ParseDecl.cpp revision 534986f2b21e6050bf00163cd6423fd92155a6ed
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringSwitch.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// C99 6.7: Declarations.
28//===----------------------------------------------------------------------===//
29
30/// ParseTypeName
31///       type-name: [C99 6.7.6]
32///         specifier-qualifier-list abstract-declarator[opt]
33///
34/// Called type-id in C++.
35TypeResult Parser::ParseTypeName(SourceRange *Range,
36                                 Declarator::TheContext Context,
37                                 AccessSpecifier AS,
38                                 Decl **OwnedType) {
39  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
40
41  // Parse the common declaration-specifiers piece.
42  DeclSpec DS(AttrFactory);
43  ParseSpecifierQualifierList(DS, AS, DSC);
44  if (OwnedType)
45    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
46
47  // Parse the abstract-declarator, if present.
48  Declarator DeclaratorInfo(DS, Context);
49  ParseDeclarator(DeclaratorInfo);
50  if (Range)
51    *Range = DeclaratorInfo.getSourceRange();
52
53  if (DeclaratorInfo.isInvalidType())
54    return true;
55
56  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
57}
58
59
60/// isAttributeLateParsed - Return true if the attribute has arguments that
61/// require late parsing.
62static bool isAttributeLateParsed(const IdentifierInfo &II) {
63    return llvm::StringSwitch<bool>(II.getName())
64#include "clang/Parse/AttrLateParsed.inc"
65        .Default(false);
66}
67
68
69/// ParseGNUAttributes - Parse a non-empty attributes list.
70///
71/// [GNU] attributes:
72///         attribute
73///         attributes attribute
74///
75/// [GNU]  attribute:
76///          '__attribute__' '(' '(' attribute-list ')' ')'
77///
78/// [GNU]  attribute-list:
79///          attrib
80///          attribute_list ',' attrib
81///
82/// [GNU]  attrib:
83///          empty
84///          attrib-name
85///          attrib-name '(' identifier ')'
86///          attrib-name '(' identifier ',' nonempty-expr-list ')'
87///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
88///
89/// [GNU]  attrib-name:
90///          identifier
91///          typespec
92///          typequal
93///          storageclass
94///
95/// FIXME: The GCC grammar/code for this construct implies we need two
96/// token lookahead. Comment from gcc: "If they start with an identifier
97/// which is followed by a comma or close parenthesis, then the arguments
98/// start with that identifier; otherwise they are an expression list."
99///
100/// GCC does not require the ',' between attribs in an attribute-list.
101///
102/// At the moment, I am not doing 2 token lookahead. I am also unaware of
103/// any attributes that don't work (based on my limited testing). Most
104/// attributes are very simple in practice. Until we find a bug, I don't see
105/// a pressing need to implement the 2 token lookahead.
106
107void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
108                                SourceLocation *endLoc,
109                                LateParsedAttrList *LateAttrs) {
110  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
111
112  while (Tok.is(tok::kw___attribute)) {
113    ConsumeToken();
114    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
115                         "attribute")) {
116      SkipUntil(tok::r_paren, true); // skip until ) or ;
117      return;
118    }
119    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
120      SkipUntil(tok::r_paren, true); // skip until ) or ;
121      return;
122    }
123    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
124    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
125           Tok.is(tok::comma)) {
126      if (Tok.is(tok::comma)) {
127        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
128        ConsumeToken();
129        continue;
130      }
131      // we have an identifier or declaration specifier (const, int, etc.)
132      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
133      SourceLocation AttrNameLoc = ConsumeToken();
134
135      if (Tok.is(tok::l_paren)) {
136        // handle "parameterized" attributes
137        if (LateAttrs && isAttributeLateParsed(*AttrName)) {
138          LateParsedAttribute *LA =
139            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
140          LateAttrs->push_back(LA);
141
142          // Attributes in a class are parsed at the end of the class, along
143          // with other late-parsed declarations.
