ParseDecl.cpp revision 31a19b6989bbf326d2de5ae12e712e2a65ca9c34
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228/// [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context) {
232  DeclPtrTy SingleDecl;
233  switch (Tok.getKind()) {
234  case tok::kw_export:
235  case tok::kw_template:
236    SingleDecl = ParseTemplateDeclarationOrSpecialization(Context);
237    break;
238  case tok::kw_namespace:
239    SingleDecl = ParseNamespace(Context);
240    break;
241  case tok::kw_using:
242    SingleDecl = ParseUsingDirectiveOrDeclaration(Context);
243    break;
244  case tok::kw_static_assert:
245    SingleDecl = ParseStaticAssertDeclaration();
246    break;
247  default:
248    return ParseSimpleDeclaration(Context);
249  }
250
251  // This routine returns a DeclGroup, if the thing we parsed only contains a
252  // single decl, convert it now.
253  return Actions.ConvertDeclToDeclGroup(SingleDecl);
254}
255
256///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
257///         declaration-specifiers init-declarator-list[opt] ';'
258///[C90/C++]init-declarator-list ';'                             [TODO]
259/// [OMP]   threadprivate-directive                              [TODO]
260///
261/// If RequireSemi is false, this does not check for a ';' at the end of the
262/// declaration.
263Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
264                                                      bool RequireSemi) {
265  // Parse the common declaration-specifiers piece.
266  DeclSpec DS;
267  ParseDeclarationSpecifiers(DS);
268
269  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
270  // declaration-specifiers init-declarator-list[opt] ';'
271  if (Tok.is(tok::semi)) {
272    ConsumeToken();
273    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
274    return Actions.ConvertDeclToDeclGroup(TheDecl);
275  }
276
277  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
278  ParseDeclarator(DeclaratorInfo);
279
280  DeclGroupPtrTy DG =
281    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
282
283  // If the client wants to check what comes after the declaration, just return
284  // immediately without checking anything!
285  if (!RequireSemi) return DG;
286
287  if (Tok.is(tok::semi)) {
288    ConsumeToken();
289    return DG;
290  }
291
292  Diag(Tok, diag::err_expected_semi_declation);
293  // Skip to end of block or statement
294  SkipUntil(tok::r_brace, true, true);
295  if (Tok.is(tok::semi))
296    ConsumeToken();
297  return DG;
298}
299
300
301/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
302/// parsing 'declaration-specifiers declarator'.  This method is split out this
303/// way to handle the ambiguity between top-level function-definitions and
304/// declarations.
305///
306///       init-declarator-list: [C99 6.7]
307///         init-declarator
308///         init-declarator-list ',' init-declarator
309///       init-declarator: [C99 6.7]
310///         declarator
311///         declarator '=' initializer
312/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
313/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
314/// [C++]   declarator initializer[opt]
315///
316/// [C++] initializer:
317/// [C++]   '=' initializer-clause
318/// [C++]   '(' expression-list ')'
319/// [C++0x] '=' 'default'                                                [TODO]
320/// [C++0x] '=' 'delete'
321///
322/// According to the standard grammar, =default and =delete are function
323/// definitions, but that definitely doesn't fit with the parser here.
324///
325Parser::DeclGroupPtrTy Parser::
326ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
327  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
328  // that we parse together here.
329  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
330
331  // At this point, we know that it is not a function definition.  Parse the
332  // rest of the init-declarator-list.
333  while (1) {
334    // If a simple-asm-expr is present, parse it.
335    if (Tok.is(tok::kw_asm)) {
336      SourceLocation Loc;
337      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
338      if (AsmLabel.isInvalid()) {
339        SkipUntil(tok::semi, true, true);
340        return DeclGroupPtrTy();
341      }
342
343      D.setAsmLabel(AsmLabel.release());
344      D.SetRangeEnd(Loc);
345    }
346
347    // If attributes are present, parse them.
348    if (Tok.is(tok::kw___attribute)) {
349      SourceLocation Loc;
350      AttributeList *AttrList = ParseAttributes(&Loc);
351      D.AddAttributes(AttrList, Loc);
352    }
353
354    // Inform the current actions module that we just parsed this declarator.
355    DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
356    DeclsInGroup.push_back(ThisDecl);
357
358    // Parse declarator '=' initializer.
359    if (Tok.is(tok::equal)) {
360      ConsumeToken();
361      if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
362        SourceLocation DelLoc = ConsumeToken();
363        Actions.SetDeclDeleted(ThisDecl, DelLoc);
364      } else {
365        OwningExprResult Init(ParseInitializer());
366        if (Init.isInvalid()) {
367          SkipUntil(tok::semi, true, true);
368          return DeclGroupPtrTy();
369        }
370        Actions.AddInitializerToDecl(ThisDecl, move(Init));
371      }
372    } else if (Tok.is(tok::l_paren)) {
373      // Parse C++ direct initializer: '(' expression-list ')'
374      SourceLocation LParenLoc = ConsumeParen();
375      ExprVector Exprs(Actions);
376      CommaLocsTy CommaLocs;
377
378      bool InvalidExpr = false;
379      if (ParseExpressionList(Exprs, CommaLocs)) {
380        SkipUntil(tok::r_paren);
381        InvalidExpr = true;
382      }
383      // Match the ')'.
384      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
385
386      if (!InvalidExpr) {
387        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
388               "Unexpected number of commas!");
389        Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
390                                              move_arg(Exprs),
391                                              &CommaLocs[0], RParenLoc);
392      }
393    } else {
394      Actions.ActOnUninitializedDecl(ThisDecl);
395    }
396
397    // If we don't have a comma, it is either the end of the list (a ';') or an
398    // error, bail out.
399    if (Tok.isNot(tok::comma))
400      break;
401
402    // Consume the comma.
403    ConsumeToken();
404
405    // Parse the next declarator.
406    D.clear();
407
408    // Accept attributes in an init-declarator.  In the first declarator in a
409    // declaration, these would be part of the declspec.  In subsequent
410    // declarators, they become part of the declarator itself, so that they
411    // don't apply to declarators after *this* one.  Examples:
412    //    short __attribute__((common)) var;    -> declspec
413    //    short var __attribute__((common));    -> declarator
414    //    short x, __attribute__((common)) var;    -> declarator
415    if (Tok.is(tok::kw___attribute)) {
416      SourceLocation Loc;
417      AttributeList *AttrList = ParseAttributes(&Loc);
418      D.AddAttributes(AttrList, Loc);
419    }
420
421    ParseDeclarator(D);
422  }
423
424  return Actions.FinalizeDeclaratorGroup(CurScope, &DeclsInGroup[0],
425                                         DeclsInGroup.size());
426}
427
428/// ParseSpecifierQualifierList
429///        specifier-qualifier-list:
430///          type-specifier specifier-qualifier-list[opt]
431///          type-qualifier specifier-qualifier-list[opt]
432/// [GNU]    attributes     specifier-qualifier-list[opt]
433///
434void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
435  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
436  /// parse declaration-specifiers and complain about extra stuff.
437  ParseDeclarationSpecifiers(DS);
438
439  // Validate declspec for type-name.
440  unsigned Specs = DS.getParsedSpecifiers();
441  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
442    Diag(Tok, diag::err_typename_requires_specqual);
443
444  // Issue diagnostic and remove storage class if present.
445  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
446    if (DS.getStorageClassSpecLoc().isValid())
447      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
448    else
449      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
450    DS.ClearStorageClassSpecs();
451  }
452
453  // Issue diagnostic and remove function specfier if present.
454  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
455    if (DS.isInlineSpecified())
456      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
457    if (DS.isVirtualSpecified())
458      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
459    if (DS.isExplicitSpecified())
460      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
461    DS.ClearFunctionSpecs();
462  }
463}
464
465/// ParseDeclarationSpecifiers
466///       declaration-specifiers: [C99 6.7]
467///         storage-class-specifier declaration-specifiers[opt]
468///         type-specifier declaration-specifiers[opt]
469/// [C99]   function-specifier declaration-specifiers[opt]
470/// [GNU]   attributes declaration-specifiers[opt]
471///
472///       storage-class-specifier: [C99 6.7.1]
473///         'typedef'
474///         'extern'
475///         'static'
476///         'auto'
477///         'register'
478/// [C++]   'mutable'
479/// [GNU]   '__thread'
480///       function-specifier: [C99 6.7.4]
481/// [C99]   'inline'
482/// [C++]   'virtual'
483/// [C++]   'explicit'
484///
485void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
486                                        TemplateParameterLists *TemplateParams,
487                                        AccessSpecifier AS){
488  DS.SetRangeStart(Tok.getLocation());
489  while (1) {
490    int isInvalid = false;
491    const char *PrevSpec = 0;
492    SourceLocation Loc = Tok.getLocation();
493
494    switch (Tok.getKind()) {
495    default:
496    DoneWithDeclSpec:
497      // If this is not a declaration specifier token, we're done reading decl
498      // specifiers.  First verify that DeclSpec's are consistent.
499      DS.Finish(Diags, PP.getSourceManager(), getLang());
500      return;
501
502    case tok::coloncolon: // ::foo::bar
503      // Annotate C++ scope specifiers.  If we get one, loop.
