4827/// 4828/// 2. When ForStrongLayout is false, following ivars are scanned: 4829/// - __weak anything 4830/// 4831llvm::Constant *CGObjCCommonMac::BuildIvarLayout( 4832 const ObjCImplementationDecl *OMD, 4833 bool ForStrongLayout) { 4834 bool hasUnion = false; 4835 4836 llvm::Type *PtrTy = CGM.Int8PtrTy; 4837 if (CGM.getLangOpts().getGC() == LangOptions::NonGC && 4838 !CGM.getLangOpts().ObjCAutoRefCount) 4839 return llvm::Constant::getNullValue(PtrTy); 4840 4841 const ObjCInterfaceDecl *OI = OMD->getClassInterface(); 4842 SmallVector<const FieldDecl*, 32> RecFields; 4843 if (CGM.getLangOpts().ObjCAutoRefCount) { 4844 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin(); 4845 IVD; IVD = IVD->getNextIvar()) 4846 RecFields.push_back(cast<FieldDecl>(IVD)); 4847 } 4848 else { 4849 SmallVector<const ObjCIvarDecl*, 32> Ivars; 4850 CGM.getContext().DeepCollectObjCIvars(OI, true, Ivars); 4851 4852 // FIXME: This is not ideal; we shouldn't have to do this copy. 4853 RecFields.append(Ivars.begin(), Ivars.end()); 4854 } 4855 4856 if (RecFields.empty()) 4857 return llvm::Constant::getNullValue(PtrTy); 4858 4859 SkipIvars.clear(); 4860 IvarsInfo.clear(); 4861 4862 BuildAggrIvarLayout(OMD, 0, 0, RecFields, 0, ForStrongLayout, hasUnion); 4863 if (IvarsInfo.empty()) 4864 return llvm::Constant::getNullValue(PtrTy); 4865 // Sort on byte position in case we encounterred a union nested in 4866 // the ivar list. 4867 if (hasUnion && !IvarsInfo.empty()) 4868 std::sort(IvarsInfo.begin(), IvarsInfo.end()); 4869 if (hasUnion && !SkipIvars.empty()) 4870 std::sort(SkipIvars.begin(), SkipIvars.end()); 4871 4872 std::string BitMap; 4873 llvm::Constant *C = BuildIvarLayoutBitmap(BitMap); 4874 4875 if (CGM.getLangOpts().ObjCGCBitmapPrint) { 4876 printf("\n%s ivar layout for class '%s': ", 4877 ForStrongLayout ? "strong" : "weak", 4878 OMD->getClassInterface()->getName().data()); 4879 const unsigned char *s = (const unsigned char*)BitMap.c_str(); 4880 for (unsigned i = 0, e = BitMap.size(); i < e; i++) 4881 if (!(s[i] & 0xf0)) 4882 printf("0x0%x%s", s[i], s[i] != 0 ? ", " : ""); 4883 else 4884 printf("0x%x%s", s[i], s[i] != 0 ? ", " : ""); 4885 printf("\n"); 4886 } 4887 return C; 4888} 4889 4890llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) { 4891 llvm::GlobalVariable *&Entry = MethodVarNames[Sel]; 4892 4893 // FIXME: Avoid std::string in "Sel.getAsString()" 4894 if (!Entry) 4895 Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_NAME_", 4896 llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()), 4897 ((ObjCABI == 2) ? 4898 "__TEXT,__objc_methname,cstring_literals" : 4899 "__TEXT,__cstring,cstring_literals"), 4900 1, true); 4901 4902 return getConstantGEP(VMContext, Entry, 0, 0); 4903} 4904 4905// FIXME: Merge into a single cstring creation function. 4906llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) { 4907 return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID)); 4908} 4909 4910llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) { 4911 std::string TypeStr; 4912 CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field); 4913 4914 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 4915 4916 if (!Entry) 4917 Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_TYPE_", 4918 llvm::ConstantDataArray::getString(VMContext, TypeStr), 4919 ((ObjCABI == 2) ? 4920 "__TEXT,__objc_methtype,cstring_literals" : 4921 "__TEXT,__cstring,cstring_literals"), 4922 1, true); 4923 4924 return getConstantGEP(VMContext, Entry, 0, 0); 4925} 4926 4927llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D, 4928 bool Extended) { 4929 std::string TypeStr; 4930 if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended)) 4931 return 0; 4932 4933 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr]; 4934 4935 if (!Entry) 4936 Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_TYPE_", 4937 llvm::ConstantDataArray::getString(VMContext, TypeStr), 4938 ((ObjCABI == 2) ? 4939 "__TEXT,__objc_methtype,cstring_literals" : 4940 "__TEXT,__cstring,cstring_literals"), 4941 1, true); 4942 4943 return getConstantGEP(VMContext, Entry, 0, 0); 4944} 4945 4946// FIXME: Merge into a single cstring creation function. 4947llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) { 4948 llvm::GlobalVariable *&Entry = PropertyNames[Ident]; 4949 4950 if (!Entry) 4951 Entry = CreateMetadataVar("\01L_OBJC_PROP_NAME_ATTR_", 4952 llvm::ConstantDataArray::getString(VMContext, 4953 Ident->getNameStart()), 4954 "__TEXT,__cstring,cstring_literals", 4955 1, true); 4956 4957 return getConstantGEP(VMContext, Entry, 0, 0); 4958} 4959 4960// FIXME: Merge into a single cstring creation function. 4961// FIXME: This Decl should be more precise. 4962llvm::Constant * 4963CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD, 4964 const Decl *Container) { 4965 std::string TypeStr; 4966 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr); 4967 return GetPropertyName(&CGM.getContext().Idents.get(TypeStr)); 4968} 4969 4970void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D, 4971 const ObjCContainerDecl *CD, 4972 SmallVectorImpl<char> &Name) { 4973 llvm::raw_svector_ostream OS(Name); 4974 assert (CD && "Missing container decl in GetNameForMethod"); 4975 OS << '\01' << (D->isInstanceMethod() ? '-' : '+') 4976 << '[' << CD->getName(); 4977 if (const ObjCCategoryImplDecl *CID = 4978 dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) 4979 OS << '(' << *CID << ')'; 4980 OS << ' ' << D->getSelector().getAsString() << ']'; 4981} 4982 4983void CGObjCMac::FinishModule() { 4984 EmitModuleInfo(); 4985 4986 // Emit the dummy bodies for any protocols which were referenced but 4987 // never defined. 4988 for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator 4989 I = Protocols.begin(), e = Protocols.end(); I != e; ++I) { 4990 if (I->second->hasInitializer()) 4991 continue; 4992 4993 llvm::Constant *Values[5]; 4994 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy); 4995 Values[1] = GetClassName(I->first); 4996 Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy); 4997 Values[3] = Values[4] = 4998 llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy); 4999 I->second->setLinkage(llvm::GlobalValue::InternalLinkage); 5000 I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy, 5001 Values)); 5002 CGM.AddUsedGlobal(I->second); 5003 } 5004 5005 // Add assembler directives to add lazy undefined symbol references 5006 // for classes which are referenced but not defined. This is 5007 // important for correct linker interaction. 5008 // 5009 // FIXME: It would be nice if we had an LLVM construct for this. 5010 if (!LazySymbols.empty() || !DefinedSymbols.empty()) { 5011 SmallString<256> Asm; 5012 Asm += CGM.getModule().getModuleInlineAsm(); 5013 if (!Asm.empty() && Asm.back() != '\n') 5014 Asm += '\n'; 5015 5016 llvm::raw_svector_ostream OS(Asm); 5017 for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(), 5018 e = DefinedSymbols.end(); I != e; ++I) 5019 OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n" 5020 << "\t.globl .objc_class_name_" << (*I)->getName() << "\n"; 5021 for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(), 5022 e = LazySymbols.end(); I != e; ++I) { 5023 OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n"; 5024 } 5025 5026 for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) { 5027 OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n" 5028 << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n"; 5029 } 5030 5031 CGM.getModule().setModuleInlineAsm(OS.str()); 5032 } 5033} 5034 5035CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm) 5036 : CGObjCCommonMac(cgm), 5037 ObjCTypes(cgm) { 5038 ObjCEmptyCacheVar = ObjCEmptyVtableVar = NULL; 5039 ObjCABI = 2; 5040} 5041 5042/* *** */ 5043 5044ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm) 5045 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(0) 5046{ 5047 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5048 ASTContext &Ctx = CGM.getContext(); 5049 5050 ShortTy = Types.ConvertType(Ctx.ShortTy); 5051 IntTy = Types.ConvertType(Ctx.IntTy); 5052 LongTy = Types.ConvertType(Ctx.LongTy); 5053 LongLongTy = Types.ConvertType(Ctx.LongLongTy); 5054 Int8PtrTy = CGM.Int8PtrTy; 5055 Int8PtrPtrTy = CGM.Int8PtrPtrTy; 5056 5057 ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType()); 5058 PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy); 5059 SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType()); 5060 5061 // I'm not sure I like this. The implicit coordination is a bit 5062 // gross. We should solve this in a reasonable fashion because this 5063 // is a pretty common task (match some runtime data structure with 5064 // an LLVM data structure). 5065 5066 // FIXME: This is leaked. 5067 // FIXME: Merge with rewriter code? 5068 5069 // struct _objc_super { 5070 // id self; 5071 // Class cls; 5072 // } 5073 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5074 Ctx.getTranslationUnitDecl(), 5075 SourceLocation(), SourceLocation(), 5076 &Ctx.Idents.get("_objc_super")); 5077 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 5078 Ctx.getObjCIdType(), 0, 0, false, ICIS_NoInit)); 5079 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 5080 Ctx.getObjCClassType(), 0, 0, false, 5081 ICIS_NoInit)); 5082 RD->completeDefinition(); 5083 5084 SuperCTy = Ctx.getTagDeclType(RD); 5085 SuperPtrCTy = Ctx.getPointerType(SuperCTy); 5086 5087 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy)); 5088 SuperPtrTy = llvm::PointerType::getUnqual(SuperTy); 5089 5090 // struct _prop_t { 5091 // char *name; 5092 // char *attributes; 5093 // } 5094 PropertyTy = llvm::StructType::create("struct._prop_t", 5095 Int8PtrTy, Int8PtrTy, NULL); 5096 5097 // struct _prop_list_t { 5098 // uint32_t entsize; // sizeof(struct _prop_t) 5099 // uint32_t count_of_properties; 5100 // struct _prop_t prop_list[count_of_properties]; 5101 // } 5102 PropertyListTy = 5103 llvm::StructType::create("struct._prop_list_t", IntTy, IntTy, 5104 llvm::ArrayType::get(PropertyTy, 0), NULL); 5105 // struct _prop_list_t * 5106 PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy); 5107 5108 // struct _objc_method { 5109 // SEL _cmd; 5110 // char *method_type; 5111 // char *_imp; 5112 // } 5113 MethodTy = llvm::StructType::create("struct._objc_method", 5114 SelectorPtrTy, Int8PtrTy, Int8PtrTy, 5115 NULL); 5116 5117 // struct _objc_cache * 5118 CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache"); 5119 CachePtrTy = llvm::PointerType::getUnqual(CacheTy); 