ParseDecl.cpp revision 0daaf32723ac78549c507c2a68a5300502703673
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/PrettyDeclStackTrace.h"
19#include "RAIIObjectsForParser.h"
20#include "llvm/ADT/SmallSet.h"
21using namespace clang;
22
23//===----------------------------------------------------------------------===//
24// C99 6.7: Declarations.
25//===----------------------------------------------------------------------===//
26
27/// ParseTypeName
28///       type-name: [C99 6.7.6]
29///         specifier-qualifier-list abstract-declarator[opt]
30///
31/// Called type-id in C++.
32TypeResult Parser::ParseTypeName(SourceRange *Range,
33                                 Declarator::TheContext Context) {
34  // Parse the common declaration-specifiers piece.
35  DeclSpec DS;
36  ParseSpecifierQualifierList(DS);
37
38  // Parse the abstract-declarator, if present.
39  Declarator DeclaratorInfo(DS, Context);
40  ParseDeclarator(DeclaratorInfo);
41  if (Range)
42    *Range = DeclaratorInfo.getSourceRange();
43
44  if (DeclaratorInfo.isInvalidType())
45    return true;
46
47  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
48}
49
50/// ParseGNUAttributes - Parse a non-empty attributes list.
51///
52/// [GNU] attributes:
53///         attribute
54///         attributes attribute
55///
56/// [GNU]  attribute:
57///          '__attribute__' '(' '(' attribute-list ')' ')'
58///
59/// [GNU]  attribute-list:
60///          attrib
61///          attribute_list ',' attrib
62///
63/// [GNU]  attrib:
64///          empty
65///          attrib-name
66///          attrib-name '(' identifier ')'
67///          attrib-name '(' identifier ',' nonempty-expr-list ')'
68///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
69///
70/// [GNU]  attrib-name:
71///          identifier
72///          typespec
73///          typequal
74///          storageclass
75///
76/// FIXME: The GCC grammar/code for this construct implies we need two
77/// token lookahead. Comment from gcc: "If they start with an identifier
78/// which is followed by a comma or close parenthesis, then the arguments
79/// start with that identifier; otherwise they are an expression list."
80///
81/// At the moment, I am not doing 2 token lookahead. I am also unaware of
82/// any attributes that don't work (based on my limited testing). Most
83/// attributes are very simple in practice. Until we find a bug, I don't see
84/// a pressing need to implement the 2 token lookahead.
85
86void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
87                                SourceLocation *endLoc) {
88  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
89
90  while (Tok.is(tok::kw___attribute)) {
91    ConsumeToken();
92    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
93                         "attribute")) {
94      SkipUntil(tok::r_paren, true); // skip until ) or ;
95      return;
96    }
97    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
98      SkipUntil(tok::r_paren, true); // skip until ) or ;
99      return;
100    }
101    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
102    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
103           Tok.is(tok::comma)) {
104
105      if (Tok.is(tok::comma)) {
106        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
107        ConsumeToken();
108        continue;
109      }
110      // we have an identifier or declaration specifier (const, int, etc.)
111      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
112      SourceLocation AttrNameLoc = ConsumeToken();
113
114      // check if we have a "parameterized" attribute
115      if (Tok.is(tok::l_paren)) {
116        ConsumeParen(); // ignore the left paren loc for now
117
118        if (Tok.is(tok::identifier)) {
119          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
120          SourceLocation ParmLoc = ConsumeToken();
121
122          if (Tok.is(tok::r_paren)) {
123            // __attribute__(( mode(byte) ))
124            ConsumeParen(); // ignore the right paren loc for now
125            attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
126                                         ParmName, ParmLoc, 0, 0));
127          } else if (Tok.is(tok::comma)) {
128            ConsumeToken();
129            // __attribute__(( format(printf, 1, 2) ))
130            ExprVector ArgExprs(Actions);
131            bool ArgExprsOk = true;
132
133            // now parse the non-empty comma separated list of expressions
134            while (1) {
135              ExprResult ArgExpr(ParseAssignmentExpression());
136              if (ArgExpr.isInvalid()) {
137                ArgExprsOk = false;
138                SkipUntil(tok::r_paren);
139                break;
140              } else {
141                ArgExprs.push_back(ArgExpr.release());
142              }
143              if (Tok.isNot(tok::comma))
144                break;
145              ConsumeToken(); // Eat the comma, move to the next argument
146            }
147            if (ArgExprsOk && Tok.is(tok::r_paren)) {
148              ConsumeParen(); // ignore the right paren loc for now
149              attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0,
150                                           AttrNameLoc, ParmName, ParmLoc,
151                                           ArgExprs.take(), ArgExprs.size()));
152            }
153          }
154        } else { // not an identifier
155          switch (Tok.getKind()) {
156          case tok::r_paren:
157          // parse a possibly empty comma separated list of expressions
158            // __attribute__(( nonnull() ))
159            ConsumeParen(); // ignore the right paren loc for now
160            attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
161                                         0, SourceLocation(), 0, 0));
162            break;
163          case tok::kw_char:
164          case tok::kw_wchar_t:
165          case tok::kw_char16_t:
166          case tok::kw_char32_t:
167          case tok::kw_bool:
168          case tok::kw_short:
169          case tok::kw_int:
170          case tok::kw_long:
171          case tok::kw_signed:
172          case tok::kw_unsigned:
173          case tok::kw_float:
174          case tok::kw_double:
175          case tok::kw_void:
176          case tok::kw_typeof: {
177            AttributeList *attr
178                     = AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
179                                          0, SourceLocation(), 0, 0);
180            attrs.add(attr);
181            if (attr->getKind() == AttributeList::AT_IBOutletCollection)
182              Diag(Tok, diag::err_iboutletcollection_builtintype);
183            // If it's a builtin type name, eat it and expect a rparen
184            // __attribute__(( vec_type_hint(char) ))
185            ConsumeToken();
186            if (Tok.is(tok::r_paren))
187              ConsumeParen();
188            break;
189          }
190          default:
191            // __attribute__(( aligned(16) ))
192            ExprVector ArgExprs(Actions);
193            bool ArgExprsOk = true;
194
195            // now parse the list of expressions
196            while (1) {
197              ExprResult ArgExpr(ParseAssignmentExpression());
198              if (ArgExpr.isInvalid()) {
199                ArgExprsOk = false;
200                SkipUntil(tok::r_paren);
201                break;
202              } else {
203                ArgExprs.push_back(ArgExpr.release());
204              }
205              if (Tok.isNot(tok::comma))
206                break;
207              ConsumeToken(); // Eat the comma, move to the next argument
208            }
209            // Match the ')'.
210            if (ArgExprsOk && Tok.is(tok::r_paren)) {
211              ConsumeParen(); // ignore the right paren loc for now
212              attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0,
213                                           AttrNameLoc, 0, SourceLocation(),
214                                           ArgExprs.take(), ArgExprs.size()));
215            }
216            break;
217          }
218        }
219      } else {
220        attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
221                                     0, SourceLocation(), 0, 0));
222      }
223    }
224    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
225      SkipUntil(tok::r_paren, false);
226    SourceLocation Loc = Tok.getLocation();
227    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
228      SkipUntil(tok::r_paren, false);
229    }
230    if (endLoc)
231      *endLoc = Loc;
232  }
233}
234
235/// ParseMicrosoftDeclSpec - Parse an __declspec construct
236///
237/// [MS] decl-specifier:
238///             __declspec ( extended-decl-modifier-seq )
239///
240/// [MS] extended-decl-modifier-seq:
241///             extended-decl-modifier[opt]
242///             extended-decl-modifier extended-decl-modifier-seq
243
244void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
245  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
246
247  ConsumeToken();
248  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
249                       "declspec")) {
250    SkipUntil(tok::r_paren, true); // skip until ) or ;
251    return;
252  }
253  while (Tok.getIdentifierInfo()) {
254    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
255    SourceLocation AttrNameLoc = ConsumeToken();
256    if (Tok.is(tok::l_paren)) {
257      ConsumeParen();
258      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
259      // correctly.
260      ExprResult ArgExpr(ParseAssignmentExpression());
261      if (!ArgExpr.isInvalid()) {
262        Expr *ExprList = ArgExpr.take();
263        attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
264                                     SourceLocation(), &ExprList, 1, true));
265      }
266      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
267        SkipUntil(tok::r_paren, false);
268    } else {
269      attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
270                                   0, SourceLocation(), 0, 0, true));
271    }
272  }
273  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
274    SkipUntil(tok::r_paren, false);
275  return;
276}
277
278void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
279  // Treat these like attributes
280  // FIXME: Allow Sema to distinguish between these and real attributes!
281  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
282         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
283         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
284    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
285    SourceLocation AttrNameLoc = ConsumeToken();
286    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
287      // FIXME: Support these properly!
288      continue;
289    attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
290                                 SourceLocation(), 0, 0, true));
291  }
292}
293
294void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
295  // Treat these like attributes
296  while (Tok.is(tok::kw___pascal)) {
297    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
298    SourceLocation AttrNameLoc = ConsumeToken();
299    attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
300                                 SourceLocation(), 0, 0, true));
301  }
302}
303
304void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
305  // Treat these like attributes
306  while (Tok.is(tok::kw___kernel)) {
307    SourceLocation AttrNameLoc = ConsumeToken();
308    attrs.add(AttrFactory.Create(PP.getIdentifierInfo("opencl_kernel_function"),
309                                 AttrNameLoc, 0, AttrNameLoc, 0,
310                                 SourceLocation(), 0, 0, false));
311  }
312}
313
314void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
315  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
316    << attrs.Range;
317}
318
319/// ParseDeclaration - Parse a full 'declaration', which consists of
320/// declaration-specifiers, some number of declarators, and a semicolon.
321/// 'Context' should be a Declarator::TheContext value.  This returns the
322/// location of the semicolon in DeclEnd.
323///
324///       declaration: [C99 6.7]
325///         block-declaration ->
326///           simple-declaration
327///           others                   [FIXME]
328/// [C++]   template-declaration
329/// [C++]   namespace-definition
330/// [C++]   using-directive
331/// [C++]   using-declaration
332/// [C++0x] static_assert-declaration
333///         others... [FIXME]
334///
335Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
336                                                unsigned Context,
337                                                SourceLocation &DeclEnd,
338                                          ParsedAttributesWithRange &attrs) {
339  ParenBraceBracketBalancer BalancerRAIIObj(*this);
340
341  Decl *SingleDecl = 0;
342  switch (Tok.getKind()) {
343  case tok::kw_template:
344  case tok::kw_export:
345    ProhibitAttributes(attrs);
346    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
347    break;
348  case tok::kw_inline:
349    // Could be the start of an inline namespace. Allowed as an ext in C++03.
350    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
351      ProhibitAttributes(attrs);
352      SourceLocation InlineLoc = ConsumeToken();
353      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
354      break;
355    }
356    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
357                                  true);
358  case tok::kw_namespace:
359    ProhibitAttributes(attrs);
360    SingleDecl = ParseNamespace(Context, DeclEnd);
361    break;
362  case tok::kw_using:
363    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
364                                                  DeclEnd, attrs);
365    break;
366  case tok::kw_static_assert:
367    ProhibitAttributes(attrs);
368    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
369    break;
370  default:
371    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
372  }
373
374  // This routine returns a DeclGroup, if the thing we parsed only contains a
375  // single decl, convert it now.
376  return Actions.ConvertDeclToDeclGroup(SingleDecl);
377}
378
379///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
380///         declaration-specifiers init-declarator-list[opt] ';'
381///[C90/C++]init-declarator-list ';'                             [TODO]
382/// [OMP]   threadprivate-directive                              [TODO]
383///
384/// If RequireSemi is false, this does not check for a ';' at the end of the
385/// declaration.  If it is true, it checks for and eats it.
386Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
387                                                      unsigned Context,
388                                                      SourceLocation &DeclEnd,
389                                                      ParsedAttributes &attrs,
390                                                      bool RequireSemi) {
391  // Parse the common declaration-specifiers piece.
392  ParsingDeclSpec DS(*this);
393  DS.takeAttributesFrom(attrs);
394  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
395                             getDeclSpecContextFromDeclaratorContext(Context));
396  StmtResult R = Actions.ActOnVlaStmt(DS);
397  if (R.isUsable())
398    Stmts.push_back(R.release());
399
400  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
401  // declaration-specifiers init-declarator-list[opt] ';'
402  if (Tok.is(tok::semi)) {
403    if (RequireSemi) ConsumeToken();
404    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
405                                                           DS);
406    DS.complete(TheDecl);
407    return Actions.ConvertDeclToDeclGroup(TheDecl);
408  }
409
410  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd);
411}
412
413/// ParseDeclGroup - Having concluded that this is either a function
414/// definition or a group of object declarations, actually parse the
415/// result.
416Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
417                                              unsigned Context,
418                                              bool AllowFunctionDefinitions,
419                                              SourceLocation *DeclEnd) {
420  // Parse the first declarator.
421  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
422  ParseDeclarator(D);
423
424  // Bail out if the first declarator didn't seem well-formed.
425  if (!D.hasName() && !D.mayOmitIdentifier()) {
426    // Skip until ; or }.
427    SkipUntil(tok::r_brace, true, true);
428    if (Tok.is(tok::semi))
429      ConsumeToken();
430    return DeclGroupPtrTy();
431  }
432
433  // Check to see if we have a function *definition* which must have a body.
434  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
435      // Look at the next token to make sure that this isn't a function
436      // declaration.  We have to check this because __attribute__ might be the
437      // start of a function definition in GCC-extended K&R C.
438      !isDeclarationAfterDeclarator()) {
439
440    if (isStartOfFunctionDefinition(D)) {
441      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
442        Diag(Tok, diag::err_function_declared_typedef);
443
444        // Recover by treating the 'typedef' as spurious.
445        DS.ClearStorageClassSpecs();
446      }
447
448      Decl *TheDecl = ParseFunctionDefinition(D);
449      return Actions.ConvertDeclToDeclGroup(TheDecl);
450    }
451
452    if (isDeclarationSpecifier()) {
453      // If there is an invalid declaration specifier right after the function
454      // prototype, then we must be in a missing semicolon case where this isn't
455      // actually a body.  Just fall through into the code that handles it as a
456      // prototype, and let the top-level code handle the erroneous declspec
457      // where it would otherwise expect a comma or semicolon.
458    } else {
459      Diag(Tok, diag::err_expected_fn_body);
460      SkipUntil(tok::semi);
461      return DeclGroupPtrTy();
462    }
463  }
464
465  llvm::SmallVector<Decl *, 8> DeclsInGroup;
466  Decl *FirstDecl = ParseDeclarationAfterDeclarator(D);
467  D.complete(FirstDecl);
468  if (FirstDecl)
469    DeclsInGroup.push_back(FirstDecl);
470
471  // If we don't have a comma, it is either the end of the list (a ';') or an
472  // error, bail out.
473  while (Tok.is(tok::comma)) {
474    // Consume the comma.
475    ConsumeToken();
476
477    // Parse the next declarator.