504      if (TryAnnotateCXXScopeToken())
505        continue;
506      goto DoneWithDeclSpec;
507
508    case tok::annot_cxxscope: {
509      if (DS.hasTypeSpecifier())
510        goto DoneWithDeclSpec;
511
512      // We are looking for a qualified typename.
513      Token Next = NextToken();
514      if (Next.is(tok::annot_template_id) &&
515          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
516            ->Kind == TNK_Type_template) {
517        // We have a qualified template-id, e.g., N::A<int>
518        CXXScopeSpec SS;
519        ParseOptionalCXXScopeSpecifier(SS);
520        assert(Tok.is(tok::annot_template_id) &&
521               "ParseOptionalCXXScopeSpecifier not working");
522        AnnotateTemplateIdTokenAsType(&SS);
523        continue;
524      }
525
526      if (Next.isNot(tok::identifier))
527        goto DoneWithDeclSpec;
528
529      CXXScopeSpec SS;
530      SS.setScopeRep(Tok.getAnnotationValue());
531      SS.setRange(Tok.getAnnotationRange());
532
533      // If the next token is the name of the class type that the C++ scope
534      // denotes, followed by a '(', then this is a constructor declaration.
535      // We're done with the decl-specifiers.
536      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
537                                     CurScope, &SS) &&
538          GetLookAheadToken(2).is(tok::l_paren))
539        goto DoneWithDeclSpec;
540
541      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
542                                            Next.getLocation(), CurScope, &SS);
543
544      if (TypeRep == 0)
545        goto DoneWithDeclSpec;
546
547      ConsumeToken(); // The C++ scope.
548
549      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
550                                     TypeRep);
551      if (isInvalid)
552        break;
553
554      DS.SetRangeEnd(Tok.getLocation());
555      ConsumeToken(); // The typename.
556
557      continue;
558    }
559
560    case tok::annot_typename: {
561      if (Tok.getAnnotationValue())
562        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
563                                       Tok.getAnnotationValue());
564      else
565        DS.SetTypeSpecError();
566      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
567      ConsumeToken(); // The typename
568
569      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
570      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
571      // Objective-C interface.  If we don't have Objective-C or a '<', this is
572      // just a normal reference to a typedef name.
573      if (!Tok.is(tok::less) || !getLang().ObjC1)
574        continue;
575
576      SourceLocation EndProtoLoc;
577      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
578      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
579      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
580
581      DS.SetRangeEnd(EndProtoLoc);
582      continue;
583    }
584
585      // typedef-name
586    case tok::identifier: {
587      // In C++, check to see if this is a scope specifier like foo::bar::, if
588      // so handle it as such.  This is important for ctor parsing.
589      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
590        continue;
591
592      // This identifier can only be a typedef name if we haven't already seen
593      // a type-specifier.  Without this check we misparse:
594      //  typedef int X; struct Y { short X; };  as 'short int'.
595      if (DS.hasTypeSpecifier())
596        goto DoneWithDeclSpec;
597
598      // It has to be available as a typedef too!
599      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
600                                            Tok.getLocation(), CurScope);
601
602      if (TypeRep == 0)
603        goto DoneWithDeclSpec;
604
605      // C++: If the identifier is actually the name of the class type
606      // being defined and the next token is a '(', then this is a
607      // constructor declaration. We're done with the decl-specifiers
608      // and will treat this token as an identifier.
609      if (getLang().CPlusPlus &&
610          CurScope->isClassScope() &&
611          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
612          NextToken().getKind() == tok::l_paren)
613        goto DoneWithDeclSpec;
614
615      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
616                                     TypeRep);
617      if (isInvalid)
618        break;
619
620      DS.SetRangeEnd(Tok.getLocation());
621      ConsumeToken(); // The identifier
622
623      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
624      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
625      // Objective-C interface.  If we don't have Objective-C or a '<', this is
626      // just a normal reference to a typedef name.
627      if (!Tok.is(tok::less) || !getLang().ObjC1)
628        continue;
629
630      SourceLocation EndProtoLoc;
631      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
632      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
633      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
634
635      DS.SetRangeEnd(EndProtoLoc);
636
637      // Need to support trailing type qualifiers (e.g. "id<p> const").
638      // If a type specifier follows, it will be diagnosed elsewhere.
639      continue;
640    }
641
642      // type-name
643    case tok::annot_template_id: {
644      TemplateIdAnnotation *TemplateId
645        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
646      if (TemplateId->Kind != TNK_Type_template) {
647        // This template-id does not refer to a type name, so we're
648        // done with the type-specifiers.
649        goto DoneWithDeclSpec;
650      }
651
652      // Turn the template-id annotation token into a type annotation
653      // token, then try again to parse it as a type-specifier.
654      AnnotateTemplateIdTokenAsType();
655      continue;
656    }
657
658    // GNU attributes support.
659    case tok::kw___attribute:
660      DS.AddAttributes(ParseAttributes());
661      continue;
662
663    // Microsoft declspec support.
664    case tok::kw___declspec:
665      if (!PP.getLangOptions().Microsoft)
666        goto DoneWithDeclSpec;
667      FuzzyParseMicrosoftDeclSpec();
668      continue;
669
670    // Microsoft single token adornments.
671    case tok::kw___forceinline:
672    case tok::kw___w64:
673    case tok::kw___cdecl:
674    case tok::kw___stdcall:
675    case tok::kw___fastcall:
676      if (!PP.getLangOptions().Microsoft)
677        goto DoneWithDeclSpec;
678      // Just ignore it.
679      break;
680
681    // storage-class-specifier
682    case tok::kw_typedef:
683      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
684      break;
685    case tok::kw_extern:
686      if (DS.isThreadSpecified())
687        Diag(Tok, diag::ext_thread_before) << "extern";
688      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
689      break;
690    case tok::kw___private_extern__:
691      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
692                                         PrevSpec);
693      break;
694    case tok::kw_static:
695      if (DS.isThreadSpecified())
696        Diag(Tok, diag::ext_thread_before) << "static";
697      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
698      break;
699    case tok::kw_auto:
700      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
701      break;
702    case tok::kw_register:
703      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
704      break;
705    case tok::kw_mutable:
706      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
707      break;
708    case tok::kw___thread:
709      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
710      break;
711
712      continue;
713
714    // function-specifier
715    case tok::kw_inline:
716      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
717      break;
718    case tok::kw_virtual:
719      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
720      break;
721    case tok::kw_explicit:
722      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
723      break;
724
725    // type-specifier
726    case tok::kw_short:
727      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
728      break;
729    case tok::kw_long:
730      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
731        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
732      else
733        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
734      break;
735    case tok::kw_signed:
736      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
737      break;
738    case tok::kw_unsigned:
739      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
740      break;
741    case tok::kw__Complex:
742      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
743      break;
744    case tok::kw__Imaginary:
745      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
746      break;
747    case tok::kw_void:
748      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
749      break;
750    case tok::kw_char:
751      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
752      break;
753    case tok::kw_int:
754      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
755      break;
756    case tok::kw_float:
757      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
758      break;
759    case tok::kw_double:
760      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
761      break;
762    case tok::kw_wchar_t:
763      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
764      break;
765    case tok::kw_bool:
766    case tok::kw__Bool:
767      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
768      break;
769    case tok::kw__Decimal32:
770      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
771      break;
772    case tok::kw__Decimal64:
773      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
774      break;
775    case tok::kw__Decimal128:
776      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
777      break;
778
779    // class-specifier:
780    case tok::kw_class:
781    case tok::kw_struct:
782    case tok::kw_union:
783      ParseClassSpecifier(DS, TemplateParams, AS);
784      continue;
785
786    // enum-specifier:
787    case tok::kw_enum:
788      ParseEnumSpecifier(DS, AS);
789      continue;
790
791    // cv-qualifier:
792    case tok::kw_const:
793      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
794      break;
795    case tok::kw_volatile:
796      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
797                                 getLang())*2;
798      break;
799    case tok::kw_restrict:
800      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
801                                 getLang())*2;
802      break;
803
804    // C++ typename-specifier:
805    case tok::kw_typename:
806      if (TryAnnotateTypeOrScopeToken())
807        continue;
808      break;
809
810    // GNU typeof support.
811    case tok::kw_typeof:
812      ParseTypeofSpecifier(DS);
813      continue;
814
815    case tok::less:
816      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
817      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
818      // but we support it.
819      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
820        goto DoneWithDeclSpec;
821
822      {
823        SourceLocation EndProtoLoc;
824        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
825        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
826        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
827        DS.SetRangeEnd(EndProtoLoc);
828
829        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
830          << SourceRange(Loc, EndProtoLoc);
831        // Need to support trailing type qualifiers (e.g. "id<p> const").
832        // If a type specifier follows, it will be diagnosed elsewhere.
833        continue;
834      }
835    }
836    // If the specifier combination wasn't legal, issue a diagnostic.
837    if (isInvalid) {
838      assert(PrevSpec && "Method did not return previous specifier!");
839      // Pick between error or extwarn.
