ParseDecl.cpp revision 07a5b282fbe719986df9ed05543081ea0ed94aa5
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "llvm/ADT/SmallSet.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// C99 6.7: Declarations.
23//===----------------------------------------------------------------------===//
24
25/// ParseTypeName
26///       type-name: [C99 6.7.6]
27///         specifier-qualifier-list abstract-declarator[opt]
28///
29/// Called type-id in C++.
30Action::TypeResult Parser::ParseTypeName(SourceRange *Range) {
31  // Parse the common declaration-specifiers piece.
32  DeclSpec DS;
33  ParseSpecifierQualifierList(DS);
34
35  // Parse the abstract-declarator, if present.
36  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
37  ParseDeclarator(DeclaratorInfo);
38  if (Range)
39    *Range = DeclaratorInfo.getSourceRange();
40
41  if (DeclaratorInfo.isInvalidType())
42    return true;
43
44  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
45}
46
47/// ParseAttributes - Parse a non-empty attributes list.
48///
49/// [GNU] attributes:
50///         attribute
51///         attributes attribute
52///
53/// [GNU]  attribute:
54///          '__attribute__' '(' '(' attribute-list ')' ')'
55///
56/// [GNU]  attribute-list:
57///          attrib
58///          attribute_list ',' attrib
59///
60/// [GNU]  attrib:
61///          empty
62///          attrib-name
63///          attrib-name '(' identifier ')'
64///          attrib-name '(' identifier ',' nonempty-expr-list ')'
65///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
66///
67/// [GNU]  attrib-name:
68///          identifier
69///          typespec
70///          typequal
71///          storageclass
72///
73/// FIXME: The GCC grammar/code for this construct implies we need two
74/// token lookahead. Comment from gcc: "If they start with an identifier
75/// which is followed by a comma or close parenthesis, then the arguments
76/// start with that identifier; otherwise they are an expression list."
77///
78/// At the moment, I am not doing 2 token lookahead. I am also unaware of
79/// any attributes that don't work (based on my limited testing). Most
80/// attributes are very simple in practice. Until we find a bug, I don't see
81/// a pressing need to implement the 2 token lookahead.
82
83AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
84  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
85
86  AttributeList *CurrAttr = 0;
87
88  while (Tok.is(tok::kw___attribute)) {
89    ConsumeToken();
90    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
91                         "attribute")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
96      SkipUntil(tok::r_paren, true); // skip until ) or ;
97      return CurrAttr;
98    }
99    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
100    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
101           Tok.is(tok::comma)) {
102
103      if (Tok.is(tok::comma)) {
104        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
105        ConsumeToken();
106        continue;
107      }
108      // we have an identifier or declaration specifier (const, int, etc.)
109      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
110      SourceLocation AttrNameLoc = ConsumeToken();
111
112      // check if we have a "paramterized" attribute
113      if (Tok.is(tok::l_paren)) {
114        ConsumeParen(); // ignore the left paren loc for now
115
116        if (Tok.is(tok::identifier)) {
117          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
118          SourceLocation ParmLoc = ConsumeToken();
119
120          if (Tok.is(tok::r_paren)) {
121            // __attribute__(( mode(byte) ))
122            ConsumeParen(); // ignore the right paren loc for now
123            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
124                                         ParmName, ParmLoc, 0, 0, CurrAttr);
125          } else if (Tok.is(tok::comma)) {
126            ConsumeToken();
127            // __attribute__(( format(printf, 1, 2) ))
128            ExprVector ArgExprs(Actions);
129            bool ArgExprsOk = true;
130
131            // now parse the non-empty comma separated list of expressions
132            while (1) {
133              OwningExprResult ArgExpr(ParseAssignmentExpression());
134              if (ArgExpr.isInvalid()) {
135                ArgExprsOk = false;
136                SkipUntil(tok::r_paren);
137                break;
138              } else {
139                ArgExprs.push_back(ArgExpr.release());
140              }
141              if (Tok.isNot(tok::comma))
142                break;
143              ConsumeToken(); // Eat the comma, move to the next argument
144            }
145            if (ArgExprsOk && Tok.is(tok::r_paren)) {
146              ConsumeParen(); // ignore the right paren loc for now
147              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
148                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
149            }
150          }
151        } else { // not an identifier
152          switch (Tok.getKind()) {
153          case tok::r_paren:
154          // parse a possibly empty comma separated list of expressions
155            // __attribute__(( nonnull() ))
156            ConsumeParen(); // ignore the right paren loc for now
157            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
158                                         0, SourceLocation(), 0, 0, CurrAttr);
159            break;
160          case tok::kw_char:
161          case tok::kw_wchar_t:
162          case tok::kw_bool:
163          case tok::kw_short:
164          case tok::kw_int:
165          case tok::kw_long:
166          case tok::kw_signed:
167          case tok::kw_unsigned:
168          case tok::kw_float:
169          case tok::kw_double:
170          case tok::kw_void:
171          case tok::kw_typeof:
172            // If it's a builtin type name, eat it and expect a rparen
173            // __attribute__(( vec_type_hint(char) ))
174            ConsumeToken();
175            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
176                                         0, SourceLocation(), 0, 0, CurrAttr);
177            if (Tok.is(tok::r_paren))
178              ConsumeParen();
179            break;
180          default:
181            // __attribute__(( aligned(16) ))
182            ExprVector ArgExprs(Actions);
183            bool ArgExprsOk = true;
184
185            // now parse the list of expressions
186            while (1) {
187              OwningExprResult ArgExpr(ParseAssignmentExpression());
188              if (ArgExpr.isInvalid()) {
189                ArgExprsOk = false;
190                SkipUntil(tok::r_paren);
191                break;
192              } else {
193                ArgExprs.push_back(ArgExpr.release());
194              }
195              if (Tok.isNot(tok::comma))
196                break;
197              ConsumeToken(); // Eat the comma, move to the next argument
198            }
199            // Match the ')'.
200            if (ArgExprsOk && Tok.is(tok::r_paren)) {
201              ConsumeParen(); // ignore the right paren loc for now
202              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
203                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
204                           CurrAttr);
205            }
206            break;
207          }
208        }
209      } else {
210        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
211                                     0, SourceLocation(), 0, 0, CurrAttr);
212      }
213    }
214    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
215      SkipUntil(tok::r_paren, false);
216    SourceLocation Loc = Tok.getLocation();;
217    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
218      SkipUntil(tok::r_paren, false);
219    }
220    if (EndLoc)
221      *EndLoc = Loc;
222  }
223  return CurrAttr;
224}
225
226/// ParseMicrosoftDeclSpec - Parse an __declspec construct
227///
228/// [MS] decl-specifier:
229///             __declspec ( extended-decl-modifier-seq )
230///
231/// [MS] extended-decl-modifier-seq:
232///             extended-decl-modifier[opt]
233///             extended-decl-modifier extended-decl-modifier-seq
234
235AttributeList* Parser::ParseMicrosoftDeclSpec(AttributeList *CurrAttr) {
236  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
237
238  ConsumeToken();
239  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
240                       "declspec")) {
241    SkipUntil(tok::r_paren, true); // skip until ) or ;
242    return CurrAttr;
243  }
244  while (Tok.getIdentifierInfo()) {
245    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
246    SourceLocation AttrNameLoc = ConsumeToken();
247    if (Tok.is(tok::l_paren)) {
248      ConsumeParen();
249      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
250      // correctly.
251      OwningExprResult ArgExpr(ParseAssignmentExpression());
252      if (!ArgExpr.isInvalid()) {
253        ExprTy* ExprList = ArgExpr.take();
254        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
255                                     SourceLocation(), &ExprList, 1,
256                                     CurrAttr, true);
257      }
258      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
259        SkipUntil(tok::r_paren, false);
260    } else {
261      CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, SourceLocation(),
262                                   0, 0, CurrAttr, true);
263    }
264  }
265  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
266    SkipUntil(tok::r_paren, false);
267  return CurrAttr;
268}
269
270AttributeList* Parser::ParseMicrosoftTypeAttributes(AttributeList *CurrAttr) {
271  // Treat these like attributes
272  // FIXME: Allow Sema to distinguish between these and real attributes!
273  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
274         Tok.is(tok::kw___cdecl)    || Tok.is(tok::kw___ptr64) ||
275         Tok.is(tok::kw___w64)) {
276    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
277    SourceLocation AttrNameLoc = ConsumeToken();
278    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
279      // FIXME: Support these properly!
280      continue;
281    CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
282                                 SourceLocation(), 0, 0, CurrAttr, true);
283  }
284  return CurrAttr;
285}
286
287/// ParseDeclaration - Parse a full 'declaration', which consists of
288/// declaration-specifiers, some number of declarators, and a semicolon.
289/// 'Context' should be a Declarator::TheContext value.  This returns the
290/// location of the semicolon in DeclEnd.
291///
292///       declaration: [C99 6.7]
293///         block-declaration ->
294///           simple-declaration
295///           others                   [FIXME]
296/// [C++]   template-declaration
297/// [C++]   namespace-definition
298/// [C++]   using-directive
299/// [C++]   using-declaration
300/// [C++0x] static_assert-declaration
301///         others... [FIXME]
302///
303Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
304                                                SourceLocation &DeclEnd) {
305  DeclPtrTy SingleDecl;
306  switch (Tok.getKind()) {
307  case tok::kw_template:
308  case tok::kw_export:
309    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
310    break;
311  case tok::kw_namespace:
312    SingleDecl = ParseNamespace(Context, DeclEnd);
313    break;
314  case tok::kw_using:
315    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
316    break;
317  case tok::kw_static_assert:
318    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
319    break;
320  default:
321    return ParseSimpleDeclaration(Context, DeclEnd);
322  }
323
324  // This routine returns a DeclGroup, if the thing we parsed only contains a
325  // single decl, convert it now.
326  return Actions.ConvertDeclToDeclGroup(SingleDecl);
327}
328
329///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
330///         declaration-specifiers init-declarator-list[opt] ';'
331///[C90/C++]init-declarator-list ';'                             [TODO]
332/// [OMP]   threadprivate-directive                              [TODO]
333///
334/// If RequireSemi is false, this does not check for a ';' at the end of the
335/// declaration.
336Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
337                                                      SourceLocation &DeclEnd,
338                                                      bool RequireSemi) {
339  // Parse the common declaration-specifiers piece.
340  DeclSpec DS;
341  ParseDeclarationSpecifiers(DS);
342
343  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
344  // declaration-specifiers init-declarator-list[opt] ';'
345  if (Tok.is(tok::semi)) {
346    ConsumeToken();
347    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
348    return Actions.ConvertDeclToDeclGroup(TheDecl);
349  }
350
351  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
352  ParseDeclarator(DeclaratorInfo);
353
354  DeclGroupPtrTy DG =
355    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
356
357  DeclEnd = Tok.getLocation();
358
359  // If the client wants to check what comes after the declaration, just return
360  // immediately without checking anything!
361  if (!RequireSemi) return DG;
362
363  if (Tok.is(tok::semi)) {
364    ConsumeToken();
365    return DG;
366  }
367
368  Diag(Tok, diag::err_expected_semi_declation);
369  // Skip to end of block or statement
370  SkipUntil(tok::r_brace, true, true);
371  if (Tok.is(tok::semi))
372    ConsumeToken();
373  return DG;
374}
375
376/// \brief Parse 'declaration' after parsing 'declaration-specifiers
377/// declarator'. This method parses the remainder of the declaration
378/// (including any attributes or initializer, among other things) and
379/// finalizes the declaration.