478    D.clear();
479
480    // Accept attributes in an init-declarator.  In the first declarator in a
481    // declaration, these would be part of the declspec.  In subsequent
482    // declarators, they become part of the declarator itself, so that they
483    // don't apply to declarators after *this* one.  Examples:
484    //    short __attribute__((common)) var;    -> declspec
485    //    short var __attribute__((common));    -> declarator
486    //    short x, __attribute__((common)) var;    -> declarator
487    MaybeParseGNUAttributes(D);
488
489    ParseDeclarator(D);
490
491    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
492    D.complete(ThisDecl);
493    if (ThisDecl)
494      DeclsInGroup.push_back(ThisDecl);
495  }
496
497  if (DeclEnd)
498    *DeclEnd = Tok.getLocation();
499
500  if (Context != Declarator::ForContext &&
501      ExpectAndConsume(tok::semi,
502                       Context == Declarator::FileContext
503                         ? diag::err_invalid_token_after_toplevel_declarator
504                         : diag::err_expected_semi_declaration)) {
505    // Okay, there was no semicolon and one was expected.  If we see a
506    // declaration specifier, just assume it was missing and continue parsing.
507    // Otherwise things are very confused and we skip to recover.
508    if (!isDeclarationSpecifier()) {
509      SkipUntil(tok::r_brace, true, true);
510      if (Tok.is(tok::semi))
511        ConsumeToken();
512    }
513  }
514
515  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
516                                         DeclsInGroup.data(),
517                                         DeclsInGroup.size());
518}
519
520/// \brief Parse 'declaration' after parsing 'declaration-specifiers
521/// declarator'. This method parses the remainder of the declaration
522/// (including any attributes or initializer, among other things) and
523/// finalizes the declaration.
524///
525///       init-declarator: [C99 6.7]
526///         declarator
527///         declarator '=' initializer
528/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
529/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
530/// [C++]   declarator initializer[opt]
531///
532/// [C++] initializer:
533/// [C++]   '=' initializer-clause
534/// [C++]   '(' expression-list ')'
535/// [C++0x] '=' 'default'                                                [TODO]
536/// [C++0x] '=' 'delete'
537///
538/// According to the standard grammar, =default and =delete are function
539/// definitions, but that definitely doesn't fit with the parser here.
540///
541Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
542                                     const ParsedTemplateInfo &TemplateInfo) {
543  // If a simple-asm-expr is present, parse it.
544  if (Tok.is(tok::kw_asm)) {
545    SourceLocation Loc;
546    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
547    if (AsmLabel.isInvalid()) {
548      SkipUntil(tok::semi, true, true);
549      return 0;
550    }
551
552    D.setAsmLabel(AsmLabel.release());
553    D.SetRangeEnd(Loc);
554  }
555
556  MaybeParseGNUAttributes(D);
557
558  // Inform the current actions module that we just parsed this declarator.
559  Decl *ThisDecl = 0;
560  switch (TemplateInfo.Kind) {
561  case ParsedTemplateInfo::NonTemplate:
562    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
563    break;
564
565  case ParsedTemplateInfo::Template:
566  case ParsedTemplateInfo::ExplicitSpecialization:
567    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
568                             MultiTemplateParamsArg(Actions,
569                                          TemplateInfo.TemplateParams->data(),
570                                          TemplateInfo.TemplateParams->size()),
571                                               D);
572    break;
573
574  case ParsedTemplateInfo::ExplicitInstantiation: {
575    DeclResult ThisRes
576      = Actions.ActOnExplicitInstantiation(getCurScope(),
577                                           TemplateInfo.ExternLoc,
578                                           TemplateInfo.TemplateLoc,
579                                           D);
580    if (ThisRes.isInvalid()) {
581      SkipUntil(tok::semi, true, true);
582      return 0;
583    }
584
585    ThisDecl = ThisRes.get();
586    break;
587    }
588  }
589
590  bool TypeContainsAuto =
591    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
592
593  // Parse declarator '=' initializer.
594  if (isTokenEqualOrMistypedEqualEqual(
595                               diag::err_invalid_equalequal_after_declarator)) {
596    ConsumeToken();
597    if (Tok.is(tok::kw_delete)) {
598      SourceLocation DelLoc = ConsumeToken();
599
600      if (!getLang().CPlusPlus0x)
601        Diag(DelLoc, diag::warn_deleted_function_accepted_as_extension);
602
603      Actions.SetDeclDeleted(ThisDecl, DelLoc);
604    } else {
605      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
606        EnterScope(0);
607        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
608      }
609
610      if (Tok.is(tok::code_completion)) {
611        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
612        ConsumeCodeCompletionToken();
613        SkipUntil(tok::comma, true, true);
614        return ThisDecl;
615      }
616
617      ExprResult Init(ParseInitializer());
618
619      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
620        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
621        ExitScope();
622      }
623
624      if (Init.isInvalid()) {
625        SkipUntil(tok::comma, true, true);
626        Actions.ActOnInitializerError(ThisDecl);
627      } else
628        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
629                                     /*DirectInit=*/false, TypeContainsAuto);
630    }
631  } else if (Tok.is(tok::l_paren)) {
632    // Parse C++ direct initializer: '(' expression-list ')'
633    SourceLocation LParenLoc = ConsumeParen();
634    ExprVector Exprs(Actions);
635    CommaLocsTy CommaLocs;
636
637    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
638      EnterScope(0);
639      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
640    }
641
642    if (ParseExpressionList(Exprs, CommaLocs)) {
643      SkipUntil(tok::r_paren);
644
645      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
646        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
647        ExitScope();
648      }
649    } else {
650      // Match the ')'.
651      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
652
653      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
654             "Unexpected number of commas!");
655
656      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
657        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
658        ExitScope();
659      }
660
661      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
662                                            move_arg(Exprs),
663                                            RParenLoc,
664                                            TypeContainsAuto);
665    }
666  } else {
667    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
668  }
669
670  Actions.FinalizeDeclaration(ThisDecl);
671
672  return ThisDecl;
673}
674
675/// ParseSpecifierQualifierList
676///        specifier-qualifier-list:
677///          type-specifier specifier-qualifier-list[opt]
678///          type-qualifier specifier-qualifier-list[opt]
679/// [GNU]    attributes     specifier-qualifier-list[opt]
680///
681void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
682  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
683  /// parse declaration-specifiers and complain about extra stuff.
684  ParseDeclarationSpecifiers(DS);
685
686  // Validate declspec for type-name.
687  unsigned Specs = DS.getParsedSpecifiers();
688  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
689      !DS.hasAttributes())
690    Diag(Tok, diag::err_typename_requires_specqual);
691
692  // Issue diagnostic and remove storage class if present.
693  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
694    if (DS.getStorageClassSpecLoc().isValid())
695      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
696    else
697      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
698    DS.ClearStorageClassSpecs();
699  }
700
701  // Issue diagnostic and remove function specfier if present.
702  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
703    if (DS.isInlineSpecified())
704      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
705    if (DS.isVirtualSpecified())
706      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
707    if (DS.isExplicitSpecified())
708      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
709    DS.ClearFunctionSpecs();
710  }
711}
712
713/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
714/// specified token is valid after the identifier in a declarator which
715/// immediately follows the declspec.  For example, these things are valid:
716///
717///      int x   [             4];         // direct-declarator
718///      int x   (             int y);     // direct-declarator
719///  int(int x   )                         // direct-declarator
720///      int x   ;                         // simple-declaration
721///      int x   =             17;         // init-declarator-list
722///      int x   ,             y;          // init-declarator-list
723///      int x   __asm__       ("foo");    // init-declarator-list
724///      int x   :             4;          // struct-declarator
725///      int x   {             5};         // C++'0x unified initializers
726///
727/// This is not, because 'x' does not immediately follow the declspec (though
728/// ')' happens to be valid anyway).
729///    int (x)
730///
731static bool isValidAfterIdentifierInDeclarator(const Token &T) {
732  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
733         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
734         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
735}
736
737
738/// ParseImplicitInt - This method is called when we have an non-typename
739/// identifier in a declspec (which normally terminates the decl spec) when
740/// the declspec has no type specifier.  In this case, the declspec is either
741/// malformed or is "implicit int" (in K&R and C89).
742///
743/// This method handles diagnosing this prettily and returns false if the
744/// declspec is done being processed.  If it recovers and thinks there may be
745/// other pieces of declspec after it, it returns true.
746///
747bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
748                              const ParsedTemplateInfo &TemplateInfo,
749                              AccessSpecifier AS) {
750  assert(Tok.is(tok::identifier) && "should have identifier");
751
752  SourceLocation Loc = Tok.getLocation();
753  // If we see an identifier that is not a type name, we normally would
754  // parse it as the identifer being declared.  However, when a typename
755  // is typo'd or the definition is not included, this will incorrectly
756  // parse the typename as the identifier name and fall over misparsing
757  // later parts of the diagnostic.
758  //
759  // As such, we try to do some look-ahead in cases where this would
760  // otherwise be an "implicit-int" case to see if this is invalid.  For
761  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
762  // an identifier with implicit int, we'd get a parse error because the
763  // next token is obviously invalid for a type.  Parse these as a case
764  // with an invalid type specifier.
765  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
766
767  // Since we know that this either implicit int (which is rare) or an
768  // error, we'd do lookahead to try to do better recovery.
769  if (isValidAfterIdentifierInDeclarator(NextToken())) {
770    // If this token is valid for implicit int, e.g. "static x = 4", then
771    // we just avoid eating the identifier, so it will be parsed as the
772    // identifier in the declarator.
773    return false;
774  }
775
776  // Otherwise, if we don't consume this token, we are going to emit an
777  // error anyway.  Try to recover from various common problems.  Check
778  // to see if this was a reference to a tag name without a tag specified.
779  // This is a common problem in C (saying 'foo' instead of 'struct foo').
780  //
781  // C++ doesn't need this, and isTagName doesn't take SS.
782  if (SS == 0) {
783    const char *TagName = 0;
784    tok::TokenKind TagKind = tok::unknown;
785
786    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
787      default: break;
788      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
789      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
790      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
791      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
792    }
793
794    if (TagName) {
795      Diag(Loc, diag::err_use_of_tag_name_without_tag)
796        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
797        << FixItHint::CreateInsertion(Tok.getLocation(),TagName);
798
799      // Parse this as a tag as if the missing tag were present.
800      if (TagKind == tok::kw_enum)
801        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
802      else
803        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
804      return true;
805    }
806  }
807
808  // This is almost certainly an invalid type name. Let the action emit a
809  // diagnostic and attempt to recover.
810  ParsedType T;
811  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
812                                      getCurScope(), SS, T)) {
813    // The action emitted a diagnostic, so we don't have to.
814    if (T) {
815      // The action has suggested that the type T could be used. Set that as
816      // the type in the declaration specifiers, consume the would-be type
817      // name token, and we're done.
818      const char *PrevSpec;
819      unsigned DiagID;
820      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
821      DS.SetRangeEnd(Tok.getLocation());
822      ConsumeToken();
823
824      // There may be other declaration specifiers after this.
825      return true;
826    }
827
828    // Fall through; the action had no suggestion for us.
829  } else {
830    // The action did not emit a diagnostic, so emit one now.
831    SourceRange R;
832    if (SS) R = SS->getRange();
833    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
834  }
835
836  // Mark this as an error.
837  const char *PrevSpec;
838  unsigned DiagID;
839  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
840  DS.SetRangeEnd(Tok.getLocation());
841  ConsumeToken();
842
843  // TODO: Could inject an invalid typedef decl in an enclosing scope to
844  // avoid rippling error messages on subsequent uses of the same type,
845  // could be useful if #include was forgotten.
846  return false;
847}
848
849/// \brief Determine the declaration specifier context from the declarator
850/// context.
851///
852/// \param Context the declarator context, which is one of the
853/// Declarator::TheContext enumerator values.
854Parser::DeclSpecContext
855Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
856  if (Context == Declarator::MemberContext)
857    return DSC_class;
858  if (Context == Declarator::FileContext)
859    return DSC_top_level;
860  return DSC_normal;
861}
862
863/// ParseDeclarationSpecifiers
864///       declaration-specifiers: [C99 6.7]
865///         storage-class-specifier declaration-specifiers[opt]
866///         type-specifier declaration-specifiers[opt]
867/// [C99]   function-specifier declaration-specifiers[opt]
868/// [GNU]   attributes declaration-specifiers[opt]
869///
870///       storage-class-specifier: [C99 6.7.1]
871///         'typedef'
872///         'extern'
873///         'static'
874///         'auto'
875///         'register'
876/// [C++]   'mutable'
877/// [GNU]   '__thread'
878///       function-specifier: [C99 6.7.4]
879/// [C99]   'inline'
880/// [C++]   'virtual'
881/// [C++]   'explicit'
882/// [OpenCL] '__kernel'
883///       'friend': [C++ dcl.friend]
884///       'constexpr': [C++0x dcl.constexpr]
885
886///
887void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
888                                        const ParsedTemplateInfo &TemplateInfo,
889                                        AccessSpecifier AS,
890                                        DeclSpecContext DSContext) {
891  DS.SetRangeStart(Tok.getLocation());
892  DS.SetRangeEnd(Tok.getLocation());
893  while (1) {
894    bool isInvalid = false;
895    const char *PrevSpec = 0;
896    unsigned DiagID = 0;
897
898    SourceLocation Loc = Tok.getLocation();
899
900    switch (Tok.getKind()) {
901    default:
902    DoneWithDeclSpec:
903      // If this is not a declaration specifier token, we're done reading decl
904      // specifiers.  First verify that DeclSpec's are consistent.
905      DS.Finish(Diags, PP);
906      return;
907
908    case tok::code_completion: {
909      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
910      if (DS.hasTypeSpecifier()) {
911        bool AllowNonIdentifiers
912          = (getCurScope()->getFlags() & (Scope::ControlScope |
913                                          Scope::BlockScope |
914                                          Scope::TemplateParamScope |
915                                          Scope::FunctionPrototypeScope |
916                                          Scope::AtCatchScope)) == 0;
917        bool AllowNestedNameSpecifiers
918          = DSContext == DSC_top_level ||
919            (DSContext == DSC_class && DS.isFriendSpecified());
920
921        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
922                                     AllowNonIdentifiers,
923                                     AllowNestedNameSpecifiers);
924        ConsumeCodeCompletionToken();
925        return;
926      }
927
928      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
929        CCC = Sema::PCC_LocalDeclarationSpecifiers;
930      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
931        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
932                                    : Sema::PCC_Template;
933      else if (DSContext == DSC_class)
934        CCC = Sema::PCC_Class;
935      else if (ObjCImpDecl)
936        CCC = Sema::PCC_ObjCImplementation;
937
938      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
939      ConsumeCodeCompletionToken();
940      return;
941    }
942
943    case tok::coloncolon: // ::foo::bar
944      // C++ scope specifier.  Annotate and loop, or bail out on error.
945      if (TryAnnotateCXXScopeToken(true)) {
946        if (!DS.hasTypeSpecifier())
947          DS.SetTypeSpecError();
948        goto DoneWithDeclSpec;
949      }
950      if (Tok.is(tok::coloncolon)) // ::new or ::delete
951        goto DoneWithDeclSpec;
952      continue;
953
954    case tok::annot_cxxscope: {
955      if (DS.hasTypeSpecifier())
956        goto DoneWithDeclSpec;
957
958      CXXScopeSpec SS;
959      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
960                                                   Tok.getAnnotationRange(),
961                                                   SS);
962
963      // We are looking for a qualified typename.
964      Token Next = NextToken();
965      if (Next.is(tok::annot_template_id) &&
966          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
967            ->Kind == TNK_Type_template) {
968        // We have a qualified template-id, e.g., N::A<int>
969
970        // C++ [class.qual]p2:
971        //   In a lookup in which the constructor is an acceptable lookup
972        //   result and the nested-name-specifier nominates a class C:
973        //
974        //     - if the name specified after the
975        //       nested-name-specifier, when looked up in C, is the
976        //       injected-class-name of C (Clause 9), or
977        //
978        //     - if the name specified after the nested-name-specifier
979        //       is the same as the identifier or the
980        //       simple-template-id's template-name in the last
981        //       component of the nested-name-specifier,
982        //
983        //   the name is instead considered to name the constructor of
984        //   class C.