840      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
841                                       : diag::ext_duplicate_declspec;
842      Diag(Tok, DiagID) << PrevSpec;
843    }
844    DS.SetRangeEnd(Tok.getLocation());
845    ConsumeToken();
846  }
847}
848
849/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
850/// primarily follow the C++ grammar with additions for C99 and GNU,
851/// which together subsume the C grammar. Note that the C++
852/// type-specifier also includes the C type-qualifier (for const,
853/// volatile, and C99 restrict). Returns true if a type-specifier was
854/// found (and parsed), false otherwise.
855///
856///       type-specifier: [C++ 7.1.5]
857///         simple-type-specifier
858///         class-specifier
859///         enum-specifier
860///         elaborated-type-specifier  [TODO]
861///         cv-qualifier
862///
863///       cv-qualifier: [C++ 7.1.5.1]
864///         'const'
865///         'volatile'
866/// [C99]   'restrict'
867///
868///       simple-type-specifier: [ C++ 7.1.5.2]
869///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
870///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
871///         'char'
872///         'wchar_t'
873///         'bool'
874///         'short'
875///         'int'
876///         'long'
877///         'signed'
878///         'unsigned'
879///         'float'
880///         'double'
881///         'void'
882/// [C99]   '_Bool'
883/// [C99]   '_Complex'
884/// [C99]   '_Imaginary'  // Removed in TC2?
885/// [GNU]   '_Decimal32'
886/// [GNU]   '_Decimal64'
887/// [GNU]   '_Decimal128'
888/// [GNU]   typeof-specifier
889/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
890/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
891bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
892                                        const char *&PrevSpec,
893                                        TemplateParameterLists *TemplateParams){
894  SourceLocation Loc = Tok.getLocation();
895
896  switch (Tok.getKind()) {
897  case tok::identifier:   // foo::bar
898  case tok::kw_typename:  // typename foo::bar
899    // Annotate typenames and C++ scope specifiers.  If we get one, just
900    // recurse to handle whatever we get.
901    if (TryAnnotateTypeOrScopeToken())
902      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
903    // Otherwise, not a type specifier.
904    return false;
905  case tok::coloncolon:   // ::foo::bar
906    if (NextToken().is(tok::kw_new) ||    // ::new
907        NextToken().is(tok::kw_delete))   // ::delete
908      return false;
909
910    // Annotate typenames and C++ scope specifiers.  If we get one, just
911    // recurse to handle whatever we get.
912    if (TryAnnotateTypeOrScopeToken())
913      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
914    // Otherwise, not a type specifier.
915    return false;
916
917  // simple-type-specifier:
918  case tok::annot_typename: {
919    if (Tok.getAnnotationValue())
920      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
921                                     Tok.getAnnotationValue());
922    else
923      DS.SetTypeSpecError();
924    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
925    ConsumeToken(); // The typename
926
927    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
928    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
929    // Objective-C interface.  If we don't have Objective-C or a '<', this is
930    // just a normal reference to a typedef name.
931    if (!Tok.is(tok::less) || !getLang().ObjC1)
932      return true;
933
934    SourceLocation EndProtoLoc;
935    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
936    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
937    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
938
939    DS.SetRangeEnd(EndProtoLoc);
940    return true;
941  }
942
943  case tok::kw_short:
944    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
945    break;
946  case tok::kw_long:
947    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
948      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
949    else
950      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
951    break;
952  case tok::kw_signed:
953    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
954    break;
955  case tok::kw_unsigned:
956    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
957    break;
958  case tok::kw__Complex:
959    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
960    break;
961  case tok::kw__Imaginary:
962    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
963    break;
964  case tok::kw_void:
965    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
966    break;
967  case tok::kw_char:
968    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
969    break;
970  case tok::kw_int:
971    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
972    break;
973  case tok::kw_float:
974    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
975    break;
976  case tok::kw_double:
977    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
978    break;
979  case tok::kw_wchar_t:
980    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
981    break;
982  case tok::kw_bool:
983  case tok::kw__Bool:
984    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
985    break;
986  case tok::kw__Decimal32:
987    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
988    break;
989  case tok::kw__Decimal64:
990    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
991    break;
992  case tok::kw__Decimal128:
993    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
994    break;
995
996  // class-specifier:
997  case tok::kw_class:
998  case tok::kw_struct:
999  case tok::kw_union:
1000    ParseClassSpecifier(DS, TemplateParams);
1001    return true;
1002
1003  // enum-specifier:
1004  case tok::kw_enum:
1005    ParseEnumSpecifier(DS);
1006    return true;
1007
1008  // cv-qualifier:
1009  case tok::kw_const:
1010    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1011                               getLang())*2;
1012    break;
1013  case tok::kw_volatile:
1014    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1015                               getLang())*2;
1016    break;
1017  case tok::kw_restrict:
1018    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1019                               getLang())*2;
1020    break;
1021
1022  // GNU typeof support.
1023  case tok::kw_typeof:
1024    ParseTypeofSpecifier(DS);
1025    return true;
1026
1027  case tok::kw___cdecl:
1028  case tok::kw___stdcall:
1029  case tok::kw___fastcall:
1030    if (!PP.getLangOptions().Microsoft) return false;
1031    ConsumeToken();
1032    return true;
1033
1034  default:
1035    // Not a type-specifier; do nothing.
1036    return false;
1037  }
1038
1039  // If the specifier combination wasn't legal, issue a diagnostic.
1040  if (isInvalid) {
1041    assert(PrevSpec && "Method did not return previous specifier!");
1042    // Pick between error or extwarn.
1043    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1044                                     : diag::ext_duplicate_declspec;
1045    Diag(Tok, DiagID) << PrevSpec;
1046  }
1047  DS.SetRangeEnd(Tok.getLocation());
1048  ConsumeToken(); // whatever we parsed above.
1049  return true;
1050}
1051
1052/// ParseStructDeclaration - Parse a struct declaration without the terminating
1053/// semicolon.
1054///
1055///       struct-declaration:
1056///         specifier-qualifier-list struct-declarator-list
1057/// [GNU]   __extension__ struct-declaration
1058/// [GNU]   specifier-qualifier-list
1059///       struct-declarator-list:
1060///         struct-declarator
1061///         struct-declarator-list ',' struct-declarator
1062/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1063///       struct-declarator:
1064///         declarator
1065/// [GNU]   declarator attributes[opt]
1066///         declarator[opt] ':' constant-expression
1067/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1068///
1069void Parser::
1070ParseStructDeclaration(DeclSpec &DS,
1071                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1072  if (Tok.is(tok::kw___extension__)) {
1073    // __extension__ silences extension warnings in the subexpression.
1074    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1075    ConsumeToken();
1076    return ParseStructDeclaration(DS, Fields);
1077  }
1078
1079  // Parse the common specifier-qualifiers-list piece.
1080  SourceLocation DSStart = Tok.getLocation();
1081  ParseSpecifierQualifierList(DS);
1082
1083  // If there are no declarators, this is a free-standing declaration
1084  // specifier. Let the actions module cope with it.
1085  if (Tok.is(tok::semi)) {
1086    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1087    return;
1088  }
1089
1090  // Read struct-declarators until we find the semicolon.
1091  Fields.push_back(FieldDeclarator(DS));
1092  while (1) {
1093    FieldDeclarator &DeclaratorInfo = Fields.back();
1094
1095    /// struct-declarator: declarator
1096    /// struct-declarator: declarator[opt] ':' constant-expression
1097    if (Tok.isNot(tok::colon))
1098      ParseDeclarator(DeclaratorInfo.D);
1099
1100    if (Tok.is(tok::colon)) {
1101      ConsumeToken();
1102      OwningExprResult Res(ParseConstantExpression());
1103      if (Res.isInvalid())
1104        SkipUntil(tok::semi, true, true);
1105      else
1106        DeclaratorInfo.BitfieldSize = Res.release();
1107    }
1108
1109    // If attributes exist after the declarator, parse them.
1110    if (Tok.is(tok::kw___attribute)) {
1111      SourceLocation Loc;
1112      AttributeList *AttrList = ParseAttributes(&Loc);
1113      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1114    }
1115
1116    // If we don't have a comma, it is either the end of the list (a ';')
1117    // or an error, bail out.
1118    if (Tok.isNot(tok::comma))
1119      return;
1120
1121    // Consume the comma.
1122    ConsumeToken();
1123
1124    // Parse the next declarator.
1125    Fields.push_back(FieldDeclarator(DS));
1126
1127    // Attributes are only allowed on the second declarator.
1128    if (Tok.is(tok::kw___attribute)) {
1129      SourceLocation Loc;
1130      AttributeList *AttrList = ParseAttributes(&Loc);
1131      Fields.back().D.AddAttributes(AttrList, Loc);
1132    }
1133  }
1134}
1135
1136/// ParseStructUnionBody
1137///       struct-contents:
1138///         struct-declaration-list
1139/// [EXT]   empty
1140/// [GNU]   "struct-declaration-list" without terminatoring ';'
1141///       struct-declaration-list:
1142///         struct-declaration
1143///         struct-declaration-list struct-declaration
1144/// [OBC]   '@' 'defs' '(' class-name ')'
1145///
1146void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1147                                  unsigned TagType, DeclPtrTy TagDecl) {
1148  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1149                                        PP.getSourceManager(),
1150                                        "parsing struct/union body");
1151
1152  SourceLocation LBraceLoc = ConsumeBrace();
1153
1154  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1155  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1156
1157  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1158  // C++.