380///
381///       init-declarator: [C99 6.7]
382///         declarator
383///         declarator '=' initializer
384/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
385/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
386/// [C++]   declarator initializer[opt]
387///
388/// [C++] initializer:
389/// [C++]   '=' initializer-clause
390/// [C++]   '(' expression-list ')'
391/// [C++0x] '=' 'default'                                                [TODO]
392/// [C++0x] '=' 'delete'
393///
394/// According to the standard grammar, =default and =delete are function
395/// definitions, but that definitely doesn't fit with the parser here.
396///
397Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D,
398                                     const ParsedTemplateInfo &TemplateInfo) {
399  // If a simple-asm-expr is present, parse it.
400  if (Tok.is(tok::kw_asm)) {
401    SourceLocation Loc;
402    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
403    if (AsmLabel.isInvalid()) {
404      SkipUntil(tok::semi, true, true);
405      return DeclPtrTy();
406    }
407
408    D.setAsmLabel(AsmLabel.release());
409    D.SetRangeEnd(Loc);
410  }
411
412  // If attributes are present, parse them.
413  if (Tok.is(tok::kw___attribute)) {
414    SourceLocation Loc;
415    AttributeList *AttrList = ParseAttributes(&Loc);
416    D.AddAttributes(AttrList, Loc);
417  }
418
419  // Inform the current actions module that we just parsed this declarator.
420  DeclPtrTy ThisDecl = TemplateInfo.TemplateParams?
421      Actions.ActOnTemplateDeclarator(CurScope,
422                             Action::MultiTemplateParamsArg(Actions,
423                                          TemplateInfo.TemplateParams->data(),
424                                          TemplateInfo.TemplateParams->size()),
425                                    D)
426    : Actions.ActOnDeclarator(CurScope, D);
427
428  // Parse declarator '=' initializer.
429  if (Tok.is(tok::equal)) {
430    ConsumeToken();
431    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
432      SourceLocation DelLoc = ConsumeToken();
433      Actions.SetDeclDeleted(ThisDecl, DelLoc);
434    } else {
435      if (getLang().CPlusPlus)
436        Actions.ActOnCXXEnterDeclInitializer(CurScope, ThisDecl);
437
438      OwningExprResult Init(ParseInitializer());
439
440      if (getLang().CPlusPlus)
441        Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
442
443      if (Init.isInvalid()) {
444        SkipUntil(tok::semi, true, true);
445        return DeclPtrTy();
446      }
447      Actions.AddInitializerToDecl(ThisDecl, Actions.FullExpr(Init));
448    }
449  } else if (Tok.is(tok::l_paren)) {
450    // Parse C++ direct initializer: '(' expression-list ')'
451    SourceLocation LParenLoc = ConsumeParen();
452    ExprVector Exprs(Actions);
453    CommaLocsTy CommaLocs;
454
455    if (ParseExpressionList(Exprs, CommaLocs)) {
456      SkipUntil(tok::r_paren);
457    } else {
458      // Match the ')'.
459      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
460
461      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
462             "Unexpected number of commas!");
463      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
464                                            move_arg(Exprs),
465                                            CommaLocs.data(), RParenLoc);
466    }
467  } else {
468    bool TypeContainsUndeducedAuto =
469      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
470    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
471  }
472
473  return ThisDecl;
474}
475
476/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
477/// parsing 'declaration-specifiers declarator'.  This method is split out this
478/// way to handle the ambiguity between top-level function-definitions and
479/// declarations.
480///
481///       init-declarator-list: [C99 6.7]
482///         init-declarator
483///         init-declarator-list ',' init-declarator
484///
485/// According to the standard grammar, =default and =delete are function
486/// definitions, but that definitely doesn't fit with the parser here.
487///
488Parser::DeclGroupPtrTy Parser::
489ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
490  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
491  // that we parse together here.
492  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
493
494  // At this point, we know that it is not a function definition.  Parse the
495  // rest of the init-declarator-list.
496  while (1) {
497    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
498    if (ThisDecl.get())
499      DeclsInGroup.push_back(ThisDecl);
500
501    // If we don't have a comma, it is either the end of the list (a ';') or an
502    // error, bail out.
503    if (Tok.isNot(tok::comma))
504      break;
505
506    // Consume the comma.
507    ConsumeToken();
508
509    // Parse the next declarator.
510    D.clear();
511
512    // Accept attributes in an init-declarator.  In the first declarator in a
513    // declaration, these would be part of the declspec.  In subsequent
514    // declarators, they become part of the declarator itself, so that they
515    // don't apply to declarators after *this* one.  Examples:
516    //    short __attribute__((common)) var;    -> declspec
517    //    short var __attribute__((common));    -> declarator
518    //    short x, __attribute__((common)) var;    -> declarator
519    if (Tok.is(tok::kw___attribute)) {
520      SourceLocation Loc;
521      AttributeList *AttrList = ParseAttributes(&Loc);
522      D.AddAttributes(AttrList, Loc);
523    }
524
525    ParseDeclarator(D);
526  }
527
528  return Actions.FinalizeDeclaratorGroup(CurScope, D.getDeclSpec(),
529                                         DeclsInGroup.data(),
530                                         DeclsInGroup.size());
531}
532
533/// ParseSpecifierQualifierList
534///        specifier-qualifier-list:
535///          type-specifier specifier-qualifier-list[opt]
536///          type-qualifier specifier-qualifier-list[opt]
537/// [GNU]    attributes     specifier-qualifier-list[opt]
538///
539void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
540  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
541  /// parse declaration-specifiers and complain about extra stuff.
542  ParseDeclarationSpecifiers(DS);
543
544  // Validate declspec for type-name.
545  unsigned Specs = DS.getParsedSpecifiers();
546  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
547      !DS.getAttributes())
548    Diag(Tok, diag::err_typename_requires_specqual);
549
550  // Issue diagnostic and remove storage class if present.
551  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
552    if (DS.getStorageClassSpecLoc().isValid())
553      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
554    else
555      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
556    DS.ClearStorageClassSpecs();
557  }
558
559  // Issue diagnostic and remove function specfier if present.
560  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
561    if (DS.isInlineSpecified())
562      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
563    if (DS.isVirtualSpecified())
564      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
565    if (DS.isExplicitSpecified())
566      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
567    DS.ClearFunctionSpecs();
568  }
569}
570
571/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
572/// specified token is valid after the identifier in a declarator which
573/// immediately follows the declspec.  For example, these things are valid:
574///
575///      int x   [             4];         // direct-declarator
576///      int x   (             int y);     // direct-declarator
577///  int(int x   )                         // direct-declarator
578///      int x   ;                         // simple-declaration
579///      int x   =             17;         // init-declarator-list
580///      int x   ,             y;          // init-declarator-list
581///      int x   __asm__       ("foo");    // init-declarator-list
582///      int x   :             4;          // struct-declarator
583///      int x   {             5};         // C++'0x unified initializers
584///
585/// This is not, because 'x' does not immediately follow the declspec (though
586/// ')' happens to be valid anyway).
587///    int (x)
588///
589static bool isValidAfterIdentifierInDeclarator(const Token &T) {
590  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
591         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
592         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
593}
594
595
596/// ParseImplicitInt - This method is called when we have an non-typename
597/// identifier in a declspec (which normally terminates the decl spec) when
598/// the declspec has no type specifier.  In this case, the declspec is either
599/// malformed or is "implicit int" (in K&R and C89).
600///
601/// This method handles diagnosing this prettily and returns false if the
602/// declspec is done being processed.  If it recovers and thinks there may be
603/// other pieces of declspec after it, it returns true.
604///
605bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
606                              const ParsedTemplateInfo &TemplateInfo,
607                              AccessSpecifier AS) {
608  assert(Tok.is(tok::identifier) && "should have identifier");
609
610  SourceLocation Loc = Tok.getLocation();
611  // If we see an identifier that is not a type name, we normally would
612  // parse it as the identifer being declared.  However, when a typename
613  // is typo'd or the definition is not included, this will incorrectly
614  // parse the typename as the identifier name and fall over misparsing
615  // later parts of the diagnostic.
616  //
617  // As such, we try to do some look-ahead in cases where this would
618  // otherwise be an "implicit-int" case to see if this is invalid.  For
619  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
620  // an identifier with implicit int, we'd get a parse error because the
621  // next token is obviously invalid for a type.  Parse these as a case
622  // with an invalid type specifier.
623  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
624
625  // Since we know that this either implicit int (which is rare) or an
626  // error, we'd do lookahead to try to do better recovery.
627  if (isValidAfterIdentifierInDeclarator(NextToken())) {
628    // If this token is valid for implicit int, e.g. "static x = 4", then
629    // we just avoid eating the identifier, so it will be parsed as the
630    // identifier in the declarator.
631    return false;
632  }
633
634  // Otherwise, if we don't consume this token, we are going to emit an
635  // error anyway.  Try to recover from various common problems.  Check
636  // to see if this was a reference to a tag name without a tag specified.
637  // This is a common problem in C (saying 'foo' instead of 'struct foo').
638  //
639  // C++ doesn't need this, and isTagName doesn't take SS.
640  if (SS == 0) {
641    const char *TagName = 0;
642    tok::TokenKind TagKind = tok::unknown;
643
644    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
645      default: break;
646      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
647      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
648      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
649      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
650    }
651
652    if (TagName) {
653      Diag(Loc, diag::err_use_of_tag_name_without_tag)
654        << Tok.getIdentifierInfo() << TagName
655        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
656
657      // Parse this as a tag as if the missing tag were present.
658      if (TagKind == tok::kw_enum)
659        ParseEnumSpecifier(Loc, DS, AS);
660      else
661        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
662      return true;
663    }
664  }
665
666  // Since this is almost certainly an invalid type name, emit a
667  // diagnostic that says it, eat the token, and mark the declspec as
668  // invalid.
669  SourceRange R;
670  if (SS) R = SS->getRange();
671
672  Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
673  const char *PrevSpec;
674  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec);
675  DS.SetRangeEnd(Tok.getLocation());
676  ConsumeToken();
677
678  // TODO: Could inject an invalid typedef decl in an enclosing scope to
679  // avoid rippling error messages on subsequent uses of the same type,
680  // could be useful if #include was forgotten.
681  return false;
682}
683
684/// ParseDeclarationSpecifiers
685///       declaration-specifiers: [C99 6.7]
686///         storage-class-specifier declaration-specifiers[opt]
687///         type-specifier declaration-specifiers[opt]
688/// [C99]   function-specifier declaration-specifiers[opt]
689/// [GNU]   attributes declaration-specifiers[opt]
690///
691///       storage-class-specifier: [C99 6.7.1]
692///         'typedef'
693///         'extern'
694///         'static'
695///         'auto'
696///         'register'
697/// [C++]   'mutable'
698/// [GNU]   '__thread'
699///       function-specifier: [C99 6.7.4]
700/// [C99]   'inline'
701/// [C++]   'virtual'
702/// [C++]   'explicit'
703///       'friend': [C++ dcl.friend]
704
705///
706void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
707                                        const ParsedTemplateInfo &TemplateInfo,
708                                        AccessSpecifier AS) {
709  DS.SetRangeStart(Tok.getLocation());
710  while (1) {
711    int isInvalid = false;
712    const char *PrevSpec = 0;
713    SourceLocation Loc = Tok.getLocation();
714
715    switch (Tok.getKind()) {
716    default:
717    DoneWithDeclSpec:
718      // If this is not a declaration specifier token, we're done reading decl
719      // specifiers.  First verify that DeclSpec's are consistent.