5120 5121} 5122 5123ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm) 5124 : ObjCCommonTypesHelper(cgm) { 5125 // struct _objc_method_description { 5126 // SEL name; 5127 // char *types; 5128 // } 5129 MethodDescriptionTy = 5130 llvm::StructType::create("struct._objc_method_description", 5131 SelectorPtrTy, Int8PtrTy, NULL); 5132 5133 // struct _objc_method_description_list { 5134 // int count; 5135 // struct _objc_method_description[1]; 5136 // } 5137 MethodDescriptionListTy = 5138 llvm::StructType::create("struct._objc_method_description_list", 5139 IntTy, 5140 llvm::ArrayType::get(MethodDescriptionTy, 0),NULL); 5141 5142 // struct _objc_method_description_list * 5143 MethodDescriptionListPtrTy = 5144 llvm::PointerType::getUnqual(MethodDescriptionListTy); 5145 5146 // Protocol description structures 5147 5148 // struct _objc_protocol_extension { 5149 // uint32_t size; // sizeof(struct _objc_protocol_extension) 5150 // struct _objc_method_description_list *optional_instance_methods; 5151 // struct _objc_method_description_list *optional_class_methods; 5152 // struct _objc_property_list *instance_properties; 5153 // const char ** extendedMethodTypes; 5154 // } 5155 ProtocolExtensionTy = 5156 llvm::StructType::create("struct._objc_protocol_extension", 5157 IntTy, MethodDescriptionListPtrTy, 5158 MethodDescriptionListPtrTy, PropertyListPtrTy, 5159 Int8PtrPtrTy, NULL); 5160 5161 // struct _objc_protocol_extension * 5162 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy); 5163 5164 // Handle recursive construction of Protocol and ProtocolList types 5165 5166 ProtocolTy = 5167 llvm::StructType::create(VMContext, "struct._objc_protocol"); 5168 5169 ProtocolListTy = 5170 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5171 ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy), 5172 LongTy, 5173 llvm::ArrayType::get(ProtocolTy, 0), 5174 NULL); 5175 5176 // struct _objc_protocol { 5177 // struct _objc_protocol_extension *isa; 5178 // char *protocol_name; 5179 // struct _objc_protocol **_objc_protocol_list; 5180 // struct _objc_method_description_list *instance_methods; 5181 // struct _objc_method_description_list *class_methods; 5182 // } 5183 ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy, 5184 llvm::PointerType::getUnqual(ProtocolListTy), 5185 MethodDescriptionListPtrTy, 5186 MethodDescriptionListPtrTy, 5187 NULL); 5188 5189 // struct _objc_protocol_list * 5190 ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy); 5191 5192 ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy); 5193 5194 // Class description structures 5195 5196 // struct _objc_ivar { 5197 // char *ivar_name; 5198 // char *ivar_type; 5199 // int ivar_offset; 5200 // } 5201 IvarTy = llvm::StructType::create("struct._objc_ivar", 5202 Int8PtrTy, Int8PtrTy, IntTy, NULL); 5203 5204 // struct _objc_ivar_list * 5205 IvarListTy = 5206 llvm::StructType::create(VMContext, "struct._objc_ivar_list"); 5207 IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy); 5208 5209 // struct _objc_method_list * 5210 MethodListTy = 5211 llvm::StructType::create(VMContext, "struct._objc_method_list"); 5212 MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy); 5213 5214 // struct _objc_class_extension * 5215 ClassExtensionTy = 5216 llvm::StructType::create("struct._objc_class_extension", 5217 IntTy, Int8PtrTy, PropertyListPtrTy, NULL); 5218 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy); 5219 5220 ClassTy = llvm::StructType::create(VMContext, "struct._objc_class"); 5221 5222 // struct _objc_class { 5223 // Class isa; 5224 // Class super_class; 5225 // char *name; 5226 // long version; 5227 // long info; 5228 // long instance_size; 5229 // struct _objc_ivar_list *ivars; 5230 // struct _objc_method_list *methods; 5231 // struct _objc_cache *cache; 5232 // struct _objc_protocol_list *protocols; 5233 // char *ivar_layout; 5234 // struct _objc_class_ext *ext; 5235 // }; 5236 ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy), 5237 llvm::PointerType::getUnqual(ClassTy), 5238 Int8PtrTy, 5239 LongTy, 5240 LongTy, 5241 LongTy, 5242 IvarListPtrTy, 5243 MethodListPtrTy, 5244 CachePtrTy, 5245 ProtocolListPtrTy, 5246 Int8PtrTy, 5247 ClassExtensionPtrTy, 5248 NULL); 5249 5250 ClassPtrTy = llvm::PointerType::getUnqual(ClassTy); 5251 5252 // struct _objc_category { 5253 // char *category_name; 5254 // char *class_name; 5255 // struct _objc_method_list *instance_method; 5256 // struct _objc_method_list *class_method; 5257 // uint32_t size; // sizeof(struct _objc_category) 5258 // struct _objc_property_list *instance_properties;// category's @property 5259 // } 5260 CategoryTy = 5261 llvm::StructType::create("struct._objc_category", 5262 Int8PtrTy, Int8PtrTy, MethodListPtrTy, 5263 MethodListPtrTy, ProtocolListPtrTy, 5264 IntTy, PropertyListPtrTy, NULL); 5265 5266 // Global metadata structures 5267 5268 // struct _objc_symtab { 5269 // long sel_ref_cnt; 5270 // SEL *refs; 5271 // short cls_def_cnt; 5272 // short cat_def_cnt; 5273 // char *defs[cls_def_cnt + cat_def_cnt]; 5274 // } 5275 SymtabTy = 5276 llvm::StructType::create("struct._objc_symtab", 5277 LongTy, SelectorPtrTy, ShortTy, ShortTy, 5278 llvm::ArrayType::get(Int8PtrTy, 0), NULL); 5279 SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy); 5280 5281 // struct _objc_module { 5282 // long version; 5283 // long size; // sizeof(struct _objc_module) 5284 // char *name; 5285 // struct _objc_symtab* symtab; 5286 // } 5287 ModuleTy = 5288 llvm::StructType::create("struct._objc_module", 5289 LongTy, LongTy, Int8PtrTy, SymtabPtrTy, NULL); 5290 5291 5292 // FIXME: This is the size of the setjmp buffer and should be target 5293 // specific. 18 is what's used on 32-bit X86. 5294 uint64_t SetJmpBufferSize = 18; 5295 5296 // Exceptions 5297 llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4); 5298 5299 ExceptionDataTy = 5300 llvm::StructType::create("struct._objc_exception_data", 5301 llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize), 5302 StackPtrTy, NULL); 5303 5304} 5305 5306ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm) 5307 : ObjCCommonTypesHelper(cgm) { 5308 // struct _method_list_t { 5309 // uint32_t entsize; // sizeof(struct _objc_method) 5310 // uint32_t method_count; 5311 // struct _objc_method method_list[method_count]; 5312 // } 5313 MethodListnfABITy = 5314 llvm::StructType::create("struct.__method_list_t", IntTy, IntTy, 5315 llvm::ArrayType::get(MethodTy, 0), NULL); 5316 // struct method_list_t * 5317 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy); 5318 5319 // struct _protocol_t { 5320 // id isa; // NULL 5321 // const char * const protocol_name; 5322 // const struct _protocol_list_t * protocol_list; // super protocols 5323 // const struct method_list_t * const instance_methods; 5324 // const struct method_list_t * const class_methods; 5325 // const struct method_list_t *optionalInstanceMethods; 5326 // const struct method_list_t *optionalClassMethods; 5327 // const struct _prop_list_t * properties; 5328 // const uint32_t size; // sizeof(struct _protocol_t) 5329 // const uint32_t flags; // = 0 5330 // const char ** extendedMethodTypes; 5331 // } 5332 5333 // Holder for struct _protocol_list_t * 5334 ProtocolListnfABITy = 5335 llvm::StructType::create(VMContext, "struct._objc_protocol_list"); 5336 5337 ProtocolnfABITy = 5338 llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy, 5339 llvm::PointerType::getUnqual(ProtocolListnfABITy), 5340 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5341 MethodListnfABIPtrTy, MethodListnfABIPtrTy, 5342 PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy, 5343 NULL); 5344 5345 // struct _protocol_t* 5346 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy); 5347 5348 // struct _protocol_list_t { 5349 // long protocol_count; // Note, this is 32/64 bit 5350 // struct _protocol_t *[protocol_count]; 5351 // } 5352 ProtocolListnfABITy->setBody(LongTy, 5353 llvm::ArrayType::get(ProtocolnfABIPtrTy, 0), 5354 NULL); 5355 5356 // struct _objc_protocol_list* 5357 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy); 5358 5359 // struct _ivar_t { 5360 // unsigned long int *offset; // pointer to ivar offset location 5361 // char *name; 5362 // char *type; 5363 // uint32_t alignment; 5364 // uint32_t size; 5365 // } 5366 IvarnfABITy = 5367 llvm::StructType::create("struct._ivar_t", 5368 llvm::PointerType::getUnqual(LongTy), 5369 Int8PtrTy, Int8PtrTy, IntTy, IntTy, NULL); 5370 5371 // struct _ivar_list_t { 5372 // uint32 entsize; // sizeof(struct _ivar_t) 5373 // uint32 count; 5374 // struct _iver_t list[count]; 5375 // } 5376 IvarListnfABITy = 5377 llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy, 5378 llvm::ArrayType::get(IvarnfABITy, 0), NULL); 5379 5380 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy); 5381 5382 // struct _class_ro_t { 5383 // uint32_t const flags; 5384 // uint32_t const instanceStart; 5385 // uint32_t const instanceSize; 5386 // uint32_t const reserved; // only when building for 64bit targets 5387 // const uint8_t * const ivarLayout; 5388 // const char *const name; 5389 // const struct _method_list_t * const baseMethods; 5390 // const struct _objc_protocol_list *const baseProtocols; 5391 // const struct _ivar_list_t *const ivars; 5392 // const uint8_t * const weakIvarLayout; 5393 // const struct _prop_list_t * const properties; 5394 // } 5395 5396 // FIXME. Add 'reserved' field in 64bit abi mode! 5397 ClassRonfABITy = llvm::StructType::create("struct._class_ro_t", 5398 IntTy, IntTy, IntTy, Int8PtrTy, 5399 Int8PtrTy, MethodListnfABIPtrTy, 5400 ProtocolListnfABIPtrTy, 5401 IvarListnfABIPtrTy, 5402 Int8PtrTy, PropertyListPtrTy, NULL); 5403 5404 // ImpnfABITy - LLVM for id (*)(id, SEL, ...) 5405 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy }; 5406 ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false) 5407 ->getPointerTo(); 5408 5409 // struct _class_t { 5410 // struct _class_t *isa; 5411 // struct _class_t * const superclass; 5412 // void *cache; 5413 // IMP *vtable; 5414 // struct class_ro_t *ro; 5415 // } 5416 5417 ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t"); 5418 ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy), 5419 llvm::PointerType::getUnqual(ClassnfABITy), 5420 CachePtrTy, 5421 llvm::PointerType::getUnqual(ImpnfABITy), 5422 llvm::PointerType::getUnqual(ClassRonfABITy), 5423 NULL); 5424 5425 // LLVM for struct _class_t * 5426 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy); 5427 5428 // struct _category_t { 5429 // const char * const name; 5430 // struct _class_t *const cls; 5431 // const struct _method_list_t * const instance_methods; 5432 // const struct _method_list_t * const class_methods; 5433 // const struct _protocol_list_t * const protocols; 5434 // const struct _prop_list_t * const properties; 5435 // } 5436 CategorynfABITy = llvm::StructType::create("struct._category_t", 5437 Int8PtrTy, ClassnfABIPtrTy, 5438 MethodListnfABIPtrTy, 5439 MethodListnfABIPtrTy, 5440 ProtocolListnfABIPtrTy, 5441 PropertyListPtrTy, 5442 NULL); 5443 5444 // New types for nonfragile abi messaging. 