1159  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1160    Diag(Tok, diag::ext_empty_struct_union_enum)
1161      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1162
1163  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1164  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1165
1166  // While we still have something to read, read the declarations in the struct.
1167  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1168    // Each iteration of this loop reads one struct-declaration.
1169
1170    // Check for extraneous top-level semicolon.
1171    if (Tok.is(tok::semi)) {
1172      Diag(Tok, diag::ext_extra_struct_semi);
1173      ConsumeToken();
1174      continue;
1175    }
1176
1177    // Parse all the comma separated declarators.
1178    DeclSpec DS;
1179    FieldDeclarators.clear();
1180    if (!Tok.is(tok::at)) {
1181      ParseStructDeclaration(DS, FieldDeclarators);
1182
1183      // Convert them all to fields.
1184      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1185        FieldDeclarator &FD = FieldDeclarators[i];
1186        // Install the declarator into the current TagDecl.
1187        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1188                                             DS.getSourceRange().getBegin(),
1189                                             FD.D, FD.BitfieldSize);
1190        FieldDecls.push_back(Field);
1191      }
1192    } else { // Handle @defs
1193      ConsumeToken();
1194      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1195        Diag(Tok, diag::err_unexpected_at);
1196        SkipUntil(tok::semi, true, true);
1197        continue;
1198      }
1199      ConsumeToken();
1200      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1201      if (!Tok.is(tok::identifier)) {
1202        Diag(Tok, diag::err_expected_ident);
1203        SkipUntil(tok::semi, true, true);
1204        continue;
1205      }
1206      llvm::SmallVector<DeclPtrTy, 16> Fields;
1207      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1208                        Tok.getIdentifierInfo(), Fields);
1209      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1210      ConsumeToken();
1211      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1212    }
1213
1214    if (Tok.is(tok::semi)) {
1215      ConsumeToken();
1216    } else if (Tok.is(tok::r_brace)) {
1217      Diag(Tok, diag::ext_expected_semi_decl_list);
1218      break;
1219    } else {
1220      Diag(Tok, diag::err_expected_semi_decl_list);
1221      // Skip to end of block or statement
1222      SkipUntil(tok::r_brace, true, true);
1223    }
1224  }
1225
1226  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1227
1228  AttributeList *AttrList = 0;
1229  // If attributes exist after struct contents, parse them.
1230  if (Tok.is(tok::kw___attribute))
1231    AttrList = ParseAttributes();
1232
1233  Actions.ActOnFields(CurScope,
1234                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1235                      LBraceLoc, RBraceLoc,
1236                      AttrList);
1237  StructScope.Exit();
1238  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1239}
1240
1241
1242/// ParseEnumSpecifier
1243///       enum-specifier: [C99 6.7.2.2]
1244///         'enum' identifier[opt] '{' enumerator-list '}'
1245///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1246/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1247///                                                 '}' attributes[opt]
1248///         'enum' identifier
1249/// [GNU]   'enum' attributes[opt] identifier
1250///
1251/// [C++] elaborated-type-specifier:
1252/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1253///
1254void Parser::ParseEnumSpecifier(DeclSpec &DS, AccessSpecifier AS) {
1255  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1256  SourceLocation StartLoc = ConsumeToken();
1257
1258  // Parse the tag portion of this.
1259
1260  AttributeList *Attr = 0;
1261  // If attributes exist after tag, parse them.
1262  if (Tok.is(tok::kw___attribute))
1263    Attr = ParseAttributes();
1264
1265  CXXScopeSpec SS;
1266  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1267    if (Tok.isNot(tok::identifier)) {
1268      Diag(Tok, diag::err_expected_ident);
1269      if (Tok.isNot(tok::l_brace)) {
1270        // Has no name and is not a definition.
1271        // Skip the rest of this declarator, up until the comma or semicolon.
1272        SkipUntil(tok::comma, true);
1273        return;
1274      }
1275    }
1276  }
1277
1278  // Must have either 'enum name' or 'enum {...}'.
1279  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1280    Diag(Tok, diag::err_expected_ident_lbrace);
1281
1282    // Skip the rest of this declarator, up until the comma or semicolon.
1283    SkipUntil(tok::comma, true);
1284    return;
1285  }
1286
1287  // If an identifier is present, consume and remember it.
1288  IdentifierInfo *Name = 0;
1289  SourceLocation NameLoc;
1290  if (Tok.is(tok::identifier)) {
1291    Name = Tok.getIdentifierInfo();
1292    NameLoc = ConsumeToken();
1293  }
1294
1295  // There are three options here.  If we have 'enum foo;', then this is a
1296  // forward declaration.  If we have 'enum foo {...' then this is a
1297  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1298  //
1299  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1300  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1301  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1302  //
1303  Action::TagKind TK;
1304  if (Tok.is(tok::l_brace))
1305    TK = Action::TK_Definition;
1306  else if (Tok.is(tok::semi))
1307    TK = Action::TK_Declaration;
1308  else
1309    TK = Action::TK_Reference;
1310  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1311                                       StartLoc, SS, Name, NameLoc, Attr, AS);
1312
1313  if (Tok.is(tok::l_brace))
1314    ParseEnumBody(StartLoc, TagDecl);
1315
1316  // TODO: semantic analysis on the declspec for enums.
1317  const char *PrevSpec = 0;
1318  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1319                         TagDecl.getAs<void>()))
1320    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1321}
1322
1323/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1324///       enumerator-list:
1325///         enumerator
1326///         enumerator-list ',' enumerator
1327///       enumerator:
1328///         enumeration-constant
1329///         enumeration-constant '=' constant-expression
1330///       enumeration-constant:
1331///         identifier
1332///
1333void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1334  // Enter the scope of the enum body and start the definition.
1335  ParseScope EnumScope(this, Scope::DeclScope);
1336  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1337
1338  SourceLocation LBraceLoc = ConsumeBrace();
1339
1340  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1341  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1342    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1343
1344  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1345
1346  DeclPtrTy LastEnumConstDecl;
1347
1348  // Parse the enumerator-list.
1349  while (Tok.is(tok::identifier)) {
1350    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1351    SourceLocation IdentLoc = ConsumeToken();
1352
1353    SourceLocation EqualLoc;
1354    OwningExprResult AssignedVal(Actions);
1355    if (Tok.is(tok::equal)) {
1356      EqualLoc = ConsumeToken();
1357      AssignedVal = ParseConstantExpression();
1358      if (AssignedVal.isInvalid())
1359        SkipUntil(tok::comma, tok::r_brace, true, true);
1360    }
1361
1362    // Install the enumerator constant into EnumDecl.
1363    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1364                                                        LastEnumConstDecl,
1365                                                        IdentLoc, Ident,
1366                                                        EqualLoc,
1367                                                        AssignedVal.release());
1368    EnumConstantDecls.push_back(EnumConstDecl);
1369    LastEnumConstDecl = EnumConstDecl;
1370
1371    if (Tok.isNot(tok::comma))
1372      break;
1373    SourceLocation CommaLoc = ConsumeToken();
1374
1375    if (Tok.isNot(tok::identifier) && !getLang().C99)
1376      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1377  }
1378
1379  // Eat the }.
1380  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1381
1382  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1383                        EnumConstantDecls.size());
1384
1385  Action::AttrTy *AttrList = 0;
1386  // If attributes exist after the identifier list, parse them.
1387  if (Tok.is(tok::kw___attribute))
1388    AttrList = ParseAttributes(); // FIXME: where do they do?
1389
1390  EnumScope.Exit();
1391  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1392}
1393
1394/// isTypeSpecifierQualifier - Return true if the current token could be the
1395/// start of a type-qualifier-list.
1396bool Parser::isTypeQualifier() const {
1397  switch (Tok.getKind()) {
1398  default: return false;
1399    // type-qualifier
1400  case tok::kw_const:
1401  case tok::kw_volatile:
1402  case tok::kw_restrict:
1403    return true;
1404  }
1405}
1406
1407/// isTypeSpecifierQualifier - Return true if the current token could be the
1408/// start of a specifier-qualifier-list.
1409bool Parser::isTypeSpecifierQualifier() {
1410  switch (Tok.getKind()) {
1411  default: return false;
1412
1413  case tok::identifier:   // foo::bar
1414  case tok::kw_typename:  // typename T::type
1415    // Annotate typenames and C++ scope specifiers.  If we get one, just
1416    // recurse to handle whatever we get.
1417    if (TryAnnotateTypeOrScopeToken())
1418      return isTypeSpecifierQualifier();
1419    // Otherwise, not a type specifier.
1420    return false;
1421
1422  case tok::coloncolon:   // ::foo::bar
1423    if (NextToken().is(tok::kw_new) ||    // ::new
1424        NextToken().is(tok::kw_delete))   // ::delete
1425      return false;
1426
1427    // Annotate typenames and C++ scope specifiers.  If we get one, just
1428    // recurse to handle whatever we get.
1429    if (TryAnnotateTypeOrScopeToken())
1430      return isTypeSpecifierQualifier();
1431    // Otherwise, not a type specifier.
1432    return false;
1433
1434    // GNU attributes support.
1435  case tok::kw___attribute:
1436    // GNU typeof support.
