CodeGenFunction.h revision 4967a710c84587c654b56c828382219c3937dacb
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGLoopInfo.h"
20#include "CGValue.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "EHScopeStack.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/ExprOpenMP.h"
28#include "clang/AST/Type.h"
29#include "clang/Basic/ABI.h"
30#include "clang/Basic/CapturedStmt.h"
31#include "clang/Basic/OpenMPKinds.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/Frontend/CodeGenOptions.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/IR/ValueHandle.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Transforms/Utils/SanitizerStats.h"
40
41namespace llvm {
42class BasicBlock;
43class LLVMContext;
44class MDNode;
45class Module;
46class SwitchInst;
47class Twine;
48class Value;
49class CallSite;
50}
51
52namespace clang {
53class ASTContext;
54class BlockDecl;
55class CXXDestructorDecl;
56class CXXForRangeStmt;
57class CXXTryStmt;
58class Decl;
59class LabelDecl;
60class EnumConstantDecl;
61class FunctionDecl;
62class FunctionProtoType;
63class LabelStmt;
64class ObjCContainerDecl;
65class ObjCInterfaceDecl;
66class ObjCIvarDecl;
67class ObjCMethodDecl;
68class ObjCImplementationDecl;
69class ObjCPropertyImplDecl;
70class TargetInfo;
71class VarDecl;
72class ObjCForCollectionStmt;
73class ObjCAtTryStmt;
74class ObjCAtThrowStmt;
75class ObjCAtSynchronizedStmt;
76class ObjCAutoreleasePoolStmt;
77
78namespace CodeGen {
79class CodeGenTypes;
80class CGFunctionInfo;
81class CGRecordLayout;
82class CGBlockInfo;
83class CGCXXABI;
84class BlockByrefHelpers;
85class BlockByrefInfo;
86class BlockFlags;
87class BlockFieldFlags;
88class RegionCodeGenTy;
89class TargetCodeGenInfo;
90struct OMPTaskDataTy;
91
92/// The kind of evaluation to perform on values of a particular
93/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
94/// CGExprAgg?
95///
96/// TODO: should vectors maybe be split out into their own thing?
97enum TypeEvaluationKind {
98  TEK_Scalar,
99  TEK_Complex,
100  TEK_Aggregate
101};
102
103/// CodeGenFunction - This class organizes the per-function state that is used
104/// while generating LLVM code.
105class CodeGenFunction : public CodeGenTypeCache {
106  CodeGenFunction(const CodeGenFunction &) = delete;
107  void operator=(const CodeGenFunction &) = delete;
108
109  friend class CGCXXABI;
110public:
111  /// A jump destination is an abstract label, branching to which may
112  /// require a jump out through normal cleanups.
113  struct JumpDest {
114    JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
115    JumpDest(llvm::BasicBlock *Block,
116             EHScopeStack::stable_iterator Depth,
117             unsigned Index)
118      : Block(Block), ScopeDepth(Depth), Index(Index) {}
119
120    bool isValid() const { return Block != nullptr; }
121    llvm::BasicBlock *getBlock() const { return Block; }
122    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
123    unsigned getDestIndex() const { return Index; }
124
125    // This should be used cautiously.
126    void setScopeDepth(EHScopeStack::stable_iterator depth) {
127      ScopeDepth = depth;
128    }
129
130  private:
131    llvm::BasicBlock *Block;
132    EHScopeStack::stable_iterator ScopeDepth;
133    unsigned Index;
134  };
135
136  CodeGenModule &CGM;  // Per-module state.
137  const TargetInfo &Target;
138
139  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
140  LoopInfoStack LoopStack;
141  CGBuilderTy Builder;
142
143  /// \brief CGBuilder insert helper. This function is called after an
144  /// instruction is created using Builder.
145  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
146                    llvm::BasicBlock *BB,
147                    llvm::BasicBlock::iterator InsertPt) const;
148
149  /// CurFuncDecl - Holds the Decl for the current outermost
150  /// non-closure context.
151  const Decl *CurFuncDecl;
152  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
153  const Decl *CurCodeDecl;
154  const CGFunctionInfo *CurFnInfo;
155  QualType FnRetTy;
156  llvm::Function *CurFn;
157
158  /// CurGD - The GlobalDecl for the current function being compiled.
159  GlobalDecl CurGD;
160
161  /// PrologueCleanupDepth - The cleanup depth enclosing all the
162  /// cleanups associated with the parameters.
163  EHScopeStack::stable_iterator PrologueCleanupDepth;
164
165  /// ReturnBlock - Unified return block.
166  JumpDest ReturnBlock;
167
168  /// ReturnValue - The temporary alloca to hold the return
169  /// value. This is invalid iff the function has no return value.
170  Address ReturnValue;
171
172  /// AllocaInsertPoint - This is an instruction in the entry block before which
173  /// we prefer to insert allocas.
174  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
175
176  /// \brief API for captured statement code generation.
177  class CGCapturedStmtInfo {
178  public:
179    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
180        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
181    explicit CGCapturedStmtInfo(const CapturedStmt &S,
182                                CapturedRegionKind K = CR_Default)
183      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
184
185      RecordDecl::field_iterator Field =
186        S.getCapturedRecordDecl()->field_begin();
187      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
188                                                E = S.capture_end();
189           I != E; ++I, ++Field) {
190        if (I->capturesThis())
191          CXXThisFieldDecl = *Field;
192        else if (I->capturesVariable())
193          CaptureFields[I->getCapturedVar()] = *Field;
194        else if (I->capturesVariableByCopy())
195          CaptureFields[I->getCapturedVar()] = *Field;
196      }
197    }
198
199    virtual ~CGCapturedStmtInfo();
200
201    CapturedRegionKind getKind() const { return Kind; }
202
203    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
204    // \brief Retrieve the value of the context parameter.
205    virtual llvm::Value *getContextValue() const { return ThisValue; }
206
207    /// \brief Lookup the captured field decl for a variable.
208    virtual const FieldDecl *lookup(const VarDecl *VD) const {
209      return CaptureFields.lookup(VD);
210    }
211
212    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
213    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
214
215    static bool classof(const CGCapturedStmtInfo *) {
216      return true;
217    }
218
219    /// \brief Emit the captured statement body.
220    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
221      CGF.incrementProfileCounter(S);
222      CGF.EmitStmt(S);
223    }
224
225    /// \brief Get the name of the capture helper.
226    virtual StringRef getHelperName() const { return "__captured_stmt"; }
227
228  private:
229    /// \brief The kind of captured statement being generated.
230    CapturedRegionKind Kind;
231
232    /// \brief Keep the map between VarDecl and FieldDecl.
233    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
234
235    /// \brief The base address of the captured record, passed in as the first
236    /// argument of the parallel region function.
237    llvm::Value *ThisValue;
238
239    /// \brief Captured 'this' type.
240    FieldDecl *CXXThisFieldDecl;
241  };
242  CGCapturedStmtInfo *CapturedStmtInfo;
243
244  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
245  class CGCapturedStmtRAII {
246  private:
247    CodeGenFunction &CGF;
248    CGCapturedStmtInfo *PrevCapturedStmtInfo;
249  public:
250    CGCapturedStmtRAII(CodeGenFunction &CGF,
251                       CGCapturedStmtInfo *NewCapturedStmtInfo)
252        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
253      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
254    }
255    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
256  };
257
258  /// \brief Sanitizers enabled for this function.
259  SanitizerSet SanOpts;
260
261  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
262  bool IsSanitizerScope;
263
264  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
265  class SanitizerScope {
266    CodeGenFunction *CGF;
267  public:
268    SanitizerScope(CodeGenFunction *CGF);
269    ~SanitizerScope();
270  };
271
272  /// In C++, whether we are code generating a thunk.  This controls whether we
273  /// should emit cleanups.
274  bool CurFuncIsThunk;
275
276  /// In ARC, whether we should autorelease the return value.
277  bool AutoreleaseResult;
278
279  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
280  /// potentially set the return value.
281  bool SawAsmBlock;
282
283  const FunctionDecl *CurSEHParent = nullptr;
284
285  /// True if the current function is an outlined SEH helper. This can be a
286  /// finally block or filter expression.
287  bool IsOutlinedSEHHelper;
288
289  const CodeGen::CGBlockInfo *BlockInfo;
290  llvm::Value *BlockPointer;
291
292  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
293  FieldDecl *LambdaThisCaptureField;
294
295  /// \brief A mapping from NRVO variables to the flags used to indicate
296  /// when the NRVO has been applied to this variable.
297  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
298
299  EHScopeStack EHStack;
300  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
301  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
302
303  llvm::Instruction *CurrentFuncletPad = nullptr;
304
305  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
306    llvm::Value *Addr;
307    llvm::Value *Size;
308
309  public:
310    CallLifetimeEnd(Address addr, llvm::Value *size)
311        : Addr(addr.getPointer()), Size(size) {}
312
313    void Emit(CodeGenFunction &CGF, Flags flags) override {
314      CGF.EmitLifetimeEnd(Size, Addr);
315    }
316  };
317
318  /// Header for data within LifetimeExtendedCleanupStack.
319  struct LifetimeExtendedCleanupHeader {
320    /// The size of the following cleanup object.
321    unsigned Size;
322    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
323    CleanupKind Kind;
324
325    size_t getSize() const { return Size; }
326    CleanupKind getKind() const { return Kind; }
327  };
328
329  /// i32s containing the indexes of the cleanup destinations.
330  llvm::AllocaInst *NormalCleanupDest;
331
332  unsigned NextCleanupDestIndex;
333
334  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
335  CGBlockInfo *FirstBlockInfo;
336
337  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
338  llvm::BasicBlock *EHResumeBlock;
339
340  /// The exception slot.  All landing pads write the current exception pointer
341  /// into this alloca.
342  llvm::Value *ExceptionSlot;
343
344  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
345  /// write the current selector value into this alloca.
346  llvm::AllocaInst *EHSelectorSlot;
347
348  /// A stack of exception code slots. Entering an __except block pushes a slot
349  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
350  /// a value from the top of the stack.
351  SmallVector<Address, 1> SEHCodeSlotStack;
352
353  /// Value returned by __exception_info intrinsic.
354  llvm::Value *SEHInfo = nullptr;
355
356  /// Emits a landing pad for the current EH stack.
357  llvm::BasicBlock *EmitLandingPad();
358
359  llvm::BasicBlock *getInvokeDestImpl();
360
361  template <class T>
362  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
363    return DominatingValue<T>::save(*this, value);
364  }
365
366public:
367  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
368  /// rethrows.
369  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
370
371  /// A class controlling the emission of a finally block.
372  class FinallyInfo {
373    /// Where the catchall's edge through the cleanup should go.
374    JumpDest RethrowDest;
375
376    /// A function to call to enter the catch.
377    llvm::Constant *BeginCatchFn;
378
379    /// An i1 variable indicating whether or not the @finally is
380    /// running for an exception.
381    llvm::AllocaInst *ForEHVar;
382
383    /// An i8* variable into which the exception pointer to rethrow
384    /// has been saved.
385    llvm::AllocaInst *SavedExnVar;
386
387  public:
388    void enter(CodeGenFunction &CGF, const Stmt *Finally,
389               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
390               llvm::Constant *rethrowFn);
391    void exit(CodeGenFunction &CGF);
392  };
393
394  /// Returns true inside SEH __try blocks.
395  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
396
397  /// Returns true while emitting a cleanuppad.
398  bool isCleanupPadScope() const {
399    return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
400  }
401
402  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
403  /// current full-expression.  Safe against the possibility that
404  /// we're currently inside a conditionally-evaluated expression.
405  template <class T, class... As>
406  void pushFullExprCleanup(CleanupKind kind, As... A) {
407    // If we're not in a conditional branch, or if none of the
408    // arguments requires saving, then use the unconditional cleanup.
409    if (!isInConditionalBranch())
410      return EHStack.pushCleanup<T>(kind, A...);
411
412    // Stash values in a tuple so we can guarantee the order of saves.
413    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
414    SavedTuple Saved{saveValueInCond(A)...};
415
416    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
417    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
418    initFullExprCleanup();
419  }
420
421  /// \brief Queue a cleanup to be pushed after finishing the current
422  /// full-expression.
423  template <class T, class... As>
424  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
425    assert(!isInConditionalBranch() && "can't defer conditional cleanup");
426
427    LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
428
429    size_t OldSize = LifetimeExtendedCleanupStack.size();
430    LifetimeExtendedCleanupStack.resize(
431        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
432
433    static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
434                  "Cleanup will be allocated on misaligned address");
435    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
436    new (Buffer) LifetimeExtendedCleanupHeader(Header);
437    new (Buffer + sizeof(Header)) T(A...);
438  }
439
440  /// Set up the last cleaup that was pushed as a conditional
441  /// full-expression cleanup.
442  void initFullExprCleanup();
443
444  /// PushDestructorCleanup - Push a cleanup to call the
445  /// complete-object destructor of an object of the given type at the
446  /// given address.  Does nothing if T is not a C++ class type with a
447  /// non-trivial destructor.
448  void PushDestructorCleanup(QualType T, Address Addr);
449
450  /// PushDestructorCleanup - Push a cleanup to call the
451  /// complete-object variant of the given destructor on the object at
452  /// the given address.
453  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
454
455  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
456  /// process all branch fixups.
457  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
458
459  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
460  /// The block cannot be reactivated.  Pops it if it's the top of the
461  /// stack.
462  ///
463  /// \param DominatingIP - An instruction which is known to
464  ///   dominate the current IP (if set) and which lies along
465  ///   all paths of execution between the current IP and the
466  ///   the point at which the cleanup comes into scope.
467  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
468                              llvm::Instruction *DominatingIP);
469
470  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
471  /// Cannot be used to resurrect a deactivated cleanup.
472  ///
473  /// \param DominatingIP - An instruction which is known to
474  ///   dominate the current IP (if set) and which lies along
475  ///   all paths of execution between the current IP and the
476  ///   the point at which the cleanup comes into scope.
477  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
478                            llvm::Instruction *DominatingIP);
479
480  /// \brief Enters a new scope for capturing cleanups, all of which
481  /// will be executed once the scope is exited.