720      DS.Finish(Diags, PP);
721      return;
722
723    case tok::coloncolon: // ::foo::bar
724      // Annotate C++ scope specifiers.  If we get one, loop.
725      if (TryAnnotateCXXScopeToken())
726        continue;
727      goto DoneWithDeclSpec;
728
729    case tok::annot_cxxscope: {
730      if (DS.hasTypeSpecifier())
731        goto DoneWithDeclSpec;
732
733      // We are looking for a qualified typename.
734      Token Next = NextToken();
735      if (Next.is(tok::annot_template_id) &&
736          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
737            ->Kind == TNK_Type_template) {
738        // We have a qualified template-id, e.g., N::A<int>
739        CXXScopeSpec SS;
740        ParseOptionalCXXScopeSpecifier(SS);
741        assert(Tok.is(tok::annot_template_id) &&
742               "ParseOptionalCXXScopeSpecifier not working");
743        AnnotateTemplateIdTokenAsType(&SS);
744        continue;
745      }
746
747      if (Next.isNot(tok::identifier))
748        goto DoneWithDeclSpec;
749
750      CXXScopeSpec SS;
751      SS.setScopeRep(Tok.getAnnotationValue());
752      SS.setRange(Tok.getAnnotationRange());
753
754      // If the next token is the name of the class type that the C++ scope
755      // denotes, followed by a '(', then this is a constructor declaration.
756      // We're done with the decl-specifiers.
757      if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
758                                     CurScope, &SS) &&
759          GetLookAheadToken(2).is(tok::l_paren))
760        goto DoneWithDeclSpec;
761
762      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
763                                            Next.getLocation(), CurScope, &SS);
764
765      // If the referenced identifier is not a type, then this declspec is
766      // erroneous: We already checked about that it has no type specifier, and
767      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
768      // typename.
769      if (TypeRep == 0) {
770        ConsumeToken();   // Eat the scope spec so the identifier is current.
771        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
772        goto DoneWithDeclSpec;
773      }
774
775      ConsumeToken(); // The C++ scope.
776
777      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
778                                     TypeRep);
779      if (isInvalid)
780        break;
781
782      DS.SetRangeEnd(Tok.getLocation());
783      ConsumeToken(); // The typename.
784
785      continue;
786    }
787
788    case tok::annot_typename: {
789      if (Tok.getAnnotationValue())
790        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
791                                       Tok.getAnnotationValue());
792      else
793        DS.SetTypeSpecError();
794      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
795      ConsumeToken(); // The typename
796
797      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
798      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
799      // Objective-C interface.  If we don't have Objective-C or a '<', this is
800      // just a normal reference to a typedef name.
801      if (!Tok.is(tok::less) || !getLang().ObjC1)
802        continue;
803
804      SourceLocation EndProtoLoc;
805      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
806      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
807      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
808
809      DS.SetRangeEnd(EndProtoLoc);
810      continue;
811    }
812
813      // typedef-name
814    case tok::identifier: {
815      // In C++, check to see if this is a scope specifier like foo::bar::, if
816      // so handle it as such.  This is important for ctor parsing.
817      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
818        continue;
819
820      // This identifier can only be a typedef name if we haven't already seen
821      // a type-specifier.  Without this check we misparse:
822      //  typedef int X; struct Y { short X; };  as 'short int'.
823      if (DS.hasTypeSpecifier())
824        goto DoneWithDeclSpec;
825
826      // It has to be available as a typedef too!
827      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
828                                            Tok.getLocation(), CurScope);
829
830      // If this is not a typedef name, don't parse it as part of the declspec,
831      // it must be an implicit int or an error.
832      if (TypeRep == 0) {
833        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
834        goto DoneWithDeclSpec;
835      }
836
837      // C++: If the identifier is actually the name of the class type
838      // being defined and the next token is a '(', then this is a
839      // constructor declaration. We're done with the decl-specifiers
840      // and will treat this token as an identifier.
841      if (getLang().CPlusPlus && CurScope->isClassScope() &&
842          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
843          NextToken().getKind() == tok::l_paren)
844        goto DoneWithDeclSpec;
845
846      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
847                                     TypeRep);
848      if (isInvalid)
849        break;
850
851      DS.SetRangeEnd(Tok.getLocation());
852      ConsumeToken(); // The identifier
853
854      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
855      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
856      // Objective-C interface.  If we don't have Objective-C or a '<', this is
857      // just a normal reference to a typedef name.
858      if (!Tok.is(tok::less) || !getLang().ObjC1)
859        continue;
860
861      SourceLocation EndProtoLoc;
862      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
863      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
864      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
865
866      DS.SetRangeEnd(EndProtoLoc);
867
868      // Need to support trailing type qualifiers (e.g. "id<p> const").
869      // If a type specifier follows, it will be diagnosed elsewhere.
870      continue;
871    }
872
873      // type-name
874    case tok::annot_template_id: {
875      TemplateIdAnnotation *TemplateId
876        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
877      if (TemplateId->Kind != TNK_Type_template) {
878        // This template-id does not refer to a type name, so we're
879        // done with the type-specifiers.
880        goto DoneWithDeclSpec;
881      }
882
883      // Turn the template-id annotation token into a type annotation
884      // token, then try again to parse it as a type-specifier.
885      AnnotateTemplateIdTokenAsType();
886      continue;
887    }
888
889    // GNU attributes support.
890    case tok::kw___attribute:
891      DS.AddAttributes(ParseAttributes());
892      continue;
893
894    // Microsoft declspec support.
895    case tok::kw___declspec:
896      DS.AddAttributes(ParseMicrosoftDeclSpec());
897      continue;
898
899    // Microsoft single token adornments.
900    case tok::kw___forceinline:
901      // FIXME: Add handling here!
902      break;
903
904    case tok::kw___ptr64:
905    case tok::kw___w64:
906    case tok::kw___cdecl:
907    case tok::kw___stdcall:
908    case tok::kw___fastcall:
909      DS.AddAttributes(ParseMicrosoftTypeAttributes());
910      continue;
911
912    // storage-class-specifier
913    case tok::kw_typedef:
914      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
915      break;
916    case tok::kw_extern:
917      if (DS.isThreadSpecified())
918        Diag(Tok, diag::ext_thread_before) << "extern";
919      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
920      break;
921    case tok::kw___private_extern__:
922      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
923                                         PrevSpec);
924      break;
925    case tok::kw_static:
926      if (DS.isThreadSpecified())
927        Diag(Tok, diag::ext_thread_before) << "static";
928      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
929      break;
930    case tok::kw_auto:
931      if (getLang().CPlusPlus0x)
932        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec);
933      else
934        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
935      break;
936    case tok::kw_register:
937      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
938      break;
939    case tok::kw_mutable:
940      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
941      break;
942    case tok::kw___thread:
943      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
944      break;
945
946    // function-specifier
947    case tok::kw_inline:
948      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
949      break;
950    case tok::kw_virtual:
951      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
952      break;
953    case tok::kw_explicit:
954      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
955      break;
956
957    // friend
958    case tok::kw_friend:
959      isInvalid = DS.SetFriendSpec(Loc, PrevSpec);
960      break;
961
962    // type-specifier
963    case tok::kw_short:
964      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
965      break;
966    case tok::kw_long:
967      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
968        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
969      else
970        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
971      break;
972    case tok::kw_signed:
973      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
974      break;
975    case tok::kw_unsigned:
976      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
977      break;
978    case tok::kw__Complex:
979      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
980      break;
981    case tok::kw__Imaginary:
982      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
983      break;
984    case tok::kw_void:
985      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
986      break;
987    case tok::kw_char:
988      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
989      break;
990    case tok::kw_int:
991      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
992      break;
993    case tok::kw_float:
994      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
995      break;
996    case tok::kw_double:
997      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
998      break;
999    case tok::kw_wchar_t:
1000      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
1001      break;
1002    case tok::kw_bool:
1003    case tok::kw__Bool:
1004      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
1005      break;
1006    case tok::kw__Decimal32:
1007      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
1008      break;
1009    case tok::kw__Decimal64:
1010      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
1011      break;
1012    case tok::kw__Decimal128:
1013      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
1014      break;
1015
1016    // class-specifier:
1017    case tok::kw_class:
1018    case tok::kw_struct:
1019    case tok::kw_union: {
1020      tok::TokenKind Kind = Tok.getKind();
1021      ConsumeToken();
1022      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1023      continue;
1024    }
1025
1026    // enum-specifier:
1027    case tok::kw_enum:
1028      ConsumeToken();
1029      ParseEnumSpecifier(Loc, DS, AS);
1030      continue;
1031
1032    // cv-qualifier:
1033    case tok::kw_const:
1034      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
1035      break;
1036    case tok::kw_volatile:
1037      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1038                                 getLang())*2;
1039      break;
1040    case tok::kw_restrict:
1041      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1042                                 getLang())*2;
1043      break;
1044
1045    // C++ typename-specifier:
1046    case tok::kw_typename:
1047      if (TryAnnotateTypeOrScopeToken())
1048        continue;
1049      break;
1050
1051    // GNU typeof support.
1052    case tok::kw_typeof:
1053      ParseTypeofSpecifier(DS);
1054      continue;
1055
1056    case tok::kw_decltype:
1057      ParseDecltypeSpecifier(DS);
1058      continue;
1059
1060    case tok::less:
1061      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1062      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1063      // but we support it.
1064      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1065        goto DoneWithDeclSpec;
1066
1067      {
1068        SourceLocation EndProtoLoc;
1069        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1070        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1071        DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
1072        DS.SetRangeEnd(EndProtoLoc);
1073
1074        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1075          << CodeModificationHint::CreateInsertion(Loc, "id")
1076          << SourceRange(Loc, EndProtoLoc);
1077        // Need to support trailing type qualifiers (e.g. "id<p> const").
1078        // If a type specifier follows, it will be diagnosed elsewhere.
1079        continue;
1080      }
1081    }
1082    // If the specifier combination wasn't legal, issue a diagnostic.
1083    if (isInvalid) {
1084      assert(PrevSpec && "Method did not return previous specifier!");
1085      // Pick between error or extwarn.
1086      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1087                                       : diag::ext_duplicate_declspec;
1088      Diag(Tok, DiagID) << PrevSpec;
1089    }
1090    DS.SetRangeEnd(Tok.getLocation());
1091    ConsumeToken();
1092  }
1093}
1094
1095/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1096/// primarily follow the C++ grammar with additions for C99 and GNU,
1097/// which together subsume the C grammar. Note that the C++
1098/// type-specifier also includes the C type-qualifier (for const,
1099/// volatile, and C99 restrict). Returns true if a type-specifier was
1100/// found (and parsed), false otherwise.
1101///
1102///       type-specifier: [C++ 7.1.5]
1103///         simple-type-specifier
1104///         class-specifier
1105///         enum-specifier
1106///         elaborated-type-specifier  [TODO]
1107///         cv-qualifier
1108///
1109///       cv-qualifier: [C++ 7.1.5.1]
1110///         'const'
1111///         'volatile'
1112/// [C99]   'restrict'
1113///
1114///       simple-type-specifier: [ C++ 7.1.5.2]
1115///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1116///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1117///         'char'
1118///         'wchar_t'
1119///         'bool'
1120///         'short'
1121///         'int'
1122///         'long'
1123///         'signed'
1124///         'unsigned'
1125///         'float'
1126///         'double'
1127///         'void'
1128/// [C99]   '_Bool'
1129/// [C99]   '_Complex'
1130/// [C99]   '_Imaginary'  // Removed in TC2?