5445 CodeGen::CodeGenTypes &Types = CGM.getTypes(); 5446 ASTContext &Ctx = CGM.getContext(); 5447 5448 // MessageRefTy - LLVM for: 5449 // struct _message_ref_t { 5450 // IMP messenger; 5451 // SEL name; 5452 // }; 5453 5454 // First the clang type for struct _message_ref_t 5455 RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct, 5456 Ctx.getTranslationUnitDecl(), 5457 SourceLocation(), SourceLocation(), 5458 &Ctx.Idents.get("_message_ref_t")); 5459 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 5460 Ctx.VoidPtrTy, 0, 0, false, ICIS_NoInit)); 5461 RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(), 0, 5462 Ctx.getObjCSelType(), 0, 0, false, 5463 ICIS_NoInit)); 5464 RD->completeDefinition(); 5465 5466 MessageRefCTy = Ctx.getTagDeclType(RD); 5467 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy); 5468 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy)); 5469 5470 // MessageRefPtrTy - LLVM for struct _message_ref_t* 5471 MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy); 5472 5473 // SuperMessageRefTy - LLVM for: 5474 // struct _super_message_ref_t { 5475 // SUPER_IMP messenger; 5476 // SEL name; 5477 // }; 5478 SuperMessageRefTy = 5479 llvm::StructType::create("struct._super_message_ref_t", 5480 ImpnfABITy, SelectorPtrTy, NULL); 5481 5482 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t* 5483 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy); 5484 5485 5486 // struct objc_typeinfo { 5487 // const void** vtable; // objc_ehtype_vtable + 2 5488 // const char* name; // c++ typeinfo string 5489 // Class cls; 5490 // }; 5491 EHTypeTy = 5492 llvm::StructType::create("struct._objc_typeinfo", 5493 llvm::PointerType::getUnqual(Int8PtrTy), 5494 Int8PtrTy, ClassnfABIPtrTy, NULL); 5495 EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy); 5496} 5497 5498llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() { 5499 FinishNonFragileABIModule(); 5500 5501 return NULL; 5502} 5503 5504void CGObjCNonFragileABIMac:: 5505AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container, 5506 const char *SymbolName, 5507 const char *SectionName) { 5508 unsigned NumClasses = Container.size(); 5509 5510 if (!NumClasses) 5511 return; 5512 5513 SmallVector<llvm::Constant*, 8> Symbols(NumClasses); 5514 for (unsigned i=0; i<NumClasses; i++) 5515 Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i], 5516 ObjCTypes.Int8PtrTy); 5517 llvm::Constant *Init = 5518 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy, 5519 Symbols.size()), 5520 Symbols); 5521 5522 llvm::GlobalVariable *GV = 5523 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 5524 llvm::GlobalValue::InternalLinkage, 5525 Init, 5526 SymbolName); 5527 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 5528 GV->setSection(SectionName); 5529 CGM.AddUsedGlobal(GV); 5530} 5531 5532void CGObjCNonFragileABIMac::FinishNonFragileABIModule() { 5533 // nonfragile abi has no module definition. 5534 5535 // Build list of all implemented class addresses in array 5536 // L_OBJC_LABEL_CLASS_$. 5537 AddModuleClassList(DefinedClasses, 5538 "\01L_OBJC_LABEL_CLASS_$", 5539 "__DATA, __objc_classlist, regular, no_dead_strip"); 5540 5541 for (unsigned i = 0, e = DefinedClasses.size(); i < e; i++) { 5542 llvm::GlobalValue *IMPLGV = DefinedClasses[i]; 5543 if (IMPLGV->getLinkage() != llvm::GlobalValue::ExternalWeakLinkage) 5544 continue; 5545 IMPLGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5546 } 5547 5548 for (unsigned i = 0, e = DefinedMetaClasses.size(); i < e; i++) { 5549 llvm::GlobalValue *IMPLGV = DefinedMetaClasses[i]; 5550 if (IMPLGV->getLinkage() != llvm::GlobalValue::ExternalWeakLinkage) 5551 continue; 5552 IMPLGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5553 } 5554 5555 AddModuleClassList(DefinedNonLazyClasses, 5556 "\01L_OBJC_LABEL_NONLAZY_CLASS_$", 5557 "__DATA, __objc_nlclslist, regular, no_dead_strip"); 5558 5559 // Build list of all implemented category addresses in array 5560 // L_OBJC_LABEL_CATEGORY_$. 5561 AddModuleClassList(DefinedCategories, 5562 "\01L_OBJC_LABEL_CATEGORY_$", 5563 "__DATA, __objc_catlist, regular, no_dead_strip"); 5564 AddModuleClassList(DefinedNonLazyCategories, 5565 "\01L_OBJC_LABEL_NONLAZY_CATEGORY_$", 5566 "__DATA, __objc_nlcatlist, regular, no_dead_strip"); 5567 5568 EmitImageInfo(); 5569} 5570 5571/// isVTableDispatchedSelector - Returns true if SEL is not in the list of 5572/// VTableDispatchMethods; false otherwise. What this means is that 5573/// except for the 19 selectors in the list, we generate 32bit-style 5574/// message dispatch call for all the rest. 5575bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) { 5576 // At various points we've experimented with using vtable-based 5577 // dispatch for all methods. 5578 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) { 5579 case CodeGenOptions::Legacy: 5580 return false; 5581 case CodeGenOptions::NonLegacy: 5582 return true; 5583 case CodeGenOptions::Mixed: 5584 break; 5585 } 5586 5587 // If so, see whether this selector is in the white-list of things which must 5588 // use the new dispatch convention. We lazily build a dense set for this. 5589 if (VTableDispatchMethods.empty()) { 5590 VTableDispatchMethods.insert(GetNullarySelector("alloc")); 5591 VTableDispatchMethods.insert(GetNullarySelector("class")); 5592 VTableDispatchMethods.insert(GetNullarySelector("self")); 5593 VTableDispatchMethods.insert(GetNullarySelector("isFlipped")); 5594 VTableDispatchMethods.insert(GetNullarySelector("length")); 5595 VTableDispatchMethods.insert(GetNullarySelector("count")); 5596 5597 // These are vtable-based if GC is disabled. 5598 // Optimistically use vtable dispatch for hybrid compiles. 5599 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 5600 VTableDispatchMethods.insert(GetNullarySelector("retain")); 5601 VTableDispatchMethods.insert(GetNullarySelector("release")); 5602 VTableDispatchMethods.insert(GetNullarySelector("autorelease")); 5603 } 5604 5605 VTableDispatchMethods.insert(GetUnarySelector("allocWithZone")); 5606 VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass")); 5607 VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector")); 5608 VTableDispatchMethods.insert(GetUnarySelector("objectForKey")); 5609 VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex")); 5610 VTableDispatchMethods.insert(GetUnarySelector("isEqualToString")); 5611 VTableDispatchMethods.insert(GetUnarySelector("isEqual")); 5612 5613 // These are vtable-based if GC is enabled. 5614 // Optimistically use vtable dispatch for hybrid compiles. 5615 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) { 5616 VTableDispatchMethods.insert(GetNullarySelector("hash")); 5617 VTableDispatchMethods.insert(GetUnarySelector("addObject")); 5618 5619 // "countByEnumeratingWithState:objects:count" 5620 IdentifierInfo *KeyIdents[] = { 5621 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 5622 &CGM.getContext().Idents.get("objects"), 5623 &CGM.getContext().Idents.get("count") 5624 }; 5625 VTableDispatchMethods.insert( 5626 CGM.getContext().Selectors.getSelector(3, KeyIdents)); 5627 } 5628 } 5629 5630 return VTableDispatchMethods.count(Sel); 5631} 5632 5633/// BuildClassRoTInitializer - generate meta-data for: 5634/// struct _class_ro_t { 5635/// uint32_t const flags; 5636/// uint32_t const instanceStart; 5637/// uint32_t const instanceSize; 5638/// uint32_t const reserved; // only when building for 64bit targets 5639/// const uint8_t * const ivarLayout; 5640/// const char *const name; 5641/// const struct _method_list_t * const baseMethods; 5642/// const struct _protocol_list_t *const baseProtocols; 5643/// const struct _ivar_list_t *const ivars; 5644/// const uint8_t * const weakIvarLayout; 5645/// const struct _prop_list_t * const properties; 5646/// } 5647/// 5648llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer( 5649 unsigned flags, 5650 unsigned InstanceStart, 5651 unsigned InstanceSize, 5652 const ObjCImplementationDecl *ID) { 5653 std::string ClassName = ID->getNameAsString(); 5654 llvm::Constant *Values[10]; // 11 for 64bit targets! 5655 5656 if (CGM.getLangOpts().ObjCAutoRefCount) 5657 flags |= NonFragileABI_Class_CompiledByARC; 5658 5659 Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags); 5660 Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart); 5661 Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize); 5662 // FIXME. For 64bit targets add 0 here. 5663 Values[ 3] = (flags & NonFragileABI_Class_Meta) 5664 ? GetIvarLayoutName(0, ObjCTypes) 5665 : BuildIvarLayout(ID, true); 5666 Values[ 4] = GetClassName(ID->getIdentifier()); 5667 // const struct _method_list_t * const baseMethods; 5668 std::vector<llvm::Constant*> Methods; 5669 std::string MethodListName("\01l_OBJC_$_"); 5670 if (flags & NonFragileABI_Class_Meta) { 5671 MethodListName += "CLASS_METHODS_" + ID->getNameAsString(); 5672 for (ObjCImplementationDecl::classmeth_iterator 5673 i = ID->classmeth_begin(), e = ID->classmeth_end(); i != e; ++i) { 5674 // Class methods should always be defined. 5675 Methods.push_back(GetMethodConstant(*i)); 5676 } 5677 } else { 5678 MethodListName += "INSTANCE_METHODS_" + ID->getNameAsString(); 5679 for (ObjCImplementationDecl::instmeth_iterator 5680 i = ID->instmeth_begin(), e = ID->instmeth_end(); i != e; ++i) { 5681 // Instance methods should always be defined. 