482  class RunCleanupsScope {
483    EHScopeStack::stable_iterator CleanupStackDepth;
484    size_t LifetimeExtendedCleanupStackSize;
485    bool OldDidCallStackSave;
486  protected:
487    bool PerformCleanup;
488  private:
489
490    RunCleanupsScope(const RunCleanupsScope &) = delete;
491    void operator=(const RunCleanupsScope &) = delete;
492
493  protected:
494    CodeGenFunction& CGF;
495
496  public:
497    /// \brief Enter a new cleanup scope.
498    explicit RunCleanupsScope(CodeGenFunction &CGF)
499      : PerformCleanup(true), CGF(CGF)
500    {
501      CleanupStackDepth = CGF.EHStack.stable_begin();
502      LifetimeExtendedCleanupStackSize =
503          CGF.LifetimeExtendedCleanupStack.size();
504      OldDidCallStackSave = CGF.DidCallStackSave;
505      CGF.DidCallStackSave = false;
506    }
507
508    /// \brief Exit this cleanup scope, emitting any accumulated
509    /// cleanups.
510    ~RunCleanupsScope() {
511      if (PerformCleanup) {
512        CGF.DidCallStackSave = OldDidCallStackSave;
513        CGF.PopCleanupBlocks(CleanupStackDepth,
514                             LifetimeExtendedCleanupStackSize);
515      }
516    }
517
518    /// \brief Determine whether this scope requires any cleanups.
519    bool requiresCleanups() const {
520      return CGF.EHStack.stable_begin() != CleanupStackDepth;
521    }
522
523    /// \brief Force the emission of cleanups now, instead of waiting
524    /// until this object is destroyed.
525    void ForceCleanup() {
526      assert(PerformCleanup && "Already forced cleanup");
527      CGF.DidCallStackSave = OldDidCallStackSave;
528      CGF.PopCleanupBlocks(CleanupStackDepth,
529                           LifetimeExtendedCleanupStackSize);
530      PerformCleanup = false;
531    }
532  };
533
534  class LexicalScope : public RunCleanupsScope {
535    SourceRange Range;
536    SmallVector<const LabelDecl*, 4> Labels;
537    LexicalScope *ParentScope;
538
539    LexicalScope(const LexicalScope &) = delete;
540    void operator=(const LexicalScope &) = delete;
541
542  public:
543    /// \brief Enter a new cleanup scope.
544    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
545      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
546      CGF.CurLexicalScope = this;
547      if (CGDebugInfo *DI = CGF.getDebugInfo())
548        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
549    }
550
551    void addLabel(const LabelDecl *label) {
552      assert(PerformCleanup && "adding label to dead scope?");
553      Labels.push_back(label);
554    }
555
556    /// \brief Exit this cleanup scope, emitting any accumulated
557    /// cleanups.
558    ~LexicalScope() {
559      if (CGDebugInfo *DI = CGF.getDebugInfo())
560        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
561
562      // If we should perform a cleanup, force them now.  Note that
563      // this ends the cleanup scope before rescoping any labels.
564      if (PerformCleanup) {
565        ApplyDebugLocation DL(CGF, Range.getEnd());
566        ForceCleanup();
567      }
568    }
569
570    /// \brief Force the emission of cleanups now, instead of waiting
571    /// until this object is destroyed.
572    void ForceCleanup() {
573      CGF.CurLexicalScope = ParentScope;
574      RunCleanupsScope::ForceCleanup();
575
576      if (!Labels.empty())
577        rescopeLabels();
578    }
579
580    void rescopeLabels();
581  };
582
583  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
584
585  /// \brief The scope used to remap some variables as private in the OpenMP
586  /// loop body (or other captured region emitted without outlining), and to
587  /// restore old vars back on exit.
588  class OMPPrivateScope : public RunCleanupsScope {
589    DeclMapTy SavedLocals;
590    DeclMapTy SavedPrivates;
591
592  private:
593    OMPPrivateScope(const OMPPrivateScope &) = delete;
594    void operator=(const OMPPrivateScope &) = delete;
595
596  public:
597    /// \brief Enter a new OpenMP private scope.
598    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
599
600    /// \brief Registers \a LocalVD variable as a private and apply \a
601    /// PrivateGen function for it to generate corresponding private variable.
602    /// \a PrivateGen returns an address of the generated private variable.
603    /// \return true if the variable is registered as private, false if it has
604    /// been privatized already.
605    bool
606    addPrivate(const VarDecl *LocalVD,
607               llvm::function_ref<Address()> PrivateGen) {
608      assert(PerformCleanup && "adding private to dead scope");
609
610      // Only save it once.
611      if (SavedLocals.count(LocalVD)) return false;
612
613      // Copy the existing local entry to SavedLocals.
614      auto it = CGF.LocalDeclMap.find(LocalVD);
615      if (it != CGF.LocalDeclMap.end()) {
616        SavedLocals.insert({LocalVD, it->second});
617      } else {
618        SavedLocals.insert({LocalVD, Address::invalid()});
619      }
620
621      // Generate the private entry.
622      Address Addr = PrivateGen();
623      QualType VarTy = LocalVD->getType();
624      if (VarTy->isReferenceType()) {
625        Address Temp = CGF.CreateMemTemp(VarTy);
626        CGF.Builder.CreateStore(Addr.getPointer(), Temp);
627        Addr = Temp;
628      }
629      SavedPrivates.insert({LocalVD, Addr});
630
631      return true;
632    }
633
634    /// \brief Privatizes local variables previously registered as private.
635    /// Registration is separate from the actual privatization to allow
636    /// initializers use values of the original variables, not the private one.
637    /// This is important, for example, if the private variable is a class
638    /// variable initialized by a constructor that references other private
639    /// variables. But at initialization original variables must be used, not
640    /// private copies.
641    /// \return true if at least one variable was privatized, false otherwise.
642    bool Privatize() {
643      copyInto(SavedPrivates, CGF.LocalDeclMap);
644      SavedPrivates.clear();
645      return !SavedLocals.empty();
646    }
647
648    void ForceCleanup() {
649      RunCleanupsScope::ForceCleanup();
650      copyInto(SavedLocals, CGF.LocalDeclMap);
651      SavedLocals.clear();
652    }
653
654    /// \brief Exit scope - all the mapped variables are restored.
655    ~OMPPrivateScope() {
656      if (PerformCleanup)
657        ForceCleanup();
658    }
659
660    /// Checks if the global variable is captured in current function.
661    bool isGlobalVarCaptured(const VarDecl *VD) const {
662      return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
663    }
664
665  private:
666    /// Copy all the entries in the source map over the corresponding
667    /// entries in the destination, which must exist.
668    static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
669      for (auto &pair : src) {
670        if (!pair.second.isValid()) {
671          dest.erase(pair.first);
672          continue;
673        }
674
675        auto it = dest.find(pair.first);
676        if (it != dest.end()) {
677          it->second = pair.second;
678        } else {
679          dest.insert(pair);
680        }
681      }
682    }
683  };
684
685  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
686  /// that have been added.
687  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
688
689  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
690  /// that have been added, then adds all lifetime-extended cleanups from
691  /// the given position to the stack.
692  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
693                        size_t OldLifetimeExtendedStackSize);
694
695  void ResolveBranchFixups(llvm::BasicBlock *Target);
696
697  /// The given basic block lies in the current EH scope, but may be a
698  /// target of a potentially scope-crossing jump; get a stable handle
699  /// to which we can perform this jump later.
700  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
701    return JumpDest(Target,
702                    EHStack.getInnermostNormalCleanup(),
703                    NextCleanupDestIndex++);
704  }
705
706  /// The given basic block lies in the current EH scope, but may be a
707  /// target of a potentially scope-crossing jump; get a stable handle
708  /// to which we can perform this jump later.
709  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
710    return getJumpDestInCurrentScope(createBasicBlock(Name));
711  }
712
713  /// EmitBranchThroughCleanup - Emit a branch from the current insert
714  /// block through the normal cleanup handling code (if any) and then
715  /// on to \arg Dest.
716  void EmitBranchThroughCleanup(JumpDest Dest);
717
718  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
719  /// specified destination obviously has no cleanups to run.  'false' is always
720  /// a conservatively correct answer for this method.
721  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
722
723  /// popCatchScope - Pops the catch scope at the top of the EHScope
724  /// stack, emitting any required code (other than the catch handlers
725  /// themselves).
726  void popCatchScope();
727
728  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
729  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
730  llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
731
732  /// An object to manage conditionally-evaluated expressions.
733  class ConditionalEvaluation {
734    llvm::BasicBlock *StartBB;
735
736  public:
737    ConditionalEvaluation(CodeGenFunction &CGF)
738      : StartBB(CGF.Builder.GetInsertBlock()) {}
739
740    void begin(CodeGenFunction &CGF) {
741      assert(CGF.OutermostConditional != this);
742      if (!CGF.OutermostConditional)
743        CGF.OutermostConditional = this;
744    }
745
746    void end(CodeGenFunction &CGF) {
747      assert(CGF.OutermostConditional != nullptr);
748      if (CGF.OutermostConditional == this)
749        CGF.OutermostConditional = nullptr;
750    }
751
752    /// Returns a block which will be executed prior to each
753    /// evaluation of the conditional code.
754    llvm::BasicBlock *getStartingBlock() const {
755      return StartBB;
756    }
757  };
758
759  /// isInConditionalBranch - Return true if we're currently emitting
760  /// one branch or the other of a conditional expression.
761  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
762
763  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
764    assert(isInConditionalBranch());
765    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
766    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
767    store->setAlignment(addr.getAlignment().getQuantity());
768  }
769
770  /// An RAII object to record that we're evaluating a statement
771  /// expression.
772  class StmtExprEvaluation {
773    CodeGenFunction &CGF;
774
775    /// We have to save the outermost conditional: cleanups in a
776    /// statement expression aren't conditional just because the
777    /// StmtExpr is.
778    ConditionalEvaluation *SavedOutermostConditional;
779
780  public:
781    StmtExprEvaluation(CodeGenFunction &CGF)
782      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
783      CGF.OutermostConditional = nullptr;
784    }
785
786    ~StmtExprEvaluation() {
787      CGF.OutermostConditional = SavedOutermostConditional;
788      CGF.EnsureInsertPoint();
789    }
790  };
791
792  /// An object which temporarily prevents a value from being
793  /// destroyed by aggressive peephole optimizations that assume that
794  /// all uses of a value have been realized in the IR.
795  class PeepholeProtection {
796    llvm::Instruction *Inst;
797    friend class CodeGenFunction;
798
799  public:
800    PeepholeProtection() : Inst(nullptr) {}
801  };
802
803  /// A non-RAII class containing all the information about a bound
804  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
805  /// this which makes individual mappings very simple; using this
806  /// class directly is useful when you have a variable number of
807  /// opaque values or don't want the RAII functionality for some
808  /// reason.
809  class OpaqueValueMappingData {
810    const OpaqueValueExpr *OpaqueValue;
811    bool BoundLValue;
812    CodeGenFunction::PeepholeProtection Protection;
813
814    OpaqueValueMappingData(const OpaqueValueExpr *ov,
815                           bool boundLValue)
816      : OpaqueValue(ov), BoundLValue(boundLValue) {}
817  public:
818    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
819
820    static bool shouldBindAsLValue(const Expr *expr) {
821      // gl-values should be bound as l-values for obvious reasons.
822      // Records should be bound as l-values because IR generation
823      // always keeps them in memory.  Expressions of function type
824      // act exactly like l-values but are formally required to be
825      // r-values in C.
826      return expr->isGLValue() ||
827             expr->getType()->isFunctionType() ||
828             hasAggregateEvaluationKind(expr->getType());
829    }
830
831    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
832                                       const OpaqueValueExpr *ov,
833                                       const Expr *e) {
834      if (shouldBindAsLValue(ov))
835        return bind(CGF, ov, CGF.EmitLValue(e));
836      return bind(CGF, ov, CGF.EmitAnyExpr(e));
837    }
838
839    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
840                                       const OpaqueValueExpr *ov,
841                                       const LValue &lv) {
842      assert(shouldBindAsLValue(ov));
843      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
844      return OpaqueValueMappingData(ov, true);
845    }
846
847    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
848                                       const OpaqueValueExpr *ov,
849                                       const RValue &rv) {
850      assert(!shouldBindAsLValue(ov));
851      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
852
853      OpaqueValueMappingData data(ov, false);
854
855      // Work around an extremely aggressive peephole optimization in
856      // EmitScalarConversion which assumes that all other uses of a
857      // value are extant.
858      data.Protection = CGF.protectFromPeepholes(rv);
859
860      return data;
861    }
862
863    bool isValid() const { return OpaqueValue != nullptr; }
864    void clear() { OpaqueValue = nullptr; }
865
866    void unbind(CodeGenFunction &CGF) {
867      assert(OpaqueValue && "no data to unbind!");
868
869      if (BoundLValue) {
870        CGF.OpaqueLValues.erase(OpaqueValue);
871      } else {
872        CGF.OpaqueRValues.erase(OpaqueValue);
873        CGF.unprotectFromPeepholes(Protection);
874      }
875    }
876  };
877
878  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
879  class OpaqueValueMapping {
880    CodeGenFunction &CGF;
881    OpaqueValueMappingData Data;
882
883  public:
884    static bool shouldBindAsLValue(const Expr *expr) {
885      return OpaqueValueMappingData::shouldBindAsLValue(expr);
886    }
887
888    /// Build the opaque value mapping for the given conditional
889    /// operator if it's the GNU ?: extension.  This is a common
890    /// enough pattern that the convenience operator is really
891    /// helpful.
892    ///
893    OpaqueValueMapping(CodeGenFunction &CGF,
894                       const AbstractConditionalOperator *op) : CGF(CGF) {
895      if (isa<ConditionalOperator>(op))
896        // Leave Data empty.
897        return;
898
899      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
900      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
901                                          e->getCommon());
902    }
903
904    OpaqueValueMapping(CodeGenFunction &CGF,
905                       const OpaqueValueExpr *opaqueValue,
906                       LValue lvalue)
907      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
908    }
909
910    OpaqueValueMapping(CodeGenFunction &CGF,
911                       const OpaqueValueExpr *opaqueValue,
912                       RValue rvalue)
913      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
914    }
915
916    void pop() {
917      Data.unbind(CGF);
918      Data.clear();
919    }
920
921    ~OpaqueValueMapping() {
922      if (Data.isValid()) Data.unbind(CGF);
923    }
924  };
925
926private:
927  CGDebugInfo *DebugInfo;
928  bool DisableDebugInfo;
929
930  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
931  /// calling llvm.stacksave for multiple VLAs in the same scope.