1131/// [GNU]   '_Decimal32'
1132/// [GNU]   '_Decimal64'
1133/// [GNU]   '_Decimal128'
1134/// [GNU]   typeof-specifier
1135/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1136/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1137/// [C++0x] 'decltype' ( expression )
1138bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
1139                                        const char *&PrevSpec,
1140                                      const ParsedTemplateInfo &TemplateInfo) {
1141  SourceLocation Loc = Tok.getLocation();
1142
1143  switch (Tok.getKind()) {
1144  case tok::identifier:   // foo::bar
1145  case tok::kw_typename:  // typename foo::bar
1146    // Annotate typenames and C++ scope specifiers.  If we get one, just
1147    // recurse to handle whatever we get.
1148    if (TryAnnotateTypeOrScopeToken())
1149      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1150    // Otherwise, not a type specifier.
1151    return false;
1152  case tok::coloncolon:   // ::foo::bar
1153    if (NextToken().is(tok::kw_new) ||    // ::new
1154        NextToken().is(tok::kw_delete))   // ::delete
1155      return false;
1156
1157    // Annotate typenames and C++ scope specifiers.  If we get one, just
1158    // recurse to handle whatever we get.
1159    if (TryAnnotateTypeOrScopeToken())
1160      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1161    // Otherwise, not a type specifier.
1162    return false;
1163
1164  // simple-type-specifier:
1165  case tok::annot_typename: {
1166    if (Tok.getAnnotationValue())
1167      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1168                                     Tok.getAnnotationValue());
1169    else
1170      DS.SetTypeSpecError();
1171    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1172    ConsumeToken(); // The typename
1173
1174    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1175    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1176    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1177    // just a normal reference to a typedef name.
1178    if (!Tok.is(tok::less) || !getLang().ObjC1)
1179      return true;
1180
1181    SourceLocation EndProtoLoc;
1182    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1183    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1184    DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
1185
1186    DS.SetRangeEnd(EndProtoLoc);
1187    return true;
1188  }
1189
1190  case tok::kw_short:
1191    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
1192    break;
1193  case tok::kw_long:
1194    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1195      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
1196    else
1197      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
1198    break;
1199  case tok::kw_signed:
1200    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
1201    break;
1202  case tok::kw_unsigned:
1203    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
1204    break;
1205  case tok::kw__Complex:
1206    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
1207    break;
1208  case tok::kw__Imaginary:
1209    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
1210    break;
1211  case tok::kw_void:
1212    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
1213    break;
1214  case tok::kw_char:
1215    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
1216    break;
1217  case tok::kw_int:
1218    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
1219    break;
1220  case tok::kw_float:
1221    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
1222    break;
1223  case tok::kw_double:
1224    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
1225    break;
1226  case tok::kw_wchar_t:
1227    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
1228    break;
1229  case tok::kw_bool:
1230  case tok::kw__Bool:
1231    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
1232    break;
1233  case tok::kw__Decimal32:
1234    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
1235    break;
1236  case tok::kw__Decimal64:
1237    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
1238    break;
1239  case tok::kw__Decimal128:
1240    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
1241    break;
1242
1243  // class-specifier:
1244  case tok::kw_class:
1245  case tok::kw_struct:
1246  case tok::kw_union: {
1247    tok::TokenKind Kind = Tok.getKind();
1248    ConsumeToken();
1249    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
1250    return true;
1251  }
1252
1253  // enum-specifier:
1254  case tok::kw_enum:
1255    ConsumeToken();
1256    ParseEnumSpecifier(Loc, DS);
1257    return true;
1258
1259  // cv-qualifier:
1260  case tok::kw_const:
1261    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1262                               getLang())*2;
1263    break;
1264  case tok::kw_volatile:
1265    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1266                               getLang())*2;
1267    break;
1268  case tok::kw_restrict:
1269    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1270                               getLang())*2;
1271    break;
1272
1273  // GNU typeof support.
1274  case tok::kw_typeof:
1275    ParseTypeofSpecifier(DS);
1276    return true;
1277
1278  // C++0x decltype support.
1279  case tok::kw_decltype:
1280    ParseDecltypeSpecifier(DS);
1281    return true;
1282
1283  // C++0x auto support.
1284  case tok::kw_auto:
1285    if (!getLang().CPlusPlus0x)
1286      return false;
1287
1288    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec);
1289    break;
1290  case tok::kw___ptr64:
1291  case tok::kw___w64:
1292  case tok::kw___cdecl:
1293  case tok::kw___stdcall:
1294  case tok::kw___fastcall:
1295    DS.AddAttributes(ParseMicrosoftTypeAttributes());
1296    return true;
1297
1298  default:
1299    // Not a type-specifier; do nothing.
1300    return false;
1301  }
1302
1303  // If the specifier combination wasn't legal, issue a diagnostic.
1304  if (isInvalid) {
1305    assert(PrevSpec && "Method did not return previous specifier!");
1306    // Pick between error or extwarn.
1307    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1308                                     : diag::ext_duplicate_declspec;
1309    Diag(Tok, DiagID) << PrevSpec;
1310  }
1311  DS.SetRangeEnd(Tok.getLocation());
1312  ConsumeToken(); // whatever we parsed above.
1313  return true;
1314}
1315
1316/// ParseStructDeclaration - Parse a struct declaration without the terminating
1317/// semicolon.
1318///
1319///       struct-declaration:
1320///         specifier-qualifier-list struct-declarator-list
1321/// [GNU]   __extension__ struct-declaration
1322/// [GNU]   specifier-qualifier-list
1323///       struct-declarator-list:
1324///         struct-declarator
1325///         struct-declarator-list ',' struct-declarator
1326/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1327///       struct-declarator:
1328///         declarator
1329/// [GNU]   declarator attributes[opt]
1330///         declarator[opt] ':' constant-expression
1331/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1332///
1333void Parser::
1334ParseStructDeclaration(DeclSpec &DS,
1335                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1336  if (Tok.is(tok::kw___extension__)) {
1337    // __extension__ silences extension warnings in the subexpression.
1338    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1339    ConsumeToken();
1340    return ParseStructDeclaration(DS, Fields);
1341  }
1342
1343  // Parse the common specifier-qualifiers-list piece.
1344  SourceLocation DSStart = Tok.getLocation();
1345  ParseSpecifierQualifierList(DS);
1346
1347  // If there are no declarators, this is a free-standing declaration
1348  // specifier. Let the actions module cope with it.
1349  if (Tok.is(tok::semi)) {
1350    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1351    return;
1352  }
1353
1354  // Read struct-declarators until we find the semicolon.
1355  Fields.push_back(FieldDeclarator(DS));
1356  while (1) {
1357    FieldDeclarator &DeclaratorInfo = Fields.back();
1358
1359    /// struct-declarator: declarator
1360    /// struct-declarator: declarator[opt] ':' constant-expression
1361    if (Tok.isNot(tok::colon))
1362      ParseDeclarator(DeclaratorInfo.D);
1363
1364    if (Tok.is(tok::colon)) {
1365      ConsumeToken();
1366      OwningExprResult Res(ParseConstantExpression());
1367      if (Res.isInvalid())
1368        SkipUntil(tok::semi, true, true);
1369      else
1370        DeclaratorInfo.BitfieldSize = Res.release();
1371    }
1372
1373    // If attributes exist after the declarator, parse them.
1374    if (Tok.is(tok::kw___attribute)) {
1375      SourceLocation Loc;
1376      AttributeList *AttrList = ParseAttributes(&Loc);
1377      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1378    }
1379
1380    // If we don't have a comma, it is either the end of the list (a ';')
1381    // or an error, bail out.
1382    if (Tok.isNot(tok::comma))
1383      return;
1384
1385    // Consume the comma.
1386    ConsumeToken();
1387
1388    // Parse the next declarator.
1389    Fields.push_back(FieldDeclarator(DS));
1390
1391    // Attributes are only allowed on the second declarator.
1392    if (Tok.is(tok::kw___attribute)) {
1393      SourceLocation Loc;
1394      AttributeList *AttrList = ParseAttributes(&Loc);
1395      Fields.back().D.AddAttributes(AttrList, Loc);
1396    }
1397  }
1398}
1399
1400/// ParseStructUnionBody
1401///       struct-contents:
1402///         struct-declaration-list
1403/// [EXT]   empty
1404/// [GNU]   "struct-declaration-list" without terminatoring ';'
1405///       struct-declaration-list:
1406///         struct-declaration
1407///         struct-declaration-list struct-declaration
1408/// [OBC]   '@' 'defs' '(' class-name ')'
1409///
1410void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1411                                  unsigned TagType, DeclPtrTy TagDecl) {
1412  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1413                                        PP.getSourceManager(),
1414                                        "parsing struct/union body");
1415
1416  SourceLocation LBraceLoc = ConsumeBrace();
1417
1418  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1419  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1420
1421  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1422  // C++.
1423  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1424    Diag(Tok, diag::ext_empty_struct_union_enum)
1425      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1426
1427  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1428  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1429
1430  // While we still have something to read, read the declarations in the struct.
1431  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1432    // Each iteration of this loop reads one struct-declaration.
1433
1434    // Check for extraneous top-level semicolon.
1435    if (Tok.is(tok::semi)) {
1436      Diag(Tok, diag::ext_extra_struct_semi)
1437        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1438      ConsumeToken();
1439      continue;
1440    }
1441
1442    // Parse all the comma separated declarators.
1443    DeclSpec DS;
1444    FieldDeclarators.clear();
1445    if (!Tok.is(tok::at)) {
1446      ParseStructDeclaration(DS, FieldDeclarators);
1447
1448      // Convert them all to fields.
1449      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1450        FieldDeclarator &FD = FieldDeclarators[i];
1451        // Install the declarator into the current TagDecl.
1452        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1453                                             DS.getSourceRange().getBegin(),
1454                                             FD.D, FD.BitfieldSize);
1455        FieldDecls.push_back(Field);
1456      }
1457    } else { // Handle @defs
1458      ConsumeToken();
1459      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1460        Diag(Tok, diag::err_unexpected_at);
1461        SkipUntil(tok::semi, true, true);
1462        continue;
1463      }
1464      ConsumeToken();
1465      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1466      if (!Tok.is(tok::identifier)) {
1467        Diag(Tok, diag::err_expected_ident);
1468        SkipUntil(tok::semi, true, true);
1469        continue;
1470      }
1471      llvm::SmallVector<DeclPtrTy, 16> Fields;
1472      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1473                        Tok.getIdentifierInfo(), Fields);
1474      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1475      ConsumeToken();
1476      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1477    }
1478
1479    if (Tok.is(tok::semi)) {
1480      ConsumeToken();
1481    } else if (Tok.is(tok::r_brace)) {
1482      Diag(Tok, diag::ext_expected_semi_decl_list);
1483      break;
1484    } else {
1485      Diag(Tok, diag::err_expected_semi_decl_list);
1486      // Skip to end of block or statement
1487      SkipUntil(tok::r_brace, true, true);
1488    }
1489  }
1490
1491  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1492
1493  AttributeList *AttrList = 0;
1494  // If attributes exist after struct contents, parse them.