5682 Methods.push_back(GetMethodConstant(*i)); 5683 } 5684 for (ObjCImplementationDecl::propimpl_iterator 5685 i = ID->propimpl_begin(), e = ID->propimpl_end(); i != e; ++i) { 5686 ObjCPropertyImplDecl *PID = *i; 5687 5688 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){ 5689 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5690 5691 if (ObjCMethodDecl *MD = PD->getGetterMethodDecl()) 5692 if (llvm::Constant *C = GetMethodConstant(MD)) 5693 Methods.push_back(C); 5694 if (ObjCMethodDecl *MD = PD->getSetterMethodDecl()) 5695 if (llvm::Constant *C = GetMethodConstant(MD)) 5696 Methods.push_back(C); 5697 } 5698 } 5699 } 5700 Values[ 5] = EmitMethodList(MethodListName, 5701 "__DATA, __objc_const", Methods); 5702 5703 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 5704 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer"); 5705 Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_" 5706 + OID->getName(), 5707 OID->all_referenced_protocol_begin(), 5708 OID->all_referenced_protocol_end()); 5709 5710 if (flags & NonFragileABI_Class_Meta) { 5711 Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 5712 Values[ 8] = GetIvarLayoutName(0, ObjCTypes); 5713 Values[ 9] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 5714 } else { 5715 Values[ 7] = EmitIvarList(ID); 5716 Values[ 8] = BuildIvarLayout(ID, false); 5717 Values[ 9] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(), 5718 ID, ID->getClassInterface(), ObjCTypes); 5719 } 5720 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy, 5721 Values); 5722 llvm::GlobalVariable *CLASS_RO_GV = 5723 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false, 5724 llvm::GlobalValue::InternalLinkage, 5725 Init, 5726 (flags & NonFragileABI_Class_Meta) ? 5727 std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName : 5728 std::string("\01l_OBJC_CLASS_RO_$_")+ClassName); 5729 CLASS_RO_GV->setAlignment( 5730 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy)); 5731 CLASS_RO_GV->setSection("__DATA, __objc_const"); 5732 return CLASS_RO_GV; 5733 5734} 5735 5736/// BuildClassMetaData - This routine defines that to-level meta-data 5737/// for the given ClassName for: 5738/// struct _class_t { 5739/// struct _class_t *isa; 5740/// struct _class_t * const superclass; 5741/// void *cache; 5742/// IMP *vtable; 5743/// struct class_ro_t *ro; 5744/// } 5745/// 5746llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassMetaData( 5747 std::string &ClassName, 5748 llvm::Constant *IsAGV, 5749 llvm::Constant *SuperClassGV, 5750 llvm::Constant *ClassRoGV, 5751 bool HiddenVisibility) { 5752 llvm::Constant *Values[] = { 5753 IsAGV, 5754 SuperClassGV, 5755 ObjCEmptyCacheVar, // &ObjCEmptyCacheVar 5756 ObjCEmptyVtableVar, // &ObjCEmptyVtableVar 5757 ClassRoGV // &CLASS_RO_GV 5758 }; 5759 if (!Values[1]) 5760 Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy); 5761 if (!Values[3]) 5762 Values[3] = llvm::Constant::getNullValue( 5763 llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy)); 5764 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy, 5765 Values); 5766 llvm::GlobalVariable *GV = GetClassGlobal(ClassName); 5767 GV->setInitializer(Init); 5768 GV->setSection("__DATA, __objc_data"); 5769 GV->setAlignment( 5770 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy)); 5771 if (HiddenVisibility) 5772 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5773 return GV; 5774} 5775 5776bool 5777CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const { 5778 return OD->getClassMethod(GetNullarySelector("load")) != 0; 5779} 5780 5781void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID, 5782 uint32_t &InstanceStart, 5783 uint32_t &InstanceSize) { 5784 const ASTRecordLayout &RL = 5785 CGM.getContext().getASTObjCImplementationLayout(OID); 5786 5787 // InstanceSize is really instance end. 5788 InstanceSize = RL.getDataSize().getQuantity(); 5789 5790 // If there are no fields, the start is the same as the end. 5791 if (!RL.getFieldCount()) 5792 InstanceStart = InstanceSize; 5793 else 5794 InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth(); 5795} 5796 5797void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) { 5798 std::string ClassName = ID->getNameAsString(); 5799 if (!ObjCEmptyCacheVar) { 5800 ObjCEmptyCacheVar = new llvm::GlobalVariable( 5801 CGM.getModule(), 5802 ObjCTypes.CacheTy, 5803 false, 5804 llvm::GlobalValue::ExternalLinkage, 5805 0, 5806 "_objc_empty_cache"); 5807 5808 // Make this entry NULL for any iOS device target, any iOS simulator target, 5809 // OS X with deployment target 10.9 or later. 5810 const llvm::Triple &Triple = CGM.getTarget().getTriple(); 5811 if (Triple.isiOS() || (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9))) 5812 // This entry will be null. 5813 ObjCEmptyVtableVar = 0; 5814 else 5815 ObjCEmptyVtableVar = new llvm::GlobalVariable( 5816 CGM.getModule(), 5817 ObjCTypes.ImpnfABITy, 5818 false, 5819 llvm::GlobalValue::ExternalLinkage, 5820 0, 5821 "_objc_empty_vtable"); 5822 } 5823 assert(ID->getClassInterface() && 5824 "CGObjCNonFragileABIMac::GenerateClass - class is 0"); 5825 // FIXME: Is this correct (that meta class size is never computed)? 5826 uint32_t InstanceStart = 5827 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy); 5828 uint32_t InstanceSize = InstanceStart; 5829 uint32_t flags = NonFragileABI_Class_Meta; 5830 std::string ObjCMetaClassName(getMetaclassSymbolPrefix()); 5831 std::string ObjCClassName(getClassSymbolPrefix()); 5832 5833 llvm::GlobalVariable *SuperClassGV, *IsAGV; 5834 5835 // Build the flags for the metaclass. 5836 bool classIsHidden = 5837 ID->getClassInterface()->getVisibility() == HiddenVisibility; 5838 if (classIsHidden) 5839 flags |= NonFragileABI_Class_Hidden; 5840 5841 // FIXME: why is this flag set on the metaclass? 5842 // ObjC metaclasses have no fields and don't really get constructed. 5843 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 5844 flags |= NonFragileABI_Class_HasCXXStructors; 5845 if (!ID->hasNonZeroConstructors()) 5846 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 5847 } 5848 5849 if (!ID->getClassInterface()->getSuperClass()) { 5850 // class is root 5851 flags |= NonFragileABI_Class_Root; 5852 SuperClassGV = GetClassGlobal(ObjCClassName + ClassName); 5853 IsAGV = GetClassGlobal(ObjCMetaClassName + ClassName); 5854 } else { 5855 // Has a root. Current class is not a root. 5856 const ObjCInterfaceDecl *Root = ID->getClassInterface(); 5857 while (const ObjCInterfaceDecl *Super = Root->getSuperClass()) 5858 Root = Super; 5859 IsAGV = GetClassGlobal(ObjCMetaClassName + Root->getNameAsString()); 5860 if (Root->isWeakImported()) 5861 IsAGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 5862 // work on super class metadata symbol. 5863 std::string SuperClassName = 5864 ObjCMetaClassName + 5865 ID->getClassInterface()->getSuperClass()->getNameAsString(); 5866 SuperClassGV = GetClassGlobal(SuperClassName); 5867 if (ID->getClassInterface()->getSuperClass()->isWeakImported()) 5868 SuperClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 5869 } 5870 llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags, 5871 InstanceStart, 5872 InstanceSize,ID); 5873 std::string TClassName = ObjCMetaClassName + ClassName; 5874 llvm::GlobalVariable *MetaTClass = 5875 BuildClassMetaData(TClassName, IsAGV, SuperClassGV, CLASS_RO_GV, 5876 classIsHidden); 5877 DefinedMetaClasses.push_back(MetaTClass); 5878 5879 // Metadata for the class 5880 flags = 0; 5881 if (classIsHidden) 5882 flags |= NonFragileABI_Class_Hidden; 5883 5884 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) { 5885 flags |= NonFragileABI_Class_HasCXXStructors; 5886 5887 // Set a flag to enable a runtime optimization when a class has 5888 // fields that require destruction but which don't require 5889 // anything except zero-initialization during construction. This 5890 // is most notably true of __strong and __weak types, but you can 5891 // also imagine there being C++ types with non-trivial default 5892 // constructors that merely set all fields to null. 5893 if (!ID->hasNonZeroConstructors()) 5894 flags |= NonFragileABI_Class_HasCXXDestructorOnly; 5895 } 5896 5897 if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface())) 5898 flags |= NonFragileABI_Class_Exception; 5899 5900 if (!ID->getClassInterface()->getSuperClass()) { 5901 flags |= NonFragileABI_Class_Root; 5902 SuperClassGV = 0; 5903 } else { 5904 // Has a root. Current class is not a root. 5905 std::string RootClassName = 5906 ID->getClassInterface()->getSuperClass()->getNameAsString(); 5907 SuperClassGV = GetClassGlobal(ObjCClassName + RootClassName); 5908 if (ID->getClassInterface()->getSuperClass()->isWeakImported()) 5909 SuperClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 5910 } 5911 GetClassSizeInfo(ID, InstanceStart, InstanceSize); 5912 CLASS_RO_GV = BuildClassRoTInitializer(flags, 5913 InstanceStart, 5914 InstanceSize, 5915 ID); 5916 5917 TClassName = ObjCClassName + ClassName; 5918 llvm::GlobalVariable *ClassMD = 5919 BuildClassMetaData(TClassName, MetaTClass, SuperClassGV, CLASS_RO_GV, 5920 classIsHidden); 5921 DefinedClasses.push_back(ClassMD); 5922 5923 // Determine if this class is also "non-lazy". 5924 if (ImplementationIsNonLazy(ID)) 5925 DefinedNonLazyClasses.push_back(ClassMD); 5926 5927 // Force the definition of the EHType if necessary. 5928 if (flags & NonFragileABI_Class_Exception) 5929 GetInterfaceEHType(ID->getClassInterface(), true); 5930 // Make sure method definition entries are all clear for next implementation. 5931 MethodDefinitions.clear(); 5932} 5933 5934/// GenerateProtocolRef - This routine is called to generate code for 5935/// a protocol reference expression; as in: 5936/// @code 5937/// @protocol(Proto1); 5938/// @endcode 5939/// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1 5940/// which will hold address of the protocol meta-data. 5941/// 5942llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF, 5943 const ObjCProtocolDecl *PD) { 5944 5945 // This routine is called for @protocol only. So, we must build definition 5946 // of protocol's meta-data (not a reference to it!) 5947 // 5948 llvm::Constant *Init = 5949 llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD), 5950 ObjCTypes.getExternalProtocolPtrTy()); 5951 5952 std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_"); 5953 ProtocolName += PD->getName(); 5954 5955 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName); 5956 if (PTGV) 5957 return CGF.Builder.CreateLoad(PTGV); 5958 PTGV = new llvm::GlobalVariable( 5959 CGM.getModule(), 5960 Init->getType(), false, 5961 llvm::GlobalValue::WeakAnyLinkage, 5962 Init, 5963 ProtocolName); 5964 PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip"); 5965 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 5966 CGM.AddUsedGlobal(PTGV); 5967 return CGF.Builder.CreateLoad(PTGV); 5968} 5969 5970/// GenerateCategory - Build metadata for a category implementation. 