932  bool DidCallStackSave;
933
934  /// IndirectBranch - The first time an indirect goto is seen we create a block
935  /// with an indirect branch.  Every time we see the address of a label taken,
936  /// we add the label to the indirect goto.  Every subsequent indirect goto is
937  /// codegen'd as a jump to the IndirectBranch's basic block.
938  llvm::IndirectBrInst *IndirectBranch;
939
940  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
941  /// decls.
942  DeclMapTy LocalDeclMap;
943
944  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
945  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
946  /// parameter.
947  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
948      SizeArguments;
949
950  /// Track escaped local variables with auto storage. Used during SEH
951  /// outlining to produce a call to llvm.localescape.
952  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
953
954  /// LabelMap - This keeps track of the LLVM basic block for each C label.
955  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
956
957  // BreakContinueStack - This keeps track of where break and continue
958  // statements should jump to.
959  struct BreakContinue {
960    BreakContinue(JumpDest Break, JumpDest Continue)
961      : BreakBlock(Break), ContinueBlock(Continue) {}
962
963    JumpDest BreakBlock;
964    JumpDest ContinueBlock;
965  };
966  SmallVector<BreakContinue, 8> BreakContinueStack;
967
968  CodeGenPGO PGO;
969
970  /// Calculate branch weights appropriate for PGO data
971  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
972  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
973  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
974                                            uint64_t LoopCount);
975
976public:
977  /// Increment the profiler's counter for the given statement.
978  void incrementProfileCounter(const Stmt *S) {
979    if (CGM.getCodeGenOpts().hasProfileClangInstr())
980      PGO.emitCounterIncrement(Builder, S);
981    PGO.setCurrentStmt(S);
982  }
983
984  /// Get the profiler's count for the given statement.
985  uint64_t getProfileCount(const Stmt *S) {
986    Optional<uint64_t> Count = PGO.getStmtCount(S);
987    if (!Count.hasValue())
988      return 0;
989    return *Count;
990  }
991
992  /// Set the profiler's current count.
993  void setCurrentProfileCount(uint64_t Count) {
994    PGO.setCurrentRegionCount(Count);
995  }
996
997  /// Get the profiler's current count. This is generally the count for the most
998  /// recently incremented counter.
999  uint64_t getCurrentProfileCount() {
1000    return PGO.getCurrentRegionCount();
1001  }
1002
1003private:
1004
1005  /// SwitchInsn - This is nearest current switch instruction. It is null if
1006  /// current context is not in a switch.
1007  llvm::SwitchInst *SwitchInsn;
1008  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1009  SmallVector<uint64_t, 16> *SwitchWeights;
1010
1011  /// CaseRangeBlock - This block holds if condition check for last case
1012  /// statement range in current switch instruction.
1013  llvm::BasicBlock *CaseRangeBlock;
1014
1015  /// OpaqueLValues - Keeps track of the current set of opaque value
1016  /// expressions.
1017  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1018  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1019
1020  // VLASizeMap - This keeps track of the associated size for each VLA type.
1021  // We track this by the size expression rather than the type itself because
1022  // in certain situations, like a const qualifier applied to an VLA typedef,
1023  // multiple VLA types can share the same size expression.
1024  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1025  // enter/leave scopes.
1026  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1027
1028  /// A block containing a single 'unreachable' instruction.  Created
1029  /// lazily by getUnreachableBlock().
1030  llvm::BasicBlock *UnreachableBlock;
1031
1032  /// Counts of the number return expressions in the function.
1033  unsigned NumReturnExprs;
1034
1035  /// Count the number of simple (constant) return expressions in the function.
1036  unsigned NumSimpleReturnExprs;
1037
1038  /// The last regular (non-return) debug location (breakpoint) in the function.
1039  SourceLocation LastStopPoint;
1040
1041public:
1042  /// A scope within which we are constructing the fields of an object which
1043  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1044  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1045  class FieldConstructionScope {
1046  public:
1047    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1048        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1049      CGF.CXXDefaultInitExprThis = This;
1050    }
1051    ~FieldConstructionScope() {
1052      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1053    }
1054
1055  private:
1056    CodeGenFunction &CGF;
1057    Address OldCXXDefaultInitExprThis;
1058  };
1059
1060  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1061  /// is overridden to be the object under construction.
1062  class CXXDefaultInitExprScope {
1063  public:
1064    CXXDefaultInitExprScope(CodeGenFunction &CGF)
1065      : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1066        OldCXXThisAlignment(CGF.CXXThisAlignment) {
1067      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1068      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1069    }
1070    ~CXXDefaultInitExprScope() {
1071      CGF.CXXThisValue = OldCXXThisValue;
1072      CGF.CXXThisAlignment = OldCXXThisAlignment;
1073    }
1074
1075  public:
1076    CodeGenFunction &CGF;
1077    llvm::Value *OldCXXThisValue;
1078    CharUnits OldCXXThisAlignment;
1079  };
1080
1081  class InlinedInheritingConstructorScope {
1082  public:
1083    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1084        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1085          OldCurCodeDecl(CGF.CurCodeDecl),
1086          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1087          OldCXXABIThisValue(CGF.CXXABIThisValue),
1088          OldCXXThisValue(CGF.CXXThisValue),
1089          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1090          OldCXXThisAlignment(CGF.CXXThisAlignment),
1091          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1092          OldCXXInheritedCtorInitExprArgs(
1093              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1094      CGF.CurGD = GD;
1095      CGF.CurFuncDecl = CGF.CurCodeDecl =
1096          cast<CXXConstructorDecl>(GD.getDecl());
1097      CGF.CXXABIThisDecl = nullptr;
1098      CGF.CXXABIThisValue = nullptr;
1099      CGF.CXXThisValue = nullptr;
1100      CGF.CXXABIThisAlignment = CharUnits();
1101      CGF.CXXThisAlignment = CharUnits();
1102      CGF.ReturnValue = Address::invalid();
1103      CGF.FnRetTy = QualType();
1104      CGF.CXXInheritedCtorInitExprArgs.clear();
1105    }
1106    ~InlinedInheritingConstructorScope() {
1107      CGF.CurGD = OldCurGD;
1108      CGF.CurFuncDecl = OldCurFuncDecl;
1109      CGF.CurCodeDecl = OldCurCodeDecl;
1110      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1111      CGF.CXXABIThisValue = OldCXXABIThisValue;
1112      CGF.CXXThisValue = OldCXXThisValue;
1113      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1114      CGF.CXXThisAlignment = OldCXXThisAlignment;
1115      CGF.ReturnValue = OldReturnValue;
1116      CGF.FnRetTy = OldFnRetTy;
1117      CGF.CXXInheritedCtorInitExprArgs =
1118          std::move(OldCXXInheritedCtorInitExprArgs);
1119    }
1120
1121  private:
1122    CodeGenFunction &CGF;
1123    GlobalDecl OldCurGD;
1124    const Decl *OldCurFuncDecl;
1125    const Decl *OldCurCodeDecl;
1126    ImplicitParamDecl *OldCXXABIThisDecl;
1127    llvm::Value *OldCXXABIThisValue;
1128    llvm::Value *OldCXXThisValue;
1129    CharUnits OldCXXABIThisAlignment;
1130    CharUnits OldCXXThisAlignment;
1131    Address OldReturnValue;
1132    QualType OldFnRetTy;
1133    CallArgList OldCXXInheritedCtorInitExprArgs;
1134  };
1135
1136private:
1137  /// CXXThisDecl - When generating code for a C++ member function,
1138  /// this will hold the implicit 'this' declaration.
1139  ImplicitParamDecl *CXXABIThisDecl;
1140  llvm::Value *CXXABIThisValue;
1141  llvm::Value *CXXThisValue;
1142  CharUnits CXXABIThisAlignment;
1143  CharUnits CXXThisAlignment;
1144
1145  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1146  /// this expression.
1147  Address CXXDefaultInitExprThis = Address::invalid();
1148
1149  /// The values of function arguments to use when evaluating
1150  /// CXXInheritedCtorInitExprs within this context.
1151  CallArgList CXXInheritedCtorInitExprArgs;
1152
1153  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1154  /// destructor, this will hold the implicit argument (e.g. VTT).
1155  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1156  llvm::Value *CXXStructorImplicitParamValue;
1157
1158  /// OutermostConditional - Points to the outermost active
1159  /// conditional control.  This is used so that we know if a
1160  /// temporary should be destroyed conditionally.
1161  ConditionalEvaluation *OutermostConditional;
1162
1163  /// The current lexical scope.
1164  LexicalScope *CurLexicalScope;
1165
1166  /// The current source location that should be used for exception
1167  /// handling code.
1168  SourceLocation CurEHLocation;
1169
1170  /// BlockByrefInfos - For each __block variable, contains
1171  /// information about the layout of the variable.
1172  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1173
1174  llvm::BasicBlock *TerminateLandingPad;
1175  llvm::BasicBlock *TerminateHandler;
1176  llvm::BasicBlock *TrapBB;
1177
1178  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1179  /// In the kernel metadata node, reference the kernel function and metadata
1180  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1181  /// - A node for the vec_type_hint(<type>) qualifier contains string
1182  ///   "vec_type_hint", an undefined value of the <type> data type,
1183  ///   and a Boolean that is true if the <type> is integer and signed.
1184  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1185  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1186  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1187  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1188  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1189                                llvm::Function *Fn);
1190
1191public:
1192  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1193  ~CodeGenFunction();
1194
1195  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1196  ASTContext &getContext() const { return CGM.getContext(); }
1197  CGDebugInfo *getDebugInfo() {
1198    if (DisableDebugInfo)
1199      return nullptr;
1200    return DebugInfo;
1201  }
1202  void disableDebugInfo() { DisableDebugInfo = true; }
1203  void enableDebugInfo() { DisableDebugInfo = false; }
1204
1205  bool shouldUseFusedARCCalls() {
1206    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1207  }
1208
1209  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1210
1211  /// Returns a pointer to the function's exception object and selector slot,
1212  /// which is assigned in every landing pad.
1213  Address getExceptionSlot();
1214  Address getEHSelectorSlot();
1215
1216  /// Returns the contents of the function's exception object and selector
1217  /// slots.
1218  llvm::Value *getExceptionFromSlot();
1219  llvm::Value *getSelectorFromSlot();
1220
1221  Address getNormalCleanupDestSlot();
1222
1223  llvm::BasicBlock *getUnreachableBlock() {
1224    if (!UnreachableBlock) {
1225      UnreachableBlock = createBasicBlock("unreachable");
1226      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1227    }
1228    return UnreachableBlock;
1229  }
1230
1231  llvm::BasicBlock *getInvokeDest() {
1232    if (!EHStack.requiresLandingPad()) return nullptr;
1233    return getInvokeDestImpl();
1234  }
1235
1236  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1237
1238  const TargetInfo &getTarget() const { return Target; }
1239  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1240
1241  //===--------------------------------------------------------------------===//
1242  //                                  Cleanups
1243  //===--------------------------------------------------------------------===//
1244
1245  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1246
1247  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1248                                        Address arrayEndPointer,
1249                                        QualType elementType,
1250                                        CharUnits elementAlignment,
1251                                        Destroyer *destroyer);
1252  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1253                                      llvm::Value *arrayEnd,
1254                                      QualType elementType,
1255                                      CharUnits elementAlignment,
1256                                      Destroyer *destroyer);
1257
1258  void pushDestroy(QualType::DestructionKind dtorKind,
1259                   Address addr, QualType type);
1260  void pushEHDestroy(QualType::DestructionKind dtorKind,
1261                     Address addr, QualType type);
1262  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1263                   Destroyer *destroyer, bool useEHCleanupForArray);
1264  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1265                                   QualType type, Destroyer *destroyer,
1266                                   bool useEHCleanupForArray);
1267  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1268                                   llvm::Value *CompletePtr,
1269                                   QualType ElementType);
1270  void pushStackRestore(CleanupKind kind, Address SPMem);
1271  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1272                   bool useEHCleanupForArray);
1273  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1274                                        Destroyer *destroyer,
1275                                        bool useEHCleanupForArray,
1276                                        const VarDecl *VD);
1277  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1278                        QualType elementType, CharUnits elementAlign,
1279                        Destroyer *destroyer,
1280                        bool checkZeroLength, bool useEHCleanup);
1281
1282  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1283
1284  /// Determines whether an EH cleanup is required to destroy a type
1285  /// with the given destruction kind.
1286  bool needsEHCleanup(QualType::DestructionKind kind) {
1287    switch (kind) {
1288    case QualType::DK_none:
1289      return false;
1290    case QualType::DK_cxx_destructor:
1291    case QualType::DK_objc_weak_lifetime:
1292      return getLangOpts().Exceptions;
1293    case QualType::DK_objc_strong_lifetime:
1294      return getLangOpts().Exceptions &&
1295             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1296    }
1297    llvm_unreachable("bad destruction kind");
1298  }
1299
1300  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1301    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1302  }
1303
1304  //===--------------------------------------------------------------------===//
1305  //                                  Objective-C
1306  //===--------------------------------------------------------------------===//
1307
1308  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1309
1310  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1311
1312  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1313  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1314                          const ObjCPropertyImplDecl *PID);
1315  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1316                              const ObjCPropertyImplDecl *propImpl,
1317                              const ObjCMethodDecl *GetterMothodDecl,
1318                              llvm::Constant *AtomicHelperFn);
1319
1320  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1321                                  ObjCMethodDecl *MD, bool ctor);
1322
1323  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1324  /// for the given property.