1495  if (Tok.is(tok::kw___attribute))
1496    AttrList = ParseAttributes();
1497
1498  Actions.ActOnFields(CurScope,
1499                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1500                      LBraceLoc, RBraceLoc,
1501                      AttrList);
1502  StructScope.Exit();
1503  Actions.ActOnTagFinishDefinition(CurScope, TagDecl, RBraceLoc);
1504}
1505
1506
1507/// ParseEnumSpecifier
1508///       enum-specifier: [C99 6.7.2.2]
1509///         'enum' identifier[opt] '{' enumerator-list '}'
1510///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1511/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1512///                                                 '}' attributes[opt]
1513///         'enum' identifier
1514/// [GNU]   'enum' attributes[opt] identifier
1515///
1516/// [C++] elaborated-type-specifier:
1517/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1518///
1519void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1520                                AccessSpecifier AS) {
1521  // Parse the tag portion of this.
1522
1523  AttributeList *Attr = 0;
1524  // If attributes exist after tag, parse them.
1525  if (Tok.is(tok::kw___attribute))
1526    Attr = ParseAttributes();
1527
1528  CXXScopeSpec SS;
1529  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1530    if (Tok.isNot(tok::identifier)) {
1531      Diag(Tok, diag::err_expected_ident);
1532      if (Tok.isNot(tok::l_brace)) {
1533        // Has no name and is not a definition.
1534        // Skip the rest of this declarator, up until the comma or semicolon.
1535        SkipUntil(tok::comma, true);
1536        return;
1537      }
1538    }
1539  }
1540
1541  // Must have either 'enum name' or 'enum {...}'.
1542  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1543    Diag(Tok, diag::err_expected_ident_lbrace);
1544
1545    // Skip the rest of this declarator, up until the comma or semicolon.
1546    SkipUntil(tok::comma, true);
1547    return;
1548  }
1549
1550  // If an identifier is present, consume and remember it.
1551  IdentifierInfo *Name = 0;
1552  SourceLocation NameLoc;
1553  if (Tok.is(tok::identifier)) {
1554    Name = Tok.getIdentifierInfo();
1555    NameLoc = ConsumeToken();
1556  }
1557
1558  // There are three options here.  If we have 'enum foo;', then this is a
1559  // forward declaration.  If we have 'enum foo {...' then this is a
1560  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1561  //
1562  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1563  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1564  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1565  //
1566  Action::TagKind TK;
1567  if (Tok.is(tok::l_brace))
1568    TK = Action::TK_Definition;
1569  else if (Tok.is(tok::semi))
1570    TK = Action::TK_Declaration;
1571  else
1572    TK = Action::TK_Reference;
1573  bool Owned = false;
1574  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1575                                       StartLoc, SS, Name, NameLoc, Attr, AS,
1576                                       Owned);
1577
1578  if (Tok.is(tok::l_brace))
1579    ParseEnumBody(StartLoc, TagDecl);
1580
1581  // TODO: semantic analysis on the declspec for enums.
1582  const char *PrevSpec = 0;
1583  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1584                         TagDecl.getAs<void>(), Owned))
1585    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1586}
1587
1588/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1589///       enumerator-list:
1590///         enumerator
1591///         enumerator-list ',' enumerator
1592///       enumerator:
1593///         enumeration-constant
1594///         enumeration-constant '=' constant-expression
1595///       enumeration-constant:
1596///         identifier
1597///
1598void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1599  // Enter the scope of the enum body and start the definition.
1600  ParseScope EnumScope(this, Scope::DeclScope);
1601  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1602
1603  SourceLocation LBraceLoc = ConsumeBrace();
1604
1605  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1606  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1607    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1608
1609  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1610
1611  DeclPtrTy LastEnumConstDecl;
1612
1613  // Parse the enumerator-list.
1614  while (Tok.is(tok::identifier)) {
1615    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1616    SourceLocation IdentLoc = ConsumeToken();
1617
1618    SourceLocation EqualLoc;
1619    OwningExprResult AssignedVal(Actions);
1620    if (Tok.is(tok::equal)) {
1621      EqualLoc = ConsumeToken();
1622      AssignedVal = ParseConstantExpression();
1623      if (AssignedVal.isInvalid())
1624        SkipUntil(tok::comma, tok::r_brace, true, true);
1625    }
1626
1627    // Install the enumerator constant into EnumDecl.
1628    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1629                                                        LastEnumConstDecl,
1630                                                        IdentLoc, Ident,
1631                                                        EqualLoc,
1632                                                        AssignedVal.release());
1633    EnumConstantDecls.push_back(EnumConstDecl);
1634    LastEnumConstDecl = EnumConstDecl;
1635
1636    if (Tok.isNot(tok::comma))
1637      break;
1638    SourceLocation CommaLoc = ConsumeToken();
1639
1640    if (Tok.isNot(tok::identifier) &&
1641        !(getLang().C99 || getLang().CPlusPlus0x))
1642      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1643        << getLang().CPlusPlus
1644        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1645  }
1646
1647  // Eat the }.
1648  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1649
1650  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
1651                        EnumConstantDecls.data(), EnumConstantDecls.size());
1652
1653  Action::AttrTy *AttrList = 0;
1654  // If attributes exist after the identifier list, parse them.
1655  if (Tok.is(tok::kw___attribute))
1656    AttrList = ParseAttributes(); // FIXME: where do they do?
1657
1658  EnumScope.Exit();
1659  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl, RBraceLoc);
1660}
1661
1662/// isTypeSpecifierQualifier - Return true if the current token could be the
1663/// start of a type-qualifier-list.
1664bool Parser::isTypeQualifier() const {
1665  switch (Tok.getKind()) {
1666  default: return false;
1667    // type-qualifier
1668  case tok::kw_const:
1669  case tok::kw_volatile:
1670  case tok::kw_restrict:
1671    return true;
1672  }
1673}
1674
1675/// isTypeSpecifierQualifier - Return true if the current token could be the
1676/// start of a specifier-qualifier-list.
1677bool Parser::isTypeSpecifierQualifier() {
1678  switch (Tok.getKind()) {
1679  default: return false;
1680
1681  case tok::identifier:   // foo::bar
1682  case tok::kw_typename:  // typename T::type
1683    // Annotate typenames and C++ scope specifiers.  If we get one, just
1684    // recurse to handle whatever we get.
1685    if (TryAnnotateTypeOrScopeToken())
1686      return isTypeSpecifierQualifier();
1687    // Otherwise, not a type specifier.
1688    return false;
1689
1690  case tok::coloncolon:   // ::foo::bar
1691    if (NextToken().is(tok::kw_new) ||    // ::new
1692        NextToken().is(tok::kw_delete))   // ::delete
1693      return false;
1694
1695    // Annotate typenames and C++ scope specifiers.  If we get one, just
1696    // recurse to handle whatever we get.
1697    if (TryAnnotateTypeOrScopeToken())
1698      return isTypeSpecifierQualifier();
1699    // Otherwise, not a type specifier.
1700    return false;
1701
1702    // GNU attributes support.
1703  case tok::kw___attribute:
1704    // GNU typeof support.
1705  case tok::kw_typeof:
1706
1707    // type-specifiers
1708  case tok::kw_short:
1709  case tok::kw_long:
1710  case tok::kw_signed:
1711  case tok::kw_unsigned:
1712  case tok::kw__Complex:
1713  case tok::kw__Imaginary:
1714  case tok::kw_void:
1715  case tok::kw_char:
1716  case tok::kw_wchar_t:
1717  case tok::kw_int:
1718  case tok::kw_float:
1719  case tok::kw_double:
1720  case tok::kw_bool:
1721  case tok::kw__Bool:
1722  case tok::kw__Decimal32:
1723  case tok::kw__Decimal64:
1724  case tok::kw__Decimal128:
1725
1726    // struct-or-union-specifier (C99) or class-specifier (C++)
1727  case tok::kw_class:
1728  case tok::kw_struct:
1729  case tok::kw_union:
1730    // enum-specifier
1731  case tok::kw_enum:
1732
1733    // type-qualifier
1734  case tok::kw_const:
1735  case tok::kw_volatile:
1736  case tok::kw_restrict:
1737
1738    // typedef-name
1739  case tok::annot_typename:
1740    return true;
1741
1742    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1743  case tok::less:
1744    return getLang().ObjC1;
1745
1746  case tok::kw___cdecl:
1747  case tok::kw___stdcall:
1748  case tok::kw___fastcall:
1749  case tok::kw___w64:
1750  case tok::kw___ptr64:
1751    return true;
1752  }
1753}
1754
1755/// isDeclarationSpecifier() - Return true if the current token is part of a
1756/// declaration specifier.
1757bool Parser::isDeclarationSpecifier() {
1758  switch (Tok.getKind()) {
1759  default: return false;
1760
1761  case tok::identifier:   // foo::bar
1762    // Unfortunate hack to support "Class.factoryMethod" notation.
1763    if (getLang().ObjC1 && NextToken().is(tok::period))
1764      return false;
1765    // Fall through
1766
1767  case tok::kw_typename: // typename T::type
1768    // Annotate typenames and C++ scope specifiers.  If we get one, just
1769    // recurse to handle whatever we get.
1770    if (TryAnnotateTypeOrScopeToken())
1771      return isDeclarationSpecifier();
1772    // Otherwise, not a declaration specifier.
1773    return false;
1774  case tok::coloncolon:   // ::foo::bar
1775    if (NextToken().is(tok::kw_new) ||    // ::new
1776        NextToken().is(tok::kw_delete))   // ::delete
1777      return false;
1778
1779    // Annotate typenames and C++ scope specifiers.  If we get one, just
1780    // recurse to handle whatever we get.
1781    if (TryAnnotateTypeOrScopeToken())
1782      return isDeclarationSpecifier();
1783    // Otherwise, not a declaration specifier.
1784    return false;
1785
1786    // storage-class-specifier
1787  case tok::kw_typedef:
1788  case tok::kw_extern:
1789  case tok::kw___private_extern__:
1790  case tok::kw_static:
1791  case tok::kw_auto:
1792  case tok::kw_register:
1793  case tok::kw___thread:
1794
1795    // type-specifiers
1796  case tok::kw_short:
1797  case tok::kw_long:
1798  case tok::kw_signed:
1799  case tok::kw_unsigned:
1800  case tok::kw__Complex:
1801  case tok::kw__Imaginary:
1802  case tok::kw_void:
1803  case tok::kw_char:
1804  case tok::kw_wchar_t:
1805  case tok::kw_int:
1806  case tok::kw_float:
1807  case tok::kw_double:
1808  case tok::kw_bool:
1809  case tok::kw__Bool:
1810  case tok::kw__Decimal32:
1811  case tok::kw__Decimal64:
1812  case tok::kw__Decimal128:
1813
1814    // struct-or-union-specifier (C99) or class-specifier (C++)
1815  case tok::kw_class:
1816  case tok::kw_struct:
1817  case tok::kw_union:
1818    // enum-specifier
1819  case tok::kw_enum:
1820
1821    // type-qualifier
1822  case tok::kw_const:
1823  case tok::kw_volatile:
1824  case tok::kw_restrict:
1825
1826    // function-specifier
1827  case tok::kw_inline:
1828  case tok::kw_virtual:
1829  case tok::kw_explicit:
1830
1831    // typedef-name
1832  case tok::annot_typename:
1833
1834    // GNU typeof support.
1835  case tok::kw_typeof:
1836
1837    // GNU attributes.