144          if (!ClassStack.empty())
145            getCurrentClass().LateParsedDeclarations.push_back(LA);
146
147          // consume everything up to and including the matching right parens
148          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
149
150          Token Eof;
151          Eof.startToken();
152          Eof.setLocation(Tok.getLocation());
153          LA->Toks.push_back(Eof);
154        } else {
155          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
156        }
157      } else {
158        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
159                     0, SourceLocation(), 0, 0);
160      }
161    }
162    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
163      SkipUntil(tok::r_paren, false);
164    SourceLocation Loc = Tok.getLocation();
165    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
166      SkipUntil(tok::r_paren, false);
167    }
168    if (endLoc)
169      *endLoc = Loc;
170  }
171}
172
173
174/// Parse the arguments to a parameterized GNU attribute
175void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
176                                   SourceLocation AttrNameLoc,
177                                   ParsedAttributes &Attrs,
178                                   SourceLocation *EndLoc) {
179
180  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
181
182  // Availability attributes have their own grammar.
183  if (AttrName->isStr("availability")) {
184    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
185    return;
186  }
187  // Thread safety attributes fit into the FIXME case above, so we
188  // just parse the arguments as a list of expressions
189  if (IsThreadSafetyAttribute(AttrName->getName())) {
190    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
191    return;
192  }
193
194  ConsumeParen(); // ignore the left paren loc for now
195
196  IdentifierInfo *ParmName = 0;
197  SourceLocation ParmLoc;
198  bool BuiltinType = false;
199
200  switch (Tok.getKind()) {
201  case tok::kw_char:
202  case tok::kw_wchar_t:
203  case tok::kw_char16_t:
204  case tok::kw_char32_t:
205  case tok::kw_bool:
206  case tok::kw_short:
207  case tok::kw_int:
208  case tok::kw_long:
209  case tok::kw___int64:
210  case tok::kw___int128:
211  case tok::kw_signed:
212  case tok::kw_unsigned:
213  case tok::kw_float:
214  case tok::kw_double:
215  case tok::kw_void:
216  case tok::kw_typeof:
217    // __attribute__(( vec_type_hint(char) ))
218    // FIXME: Don't just discard the builtin type token.
219    ConsumeToken();
220    BuiltinType = true;
221    break;
222
223  case tok::identifier:
224    ParmName = Tok.getIdentifierInfo();
225    ParmLoc = ConsumeToken();
226    break;
227
228  default:
229    break;
230  }
231
232  ExprVector ArgExprs(Actions);
233
234  if (!BuiltinType &&
235      (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
236    // Eat the comma.
237    if (ParmLoc.isValid())
238      ConsumeToken();
239
240    // Parse the non-empty comma-separated list of expressions.
241    while (1) {
242      ExprResult ArgExpr(ParseAssignmentExpression());
243      if (ArgExpr.isInvalid()) {
244        SkipUntil(tok::r_paren);
245        return;
246      }
247      ArgExprs.push_back(ArgExpr.release());
248      if (Tok.isNot(tok::comma))
249        break;
250      ConsumeToken(); // Eat the comma, move to the next argument
251    }
252  }
253  else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
254    if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
255                          tok::greater)) {
256      while (Tok.is(tok::identifier)) {
257        ConsumeToken();
258        if (Tok.is(tok::greater))
259          break;
260        if (Tok.is(tok::comma)) {
261          ConsumeToken();
262          continue;
263        }
264      }
265      if (Tok.isNot(tok::greater))
266        Diag(Tok, diag::err_iboutletcollection_with_protocol);
267      SkipUntil(tok::r_paren, false, true); // skip until ')'
268    }
269  }
270
271  SourceLocation RParen = Tok.getLocation();
272  if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
273    AttributeList *attr =
274      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
275                   ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
276    if (BuiltinType && attr->getKind() == AttributeList::AT_iboutletcollection)
277      Diag(Tok, diag::err_iboutletcollection_builtintype);
278  }
279}
280
281
282/// ParseMicrosoftDeclSpec - Parse an __declspec construct
283///
284/// [MS] decl-specifier:
285///             __declspec ( extended-decl-modifier-seq )
286///
287/// [MS] extended-decl-modifier-seq:
288///             extended-decl-modifier[opt]
289///             extended-decl-modifier extended-decl-modifier-seq
290
291void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
292  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
293
294  ConsumeToken();
295  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
296                       "declspec")) {
297    SkipUntil(tok::r_paren, true); // skip until ) or ;
298    return;
299  }
300
301  while (Tok.getIdentifierInfo()) {
302    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
303    SourceLocation AttrNameLoc = ConsumeToken();
304
305    // FIXME: Remove this when we have proper __declspec(property()) support.