5971/// struct _category_t { 5972/// const char * const name; 5973/// struct _class_t *const cls; 5974/// const struct _method_list_t * const instance_methods; 5975/// const struct _method_list_t * const class_methods; 5976/// const struct _protocol_list_t * const protocols; 5977/// const struct _prop_list_t * const properties; 5978/// } 5979/// 5980void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) { 5981 const ObjCInterfaceDecl *Interface = OCD->getClassInterface(); 5982 const char *Prefix = "\01l_OBJC_$_CATEGORY_"; 5983 std::string ExtCatName(Prefix + Interface->getNameAsString()+ 5984 "_$_" + OCD->getNameAsString()); 5985 std::string ExtClassName(getClassSymbolPrefix() + 5986 Interface->getNameAsString()); 5987 5988 llvm::Constant *Values[6]; 5989 Values[0] = GetClassName(OCD->getIdentifier()); 5990 // meta-class entry symbol 5991 llvm::GlobalVariable *ClassGV = GetClassGlobal(ExtClassName); 5992 if (Interface->isWeakImported()) 5993 ClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 5994 5995 Values[1] = ClassGV; 5996 std::vector<llvm::Constant*> Methods; 5997 std::string MethodListName(Prefix); 5998 MethodListName += "INSTANCE_METHODS_" + Interface->getNameAsString() + 5999 "_$_" + OCD->getNameAsString(); 6000 6001 for (ObjCCategoryImplDecl::instmeth_iterator 6002 i = OCD->instmeth_begin(), e = OCD->instmeth_end(); i != e; ++i) { 6003 // Instance methods should always be defined. 6004 Methods.push_back(GetMethodConstant(*i)); 6005 } 6006 6007 Values[2] = EmitMethodList(MethodListName, 6008 "__DATA, __objc_const", 6009 Methods); 6010 6011 MethodListName = Prefix; 6012 MethodListName += "CLASS_METHODS_" + Interface->getNameAsString() + "_$_" + 6013 OCD->getNameAsString(); 6014 Methods.clear(); 6015 for (ObjCCategoryImplDecl::classmeth_iterator 6016 i = OCD->classmeth_begin(), e = OCD->classmeth_end(); i != e; ++i) { 6017 // Class methods should always be defined. 6018 Methods.push_back(GetMethodConstant(*i)); 6019 } 6020 6021 Values[3] = EmitMethodList(MethodListName, 6022 "__DATA, __objc_const", 6023 Methods); 6024 const ObjCCategoryDecl *Category = 6025 Interface->FindCategoryDeclaration(OCD->getIdentifier()); 6026 if (Category) { 6027 SmallString<256> ExtName; 6028 llvm::raw_svector_ostream(ExtName) << Interface->getName() << "_$_" 6029 << OCD->getName(); 6030 Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_" 6031 + Interface->getName() + "_$_" 6032 + Category->getName(), 6033 Category->protocol_begin(), 6034 Category->protocol_end()); 6035 Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(), 6036 OCD, Category, ObjCTypes); 6037 } else { 6038 Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6039 Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy); 6040 } 6041 6042 llvm::Constant *Init = 6043 llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy, 6044 Values); 6045 llvm::GlobalVariable *GCATV 6046 = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy, 6047 false, 6048 llvm::GlobalValue::InternalLinkage, 6049 Init, 6050 ExtCatName); 6051 GCATV->setAlignment( 6052 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy)); 6053 GCATV->setSection("__DATA, __objc_const"); 6054 CGM.AddUsedGlobal(GCATV); 6055 DefinedCategories.push_back(GCATV); 6056 6057 // Determine if this category is also "non-lazy". 6058 if (ImplementationIsNonLazy(OCD)) 6059 DefinedNonLazyCategories.push_back(GCATV); 6060 // method definition entries must be clear for next implementation. 6061 MethodDefinitions.clear(); 6062} 6063 6064/// GetMethodConstant - Return a struct objc_method constant for the 6065/// given method if it has been defined. The result is null if the 6066/// method has not been defined. The return value has type MethodPtrTy. 6067llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant( 6068 const ObjCMethodDecl *MD) { 6069 llvm::Function *Fn = GetMethodDefinition(MD); 6070 if (!Fn) 6071 return 0; 6072 6073 llvm::Constant *Method[] = { 6074 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6075 ObjCTypes.SelectorPtrTy), 6076 GetMethodVarType(MD), 6077 llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy) 6078 }; 6079 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method); 6080} 6081 6082/// EmitMethodList - Build meta-data for method declarations 6083/// struct _method_list_t { 6084/// uint32_t entsize; // sizeof(struct _objc_method) 6085/// uint32_t method_count; 6086/// struct _objc_method method_list[method_count]; 6087/// } 6088/// 6089llvm::Constant * 6090CGObjCNonFragileABIMac::EmitMethodList(Twine Name, 6091 const char *Section, 6092 ArrayRef<llvm::Constant*> Methods) { 6093 // Return null for empty list. 6094 if (Methods.empty()) 6095 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy); 6096 6097 llvm::Constant *Values[3]; 6098 // sizeof(struct _objc_method) 6099 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy); 6100 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6101 // method_count 6102 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size()); 6103 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy, 6104 Methods.size()); 6105 Values[2] = llvm::ConstantArray::get(AT, Methods); 6106 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6107 6108 llvm::GlobalVariable *GV = 6109 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6110 llvm::GlobalValue::InternalLinkage, Init, Name); 6111 GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6112 GV->setSection(Section); 6113 CGM.AddUsedGlobal(GV); 6114 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy); 6115} 6116 6117/// ObjCIvarOffsetVariable - Returns the ivar offset variable for 6118/// the given ivar. 6119llvm::GlobalVariable * 6120CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID, 6121 const ObjCIvarDecl *Ivar) { 6122 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); 6123 std::string Name = "OBJC_IVAR_$_" + Container->getNameAsString() + 6124 '.' + Ivar->getNameAsString(); 6125 llvm::GlobalVariable *IvarOffsetGV = 6126 CGM.getModule().getGlobalVariable(Name); 6127 if (!IvarOffsetGV) 6128 IvarOffsetGV = 6129 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.LongTy, 6130 false, 6131 llvm::GlobalValue::ExternalLinkage, 6132 0, 6133 Name); 6134 return IvarOffsetGV; 6135} 6136 6137llvm::Constant * 6138CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID, 6139 const ObjCIvarDecl *Ivar, 6140 unsigned long int Offset) { 6141 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar); 6142 IvarOffsetGV->setInitializer(llvm::ConstantInt::get(ObjCTypes.LongTy, 6143 Offset)); 6144 IvarOffsetGV->setAlignment( 6145 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.LongTy)); 6146 6147 // FIXME: This matches gcc, but shouldn't the visibility be set on the use as 6148 // well (i.e., in ObjCIvarOffsetVariable). 6149 if (Ivar->getAccessControl() == ObjCIvarDecl::Private || 6150 Ivar->getAccessControl() == ObjCIvarDecl::Package || 6151 ID->getVisibility() == HiddenVisibility) 6152 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6153 else 6154 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility); 6155 IvarOffsetGV->setSection("__DATA, __objc_ivar"); 6156 return IvarOffsetGV; 6157} 6158 6159/// EmitIvarList - Emit the ivar list for the given 6160/// implementation. The return value has type 6161/// IvarListnfABIPtrTy. 6162/// struct _ivar_t { 6163/// unsigned long int *offset; // pointer to ivar offset location 6164/// char *name; 6165/// char *type; 6166/// uint32_t alignment; 6167/// uint32_t size; 6168/// } 6169/// struct _ivar_list_t { 6170/// uint32 entsize; // sizeof(struct _ivar_t) 6171/// uint32 count; 6172/// struct _iver_t list[count]; 6173/// } 6174/// 6175 6176llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList( 6177 const ObjCImplementationDecl *ID) { 6178 6179 std::vector<llvm::Constant*> Ivars; 6180 6181 const ObjCInterfaceDecl *OID = ID->getClassInterface(); 6182 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface"); 6183 6184 // FIXME. Consolidate this with similar code in GenerateClass. 6185 6186 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin(); 6187 IVD; IVD = IVD->getNextIvar()) { 6188 // Ignore unnamed bit-fields. 6189 if (!IVD->getDeclName()) 6190 continue; 6191 llvm::Constant *Ivar[5]; 6192 Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD, 6193 ComputeIvarBaseOffset(CGM, ID, IVD)); 6194 Ivar[1] = GetMethodVarName(IVD->getIdentifier()); 6195 Ivar[2] = GetMethodVarType(IVD); 6196 llvm::Type *FieldTy = 6197 CGM.getTypes().ConvertTypeForMem(IVD->getType()); 6198 unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy); 6199 unsigned Align = CGM.getContext().getPreferredTypeAlign( 6200 IVD->getType().getTypePtr()) >> 3; 6201 Align = llvm::Log2_32(Align); 6202 Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align); 6203 // NOTE. Size of a bitfield does not match gcc's, because of the 6204 // way bitfields are treated special in each. But I am told that 6205 // 'size' for bitfield ivars is ignored by the runtime so it does 6206 // not matter. If it matters, there is enough info to get the 6207 // bitfield right! 6208 Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6209 Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar)); 6210 } 6211 // Return null for empty list. 6212 if (Ivars.empty()) 6213 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy); 6214 6215 llvm::Constant *Values[3]; 6216 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy); 6217 Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6218 Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size()); 6219 llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy, 6220 Ivars.size()); 6221 Values[2] = llvm::ConstantArray::get(AT, Ivars); 6222 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6223 const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_"; 6224 llvm::GlobalVariable *GV = 6225 new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6226 llvm::GlobalValue::InternalLinkage, 6227 Init, 6228 Prefix + OID->getName()); 6229 GV->setAlignment( 6230 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6231 GV->setSection("__DATA, __objc_const"); 6232 6233 CGM.AddUsedGlobal(GV); 6234 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy); 6235} 6236 6237llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef( 6238 const ObjCProtocolDecl *PD) { 6239 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()]; 6240 6241 if (!Entry) { 6242 // We use the initializer as a marker of whether this is a forward 6243 // reference or not. At module finalization we add the empty 6244 // contents for protocols which were referenced but never defined. 