1838  case tok::kw___attribute:
1839    return true;
1840
1841    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1842  case tok::less:
1843    return getLang().ObjC1;
1844
1845  case tok::kw___declspec:
1846  case tok::kw___cdecl:
1847  case tok::kw___stdcall:
1848  case tok::kw___fastcall:
1849  case tok::kw___w64:
1850  case tok::kw___ptr64:
1851  case tok::kw___forceinline:
1852    return true;
1853  }
1854}
1855
1856
1857/// ParseTypeQualifierListOpt
1858///       type-qualifier-list: [C99 6.7.5]
1859///         type-qualifier
1860/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1861///         type-qualifier-list type-qualifier
1862/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1863///
1864void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1865  while (1) {
1866    int isInvalid = false;
1867    const char *PrevSpec = 0;
1868    SourceLocation Loc = Tok.getLocation();
1869
1870    switch (Tok.getKind()) {
1871    case tok::kw_const:
1872      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1873                                 getLang())*2;
1874      break;
1875    case tok::kw_volatile:
1876      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1877                                 getLang())*2;
1878      break;
1879    case tok::kw_restrict:
1880      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1881                                 getLang())*2;
1882      break;
1883    case tok::kw___w64:
1884    case tok::kw___ptr64:
1885    case tok::kw___cdecl:
1886    case tok::kw___stdcall:
1887    case tok::kw___fastcall:
1888      if (AttributesAllowed) {
1889        DS.AddAttributes(ParseMicrosoftTypeAttributes());
1890        continue;
1891      }
1892      goto DoneWithTypeQuals;
1893    case tok::kw___attribute:
1894      if (AttributesAllowed) {
1895        DS.AddAttributes(ParseAttributes());
1896        continue; // do *not* consume the next token!
1897      }
1898      // otherwise, FALL THROUGH!
1899    default:
1900      DoneWithTypeQuals:
1901      // If this is not a type-qualifier token, we're done reading type
1902      // qualifiers.  First verify that DeclSpec's are consistent.
1903      DS.Finish(Diags, PP);
1904      return;
1905    }
1906
1907    // If the specifier combination wasn't legal, issue a diagnostic.
1908    if (isInvalid) {
1909      assert(PrevSpec && "Method did not return previous specifier!");
1910      // Pick between error or extwarn.
1911      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1912                                      : diag::ext_duplicate_declspec;
1913      Diag(Tok, DiagID) << PrevSpec;
1914    }
1915    ConsumeToken();
1916  }
1917}
1918
1919
1920/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1921///
1922void Parser::ParseDeclarator(Declarator &D) {
1923  /// This implements the 'declarator' production in the C grammar, then checks
1924  /// for well-formedness and issues diagnostics.
1925  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1926}
1927
1928/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1929/// is parsed by the function passed to it. Pass null, and the direct-declarator
1930/// isn't parsed at all, making this function effectively parse the C++
1931/// ptr-operator production.
1932///
1933///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1934/// [C]     pointer[opt] direct-declarator
1935/// [C++]   direct-declarator
1936/// [C++]   ptr-operator declarator
1937///
1938///       pointer: [C99 6.7.5]
1939///         '*' type-qualifier-list[opt]
1940///         '*' type-qualifier-list[opt] pointer
1941///
1942///       ptr-operator:
1943///         '*' cv-qualifier-seq[opt]
1944///         '&'
1945/// [C++0x] '&&'
1946/// [GNU]   '&' restrict[opt] attributes[opt]
1947/// [GNU?]  '&&' restrict[opt] attributes[opt]
1948///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1949void Parser::ParseDeclaratorInternal(Declarator &D,
1950                                     DirectDeclParseFunction DirectDeclParser) {
1951
1952  // C++ member pointers start with a '::' or a nested-name.
1953  // Member pointers get special handling, since there's no place for the
1954  // scope spec in the generic path below.
1955  if (getLang().CPlusPlus &&
1956      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1957       Tok.is(tok::annot_cxxscope))) {
1958    CXXScopeSpec SS;
1959    if (ParseOptionalCXXScopeSpecifier(SS)) {
1960      if(Tok.isNot(tok::star)) {
1961        // The scope spec really belongs to the direct-declarator.
1962        D.getCXXScopeSpec() = SS;
1963        if (DirectDeclParser)
1964          (this->*DirectDeclParser)(D);
1965        return;
1966      }
1967
1968      SourceLocation Loc = ConsumeToken();
1969      D.SetRangeEnd(Loc);
1970      DeclSpec DS;
1971      ParseTypeQualifierListOpt(DS);
1972      D.ExtendWithDeclSpec(DS);
1973
1974      // Recurse to parse whatever is left.
1975      ParseDeclaratorInternal(D, DirectDeclParser);
1976
1977      // Sema will have to catch (syntactically invalid) pointers into global
1978      // scope. It has to catch pointers into namespace scope anyway.
1979      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1980                                                      Loc, DS.TakeAttributes()),
1981                    /* Don't replace range end. */SourceLocation());
1982      return;
1983    }
1984  }
1985
1986  tok::TokenKind Kind = Tok.getKind();
1987  // Not a pointer, C++ reference, or block.
1988  if (Kind != tok::star && Kind != tok::caret &&
1989      (Kind != tok::amp || !getLang().CPlusPlus) &&
1990      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1991      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1992    if (DirectDeclParser)
1993      (this->*DirectDeclParser)(D);
1994    return;
1995  }
1996
1997  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1998  // '&&' -> rvalue reference
1999  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2000  D.SetRangeEnd(Loc);
2001
2002  if (Kind == tok::star || Kind == tok::caret) {
2003    // Is a pointer.
2004    DeclSpec DS;
2005
2006    ParseTypeQualifierListOpt(DS);
2007    D.ExtendWithDeclSpec(DS);
2008
2009    // Recursively parse the declarator.
2010    ParseDeclaratorInternal(D, DirectDeclParser);
2011    if (Kind == tok::star)
2012      // Remember that we parsed a pointer type, and remember the type-quals.
2013      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2014                                                DS.TakeAttributes()),
2015                    SourceLocation());
2016    else
2017      // Remember that we parsed a Block type, and remember the type-quals.
2018      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2019                                                     Loc, DS.TakeAttributes()),
2020                    SourceLocation());
2021  } else {
2022    // Is a reference
2023    DeclSpec DS;
2024
2025    // Complain about rvalue references in C++03, but then go on and build
2026    // the declarator.
2027    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2028      Diag(Loc, diag::err_rvalue_reference);
2029
2030    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2031    // cv-qualifiers are introduced through the use of a typedef or of a
2032    // template type argument, in which case the cv-qualifiers are ignored.
2033    //
2034    // [GNU] Retricted references are allowed.
2035    // [GNU] Attributes on references are allowed.
2036    ParseTypeQualifierListOpt(DS);
2037    D.ExtendWithDeclSpec(DS);
2038
2039    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2040      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2041        Diag(DS.getConstSpecLoc(),
2042             diag::err_invalid_reference_qualifier_application) << "const";
2043      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2044        Diag(DS.getVolatileSpecLoc(),
2045             diag::err_invalid_reference_qualifier_application) << "volatile";
2046    }
2047
2048    // Recursively parse the declarator.
2049    ParseDeclaratorInternal(D, DirectDeclParser);
2050
2051    if (D.getNumTypeObjects() > 0) {
2052      // C++ [dcl.ref]p4: There shall be no references to references.
2053      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2054      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2055        if (const IdentifierInfo *II = D.getIdentifier())
2056          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2057           << II;
2058        else
2059          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2060            << "type name";
2061
2062        // Once we've complained about the reference-to-reference, we
2063        // can go ahead and build the (technically ill-formed)
2064        // declarator: reference collapsing will take care of it.
2065      }
2066    }
2067
2068    // Remember that we parsed a reference type. It doesn't have type-quals.
2069    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2070                                                DS.TakeAttributes(),
2071                                                Kind == tok::amp),
2072                  SourceLocation());
2073  }
2074}
2075
2076/// ParseDirectDeclarator
2077///       direct-declarator: [C99 6.7.5]
2078/// [C99]   identifier
2079///         '(' declarator ')'
2080/// [GNU]   '(' attributes declarator ')'
2081/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2082/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2083/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2084/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2085/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2086///         direct-declarator '(' parameter-type-list ')'
2087///         direct-declarator '(' identifier-list[opt] ')'
2088/// [GNU]   direct-declarator '(' parameter-forward-declarations
2089///                    parameter-type-list[opt] ')'
2090/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2091///                    cv-qualifier-seq[opt] exception-specification[opt]
2092/// [C++]   declarator-id
2093///
2094///       declarator-id: [C++ 8]
2095///         id-expression
2096///         '::'[opt] nested-name-specifier[opt] type-name
2097///
2098///       id-expression: [C++ 5.1]
2099///         unqualified-id
2100///         qualified-id            [TODO]
2101///
2102///       unqualified-id: [C++ 5.1]
2103///         identifier
2104///         operator-function-id
2105///         conversion-function-id  [TODO]
2106///          '~' class-name
2107///         template-id
2108///
2109void Parser::ParseDirectDeclarator(Declarator &D) {
2110  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2111
2112  if (getLang().CPlusPlus) {
2113    if (D.mayHaveIdentifier()) {
2114      // ParseDeclaratorInternal might already have parsed the scope.
2115      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
2116        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
2117      if (afterCXXScope) {
2118        // Change the declaration context for name lookup, until this function
2119        // is exited (and the declarator has been parsed).
2120        DeclScopeObj.EnterDeclaratorScope();
2121      }
2122
2123      if (Tok.is(tok::identifier)) {
2124        assert(Tok.getIdentifierInfo() && "Not an identifier?");
2125
2126        // If this identifier is the name of the current class, it's a
2127        // constructor name.
2128        if (!D.getDeclSpec().hasTypeSpecifier() &&
2129            Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)) {
2130          CXXScopeSpec *SS = afterCXXScope? &D.getCXXScopeSpec() : 0;
2131          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
2132                                               Tok.getLocation(), CurScope, SS),
2133                           Tok.getLocation());
2134        // This is a normal identifier.
2135        } else
2136          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2137        ConsumeToken();
2138        goto PastIdentifier;
2139      } else if (Tok.is(tok::annot_template_id)) {
2140        TemplateIdAnnotation *TemplateId
2141          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
2142
2143        // FIXME: Could this template-id name a constructor?
2144
2145        // FIXME: This is an egregious hack, where we silently ignore
2146        // the specialization (which should be a function template
2147        // specialization name) and use the name instead. This hack
2148        // will go away when we have support for function
2149        // specializations.
2150        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
2151        TemplateId->Destroy();
2152        ConsumeToken();
2153        goto PastIdentifier;
2154      } else if (Tok.is(tok::kw_operator)) {
2155        SourceLocation OperatorLoc = Tok.getLocation();
2156        SourceLocation EndLoc;
2157
2158        // First try the name of an overloaded operator
2159        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
2160          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
2161        } else {
2162          // This must be a conversion function (C++ [class.conv.fct]).
2163          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
2164            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
2165          else {
2166            D.SetIdentifier(0, Tok.getLocation());
2167          }
2168        }
2169        goto PastIdentifier;
2170      } else if (Tok.is(tok::tilde)) {
2171        // This should be a C++ destructor.
2172        SourceLocation TildeLoc = ConsumeToken();
2173        if (Tok.is(tok::identifier)) {
2174          // FIXME: Inaccurate.