1437  case tok::kw_typeof:
1438
1439    // type-specifiers
1440  case tok::kw_short:
1441  case tok::kw_long:
1442  case tok::kw_signed:
1443  case tok::kw_unsigned:
1444  case tok::kw__Complex:
1445  case tok::kw__Imaginary:
1446  case tok::kw_void:
1447  case tok::kw_char:
1448  case tok::kw_wchar_t:
1449  case tok::kw_int:
1450  case tok::kw_float:
1451  case tok::kw_double:
1452  case tok::kw_bool:
1453  case tok::kw__Bool:
1454  case tok::kw__Decimal32:
1455  case tok::kw__Decimal64:
1456  case tok::kw__Decimal128:
1457
1458    // struct-or-union-specifier (C99) or class-specifier (C++)
1459  case tok::kw_class:
1460  case tok::kw_struct:
1461  case tok::kw_union:
1462    // enum-specifier
1463  case tok::kw_enum:
1464
1465    // type-qualifier
1466  case tok::kw_const:
1467  case tok::kw_volatile:
1468  case tok::kw_restrict:
1469
1470    // typedef-name
1471  case tok::annot_typename:
1472    return true;
1473
1474    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1475  case tok::less:
1476    return getLang().ObjC1;
1477
1478  case tok::kw___cdecl:
1479  case tok::kw___stdcall:
1480  case tok::kw___fastcall:
1481    return PP.getLangOptions().Microsoft;
1482  }
1483}
1484
1485/// isDeclarationSpecifier() - Return true if the current token is part of a
1486/// declaration specifier.
1487bool Parser::isDeclarationSpecifier() {
1488  switch (Tok.getKind()) {
1489  default: return false;
1490
1491  case tok::identifier:   // foo::bar
1492    // Unfortunate hack to support "Class.factoryMethod" notation.
1493    if (getLang().ObjC1 && NextToken().is(tok::period))
1494      return false;
1495    // Fall through
1496
1497  case tok::kw_typename: // typename T::type
1498    // Annotate typenames and C++ scope specifiers.  If we get one, just
1499    // recurse to handle whatever we get.
1500    if (TryAnnotateTypeOrScopeToken())
1501      return isDeclarationSpecifier();
1502    // Otherwise, not a declaration specifier.
1503    return false;
1504  case tok::coloncolon:   // ::foo::bar
1505    if (NextToken().is(tok::kw_new) ||    // ::new
1506        NextToken().is(tok::kw_delete))   // ::delete
1507      return false;
1508
1509    // Annotate typenames and C++ scope specifiers.  If we get one, just
1510    // recurse to handle whatever we get.
1511    if (TryAnnotateTypeOrScopeToken())
1512      return isDeclarationSpecifier();
1513    // Otherwise, not a declaration specifier.
1514    return false;
1515
1516    // storage-class-specifier
1517  case tok::kw_typedef:
1518  case tok::kw_extern:
1519  case tok::kw___private_extern__:
1520  case tok::kw_static:
1521  case tok::kw_auto:
1522  case tok::kw_register:
1523  case tok::kw___thread:
1524
1525    // type-specifiers
1526  case tok::kw_short:
1527  case tok::kw_long:
1528  case tok::kw_signed:
1529  case tok::kw_unsigned:
1530  case tok::kw__Complex:
1531  case tok::kw__Imaginary:
1532  case tok::kw_void:
1533  case tok::kw_char:
1534  case tok::kw_wchar_t:
1535  case tok::kw_int:
1536  case tok::kw_float:
1537  case tok::kw_double:
1538  case tok::kw_bool:
1539  case tok::kw__Bool:
1540  case tok::kw__Decimal32:
1541  case tok::kw__Decimal64:
1542  case tok::kw__Decimal128:
1543
1544    // struct-or-union-specifier (C99) or class-specifier (C++)
1545  case tok::kw_class:
1546  case tok::kw_struct:
1547  case tok::kw_union:
1548    // enum-specifier
1549  case tok::kw_enum:
1550
1551    // type-qualifier
1552  case tok::kw_const:
1553  case tok::kw_volatile:
1554  case tok::kw_restrict:
1555
1556    // function-specifier
1557  case tok::kw_inline:
1558  case tok::kw_virtual:
1559  case tok::kw_explicit:
1560
1561    // typedef-name
1562  case tok::annot_typename:
1563
1564    // GNU typeof support.
1565  case tok::kw_typeof:
1566
1567    // GNU attributes.
1568  case tok::kw___attribute:
1569    return true;
1570
1571    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1572  case tok::less:
1573    return getLang().ObjC1;
1574
1575  case tok::kw___declspec:
1576  case tok::kw___cdecl:
1577  case tok::kw___stdcall:
1578  case tok::kw___fastcall:
1579    return PP.getLangOptions().Microsoft;
1580  }
1581}
1582
1583
1584/// ParseTypeQualifierListOpt
1585///       type-qualifier-list: [C99 6.7.5]
1586///         type-qualifier
1587/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1588///         type-qualifier-list type-qualifier
1589/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1590///
1591void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1592  while (1) {
1593    int isInvalid = false;
1594    const char *PrevSpec = 0;
1595    SourceLocation Loc = Tok.getLocation();
1596
1597    switch (Tok.getKind()) {
1598    case tok::kw_const:
1599      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1600                                 getLang())*2;
1601      break;
1602    case tok::kw_volatile:
1603      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1604                                 getLang())*2;
1605      break;
1606    case tok::kw_restrict:
1607      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1608                                 getLang())*2;
1609      break;
1610    case tok::kw___ptr64:
1611    case tok::kw___cdecl:
1612    case tok::kw___stdcall:
1613    case tok::kw___fastcall:
1614      if (!PP.getLangOptions().Microsoft)
1615        goto DoneWithTypeQuals;
1616      // Just ignore it.
1617      break;
1618    case tok::kw___attribute:
1619      if (AttributesAllowed) {
1620        DS.AddAttributes(ParseAttributes());
1621        continue; // do *not* consume the next token!
1622      }
1623      // otherwise, FALL THROUGH!
1624    default:
1625      DoneWithTypeQuals:
1626      // If this is not a type-qualifier token, we're done reading type
1627      // qualifiers.  First verify that DeclSpec's are consistent.
1628      DS.Finish(Diags, PP.getSourceManager(), getLang());
1629      return;
1630    }
1631
1632    // If the specifier combination wasn't legal, issue a diagnostic.
1633    if (isInvalid) {
1634      assert(PrevSpec && "Method did not return previous specifier!");
1635      // Pick between error or extwarn.
1636      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1637                                      : diag::ext_duplicate_declspec;
1638      Diag(Tok, DiagID) << PrevSpec;
1639    }
1640    ConsumeToken();
1641  }
1642}
1643
1644
1645/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1646///
1647void Parser::ParseDeclarator(Declarator &D) {
1648  /// This implements the 'declarator' production in the C grammar, then checks
1649  /// for well-formedness and issues diagnostics.
1650  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1651}
1652
1653/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1654/// is parsed by the function passed to it. Pass null, and the direct-declarator
1655/// isn't parsed at all, making this function effectively parse the C++
1656/// ptr-operator production.
1657///
1658///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1659/// [C]     pointer[opt] direct-declarator
1660/// [C++]   direct-declarator
1661/// [C++]   ptr-operator declarator
1662///
1663///       pointer: [C99 6.7.5]
1664///         '*' type-qualifier-list[opt]
1665///         '*' type-qualifier-list[opt] pointer
1666///
1667///       ptr-operator:
1668///         '*' cv-qualifier-seq[opt]
1669///         '&'
1670/// [C++0x] '&&'
1671/// [GNU]   '&' restrict[opt] attributes[opt]
1672/// [GNU?]  '&&' restrict[opt] attributes[opt]
1673///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1674void Parser::ParseDeclaratorInternal(Declarator &D,
1675                                     DirectDeclParseFunction DirectDeclParser) {
1676
1677  // C++ member pointers start with a '::' or a nested-name.
1678  // Member pointers get special handling, since there's no place for the
1679  // scope spec in the generic path below.
1680  if (getLang().CPlusPlus &&
1681      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1682       Tok.is(tok::annot_cxxscope))) {
1683    CXXScopeSpec SS;
1684    if (ParseOptionalCXXScopeSpecifier(SS)) {
1685      if(Tok.isNot(tok::star)) {
1686        // The scope spec really belongs to the direct-declarator.
1687        D.getCXXScopeSpec() = SS;
1688        if (DirectDeclParser)
1689          (this->*DirectDeclParser)(D);
1690        return;
1691      }
1692
1693      SourceLocation Loc = ConsumeToken();
1694      D.SetRangeEnd(Loc);
1695      DeclSpec DS;
1696      ParseTypeQualifierListOpt(DS);
1697      D.ExtendWithDeclSpec(DS);
1698
1699      // Recurse to parse whatever is left.
1700      ParseDeclaratorInternal(D, DirectDeclParser);
1701
1702      // Sema will have to catch (syntactically invalid) pointers into global
1703      // scope. It has to catch pointers into namespace scope anyway.
1704      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1705                                                      Loc, DS.TakeAttributes()),
1706                    /* Don't replace range end. */SourceLocation());
1707      return;
1708    }
1709  }
1710
1711  tok::TokenKind Kind = Tok.getKind();
1712  // Not a pointer, C++ reference, or block.