1325  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1326                          const ObjCPropertyImplDecl *PID);
1327  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1328                              const ObjCPropertyImplDecl *propImpl,
1329                              llvm::Constant *AtomicHelperFn);
1330
1331  //===--------------------------------------------------------------------===//
1332  //                                  Block Bits
1333  //===--------------------------------------------------------------------===//
1334
1335  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1336  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1337  static void destroyBlockInfos(CGBlockInfo *info);
1338
1339  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1340                                        const CGBlockInfo &Info,
1341                                        const DeclMapTy &ldm,
1342                                        bool IsLambdaConversionToBlock);
1343
1344  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1345  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1346  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1347                                             const ObjCPropertyImplDecl *PID);
1348  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1349                                             const ObjCPropertyImplDecl *PID);
1350  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1351
1352  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1353
1354  class AutoVarEmission;
1355
1356  void emitByrefStructureInit(const AutoVarEmission &emission);
1357  void enterByrefCleanup(const AutoVarEmission &emission);
1358
1359  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1360                                llvm::Value *ptr);
1361
1362  Address LoadBlockStruct();
1363  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1364
1365  /// BuildBlockByrefAddress - Computes the location of the
1366  /// data in a variable which is declared as __block.
1367  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1368                                bool followForward = true);
1369  Address emitBlockByrefAddress(Address baseAddr,
1370                                const BlockByrefInfo &info,
1371                                bool followForward,
1372                                const llvm::Twine &name);
1373
1374  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1375
1376  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1377
1378  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1379                    const CGFunctionInfo &FnInfo);
1380  /// \brief Emit code for the start of a function.
1381  /// \param Loc       The location to be associated with the function.
1382  /// \param StartLoc  The location of the function body.
1383  void StartFunction(GlobalDecl GD,
1384                     QualType RetTy,
1385                     llvm::Function *Fn,
1386                     const CGFunctionInfo &FnInfo,
1387                     const FunctionArgList &Args,
1388                     SourceLocation Loc = SourceLocation(),
1389                     SourceLocation StartLoc = SourceLocation());
1390
1391  void EmitConstructorBody(FunctionArgList &Args);
1392  void EmitDestructorBody(FunctionArgList &Args);
1393  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1394  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1395  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1396
1397  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1398                                  CallArgList &CallArgs);
1399  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1400  void EmitLambdaBlockInvokeBody();
1401  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1402  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1403  void EmitAsanPrologueOrEpilogue(bool Prologue);
1404
1405  /// \brief Emit the unified return block, trying to avoid its emission when
1406  /// possible.
1407  /// \return The debug location of the user written return statement if the
1408  /// return block is is avoided.
1409  llvm::DebugLoc EmitReturnBlock();
1410
1411  /// FinishFunction - Complete IR generation of the current function. It is
1412  /// legal to call this function even if there is no current insertion point.
1413  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1414
1415  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1416                  const CGFunctionInfo &FnInfo);
1417
1418  void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1419
1420  void FinishThunk();
1421
1422  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1423  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1424                         llvm::Value *Callee);
1425
1426  /// Generate a thunk for the given method.
1427  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1428                     GlobalDecl GD, const ThunkInfo &Thunk);
1429
1430  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1431                                       const CGFunctionInfo &FnInfo,
1432                                       GlobalDecl GD, const ThunkInfo &Thunk);
1433
1434  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1435                        FunctionArgList &Args);
1436
1437  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1438                               ArrayRef<VarDecl *> ArrayIndexes);
1439
1440  /// Struct with all informations about dynamic [sub]class needed to set vptr.
1441  struct VPtr {
1442    BaseSubobject Base;
1443    const CXXRecordDecl *NearestVBase;
1444    CharUnits OffsetFromNearestVBase;
1445    const CXXRecordDecl *VTableClass;
1446  };
1447
1448  /// Initialize the vtable pointer of the given subobject.
1449  void InitializeVTablePointer(const VPtr &vptr);
1450
1451  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1452
1453  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1454  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1455
1456  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1457                         CharUnits OffsetFromNearestVBase,
1458                         bool BaseIsNonVirtualPrimaryBase,
1459                         const CXXRecordDecl *VTableClass,
1460                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1461
1462  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1463
1464  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1465  /// to by This.
1466  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1467                            const CXXRecordDecl *VTableClass);
1468
1469  enum CFITypeCheckKind {
1470    CFITCK_VCall,
1471    CFITCK_NVCall,
1472    CFITCK_DerivedCast,
1473    CFITCK_UnrelatedCast,
1474    CFITCK_ICall,
1475  };
1476
1477  /// \brief Derived is the presumed address of an object of type T after a
1478  /// cast. If T is a polymorphic class type, emit a check that the virtual
1479  /// table for Derived belongs to a class derived from T.
1480  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1481                                 bool MayBeNull, CFITypeCheckKind TCK,
1482                                 SourceLocation Loc);
1483
1484  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1485  /// If vptr CFI is enabled, emit a check that VTable is valid.
1486  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1487                                 CFITypeCheckKind TCK, SourceLocation Loc);
1488
1489  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1490  /// RD using llvm.type.test.
1491  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1492                          CFITypeCheckKind TCK, SourceLocation Loc);
1493
1494  /// If whole-program virtual table optimization is enabled, emit an assumption
1495  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1496  /// enabled, emit a check that VTable is a member of RD's type identifier.
1497  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1498                                    llvm::Value *VTable, SourceLocation Loc);
1499
1500  /// Returns whether we should perform a type checked load when loading a
1501  /// virtual function for virtual calls to members of RD. This is generally
1502  /// true when both vcall CFI and whole-program-vtables are enabled.
1503  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1504
1505  /// Emit a type checked load from the given vtable.
1506  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1507                                         uint64_t VTableByteOffset);
1508
1509  /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1510  /// expr can be devirtualized.
1511  bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1512                                         const CXXMethodDecl *MD);
1513
1514  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1515  /// given phase of destruction for a destructor.  The end result
1516  /// should call destructors on members and base classes in reverse
1517  /// order of their construction.
1518  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1519
1520  /// ShouldInstrumentFunction - Return true if the current function should be
1521  /// instrumented with __cyg_profile_func_* calls
1522  bool ShouldInstrumentFunction();
1523
1524  /// ShouldXRayInstrument - Return true if the current function should be
1525  /// instrumented with XRay nop sleds.
1526  bool ShouldXRayInstrumentFunction() const;
1527
1528  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1529  /// instrumentation function with the current function and the call site, if
1530  /// function instrumentation is enabled.
1531  void EmitFunctionInstrumentation(const char *Fn);
1532
1533  /// EmitMCountInstrumentation - Emit call to .mcount.
1534  void EmitMCountInstrumentation();
1535
1536  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1537  /// arguments for the given function. This is also responsible for naming the
1538  /// LLVM function arguments.
1539  void EmitFunctionProlog(const CGFunctionInfo &FI,
1540                          llvm::Function *Fn,
1541                          const FunctionArgList &Args);
1542
1543  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1544  /// given temporary.
1545  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1546                          SourceLocation EndLoc);
1547
1548  /// EmitStartEHSpec - Emit the start of the exception spec.
1549  void EmitStartEHSpec(const Decl *D);
1550
1551  /// EmitEndEHSpec - Emit the end of the exception spec.
1552  void EmitEndEHSpec(const Decl *D);
1553
1554  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1555  llvm::BasicBlock *getTerminateLandingPad();
1556
1557  /// getTerminateHandler - Return a handler (not a landing pad, just
1558  /// a catch handler) that just calls terminate.  This is used when
1559  /// a terminate scope encloses a try.
1560  llvm::BasicBlock *getTerminateHandler();
1561
1562  llvm::Type *ConvertTypeForMem(QualType T);
1563  llvm::Type *ConvertType(QualType T);
1564  llvm::Type *ConvertType(const TypeDecl *T) {
1565    return ConvertType(getContext().getTypeDeclType(T));
1566  }
1567
1568  /// LoadObjCSelf - Load the value of self. This function is only valid while
1569  /// generating code for an Objective-C method.
1570  llvm::Value *LoadObjCSelf();
1571
1572  /// TypeOfSelfObject - Return type of object that this self represents.
1573  QualType TypeOfSelfObject();
1574
1575  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1576  /// an aggregate LLVM type or is void.
1577  static TypeEvaluationKind getEvaluationKind(QualType T);
1578
1579  static bool hasScalarEvaluationKind(QualType T) {
1580    return getEvaluationKind(T) == TEK_Scalar;
1581  }
1582
1583  static bool hasAggregateEvaluationKind(QualType T) {
1584    return getEvaluationKind(T) == TEK_Aggregate;
1585  }
1586
1587  /// createBasicBlock - Create an LLVM basic block.
1588  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1589                                     llvm::Function *parent = nullptr,
1590                                     llvm::BasicBlock *before = nullptr) {
1591#ifdef NDEBUG
1592    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1593#else
1594    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1595#endif
1596  }
1597
1598  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1599  /// label maps to.
1600  JumpDest getJumpDestForLabel(const LabelDecl *S);
1601
1602  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1603  /// another basic block, simplify it. This assumes that no other code could
1604  /// potentially reference the basic block.
1605  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1606
1607  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1608  /// adding a fall-through branch from the current insert block if
1609  /// necessary. It is legal to call this function even if there is no current
1610  /// insertion point.
1611  ///
1612  /// IsFinished - If true, indicates that the caller has finished emitting
1613  /// branches to the given block and does not expect to emit code into it. This
1614  /// means the block can be ignored if it is unreachable.
1615  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1616
1617  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1618  /// near its uses, and leave the insertion point in it.
1619  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1620
1621  /// EmitBranch - Emit a branch to the specified basic block from the current
1622  /// insert block, taking care to avoid creation of branches from dummy
1623  /// blocks. It is legal to call this function even if there is no current
1624  /// insertion point.
1625  ///
1626  /// This function clears the current insertion point. The caller should follow
1627  /// calls to this function with calls to Emit*Block prior to generation new
1628  /// code.
1629  void EmitBranch(llvm::BasicBlock *Block);
1630
1631  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1632  /// indicates that the current code being emitted is unreachable.
1633  bool HaveInsertPoint() const {
1634    return Builder.GetInsertBlock() != nullptr;
1635  }
1636
1637  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1638  /// emitted IR has a place to go. Note that by definition, if this function
1639  /// creates a block then that block is unreachable; callers may do better to
1640  /// detect when no insertion point is defined and simply skip IR generation.
1641  void EnsureInsertPoint() {
1642    if (!HaveInsertPoint())
1643      EmitBlock(createBasicBlock());
1644  }
1645
1646  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1647  /// specified stmt yet.
1648  void ErrorUnsupported(const Stmt *S, const char *Type);
1649
1650  //===--------------------------------------------------------------------===//
1651  //                                  Helpers
1652  //===--------------------------------------------------------------------===//
1653
1654  LValue MakeAddrLValue(Address Addr, QualType T,
1655                        AlignmentSource AlignSource = AlignmentSource::Type) {
1656    return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1657                            CGM.getTBAAInfo(T));
1658  }
1659
1660  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1661                        AlignmentSource AlignSource = AlignmentSource::Type) {
1662    return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1663                            AlignSource, CGM.getTBAAInfo(T));
1664  }
1665
1666  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1667  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1668  CharUnits getNaturalTypeAlignment(QualType T,
1669                                    AlignmentSource *Source = nullptr,
1670                                    bool forPointeeType = false);
1671  CharUnits getNaturalPointeeTypeAlignment(QualType T,
1672                                           AlignmentSource *Source = nullptr);
1673
1674  Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1675                              AlignmentSource *Source = nullptr);
1676  LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1677
1678  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1679                            AlignmentSource *Source = nullptr);
1680  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1681
1682  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1683  /// block. The caller is responsible for setting an appropriate alignment on
1684  /// the alloca.
1685  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1686                                     const Twine &Name = "tmp");
1687  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1688                           const Twine &Name = "tmp");
1689
1690  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1691  /// default ABI alignment of the given LLVM type.
1692  ///
1693  /// IMPORTANT NOTE: This is *not* generally the right alignment for
1694  /// any given AST type that happens to have been lowered to the
1695  /// given IR type.  This should only ever be used for function-local,
1696  /// IR-driven manipulations like saving and restoring a value.  Do
1697  /// not hand this address off to arbitrary IRGen routines, and especially
1698  /// do not pass it as an argument to a function that might expect a
1699  /// properly ABI-aligned value.
1700  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1701                                       const Twine &Name = "tmp");
1702
1703  /// InitTempAlloca - Provide an initial value for the given alloca which
1704  /// will be observable at all locations in the function.
1705  ///
1706  /// The address should be something that was returned from one of
1707  /// the CreateTempAlloca or CreateMemTemp routines, and the
1708  /// initializer must be valid in the entry block (i.e. it must
1709  /// either be a constant or an argument value).
1710  void InitTempAlloca(Address Alloca, llvm::Value *Value);
1711
1712  /// CreateIRTemp - Create a temporary IR object of the given type, with
1713  /// appropriate alignment. This routine should only be used when an temporary
1714  /// value needs to be stored into an alloca (for example, to avoid explicit
1715  /// PHI construction), but the type is the IR type, not the type appropriate
1716  /// for storing in memory.
1717  ///
1718  /// That is, this is exactly equivalent to CreateMemTemp, but calling
1719  /// ConvertType instead of ConvertTypeForMem.
1720  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1721
1722  /// CreateMemTemp - Create a temporary memory object of the given type, with
1723  /// appropriate alignment.
1724  Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1725  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1726
1727  /// CreateAggTemp - Create a temporary memory object for the given
1728  /// aggregate type.
1729  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1730    return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1731                                 T.getQualifiers(),
1732                                 AggValueSlot::IsNotDestructed,
1733                                 AggValueSlot::DoesNotNeedGCBarriers,
1734                                 AggValueSlot::IsNotAliased);
1735  }
1736
1737  /// Emit a cast to void* in the appropriate address space.
1738  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1739
1740  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1741  /// expression and compare the result against zero, returning an Int1Ty value.
1742  llvm::Value *EvaluateExprAsBool(const Expr *E);
1743
1744  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1745  void EmitIgnoredExpr(const Expr *E);
1746
1747  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1748  /// any type.  The result is returned as an RValue struct.  If this is an
1749  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1750  /// the result should be returned.
1751  ///
1752  /// \param ignoreResult True if the resulting value isn't used.
1753  RValue EmitAnyExpr(const Expr *E,
1754                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1755                     bool ignoreResult = false);
1756
1757  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1758  // or the value of the expression, depending on how va_list is defined.