6245 Entry = 6246 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, false, 6247 llvm::GlobalValue::ExternalLinkage, 6248 0, 6249 "\01l_OBJC_PROTOCOL_$_" + PD->getName()); 6250 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 6251 } 6252 6253 return Entry; 6254} 6255 6256/// GetOrEmitProtocol - Generate the protocol meta-data: 6257/// @code 6258/// struct _protocol_t { 6259/// id isa; // NULL 6260/// const char * const protocol_name; 6261/// const struct _protocol_list_t * protocol_list; // super protocols 6262/// const struct method_list_t * const instance_methods; 6263/// const struct method_list_t * const class_methods; 6264/// const struct method_list_t *optionalInstanceMethods; 6265/// const struct method_list_t *optionalClassMethods; 6266/// const struct _prop_list_t * properties; 6267/// const uint32_t size; // sizeof(struct _protocol_t) 6268/// const uint32_t flags; // = 0 6269/// const char ** extendedMethodTypes; 6270/// } 6271/// @endcode 6272/// 6273 6274llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol( 6275 const ObjCProtocolDecl *PD) { 6276 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()]; 6277 6278 // Early exit if a defining object has already been generated. 6279 if (Entry && Entry->hasInitializer()) 6280 return Entry; 6281 6282 // Use the protocol definition, if there is one. 6283 if (const ObjCProtocolDecl *Def = PD->getDefinition()) 6284 PD = Def; 6285 6286 // Construct method lists. 6287 std::vector<llvm::Constant*> InstanceMethods, ClassMethods; 6288 std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods; 6289 std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt; 6290 for (ObjCProtocolDecl::instmeth_iterator 6291 i = PD->instmeth_begin(), e = PD->instmeth_end(); i != e; ++i) { 6292 ObjCMethodDecl *MD = *i; 6293 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6294 if (!C) 6295 return GetOrEmitProtocolRef(PD); 6296 6297 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6298 OptInstanceMethods.push_back(C); 6299 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6300 } else { 6301 InstanceMethods.push_back(C); 6302 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6303 } 6304 } 6305 6306 for (ObjCProtocolDecl::classmeth_iterator 6307 i = PD->classmeth_begin(), e = PD->classmeth_end(); i != e; ++i) { 6308 ObjCMethodDecl *MD = *i; 6309 llvm::Constant *C = GetMethodDescriptionConstant(MD); 6310 if (!C) 6311 return GetOrEmitProtocolRef(PD); 6312 6313 if (MD->getImplementationControl() == ObjCMethodDecl::Optional) { 6314 OptClassMethods.push_back(C); 6315 OptMethodTypesExt.push_back(GetMethodVarType(MD, true)); 6316 } else { 6317 ClassMethods.push_back(C); 6318 MethodTypesExt.push_back(GetMethodVarType(MD, true)); 6319 } 6320 } 6321 6322 MethodTypesExt.insert(MethodTypesExt.end(), 6323 OptMethodTypesExt.begin(), OptMethodTypesExt.end()); 6324 6325 llvm::Constant *Values[11]; 6326 // isa is NULL 6327 Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy); 6328 Values[1] = GetClassName(PD->getIdentifier()); 6329 Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getName(), 6330 PD->protocol_begin(), 6331 PD->protocol_end()); 6332 6333 Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_" 6334 + PD->getName(), 6335 "__DATA, __objc_const", 6336 InstanceMethods); 6337 Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_" 6338 + PD->getName(), 6339 "__DATA, __objc_const", 6340 ClassMethods); 6341 Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_" 6342 + PD->getName(), 6343 "__DATA, __objc_const", 6344 OptInstanceMethods); 6345 Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_" 6346 + PD->getName(), 6347 "__DATA, __objc_const", 6348 OptClassMethods); 6349 Values[7] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + PD->getName(), 6350 0, PD, ObjCTypes); 6351 uint32_t Size = 6352 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy); 6353 Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size); 6354 Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy); 6355 Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_" 6356 + PD->getName(), 6357 MethodTypesExt, ObjCTypes); 6358 llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy, 6359 Values); 6360 6361 if (Entry) { 6362 // Already created, fix the linkage and update the initializer. 6363 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage); 6364 Entry->setInitializer(Init); 6365 } else { 6366 Entry = 6367 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, 6368 false, llvm::GlobalValue::WeakAnyLinkage, Init, 6369 "\01l_OBJC_PROTOCOL_$_" + PD->getName()); 6370 Entry->setAlignment( 6371 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy)); 6372 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 6373 6374 Protocols[PD->getIdentifier()] = Entry; 6375 } 6376 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 6377 CGM.AddUsedGlobal(Entry); 6378 6379 // Use this protocol meta-data to build protocol list table in section 6380 // __DATA, __objc_protolist 6381 llvm::GlobalVariable *PTGV = 6382 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy, 6383 false, llvm::GlobalValue::WeakAnyLinkage, Entry, 6384 "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getName()); 6385 PTGV->setAlignment( 6386 CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy)); 6387 PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip"); 6388 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility); 6389 CGM.AddUsedGlobal(PTGV); 6390 return Entry; 6391} 6392 6393/// EmitProtocolList - Generate protocol list meta-data: 6394/// @code 6395/// struct _protocol_list_t { 6396/// long protocol_count; // Note, this is 32/64 bit 6397/// struct _protocol_t[protocol_count]; 6398/// } 6399/// @endcode 6400/// 6401llvm::Constant * 6402CGObjCNonFragileABIMac::EmitProtocolList(Twine Name, 6403 ObjCProtocolDecl::protocol_iterator begin, 6404 ObjCProtocolDecl::protocol_iterator end) { 6405 SmallVector<llvm::Constant *, 16> ProtocolRefs; 6406 6407 // Just return null for empty protocol lists 6408 if (begin == end) 6409 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy); 6410 6411 // FIXME: We shouldn't need to do this lookup here, should we? 6412 SmallString<256> TmpName; 6413 Name.toVector(TmpName); 6414 llvm::GlobalVariable *GV = 6415 CGM.getModule().getGlobalVariable(TmpName.str(), true); 6416 if (GV) 6417 return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy); 6418 6419 for (; begin != end; ++begin) 6420 ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented??? 6421 6422 // This list is null terminated. 6423 ProtocolRefs.push_back(llvm::Constant::getNullValue( 6424 ObjCTypes.ProtocolnfABIPtrTy)); 6425 6426 llvm::Constant *Values[2]; 6427 Values[0] = 6428 llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1); 6429 Values[1] = 6430 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy, 6431 ProtocolRefs.size()), 6432 ProtocolRefs); 6433 6434 llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values); 6435 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false, 6436 llvm::GlobalValue::InternalLinkage, 6437 Init, Name); 6438 GV->setSection("__DATA, __objc_const"); 6439 GV->setAlignment( 6440 CGM.getDataLayout().getABITypeAlignment(Init->getType())); 6441 CGM.AddUsedGlobal(GV); 6442 return llvm::ConstantExpr::getBitCast(GV, 6443 ObjCTypes.ProtocolListnfABIPtrTy); 6444} 6445 6446/// GetMethodDescriptionConstant - This routine build following meta-data: 6447/// struct _objc_method { 6448/// SEL _cmd; 6449/// char *method_type; 6450/// char *_imp; 6451/// } 6452 6453llvm::Constant * 6454CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) { 6455 llvm::Constant *Desc[3]; 6456 Desc[0] = 6457 llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()), 6458 ObjCTypes.SelectorPtrTy); 6459 Desc[1] = GetMethodVarType(MD); 6460 if (!Desc[1]) 6461 return 0; 6462 6463 // Protocol methods have no implementation. So, this entry is always NULL. 6464 Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy); 6465 return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc); 6466} 6467 6468/// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference. 6469/// This code gen. amounts to generating code for: 6470/// @code 6471/// (type *)((char *)base + _OBJC_IVAR_$_.ivar; 6472/// @encode 6473/// 6474LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar( 6475 CodeGen::CodeGenFunction &CGF, 6476 QualType ObjectTy, 6477 llvm::Value *BaseValue, 6478 const ObjCIvarDecl *Ivar, 6479 unsigned CVRQualifiers) { 6480 ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface(); 6481 llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar); 6482 6483 if (IsIvarOffsetKnownIdempotent(CGF, ID, Ivar)) 6484 if (llvm::LoadInst *LI = cast<llvm::LoadInst>(Offset)) 6485 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6486 llvm::MDNode::get(VMContext, ArrayRef<llvm::Value*>())); 6487 6488 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers, 6489 Offset); 6490} 6491 6492llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset( 6493 CodeGen::CodeGenFunction &CGF, 6494 const ObjCInterfaceDecl *Interface, 6495 const ObjCIvarDecl *Ivar) { 6496 return CGF.Builder.CreateLoad(ObjCIvarOffsetVariable(Interface, Ivar),"ivar"); 6497} 6498 6499static void appendSelectorForMessageRefTable(std::string &buffer, 6500 Selector selector) { 6501 if (selector.isUnarySelector()) { 6502 buffer += selector.getNameForSlot(0); 6503 return; 6504 } 6505 6506 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) { 6507 buffer += selector.getNameForSlot(i); 6508 buffer += '_'; 6509 } 6510} 6511 6512/// Emit a "v-table" message send. We emit a weak hidden-visibility 6513/// struct, initially containing the selector pointer and a pointer to 6514/// a "fixup" variant of the appropriate objc_msgSend. To call, we 6515/// load and call the function pointer, passing the address of the 6516/// struct as the second parameter. The runtime determines whether 6517/// the selector is currently emitted using vtable dispatch; if so, it 6518/// substitutes a stub function which simply tail-calls through the 6519/// appropriate vtable slot, and if not, it substitues a stub function 6520/// which tail-calls objc_msgSend. Both stubs adjust the selector 6521/// argument to correctly point to the selector. 