985        //
986        // Thus, if the template-name is actually the constructor
987        // name, then the code is ill-formed; this interpretation is
988        // reinforced by the NAD status of core issue 635.
989        TemplateIdAnnotation *TemplateId
990          = static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
991        if ((DSContext == DSC_top_level ||
992             (DSContext == DSC_class && DS.isFriendSpecified())) &&
993            TemplateId->Name &&
994            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
995          if (isConstructorDeclarator()) {
996            // The user meant this to be an out-of-line constructor
997            // definition, but template arguments are not allowed
998            // there.  Just allow this as a constructor; we'll
999            // complain about it later.
1000            goto DoneWithDeclSpec;
1001          }
1002
1003          // The user meant this to name a type, but it actually names
1004          // a constructor with some extraneous template
1005          // arguments. Complain, then parse it as a type as the user
1006          // intended.
1007          Diag(TemplateId->TemplateNameLoc,
1008               diag::err_out_of_line_template_id_names_constructor)
1009            << TemplateId->Name;
1010        }
1011
1012        DS.getTypeSpecScope() = SS;
1013        ConsumeToken(); // The C++ scope.
1014        assert(Tok.is(tok::annot_template_id) &&
1015               "ParseOptionalCXXScopeSpecifier not working");
1016        AnnotateTemplateIdTokenAsType();
1017        continue;
1018      }
1019
1020      if (Next.is(tok::annot_typename)) {
1021        DS.getTypeSpecScope() = SS;
1022        ConsumeToken(); // The C++ scope.
1023        if (Tok.getAnnotationValue()) {
1024          ParsedType T = getTypeAnnotation(Tok);
1025          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1026                                         Tok.getAnnotationEndLoc(),
1027                                         PrevSpec, DiagID, T);
1028        }
1029        else
1030          DS.SetTypeSpecError();
1031        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1032        ConsumeToken(); // The typename
1033      }
1034
1035      if (Next.isNot(tok::identifier))
1036        goto DoneWithDeclSpec;
1037
1038      // If we're in a context where the identifier could be a class name,
1039      // check whether this is a constructor declaration.
1040      if ((DSContext == DSC_top_level ||
1041           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1042          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1043                                     &SS)) {
1044        if (isConstructorDeclarator())
1045          goto DoneWithDeclSpec;
1046
1047        // As noted in C++ [class.qual]p2 (cited above), when the name
1048        // of the class is qualified in a context where it could name
1049        // a constructor, its a constructor name. However, we've
1050        // looked at the declarator, and the user probably meant this
1051        // to be a type. Complain that it isn't supposed to be treated
1052        // as a type, then proceed to parse it as a type.
1053        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1054          << Next.getIdentifierInfo();
1055      }
1056
1057      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1058                                               Next.getLocation(),
1059                                               getCurScope(), &SS,
1060                                               false, false, ParsedType(),
1061                                               /*NonTrivialSourceInfo=*/true);
1062
1063      // If the referenced identifier is not a type, then this declspec is
1064      // erroneous: We already checked about that it has no type specifier, and
1065      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1066      // typename.
1067      if (TypeRep == 0) {
1068        ConsumeToken();   // Eat the scope spec so the identifier is current.
1069        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1070        goto DoneWithDeclSpec;
1071      }
1072
1073      DS.getTypeSpecScope() = SS;
1074      ConsumeToken(); // The C++ scope.
1075
1076      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1077                                     DiagID, TypeRep);
1078      if (isInvalid)
1079        break;
1080
1081      DS.SetRangeEnd(Tok.getLocation());
1082      ConsumeToken(); // The typename.
1083
1084      continue;
1085    }
1086
1087    case tok::annot_typename: {
1088      if (Tok.getAnnotationValue()) {
1089        ParsedType T = getTypeAnnotation(Tok);
1090        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1091                                       DiagID, T);
1092      } else
1093        DS.SetTypeSpecError();
1094
1095      if (isInvalid)
1096        break;
1097
1098      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1099      ConsumeToken(); // The typename
1100
1101      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1102      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1103      // Objective-C interface.
1104      if (Tok.is(tok::less) && getLang().ObjC1)
1105        ParseObjCProtocolQualifiers(DS);
1106
1107      continue;
1108    }
1109
1110      // typedef-name
1111    case tok::identifier: {
1112      // In C++, check to see if this is a scope specifier like foo::bar::, if
1113      // so handle it as such.  This is important for ctor parsing.
1114      if (getLang().CPlusPlus) {
1115        if (TryAnnotateCXXScopeToken(true)) {
1116          if (!DS.hasTypeSpecifier())
1117            DS.SetTypeSpecError();
1118          goto DoneWithDeclSpec;
1119        }
1120        if (!Tok.is(tok::identifier))
1121          continue;
1122      }
1123
1124      // This identifier can only be a typedef name if we haven't already seen
1125      // a type-specifier.  Without this check we misparse:
1126      //  typedef int X; struct Y { short X; };  as 'short int'.
1127      if (DS.hasTypeSpecifier())
1128        goto DoneWithDeclSpec;
1129
1130      // Check for need to substitute AltiVec keyword tokens.
1131      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1132        break;
1133
1134      // It has to be available as a typedef too!
1135      ParsedType TypeRep =
1136        Actions.getTypeName(*Tok.getIdentifierInfo(),
1137                            Tok.getLocation(), getCurScope());
1138
1139      // If this is not a typedef name, don't parse it as part of the declspec,
1140      // it must be an implicit int or an error.
1141      if (!TypeRep) {
1142        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1143        goto DoneWithDeclSpec;
1144      }
1145
1146      // If we're in a context where the identifier could be a class name,
1147      // check whether this is a constructor declaration.
1148      if (getLang().CPlusPlus && DSContext == DSC_class &&
1149          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1150          isConstructorDeclarator())
1151        goto DoneWithDeclSpec;
1152
1153      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1154                                     DiagID, TypeRep);
1155      if (isInvalid)
1156        break;
1157
1158      DS.SetRangeEnd(Tok.getLocation());
1159      ConsumeToken(); // The identifier
1160
1161      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1162      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1163      // Objective-C interface.
1164      if (Tok.is(tok::less) && getLang().ObjC1)
1165        ParseObjCProtocolQualifiers(DS);
1166
1167      // Need to support trailing type qualifiers (e.g. "id<p> const").
1168      // If a type specifier follows, it will be diagnosed elsewhere.
1169      continue;
1170    }
1171
1172      // type-name
1173    case tok::annot_template_id: {
1174      TemplateIdAnnotation *TemplateId
1175        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1176      if (TemplateId->Kind != TNK_Type_template) {
1177        // This template-id does not refer to a type name, so we're
1178        // done with the type-specifiers.
1179        goto DoneWithDeclSpec;
1180      }
1181
1182      // If we're in a context where the template-id could be a
1183      // constructor name or specialization, check whether this is a
1184      // constructor declaration.
1185      if (getLang().CPlusPlus && DSContext == DSC_class &&
1186          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1187          isConstructorDeclarator())
1188        goto DoneWithDeclSpec;
1189
1190      // Turn the template-id annotation token into a type annotation
1191      // token, then try again to parse it as a type-specifier.
1192      AnnotateTemplateIdTokenAsType();
1193      continue;
1194    }
1195
1196    // GNU attributes support.
1197    case tok::kw___attribute:
1198      ParseGNUAttributes(DS.getAttributes());
1199      continue;
1200
1201    // Microsoft declspec support.
1202    case tok::kw___declspec:
1203      ParseMicrosoftDeclSpec(DS.getAttributes());
1204      continue;
1205
1206    // Microsoft single token adornments.
1207    case tok::kw___forceinline:
1208      // FIXME: Add handling here!
1209      break;
1210
1211    case tok::kw___ptr64:
1212    case tok::kw___w64:
1213    case tok::kw___cdecl:
1214    case tok::kw___stdcall:
1215    case tok::kw___fastcall:
1216    case tok::kw___thiscall:
1217      ParseMicrosoftTypeAttributes(DS.getAttributes());
1218      continue;
1219
1220    // Borland single token adornments.
1221    case tok::kw___pascal:
1222      ParseBorlandTypeAttributes(DS.getAttributes());
1223      continue;
1224
1225    // OpenCL single token adornments.
1226    case tok::kw___kernel:
1227      ParseOpenCLAttributes(DS.getAttributes());
1228      continue;
1229
1230    // storage-class-specifier
1231    case tok::kw_typedef:
1232      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1233                                         DiagID, getLang());
1234      break;
1235    case tok::kw_extern:
1236      if (DS.isThreadSpecified())
1237        Diag(Tok, diag::ext_thread_before) << "extern";
1238      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1239                                         DiagID, getLang());
1240      break;
1241    case tok::kw___private_extern__:
1242      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1243                                         PrevSpec, DiagID, getLang());
1244      break;
1245    case tok::kw_static:
1246      if (DS.isThreadSpecified())
1247        Diag(Tok, diag::ext_thread_before) << "static";
1248      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1249                                         DiagID, getLang());
1250      break;
1251    case tok::kw_auto:
1252      if (getLang().CPlusPlus0x) {
1253        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
1254          isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1255                                           DiagID, getLang());
1256          if (!isInvalid)
1257            Diag(Tok, diag::auto_storage_class)
1258              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
1259        }
1260        else
1261          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1262                                         DiagID);
1263      }
1264      else
1265        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1266                                           DiagID, getLang());
1267      break;
1268    case tok::kw_register:
1269      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1270                                         DiagID, getLang());
1271      break;
1272    case tok::kw_mutable:
1273      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1274                                         DiagID, getLang());
1275      break;
1276    case tok::kw___thread:
1277      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1278      break;
1279
1280    // function-specifier
1281    case tok::kw_inline:
1282      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1283      break;
1284    case tok::kw_virtual:
1285      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1286      break;
1287    case tok::kw_explicit:
1288      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1289      break;
1290
1291    // friend
1292    case tok::kw_friend:
1293      if (DSContext == DSC_class)
1294        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1295      else {
1296        PrevSpec = ""; // not actually used by the diagnostic
1297        DiagID = diag::err_friend_invalid_in_context;
1298        isInvalid = true;
1299      }
1300      break;
1301
1302    // constexpr
1303    case tok::kw_constexpr:
1304      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1305      break;
1306
1307    // type-specifier
1308    case tok::kw_short:
1309      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1310                                      DiagID);
1311      break;
1312    case tok::kw_long:
1313      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1314        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1315                                        DiagID);
1316      else
1317        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1318                                        DiagID);
1319      break;
1320    case tok::kw_signed:
1321      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1322                                     DiagID);
1323      break;
1324    case tok::kw_unsigned:
1325      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1326                                     DiagID);
1327      break;
1328    case tok::kw__Complex:
1329      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1330                                        DiagID);
1331      break;
1332    case tok::kw__Imaginary:
1333      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1334                                        DiagID);
1335      break;
1336    case tok::kw_void:
1337      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1338                                     DiagID);
1339      break;
1340    case tok::kw_char:
1341      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1342                                     DiagID);
1343      break;
1344    case tok::kw_int:
1345      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1346                                     DiagID);
1347      break;
1348    case tok::kw_float:
1349      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1350                                     DiagID);
1351      break;
1352    case tok::kw_double:
1353      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1354                                     DiagID);
1355      break;
1356    case tok::kw_wchar_t:
1357      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1358                                     DiagID);
1359      break;
1360    case tok::kw_char16_t:
1361      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1362                                     DiagID);
1363      break;
1364    case tok::kw_char32_t:
1365      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1366                                     DiagID);
1367      break;
1368    case tok::kw_bool:
1369    case tok::kw__Bool:
1370      if (Tok.is(tok::kw_bool) &&
1371          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
1372          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1373        PrevSpec = ""; // Not used by the diagnostic.
1374        DiagID = diag::err_bool_redeclaration;
1375        isInvalid = true;
1376      } else {
1377        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1378                                       DiagID);
1379      }
1380      break;
1381    case tok::kw__Decimal32:
1382      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1383                                     DiagID);
1384      break;
1385    case tok::kw__Decimal64:
1386      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1387                                     DiagID);
1388      break;
1389    case tok::kw__Decimal128:
1390      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1391                                     DiagID);
1392      break;
1393    case tok::kw___vector:
1394      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1395      break;
1396    case tok::kw___pixel:
1397      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1398      break;
1399
1400    // class-specifier:
1401    case tok::kw_class:
1402    case tok::kw_struct:
1403    case tok::kw_union: {
1404      tok::TokenKind Kind = Tok.getKind();
1405      ConsumeToken();
1406      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1407      continue;
1408    }
1409
1410    // enum-specifier:
1411    case tok::kw_enum:
1412      ConsumeToken();
1413      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1414      continue;
1415
1416    // cv-qualifier:
1417    case tok::kw_const:
1418      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1419                                 getLang());
1420      break;
1421    case tok::kw_volatile:
1422      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1423                                 getLang());
1424      break;
1425    case tok::kw_restrict:
1426      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1427                                 getLang());
1428      break;
1429
1430    // C++ typename-specifier:
1431    case tok::kw_typename:
1432      if (TryAnnotateTypeOrScopeToken()) {
1433        DS.SetTypeSpecError();
1434        goto DoneWithDeclSpec;
1435      }
1436      if (!Tok.is(tok::kw_typename))
1437        continue;
1438      break;
1439
1440    // GNU typeof support.
1441    case tok::kw_typeof:
1442      ParseTypeofSpecifier(DS);
1443      continue;
1444
1445    case tok::kw_decltype:
1446      ParseDecltypeSpecifier(DS);
1447      continue;
1448
1449    case tok::less:
1450      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1451      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1452      // but we support it.
1453      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1454        goto DoneWithDeclSpec;
1455
1456      if (!ParseObjCProtocolQualifiers(DS))
1457        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1458          << FixItHint::CreateInsertion(Loc, "id")
1459          << SourceRange(Loc, DS.getSourceRange().getEnd());
1460
1461      // Need to support trailing type qualifiers (e.g. "id<p> const").
1462      // If a type specifier follows, it will be diagnosed elsewhere.
1463      continue;
1464    }
1465    // If the specifier wasn't legal, issue a diagnostic.
1466    if (isInvalid) {
1467      assert(PrevSpec && "Method did not return previous specifier!");
1468      assert(DiagID);
1469
1470      if (DiagID == diag::ext_duplicate_declspec)
1471        Diag(Tok, DiagID)
1472          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
1473      else
1474        Diag(Tok, DiagID) << PrevSpec;
1475    }
1476
1477    DS.SetRangeEnd(Tok.getLocation());
1478    ConsumeToken();
1479  }
1480}
1481
1482/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1483/// primarily follow the C++ grammar with additions for C99 and GNU,
1484/// which together subsume the C grammar. Note that the C++
1485/// type-specifier also includes the C type-qualifier (for const,
1486/// volatile, and C99 restrict). Returns true if a type-specifier was
1487/// found (and parsed), false otherwise.
1488///
1489///       type-specifier: [C++ 7.1.5]
1490///         simple-type-specifier
1491///         class-specifier
1492///         enum-specifier
1493///         elaborated-type-specifier  [TODO]
1494///         cv-qualifier
1495///
1496///       cv-qualifier: [C++ 7.1.5.1]
1497///         'const'
1498///         'volatile'
1499/// [C99]   'restrict'
1500///
1501///       simple-type-specifier: [ C++ 7.1.5.2]
1502///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1503///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1504///         'char'
1505///         'wchar_t'
1506///         'bool'
1507///         'short'
1508///         'int'
1509///         'long'
1510///         'signed'
1511///         'unsigned'
1512///         'float'
1513///         'double'
1514///         'void'
1515/// [C99]   '_Bool'
1516/// [C99]   '_Complex'
1517/// [C99]   '_Imaginary'  // Removed in TC2?