1759  Address EmitVAListRef(const Expr *E);
1760
1761  /// Emit a "reference" to a __builtin_ms_va_list; this is
1762  /// always the value of the expression, because a __builtin_ms_va_list is a
1763  /// pointer to a char.
1764  Address EmitMSVAListRef(const Expr *E);
1765
1766  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1767  /// always be accessible even if no aggregate location is provided.
1768  RValue EmitAnyExprToTemp(const Expr *E);
1769
1770  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1771  /// arbitrary expression into the given memory location.
1772  void EmitAnyExprToMem(const Expr *E, Address Location,
1773                        Qualifiers Quals, bool IsInitializer);
1774
1775  void EmitAnyExprToExn(const Expr *E, Address Addr);
1776
1777  /// EmitExprAsInit - Emits the code necessary to initialize a
1778  /// location in memory with the given initializer.
1779  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1780                      bool capturedByInit);
1781
1782  /// hasVolatileMember - returns true if aggregate type has a volatile
1783  /// member.
1784  bool hasVolatileMember(QualType T) {
1785    if (const RecordType *RT = T->getAs<RecordType>()) {
1786      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1787      return RD->hasVolatileMember();
1788    }
1789    return false;
1790  }
1791  /// EmitAggregateCopy - Emit an aggregate assignment.
1792  ///
1793  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1794  /// This is required for correctness when assigning non-POD structures in C++.
1795  void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1796                           QualType EltTy) {
1797    bool IsVolatile = hasVolatileMember(EltTy);
1798    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1799  }
1800
1801  void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1802                             QualType DestTy, QualType SrcTy) {
1803    EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1804                      /*IsAssignment=*/false);
1805  }
1806
1807  /// EmitAggregateCopy - Emit an aggregate copy.
1808  ///
1809  /// \param isVolatile - True iff either the source or the destination is
1810  /// volatile.
1811  /// \param isAssignment - If false, allow padding to be copied.  This often
1812  /// yields more efficient.
1813  void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1814                         QualType EltTy, bool isVolatile=false,
1815                         bool isAssignment = false);
1816
1817  /// GetAddrOfLocalVar - Return the address of a local variable.
1818  Address GetAddrOfLocalVar(const VarDecl *VD) {
1819    auto it = LocalDeclMap.find(VD);
1820    assert(it != LocalDeclMap.end() &&
1821           "Invalid argument to GetAddrOfLocalVar(), no decl!");
1822    return it->second;
1823  }
1824
1825  /// getOpaqueLValueMapping - Given an opaque value expression (which
1826  /// must be mapped to an l-value), return its mapping.
1827  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1828    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1829
1830    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1831      it = OpaqueLValues.find(e);
1832    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1833    return it->second;
1834  }
1835
1836  /// getOpaqueRValueMapping - Given an opaque value expression (which
1837  /// must be mapped to an r-value), return its mapping.
1838  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1839    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1840
1841    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1842      it = OpaqueRValues.find(e);
1843    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1844    return it->second;
1845  }
1846
1847  /// getAccessedFieldNo - Given an encoded value and a result number, return
1848  /// the input field number being accessed.
1849  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1850
1851  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1852  llvm::BasicBlock *GetIndirectGotoBlock();
1853
1854  /// EmitNullInitialization - Generate code to set a value of the given type to
1855  /// null, If the type contains data member pointers, they will be initialized
1856  /// to -1 in accordance with the Itanium C++ ABI.
1857  void EmitNullInitialization(Address DestPtr, QualType Ty);
1858
1859  /// Emits a call to an LLVM variable-argument intrinsic, either
1860  /// \c llvm.va_start or \c llvm.va_end.
1861  /// \param ArgValue A reference to the \c va_list as emitted by either
1862  /// \c EmitVAListRef or \c EmitMSVAListRef.
1863  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1864  /// calls \c llvm.va_end.
1865  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1866
1867  /// Generate code to get an argument from the passed in pointer
1868  /// and update it accordingly.
1869  /// \param VE The \c VAArgExpr for which to generate code.
1870  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1871  /// either \c EmitVAListRef or \c EmitMSVAListRef.
1872  /// \returns A pointer to the argument.
1873  // FIXME: We should be able to get rid of this method and use the va_arg
1874  // instruction in LLVM instead once it works well enough.
1875  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1876
1877  /// emitArrayLength - Compute the length of an array, even if it's a
1878  /// VLA, and drill down to the base element type.
1879  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1880                               QualType &baseType,
1881                               Address &addr);
1882
1883  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1884  /// the given variably-modified type and store them in the VLASizeMap.
1885  ///
1886  /// This function can be called with a null (unreachable) insert point.
1887  void EmitVariablyModifiedType(QualType Ty);
1888
1889  /// getVLASize - Returns an LLVM value that corresponds to the size,
1890  /// in non-variably-sized elements, of a variable length array type,
1891  /// plus that largest non-variably-sized element type.  Assumes that
1892  /// the type has already been emitted with EmitVariablyModifiedType.
1893  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1894  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1895
1896  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1897  /// generating code for an C++ member function.
1898  llvm::Value *LoadCXXThis() {
1899    assert(CXXThisValue && "no 'this' value for this function");
1900    return CXXThisValue;
1901  }
1902  Address LoadCXXThisAddress();
1903
1904  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1905  /// virtual bases.
1906  // FIXME: Every place that calls LoadCXXVTT is something
1907  // that needs to be abstracted properly.
1908  llvm::Value *LoadCXXVTT() {
1909    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1910    return CXXStructorImplicitParamValue;
1911  }
1912
1913  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1914  /// complete class to the given direct base.
1915  Address
1916  GetAddressOfDirectBaseInCompleteClass(Address Value,
1917                                        const CXXRecordDecl *Derived,
1918                                        const CXXRecordDecl *Base,
1919                                        bool BaseIsVirtual);
1920
1921  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1922
1923  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1924  /// load of 'this' and returns address of the base class.
1925  Address GetAddressOfBaseClass(Address Value,
1926                                const CXXRecordDecl *Derived,
1927                                CastExpr::path_const_iterator PathBegin,
1928                                CastExpr::path_const_iterator PathEnd,
1929                                bool NullCheckValue, SourceLocation Loc);
1930
1931  Address GetAddressOfDerivedClass(Address Value,
1932                                   const CXXRecordDecl *Derived,
1933                                   CastExpr::path_const_iterator PathBegin,
1934                                   CastExpr::path_const_iterator PathEnd,
1935                                   bool NullCheckValue);
1936
1937  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1938  /// base constructor/destructor with virtual bases.
1939  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1940  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1941  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1942                               bool Delegating);
1943
1944  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1945                                      CXXCtorType CtorType,
1946                                      const FunctionArgList &Args,
1947                                      SourceLocation Loc);
1948  // It's important not to confuse this and the previous function. Delegating
1949  // constructors are the C++0x feature. The constructor delegate optimization
1950  // is used to reduce duplication in the base and complete consturctors where
1951  // they are substantially the same.
1952  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1953                                        const FunctionArgList &Args);
1954
1955  /// Emit a call to an inheriting constructor (that is, one that invokes a
1956  /// constructor inherited from a base class) by inlining its definition. This
1957  /// is necessary if the ABI does not support forwarding the arguments to the
1958  /// base class constructor (because they're variadic or similar).
1959  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1960                                               CXXCtorType CtorType,
1961                                               bool ForVirtualBase,
1962                                               bool Delegating,
1963                                               CallArgList &Args);
1964
1965  /// Emit a call to a constructor inherited from a base class, passing the
1966  /// current constructor's arguments along unmodified (without even making
1967  /// a copy).
1968  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
1969                                       bool ForVirtualBase, Address This,
1970                                       bool InheritedFromVBase,
1971                                       const CXXInheritedCtorInitExpr *E);
1972
1973  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1974                              bool ForVirtualBase, bool Delegating,
1975                              Address This, const CXXConstructExpr *E);
1976
1977  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1978                              bool ForVirtualBase, bool Delegating,
1979                              Address This, CallArgList &Args);
1980
1981  /// Emit assumption load for all bases. Requires to be be called only on
1982  /// most-derived class and not under construction of the object.
1983  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1984
1985  /// Emit assumption that vptr load == global vtable.
1986  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1987
1988  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1989                                      Address This, Address Src,
1990                                      const CXXConstructExpr *E);
1991
1992  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1993                                  const ArrayType *ArrayTy,
1994                                  Address ArrayPtr,
1995                                  const CXXConstructExpr *E,
1996                                  bool ZeroInitialization = false);
1997
1998  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1999                                  llvm::Value *NumElements,
2000                                  Address ArrayPtr,
2001                                  const CXXConstructExpr *E,
2002                                  bool ZeroInitialization = false);
2003
2004  static Destroyer destroyCXXObject;
2005
2006  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2007                             bool ForVirtualBase, bool Delegating,
2008                             Address This);
2009
2010  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2011                               llvm::Type *ElementTy, Address NewPtr,
2012                               llvm::Value *NumElements,
2013                               llvm::Value *AllocSizeWithoutCookie);
2014
2015  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2016                        Address Ptr);
2017
2018  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2019  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2020
2021  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2022  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2023
2024  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2025                      QualType DeleteTy);
2026
2027  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2028                                  const Expr *Arg, bool IsDelete);
2029
2030  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2031  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2032  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2033
2034  /// \brief Situations in which we might emit a check for the suitability of a
2035  ///        pointer or glvalue.
2036  enum TypeCheckKind {
2037    /// Checking the operand of a load. Must be suitably sized and aligned.
2038    TCK_Load,
2039    /// Checking the destination of a store. Must be suitably sized and aligned.
2040    TCK_Store,
2041    /// Checking the bound value in a reference binding. Must be suitably sized
2042    /// and aligned, but is not required to refer to an object (until the
2043    /// reference is used), per core issue 453.
2044    TCK_ReferenceBinding,
2045    /// Checking the object expression in a non-static data member access. Must
2046    /// be an object within its lifetime.
2047    TCK_MemberAccess,
2048    /// Checking the 'this' pointer for a call to a non-static member function.
2049    /// Must be an object within its lifetime.
2050    TCK_MemberCall,
2051    /// Checking the 'this' pointer for a constructor call.
2052    TCK_ConstructorCall,
2053    /// Checking the operand of a static_cast to a derived pointer type. Must be
2054    /// null or an object within its lifetime.
2055    TCK_DowncastPointer,
2056    /// Checking the operand of a static_cast to a derived reference type. Must
2057    /// be an object within its lifetime.
2058    TCK_DowncastReference,
2059    /// Checking the operand of a cast to a base object. Must be suitably sized
2060    /// and aligned.
2061    TCK_Upcast,
2062    /// Checking the operand of a cast to a virtual base object. Must be an
2063    /// object within its lifetime.
2064    TCK_UpcastToVirtualBase
2065  };
2066
2067  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2068  /// calls to EmitTypeCheck can be skipped.
2069  bool sanitizePerformTypeCheck() const;
2070
2071  /// \brief Emit a check that \p V is the address of storage of the
2072  /// appropriate size and alignment for an object of type \p Type.
2073  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2074                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
2075                     bool SkipNullCheck = false);
2076
2077  /// \brief Emit a check that \p Base points into an array object, which
2078  /// we can access at index \p Index. \p Accessed should be \c false if we
2079  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2080  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2081                       QualType IndexType, bool Accessed);
2082
2083  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2084                                       bool isInc, bool isPre);
2085  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2086                                         bool isInc, bool isPre);
2087
2088  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2089                               llvm::Value *OffsetValue = nullptr) {
2090    Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2091                                      OffsetValue);
2092  }
2093
2094  //===--------------------------------------------------------------------===//
2095  //                            Declaration Emission
2096  //===--------------------------------------------------------------------===//
2097
2098  /// EmitDecl - Emit a declaration.
2099  ///
2100  /// This function can be called with a null (unreachable) insert point.
2101  void EmitDecl(const Decl &D);
2102
2103  /// EmitVarDecl - Emit a local variable declaration.
2104  ///
2105  /// This function can be called with a null (unreachable) insert point.
2106  void EmitVarDecl(const VarDecl &D);
2107
2108  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2109                      bool capturedByInit);
2110  void EmitScalarInit(llvm::Value *init, LValue lvalue);
2111
2112  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2113                             llvm::Value *Address);
2114
2115  /// \brief Determine whether the given initializer is trivial in the sense
2116  /// that it requires no code to be generated.
2117  bool isTrivialInitializer(const Expr *Init);
2118
2119  /// EmitAutoVarDecl - Emit an auto variable declaration.
2120  ///
2121  /// This function can be called with a null (unreachable) insert point.
2122  void EmitAutoVarDecl(const VarDecl &D);
2123
2124  class AutoVarEmission {
2125    friend class CodeGenFunction;
2126
2127    const VarDecl *Variable;
2128
2129    /// The address of the alloca.  Invalid if the variable was emitted
2130    /// as a global constant.
2131    Address Addr;
2132
2133    llvm::Value *NRVOFlag;
2134
2135    /// True if the variable is a __block variable.
2136    bool IsByRef;
2137
2138    /// True if the variable is of aggregate type and has a constant
2139    /// initializer.
2140    bool IsConstantAggregate;
2141
2142    /// Non-null if we should use lifetime annotations.
2143    llvm::Value *SizeForLifetimeMarkers;
2144
2145    struct Invalid {};
2146    AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2147
2148    AutoVarEmission(const VarDecl &variable)
2149      : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2150        IsByRef(false), IsConstantAggregate(false),
2151        SizeForLifetimeMarkers(nullptr) {}
2152
2153    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2154
2155  public:
2156    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2157
2158    bool useLifetimeMarkers() const {
2159      return SizeForLifetimeMarkers != nullptr;
2160    }
2161    llvm::Value *getSizeForLifetimeMarkers() const {
2162      assert(useLifetimeMarkers());
2163      return SizeForLifetimeMarkers;
2164    }
2165
2166    /// Returns the raw, allocated address, which is not necessarily
2167    /// the address of the object itself.
2168    Address getAllocatedAddress() const {
2169      return Addr;
2170    }
2171
2172    /// Returns the address of the object within this declaration.
2173    /// Note that this does not chase the forwarding pointer for
2174    /// __block decls.