1713  if (Kind != tok::star && Kind != tok::caret &&
1714      (Kind != tok::amp || !getLang().CPlusPlus) &&
1715      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1716      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1717    if (DirectDeclParser)
1718      (this->*DirectDeclParser)(D);
1719    return;
1720  }
1721
1722  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1723  // '&&' -> rvalue reference
1724  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1725  D.SetRangeEnd(Loc);
1726
1727  if (Kind == tok::star || Kind == tok::caret) {
1728    // Is a pointer.
1729    DeclSpec DS;
1730
1731    ParseTypeQualifierListOpt(DS);
1732    D.ExtendWithDeclSpec(DS);
1733
1734    // Recursively parse the declarator.
1735    ParseDeclaratorInternal(D, DirectDeclParser);
1736    if (Kind == tok::star)
1737      // Remember that we parsed a pointer type, and remember the type-quals.
1738      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1739                                                DS.TakeAttributes()),
1740                    SourceLocation());
1741    else
1742      // Remember that we parsed a Block type, and remember the type-quals.
1743      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1744                                                     Loc),
1745                    SourceLocation());
1746  } else {
1747    // Is a reference
1748    DeclSpec DS;
1749
1750    // Complain about rvalue references in C++03, but then go on and build
1751    // the declarator.
1752    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1753      Diag(Loc, diag::err_rvalue_reference);
1754
1755    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1756    // cv-qualifiers are introduced through the use of a typedef or of a
1757    // template type argument, in which case the cv-qualifiers are ignored.
1758    //
1759    // [GNU] Retricted references are allowed.
1760    // [GNU] Attributes on references are allowed.
1761    ParseTypeQualifierListOpt(DS);
1762    D.ExtendWithDeclSpec(DS);
1763
1764    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1765      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1766        Diag(DS.getConstSpecLoc(),
1767             diag::err_invalid_reference_qualifier_application) << "const";
1768      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1769        Diag(DS.getVolatileSpecLoc(),
1770             diag::err_invalid_reference_qualifier_application) << "volatile";
1771    }
1772
1773    // Recursively parse the declarator.
1774    ParseDeclaratorInternal(D, DirectDeclParser);
1775
1776    if (D.getNumTypeObjects() > 0) {
1777      // C++ [dcl.ref]p4: There shall be no references to references.
1778      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1779      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1780        if (const IdentifierInfo *II = D.getIdentifier())
1781          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1782           << II;
1783        else
1784          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1785            << "type name";
1786
1787        // Once we've complained about the reference-to-reference, we
1788        // can go ahead and build the (technically ill-formed)
1789        // declarator: reference collapsing will take care of it.
1790      }
1791    }
1792
1793    // Remember that we parsed a reference type. It doesn't have type-quals.
1794    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1795                                                DS.TakeAttributes(),
1796                                                Kind == tok::amp),
1797                  SourceLocation());
1798  }
1799}
1800
1801/// ParseDirectDeclarator
1802///       direct-declarator: [C99 6.7.5]
1803/// [C99]   identifier
1804///         '(' declarator ')'
1805/// [GNU]   '(' attributes declarator ')'
1806/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1807/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1808/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1809/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1810/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1811///         direct-declarator '(' parameter-type-list ')'
1812///         direct-declarator '(' identifier-list[opt] ')'
1813/// [GNU]   direct-declarator '(' parameter-forward-declarations
1814///                    parameter-type-list[opt] ')'
1815/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1816///                    cv-qualifier-seq[opt] exception-specification[opt]
1817/// [C++]   declarator-id
1818///
1819///       declarator-id: [C++ 8]
1820///         id-expression
1821///         '::'[opt] nested-name-specifier[opt] type-name
1822///
1823///       id-expression: [C++ 5.1]
1824///         unqualified-id
1825///         qualified-id            [TODO]
1826///
1827///       unqualified-id: [C++ 5.1]
1828///         identifier
1829///         operator-function-id
1830///         conversion-function-id  [TODO]
1831///          '~' class-name
1832///         template-id
1833///
1834void Parser::ParseDirectDeclarator(Declarator &D) {
1835  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1836
1837  if (getLang().CPlusPlus) {
1838    if (D.mayHaveIdentifier()) {
1839      // ParseDeclaratorInternal might already have parsed the scope.
1840      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1841        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1842      if (afterCXXScope) {
1843        // Change the declaration context for name lookup, until this function
1844        // is exited (and the declarator has been parsed).
1845        DeclScopeObj.EnterDeclaratorScope();
1846      }
1847
1848      if (Tok.is(tok::identifier)) {
1849        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1850
1851        // If this identifier is the name of the current class, it's a
1852        // constructor name.
1853        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1854          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1855                                               Tok.getLocation(), CurScope),
1856                           Tok.getLocation());
1857        // This is a normal identifier.
1858        } else
1859          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1860        ConsumeToken();
1861        goto PastIdentifier;
1862      } else if (Tok.is(tok::annot_template_id)) {
1863        TemplateIdAnnotation *TemplateId
1864          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1865
1866        // FIXME: Could this template-id name a constructor?
1867
1868        // FIXME: This is an egregious hack, where we silently ignore
1869        // the specialization (which should be a function template
1870        // specialization name) and use the name instead. This hack
1871        // will go away when we have support for function
1872        // specializations.
1873        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1874        TemplateId->Destroy();
1875        ConsumeToken();
1876        goto PastIdentifier;
1877      } else if (Tok.is(tok::kw_operator)) {
1878        SourceLocation OperatorLoc = Tok.getLocation();
1879        SourceLocation EndLoc;
1880
1881        // First try the name of an overloaded operator
1882        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1883          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1884        } else {
1885          // This must be a conversion function (C++ [class.conv.fct]).
1886          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1887            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1888          else {
1889            D.SetIdentifier(0, Tok.getLocation());
1890          }
1891        }
1892        goto PastIdentifier;
1893      } else if (Tok.is(tok::tilde)) {
1894        // This should be a C++ destructor.
1895        SourceLocation TildeLoc = ConsumeToken();
1896        if (Tok.is(tok::identifier)) {
1897          // FIXME: Inaccurate.
1898          SourceLocation NameLoc = Tok.getLocation();
1899          SourceLocation EndLoc;
1900          TypeResult Type = ParseClassName(EndLoc);
1901          if (Type.isInvalid())
1902            D.SetIdentifier(0, TildeLoc);
1903          else
1904            D.setDestructor(Type.get(), TildeLoc, NameLoc);
1905        } else {
1906          Diag(Tok, diag::err_expected_class_name);
1907          D.SetIdentifier(0, TildeLoc);
1908        }
1909        goto PastIdentifier;
1910      }
1911
1912      // If we reached this point, token is not identifier and not '~'.
1913
1914      if (afterCXXScope) {
1915        Diag(Tok, diag::err_expected_unqualified_id);
1916        D.SetIdentifier(0, Tok.getLocation());
1917        D.setInvalidType(true);
1918        goto PastIdentifier;
1919      }
1920    }
1921  }
1922
1923  // If we reached this point, we are either in C/ObjC or the token didn't
1924  // satisfy any of the C++-specific checks.
1925  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1926    assert(!getLang().CPlusPlus &&
1927           "There's a C++-specific check for tok::identifier above");
1928    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1929    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1930    ConsumeToken();
1931  } else if (Tok.is(tok::l_paren)) {
1932    // direct-declarator: '(' declarator ')'
1933    // direct-declarator: '(' attributes declarator ')'
1934    // Example: 'char (*X)'   or 'int (*XX)(void)'
1935    ParseParenDeclarator(D);
1936  } else if (D.mayOmitIdentifier()) {
1937    // This could be something simple like "int" (in which case the declarator
1938    // portion is empty), if an abstract-declarator is allowed.
1939    D.SetIdentifier(0, Tok.getLocation());
1940  } else {
1941    if (D.getContext() == Declarator::MemberContext)
1942      Diag(Tok, diag::err_expected_member_name_or_semi)
1943        << D.getDeclSpec().getSourceRange();
1944    else if (getLang().CPlusPlus)
1945      Diag(Tok, diag::err_expected_unqualified_id);
1946    else
1947      Diag(Tok, diag::err_expected_ident_lparen);
1948    D.SetIdentifier(0, Tok.getLocation());
1949    D.setInvalidType(true);
1950  }
1951
1952 PastIdentifier:
1953  assert(D.isPastIdentifier() &&
1954         "Haven't past the location of the identifier yet?");
1955
1956  while (1) {
1957    if (Tok.is(tok::l_paren)) {
1958      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1959      // In such a case, check if we actually have a function declarator; if it
1960      // is not, the declarator has been fully parsed.
1961      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1962        // When not in file scope, warn for ambiguous function declarators, just
1963        // in case the author intended it as a variable definition.