2175          SourceLocation NameLoc = Tok.getLocation();
2176          SourceLocation EndLoc;
2177          CXXScopeSpec *SS = afterCXXScope? &D.getCXXScopeSpec() : 0;
2178          TypeResult Type = ParseClassName(EndLoc, SS);
2179          if (Type.isInvalid())
2180            D.SetIdentifier(0, TildeLoc);
2181          else
2182            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2183        } else {
2184          Diag(Tok, diag::err_expected_class_name);
2185          D.SetIdentifier(0, TildeLoc);
2186        }
2187        goto PastIdentifier;
2188      }
2189
2190      // If we reached this point, token is not identifier and not '~'.
2191
2192      if (afterCXXScope) {
2193        Diag(Tok, diag::err_expected_unqualified_id);
2194        D.SetIdentifier(0, Tok.getLocation());
2195        D.setInvalidType(true);
2196        goto PastIdentifier;
2197      }
2198    }
2199  }
2200
2201  // If we reached this point, we are either in C/ObjC or the token didn't
2202  // satisfy any of the C++-specific checks.
2203  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2204    assert(!getLang().CPlusPlus &&
2205           "There's a C++-specific check for tok::identifier above");
2206    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2207    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2208    ConsumeToken();
2209  } else if (Tok.is(tok::l_paren)) {
2210    // direct-declarator: '(' declarator ')'
2211    // direct-declarator: '(' attributes declarator ')'
2212    // Example: 'char (*X)'   or 'int (*XX)(void)'
2213    ParseParenDeclarator(D);
2214  } else if (D.mayOmitIdentifier()) {
2215    // This could be something simple like "int" (in which case the declarator
2216    // portion is empty), if an abstract-declarator is allowed.
2217    D.SetIdentifier(0, Tok.getLocation());
2218  } else {
2219    if (D.getContext() == Declarator::MemberContext)
2220      Diag(Tok, diag::err_expected_member_name_or_semi)
2221        << D.getDeclSpec().getSourceRange();
2222    else if (getLang().CPlusPlus)
2223      Diag(Tok, diag::err_expected_unqualified_id);
2224    else
2225      Diag(Tok, diag::err_expected_ident_lparen);
2226    D.SetIdentifier(0, Tok.getLocation());
2227    D.setInvalidType(true);
2228  }
2229
2230 PastIdentifier:
2231  assert(D.isPastIdentifier() &&
2232         "Haven't past the location of the identifier yet?");
2233
2234  while (1) {
2235    if (Tok.is(tok::l_paren)) {
2236      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2237      // In such a case, check if we actually have a function declarator; if it
2238      // is not, the declarator has been fully parsed.
2239      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2240        // When not in file scope, warn for ambiguous function declarators, just
2241        // in case the author intended it as a variable definition.
2242        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2243        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2244          break;
2245      }
2246      ParseFunctionDeclarator(ConsumeParen(), D);
2247    } else if (Tok.is(tok::l_square)) {
2248      ParseBracketDeclarator(D);
2249    } else {
2250      break;
2251    }
2252  }
2253}
2254
2255/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2256/// only called before the identifier, so these are most likely just grouping
2257/// parens for precedence.  If we find that these are actually function
2258/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2259///
2260///       direct-declarator:
2261///         '(' declarator ')'
2262/// [GNU]   '(' attributes declarator ')'
2263///         direct-declarator '(' parameter-type-list ')'
2264///         direct-declarator '(' identifier-list[opt] ')'
2265/// [GNU]   direct-declarator '(' parameter-forward-declarations
2266///                    parameter-type-list[opt] ')'
2267///
2268void Parser::ParseParenDeclarator(Declarator &D) {
2269  SourceLocation StartLoc = ConsumeParen();
2270  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2271
2272  // Eat any attributes before we look at whether this is a grouping or function
2273  // declarator paren.  If this is a grouping paren, the attribute applies to
2274  // the type being built up, for example:
2275  //     int (__attribute__(()) *x)(long y)
2276  // If this ends up not being a grouping paren, the attribute applies to the
2277  // first argument, for example:
2278  //     int (__attribute__(()) int x)
2279  // In either case, we need to eat any attributes to be able to determine what
2280  // sort of paren this is.
2281  //
2282  AttributeList *AttrList = 0;
2283  bool RequiresArg = false;
2284  if (Tok.is(tok::kw___attribute)) {
2285    AttrList = ParseAttributes();
2286
2287    // We require that the argument list (if this is a non-grouping paren) be
2288    // present even if the attribute list was empty.
2289    RequiresArg = true;
2290  }
2291  // Eat any Microsoft extensions.
2292  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2293       Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___w64) ||
2294       Tok.is(tok::kw___ptr64)) {
2295    AttrList = ParseMicrosoftTypeAttributes(AttrList);
2296  }
2297
2298  // If we haven't past the identifier yet (or where the identifier would be
2299  // stored, if this is an abstract declarator), then this is probably just
2300  // grouping parens. However, if this could be an abstract-declarator, then
2301  // this could also be the start of function arguments (consider 'void()').
2302  bool isGrouping;
2303
2304  if (!D.mayOmitIdentifier()) {
2305    // If this can't be an abstract-declarator, this *must* be a grouping
2306    // paren, because we haven't seen the identifier yet.
2307    isGrouping = true;
2308  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2309             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2310             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2311    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2312    // considered to be a type, not a K&R identifier-list.
2313    isGrouping = false;
2314  } else {
2315    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2316    isGrouping = true;
2317  }
2318
2319  // If this is a grouping paren, handle:
2320  // direct-declarator: '(' declarator ')'
2321  // direct-declarator: '(' attributes declarator ')'
2322  if (isGrouping) {
2323    bool hadGroupingParens = D.hasGroupingParens();
2324    D.setGroupingParens(true);
2325    if (AttrList)
2326      D.AddAttributes(AttrList, SourceLocation());
2327
2328    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2329    // Match the ')'.
2330    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2331
2332    D.setGroupingParens(hadGroupingParens);
2333    D.SetRangeEnd(Loc);
2334    return;
2335  }
2336
2337  // Okay, if this wasn't a grouping paren, it must be the start of a function
2338  // argument list.  Recognize that this declarator will never have an
2339  // identifier (and remember where it would have been), then call into
2340  // ParseFunctionDeclarator to handle of argument list.
2341  D.SetIdentifier(0, Tok.getLocation());
2342
2343  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2344}
2345
2346/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2347/// declarator D up to a paren, which indicates that we are parsing function
2348/// arguments.
2349///
2350/// If AttrList is non-null, then the caller parsed those arguments immediately
2351/// after the open paren - they should be considered to be the first argument of
2352/// a parameter.  If RequiresArg is true, then the first argument of the
2353/// function is required to be present and required to not be an identifier
2354/// list.
2355///
2356/// This method also handles this portion of the grammar:
2357///       parameter-type-list: [C99 6.7.5]
2358///         parameter-list
2359///         parameter-list ',' '...'
2360///
2361///       parameter-list: [C99 6.7.5]
2362///         parameter-declaration
2363///         parameter-list ',' parameter-declaration
2364///
2365///       parameter-declaration: [C99 6.7.5]
2366///         declaration-specifiers declarator
2367/// [C++]   declaration-specifiers declarator '=' assignment-expression
2368/// [GNU]   declaration-specifiers declarator attributes
2369///         declaration-specifiers abstract-declarator[opt]
2370/// [C++]   declaration-specifiers abstract-declarator[opt]
2371///           '=' assignment-expression
2372/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2373///
2374/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2375/// and "exception-specification[opt]".
2376///
2377void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2378                                     AttributeList *AttrList,
2379                                     bool RequiresArg) {
2380  // lparen is already consumed!
2381  assert(D.isPastIdentifier() && "Should not call before identifier!");
2382
2383  // This parameter list may be empty.
2384  if (Tok.is(tok::r_paren)) {
2385    if (RequiresArg) {
2386      Diag(Tok, diag::err_argument_required_after_attribute);
2387      delete AttrList;
2388    }
2389
2390    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2391
2392    // cv-qualifier-seq[opt].
2393    DeclSpec DS;
2394    bool hasExceptionSpec = false;
2395    SourceLocation ThrowLoc;
2396    bool hasAnyExceptionSpec = false;
2397    llvm::SmallVector<TypeTy*, 2> Exceptions;
2398    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2399    if (getLang().CPlusPlus) {
2400      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2401      if (!DS.getSourceRange().getEnd().isInvalid())
2402        Loc = DS.getSourceRange().getEnd();
2403
2404      // Parse exception-specification[opt].
2405      if (Tok.is(tok::kw_throw)) {
2406        hasExceptionSpec = true;
2407        ThrowLoc = Tok.getLocation();
2408        ParseExceptionSpecification(Loc, Exceptions, ExceptionRanges,
2409                                    hasAnyExceptionSpec);
2410        assert(Exceptions.size() == ExceptionRanges.size() &&
2411               "Produced different number of exception types and ranges.");
2412      }
2413    }
2414
2415    // Remember that we parsed a function type, and remember the attributes.
2416    // int() -> no prototype, no '...'.
2417    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2418                                               /*variadic*/ false,
2419                                               SourceLocation(),
2420                                               /*arglist*/ 0, 0,
2421                                               DS.getTypeQualifiers(),
2422                                               hasExceptionSpec, ThrowLoc,
2423                                               hasAnyExceptionSpec,
2424                                               Exceptions.data(),
2425                                               ExceptionRanges.data(),
2426                                               Exceptions.size(),
2427                                               LParenLoc, D),
2428                  Loc);
2429    return;
2430  }
2431
2432  // Alternatively, this parameter list may be an identifier list form for a
2433  // K&R-style function:  void foo(a,b,c)
2434  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2435    if (!TryAnnotateTypeOrScopeToken()) {
2436      // K&R identifier lists can't have typedefs as identifiers, per
2437      // C99 6.7.5.3p11.
2438      if (RequiresArg) {
2439        Diag(Tok, diag::err_argument_required_after_attribute);
2440        delete AttrList;
2441      }
2442      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2443      // normal declarators, not for abstract-declarators.
2444      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2445    }
2446  }
2447
2448  // Finally, a normal, non-empty parameter type list.
2449
2450  // Build up an array of information about the parsed arguments.
2451  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2452
2453  // Enter function-declaration scope, limiting any declarators to the
2454  // function prototype scope, including parameter declarators.
2455  ParseScope PrototypeScope(this,
2456                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2457
2458  bool IsVariadic = false;
2459  SourceLocation EllipsisLoc;
2460  while (1) {
2461    if (Tok.is(tok::ellipsis)) {
2462      IsVariadic = true;
2463      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2464      break;
2465    }
2466
2467    SourceLocation DSStart = Tok.getLocation();
2468
2469    // Parse the declaration-specifiers.
2470    DeclSpec DS;
2471
2472    // If the caller parsed attributes for the first argument, add them now.
2473    if (AttrList) {
2474      DS.AddAttributes(AttrList);
2475      AttrList = 0;  // Only apply the attributes to the first parameter.
2476    }
2477    ParseDeclarationSpecifiers(DS);
2478
2479    // Parse the declarator.  This is "PrototypeContext", because we must
2480    // accept either 'declarator' or 'abstract-declarator' here.
2481    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2482    ParseDeclarator(ParmDecl);
2483
2484    // Parse GNU attributes, if present.
2485    if (Tok.is(tok::kw___attribute)) {
2486      SourceLocation Loc;
2487      AttributeList *AttrList = ParseAttributes(&Loc);
2488      ParmDecl.AddAttributes(AttrList, Loc);
2489    }
2490
2491    // Remember this parsed parameter in ParamInfo.