2175    Address getObjectAddress(CodeGenFunction &CGF) const {
2176      if (!IsByRef) return Addr;
2177
2178      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2179    }
2180  };
2181  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2182  void EmitAutoVarInit(const AutoVarEmission &emission);
2183  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2184  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2185                              QualType::DestructionKind dtorKind);
2186
2187  void EmitStaticVarDecl(const VarDecl &D,
2188                         llvm::GlobalValue::LinkageTypes Linkage);
2189
2190  class ParamValue {
2191    llvm::Value *Value;
2192    unsigned Alignment;
2193    ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2194  public:
2195    static ParamValue forDirect(llvm::Value *value) {
2196      return ParamValue(value, 0);
2197    }
2198    static ParamValue forIndirect(Address addr) {
2199      assert(!addr.getAlignment().isZero());
2200      return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2201    }
2202
2203    bool isIndirect() const { return Alignment != 0; }
2204    llvm::Value *getAnyValue() const { return Value; }
2205
2206    llvm::Value *getDirectValue() const {
2207      assert(!isIndirect());
2208      return Value;
2209    }
2210
2211    Address getIndirectAddress() const {
2212      assert(isIndirect());
2213      return Address(Value, CharUnits::fromQuantity(Alignment));
2214    }
2215  };
2216
2217  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2218  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2219
2220  /// protectFromPeepholes - Protect a value that we're intending to
2221  /// store to the side, but which will probably be used later, from
2222  /// aggressive peepholing optimizations that might delete it.
2223  ///
2224  /// Pass the result to unprotectFromPeepholes to declare that
2225  /// protection is no longer required.
2226  ///
2227  /// There's no particular reason why this shouldn't apply to
2228  /// l-values, it's just that no existing peepholes work on pointers.
2229  PeepholeProtection protectFromPeepholes(RValue rvalue);
2230  void unprotectFromPeepholes(PeepholeProtection protection);
2231
2232  //===--------------------------------------------------------------------===//
2233  //                             Statement Emission
2234  //===--------------------------------------------------------------------===//
2235
2236  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2237  void EmitStopPoint(const Stmt *S);
2238
2239  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2240  /// this function even if there is no current insertion point.
2241  ///
2242  /// This function may clear the current insertion point; callers should use
2243  /// EnsureInsertPoint if they wish to subsequently generate code without first
2244  /// calling EmitBlock, EmitBranch, or EmitStmt.
2245  void EmitStmt(const Stmt *S);
2246
2247  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2248  /// necessarily require an insertion point or debug information; typically
2249  /// because the statement amounts to a jump or a container of other
2250  /// statements.
2251  ///
2252  /// \return True if the statement was handled.
2253  bool EmitSimpleStmt(const Stmt *S);
2254
2255  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2256                           AggValueSlot AVS = AggValueSlot::ignored());
2257  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2258                                       bool GetLast = false,
2259                                       AggValueSlot AVS =
2260                                                AggValueSlot::ignored());
2261
2262  /// EmitLabel - Emit the block for the given label. It is legal to call this
2263  /// function even if there is no current insertion point.
2264  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2265
2266  void EmitLabelStmt(const LabelStmt &S);
2267  void EmitAttributedStmt(const AttributedStmt &S);
2268  void EmitGotoStmt(const GotoStmt &S);
2269  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2270  void EmitIfStmt(const IfStmt &S);
2271
2272  void EmitWhileStmt(const WhileStmt &S,
2273                     ArrayRef<const Attr *> Attrs = None);
2274  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2275  void EmitForStmt(const ForStmt &S,
2276                   ArrayRef<const Attr *> Attrs = None);
2277  void EmitReturnStmt(const ReturnStmt &S);
2278  void EmitDeclStmt(const DeclStmt &S);
2279  void EmitBreakStmt(const BreakStmt &S);
2280  void EmitContinueStmt(const ContinueStmt &S);
2281  void EmitSwitchStmt(const SwitchStmt &S);
2282  void EmitDefaultStmt(const DefaultStmt &S);
2283  void EmitCaseStmt(const CaseStmt &S);
2284  void EmitCaseStmtRange(const CaseStmt &S);
2285  void EmitAsmStmt(const AsmStmt &S);
2286
2287  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2288  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2289  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2290  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2291  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2292
2293  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2294  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2295
2296  void EmitCXXTryStmt(const CXXTryStmt &S);
2297  void EmitSEHTryStmt(const SEHTryStmt &S);
2298  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2299  void EnterSEHTryStmt(const SEHTryStmt &S);
2300  void ExitSEHTryStmt(const SEHTryStmt &S);
2301
2302  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2303                              const Stmt *OutlinedStmt);
2304
2305  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2306                                            const SEHExceptStmt &Except);
2307
2308  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2309                                             const SEHFinallyStmt &Finally);
2310
2311  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2312                                llvm::Value *ParentFP,
2313                                llvm::Value *EntryEBP);
2314  llvm::Value *EmitSEHExceptionCode();
2315  llvm::Value *EmitSEHExceptionInfo();
2316  llvm::Value *EmitSEHAbnormalTermination();
2317
2318  /// Scan the outlined statement for captures from the parent function. For
2319  /// each capture, mark the capture as escaped and emit a call to
2320  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2321  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2322                          bool IsFilter);
2323
2324  /// Recovers the address of a local in a parent function. ParentVar is the
2325  /// address of the variable used in the immediate parent function. It can
2326  /// either be an alloca or a call to llvm.localrecover if there are nested
2327  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2328  /// frame.
2329  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2330                                    Address ParentVar,
2331                                    llvm::Value *ParentFP);
2332
2333  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2334                           ArrayRef<const Attr *> Attrs = None);
2335
2336  /// Returns calculated size of the specified type.
2337  llvm::Value *getTypeSize(QualType Ty);
2338  LValue InitCapturedStruct(const CapturedStmt &S);
2339  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2340  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2341  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2342  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2343  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2344                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
2345  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2346                          SourceLocation Loc);
2347  /// \brief Perform element by element copying of arrays with type \a
2348  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2349  /// generated by \a CopyGen.
2350  ///
2351  /// \param DestAddr Address of the destination array.
2352  /// \param SrcAddr Address of the source array.
2353  /// \param OriginalType Type of destination and source arrays.
2354  /// \param CopyGen Copying procedure that copies value of single array element
2355  /// to another single array element.
2356  void EmitOMPAggregateAssign(
2357      Address DestAddr, Address SrcAddr, QualType OriginalType,
2358      const llvm::function_ref<void(Address, Address)> &CopyGen);
2359  /// \brief Emit proper copying of data from one variable to another.
2360  ///
2361  /// \param OriginalType Original type of the copied variables.
2362  /// \param DestAddr Destination address.
2363  /// \param SrcAddr Source address.
2364  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2365  /// type of the base array element).
2366  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2367  /// the base array element).
2368  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2369  /// DestVD.
2370  void EmitOMPCopy(QualType OriginalType,
2371                   Address DestAddr, Address SrcAddr,
2372                   const VarDecl *DestVD, const VarDecl *SrcVD,
2373                   const Expr *Copy);
2374  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2375  /// \a X = \a E \a BO \a E.
2376  ///
2377  /// \param X Value to be updated.
2378  /// \param E Update value.
2379  /// \param BO Binary operation for update operation.
2380  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2381  /// expression, false otherwise.
2382  /// \param AO Atomic ordering of the generated atomic instructions.
2383  /// \param CommonGen Code generator for complex expressions that cannot be
2384  /// expressed through atomicrmw instruction.
2385  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2386  /// generated, <false, RValue::get(nullptr)> otherwise.
2387  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2388      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2389      llvm::AtomicOrdering AO, SourceLocation Loc,
2390      const llvm::function_ref<RValue(RValue)> &CommonGen);
2391  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2392                                 OMPPrivateScope &PrivateScope);
2393  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2394                            OMPPrivateScope &PrivateScope);
2395  /// \brief Emit code for copyin clause in \a D directive. The next code is
2396  /// generated at the start of outlined functions for directives:
2397  /// \code
2398  /// threadprivate_var1 = master_threadprivate_var1;
2399  /// operator=(threadprivate_var2, master_threadprivate_var2);
2400  /// ...
2401  /// __kmpc_barrier(&loc, global_tid);
2402  /// \endcode
2403  ///
2404  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2405  /// \returns true if at least one copyin variable is found, false otherwise.
2406  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2407  /// \brief Emit initial code for lastprivate variables. If some variable is
2408  /// not also firstprivate, then the default initialization is used. Otherwise
2409  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2410  /// method.
2411  ///
2412  /// \param D Directive that may have 'lastprivate' directives.
2413  /// \param PrivateScope Private scope for capturing lastprivate variables for
2414  /// proper codegen in internal captured statement.
2415  ///
2416  /// \returns true if there is at least one lastprivate variable, false
2417  /// otherwise.
2418  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2419                                    OMPPrivateScope &PrivateScope);
2420  /// \brief Emit final copying of lastprivate values to original variables at
2421  /// the end of the worksharing or simd directive.
2422  ///
2423  /// \param D Directive that has at least one 'lastprivate' directives.
2424  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2425  /// it is the last iteration of the loop code in associated directive, or to
2426  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2427  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2428                                     bool NoFinals,
2429                                     llvm::Value *IsLastIterCond = nullptr);
2430  /// Emit initial code for linear clauses.
2431  void EmitOMPLinearClause(const OMPLoopDirective &D,
2432                           CodeGenFunction::OMPPrivateScope &PrivateScope);
2433  /// Emit final code for linear clauses.
2434  /// \param CondGen Optional conditional code for final part of codegen for
2435  /// linear clause.
2436  void EmitOMPLinearClauseFinal(
2437      const OMPLoopDirective &D,
2438      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2439  /// \brief Emit initial code for reduction variables. Creates reduction copies
2440  /// and initializes them with the values according to OpenMP standard.
2441  ///
2442  /// \param D Directive (possibly) with the 'reduction' clause.
2443  /// \param PrivateScope Private scope for capturing reduction variables for
2444  /// proper codegen in internal captured statement.
2445  ///
2446  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2447                                  OMPPrivateScope &PrivateScope);
2448  /// \brief Emit final update of reduction values to original variables at
2449  /// the end of the directive.
2450  ///
2451  /// \param D Directive that has at least one 'reduction' directives.
2452  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2453  /// \brief Emit initial code for linear variables. Creates private copies
2454  /// and initializes them with the values according to OpenMP standard.
2455  ///
2456  /// \param D Directive (possibly) with the 'linear' clause.
2457  void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2458
2459  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2460                                        llvm::Value * /*OutlinedFn*/,
2461                                        const OMPTaskDataTy & /*Data*/)>
2462      TaskGenTy;
2463  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2464                                 const RegionCodeGenTy &BodyGen,
2465                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2466
2467  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2468  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2469  void EmitOMPForDirective(const OMPForDirective &S);
2470  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2471  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2472  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2473  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2474  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2475  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2476  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2477  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2478  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2479  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2480  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2481  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2482  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2483  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2484  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2485  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2486  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2487  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2488  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2489  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2490  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2491  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2492  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2493  void
2494  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2495  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2496  void
2497  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2498  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2499  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2500  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2501  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2502  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2503  void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
2504  void EmitOMPDistributeParallelForDirective(
2505      const OMPDistributeParallelForDirective &S);
2506  void EmitOMPDistributeParallelForSimdDirective(
2507      const OMPDistributeParallelForSimdDirective &S);
2508  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2509  void EmitOMPTargetParallelForSimdDirective(
2510      const OMPTargetParallelForSimdDirective &S);
2511
2512  /// Emit outlined function for the target directive.
2513  static std::pair<llvm::Function * /*OutlinedFn*/,
2514                   llvm::Constant * /*OutlinedFnID*/>
2515  EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM,
2516                                         const OMPTargetDirective &S,
2517                                         StringRef ParentName,
2518                                         bool IsOffloadEntry);
2519  /// \brief Emit inner loop of the worksharing/simd construct.
2520  ///
2521  /// \param S Directive, for which the inner loop must be emitted.
2522  /// \param RequiresCleanup true, if directive has some associated private
2523  /// variables.
2524  /// \param LoopCond Bollean condition for loop continuation.
2525  /// \param IncExpr Increment expression for loop control variable.
2526  /// \param BodyGen Generator for the inner body of the inner loop.
2527  /// \param PostIncGen Genrator for post-increment code (required for ordered
2528  /// loop directvies).
2529  void EmitOMPInnerLoop(
2530      const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2531      const Expr *IncExpr,
2532      const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2533      const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2534
2535  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2536  /// Emit initial code for loop counters of loop-based directives.
2537  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2538                                  OMPPrivateScope &LoopScope);
2539
2540private:
2541  /// Helpers for the OpenMP loop directives.
2542  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2543  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2544  void EmitOMPSimdFinal(
2545      const OMPLoopDirective &D,
2546      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2547  /// \brief Emit code for the worksharing loop-based directive.
2548  /// \return true, if this construct has any lastprivate clause, false -
2549  /// otherwise.
2550  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2551  void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
2552      const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2553      Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2554  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2555                           bool IsMonotonic, const OMPLoopDirective &S,
2556                           OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2557                           Address UB, Address ST, Address IL,
2558                           llvm::Value *Chunk);
2559  void EmitOMPDistributeOuterLoop(
2560      OpenMPDistScheduleClauseKind ScheduleKind,
2561      const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
2562      Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2563  /// \brief Emit code for sections directive.
2564  void EmitSections(const OMPExecutableDirective &S);
2565
2566public:
2567
2568  //===--------------------------------------------------------------------===//
2569  //                         LValue Expression Emission
2570  //===--------------------------------------------------------------------===//
2571
2572  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2573  RValue GetUndefRValue(QualType Ty);
2574
2575  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2576  /// and issue an ErrorUnsupported style diagnostic (using the
2577  /// provided Name).
2578  RValue EmitUnsupportedRValue(const Expr *E,
2579                               const char *Name);
2580
2581  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2582  /// an ErrorUnsupported style diagnostic (using the provided Name).
2583  LValue EmitUnsupportedLValue(const Expr *E,
2584                               const char *Name);
2585
2586  /// EmitLValue - Emit code to compute a designator that specifies the location
2587  /// of the expression.