306    // Just skip everything inside property().
307    if (AttrName->getName() == "property") {
308      ConsumeParen();
309      SkipUntil(tok::r_paren);
310    }
311    if (Tok.is(tok::l_paren)) {
312      ConsumeParen();
313      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
314      // correctly.
315      ExprResult ArgExpr(ParseAssignmentExpression());
316      if (!ArgExpr.isInvalid()) {
317        Expr *ExprList = ArgExpr.take();
318        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
319                     SourceLocation(), &ExprList, 1, true);
320      }
321      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
322        SkipUntil(tok::r_paren, false);
323    } else {
324      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
325                   0, SourceLocation(), 0, 0, true);
326    }
327  }
328  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
329    SkipUntil(tok::r_paren, false);
330  return;
331}
332
333void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
334  // Treat these like attributes
335  // FIXME: Allow Sema to distinguish between these and real attributes!
336  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
337         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
338         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
339         Tok.is(tok::kw___ptr32) ||
340         Tok.is(tok::kw___unaligned)) {
341    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
342    SourceLocation AttrNameLoc = ConsumeToken();
343    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
344        Tok.is(tok::kw___ptr32))
345      // FIXME: Support these properly!
346      continue;
347    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
348                 SourceLocation(), 0, 0, true);
349  }
350}
351
352void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
353  // Treat these like attributes
354  while (Tok.is(tok::kw___pascal)) {
355    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
356    SourceLocation AttrNameLoc = ConsumeToken();
357    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
358                 SourceLocation(), 0, 0, true);
359  }
360}
361
362void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
363  // Treat these like attributes
364  while (Tok.is(tok::kw___kernel)) {
365    SourceLocation AttrNameLoc = ConsumeToken();
366    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
367                 AttrNameLoc, 0, AttrNameLoc, 0,
368                 SourceLocation(), 0, 0, false);
369  }
370}
371
372void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
373  SourceLocation Loc = Tok.getLocation();
374  switch(Tok.getKind()) {
375    // OpenCL qualifiers:
376    case tok::kw___private:
377    case tok::kw_private:
378      DS.getAttributes().addNewInteger(
379          Actions.getASTContext(),
380          PP.getIdentifierInfo("address_space"), Loc, 0);
381      break;
382
383    case tok::kw___global:
384      DS.getAttributes().addNewInteger(
385          Actions.getASTContext(),
386          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
387      break;
388
389    case tok::kw___local:
390      DS.getAttributes().addNewInteger(
391          Actions.getASTContext(),
392          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
393      break;
394
395    case tok::kw___constant:
396      DS.getAttributes().addNewInteger(
397          Actions.getASTContext(),
398          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
399      break;
400
401    case tok::kw___read_only:
402      DS.getAttributes().addNewInteger(
403          Actions.getASTContext(),
404          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
405      break;
406
407    case tok::kw___write_only:
408      DS.getAttributes().addNewInteger(
409          Actions.getASTContext(),
410          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
411      break;
412
413    case tok::kw___read_write:
414      DS.getAttributes().addNewInteger(
415          Actions.getASTContext(),
416          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
417      break;
418    default: break;
419  }
420}
421
422/// \brief Parse a version number.
423///
424/// version:
425///   simple-integer
426///   simple-integer ',' simple-integer
427///   simple-integer ',' simple-integer ',' simple-integer
428VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
429  Range = Tok.getLocation();
430
431  if (!Tok.is(tok::numeric_constant)) {
432    Diag(Tok, diag::err_expected_version);
433    SkipUntil(tok::comma, tok::r_paren, true, true, true);
434    return VersionTuple();
435  }
436
437  // Parse the major (and possibly minor and subminor) versions, which
438  // are stored in the numeric constant. We utilize a quirk of the
439  // lexer, which is that it handles something like 1.2.3 as a single
440  // numeric constant, rather than two separate tokens.
441  SmallString<512> Buffer;
442  Buffer.resize(Tok.getLength()+1);
443  const char *ThisTokBegin = &Buffer[0];
444
445  // Get the spelling of the token, which eliminates trigraphs, etc.
446  bool Invalid = false;
447  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
448  if (Invalid)
449    return VersionTuple();
450
451  // Parse the major version.