6522RValue 6523CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF, 6524 ReturnValueSlot returnSlot, 6525 QualType resultType, 6526 Selector selector, 6527 llvm::Value *arg0, 6528 QualType arg0Type, 6529 bool isSuper, 6530 const CallArgList &formalArgs, 6531 const ObjCMethodDecl *method) { 6532 // Compute the actual arguments. 6533 CallArgList args; 6534 6535 // First argument: the receiver / super-call structure. 6536 if (!isSuper) 6537 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy); 6538 args.add(RValue::get(arg0), arg0Type); 6539 6540 // Second argument: a pointer to the message ref structure. Leave 6541 // the actual argument value blank for now. 6542 args.add(RValue::get(0), ObjCTypes.MessageRefCPtrTy); 6543 6544 args.insert(args.end(), formalArgs.begin(), formalArgs.end()); 6545 6546 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args); 6547 6548 NullReturnState nullReturn; 6549 6550 // Find the function to call and the mangled name for the message 6551 // ref structure. Using a different mangled name wouldn't actually 6552 // be a problem; it would just be a waste. 6553 // 6554 // The runtime currently never uses vtable dispatch for anything 6555 // except normal, non-super message-sends. 6556 // FIXME: don't use this for that. 6557 llvm::Constant *fn = 0; 6558 std::string messageRefName("\01l_"); 6559 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) { 6560 if (isSuper) { 6561 fn = ObjCTypes.getMessageSendSuper2StretFixupFn(); 6562 messageRefName += "objc_msgSendSuper2_stret_fixup"; 6563 } else { 6564 nullReturn.init(CGF, arg0); 6565 fn = ObjCTypes.getMessageSendStretFixupFn(); 6566 messageRefName += "objc_msgSend_stret_fixup"; 6567 } 6568 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) { 6569 fn = ObjCTypes.getMessageSendFpretFixupFn(); 6570 messageRefName += "objc_msgSend_fpret_fixup"; 6571 } else { 6572 if (isSuper) { 6573 fn = ObjCTypes.getMessageSendSuper2FixupFn(); 6574 messageRefName += "objc_msgSendSuper2_fixup"; 6575 } else { 6576 fn = ObjCTypes.getMessageSendFixupFn(); 6577 messageRefName += "objc_msgSend_fixup"; 6578 } 6579 } 6580 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend"); 6581 messageRefName += '_'; 6582 6583 // Append the selector name, except use underscores anywhere we 6584 // would have used colons. 6585 appendSelectorForMessageRefTable(messageRefName, selector); 6586 6587 llvm::GlobalVariable *messageRef 6588 = CGM.getModule().getGlobalVariable(messageRefName); 6589 if (!messageRef) { 6590 // Build the message ref structure. 6591 llvm::Constant *values[] = { fn, GetMethodVarName(selector) }; 6592 llvm::Constant *init = llvm::ConstantStruct::getAnon(values); 6593 messageRef = new llvm::GlobalVariable(CGM.getModule(), 6594 init->getType(), 6595 /*constant*/ false, 6596 llvm::GlobalValue::WeakAnyLinkage, 6597 init, 6598 messageRefName); 6599 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility); 6600 messageRef->setAlignment(16); 6601 messageRef->setSection("__DATA, __objc_msgrefs, coalesced"); 6602 } 6603 6604 bool requiresnullCheck = false; 6605 if (CGM.getLangOpts().ObjCAutoRefCount && method) 6606 for (ObjCMethodDecl::param_const_iterator i = method->param_begin(), 6607 e = method->param_end(); i != e; ++i) { 6608 const ParmVarDecl *ParamDecl = (*i); 6609 if (ParamDecl->hasAttr<NSConsumedAttr>()) { 6610 if (!nullReturn.NullBB) 6611 nullReturn.init(CGF, arg0); 6612 requiresnullCheck = true; 6613 break; 6614 } 6615 } 6616 6617 llvm::Value *mref = 6618 CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy); 6619 6620 // Update the message ref argument. 6621 args[1].RV = RValue::get(mref); 6622 6623 // Load the function to call from the message ref table. 6624 llvm::Value *callee = CGF.Builder.CreateStructGEP(mref, 0); 6625 callee = CGF.Builder.CreateLoad(callee, "msgSend_fn"); 6626 6627 callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType); 6628 6629 RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args); 6630 return nullReturn.complete(CGF, result, resultType, formalArgs, 6631 requiresnullCheck ? method : 0); 6632} 6633 6634/// Generate code for a message send expression in the nonfragile abi. 6635CodeGen::RValue 6636CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF, 6637 ReturnValueSlot Return, 6638 QualType ResultType, 6639 Selector Sel, 6640 llvm::Value *Receiver, 6641 const CallArgList &CallArgs, 6642 const ObjCInterfaceDecl *Class, 6643 const ObjCMethodDecl *Method) { 6644 return isVTableDispatchedSelector(Sel) 6645 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6646 Receiver, CGF.getContext().getObjCIdType(), 6647 false, CallArgs, Method) 6648 : EmitMessageSend(CGF, Return, ResultType, 6649 EmitSelector(CGF, Sel), 6650 Receiver, CGF.getContext().getObjCIdType(), 6651 false, CallArgs, Method, ObjCTypes); 6652} 6653 6654llvm::GlobalVariable * 6655CGObjCNonFragileABIMac::GetClassGlobal(const std::string &Name) { 6656 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name); 6657 6658 if (!GV) { 6659 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy, 6660 false, llvm::GlobalValue::ExternalLinkage, 6661 0, Name); 6662 } 6663 6664 return GV; 6665} 6666 6667llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF, 6668 IdentifierInfo *II) { 6669 llvm::GlobalVariable *&Entry = ClassReferences[II]; 6670 6671 if (!Entry) { 6672 std::string ClassName(getClassSymbolPrefix() + II->getName().str()); 6673 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName); 6674 Entry = 6675 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6676 false, llvm::GlobalValue::InternalLinkage, 6677 ClassGV, 6678 "\01L_OBJC_CLASSLIST_REFERENCES_$_"); 6679 Entry->setAlignment( 6680 CGM.getDataLayout().getABITypeAlignment( 6681 ObjCTypes.ClassnfABIPtrTy)); 6682 Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip"); 6683 CGM.AddUsedGlobal(Entry); 6684 } 6685 6686 return CGF.Builder.CreateLoad(Entry); 6687} 6688 6689llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF, 6690 const ObjCInterfaceDecl *ID) { 6691 return EmitClassRefFromId(CGF, ID->getIdentifier()); 6692} 6693 6694llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef( 6695 CodeGenFunction &CGF) { 6696 IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool"); 6697 return EmitClassRefFromId(CGF, II); 6698} 6699 6700llvm::Value * 6701CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF, 6702 const ObjCInterfaceDecl *ID) { 6703 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()]; 6704 6705 if (!Entry) { 6706 std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString()); 6707 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName); 6708 Entry = 6709 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, 6710 false, llvm::GlobalValue::InternalLinkage, 6711 ClassGV, 6712 "\01L_OBJC_CLASSLIST_SUP_REFS_$_"); 6713 Entry->setAlignment( 6714 CGM.getDataLayout().getABITypeAlignment( 6715 ObjCTypes.ClassnfABIPtrTy)); 6716 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6717 CGM.AddUsedGlobal(Entry); 6718 } 6719 6720 return CGF.Builder.CreateLoad(Entry); 6721} 6722 6723/// EmitMetaClassRef - Return a Value * of the address of _class_t 6724/// meta-data 6725/// 6726llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF, 6727 const ObjCInterfaceDecl *ID) { 6728 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()]; 6729 if (Entry) 6730 return CGF.Builder.CreateLoad(Entry); 6731 6732 std::string MetaClassName(getMetaclassSymbolPrefix() + ID->getNameAsString()); 6733 llvm::GlobalVariable *MetaClassGV = GetClassGlobal(MetaClassName); 6734 Entry = 6735 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, false, 6736 llvm::GlobalValue::InternalLinkage, 6737 MetaClassGV, 6738 "\01L_OBJC_CLASSLIST_SUP_REFS_$_"); 6739 Entry->setAlignment( 6740 CGM.getDataLayout().getABITypeAlignment( 6741 ObjCTypes.ClassnfABIPtrTy)); 6742 6743 Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip"); 6744 CGM.AddUsedGlobal(Entry); 6745 6746 return CGF.Builder.CreateLoad(Entry); 6747} 6748 6749/// GetClass - Return a reference to the class for the given interface 6750/// decl. 6751llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF, 6752 const ObjCInterfaceDecl *ID) { 6753 if (ID->isWeakImported()) { 6754 std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString()); 6755 llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName); 6756 ClassGV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 6757 } 6758 6759 return EmitClassRef(CGF, ID); 6760} 6761 6762/// Generates a message send where the super is the receiver. This is 6763/// a message send to self with special delivery semantics indicating 6764/// which class's method should be called. 6765CodeGen::RValue 6766CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, 6767 ReturnValueSlot Return, 6768 QualType ResultType, 6769 Selector Sel, 6770 const ObjCInterfaceDecl *Class, 6771 bool isCategoryImpl, 6772 llvm::Value *Receiver, 6773 bool IsClassMessage, 6774 const CodeGen::CallArgList &CallArgs, 6775 const ObjCMethodDecl *Method) { 6776 // ... 6777 // Create and init a super structure; this is a (receiver, class) 6778 // pair we will pass to objc_msgSendSuper. 6779 llvm::Value *ObjCSuper = 6780 CGF.CreateTempAlloca(ObjCTypes.SuperTy, "objc_super"); 6781 6782 llvm::Value *ReceiverAsObject = 6783 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy); 6784 CGF.Builder.CreateStore(ReceiverAsObject, 6785 CGF.Builder.CreateStructGEP(ObjCSuper, 0)); 6786 6787 // If this is a class message the metaclass is passed as the target. 6788 llvm::Value *Target; 6789 if (IsClassMessage) 6790 Target = EmitMetaClassRef(CGF, Class); 6791 else 6792 Target = EmitSuperClassRef(CGF, Class); 6793 6794 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and 6795 // ObjCTypes types. 6796 llvm::Type *ClassTy = 6797 CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType()); 6798 Target = CGF.Builder.CreateBitCast(Target, ClassTy); 6799 CGF.Builder.CreateStore(Target, 6800 CGF.Builder.CreateStructGEP(ObjCSuper, 1)); 6801 6802 return (isVTableDispatchedSelector(Sel)) 6803 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel, 6804 ObjCSuper, ObjCTypes.SuperPtrCTy, 6805 true, CallArgs, Method) 6806 : EmitMessageSend(CGF, Return, ResultType, 6807 EmitSelector(CGF, Sel), 6808 ObjCSuper, ObjCTypes.SuperPtrCTy, 6809 true, CallArgs, Method, ObjCTypes); 6810} 6811 6812llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF, 6813 Selector Sel, bool lval) { 6814 llvm::GlobalVariable *&Entry = SelectorReferences[Sel]; 6815 6816 if (!Entry) { 6817 llvm::Constant *Casted = 6818 llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel), 6819 ObjCTypes.SelectorPtrTy); 6820 Entry = 6821 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, false, 6822 llvm::GlobalValue::InternalLinkage, 6823 Casted, "\01L_OBJC_SELECTOR_REFERENCES_"); 6824 Entry->setExternallyInitialized(true); 6825 Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip"); 6826 CGM.AddUsedGlobal(Entry); 6827 } 6828 6829 if (lval) 6830 return Entry; 6831 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Entry); 6832 6833 LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"), 6834 llvm::MDNode::get(VMContext, 6835 ArrayRef<llvm::Value*>())); 6836 return LI; 6837} 6838/// EmitObjCIvarAssign - Code gen for assigning to a __strong object. 