2588  ///
2589  /// This can return one of two things: a simple address or a bitfield
2590  /// reference.  In either case, the LLVM Value* in the LValue structure is
2591  /// guaranteed to be an LLVM pointer type.
2592  ///
2593  /// If this returns a bitfield reference, nothing about the pointee type of
2594  /// the LLVM value is known: For example, it may not be a pointer to an
2595  /// integer.
2596  ///
2597  /// If this returns a normal address, and if the lvalue's C type is fixed
2598  /// size, this method guarantees that the returned pointer type will point to
2599  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2600  /// variable length type, this is not possible.
2601  ///
2602  LValue EmitLValue(const Expr *E);
2603
2604  /// \brief Same as EmitLValue but additionally we generate checking code to
2605  /// guard against undefined behavior.  This is only suitable when we know
2606  /// that the address will be used to access the object.
2607  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2608
2609  RValue convertTempToRValue(Address addr, QualType type,
2610                             SourceLocation Loc);
2611
2612  void EmitAtomicInit(Expr *E, LValue lvalue);
2613
2614  bool LValueIsSuitableForInlineAtomic(LValue Src);
2615
2616  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2617                        AggValueSlot Slot = AggValueSlot::ignored());
2618
2619  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2620                        llvm::AtomicOrdering AO, bool IsVolatile = false,
2621                        AggValueSlot slot = AggValueSlot::ignored());
2622
2623  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2624
2625  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2626                       bool IsVolatile, bool isInit);
2627
2628  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2629      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2630      llvm::AtomicOrdering Success =
2631          llvm::AtomicOrdering::SequentiallyConsistent,
2632      llvm::AtomicOrdering Failure =
2633          llvm::AtomicOrdering::SequentiallyConsistent,
2634      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2635
2636  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2637                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
2638                        bool IsVolatile);
2639
2640  /// EmitToMemory - Change a scalar value from its value
2641  /// representation to its in-memory representation.
2642  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2643
2644  /// EmitFromMemory - Change a scalar value from its memory
2645  /// representation to its value representation.
2646  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2647
2648  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2649  /// care to appropriately convert from the memory representation to
2650  /// the LLVM value representation.
2651  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2652                                SourceLocation Loc,
2653                                AlignmentSource AlignSource =
2654                                  AlignmentSource::Type,
2655                                llvm::MDNode *TBAAInfo = nullptr,
2656                                QualType TBAABaseTy = QualType(),
2657                                uint64_t TBAAOffset = 0,
2658                                bool isNontemporal = false);
2659
2660  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2661  /// care to appropriately convert from the memory representation to
2662  /// the LLVM value representation.  The l-value must be a simple
2663  /// l-value.
2664  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2665
2666  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2667  /// care to appropriately convert from the memory representation to
2668  /// the LLVM value representation.
2669  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2670                         bool Volatile, QualType Ty,
2671                         AlignmentSource AlignSource = AlignmentSource::Type,
2672                         llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2673                         QualType TBAABaseTy = QualType(),
2674                         uint64_t TBAAOffset = 0, bool isNontemporal = false);
2675
2676  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2677  /// care to appropriately convert from the memory representation to
2678  /// the LLVM value representation.  The l-value must be a simple
2679  /// l-value.  The isInit flag indicates whether this is an initialization.
2680  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2681  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2682
2683  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2684  /// this method emits the address of the lvalue, then loads the result as an
2685  /// rvalue, returning the rvalue.
2686  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2687  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2688  RValue EmitLoadOfBitfieldLValue(LValue LV);
2689  RValue EmitLoadOfGlobalRegLValue(LValue LV);
2690
2691  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2692  /// lvalue, where both are guaranteed to the have the same type, and that type
2693  /// is 'Ty'.
2694  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2695  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2696  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2697
2698  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2699  /// as EmitStoreThroughLValue.
2700  ///
2701  /// \param Result [out] - If non-null, this will be set to a Value* for the
2702  /// bit-field contents after the store, appropriate for use as the result of
2703  /// an assignment to the bit-field.
2704  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2705                                      llvm::Value **Result=nullptr);
2706
2707  /// Emit an l-value for an assignment (simple or compound) of complex type.
2708  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2709  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2710  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2711                                             llvm::Value *&Result);
2712
2713  // Note: only available for agg return types
2714  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2715  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2716  // Note: only available for agg return types
2717  LValue EmitCallExprLValue(const CallExpr *E);
2718  // Note: only available for agg return types
2719  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2720  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2721  LValue EmitStringLiteralLValue(const StringLiteral *E);
2722  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2723  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2724  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2725  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2726                                bool Accessed = false);
2727  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2728                                 bool IsLowerBound = true);
2729  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2730  LValue EmitMemberExpr(const MemberExpr *E);
2731  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2732  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2733  LValue EmitInitListLValue(const InitListExpr *E);
2734  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2735  LValue EmitCastLValue(const CastExpr *E);
2736  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2737  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2738
2739  Address EmitExtVectorElementLValue(LValue V);
2740
2741  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2742
2743  Address EmitArrayToPointerDecay(const Expr *Array,
2744                                  AlignmentSource *AlignSource = nullptr);
2745
2746  class ConstantEmission {
2747    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2748    ConstantEmission(llvm::Constant *C, bool isReference)
2749      : ValueAndIsReference(C, isReference) {}
2750  public:
2751    ConstantEmission() {}
2752    static ConstantEmission forReference(llvm::Constant *C) {
2753      return ConstantEmission(C, true);
2754    }
2755    static ConstantEmission forValue(llvm::Constant *C) {
2756      return ConstantEmission(C, false);
2757    }
2758
2759    explicit operator bool() const {
2760      return ValueAndIsReference.getOpaqueValue() != nullptr;
2761    }
2762
2763    bool isReference() const { return ValueAndIsReference.getInt(); }
2764    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2765      assert(isReference());
2766      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2767                                            refExpr->getType());
2768    }
2769
2770    llvm::Constant *getValue() const {
2771      assert(!isReference());
2772      return ValueAndIsReference.getPointer();
2773    }
2774  };
2775
2776  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2777
2778  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2779                                AggValueSlot slot = AggValueSlot::ignored());
2780  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2781
2782  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2783                              const ObjCIvarDecl *Ivar);
2784  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2785  LValue EmitLValueForLambdaField(const FieldDecl *Field);
2786
2787  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2788  /// if the Field is a reference, this will return the address of the reference
2789  /// and not the address of the value stored in the reference.
2790  LValue EmitLValueForFieldInitialization(LValue Base,
2791                                          const FieldDecl* Field);
2792
2793  LValue EmitLValueForIvar(QualType ObjectTy,
2794                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2795                           unsigned CVRQualifiers);
2796
2797  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2798  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2799  LValue EmitLambdaLValue(const LambdaExpr *E);
2800  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2801  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2802
2803  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2804  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2805  LValue EmitStmtExprLValue(const StmtExpr *E);
2806  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2807  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2808  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2809
2810  //===--------------------------------------------------------------------===//
2811  //                         Scalar Expression Emission
2812  //===--------------------------------------------------------------------===//
2813
2814  /// EmitCall - Generate a call of the given function, expecting the given
2815  /// result type, and using the given argument list which specifies both the
2816  /// LLVM arguments and the types they were derived from.
2817  RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
2818                  ReturnValueSlot ReturnValue, const CallArgList &Args,
2819                  CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2820                  llvm::Instruction **callOrInvoke = nullptr);
2821
2822  RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2823                  ReturnValueSlot ReturnValue,
2824                  CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2825                  llvm::Value *Chain = nullptr);
2826  RValue EmitCallExpr(const CallExpr *E,
2827                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2828
2829  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2830
2831  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2832                                  const Twine &name = "");
2833  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2834                                  ArrayRef<llvm::Value*> args,
2835                                  const Twine &name = "");
2836  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2837                                          const Twine &name = "");
2838  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2839                                          ArrayRef<llvm::Value*> args,
2840                                          const Twine &name = "");
2841
2842  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2843                                  ArrayRef<llvm::Value *> Args,
2844                                  const Twine &Name = "");
2845  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2846                                         ArrayRef<llvm::Value*> args,
2847                                         const Twine &name = "");
2848  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2849                                         const Twine &name = "");
2850  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2851                                       ArrayRef<llvm::Value*> args);
2852
2853  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2854                                         NestedNameSpecifier *Qual,
2855                                         llvm::Type *Ty);
2856
2857  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2858                                                   CXXDtorType Type,
2859                                                   const CXXRecordDecl *RD);
2860
2861  RValue
2862  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2863                              ReturnValueSlot ReturnValue, llvm::Value *This,
2864                              llvm::Value *ImplicitParam,
2865                              QualType ImplicitParamTy, const CallExpr *E);
2866  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee,
2867                               llvm::Value *This, llvm::Value *ImplicitParam,
2868                               QualType ImplicitParamTy, const CallExpr *E,
2869                               StructorType Type);
2870  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2871                               ReturnValueSlot ReturnValue);
2872  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2873                                               const CXXMethodDecl *MD,
2874                                               ReturnValueSlot ReturnValue,
2875                                               bool HasQualifier,
2876                                               NestedNameSpecifier *Qualifier,
2877                                               bool IsArrow, const Expr *Base);
2878  // Compute the object pointer.
2879  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2880                                          llvm::Value *memberPtr,
2881                                          const MemberPointerType *memberPtrType,
2882                                          AlignmentSource *AlignSource = nullptr);
2883  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2884                                      ReturnValueSlot ReturnValue);
2885
2886  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2887                                       const CXXMethodDecl *MD,
2888                                       ReturnValueSlot ReturnValue);
2889
2890  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2891                                ReturnValueSlot ReturnValue);
2892
2893  RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E,
2894                                      ReturnValueSlot ReturnValue);
2895
2896  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2897                         unsigned BuiltinID, const CallExpr *E,
2898                         ReturnValueSlot ReturnValue);
2899
2900  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2901
2902  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2903  /// is unhandled by the current target.
2904  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2905
2906  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2907                                             const llvm::CmpInst::Predicate Fp,
2908                                             const llvm::CmpInst::Predicate Ip,
2909                                             const llvm::Twine &Name = "");
2910  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2911
2912  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2913                                         unsigned LLVMIntrinsic,
2914                                         unsigned AltLLVMIntrinsic,
2915                                         const char *NameHint,
2916                                         unsigned Modifier,
2917                                         const CallExpr *E,
2918                                         SmallVectorImpl<llvm::Value *> &Ops,
2919                                         Address PtrOp0, Address PtrOp1);
2920  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2921                                          unsigned Modifier, llvm::Type *ArgTy,
2922                                          const CallExpr *E);
2923  llvm::Value *EmitNeonCall(llvm::Function *F,
2924                            SmallVectorImpl<llvm::Value*> &O,
2925                            const char *name,
2926                            unsigned shift = 0, bool rightshift = false);
2927  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2928  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2929                                   bool negateForRightShift);
2930  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2931                                 llvm::Type *Ty, bool usgn, const char *name);
2932  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2933  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2934
2935  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2936  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2937  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2938  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2939  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2940  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2941  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2942                                          const CallExpr *E);
2943
2944  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2945  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2946  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2947  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2948  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2949  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2950                                const ObjCMethodDecl *MethodWithObjects);
2951  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2952  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2953                             ReturnValueSlot Return = ReturnValueSlot());
2954
2955  /// Retrieves the default cleanup kind for an ARC cleanup.
2956  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2957  CleanupKind getARCCleanupKind() {
2958    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2959             ? NormalAndEHCleanup : NormalCleanup;
2960  }
2961
2962  // ARC primitives.
2963  void EmitARCInitWeak(Address addr, llvm::Value *value);
2964  void EmitARCDestroyWeak(Address addr);
2965  llvm::Value *EmitARCLoadWeak(Address addr);
2966  llvm::Value *EmitARCLoadWeakRetained(Address addr);
2967  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2968  void EmitARCCopyWeak(Address dst, Address src);
2969  void EmitARCMoveWeak(Address dst, Address src);
2970  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2971  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2972  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2973                                  bool resultIgnored);
2974  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2975                                      bool resultIgnored);
2976  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2977  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2978  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2979  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2980  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2981  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2982  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2983  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2984  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2985  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
2986
2987  std::pair<LValue,llvm::Value*>
2988  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2989  std::pair<LValue,llvm::Value*>
2990  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2991  std::pair<LValue,llvm::Value*>
2992  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
2993
2994  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2995  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2996  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2997
2998  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2999  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3000                                            bool allowUnsafeClaim);
3001  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3002  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3003  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3004
3005  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3006
3007  static Destroyer destroyARCStrongImprecise;
3008  static Destroyer destroyARCStrongPrecise;
3009  static Destroyer destroyARCWeak;
3010
3011  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3012  llvm::Value *EmitObjCAutoreleasePoolPush();
3013  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3014  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3015  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3016
3017  /// \brief Emits a reference binding to the passed in expression.
3018  RValue EmitReferenceBindingToExpr(const Expr *E);
3019
3020  //===--------------------------------------------------------------------===//
3021  //                           Expression Emission
3022  //===--------------------------------------------------------------------===//
3023
3024  // Expressions are broken into three classes: scalar, complex, aggregate.
3025
3026  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3027  /// scalar type, returning the result.
3028  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3029
3030  /// Emit a conversion from the specified type to the specified destination
3031  /// type, both of which are LLVM scalar types.
3032  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3033                                    QualType DstTy, SourceLocation Loc);
3034
3035  /// Emit a conversion from the specified complex type to the specified
3036  /// destination type, where the destination type is an LLVM scalar type.
3037  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3038                                             QualType DstTy,
3039                                             SourceLocation Loc);
3040
3041  /// EmitAggExpr - Emit the computation of the specified expression
3042  /// of aggregate type.  The result is computed into the given slot,
3043  /// which may be null to indicate that the value is not needed.
3044  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3045
3046  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3047  /// aggregate type into a temporary LValue.
3048  LValue EmitAggExprToLValue(const Expr *E);
3049
3050  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3051  /// make sure it survives garbage collection until this point.
3052  void EmitExtendGCLifetime(llvm::Value *object);
3053
3054  /// EmitComplexExpr - Emit the computation of the specified expression of
3055  /// complex type, returning the result.