452  unsigned AfterMajor = 0;
453  unsigned Major = 0;
454  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
455    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
456    ++AfterMajor;
457  }
458
459  if (AfterMajor == 0) {
460    Diag(Tok, diag::err_expected_version);
461    SkipUntil(tok::comma, tok::r_paren, true, true, true);
462    return VersionTuple();
463  }
464
465  if (AfterMajor == ActualLength) {
466    ConsumeToken();
467
468    // We only had a single version component.
469    if (Major == 0) {
470      Diag(Tok, diag::err_zero_version);
471      return VersionTuple();
472    }
473
474    return VersionTuple(Major);
475  }
476
477  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
478    Diag(Tok, diag::err_expected_version);
479    SkipUntil(tok::comma, tok::r_paren, true, true, true);
480    return VersionTuple();
481  }
482
483  // Parse the minor version.
484  unsigned AfterMinor = AfterMajor + 1;
485  unsigned Minor = 0;
486  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
487    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
488    ++AfterMinor;
489  }
490
491  if (AfterMinor == ActualLength) {
492    ConsumeToken();
493
494    // We had major.minor.
495    if (Major == 0 && Minor == 0) {
496      Diag(Tok, diag::err_zero_version);
497      return VersionTuple();
498    }
499
500    return VersionTuple(Major, Minor);
501  }
502
503  // If what follows is not a '.', we have a problem.
504  if (ThisTokBegin[AfterMinor] != '.') {
505    Diag(Tok, diag::err_expected_version);
506    SkipUntil(tok::comma, tok::r_paren, true, true, true);
507    return VersionTuple();
508  }
509
510  // Parse the subminor version.
511  unsigned AfterSubminor = AfterMinor + 1;
512  unsigned Subminor = 0;
513  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
514    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
515    ++AfterSubminor;
516  }
517
518  if (AfterSubminor != ActualLength) {
519    Diag(Tok, diag::err_expected_version);
520    SkipUntil(tok::comma, tok::r_paren, true, true, true);
521    return VersionTuple();
522  }
523  ConsumeToken();
524  return VersionTuple(Major, Minor, Subminor);
525}
526
527/// \brief Parse the contents of the "availability" attribute.
528///
529/// availability-attribute:
530///   'availability' '(' platform ',' version-arg-list, opt-message')'
531///
532/// platform:
533///   identifier
534///
535/// version-arg-list:
536///   version-arg
537///   version-arg ',' version-arg-list
538///
539/// version-arg:
540///   'introduced' '=' version
541///   'deprecated' '=' version
542///   'obsoleted' = version
543///   'unavailable'
544/// opt-message:
545///   'message' '=' <string>
546void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
547                                        SourceLocation AvailabilityLoc,
548                                        ParsedAttributes &attrs,
549                                        SourceLocation *endLoc) {
550  SourceLocation PlatformLoc;
551  IdentifierInfo *Platform = 0;
552
553  enum { Introduced, Deprecated, Obsoleted, Unknown };
554  AvailabilityChange Changes[Unknown];
555  ExprResult MessageExpr;
556
557  // Opening '('.
558  BalancedDelimiterTracker T(*this, tok::l_paren);
559  if (T.consumeOpen()) {
560    Diag(Tok, diag::err_expected_lparen);
561    return;
562  }
563
564  // Parse the platform name,
565  if (Tok.isNot(tok::identifier)) {
566    Diag(Tok, diag::err_availability_expected_platform);
567    SkipUntil(tok::r_paren);
568    return;
569  }
570  Platform = Tok.getIdentifierInfo();
571  PlatformLoc = ConsumeToken();
572
573  // Parse the ',' following the platform name.
574  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
575    return;
576
577  // If we haven't grabbed the pointers for the identifiers
578  // "introduced", "deprecated", and "obsoleted", do so now.
579  if (!Ident_introduced) {
580    Ident_introduced = PP.getIdentifierInfo("introduced");
581    Ident_deprecated = PP.getIdentifierInfo("deprecated");
582    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
583    Ident_unavailable = PP.getIdentifierInfo("unavailable");
584    Ident_message = PP.getIdentifierInfo("message");
585  }
586
587  // Parse the set of introductions/deprecations/removals.