1964        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1965        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1966          break;
1967      }
1968      ParseFunctionDeclarator(ConsumeParen(), D);
1969    } else if (Tok.is(tok::l_square)) {
1970      ParseBracketDeclarator(D);
1971    } else {
1972      break;
1973    }
1974  }
1975}
1976
1977/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1978/// only called before the identifier, so these are most likely just grouping
1979/// parens for precedence.  If we find that these are actually function
1980/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1981///
1982///       direct-declarator:
1983///         '(' declarator ')'
1984/// [GNU]   '(' attributes declarator ')'
1985///         direct-declarator '(' parameter-type-list ')'
1986///         direct-declarator '(' identifier-list[opt] ')'
1987/// [GNU]   direct-declarator '(' parameter-forward-declarations
1988///                    parameter-type-list[opt] ')'
1989///
1990void Parser::ParseParenDeclarator(Declarator &D) {
1991  SourceLocation StartLoc = ConsumeParen();
1992  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1993
1994  // Eat any attributes before we look at whether this is a grouping or function
1995  // declarator paren.  If this is a grouping paren, the attribute applies to
1996  // the type being built up, for example:
1997  //     int (__attribute__(()) *x)(long y)
1998  // If this ends up not being a grouping paren, the attribute applies to the
1999  // first argument, for example:
2000  //     int (__attribute__(()) int x)
2001  // In either case, we need to eat any attributes to be able to determine what
2002  // sort of paren this is.
2003  //
2004  AttributeList *AttrList = 0;
2005  bool RequiresArg = false;
2006  if (Tok.is(tok::kw___attribute)) {
2007    AttrList = ParseAttributes();
2008
2009    // We require that the argument list (if this is a non-grouping paren) be
2010    // present even if the attribute list was empty.
2011    RequiresArg = true;
2012  }
2013  // Eat any Microsoft extensions.
2014  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2015          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2016    ConsumeToken();
2017
2018  // If we haven't past the identifier yet (or where the identifier would be
2019  // stored, if this is an abstract declarator), then this is probably just
2020  // grouping parens. However, if this could be an abstract-declarator, then
2021  // this could also be the start of function arguments (consider 'void()').
2022  bool isGrouping;
2023
2024  if (!D.mayOmitIdentifier()) {
2025    // If this can't be an abstract-declarator, this *must* be a grouping
2026    // paren, because we haven't seen the identifier yet.
2027    isGrouping = true;
2028  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2029             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2030             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2031    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2032    // considered to be a type, not a K&R identifier-list.
2033    isGrouping = false;
2034  } else {
2035    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2036    isGrouping = true;
2037  }
2038
2039  // If this is a grouping paren, handle:
2040  // direct-declarator: '(' declarator ')'
2041  // direct-declarator: '(' attributes declarator ')'
2042  if (isGrouping) {
2043    bool hadGroupingParens = D.hasGroupingParens();
2044    D.setGroupingParens(true);
2045    if (AttrList)
2046      D.AddAttributes(AttrList, SourceLocation());
2047
2048    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2049    // Match the ')'.
2050    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2051
2052    D.setGroupingParens(hadGroupingParens);
2053    D.SetRangeEnd(Loc);
2054    return;
2055  }
2056
2057  // Okay, if this wasn't a grouping paren, it must be the start of a function
2058  // argument list.  Recognize that this declarator will never have an
2059  // identifier (and remember where it would have been), then call into
2060  // ParseFunctionDeclarator to handle of argument list.
2061  D.SetIdentifier(0, Tok.getLocation());
2062
2063  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2064}
2065
2066/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2067/// declarator D up to a paren, which indicates that we are parsing function
2068/// arguments.
2069///
2070/// If AttrList is non-null, then the caller parsed those arguments immediately
2071/// after the open paren - they should be considered to be the first argument of
2072/// a parameter.  If RequiresArg is true, then the first argument of the
2073/// function is required to be present and required to not be an identifier
2074/// list.
2075///
2076/// This method also handles this portion of the grammar:
2077///       parameter-type-list: [C99 6.7.5]
2078///         parameter-list
2079///         parameter-list ',' '...'
2080///
2081///       parameter-list: [C99 6.7.5]
2082///         parameter-declaration
2083///         parameter-list ',' parameter-declaration
2084///
2085///       parameter-declaration: [C99 6.7.5]
2086///         declaration-specifiers declarator
2087/// [C++]   declaration-specifiers declarator '=' assignment-expression
2088/// [GNU]   declaration-specifiers declarator attributes
2089///         declaration-specifiers abstract-declarator[opt]
2090/// [C++]   declaration-specifiers abstract-declarator[opt]
2091///           '=' assignment-expression
2092/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2093///
2094/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2095/// and "exception-specification[opt]".
2096///
2097void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2098                                     AttributeList *AttrList,
2099                                     bool RequiresArg) {
2100  // lparen is already consumed!
2101  assert(D.isPastIdentifier() && "Should not call before identifier!");
2102
2103  // This parameter list may be empty.
2104  if (Tok.is(tok::r_paren)) {
2105    if (RequiresArg) {
2106      Diag(Tok, diag::err_argument_required_after_attribute);
2107      delete AttrList;
2108    }
2109
2110    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2111
2112    // cv-qualifier-seq[opt].
2113    DeclSpec DS;
2114    if (getLang().CPlusPlus) {
2115      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2116      if (!DS.getSourceRange().getEnd().isInvalid())
2117        Loc = DS.getSourceRange().getEnd();
2118
2119      // Parse exception-specification[opt].
2120      if (Tok.is(tok::kw_throw))
2121        ParseExceptionSpecification(Loc);
2122    }
2123
2124    // Remember that we parsed a function type, and remember the attributes.
2125    // int() -> no prototype, no '...'.
2126    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2127                                               /*variadic*/ false,
2128                                               SourceLocation(),
2129                                               /*arglist*/ 0, 0,
2130                                               DS.getTypeQualifiers(),
2131                                               LParenLoc, D),
2132                  Loc);
2133    return;
2134  }
2135
2136  // Alternatively, this parameter list may be an identifier list form for a
2137  // K&R-style function:  void foo(a,b,c)
2138  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2139    if (!TryAnnotateTypeOrScopeToken()) {
2140      // K&R identifier lists can't have typedefs as identifiers, per
2141      // C99 6.7.5.3p11.
2142      if (RequiresArg) {
2143        Diag(Tok, diag::err_argument_required_after_attribute);
2144        delete AttrList;
2145      }
2146      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2147      // normal declarators, not for abstract-declarators.
2148      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2149    }
2150  }
2151
2152  // Finally, a normal, non-empty parameter type list.
2153
2154  // Build up an array of information about the parsed arguments.
2155  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2156
2157  // Enter function-declaration scope, limiting any declarators to the
2158  // function prototype scope, including parameter declarators.
2159  ParseScope PrototypeScope(this,
2160                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2161
2162  bool IsVariadic = false;
2163  SourceLocation EllipsisLoc;
2164  while (1) {
2165    if (Tok.is(tok::ellipsis)) {
2166      IsVariadic = true;
2167      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2168      break;
2169    }
2170
2171    SourceLocation DSStart = Tok.getLocation();
2172
2173    // Parse the declaration-specifiers.
2174    DeclSpec DS;
2175
2176    // If the caller parsed attributes for the first argument, add them now.
2177    if (AttrList) {
2178      DS.AddAttributes(AttrList);
2179      AttrList = 0;  // Only apply the attributes to the first parameter.
2180    }
2181    ParseDeclarationSpecifiers(DS);
2182
2183    // Parse the declarator.  This is "PrototypeContext", because we must
2184    // accept either 'declarator' or 'abstract-declarator' here.
2185    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2186    ParseDeclarator(ParmDecl);
2187
2188    // Parse GNU attributes, if present.
2189    if (Tok.is(tok::kw___attribute)) {
2190      SourceLocation Loc;
2191      AttributeList *AttrList = ParseAttributes(&Loc);
2192      ParmDecl.AddAttributes(AttrList, Loc);
2193    }
2194
2195    // Remember this parsed parameter in ParamInfo.
2196    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2197
2198    // DefArgToks is used when the parsing of default arguments needs
2199    // to be delayed.
2200    CachedTokens *DefArgToks = 0;
2201
2202    // If no parameter was specified, verify that *something* was specified,
2203    // otherwise we have a missing type and identifier.
2204    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2205        ParmDecl.getNumTypeObjects() == 0) {
2206      // Completely missing, emit error.
2207      Diag(DSStart, diag::err_missing_param);
2208    } else {
2209      // Otherwise, we have something.  Add it and let semantic analysis try
2210      // to grok it and add the result to the ParamInfo we are building.
2211
2212      // Inform the actions module about the parameter declarator, so it gets
2213      // added to the current scope.
2214      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2215
2216      // Parse the default argument, if any. We parse the default
2217      // arguments in all dialects; the semantic analysis in
2218      // ActOnParamDefaultArgument will reject the default argument in
2219      // C.
2220      if (Tok.is(tok::equal)) {
2221        SourceLocation EqualLoc = Tok.getLocation();
2222
2223        // Parse the default argument
2224        if (D.getContext() == Declarator::MemberContext) {
2225          // If we're inside a class definition, cache the tokens
2226          // corresponding to the default argument. We'll actually parse
2227          // them when we see the end of the class definition.
2228          // FIXME: Templates will require something similar.
2229          // FIXME: Can we use a smart pointer for Toks?