2492    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2493
2494    // DefArgToks is used when the parsing of default arguments needs
2495    // to be delayed.
2496    CachedTokens *DefArgToks = 0;
2497
2498    // If no parameter was specified, verify that *something* was specified,
2499    // otherwise we have a missing type and identifier.
2500    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2501        ParmDecl.getNumTypeObjects() == 0) {
2502      // Completely missing, emit error.
2503      Diag(DSStart, diag::err_missing_param);
2504    } else {
2505      // Otherwise, we have something.  Add it and let semantic analysis try
2506      // to grok it and add the result to the ParamInfo we are building.
2507
2508      // Inform the actions module about the parameter declarator, so it gets
2509      // added to the current scope.
2510      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2511
2512      // Parse the default argument, if any. We parse the default
2513      // arguments in all dialects; the semantic analysis in
2514      // ActOnParamDefaultArgument will reject the default argument in
2515      // C.
2516      if (Tok.is(tok::equal)) {
2517        SourceLocation EqualLoc = Tok.getLocation();
2518
2519        // Parse the default argument
2520        if (D.getContext() == Declarator::MemberContext) {
2521          // If we're inside a class definition, cache the tokens
2522          // corresponding to the default argument. We'll actually parse
2523          // them when we see the end of the class definition.
2524          // FIXME: Templates will require something similar.
2525          // FIXME: Can we use a smart pointer for Toks?
2526          DefArgToks = new CachedTokens;
2527
2528          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2529                                    tok::semi, false)) {
2530            delete DefArgToks;
2531            DefArgToks = 0;
2532            Actions.ActOnParamDefaultArgumentError(Param);
2533          } else
2534            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
2535                                                (*DefArgToks)[1].getLocation());
2536        } else {
2537          // Consume the '='.
2538          ConsumeToken();
2539
2540          OwningExprResult DefArgResult(ParseAssignmentExpression());
2541          if (DefArgResult.isInvalid()) {
2542            Actions.ActOnParamDefaultArgumentError(Param);
2543            SkipUntil(tok::comma, tok::r_paren, true, true);
2544          } else {
2545            // Inform the actions module about the default argument
2546            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2547                                              move(DefArgResult));
2548          }
2549        }
2550      }
2551
2552      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2553                                          ParmDecl.getIdentifierLoc(), Param,
2554                                          DefArgToks));
2555    }
2556
2557    // If the next token is a comma, consume it and keep reading arguments.
2558    if (Tok.isNot(tok::comma)) break;
2559
2560    // Consume the comma.
2561    ConsumeToken();
2562  }
2563
2564  // Leave prototype scope.
2565  PrototypeScope.Exit();
2566
2567  // If we have the closing ')', eat it.
2568  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2569
2570  DeclSpec DS;
2571  bool hasExceptionSpec = false;
2572  SourceLocation ThrowLoc;
2573  bool hasAnyExceptionSpec = false;
2574  llvm::SmallVector<TypeTy*, 2> Exceptions;
2575  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2576  if (getLang().CPlusPlus) {
2577    // Parse cv-qualifier-seq[opt].
2578    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2579      if (!DS.getSourceRange().getEnd().isInvalid())
2580        Loc = DS.getSourceRange().getEnd();
2581
2582    // Parse exception-specification[opt].
2583    if (Tok.is(tok::kw_throw)) {
2584      hasExceptionSpec = true;
2585      ThrowLoc = Tok.getLocation();
2586      ParseExceptionSpecification(Loc, Exceptions, ExceptionRanges,
2587                                  hasAnyExceptionSpec);
2588      assert(Exceptions.size() == ExceptionRanges.size() &&
2589             "Produced different number of exception types and ranges.");
2590    }
2591  }
2592
2593  // Remember that we parsed a function type, and remember the attributes.
2594  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2595                                             EllipsisLoc,
2596                                             ParamInfo.data(), ParamInfo.size(),
2597                                             DS.getTypeQualifiers(),
2598                                             hasExceptionSpec, ThrowLoc,
2599                                             hasAnyExceptionSpec,
2600                                             Exceptions.data(),
2601                                             ExceptionRanges.data(),
2602                                             Exceptions.size(), LParenLoc, D),
2603                Loc);
2604}
2605
2606/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2607/// we found a K&R-style identifier list instead of a type argument list.  The
2608/// current token is known to be the first identifier in the list.
2609///
2610///       identifier-list: [C99 6.7.5]
2611///         identifier
2612///         identifier-list ',' identifier
2613///
2614void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2615                                                   Declarator &D) {
2616  // Build up an array of information about the parsed arguments.
2617  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2618  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2619
2620  // If there was no identifier specified for the declarator, either we are in
2621  // an abstract-declarator, or we are in a parameter declarator which was found
2622  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2623  // diagnose this.
2624  if (!D.getIdentifier())
2625    Diag(Tok, diag::ext_ident_list_in_param);
2626
2627  // Tok is known to be the first identifier in the list.  Remember this
2628  // identifier in ParamInfo.
2629  ParamsSoFar.insert(Tok.getIdentifierInfo());
2630  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2631                                                 Tok.getLocation(),
2632                                                 DeclPtrTy()));
2633
2634  ConsumeToken();  // eat the first identifier.
2635
2636  while (Tok.is(tok::comma)) {
2637    // Eat the comma.
2638    ConsumeToken();
2639
2640    // If this isn't an identifier, report the error and skip until ')'.
2641    if (Tok.isNot(tok::identifier)) {
2642      Diag(Tok, diag::err_expected_ident);
2643      SkipUntil(tok::r_paren);
2644      return;
2645    }
2646
2647    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2648
2649    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2650    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2651      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2652
2653    // Verify that the argument identifier has not already been mentioned.
2654    if (!ParamsSoFar.insert(ParmII)) {
2655      Diag(Tok, diag::err_param_redefinition) << ParmII;
2656    } else {
2657      // Remember this identifier in ParamInfo.
2658      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2659                                                     Tok.getLocation(),
2660                                                     DeclPtrTy()));
2661    }
2662
2663    // Eat the identifier.
2664    ConsumeToken();
2665  }
2666
2667  // If we have the closing ')', eat it and we're done.
2668  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2669
2670  // Remember that we parsed a function type, and remember the attributes.  This
2671  // function type is always a K&R style function type, which is not varargs and
2672  // has no prototype.
2673  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2674                                             SourceLocation(),
2675                                             &ParamInfo[0], ParamInfo.size(),
2676                                             /*TypeQuals*/0,
2677                                             /*exception*/false,
2678                                             SourceLocation(), false, 0, 0, 0,
2679                                             LParenLoc, D),
2680                RLoc);
2681}
2682
2683/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2684/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2685/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2686/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2687/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2688void Parser::ParseBracketDeclarator(Declarator &D) {
2689  SourceLocation StartLoc = ConsumeBracket();
2690
2691  // C array syntax has many features, but by-far the most common is [] and [4].
2692  // This code does a fast path to handle some of the most obvious cases.
2693  if (Tok.getKind() == tok::r_square) {
2694    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2695    // Remember that we parsed the empty array type.
2696    OwningExprResult NumElements(Actions);
2697    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
2698                                            StartLoc, EndLoc),
2699                  EndLoc);
2700    return;
2701  } else if (Tok.getKind() == tok::numeric_constant &&
2702             GetLookAheadToken(1).is(tok::r_square)) {
2703    // [4] is very common.  Parse the numeric constant expression.
2704    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2705    ConsumeToken();
2706
2707    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2708
2709    // If there was an error parsing the assignment-expression, recover.
2710    if (ExprRes.isInvalid())
2711      ExprRes.release();  // Deallocate expr, just use [].
2712
2713    // Remember that we parsed a array type, and remember its features.
2714    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(),
2715                                            StartLoc, EndLoc),
2716                  EndLoc);
2717    return;
2718  }
2719
2720  // If valid, this location is the position where we read the 'static' keyword.
2721  SourceLocation StaticLoc;
2722  if (Tok.is(tok::kw_static))
2723    StaticLoc = ConsumeToken();
2724
2725  // If there is a type-qualifier-list, read it now.
2726  // Type qualifiers in an array subscript are a C99 feature.
2727  DeclSpec DS;
2728  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2729
2730  // If we haven't already read 'static', check to see if there is one after the
2731  // type-qualifier-list.
2732  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2733    StaticLoc = ConsumeToken();
2734
2735  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2736  bool isStar = false;
2737  OwningExprResult NumElements(Actions);
2738
2739  // Handle the case where we have '[*]' as the array size.  However, a leading
2740  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2741  // the the token after the star is a ']'.  Since stars in arrays are
2742  // infrequent, use of lookahead is not costly here.
2743  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2744    ConsumeToken();  // Eat the '*'.
2745
2746    if (StaticLoc.isValid()) {
2747      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2748      StaticLoc = SourceLocation();  // Drop the static.
2749    }
2750    isStar = true;
2751  } else if (Tok.isNot(tok::r_square)) {
2752    // Note, in C89, this production uses the constant-expr production instead
2753    // of assignment-expr.  The only difference is that assignment-expr allows
2754    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2755    // are not i-c-e's, so we don't need to distinguish between the two here.
2756
2757    // Parse the constant-expression or assignment-expression now (depending
2758    // on dialect).
2759    if (getLang().CPlusPlus)
2760      NumElements = ParseConstantExpression();
2761    else
2762      NumElements = ParseAssignmentExpression();
2763  }
2764
2765  // If there was an error parsing the assignment-expression, recover.
2766  if (NumElements.isInvalid()) {
2767    D.setInvalidType(true);
2768    // If the expression was invalid, skip it.
2769    SkipUntil(tok::r_square);
2770    return;
2771  }
2772
2773  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2774
2775  // Remember that we parsed a array type, and remember its features.
2776  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2777                                          StaticLoc.isValid(), isStar,
2778                                          NumElements.release(),
2779                                          StartLoc, EndLoc),
2780                EndLoc);
2781}
2782
2783/// [GNU]   typeof-specifier:
2784///           typeof ( expressions )
2785///           typeof ( type-name )
2786/// [GNU/C++] typeof unary-expression
2787///
2788void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2789  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2790  Token OpTok = Tok;
2791  SourceLocation StartLoc = ConsumeToken();
2792
2793  bool isCastExpr;
2794  TypeTy *CastTy;
2795  SourceRange CastRange;
2796  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
2797                                                               isCastExpr,
2798                                                               CastTy,
2799                                                               CastRange);
2800
2801  if (CastRange.getEnd().isInvalid())
2802    // FIXME: Not accurate, the range gets one token more than it should.
2803    DS.SetRangeEnd(Tok.getLocation());
2804  else
2805    DS.SetRangeEnd(CastRange.getEnd());
2806
2807  if (isCastExpr) {
2808    if (!CastTy) {
2809      DS.SetTypeSpecError();
2810      return;
2811    }
2812
2813    const char *PrevSpec = 0;
2814    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2815    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2816                           CastTy))
2817      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2818    return;
2819  }
2820
2821  // If we get here, the operand to the typeof was an expresion.
2822  if (Operand.isInvalid()) {
2823    DS.SetTypeSpecError();
2824    return;
2825  }
2826
2827  const char *PrevSpec = 0;
2828  // Check for duplicate type specifiers (e.g. "int typeof(int)").
2829  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2830                         Operand.release()))
2831    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2832}
2833