588  SourceLocation UnavailableLoc;
589  do {
590    if (Tok.isNot(tok::identifier)) {
591      Diag(Tok, diag::err_availability_expected_change);
592      SkipUntil(tok::r_paren);
593      return;
594    }
595    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
596    SourceLocation KeywordLoc = ConsumeToken();
597
598    if (Keyword == Ident_unavailable) {
599      if (UnavailableLoc.isValid()) {
600        Diag(KeywordLoc, diag::err_availability_redundant)
601          << Keyword << SourceRange(UnavailableLoc);
602      }
603      UnavailableLoc = KeywordLoc;
604
605      if (Tok.isNot(tok::comma))
606        break;
607
608      ConsumeToken();
609      continue;
610    }
611
612    if (Tok.isNot(tok::equal)) {
613      Diag(Tok, diag::err_expected_equal_after)
614        << Keyword;
615      SkipUntil(tok::r_paren);
616      return;
617    }
618    ConsumeToken();
619    if (Keyword == Ident_message) {
620      if (!isTokenStringLiteral()) {
621        Diag(Tok, diag::err_expected_string_literal);
622        SkipUntil(tok::r_paren);
623        return;
624      }
625      MessageExpr = ParseStringLiteralExpression();
626      break;
627    }
628
629    SourceRange VersionRange;
630    VersionTuple Version = ParseVersionTuple(VersionRange);
631
632    if (Version.empty()) {
633      SkipUntil(tok::r_paren);
634      return;
635    }
636
637    unsigned Index;
638    if (Keyword == Ident_introduced)
639      Index = Introduced;
640    else if (Keyword == Ident_deprecated)
641      Index = Deprecated;
642    else if (Keyword == Ident_obsoleted)
643      Index = Obsoleted;
644    else
645      Index = Unknown;
646
647    if (Index < Unknown) {
648      if (!Changes[Index].KeywordLoc.isInvalid()) {
649        Diag(KeywordLoc, diag::err_availability_redundant)
650          << Keyword
651          << SourceRange(Changes[Index].KeywordLoc,
652                         Changes[Index].VersionRange.getEnd());
653      }
654
655      Changes[Index].KeywordLoc = KeywordLoc;
656      Changes[Index].Version = Version;
657      Changes[Index].VersionRange = VersionRange;
658    } else {
659      Diag(KeywordLoc, diag::err_availability_unknown_change)
660        << Keyword << VersionRange;
661    }
662
663    if (Tok.isNot(tok::comma))
664      break;
665
666    ConsumeToken();
667  } while (true);
668
669  // Closing ')'.
670  if (T.consumeClose())
671    return;
672
673  if (endLoc)
674    *endLoc = T.getCloseLocation();
675
676  // The 'unavailable' availability cannot be combined with any other
677  // availability changes. Make sure that hasn't happened.
678  if (UnavailableLoc.isValid()) {
679    bool Complained = false;
680    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
681      if (Changes[Index].KeywordLoc.isValid()) {
682        if (!Complained) {
683          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
684            << SourceRange(Changes[Index].KeywordLoc,
685                           Changes[Index].VersionRange.getEnd());
686          Complained = true;
687        }
688
689        // Clear out the availability.
690        Changes[Index] = AvailabilityChange();
691      }
692    }
693  }
694
695  // Record this attribute
696  attrs.addNew(&Availability,
697               SourceRange(AvailabilityLoc, T.getCloseLocation()),
698               0, AvailabilityLoc,
699               Platform, PlatformLoc,
700               Changes[Introduced],
701               Changes[Deprecated],
702               Changes[Obsoleted],
703               UnavailableLoc, MessageExpr.take(),
704               false, false);
705}
706
707
708// Late Parsed Attributes:
709// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
710
711void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
712
713void Parser::LateParsedClass::ParseLexedAttributes() {
714  Self->ParseLexedAttributes(*Class);
715}
716
717void Parser::LateParsedAttribute::ParseLexedAttributes() {
718  Self->ParseLexedAttribute(*this, true, false);
719}
720
721/// Wrapper class which calls ParseLexedAttribute, after setting up the
722/// scope appropriately.
723void Parser::ParseLexedAttributes(ParsingClass &Class) {
724  // Deal with templates
725  // FIXME: Test cases to make sure this does the right thing for templates.