1518/// [GNU]   '_Decimal32'
1519/// [GNU]   '_Decimal64'
1520/// [GNU]   '_Decimal128'
1521/// [GNU]   typeof-specifier
1522/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1523/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1524/// [C++0x] 'decltype' ( expression )
1525/// [AltiVec] '__vector'
1526bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1527                                        const char *&PrevSpec,
1528                                        unsigned &DiagID,
1529                                        const ParsedTemplateInfo &TemplateInfo,
1530                                        bool SuppressDeclarations) {
1531  SourceLocation Loc = Tok.getLocation();
1532
1533  switch (Tok.getKind()) {
1534  case tok::identifier:   // foo::bar
1535    // If we already have a type specifier, this identifier is not a type.
1536    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
1537        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
1538        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
1539      return false;
1540    // Check for need to substitute AltiVec keyword tokens.
1541    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1542      break;
1543    // Fall through.
1544  case tok::kw_typename:  // typename foo::bar
1545    // Annotate typenames and C++ scope specifiers.  If we get one, just
1546    // recurse to handle whatever we get.
1547    if (TryAnnotateTypeOrScopeToken())
1548      return true;
1549    if (Tok.is(tok::identifier))
1550      return false;
1551    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1552                                      TemplateInfo, SuppressDeclarations);
1553  case tok::coloncolon:   // ::foo::bar
1554    if (NextToken().is(tok::kw_new) ||    // ::new
1555        NextToken().is(tok::kw_delete))   // ::delete
1556      return false;
1557
1558    // Annotate typenames and C++ scope specifiers.  If we get one, just
1559    // recurse to handle whatever we get.
1560    if (TryAnnotateTypeOrScopeToken())
1561      return true;
1562    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1563                                      TemplateInfo, SuppressDeclarations);
1564
1565  // simple-type-specifier:
1566  case tok::annot_typename: {
1567    if (ParsedType T = getTypeAnnotation(Tok)) {
1568      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1569                                     Tok.getAnnotationEndLoc(), PrevSpec,
1570                                     DiagID, T);
1571    } else
1572      DS.SetTypeSpecError();
1573    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1574    ConsumeToken(); // The typename
1575
1576    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1577    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1578    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1579    // just a normal reference to a typedef name.
1580    if (Tok.is(tok::less) && getLang().ObjC1)
1581      ParseObjCProtocolQualifiers(DS);
1582
1583    return true;
1584  }
1585
1586  case tok::kw_short:
1587    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1588    break;
1589  case tok::kw_long:
1590    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1591      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1592                                      DiagID);
1593    else
1594      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1595                                      DiagID);
1596    break;
1597  case tok::kw_signed:
1598    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1599    break;
1600  case tok::kw_unsigned:
1601    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1602                                   DiagID);
1603    break;
1604  case tok::kw__Complex:
1605    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1606                                      DiagID);
1607    break;
1608  case tok::kw__Imaginary:
1609    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1610                                      DiagID);
1611    break;
1612  case tok::kw_void:
1613    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1614    break;
1615  case tok::kw_char:
1616    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1617    break;
1618  case tok::kw_int:
1619    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1620    break;
1621  case tok::kw_float:
1622    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1623    break;
1624  case tok::kw_double:
1625    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1626    break;
1627  case tok::kw_wchar_t:
1628    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1629    break;
1630  case tok::kw_char16_t:
1631    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1632    break;
1633  case tok::kw_char32_t:
1634    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1635    break;
1636  case tok::kw_bool:
1637  case tok::kw__Bool:
1638    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1639    break;
1640  case tok::kw__Decimal32:
1641    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1642                                   DiagID);
1643    break;
1644  case tok::kw__Decimal64:
1645    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1646                                   DiagID);
1647    break;
1648  case tok::kw__Decimal128:
1649    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1650                                   DiagID);
1651    break;
1652  case tok::kw___vector:
1653    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1654    break;
1655  case tok::kw___pixel:
1656    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1657    break;
1658
1659  // class-specifier:
1660  case tok::kw_class:
1661  case tok::kw_struct:
1662  case tok::kw_union: {
1663    tok::TokenKind Kind = Tok.getKind();
1664    ConsumeToken();
1665    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
1666                        SuppressDeclarations);
1667    return true;
1668  }
1669
1670  // enum-specifier:
1671  case tok::kw_enum:
1672    ConsumeToken();
1673    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
1674    return true;
1675
1676  // cv-qualifier:
1677  case tok::kw_const:
1678    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1679                               DiagID, getLang());
1680    break;
1681  case tok::kw_volatile:
1682    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1683                               DiagID, getLang());
1684    break;
1685  case tok::kw_restrict:
1686    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1687                               DiagID, getLang());
1688    break;
1689
1690  // GNU typeof support.
1691  case tok::kw_typeof:
1692    ParseTypeofSpecifier(DS);
1693    return true;
1694
1695  // C++0x decltype support.
1696  case tok::kw_decltype:
1697    ParseDecltypeSpecifier(DS);
1698    return true;
1699
1700  // C++0x auto support.
1701  case tok::kw_auto:
1702    if (!getLang().CPlusPlus0x)
1703      return false;
1704
1705    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1706    break;
1707
1708  case tok::kw___ptr64:
1709  case tok::kw___w64:
1710  case tok::kw___cdecl:
1711  case tok::kw___stdcall:
1712  case tok::kw___fastcall:
1713  case tok::kw___thiscall:
1714    ParseMicrosoftTypeAttributes(DS.getAttributes());
1715    return true;
1716
1717  case tok::kw___pascal:
1718    ParseBorlandTypeAttributes(DS.getAttributes());
1719    return true;
1720
1721  default:
1722    // Not a type-specifier; do nothing.
1723    return false;
1724  }
1725
1726  // If the specifier combination wasn't legal, issue a diagnostic.
1727  if (isInvalid) {
1728    assert(PrevSpec && "Method did not return previous specifier!");
1729    // Pick between error or extwarn.
1730    Diag(Tok, DiagID) << PrevSpec;
1731  }
1732  DS.SetRangeEnd(Tok.getLocation());
1733  ConsumeToken(); // whatever we parsed above.
1734  return true;
1735}
1736
1737/// ParseStructDeclaration - Parse a struct declaration without the terminating
1738/// semicolon.
1739///
1740///       struct-declaration:
1741///         specifier-qualifier-list struct-declarator-list
1742/// [GNU]   __extension__ struct-declaration
1743/// [GNU]   specifier-qualifier-list
1744///       struct-declarator-list:
1745///         struct-declarator
1746///         struct-declarator-list ',' struct-declarator
1747/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1748///       struct-declarator:
1749///         declarator
1750/// [GNU]   declarator attributes[opt]
1751///         declarator[opt] ':' constant-expression
1752/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1753///
1754void Parser::
1755ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
1756  if (Tok.is(tok::kw___extension__)) {
1757    // __extension__ silences extension warnings in the subexpression.
1758    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1759    ConsumeToken();
1760    return ParseStructDeclaration(DS, Fields);
1761  }
1762
1763  // Parse the common specifier-qualifiers-list piece.
1764  ParseSpecifierQualifierList(DS);
1765
1766  // If there are no declarators, this is a free-standing declaration
1767  // specifier. Let the actions module cope with it.
1768  if (Tok.is(tok::semi)) {
1769    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
1770    return;
1771  }
1772
1773  // Read struct-declarators until we find the semicolon.
1774  bool FirstDeclarator = true;
1775  while (1) {
1776    ParsingDeclRAIIObject PD(*this);
1777    FieldDeclarator DeclaratorInfo(DS);
1778
1779    // Attributes are only allowed here on successive declarators.
1780    if (!FirstDeclarator)
1781      MaybeParseGNUAttributes(DeclaratorInfo.D);
1782
1783    /// struct-declarator: declarator
1784    /// struct-declarator: declarator[opt] ':' constant-expression
1785    if (Tok.isNot(tok::colon)) {
1786      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1787      ColonProtectionRAIIObject X(*this);
1788      ParseDeclarator(DeclaratorInfo.D);
1789    }
1790
1791    if (Tok.is(tok::colon)) {
1792      ConsumeToken();
1793      ExprResult Res(ParseConstantExpression());
1794      if (Res.isInvalid())
1795        SkipUntil(tok::semi, true, true);
1796      else
1797        DeclaratorInfo.BitfieldSize = Res.release();
1798    }
1799
1800    // If attributes exist after the declarator, parse them.
1801    MaybeParseGNUAttributes(DeclaratorInfo.D);
1802
1803    // We're done with this declarator;  invoke the callback.
1804    Decl *D = Fields.invoke(DeclaratorInfo);
1805    PD.complete(D);
1806
1807    // If we don't have a comma, it is either the end of the list (a ';')
1808    // or an error, bail out.
1809    if (Tok.isNot(tok::comma))
1810      return;
1811
1812    // Consume the comma.
1813    ConsumeToken();
1814
1815    FirstDeclarator = false;
1816  }
1817}
1818
1819/// ParseStructUnionBody
1820///       struct-contents:
1821///         struct-declaration-list
1822/// [EXT]   empty
1823/// [GNU]   "struct-declaration-list" without terminatoring ';'
1824///       struct-declaration-list:
1825///         struct-declaration
1826///         struct-declaration-list struct-declaration
1827/// [OBC]   '@' 'defs' '(' class-name ')'
1828///
1829void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1830                                  unsigned TagType, Decl *TagDecl) {
1831  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
1832                                      "parsing struct/union body");
1833
1834  SourceLocation LBraceLoc = ConsumeBrace();
1835
1836  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1837  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
1838
1839  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1840  // C++.
1841  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1842    Diag(Tok, diag::ext_empty_struct_union)
1843      << (TagType == TST_union);
1844
1845  llvm::SmallVector<Decl *, 32> FieldDecls;
1846
1847  // While we still have something to read, read the declarations in the struct.
1848  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1849    // Each iteration of this loop reads one struct-declaration.
1850
1851    // Check for extraneous top-level semicolon.
1852    if (Tok.is(tok::semi)) {
1853      Diag(Tok, diag::ext_extra_struct_semi)
1854        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
1855        << FixItHint::CreateRemoval(Tok.getLocation());
1856      ConsumeToken();
1857      continue;
1858    }
1859
1860    // Parse all the comma separated declarators.
1861    DeclSpec DS;
1862
1863    if (!Tok.is(tok::at)) {
1864      struct CFieldCallback : FieldCallback {
1865        Parser &P;
1866        Decl *TagDecl;
1867        llvm::SmallVectorImpl<Decl *> &FieldDecls;
1868
1869        CFieldCallback(Parser &P, Decl *TagDecl,
1870                       llvm::SmallVectorImpl<Decl *> &FieldDecls) :
1871          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
1872
1873        virtual Decl *invoke(FieldDeclarator &FD) {
1874          // Install the declarator into the current TagDecl.
1875          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
1876                              FD.D.getDeclSpec().getSourceRange().getBegin(),
1877                                                 FD.D, FD.BitfieldSize);
1878          FieldDecls.push_back(Field);
1879          return Field;
1880        }
1881      } Callback(*this, TagDecl, FieldDecls);
1882
1883      ParseStructDeclaration(DS, Callback);
1884    } else { // Handle @defs
1885      ConsumeToken();
1886      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1887        Diag(Tok, diag::err_unexpected_at);
1888        SkipUntil(tok::semi, true);
1889        continue;
1890      }
1891      ConsumeToken();
1892      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1893      if (!Tok.is(tok::identifier)) {
1894        Diag(Tok, diag::err_expected_ident);
1895        SkipUntil(tok::semi, true);
1896        continue;
1897      }
1898      llvm::SmallVector<Decl *, 16> Fields;
1899      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
1900                        Tok.getIdentifierInfo(), Fields);
1901      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1902      ConsumeToken();
1903      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1904    }
1905
1906    if (Tok.is(tok::semi)) {
1907      ConsumeToken();
1908    } else if (Tok.is(tok::r_brace)) {
1909      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
1910      break;
1911    } else {
1912      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
1913      // Skip to end of block or statement to avoid ext-warning on extra ';'.
1914      SkipUntil(tok::r_brace, true, true);
1915      // If we stopped at a ';', eat it.
1916      if (Tok.is(tok::semi)) ConsumeToken();
1917    }
1918  }
1919
1920  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1921
1922  ParsedAttributes attrs;
1923  // If attributes exist after struct contents, parse them.
1924  MaybeParseGNUAttributes(attrs);
1925
1926  Actions.ActOnFields(getCurScope(),
1927                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1928                      LBraceLoc, RBraceLoc,
1929                      attrs.getList());
1930  StructScope.Exit();
1931  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
1932}
1933
1934/// ParseEnumSpecifier
1935///       enum-specifier: [C99 6.7.2.2]
1936///         'enum' identifier[opt] '{' enumerator-list '}'
1937///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1938/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1939///                                                 '}' attributes[opt]
1940///         'enum' identifier
1941/// [GNU]   'enum' attributes[opt] identifier
1942///
1943/// [C++0x] enum-head '{' enumerator-list[opt] '}'
1944/// [C++0x] enum-head '{' enumerator-list ','  '}'
1945///
1946///       enum-head: [C++0x]
1947///         enum-key attributes[opt] identifier[opt] enum-base[opt]
1948///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
1949///
1950///       enum-key: [C++0x]
1951///         'enum'
1952///         'enum' 'class'
1953///         'enum' 'struct'
1954///
1955///       enum-base: [C++0x]
1956///         ':' type-specifier-seq
1957///
1958/// [C++] elaborated-type-specifier:
1959/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1960///
1961void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1962                                const ParsedTemplateInfo &TemplateInfo,
1963                                AccessSpecifier AS) {
1964  // Parse the tag portion of this.
1965  if (Tok.is(tok::code_completion)) {
1966    // Code completion for an enum name.
1967    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
1968    ConsumeCodeCompletionToken();
1969  }
1970
1971  // If attributes exist after tag, parse them.
1972  ParsedAttributes attrs;
1973  MaybeParseGNUAttributes(attrs);
1974
1975  CXXScopeSpec &SS = DS.getTypeSpecScope();
1976  if (getLang().CPlusPlus) {
1977    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
1978      return;
1979
1980    if (SS.isSet() && Tok.isNot(tok::identifier)) {
1981      Diag(Tok, diag::err_expected_ident);
1982      if (Tok.isNot(tok::l_brace)) {
1983        // Has no name and is not a definition.
1984        // Skip the rest of this declarator, up until the comma or semicolon.
1985        SkipUntil(tok::comma, true);
1986        return;
1987      }
1988    }
1989  }
1990
1991  bool AllowFixedUnderlyingType = getLang().CPlusPlus0x || getLang().Microsoft;
1992  bool IsScopedEnum = false;
1993  bool IsScopedUsingClassTag = false;
1994
1995  if (getLang().CPlusPlus0x &&
1996      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
1997    IsScopedEnum = true;
1998    IsScopedUsingClassTag = Tok.is(tok::kw_class);
1999    ConsumeToken();
2000  }
2001
2002  // Must have either 'enum name' or 'enum {...}'.