3056  ComplexPairTy EmitComplexExpr(const Expr *E,
3057                                bool IgnoreReal = false,
3058                                bool IgnoreImag = false);
3059
3060  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3061  /// type and place its result into the specified l-value.
3062  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3063
3064  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3065  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3066
3067  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3068  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3069
3070  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3071  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3072
3073  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3074  /// global variable that has already been created for it.  If the initializer
3075  /// has a different type than GV does, this may free GV and return a different
3076  /// one.  Otherwise it just returns GV.
3077  llvm::GlobalVariable *
3078  AddInitializerToStaticVarDecl(const VarDecl &D,
3079                                llvm::GlobalVariable *GV);
3080
3081
3082  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3083  /// variable with global storage.
3084  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3085                                bool PerformInit);
3086
3087  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3088                                   llvm::Constant *Addr);
3089
3090  /// Call atexit() with a function that passes the given argument to
3091  /// the given function.
3092  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3093                                    llvm::Constant *addr);
3094
3095  /// Emit code in this function to perform a guarded variable
3096  /// initialization.  Guarded initializations are used when it's not
3097  /// possible to prove that an initialization will be done exactly
3098  /// once, e.g. with a static local variable or a static data member
3099  /// of a class template.
3100  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3101                          bool PerformInit);
3102
3103  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3104  /// variables.
3105  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3106                                 ArrayRef<llvm::Function *> CXXThreadLocals,
3107                                 Address Guard = Address::invalid());
3108
3109  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3110  /// variables.
3111  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
3112                                  const std::vector<std::pair<llvm::WeakVH,
3113                                  llvm::Constant*> > &DtorsAndObjects);
3114
3115  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3116                                        const VarDecl *D,
3117                                        llvm::GlobalVariable *Addr,
3118                                        bool PerformInit);
3119
3120  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3121
3122  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3123
3124  void enterFullExpression(const ExprWithCleanups *E) {
3125    if (E->getNumObjects() == 0) return;
3126    enterNonTrivialFullExpression(E);
3127  }
3128  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3129
3130  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3131
3132  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3133
3134  RValue EmitAtomicExpr(AtomicExpr *E);
3135
3136  //===--------------------------------------------------------------------===//
3137  //                         Annotations Emission
3138  //===--------------------------------------------------------------------===//
3139
3140  /// Emit an annotation call (intrinsic or builtin).
3141  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3142                                  llvm::Value *AnnotatedVal,
3143                                  StringRef AnnotationStr,
3144                                  SourceLocation Location);
3145
3146  /// Emit local annotations for the local variable V, declared by D.
3147  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3148
3149  /// Emit field annotations for the given field & value. Returns the
3150  /// annotation result.
3151  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3152
3153  //===--------------------------------------------------------------------===//
3154  //                             Internal Helpers
3155  //===--------------------------------------------------------------------===//
3156
3157  /// ContainsLabel - Return true if the statement contains a label in it.  If
3158  /// this statement is not executed normally, it not containing a label means
3159  /// that we can just remove the code.
3160  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3161
3162  /// containsBreak - Return true if the statement contains a break out of it.
3163  /// If the statement (recursively) contains a switch or loop with a break
3164  /// inside of it, this is fine.
3165  static bool containsBreak(const Stmt *S);
3166
3167  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3168  /// to a constant, or if it does but contains a label, return false.  If it
3169  /// constant folds return true and set the boolean result in Result.
3170  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3171                                    bool AllowLabels = false);
3172
3173  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3174  /// to a constant, or if it does but contains a label, return false.  If it
3175  /// constant folds return true and set the folded value.
3176  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3177                                    bool AllowLabels = false);
3178
3179  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3180  /// if statement) to the specified blocks.  Based on the condition, this might
3181  /// try to simplify the codegen of the conditional based on the branch.
3182  /// TrueCount should be the number of times we expect the condition to
3183  /// evaluate to true based on PGO data.
3184  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3185                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3186
3187  /// \brief Emit a description of a type in a format suitable for passing to
3188  /// a runtime sanitizer handler.
3189  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3190
3191  /// \brief Convert a value into a format suitable for passing to a runtime
3192  /// sanitizer handler.
3193  llvm::Value *EmitCheckValue(llvm::Value *V);
3194
3195  /// \brief Emit a description of a source location in a format suitable for
3196  /// passing to a runtime sanitizer handler.
3197  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3198
3199  /// \brief Create a basic block that will call a handler function in a
3200  /// sanitizer runtime with the provided arguments, and create a conditional
3201  /// branch to it.
3202  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3203                 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3204                 ArrayRef<llvm::Value *> DynamicArgs);
3205
3206  /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3207  /// if Cond if false.
3208  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3209                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3210                            ArrayRef<llvm::Constant *> StaticArgs);
3211
3212  /// \brief Create a basic block that will call the trap intrinsic, and emit a
3213  /// conditional branch to it, for the -ftrapv checks.
3214  void EmitTrapCheck(llvm::Value *Checked);
3215
3216  /// \brief Emit a call to trap or debugtrap and attach function attribute
3217  /// "trap-func-name" if specified.
3218  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3219
3220  /// \brief Emit a cross-DSO CFI failure handling function.
3221  void EmitCfiCheckFail();
3222
3223  /// \brief Create a check for a function parameter that may potentially be
3224  /// declared as non-null.
3225  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3226                           const FunctionDecl *FD, unsigned ParmNum);
3227
3228  /// EmitCallArg - Emit a single call argument.
3229  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3230
3231  /// EmitDelegateCallArg - We are performing a delegate call; that
3232  /// is, the current function is delegating to another one.  Produce
3233  /// a r-value suitable for passing the given parameter.
3234  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3235                           SourceLocation loc);
3236
3237  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3238  /// point operation, expressed as the maximum relative error in ulp.
3239  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3240
3241private:
3242  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3243  void EmitReturnOfRValue(RValue RV, QualType Ty);
3244
3245  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3246
3247  llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3248  DeferredReplacements;
3249
3250  /// Set the address of a local variable.
3251  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3252    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3253    LocalDeclMap.insert({VD, Addr});
3254  }
3255
3256  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3257  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3258  ///
3259  /// \param AI - The first function argument of the expansion.
3260  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3261                          SmallVectorImpl<llvm::Value *>::iterator &AI);
3262
3263  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3264  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3265  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3266  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3267                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
3268                        unsigned &IRCallArgPos);
3269
3270  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3271                            const Expr *InputExpr, std::string &ConstraintStr);
3272
3273  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3274                                  LValue InputValue, QualType InputType,
3275                                  std::string &ConstraintStr,
3276                                  SourceLocation Loc);
3277
3278  /// \brief Attempts to statically evaluate the object size of E. If that
3279  /// fails, emits code to figure the size of E out for us. This is
3280  /// pass_object_size aware.
3281  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3282                                               llvm::IntegerType *ResType);
3283
3284  /// \brief Emits the size of E, as required by __builtin_object_size. This
3285  /// function is aware of pass_object_size parameters, and will act accordingly
3286  /// if E is a parameter with the pass_object_size attribute.
3287  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3288                                     llvm::IntegerType *ResType);
3289
3290public:
3291#ifndef NDEBUG
3292  // Determine whether the given argument is an Objective-C method
3293  // that may have type parameters in its signature.
3294  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3295    const DeclContext *dc = method->getDeclContext();
3296    if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3297      return classDecl->getTypeParamListAsWritten();
3298    }
3299
3300    if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3301      return catDecl->getTypeParamList();
3302    }
3303
3304    return false;
3305  }
3306
3307  template<typename T>
3308  static bool isObjCMethodWithTypeParams(const T *) { return false; }
3309#endif
3310
3311  /// EmitCallArgs - Emit call arguments for a function.
3312  template <typename T>
3313  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3314                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3315                    const FunctionDecl *CalleeDecl = nullptr,
3316                    unsigned ParamsToSkip = 0) {
3317    SmallVector<QualType, 16> ArgTypes;
3318    CallExpr::const_arg_iterator Arg = ArgRange.begin();
3319
3320    assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3321           "Can't skip parameters if type info is not provided");
3322    if (CallArgTypeInfo) {
3323#ifndef NDEBUG
3324      bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3325#endif
3326
3327      // First, use the argument types that the type info knows about
3328      for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3329                E = CallArgTypeInfo->param_type_end();
3330           I != E; ++I, ++Arg) {
3331        assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3332        assert((isGenericMethod ||
3333                ((*I)->isVariablyModifiedType() ||
3334                 (*I).getNonReferenceType()->isObjCRetainableType() ||
3335                 getContext()
3336                         .getCanonicalType((*I).getNonReferenceType())
3337                         .getTypePtr() ==
3338                     getContext()
3339                         .getCanonicalType((*Arg)->getType())
3340                         .getTypePtr())) &&
3341               "type mismatch in call argument!");
3342        ArgTypes.push_back(*I);
3343      }
3344    }
3345
3346    // Either we've emitted all the call args, or we have a call to variadic
3347    // function.
3348    assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3349            CallArgTypeInfo->isVariadic()) &&
3350           "Extra arguments in non-variadic function!");
3351
3352    // If we still have any arguments, emit them using the type of the argument.
3353    for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3354      ArgTypes.push_back(getVarArgType(A));
3355
3356    EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3357  }
3358
3359  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3360                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3361                    const FunctionDecl *CalleeDecl = nullptr,
3362                    unsigned ParamsToSkip = 0);
3363
3364  /// EmitPointerWithAlignment - Given an expression with a pointer
3365  /// type, emit the value and compute our best estimate of the
3366  /// alignment of the pointee.
3367  ///
3368  /// Note that this function will conservatively fall back on the type
3369  /// when it doesn't
3370  ///
3371  /// \param Source - If non-null, this will be initialized with
3372  ///   information about the source of the alignment.  Note that this
3373  ///   function will conservatively fall back on the type when it
3374  ///   doesn't recognize the expression, which means that sometimes
3375  ///
3376  ///   a worst-case One
3377  ///   reasonable way to use this information is when there's a
3378  ///   language guarantee that the pointer must be aligned to some
3379  ///   stricter value, and we're simply trying to ensure that
3380  ///   sufficiently obvious uses of under-aligned objects don't get
3381  ///   miscompiled; for example, a placement new into the address of
3382  ///   a local variable.  In such a case, it's quite reasonable to
3383  ///   just ignore the returned alignment when it isn't from an
3384  ///   explicit source.
3385  Address EmitPointerWithAlignment(const Expr *Addr,
3386                                   AlignmentSource *Source = nullptr);
3387
3388  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3389
3390private:
3391  QualType getVarArgType(const Expr *Arg);
3392
3393  const TargetCodeGenInfo &getTargetHooks() const {
3394    return CGM.getTargetCodeGenInfo();
3395  }
3396
3397  void EmitDeclMetadata();
3398
3399  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3400                                  const AutoVarEmission &emission);
3401
3402  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3403
3404  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3405};
3406
3407/// Helper class with most of the code for saving a value for a
3408/// conditional expression cleanup.
3409struct DominatingLLVMValue {
3410  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3411
3412  /// Answer whether the given value needs extra work to be saved.
3413  static bool needsSaving(llvm::Value *value) {
3414    // If it's not an instruction, we don't need to save.
3415    if (!isa<llvm::Instruction>(value)) return false;
3416
3417    // If it's an instruction in the entry block, we don't need to save.
3418    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3419    return (block != &block->getParent()->getEntryBlock());
3420  }
3421
3422  /// Try to save the given value.
3423  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3424    if (!needsSaving(value)) return saved_type(value, false);
3425
3426    // Otherwise, we need an alloca.
3427    auto align = CharUnits::fromQuantity(
3428              CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3429    Address alloca =
3430      CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3431    CGF.Builder.CreateStore(value, alloca);
3432
3433    return saved_type(alloca.getPointer(), true);
3434  }
3435
3436  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3437    // If the value says it wasn't saved, trust that it's still dominating.
3438    if (!value.getInt()) return value.getPointer();
3439
3440    // Otherwise, it should be an alloca instruction, as set up in save().
3441    auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3442    return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3443  }
3444};
3445
3446/// A partial specialization of DominatingValue for llvm::Values that
3447/// might be llvm::Instructions.
3448template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3449  typedef T *type;
3450  static type restore(CodeGenFunction &CGF, saved_type value) {
3451    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3452  }
3453};
3454
3455/// A specialization of DominatingValue for Address.
3456template <> struct DominatingValue<Address> {
3457  typedef Address type;
3458
3459  struct saved_type {
3460    DominatingLLVMValue::saved_type SavedValue;
3461    CharUnits Alignment;
3462  };
3463
3464  static bool needsSaving(type value) {
3465    return DominatingLLVMValue::needsSaving(value.getPointer());
3466  }
3467  static saved_type save(CodeGenFunction &CGF, type value) {
3468    return { DominatingLLVMValue::save(CGF, value.getPointer()),
3469             value.getAlignment() };
3470  }
3471  static type restore(CodeGenFunction &CGF, saved_type value) {
3472    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3473                   value.Alignment);
3474  }
3475};
3476
3477/// A specialization of DominatingValue for RValue.
3478template <> struct DominatingValue<RValue> {
3479  typedef RValue type;
3480  class saved_type {
3481    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3482                AggregateAddress, ComplexAddress };
3483
3484    llvm::Value *Value;
3485    unsigned K : 3;
3486    unsigned Align : 29;
3487    saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3488      : Value(v), K(k), Align(a) {}
3489
3490  public:
3491    static bool needsSaving(RValue value);
3492    static saved_type save(CodeGenFunction &CGF, RValue value);
3493    RValue restore(CodeGenFunction &CGF);
3494
3495    // implementations in CGCleanup.cpp
3496  };
3497
3498  static bool needsSaving(type value) {
3499    return saved_type::needsSaving(value);
3500  }
3501  static saved_type save(CodeGenFunction &CGF, type value) {
3502    return saved_type::save(CGF, value);
3503  }
3504  static type restore(CodeGenFunction &CGF, saved_type value) {
3505    return value.restore(CGF);
3506  }
3507};
3508
3509}  // end namespace CodeGen
3510}  // end namespace clang
3511
3512#endif
3513