2230          DefArgToks = new CachedTokens;
2231
2232          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2233                                    tok::semi, false)) {
2234            delete DefArgToks;
2235            DefArgToks = 0;
2236            Actions.ActOnParamDefaultArgumentError(Param);
2237          } else
2238            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2239        } else {
2240          // Consume the '='.
2241          ConsumeToken();
2242
2243          OwningExprResult DefArgResult(ParseAssignmentExpression());
2244          if (DefArgResult.isInvalid()) {
2245            Actions.ActOnParamDefaultArgumentError(Param);
2246            SkipUntil(tok::comma, tok::r_paren, true, true);
2247          } else {
2248            // Inform the actions module about the default argument
2249            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2250                                              move(DefArgResult));
2251          }
2252        }
2253      }
2254
2255      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2256                                          ParmDecl.getIdentifierLoc(), Param,
2257                                          DefArgToks));
2258    }
2259
2260    // If the next token is a comma, consume it and keep reading arguments.
2261    if (Tok.isNot(tok::comma)) break;
2262
2263    // Consume the comma.
2264    ConsumeToken();
2265  }
2266
2267  // Leave prototype scope.
2268  PrototypeScope.Exit();
2269
2270  // If we have the closing ')', eat it.
2271  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2272
2273  DeclSpec DS;
2274  if (getLang().CPlusPlus) {
2275    // Parse cv-qualifier-seq[opt].
2276    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2277      if (!DS.getSourceRange().getEnd().isInvalid())
2278        Loc = DS.getSourceRange().getEnd();
2279
2280    // Parse exception-specification[opt].
2281    if (Tok.is(tok::kw_throw))
2282      ParseExceptionSpecification(Loc);
2283  }
2284
2285  // Remember that we parsed a function type, and remember the attributes.
2286  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2287                                             EllipsisLoc,
2288                                             &ParamInfo[0], ParamInfo.size(),
2289                                             DS.getTypeQualifiers(),
2290                                             LParenLoc, D),
2291                Loc);
2292}
2293
2294/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2295/// we found a K&R-style identifier list instead of a type argument list.  The
2296/// current token is known to be the first identifier in the list.
2297///
2298///       identifier-list: [C99 6.7.5]
2299///         identifier
2300///         identifier-list ',' identifier
2301///
2302void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2303                                                   Declarator &D) {
2304  // Build up an array of information about the parsed arguments.
2305  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2306  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2307
2308  // If there was no identifier specified for the declarator, either we are in
2309  // an abstract-declarator, or we are in a parameter declarator which was found
2310  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2311  // diagnose this.
2312  if (!D.getIdentifier())
2313    Diag(Tok, diag::ext_ident_list_in_param);
2314
2315  // Tok is known to be the first identifier in the list.  Remember this
2316  // identifier in ParamInfo.
2317  ParamsSoFar.insert(Tok.getIdentifierInfo());
2318  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2319                                                 Tok.getLocation(),
2320                                                 DeclPtrTy()));
2321
2322  ConsumeToken();  // eat the first identifier.
2323
2324  while (Tok.is(tok::comma)) {
2325    // Eat the comma.
2326    ConsumeToken();
2327
2328    // If this isn't an identifier, report the error and skip until ')'.
2329    if (Tok.isNot(tok::identifier)) {
2330      Diag(Tok, diag::err_expected_ident);
2331      SkipUntil(tok::r_paren);
2332      return;
2333    }
2334
2335    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2336
2337    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2338    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2339      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2340
2341    // Verify that the argument identifier has not already been mentioned.
2342    if (!ParamsSoFar.insert(ParmII)) {
2343      Diag(Tok, diag::err_param_redefinition) << ParmII;
2344    } else {
2345      // Remember this identifier in ParamInfo.
2346      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2347                                                     Tok.getLocation(),
2348                                                     DeclPtrTy()));
2349    }
2350
2351    // Eat the identifier.
2352    ConsumeToken();
2353  }
2354
2355  // If we have the closing ')', eat it and we're done.
2356  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2357
2358  // Remember that we parsed a function type, and remember the attributes.  This
2359  // function type is always a K&R style function type, which is not varargs and
2360  // has no prototype.
2361  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2362                                             SourceLocation(),
2363                                             &ParamInfo[0], ParamInfo.size(),
2364                                             /*TypeQuals*/0, LParenLoc, D),
2365                RLoc);
2366}
2367
2368/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2369/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2370/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2371/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2372/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2373void Parser::ParseBracketDeclarator(Declarator &D) {
2374  SourceLocation StartLoc = ConsumeBracket();
2375
2376  // C array syntax has many features, but by-far the most common is [] and [4].
2377  // This code does a fast path to handle some of the most obvious cases.
2378  if (Tok.getKind() == tok::r_square) {
2379    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2380    // Remember that we parsed the empty array type.
2381    OwningExprResult NumElements(Actions);
2382    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2383                  EndLoc);
2384    return;
2385  } else if (Tok.getKind() == tok::numeric_constant &&
2386             GetLookAheadToken(1).is(tok::r_square)) {
2387    // [4] is very common.  Parse the numeric constant expression.
2388    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2389    ConsumeToken();
2390
2391    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2392
2393    // If there was an error parsing the assignment-expression, recover.
2394    if (ExprRes.isInvalid())
2395      ExprRes.release();  // Deallocate expr, just use [].
2396
2397    // Remember that we parsed a array type, and remember its features.
2398    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2399                                            ExprRes.release(), StartLoc),
2400                  EndLoc);
2401    return;
2402  }
2403
2404  // If valid, this location is the position where we read the 'static' keyword.
2405  SourceLocation StaticLoc;
2406  if (Tok.is(tok::kw_static))
2407    StaticLoc = ConsumeToken();
2408
2409  // If there is a type-qualifier-list, read it now.
2410  // Type qualifiers in an array subscript are a C99 feature.
2411  DeclSpec DS;
2412  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2413
2414  // If we haven't already read 'static', check to see if there is one after the
2415  // type-qualifier-list.
2416  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2417    StaticLoc = ConsumeToken();
2418
2419  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2420  bool isStar = false;
2421  OwningExprResult NumElements(Actions);
2422
2423  // Handle the case where we have '[*]' as the array size.  However, a leading
2424  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2425  // the the token after the star is a ']'.  Since stars in arrays are
2426  // infrequent, use of lookahead is not costly here.
2427  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2428    ConsumeToken();  // Eat the '*'.
2429
2430    if (StaticLoc.isValid()) {
2431      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2432      StaticLoc = SourceLocation();  // Drop the static.
2433    }
2434    isStar = true;
2435  } else if (Tok.isNot(tok::r_square)) {
2436    // Note, in C89, this production uses the constant-expr production instead
2437    // of assignment-expr.  The only difference is that assignment-expr allows
2438    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2439    // are not i-c-e's, so we don't need to distinguish between the two here.
2440
2441    // Parse the assignment-expression now.
2442    NumElements = ParseAssignmentExpression();
2443  }
2444
2445  // If there was an error parsing the assignment-expression, recover.
2446  if (NumElements.isInvalid()) {
2447    // If the expression was invalid, skip it.
2448    SkipUntil(tok::r_square);
2449    return;
2450  }
2451
2452  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2453
2454  // Remember that we parsed a array type, and remember its features.
2455  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2456                                          StaticLoc.isValid(), isStar,
2457                                          NumElements.release(), StartLoc),
2458                EndLoc);
2459}
2460
2461/// [GNU]   typeof-specifier:
2462///           typeof ( expressions )
2463///           typeof ( type-name )
2464/// [GNU/C++] typeof unary-expression
2465///
2466void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2467  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2468  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2469  SourceLocation StartLoc = ConsumeToken();
2470
2471  if (Tok.isNot(tok::l_paren)) {
2472    if (!getLang().CPlusPlus) {
2473      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2474      return;
2475    }
2476
2477    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2478    if (Result.isInvalid()) {
2479      DS.SetTypeSpecError();
2480      return;
2481    }
2482
2483    const char *PrevSpec = 0;
2484    // Check for duplicate type specifiers.
2485    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2486                           Result.release()))
2487      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2488
2489    // FIXME: Not accurate, the range gets one token more than it should.
2490    DS.SetRangeEnd(Tok.getLocation());
2491    return;
2492  }
2493
2494  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2495
2496  if (isTypeIdInParens()) {
2497    Action::TypeResult Ty = ParseTypeName();
2498
2499    assert((Ty.isInvalid() || Ty.get()) &&
2500           "Parser::ParseTypeofSpecifier(): missing type");
2501
2502    if (Tok.isNot(tok::r_paren)) {
2503      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2504      return;
2505    }
2506    RParenLoc = ConsumeParen();
2507
2508    if (Ty.isInvalid())
2509      DS.SetTypeSpecError();
2510    else {
2511      const char *PrevSpec = 0;
2512      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2513      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2514                             Ty.get()))
2515        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2516    }
2517  } else { // we have an expression.
2518    OwningExprResult Result(ParseExpression());
2519
2520    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2521      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2522      DS.SetTypeSpecError();
2523      return;
2524    }
2525    RParenLoc = ConsumeParen();
2526    const char *PrevSpec = 0;
2527    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2528    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2529                           Result.release()))
2530      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2531  }
2532  DS.SetRangeEnd(RParenLoc);
2533}
2534
2535
2536