2003  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2004      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2005    Diag(Tok, diag::err_expected_ident_lbrace);
2006
2007    // Skip the rest of this declarator, up until the comma or semicolon.
2008    SkipUntil(tok::comma, true);
2009    return;
2010  }
2011
2012  // If an identifier is present, consume and remember it.
2013  IdentifierInfo *Name = 0;
2014  SourceLocation NameLoc;
2015  if (Tok.is(tok::identifier)) {
2016    Name = Tok.getIdentifierInfo();
2017    NameLoc = ConsumeToken();
2018  }
2019
2020  if (!Name && IsScopedEnum) {
2021    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2022    // declaration of a scoped enumeration.
2023    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2024    IsScopedEnum = false;
2025    IsScopedUsingClassTag = false;
2026  }
2027
2028  TypeResult BaseType;
2029
2030  // Parse the fixed underlying type.
2031  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2032    bool PossibleBitfield = false;
2033    if (getCurScope()->getFlags() & Scope::ClassScope) {
2034      // If we're in class scope, this can either be an enum declaration with
2035      // an underlying type, or a declaration of a bitfield member. We try to
2036      // use a simple disambiguation scheme first to catch the common cases
2037      // (integer literal, sizeof); if it's still ambiguous, we then consider
2038      // anything that's a simple-type-specifier followed by '(' as an
2039      // expression. This suffices because function types are not valid
2040      // underlying types anyway.
2041      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2042      // If the next token starts an expression, we know we're parsing a
2043      // bit-field. This is the common case.
2044      if (TPR == TPResult::True())
2045        PossibleBitfield = true;
2046      // If the next token starts a type-specifier-seq, it may be either a
2047      // a fixed underlying type or the start of a function-style cast in C++;
2048      // lookahead one more token to see if it's obvious that we have a
2049      // fixed underlying type.
2050      else if (TPR == TPResult::False() &&
2051               GetLookAheadToken(2).getKind() == tok::semi) {
2052        // Consume the ':'.
2053        ConsumeToken();
2054      } else {
2055        // We have the start of a type-specifier-seq, so we have to perform
2056        // tentative parsing to determine whether we have an expression or a
2057        // type.
2058        TentativeParsingAction TPA(*this);
2059
2060        // Consume the ':'.
2061        ConsumeToken();
2062
2063        if ((getLang().CPlusPlus &&
2064             isCXXDeclarationSpecifier() != TPResult::True()) ||
2065            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
2066          // We'll parse this as a bitfield later.
2067          PossibleBitfield = true;
2068          TPA.Revert();
2069        } else {
2070          // We have a type-specifier-seq.
2071          TPA.Commit();
2072        }
2073      }
2074    } else {
2075      // Consume the ':'.
2076      ConsumeToken();
2077    }
2078
2079    if (!PossibleBitfield) {
2080      SourceRange Range;
2081      BaseType = ParseTypeName(&Range);
2082
2083      if (!getLang().CPlusPlus0x)
2084        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2085          << Range;
2086    }
2087  }
2088
2089  // There are three options here.  If we have 'enum foo;', then this is a
2090  // forward declaration.  If we have 'enum foo {...' then this is a
2091  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2092  //
2093  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2094  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2095  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2096  //
2097  Sema::TagUseKind TUK;
2098  if (Tok.is(tok::l_brace))
2099    TUK = Sema::TUK_Definition;
2100  else if (Tok.is(tok::semi))
2101    TUK = Sema::TUK_Declaration;
2102  else
2103    TUK = Sema::TUK_Reference;
2104
2105  // enums cannot be templates, although they can be referenced from a
2106  // template.
2107  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2108      TUK != Sema::TUK_Reference) {
2109    Diag(Tok, diag::err_enum_template);
2110
2111    // Skip the rest of this declarator, up until the comma or semicolon.
2112    SkipUntil(tok::comma, true);
2113    return;
2114  }
2115
2116  if (!Name && TUK != Sema::TUK_Definition) {
2117    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2118
2119    // Skip the rest of this declarator, up until the comma or semicolon.
2120    SkipUntil(tok::comma, true);
2121    return;
2122  }
2123
2124  bool Owned = false;
2125  bool IsDependent = false;
2126  const char *PrevSpec = 0;
2127  unsigned DiagID;
2128  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2129                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2130                                   AS,
2131                                   MultiTemplateParamsArg(Actions),
2132                                   Owned, IsDependent, IsScopedEnum,
2133                                   IsScopedUsingClassTag, BaseType);
2134
2135  if (IsDependent) {
2136    // This enum has a dependent nested-name-specifier. Handle it as a
2137    // dependent tag.
2138    if (!Name) {
2139      DS.SetTypeSpecError();
2140      Diag(Tok, diag::err_expected_type_name_after_typename);
2141      return;
2142    }
2143
2144    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2145                                                TUK, SS, Name, StartLoc,
2146                                                NameLoc);
2147    if (Type.isInvalid()) {
2148      DS.SetTypeSpecError();
2149      return;
2150    }
2151
2152    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2153                           NameLoc.isValid() ? NameLoc : StartLoc,
2154                           PrevSpec, DiagID, Type.get()))
2155      Diag(StartLoc, DiagID) << PrevSpec;
2156
2157    return;
2158  }
2159
2160  if (!TagDecl) {
2161    // The action failed to produce an enumeration tag. If this is a
2162    // definition, consume the entire definition.
2163    if (Tok.is(tok::l_brace)) {
2164      ConsumeBrace();
2165      SkipUntil(tok::r_brace);
2166    }
2167
2168    DS.SetTypeSpecError();
2169    return;
2170  }
2171
2172  if (Tok.is(tok::l_brace))
2173    ParseEnumBody(StartLoc, TagDecl);
2174
2175  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
2176                         NameLoc.isValid() ? NameLoc : StartLoc,
2177                         PrevSpec, DiagID, TagDecl, Owned))
2178    Diag(StartLoc, DiagID) << PrevSpec;
2179}
2180
2181/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2182///       enumerator-list:
2183///         enumerator
2184///         enumerator-list ',' enumerator
2185///       enumerator:
2186///         enumeration-constant
2187///         enumeration-constant '=' constant-expression
2188///       enumeration-constant:
2189///         identifier
2190///
2191void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2192  // Enter the scope of the enum body and start the definition.
2193  ParseScope EnumScope(this, Scope::DeclScope);
2194  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2195
2196  SourceLocation LBraceLoc = ConsumeBrace();
2197
2198  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2199  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2200    Diag(Tok, diag::error_empty_enum);
2201
2202  llvm::SmallVector<Decl *, 32> EnumConstantDecls;
2203
2204  Decl *LastEnumConstDecl = 0;
2205
2206  // Parse the enumerator-list.
2207  while (Tok.is(tok::identifier)) {
2208    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2209    SourceLocation IdentLoc = ConsumeToken();
2210
2211    // If attributes exist after the enumerator, parse them.
2212    ParsedAttributes attrs;
2213    MaybeParseGNUAttributes(attrs);
2214
2215    SourceLocation EqualLoc;
2216    ExprResult AssignedVal;
2217    if (Tok.is(tok::equal)) {
2218      EqualLoc = ConsumeToken();
2219      AssignedVal = ParseConstantExpression();
2220      if (AssignedVal.isInvalid())
2221        SkipUntil(tok::comma, tok::r_brace, true, true);
2222    }
2223
2224    // Install the enumerator constant into EnumDecl.
2225    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2226                                                    LastEnumConstDecl,
2227                                                    IdentLoc, Ident,
2228                                                    attrs.getList(), EqualLoc,
2229                                                    AssignedVal.release());
2230    EnumConstantDecls.push_back(EnumConstDecl);
2231    LastEnumConstDecl = EnumConstDecl;
2232
2233    if (Tok.is(tok::identifier)) {
2234      // We're missing a comma between enumerators.
2235      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2236      Diag(Loc, diag::err_enumerator_list_missing_comma)
2237        << FixItHint::CreateInsertion(Loc, ", ");
2238      continue;
2239    }
2240
2241    if (Tok.isNot(tok::comma))
2242      break;
2243    SourceLocation CommaLoc = ConsumeToken();
2244
2245    if (Tok.isNot(tok::identifier) &&
2246        !(getLang().C99 || getLang().CPlusPlus0x))
2247      Diag(CommaLoc, diag::ext_enumerator_list_comma)
2248        << getLang().CPlusPlus
2249        << FixItHint::CreateRemoval(CommaLoc);
2250  }
2251
2252  // Eat the }.
2253  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2254
2255  // If attributes exist after the identifier list, parse them.
2256  ParsedAttributes attrs;
2257  MaybeParseGNUAttributes(attrs);
2258
2259  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
2260                        EnumConstantDecls.data(), EnumConstantDecls.size(),
2261                        getCurScope(), attrs.getList());
2262
2263  EnumScope.Exit();
2264  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
2265}
2266
2267/// isTypeSpecifierQualifier - Return true if the current token could be the
2268/// start of a type-qualifier-list.
2269bool Parser::isTypeQualifier() const {
2270  switch (Tok.getKind()) {
2271  default: return false;
2272    // type-qualifier
2273  case tok::kw_const:
2274  case tok::kw_volatile:
2275  case tok::kw_restrict:
2276    return true;
2277  }
2278}
2279
2280/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2281/// is definitely a type-specifier.  Return false if it isn't part of a type
2282/// specifier or if we're not sure.
2283bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
2284  switch (Tok.getKind()) {
2285  default: return false;
2286    // type-specifiers
2287  case tok::kw_short:
2288  case tok::kw_long:
2289  case tok::kw_signed:
2290  case tok::kw_unsigned:
2291  case tok::kw__Complex:
2292  case tok::kw__Imaginary:
2293  case tok::kw_void:
2294  case tok::kw_char:
2295  case tok::kw_wchar_t:
2296  case tok::kw_char16_t:
2297  case tok::kw_char32_t:
2298  case tok::kw_int:
2299  case tok::kw_float:
2300  case tok::kw_double:
2301  case tok::kw_bool:
2302  case tok::kw__Bool:
2303  case tok::kw__Decimal32:
2304  case tok::kw__Decimal64:
2305  case tok::kw__Decimal128:
2306  case tok::kw___vector:
2307
2308    // struct-or-union-specifier (C99) or class-specifier (C++)
2309  case tok::kw_class:
2310  case tok::kw_struct:
2311  case tok::kw_union:
2312    // enum-specifier
2313  case tok::kw_enum:
2314
2315    // typedef-name
2316  case tok::annot_typename:
2317    return true;
2318  }
2319}
2320
2321/// isTypeSpecifierQualifier - Return true if the current token could be the
2322/// start of a specifier-qualifier-list.
2323bool Parser::isTypeSpecifierQualifier() {
2324  switch (Tok.getKind()) {
2325  default: return false;
2326
2327  case tok::identifier:   // foo::bar
2328    if (TryAltiVecVectorToken())
2329      return true;
2330    // Fall through.
2331  case tok::kw_typename:  // typename T::type
2332    // Annotate typenames and C++ scope specifiers.  If we get one, just
2333    // recurse to handle whatever we get.
2334    if (TryAnnotateTypeOrScopeToken())
2335      return true;
2336    if (Tok.is(tok::identifier))
2337      return false;
2338    return isTypeSpecifierQualifier();
2339
2340  case tok::coloncolon:   // ::foo::bar
2341    if (NextToken().is(tok::kw_new) ||    // ::new
2342        NextToken().is(tok::kw_delete))   // ::delete
2343      return false;
2344
2345    if (TryAnnotateTypeOrScopeToken())
2346      return true;
2347    return isTypeSpecifierQualifier();
2348
2349    // GNU attributes support.
2350  case tok::kw___attribute:
2351    // GNU typeof support.
2352  case tok::kw_typeof:
2353
2354    // type-specifiers
2355  case tok::kw_short:
2356  case tok::kw_long:
2357  case tok::kw_signed:
2358  case tok::kw_unsigned:
2359  case tok::kw__Complex:
2360  case tok::kw__Imaginary:
2361  case tok::kw_void:
2362  case tok::kw_char:
2363  case tok::kw_wchar_t:
2364  case tok::kw_char16_t:
2365  case tok::kw_char32_t:
2366  case tok::kw_int:
2367  case tok::kw_float:
2368  case tok::kw_double:
2369  case tok::kw_bool:
2370  case tok::kw__Bool:
2371  case tok::kw__Decimal32:
2372  case tok::kw__Decimal64:
2373  case tok::kw__Decimal128:
2374  case tok::kw___vector:
2375
2376    // struct-or-union-specifier (C99) or class-specifier (C++)
2377  case tok::kw_class:
2378  case tok::kw_struct:
2379  case tok::kw_union:
2380    // enum-specifier
2381  case tok::kw_enum:
2382
2383    // type-qualifier
2384  case tok::kw_const:
2385  case tok::kw_volatile:
2386  case tok::kw_restrict:
2387
2388    // typedef-name
2389  case tok::annot_typename:
2390    return true;
2391
2392    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2393  case tok::less:
2394    return getLang().ObjC1;
2395
2396  case tok::kw___cdecl:
2397  case tok::kw___stdcall:
2398  case tok::kw___fastcall:
2399  case tok::kw___thiscall:
2400  case tok::kw___w64:
2401  case tok::kw___ptr64:
2402  case tok::kw___pascal:
2403    return true;
2404  }
2405}
2406
2407/// isDeclarationSpecifier() - Return true if the current token is part of a
2408/// declaration specifier.
2409///
2410/// \param DisambiguatingWithExpression True to indicate that the purpose of
2411/// this check is to disambiguate between an expression and a declaration.
2412bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
2413  switch (Tok.getKind()) {
2414  default: return false;
2415
2416  case tok::identifier:   // foo::bar
2417    // Unfortunate hack to support "Class.factoryMethod" notation.
2418    if (getLang().ObjC1 && NextToken().is(tok::period))
2419      return false;
2420    if (TryAltiVecVectorToken())
2421      return true;
2422    // Fall through.
2423  case tok::kw_typename: // typename T::type
2424    // Annotate typenames and C++ scope specifiers.  If we get one, just
2425    // recurse to handle whatever we get.
2426    if (TryAnnotateTypeOrScopeToken())
2427      return true;
2428    if (Tok.is(tok::identifier))
2429      return false;
2430
2431    // If we're in Objective-C and we have an Objective-C class type followed
2432    // by an identifier and then either ':' or ']', in a place where an
2433    // expression is permitted, then this is probably a class message send
2434    // missing the initial '['. In this case, we won't consider this to be
2435    // the start of a declaration.
2436    if (DisambiguatingWithExpression &&
2437        isStartOfObjCClassMessageMissingOpenBracket())
2438      return false;
2439
2440    return isDeclarationSpecifier();
2441
2442  case tok::coloncolon:   // ::foo::bar
2443    if (NextToken().is(tok::kw_new) ||    // ::new
2444        NextToken().is(tok::kw_delete))   // ::delete
2445      return false;
2446
2447    // Annotate typenames and C++ scope specifiers.  If we get one, just
2448    // recurse to handle whatever we get.