6839/// objc_assign_ivar (id src, id *dst, ptrdiff_t) 6840/// 6841void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF, 6842 llvm::Value *src, 6843 llvm::Value *dst, 6844 llvm::Value *ivarOffset) { 6845 llvm::Type * SrcTy = src->getType(); 6846 if (!isa<llvm::PointerType>(SrcTy)) { 6847 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 6848 assert(Size <= 8 && "does not support size > 8"); 6849 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 6850 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 6851 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 6852 } 6853 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 6854 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 6855 llvm::Value *args[] = { src, dst, ivarOffset }; 6856 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args); 6857} 6858 6859/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object. 6860/// objc_assign_strongCast (id src, id *dst) 6861/// 6862void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign( 6863 CodeGen::CodeGenFunction &CGF, 6864 llvm::Value *src, llvm::Value *dst) { 6865 llvm::Type * SrcTy = src->getType(); 6866 if (!isa<llvm::PointerType>(SrcTy)) { 6867 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 6868 assert(Size <= 8 && "does not support size > 8"); 6869 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 6870 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 6871 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 6872 } 6873 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 6874 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 6875 llvm::Value *args[] = { src, dst }; 6876 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(), 6877 args, "weakassign"); 6878} 6879 6880void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable( 6881 CodeGen::CodeGenFunction &CGF, 6882 llvm::Value *DestPtr, 6883 llvm::Value *SrcPtr, 6884 llvm::Value *Size) { 6885 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy); 6886 DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy); 6887 llvm::Value *args[] = { DestPtr, SrcPtr, Size }; 6888 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args); 6889} 6890 6891/// EmitObjCWeakRead - Code gen for loading value of a __weak 6892/// object: objc_read_weak (id *src) 6893/// 6894llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead( 6895 CodeGen::CodeGenFunction &CGF, 6896 llvm::Value *AddrWeakObj) { 6897 llvm::Type* DestTy = 6898 cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType(); 6899 AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy); 6900 llvm::Value *read_weak = 6901 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(), 6902 AddrWeakObj, "weakread"); 6903 read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy); 6904 return read_weak; 6905} 6906 6907/// EmitObjCWeakAssign - Code gen for assigning to a __weak object. 6908/// objc_assign_weak (id src, id *dst) 6909/// 6910void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF, 6911 llvm::Value *src, llvm::Value *dst) { 6912 llvm::Type * SrcTy = src->getType(); 6913 if (!isa<llvm::PointerType>(SrcTy)) { 6914 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 6915 assert(Size <= 8 && "does not support size > 8"); 6916 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 6917 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 6918 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 6919 } 6920 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 6921 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 6922 llvm::Value *args[] = { src, dst }; 6923 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(), 6924 args, "weakassign"); 6925} 6926 6927/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object. 6928/// objc_assign_global (id src, id *dst) 6929/// 6930void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF, 6931 llvm::Value *src, llvm::Value *dst, 6932 bool threadlocal) { 6933 llvm::Type * SrcTy = src->getType(); 6934 if (!isa<llvm::PointerType>(SrcTy)) { 6935 unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy); 6936 assert(Size <= 8 && "does not support size > 8"); 6937 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy) 6938 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy)); 6939 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy); 6940 } 6941 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy); 6942 dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy); 6943 llvm::Value *args[] = { src, dst }; 6944 if (!threadlocal) 6945 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(), 6946 args, "globalassign"); 6947 else 6948 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(), 6949 args, "threadlocalassign"); 6950} 6951 6952void 6953CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, 6954 const ObjCAtSynchronizedStmt &S) { 6955 EmitAtSynchronizedStmt(CGF, S, 6956 cast<llvm::Function>(ObjCTypes.getSyncEnterFn()), 6957 cast<llvm::Function>(ObjCTypes.getSyncExitFn())); 6958} 6959 6960llvm::Constant * 6961CGObjCNonFragileABIMac::GetEHType(QualType T) { 6962 // There's a particular fixed type info for 'id'. 6963 if (T->isObjCIdType() || 6964 T->isObjCQualifiedIdType()) { 6965 llvm::Constant *IDEHType = 6966 CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id"); 6967 if (!IDEHType) 6968 IDEHType = 6969 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, 6970 false, 6971 llvm::GlobalValue::ExternalLinkage, 6972 0, "OBJC_EHTYPE_id"); 6973 return IDEHType; 6974 } 6975 6976 // All other types should be Objective-C interface pointer types. 6977 const ObjCObjectPointerType *PT = 6978 T->getAs<ObjCObjectPointerType>(); 6979 assert(PT && "Invalid @catch type."); 6980 const ObjCInterfaceType *IT = PT->getInterfaceType(); 6981 assert(IT && "Invalid @catch type."); 6982 return GetInterfaceEHType(IT->getDecl(), false); 6983} 6984 6985void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF, 6986 const ObjCAtTryStmt &S) { 6987 EmitTryCatchStmt(CGF, S, 6988 cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()), 6989 cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()), 6990 cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn())); 6991} 6992 6993/// EmitThrowStmt - Generate code for a throw statement. 6994void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF, 6995 const ObjCAtThrowStmt &S, 6996 bool ClearInsertionPoint) { 6997 if (const Expr *ThrowExpr = S.getThrowExpr()) { 6998 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr); 6999 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy); 7000 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception) 7001 .setDoesNotReturn(); 7002 } else { 7003 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn()) 7004 .setDoesNotReturn(); 7005 } 7006 7007 CGF.Builder.CreateUnreachable(); 7008 if (ClearInsertionPoint) 7009 CGF.Builder.ClearInsertionPoint(); 7010} 7011 7012llvm::Constant * 7013CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID, 7014 bool ForDefinition) { 7015 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()]; 7016 7017 // If we don't need a definition, return the entry if found or check 7018 // if we use an external reference. 7019 if (!ForDefinition) { 7020 if (Entry) 7021 return Entry; 7022 7023 // If this type (or a super class) has the __objc_exception__ 7024 // attribute, emit an external reference. 7025 if (hasObjCExceptionAttribute(CGM.getContext(), ID)) 7026 return Entry = 7027 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7028 llvm::GlobalValue::ExternalLinkage, 7029 0, 7030 ("OBJC_EHTYPE_$_" + 7031 ID->getIdentifier()->getName())); 7032 } 7033 7034 // Otherwise we need to either make a new entry or fill in the 7035 // initializer. 7036 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition"); 7037 std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString()); 7038 std::string VTableName = "objc_ehtype_vtable"; 7039 llvm::GlobalVariable *VTableGV = 7040 CGM.getModule().getGlobalVariable(VTableName); 7041 if (!VTableGV) 7042 VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, 7043 false, 7044 llvm::GlobalValue::ExternalLinkage, 7045 0, VTableName); 7046 7047 llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2); 7048 7049 llvm::Constant *Values[] = { 7050 llvm::ConstantExpr::getGetElementPtr(VTableGV, VTableIdx), 7051 GetClassName(ID->getIdentifier()), 7052 GetClassGlobal(ClassName) 7053 }; 7054 llvm::Constant *Init = 7055 llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values); 7056 7057 if (Entry) { 7058 Entry->setInitializer(Init); 7059 } else { 7060 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false, 7061 llvm::GlobalValue::WeakAnyLinkage, 7062 Init, 7063 ("OBJC_EHTYPE_$_" + 7064 ID->getIdentifier()->getName())); 7065 } 7066 7067 if (ID->getVisibility() == HiddenVisibility) 7068 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility); 7069 Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment( 7070 ObjCTypes.EHTypeTy)); 7071 7072 if (ForDefinition) { 7073 Entry->setSection("__DATA,__objc_const"); 7074 Entry->setLinkage(llvm::GlobalValue::ExternalLinkage); 7075 } else { 7076 Entry->setSection("__DATA,__datacoal_nt,coalesced"); 7077 } 7078 7079 return Entry; 7080} 7081 7082/* *** */ 7083 7084CodeGen::CGObjCRuntime * 7085CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) { 7086 switch (CGM.getLangOpts().ObjCRuntime.getKind()) { 7087 case ObjCRuntime::FragileMacOSX: 7088 return new CGObjCMac(CGM); 7089 7090 case ObjCRuntime::MacOSX: 7091 case ObjCRuntime::iOS: 7092 return new CGObjCNonFragileABIMac(CGM); 7093 7094 case ObjCRuntime::GNUstep: 7095 case ObjCRuntime::GCC: 7096 case ObjCRuntime::ObjFW: 7097 llvm_unreachable("these runtimes are not Mac runtimes"); 7098 } 7099 llvm_unreachable("bad runtime"); 7100} 7101