2449    if (TryAnnotateTypeOrScopeToken())
2450      return true;
2451    return isDeclarationSpecifier();
2452
2453    // storage-class-specifier
2454  case tok::kw_typedef:
2455  case tok::kw_extern:
2456  case tok::kw___private_extern__:
2457  case tok::kw_static:
2458  case tok::kw_auto:
2459  case tok::kw_register:
2460  case tok::kw___thread:
2461
2462    // type-specifiers
2463  case tok::kw_short:
2464  case tok::kw_long:
2465  case tok::kw_signed:
2466  case tok::kw_unsigned:
2467  case tok::kw__Complex:
2468  case tok::kw__Imaginary:
2469  case tok::kw_void:
2470  case tok::kw_char:
2471  case tok::kw_wchar_t:
2472  case tok::kw_char16_t:
2473  case tok::kw_char32_t:
2474
2475  case tok::kw_int:
2476  case tok::kw_float:
2477  case tok::kw_double:
2478  case tok::kw_bool:
2479  case tok::kw__Bool:
2480  case tok::kw__Decimal32:
2481  case tok::kw__Decimal64:
2482  case tok::kw__Decimal128:
2483  case tok::kw___vector:
2484
2485    // struct-or-union-specifier (C99) or class-specifier (C++)
2486  case tok::kw_class:
2487  case tok::kw_struct:
2488  case tok::kw_union:
2489    // enum-specifier
2490  case tok::kw_enum:
2491
2492    // type-qualifier
2493  case tok::kw_const:
2494  case tok::kw_volatile:
2495  case tok::kw_restrict:
2496
2497    // function-specifier
2498  case tok::kw_inline:
2499  case tok::kw_virtual:
2500  case tok::kw_explicit:
2501
2502    // typedef-name
2503  case tok::annot_typename:
2504
2505    // GNU typeof support.
2506  case tok::kw_typeof:
2507
2508    // GNU attributes.
2509  case tok::kw___attribute:
2510    return true;
2511
2512    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2513  case tok::less:
2514    return getLang().ObjC1;
2515
2516  case tok::kw___declspec:
2517  case tok::kw___cdecl:
2518  case tok::kw___stdcall:
2519  case tok::kw___fastcall:
2520  case tok::kw___thiscall:
2521  case tok::kw___w64:
2522  case tok::kw___ptr64:
2523  case tok::kw___forceinline:
2524  case tok::kw___pascal:
2525    return true;
2526  }
2527}
2528
2529bool Parser::isConstructorDeclarator() {
2530  TentativeParsingAction TPA(*this);
2531
2532  // Parse the C++ scope specifier.
2533  CXXScopeSpec SS;
2534  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
2535    TPA.Revert();
2536    return false;
2537  }
2538
2539  // Parse the constructor name.
2540  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
2541    // We already know that we have a constructor name; just consume
2542    // the token.
2543    ConsumeToken();
2544  } else {
2545    TPA.Revert();
2546    return false;
2547  }
2548
2549  // Current class name must be followed by a left parentheses.
2550  if (Tok.isNot(tok::l_paren)) {
2551    TPA.Revert();
2552    return false;
2553  }
2554  ConsumeParen();
2555
2556  // A right parentheses or ellipsis signals that we have a constructor.
2557  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
2558    TPA.Revert();
2559    return true;
2560  }
2561
2562  // If we need to, enter the specified scope.
2563  DeclaratorScopeObj DeclScopeObj(*this, SS);
2564  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2565    DeclScopeObj.EnterDeclaratorScope();
2566
2567  // Optionally skip Microsoft attributes.
2568  ParsedAttributes Attrs;
2569  MaybeParseMicrosoftAttributes(Attrs);
2570
2571  // Check whether the next token(s) are part of a declaration
2572  // specifier, in which case we have the start of a parameter and,
2573  // therefore, we know that this is a constructor.
2574  bool IsConstructor = isDeclarationSpecifier();
2575  TPA.Revert();
2576  return IsConstructor;
2577}
2578
2579/// ParseTypeQualifierListOpt
2580///          type-qualifier-list: [C99 6.7.5]
2581///            type-qualifier
2582/// [vendor]   attributes
2583///              [ only if VendorAttributesAllowed=true ]
2584///            type-qualifier-list type-qualifier
2585/// [vendor]   type-qualifier-list attributes
2586///              [ only if VendorAttributesAllowed=true ]
2587/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
2588///              [ only if CXX0XAttributesAllowed=true ]
2589/// Note: vendor can be GNU, MS, etc.
2590///
2591void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
2592                                       bool VendorAttributesAllowed,
2593                                       bool CXX0XAttributesAllowed) {
2594  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
2595    SourceLocation Loc = Tok.getLocation();
2596    ParsedAttributesWithRange attrs;
2597    ParseCXX0XAttributes(attrs);
2598    if (CXX0XAttributesAllowed)
2599      DS.takeAttributesFrom(attrs);
2600    else
2601      Diag(Loc, diag::err_attributes_not_allowed);
2602  }
2603
2604  SourceLocation EndLoc;
2605
2606  while (1) {
2607    bool isInvalid = false;
2608    const char *PrevSpec = 0;
2609    unsigned DiagID = 0;
2610    SourceLocation Loc = Tok.getLocation();
2611
2612    switch (Tok.getKind()) {
2613    case tok::code_completion:
2614      Actions.CodeCompleteTypeQualifiers(DS);
2615      ConsumeCodeCompletionToken();
2616      break;
2617
2618    case tok::kw_const:
2619      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
2620                                 getLang());
2621      break;
2622    case tok::kw_volatile:
2623      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2624                                 getLang());
2625      break;
2626    case tok::kw_restrict:
2627      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2628                                 getLang());
2629      break;
2630    case tok::kw___w64:
2631    case tok::kw___ptr64:
2632    case tok::kw___cdecl:
2633    case tok::kw___stdcall:
2634    case tok::kw___fastcall:
2635    case tok::kw___thiscall:
2636      if (VendorAttributesAllowed) {
2637        ParseMicrosoftTypeAttributes(DS.getAttributes());
2638        continue;
2639      }
2640      goto DoneWithTypeQuals;
2641    case tok::kw___pascal:
2642      if (VendorAttributesAllowed) {
2643        ParseBorlandTypeAttributes(DS.getAttributes());
2644        continue;
2645      }
2646      goto DoneWithTypeQuals;
2647    case tok::kw___attribute:
2648      if (VendorAttributesAllowed) {
2649        ParseGNUAttributes(DS.getAttributes());
2650        continue; // do *not* consume the next token!
2651      }
2652      // otherwise, FALL THROUGH!
2653    default:
2654      DoneWithTypeQuals:
2655      // If this is not a type-qualifier token, we're done reading type
2656      // qualifiers.  First verify that DeclSpec's are consistent.
2657      DS.Finish(Diags, PP);
2658      if (EndLoc.isValid())
2659        DS.SetRangeEnd(EndLoc);
2660      return;
2661    }
2662
2663    // If the specifier combination wasn't legal, issue a diagnostic.
2664    if (isInvalid) {
2665      assert(PrevSpec && "Method did not return previous specifier!");
2666      Diag(Tok, DiagID) << PrevSpec;
2667    }
2668    EndLoc = ConsumeToken();
2669  }
2670}
2671
2672
2673/// ParseDeclarator - Parse and verify a newly-initialized declarator.
2674///
2675void Parser::ParseDeclarator(Declarator &D) {
2676  /// This implements the 'declarator' production in the C grammar, then checks
2677  /// for well-formedness and issues diagnostics.
2678  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2679}
2680
2681/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
2682/// is parsed by the function passed to it. Pass null, and the direct-declarator
2683/// isn't parsed at all, making this function effectively parse the C++
2684/// ptr-operator production.
2685///
2686///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
2687/// [C]     pointer[opt] direct-declarator
2688/// [C++]   direct-declarator
2689/// [C++]   ptr-operator declarator
2690///
2691///       pointer: [C99 6.7.5]
2692///         '*' type-qualifier-list[opt]
2693///         '*' type-qualifier-list[opt] pointer
2694///
2695///       ptr-operator:
2696///         '*' cv-qualifier-seq[opt]
2697///         '&'
2698/// [C++0x] '&&'
2699/// [GNU]   '&' restrict[opt] attributes[opt]
2700/// [GNU?]  '&&' restrict[opt] attributes[opt]
2701///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2702void Parser::ParseDeclaratorInternal(Declarator &D,
2703                                     DirectDeclParseFunction DirectDeclParser) {
2704  if (Diags.hasAllExtensionsSilenced())
2705    D.setExtension();
2706
2707  // C++ member pointers start with a '::' or a nested-name.
2708  // Member pointers get special handling, since there's no place for the
2709  // scope spec in the generic path below.
2710  if (getLang().CPlusPlus &&
2711      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2712       Tok.is(tok::annot_cxxscope))) {
2713    CXXScopeSpec SS;
2714    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
2715
2716    if (SS.isNotEmpty()) {
2717      if (Tok.isNot(tok::star)) {
2718        // The scope spec really belongs to the direct-declarator.
2719        D.getCXXScopeSpec() = SS;
2720        if (DirectDeclParser)
2721          (this->*DirectDeclParser)(D);
2722        return;
2723      }
2724
2725      SourceLocation Loc = ConsumeToken();
2726      D.SetRangeEnd(Loc);
2727      DeclSpec DS;
2728      ParseTypeQualifierListOpt(DS);
2729      D.ExtendWithDeclSpec(DS);
2730
2731      // Recurse to parse whatever is left.
2732      ParseDeclaratorInternal(D, DirectDeclParser);
2733
2734      // Sema will have to catch (syntactically invalid) pointers into global
2735      // scope. It has to catch pointers into namespace scope anyway.
2736      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2737                                                      Loc, DS.takeAttributes()),
2738                    /* Don't replace range end. */SourceLocation());
2739      return;
2740    }
2741  }
2742
2743  tok::TokenKind Kind = Tok.getKind();
2744  // Not a pointer, C++ reference, or block.
2745  if (Kind != tok::star && Kind != tok::caret &&
2746      (Kind != tok::amp || !getLang().CPlusPlus) &&
2747      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2748      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2749    if (DirectDeclParser)
2750      (this->*DirectDeclParser)(D);
2751    return;
2752  }
2753
2754  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2755  // '&&' -> rvalue reference
2756  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2757  D.SetRangeEnd(Loc);
2758
2759  if (Kind == tok::star || Kind == tok::caret) {
2760    // Is a pointer.
2761    DeclSpec DS;
2762
2763    ParseTypeQualifierListOpt(DS);
2764    D.ExtendWithDeclSpec(DS);
2765
2766    // Recursively parse the declarator.
2767    ParseDeclaratorInternal(D, DirectDeclParser);
2768    if (Kind == tok::star)
2769      // Remember that we parsed a pointer type, and remember the type-quals.
2770      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2771                                                DS.getConstSpecLoc(),
2772                                                DS.getVolatileSpecLoc(),
2773                                                DS.getRestrictSpecLoc(),
2774                                                DS.takeAttributes()),
2775                    SourceLocation());
2776    else
2777      // Remember that we parsed a Block type, and remember the type-quals.
2778      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2779                                                     Loc, DS.takeAttributes()),
2780                    SourceLocation());
2781  } else {
2782    // Is a reference
2783    DeclSpec DS;
2784
2785    // Complain about rvalue references in C++03, but then go on and build
2786    // the declarator.
2787    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2788      Diag(Loc, diag::ext_rvalue_reference);
2789
2790    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2791    // cv-qualifiers are introduced through the use of a typedef or of a
2792    // template type argument, in which case the cv-qualifiers are ignored.
2793    //
2794    // [GNU] Retricted references are allowed.
2795    // [GNU] Attributes on references are allowed.
2796    // [C++0x] Attributes on references are not allowed.
2797    ParseTypeQualifierListOpt(DS, true, false);
2798    D.ExtendWithDeclSpec(DS);
2799
2800    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2801      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2802        Diag(DS.getConstSpecLoc(),
2803             diag::err_invalid_reference_qualifier_application) << "const";
2804      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2805        Diag(DS.getVolatileSpecLoc(),
2806             diag::err_invalid_reference_qualifier_application) << "volatile";
2807    }
2808
2809    // Recursively parse the declarator.
2810    ParseDeclaratorInternal(D, DirectDeclParser);
2811
2812    if (D.getNumTypeObjects() > 0) {
2813      // C++ [dcl.ref]p4: There shall be no references to references.
2814      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2815      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2816        if (const IdentifierInfo *II = D.getIdentifier())
2817          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2818           << II;
2819        else
2820          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2821            << "type name";
2822
2823        // Once we've complained about the reference-to-reference, we
2824        // can go ahead and build the (technically ill-formed)
2825        // declarator: reference collapsing will take care of it.
2826      }
2827    }
2828
2829    // Remember that we parsed a reference type. It doesn't have type-quals.
2830    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2831                                                DS.takeAttributes(),
2832                                                Kind == tok::amp),
2833                  SourceLocation());
2834  }
2835}
2836
2837/// ParseDirectDeclarator
2838///       direct-declarator: [C99 6.7.5]
2839/// [C99]   identifier
2840///         '(' declarator ')'
2841/// [GNU]   '(' attributes declarator ')'
2842/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2843/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2844/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2845/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2846/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2847///         direct-declarator '(' parameter-type-list ')'
2848///         direct-declarator '(' identifier-list[opt] ')'
2849/// [GNU]   direct-declarator '(' parameter-forward-declarations
2850///                    parameter-type-list[opt] ')'
2851/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2852///                    cv-qualifier-seq[opt] exception-specification[opt]
2853/// [C++]   declarator-id
2854///
2855///       declarator-id: [C++ 8]
2856///         '...'[opt] id-expression
2857///         '::'[opt] nested-name-specifier[opt] type-name
2858///
2859///       id-expression: [C++ 5.1]
2860///         unqualified-id
2861///         qualified-id
2862///
2863///       unqualified-id: [C++ 5.1]
2864///         identifier
2865///         operator-function-id
2866///         conversion-function-id
2867///          '~' class-name
2868///         template-id
2869///
2870void Parser::ParseDirectDeclarator(Declarator &D) {
2871  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2872
2873  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
2874    // ParseDeclaratorInternal might already have parsed the scope.
2875    if (D.getCXXScopeSpec().isEmpty()) {
2876      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
2877    }
2878
2879    if (D.getCXXScopeSpec().isValid()) {
2880      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2881        // Change the declaration context for name lookup, until this function
2882        // is exited (and the declarator has been parsed).
2883        DeclScopeObj.EnterDeclaratorScope();
2884    }
2885
2886    // C++0x [dcl.fct]p14:
2887    //   There is a syntactic ambiguity when an ellipsis occurs at the end
2888    //   of a parameter-declaration-clause without a preceding comma. In
2889    //   this case, the ellipsis is parsed as part of the
2890    //   abstract-declarator if the type of the parameter names a template
2891    //   parameter pack that has not been expanded; otherwise, it is parsed
2892    //   as part of the parameter-declaration-clause.
2893    if (Tok.is(tok::ellipsis) &&
2894        !((D.getContext() == Declarator::PrototypeContext ||
2895           D.getContext() == Declarator::BlockLiteralContext) &&
2896          NextToken().is(tok::r_paren) &&
2897          !Actions.containsUnexpandedParameterPacks(D)))
2898      D.setEllipsisLoc(ConsumeToken());
2899
2900    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
2901        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
2902      // We found something that indicates the start of an unqualified-id.
2903      // Parse that unqualified-id.
2904      bool AllowConstructorName;
2905      if (D.getDeclSpec().hasTypeSpecifier())
2906        AllowConstructorName = false;
2907      else if (D.getCXXScopeSpec().isSet())
2908        AllowConstructorName =
2909          (D.getContext() == Declarator::FileContext ||
2910           (D.getContext() == Declarator::MemberContext &&
2911            D.getDeclSpec().isFriendSpecified()));
2912      else
2913        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
2914
2915      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
2916                             /*EnteringContext=*/true,
2917                             /*AllowDestructorName=*/true,
2918                             AllowConstructorName,
2919                             ParsedType(),
2920                             D.getName()) ||
2921          // Once we're past the identifier, if the scope was bad, mark the
2922          // whole declarator bad.
2923          D.getCXXScopeSpec().isInvalid()) {
2924        D.SetIdentifier(0, Tok.getLocation());
2925        D.setInvalidType(true);
2926      } else {
2927        // Parsed the unqualified-id; update range information and move along.
2928        if (D.getSourceRange().getBegin().isInvalid())
2929          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
2930        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
2931      }
2932      goto PastIdentifier;
2933    }
2934  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2935    assert(!getLang().CPlusPlus &&
2936           "There's a C++-specific check for tok::identifier above");
2937    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2938    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2939    ConsumeToken();
2940    goto PastIdentifier;
2941  }
2942
2943  if (Tok.is(tok::l_paren)) {
2944    // direct-declarator: '(' declarator ')'
2945    // direct-declarator: '(' attributes declarator ')'
2946    // Example: 'char (*X)'   or 'int (*XX)(void)'
2947    ParseParenDeclarator(D);
2948
2949    // If the declarator was parenthesized, we entered the declarator
2950    // scope when parsing the parenthesized declarator, then exited
2951    // the scope already. Re-enter the scope, if we need to.
2952    if (D.getCXXScopeSpec().isSet()) {
2953      // If there was an error parsing parenthesized declarator, declarator
2954      // scope may have been enterred before. Don't do it again.
2955      if (!D.isInvalidType() &&
2956          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2957        // Change the declaration context for name lookup, until this function
2958        // is exited (and the declarator has been parsed).
2959        DeclScopeObj.EnterDeclaratorScope();
2960    }
2961  } else if (D.mayOmitIdentifier()) {
2962    // This could be something simple like "int" (in which case the declarator
2963    // portion is empty), if an abstract-declarator is allowed.
2964    D.SetIdentifier(0, Tok.getLocation());
2965  } else {
2966    if (D.getContext() == Declarator::MemberContext)
2967      Diag(Tok, diag::err_expected_member_name_or_semi)
2968        << D.getDeclSpec().getSourceRange();
2969    else if (getLang().CPlusPlus)
2970      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
2971    else
2972      Diag(Tok, diag::err_expected_ident_lparen);
2973    D.SetIdentifier(0, Tok.getLocation());
2974    D.setInvalidType(true);
2975  }
2976
2977 PastIdentifier:
2978  assert(D.isPastIdentifier() &&
2979         "Haven't past the location of the identifier yet?");
2980
2981  // Don't parse attributes unless we have an identifier.
2982  if (D.getIdentifier())
2983    MaybeParseCXX0XAttributes(D);
2984
2985  while (1) {
2986    if (Tok.is(tok::l_paren)) {
2987      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2988      // In such a case, check if we actually have a function declarator; if it
2989      // is not, the declarator has been fully parsed.
2990      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2991        // When not in file scope, warn for ambiguous function declarators, just
2992        // in case the author intended it as a variable definition.
2993        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2994        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2995          break;
2996      }
2997      ParsedAttributes attrs;
2998      ParseFunctionDeclarator(ConsumeParen(), D, attrs);
2999    } else if (Tok.is(tok::l_square)) {
3000      ParseBracketDeclarator(D);
3001    } else {
3002      break;
3003    }
3004  }
3005}
3006
3007/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
3008/// only called before the identifier, so these are most likely just grouping
3009/// parens for precedence.  If we find that these are actually function
3010/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
3011///
3012///       direct-declarator:
3013///         '(' declarator ')'
3014/// [GNU]   '(' attributes declarator ')'
3015///         direct-declarator '(' parameter-type-list ')'
3016///         direct-declarator '(' identifier-list[opt] ')'
3017/// [GNU]   direct-declarator '(' parameter-forward-declarations
3018///                    parameter-type-list[opt] ')'
3019///
3020void Parser::ParseParenDeclarator(Declarator &D) {
3021  SourceLocation StartLoc = ConsumeParen();
3022  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
3023
3024  // Eat any attributes before we look at whether this is a grouping or function
3025  // declarator paren.  If this is a grouping paren, the attribute applies to
3026  // the type being built up, for example:
3027  //     int (__attribute__(()) *x)(long y)
3028  // If this ends up not being a grouping paren, the attribute applies to the
3029  // first argument, for example:
3030  //     int (__attribute__(()) int x)
3031  // In either case, we need to eat any attributes to be able to determine what
3032  // sort of paren this is.
3033  //
3034  ParsedAttributes attrs;
3035  bool RequiresArg = false;
3036  if (Tok.is(tok::kw___attribute)) {
3037    ParseGNUAttributes(attrs);
3038
3039    // We require that the argument list (if this is a non-grouping paren) be
3040    // present even if the attribute list was empty.
3041    RequiresArg = true;
3042  }
3043  // Eat any Microsoft extensions.
3044  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
3045       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
3046       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
3047    ParseMicrosoftTypeAttributes(attrs);
3048  }
3049  // Eat any Borland extensions.
3050  if  (Tok.is(tok::kw___pascal))
3051    ParseBorlandTypeAttributes(attrs);
3052
3053  // If we haven't past the identifier yet (or where the identifier would be
3054  // stored, if this is an abstract declarator), then this is probably just
3055  // grouping parens. However, if this could be an abstract-declarator, then
3056  // this could also be the start of function arguments (consider 'void()').
3057  bool isGrouping;
3058
3059  if (!D.mayOmitIdentifier()) {
3060    // If this can't be an abstract-declarator, this *must* be a grouping
3061    // paren, because we haven't seen the identifier yet.
3062    isGrouping = true;
3063  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3064             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3065             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3066    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3067    // considered to be a type, not a K&R identifier-list.
3068    isGrouping = false;
3069  } else {
3070    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3071    isGrouping = true;
3072  }
3073
3074  // If this is a grouping paren, handle:
3075  // direct-declarator: '(' declarator ')'
3076  // direct-declarator: '(' attributes declarator ')'
3077  if (isGrouping) {
3078    bool hadGroupingParens = D.hasGroupingParens();
3079    D.setGroupingParens(true);
3080    if (!attrs.empty())
3081      D.addAttributes(attrs.getList(), SourceLocation());
3082
3083    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3084    // Match the ')'.
3085    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, StartLoc);
3086    D.AddTypeInfo(DeclaratorChunk::getParen(StartLoc, EndLoc), EndLoc);
3087
3088    D.setGroupingParens(hadGroupingParens);
3089    return;
3090  }
3091
3092  // Okay, if this wasn't a grouping paren, it must be the start of a function
3093  // argument list.  Recognize that this declarator will never have an
3094  // identifier (and remember where it would have been), then call into
3095  // ParseFunctionDeclarator to handle of argument list.
3096  D.SetIdentifier(0, Tok.getLocation());
3097
3098  ParseFunctionDeclarator(StartLoc, D, attrs, RequiresArg);
3099}
3100
3101/// ParseFunctionDeclarator - We are after the identifier and have parsed the
3102/// declarator D up to a paren, which indicates that we are parsing function
3103/// arguments.
3104///
3105/// If AttrList is non-null, then the caller parsed those arguments immediately
3106/// after the open paren - they should be considered to be the first argument of
3107/// a parameter.  If RequiresArg is true, then the first argument of the
3108/// function is required to be present and required to not be an identifier
3109/// list.
3110///
3111/// This method also handles this portion of the grammar:
3112///       parameter-type-list: [C99 6.7.5]
3113///         parameter-list
3114///         parameter-list ',' '...'
3115/// [C++]   parameter-list '...'
3116///
3117///       parameter-list: [C99 6.7.5]
3118///         parameter-declaration
3119///         parameter-list ',' parameter-declaration
3120///
3121///       parameter-declaration: [C99 6.7.5]
3122///         declaration-specifiers declarator
3123/// [C++]   declaration-specifiers declarator '=' assignment-expression
3124/// [GNU]   declaration-specifiers declarator attributes
3125///         declaration-specifiers abstract-declarator[opt]
3126/// [C++]   declaration-specifiers abstract-declarator[opt]
3127///           '=' assignment-expression
3128/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
3129///
3130/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]",
3131/// C++0x "ref-qualifier[opt]" and "exception-specification[opt]".
3132///
3133/// [C++0x] exception-specification:
3134///           dynamic-exception-specification
3135///           noexcept-specification
3136///
3137void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
3138                                     ParsedAttributes &attrs,
3139                                     bool RequiresArg) {
3140  // lparen is already consumed!
3141  assert(D.isPastIdentifier() && "Should not call before identifier!");
3142
3143  ParsedType TrailingReturnType;
3144
3145  // This parameter list may be empty.
3146  if (Tok.is(tok::r_paren)) {
3147    if (RequiresArg)
3148      Diag(Tok, diag::err_argument_required_after_attribute);
3149
3150    SourceLocation EndLoc = ConsumeParen();  // Eat the closing ')'.
3151
3152    // cv-qualifier-seq[opt].
3153    DeclSpec DS;
3154    SourceLocation RefQualifierLoc;
3155    bool RefQualifierIsLValueRef = true;
3156    ExceptionSpecificationType ESpecType = EST_None;
3157    SourceRange ESpecRange;
3158    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
3159    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
3160    ExprResult NoexceptExpr;
3161    if (getLang().CPlusPlus) {
3162      MaybeParseCXX0XAttributes(attrs);
3163
3164      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3165      if (!DS.getSourceRange().getEnd().isInvalid())
3166        EndLoc = DS.getSourceRange().getEnd();
3167
3168      // Parse ref-qualifier[opt]
3169      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
3170        if (!getLang().CPlusPlus0x)
3171          Diag(Tok, diag::ext_ref_qualifier);
3172
3173        RefQualifierIsLValueRef = Tok.is(tok::amp);
3174        RefQualifierLoc = ConsumeToken();
3175        EndLoc = RefQualifierLoc;
3176      }
3177
3178      // Parse exception-specification[opt].
3179      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
3180                                                   DynamicExceptions,
3181                                                   DynamicExceptionRanges,
3182                                                   NoexceptExpr);
3183      if (ESpecType != EST_None)
3184        EndLoc = ESpecRange.getEnd();
3185
3186      // Parse trailing-return-type.
3187      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3188        TrailingReturnType = ParseTrailingReturnType().get();
3189      }
3190    }
3191
3192    // Remember that we parsed a function type, and remember the attributes.
3193    // int() -> no prototype, no '...'.
3194    D.AddTypeInfo(DeclaratorChunk::getFunction(attrs,
3195                                               /*prototype*/getLang().CPlusPlus,
3196                                               /*variadic*/ false,
3197                                               SourceLocation(),
3198                                               /*arglist*/ 0, 0,
3199                                               DS.getTypeQualifiers(),
3200                                               RefQualifierIsLValueRef,
3201                                               RefQualifierLoc,
3202                                               ESpecType, ESpecRange.getBegin(),
3203                                               DynamicExceptions.data(),
3204                                               DynamicExceptionRanges.data(),
3205                                               DynamicExceptions.size(),
3206                                               NoexceptExpr.isUsable() ?
3207                                                 NoexceptExpr.get() : 0,
3208                                               LParenLoc, EndLoc, D,
3209                                               TrailingReturnType),
3210                  EndLoc);
3211    return;
3212  }
3213
3214  // Alternatively, this parameter list may be an identifier list form for a
3215  // K&R-style function:  void foo(a,b,c)
3216  if (!getLang().CPlusPlus && Tok.is(tok::identifier)
3217      && !TryAltiVecVectorToken()) {
3218    if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
3219      // K&R identifier lists can't have typedefs as identifiers, per
3220      // C99 6.7.5.3p11.
3221      if (RequiresArg)
3222        Diag(Tok, diag::err_argument_required_after_attribute);
3223
3224      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
3225      // normal declarators, not for abstract-declarators.  Get the first
3226      // identifier.
3227      Token FirstTok = Tok;
3228      ConsumeToken();  // eat the first identifier.
3229
3230      // Identifier lists follow a really simple grammar: the identifiers can
3231      // be followed *only* by a ", moreidentifiers" or ")".  However, K&R
3232      // identifier lists are really rare in the brave new modern world, and it
3233      // is very common for someone to typo a type in a non-k&r style list.  If
3234      // we are presented with something like: "void foo(intptr x, float y)",
3235      // we don't want to start parsing the function declarator as though it is
3236      // a K&R style declarator just because intptr is an invalid type.
3237      //
3238      // To handle this, we check to see if the token after the first identifier
3239      // is a "," or ")".  Only if so, do we parse it as an identifier list.
3240      if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
3241        return ParseFunctionDeclaratorIdentifierList(LParenLoc,
3242                                                   FirstTok.getIdentifierInfo(),
3243                                                     FirstTok.getLocation(), D);
3244
3245      // If we get here, the code is invalid.  Push the first identifier back
3246      // into the token stream and parse the first argument as an (invalid)
3247      // normal argument declarator.
3248      PP.EnterToken(Tok);
3249      Tok = FirstTok;
3250    }
3251  }
3252
3253  // Finally, a normal, non-empty parameter type list.
3254
3255  // Build up an array of information about the parsed arguments.
3256  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3257
3258  // Enter function-declaration scope, limiting any declarators to the
3259  // function prototype scope, including parameter declarators.
3260  ParseScope PrototypeScope(this,
3261                            Scope::FunctionPrototypeScope|Scope::DeclScope);
3262
3263  bool IsVariadic = false;
3264  SourceLocation EllipsisLoc;
3265  while (1) {
3266    if (Tok.is(tok::ellipsis)) {
3267      IsVariadic = true;
3268      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3269      break;
3270    }
3271
3272    // Parse the declaration-specifiers.
3273    // Just use the ParsingDeclaration "scope" of the declarator.
3274    DeclSpec DS;
3275
3276    // Skip any Microsoft attributes before a param.
3277    if (getLang().Microsoft && Tok.is(tok::l_square))
3278      ParseMicrosoftAttributes(DS.getAttributes());
3279
3280    SourceLocation DSStart = Tok.getLocation();
3281
3282    // If the caller parsed attributes for the first argument, add them now.
3283    // Take them so that we only apply the attributes to the first parameter.
3284    DS.takeAttributesFrom(attrs);
3285
3286    ParseDeclarationSpecifiers(DS);
3287
3288    // Parse the declarator.  This is "PrototypeContext", because we must
3289    // accept either 'declarator' or 'abstract-declarator' here.
3290    Declarator ParmDecl(DS, Declarator::PrototypeContext);
3291    ParseDeclarator(ParmDecl);
3292
3293    // Parse GNU attributes, if present.
3294    MaybeParseGNUAttributes(ParmDecl);
3295
3296    // Remember this parsed parameter in ParamInfo.
3297    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
3298
3299    // DefArgToks is used when the parsing of default arguments needs
3300    // to be delayed.
3301    CachedTokens *DefArgToks = 0;
3302
3303    // If no parameter was specified, verify that *something* was specified,
3304    // otherwise we have a missing type and identifier.
3305    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
3306        ParmDecl.getNumTypeObjects() == 0) {
3307      // Completely missing, emit error.
3308      Diag(DSStart, diag::err_missing_param);
3309    } else {
3310      // Otherwise, we have something.  Add it and let semantic analysis try
3311      // to grok it and add the result to the ParamInfo we are building.
3312
3313      // Inform the actions module about the parameter declarator, so it gets
3314      // added to the current scope.
3315      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
3316
3317      // Parse the default argument, if any. We parse the default
3318      // arguments in all dialects; the semantic analysis in
3319      // ActOnParamDefaultArgument will reject the default argument in
3320      // C.
3321      if (Tok.is(tok::equal)) {
3322        SourceLocation EqualLoc = Tok.getLocation();
3323
3324        // Parse the default argument
3325        if (D.getContext() == Declarator::MemberContext) {
3326          // If we're inside a class definition, cache the tokens
3327          // corresponding to the default argument. We'll actually parse
3328          // them when we see the end of the class definition.
3329          // FIXME: Templates will require something similar.
3330          // FIXME: Can we use a smart pointer for Toks?
3331          DefArgToks = new CachedTokens;
3332
3333          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
3334                                    /*StopAtSemi=*/true,
3335                                    /*ConsumeFinalToken=*/false)) {
3336            delete DefArgToks;
3337            DefArgToks = 0;
3338            Actions.ActOnParamDefaultArgumentError(Param);
3339          } else {
3340            // Mark the end of the default argument so that we know when to
3341            // stop when we parse it later on.
3342            Token DefArgEnd;
3343            DefArgEnd.startToken();
3344            DefArgEnd.setKind(tok::cxx_defaultarg_end);
3345            DefArgEnd.setLocation(Tok.getLocation());
3346            DefArgToks->push_back(DefArgEnd);
3347            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
3348                                                (*DefArgToks)[1].getLocation());
3349          }
3350        } else {
3351          // Consume the '='.
3352          ConsumeToken();
3353
3354          // The argument isn't actually potentially evaluated unless it is
3355          // used.
3356          EnterExpressionEvaluationContext Eval(Actions,
3357                                              Sema::PotentiallyEvaluatedIfUsed);
3358
3359          ExprResult DefArgResult(ParseAssignmentExpression());
3360          if (DefArgResult.isInvalid()) {
3361            Actions.ActOnParamDefaultArgumentError(Param);
3362            SkipUntil(tok::comma, tok::r_paren, true, true);
3363          } else {
3364            // Inform the actions module about the default argument
3365            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
3366                                              DefArgResult.take());
3367          }
3368        }
3369      }
3370
3371      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3372                                          ParmDecl.getIdentifierLoc(), Param,
3373                                          DefArgToks));
3374    }
3375
3376    // If the next token is a comma, consume it and keep reading arguments.
3377    if (Tok.isNot(tok::comma)) {
3378      if (Tok.is(tok::ellipsis)) {
3379        IsVariadic = true;
3380        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3381
3382        if (!getLang().CPlusPlus) {
3383          // We have ellipsis without a preceding ',', which is ill-formed
3384          // in C. Complain and provide the fix.
3385          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
3386            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
3387        }
3388      }
3389
3390      break;
3391    }
3392
3393    // Consume the comma.
3394    ConsumeToken();
3395  }
3396
3397  // If we have the closing ')', eat it.
3398  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3399
3400  DeclSpec DS;
3401  SourceLocation RefQualifierLoc;
3402  bool RefQualifierIsLValueRef = true;
3403  ExceptionSpecificationType ESpecType = EST_None;
3404  SourceRange ESpecRange;
3405  llvm::SmallVector<ParsedType, 2> DynamicExceptions;
3406  llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
3407  ExprResult NoexceptExpr;
3408
3409  if (getLang().CPlusPlus) {
3410    MaybeParseCXX0XAttributes(attrs);
3411
3412    // Parse cv-qualifier-seq[opt].
3413    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3414      if (!DS.getSourceRange().getEnd().isInvalid())
3415        EndLoc = DS.getSourceRange().getEnd();
3416
3417    // Parse ref-qualifier[opt]
3418    if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
3419      if (!getLang().CPlusPlus0x)
3420        Diag(Tok, diag::ext_ref_qualifier);
3421
3422      RefQualifierIsLValueRef = Tok.is(tok::amp);
3423      RefQualifierLoc = ConsumeToken();
3424      EndLoc = RefQualifierLoc;
3425    }
3426
3427    // FIXME: We should leave the prototype scope before parsing the exception
3428    // specification, and then reenter it when parsing the trailing return type.
3429    // FIXMEFIXME: Why? That wouldn't be right for the noexcept clause.
3430
3431    // Parse exception-specification[opt].
3432    ESpecType = MaybeParseExceptionSpecification(ESpecRange,
3433                                                 DynamicExceptions,
3434                                                 DynamicExceptionRanges,
3435                                                 NoexceptExpr);
3436    if (ESpecType != EST_None)
3437      EndLoc = ESpecRange.getEnd();
3438
3439    // Parse trailing-return-type.
3440    if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3441      TrailingReturnType = ParseTrailingReturnType().get();
3442    }
3443  }
3444
3445  // Leave prototype scope.
3446  PrototypeScope.Exit();
3447
3448  // Remember that we parsed a function type, and remember the attributes.
3449  D.AddTypeInfo(DeclaratorChunk::getFunction(attrs,
3450                                             /*proto*/true, IsVariadic,
3451                                             EllipsisLoc,
3452                                             ParamInfo.data(), ParamInfo.size(),
3453                                             DS.getTypeQualifiers(),
3454                                             RefQualifierIsLValueRef,
3455                                             RefQualifierLoc,
3456                                             ESpecType, ESpecRange.getBegin(),
3457                                             DynamicExceptions.data(),
3458                                             DynamicExceptionRanges.data(),
3459                                             DynamicExceptions.size(),
3460                                             NoexceptExpr.isUsable() ?
3461                                               NoexceptExpr.get() : 0,
3462                                             LParenLoc, EndLoc, D,
3463                                             TrailingReturnType),
3464                EndLoc);
3465}
3466
3467/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
3468/// we found a K&R-style identifier list instead of a type argument list.  The
3469/// first identifier has already been consumed, and the current token is the
3470/// token right after it.
3471///
3472///       identifier-list: [C99 6.7.5]
3473///         identifier
3474///         identifier-list ',' identifier
3475///
3476void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
3477                                                   IdentifierInfo *FirstIdent,
3478                                                   SourceLocation FirstIdentLoc,
3479                                                   Declarator &D) {
3480  // Build up an array of information about the parsed arguments.
3481  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3482  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
3483
3484  // If there was no identifier specified for the declarator, either we are in
3485  // an abstract-declarator, or we are in a parameter declarator which was found
3486  // to be abstract.  In abstract-declarators, identifier lists are not valid:
3487  // diagnose this.
3488  if (!D.getIdentifier())
3489    Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
3490
3491  // The first identifier was already read, and is known to be the first
3492  // identifier in the list.  Remember this identifier in ParamInfo.
3493  ParamsSoFar.insert(FirstIdent);
3494  ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc, 0));
3495
3496  while (Tok.is(tok::comma)) {
3497    // Eat the comma.
3498    ConsumeToken();
3499
3500    // If this isn't an identifier, report the error and skip until ')'.
3501    if (Tok.isNot(tok::identifier)) {
3502      Diag(Tok, diag::err_expected_ident);
3503      SkipUntil(tok::r_paren);
3504      return;
3505    }
3506
3507    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
3508
3509    // Reject 'typedef int y; int test(x, y)', but continue parsing.
3510    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
3511      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
3512
3513    // Verify that the argument identifier has not already been mentioned.
3514    if (!ParamsSoFar.insert(ParmII)) {
3515      Diag(Tok, diag::err_param_redefinition) << ParmII;
3516    } else {
3517      // Remember this identifier in ParamInfo.
3518      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3519                                                     Tok.getLocation(),
3520                                                     0));
3521    }
3522
3523    // Eat the identifier.
3524    ConsumeToken();
3525  }
3526
3527  // If we have the closing ')', eat it and we're done.
3528  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3529
3530  // Remember that we parsed a function type, and remember the attributes.  This
3531  // function type is always a K&R style function type, which is not varargs and
3532  // has no prototype.
3533  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
3534                                             /*proto*/false, /*varargs*/false,
3535                                             SourceLocation(),
3536                                             &ParamInfo[0], ParamInfo.size(),
3537                                             /*TypeQuals*/0,
3538                                             true, SourceLocation(),
3539                                             EST_None, SourceLocation(), 0, 0,
3540                                             0, 0, LParenLoc, RLoc, D),
3541                RLoc);
3542}
3543
3544/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3545/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3546/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3547/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3548/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3549void Parser::ParseBracketDeclarator(Declarator &D) {
3550  SourceLocation StartLoc = ConsumeBracket();
3551
3552  // C array syntax has many features, but by-far the most common is [] and [4].
3553  // This code does a fast path to handle some of the most obvious cases.
3554  if (Tok.getKind() == tok::r_square) {
3555    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3556    ParsedAttributes attrs;
3557    MaybeParseCXX0XAttributes(attrs);
3558
3559    // Remember that we parsed the empty array type.
3560    ExprResult NumElements;
3561    D.AddTypeInfo(DeclaratorChunk::getArray(0, attrs, false, false, 0,
3562                                            StartLoc, EndLoc),
3563                  EndLoc);
3564    return;
3565  } else if (Tok.getKind() == tok::numeric_constant &&
3566             GetLookAheadToken(1).is(tok::r_square)) {
3567    // [4] is very common.  Parse the numeric constant expression.
3568    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
3569    ConsumeToken();
3570
3571    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3572    ParsedAttributes attrs;
3573    MaybeParseCXX0XAttributes(attrs);
3574
3575    // Remember that we parsed a array type, and remember its features.
3576    D.AddTypeInfo(DeclaratorChunk::getArray(0, attrs, false, 0,
3577                                            ExprRes.release(),
3578                                            StartLoc, EndLoc),
3579                  EndLoc);
3580    return;
3581  }
3582
3583  // If valid, this location is the position where we read the 'static' keyword.
3584  SourceLocation StaticLoc;
3585  if (Tok.is(tok::kw_static))
3586    StaticLoc = ConsumeToken();
3587
3588  // If there is a type-qualifier-list, read it now.
3589  // Type qualifiers in an array subscript are a C99 feature.
3590  DeclSpec DS;
3591  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3592
3593  // If we haven't already read 'static', check to see if there is one after the
3594  // type-qualifier-list.
3595  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
3596    StaticLoc = ConsumeToken();
3597
3598  // Handle "direct-declarator [ type-qual-list[opt] * ]".
3599  bool isStar = false;
3600  ExprResult NumElements;
3601
3602  // Handle the case where we have '[*]' as the array size.  However, a leading
3603  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
3604  // the the token after the star is a ']'.  Since stars in arrays are
3605  // infrequent, use of lookahead is not costly here.
3606  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
3607    ConsumeToken();  // Eat the '*'.
3608
3609    if (StaticLoc.isValid()) {
3610      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
3611      StaticLoc = SourceLocation();  // Drop the static.
3612    }
3613    isStar = true;
3614  } else if (Tok.isNot(tok::r_square)) {
3615    // Note, in C89, this production uses the constant-expr production instead
3616    // of assignment-expr.  The only difference is that assignment-expr allows
3617    // things like '=' and '*='.  Sema rejects these in C89 mode because they
3618    // are not i-c-e's, so we don't need to distinguish between the two here.
3619
3620    // Parse the constant-expression or assignment-expression now (depending
3621    // on dialect).
3622    if (getLang().CPlusPlus)
3623      NumElements = ParseConstantExpression();
3624    else
3625      NumElements = ParseAssignmentExpression();
3626  }
3627
3628  // If there was an error parsing the assignment-expression, recover.
3629  if (NumElements.isInvalid()) {
3630    D.setInvalidType(true);
3631    // If the expression was invalid, skip it.
3632    SkipUntil(tok::r_square);
3633    return;
3634  }
3635
3636  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3637
3638  ParsedAttributes attrs;
3639  MaybeParseCXX0XAttributes(attrs);
3640
3641  // Remember that we parsed a array type, and remember its features.
3642  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(), attrs,
3643                                          StaticLoc.isValid(), isStar,
3644                                          NumElements.release(),
3645                                          StartLoc, EndLoc),
3646                EndLoc);
3647}
3648
3649/// [GNU]   typeof-specifier:
3650///           typeof ( expressions )
3651///           typeof ( type-name )
3652/// [GNU/C++] typeof unary-expression
3653///
3654void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
3655  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
3656  Token OpTok = Tok;
3657  SourceLocation StartLoc = ConsumeToken();
3658
3659  const bool hasParens = Tok.is(tok::l_paren);
3660
3661  bool isCastExpr;
3662  ParsedType CastTy;
3663  SourceRange CastRange;
3664  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
3665                                                          CastTy, CastRange);
3666  if (hasParens)
3667    DS.setTypeofParensRange(CastRange);
3668
3669  if (CastRange.getEnd().isInvalid())
3670    // FIXME: Not accurate, the range gets one token more than it should.
3671    DS.SetRangeEnd(Tok.getLocation());
3672  else
3673    DS.SetRangeEnd(CastRange.getEnd());
3674
3675  if (isCastExpr) {
3676    if (!CastTy) {
3677      DS.SetTypeSpecError();
3678      return;
3679    }
3680
3681    const char *PrevSpec = 0;
3682    unsigned DiagID;
3683    // Check for duplicate type specifiers (e.g. "int typeof(int)").
3684    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
3685                           DiagID, CastTy))
3686      Diag(StartLoc, DiagID) << PrevSpec;
3687    return;
3688  }
3689
3690  // If we get here, the operand to the typeof was an expresion.
3691  if (Operand.isInvalid()) {
3692    DS.SetTypeSpecError();
3693    return;
3694  }
3695
3696  const char *PrevSpec = 0;
3697  unsigned DiagID;
3698  // Check for duplicate type specifiers (e.g. "int typeof(int)").
3699  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
3700                         DiagID, Operand.get()))
3701    Diag(StartLoc, DiagID) << PrevSpec;
3702}
3703
3704
3705/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
3706/// from TryAltiVecVectorToken.
3707bool Parser::TryAltiVecVectorTokenOutOfLine() {
3708  Token Next = NextToken();
3709  switch (Next.getKind()) {
3710  default: return false;
3711  case tok::kw_short:
3712  case tok::kw_long:
3713  case tok::kw_signed:
3714  case tok::kw_unsigned:
3715  case tok::kw_void:
3716  case tok::kw_char:
3717  case tok::kw_int:
3718  case tok::kw_float:
3719  case tok::kw_double:
3720  case tok::kw_bool:
3721  case tok::kw___pixel:
3722    Tok.setKind(tok::kw___vector);
3723    return true;
3724  case tok::identifier:
3725    if (Next.getIdentifierInfo() == Ident_pixel) {
3726      Tok.setKind(tok::kw___vector);
3727      return true;
3728    }
3729    return false;
3730  }
3731}
3732
3733bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
3734                                      const char *&PrevSpec, unsigned &DiagID,
3735                                      bool &isInvalid) {
3736  if (Tok.getIdentifierInfo() == Ident_vector) {
3737    Token Next = NextToken();
3738    switch (Next.getKind()) {
3739    case tok::kw_short:
3740    case tok::kw_long:
3741    case tok::kw_signed:
3742    case tok::kw_unsigned:
3743    case tok::kw_void:
3744    case tok::kw_char:
3745    case tok::kw_int:
3746    case tok::kw_float:
3747    case tok::kw_double:
3748    case tok::kw_bool:
3749    case tok::kw___pixel:
3750      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3751      return true;
3752    case tok::identifier:
3753      if (Next.getIdentifierInfo() == Ident_pixel) {
3754        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3755        return true;
3756      }
3757      break;
3758    default:
3759      break;
3760    }
3761  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
3762             DS.isTypeAltiVecVector()) {
3763    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
3764    return true;
3765  }
3766  return false;
3767}
3768