726  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
727  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
728                                HasTemplateScope);
729  if (HasTemplateScope)
730    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
731
732  // Set or update the scope flags to include Scope::ThisScope.
733  bool AlreadyHasClassScope = Class.TopLevelClass;
734  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
735  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
736  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
737
738  // Enter the scope of nested classes
739  if (!AlreadyHasClassScope)
740    Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
741                                                Class.TagOrTemplate);
742
743  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
744    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
745  }
746
747  if (!AlreadyHasClassScope)
748    Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
749                                                 Class.TagOrTemplate);
750}
751
752
753/// \brief Parse all attributes in LAs, and attach them to Decl D.
754void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
755                                     bool EnterScope, bool OnDefinition) {
756  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
757    LAs[i]->addDecl(D);
758    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
759  }
760  LAs.clear();
761}
762
763
764/// \brief Finish parsing an attribute for which parsing was delayed.
765/// This will be called at the end of parsing a class declaration
766/// for each LateParsedAttribute. We consume the saved tokens and
767/// create an attribute with the arguments filled in. We add this
768/// to the Attribute list for the decl.
769void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
770                                 bool EnterScope, bool OnDefinition) {
771  // Save the current token position.
772  SourceLocation OrigLoc = Tok.getLocation();
773
774  // Append the current token at the end of the new token stream so that it
775  // doesn't get lost.
776  LA.Toks.push_back(Tok);
777  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
778  // Consume the previously pushed token.
779  ConsumeAnyToken();
780
781  if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) {
782    Diag(Tok, diag::warn_attribute_on_function_definition)
783      << LA.AttrName.getName();
784  }
785
786  ParsedAttributes Attrs(AttrFactory);
787  SourceLocation endLoc;
788
789  if (LA.Decls.size() == 1) {
790    Decl *D = LA.Decls[0];
791
792    // If the Decl is templatized, add template parameters to scope.
793    bool HasTemplateScope = EnterScope && D->isTemplateDecl();
794    ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
795    if (HasTemplateScope)
796      Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
797
798    // If the Decl is on a function, add function parameters to the scope.
799    bool HasFunctionScope = EnterScope && D->isFunctionOrFunctionTemplate();
800    ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
801    if (HasFunctionScope)
802      Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
803
804    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
805
806    if (HasFunctionScope) {
807      Actions.ActOnExitFunctionContext();
808      FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
809    }
810    if (HasTemplateScope) {
811      TempScope.Exit();
812    }
813  } else if (LA.Decls.size() > 0) {
814    // If there are multiple decls, then the decl cannot be within the
815    // function scope.
816    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
817  } else {
818    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
819  }
820
821  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) {
822    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
823  }
824
825  if (Tok.getLocation() != OrigLoc) {
826    // Due to a parsing error, we either went over the cached tokens or
827    // there are still cached tokens left, so we skip the leftover tokens.
828    // Since this is an uncommon situation that should be avoided, use the
829    // expensive isBeforeInTranslationUnit call.
830    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
831                                                        OrigLoc))
832    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
833      ConsumeAnyToken();
834  }
835}
836
837/// \brief Wrapper around a case statement checking if AttrName is
838/// one of the thread safety attributes
839bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
840  return llvm::StringSwitch<bool>(AttrName)
841      .Case("guarded_by", true)
842      .Case("guarded_var", true)
843      .Case("pt_guarded_by", true)
844      .Case("pt_guarded_var", true)
845      .Case("lockable", true)
846      .Case("scoped_lockable", true)
847      .Case("no_thread_safety_analysis", true)
848      .Case("acquired_after", true)
849      .Case("acquired_before", true)
850      .Case("exclusive_lock_function", true)
851      .Case("shared_lock_function", true)
852      .Case("exclusive_trylock_function", true)
853      .Case("shared_trylock_function", true)
854      .Case("unlock_function", true)
855      .Case("lock_returned", true)
856      .Case("locks_excluded", true)
857      .Case("exclusive_locks_required", true)
858      .Case("shared_locks_required", true)
859      .Default(false);
860}
861
862/// \brief Parse the contents of thread safety attributes. These
863/// should always be parsed as an expression list.
864///
865/// We need to special case the parsing due to the fact that if the first token
866/// of the first argument is an identifier, the main parse loop will store
867/// that token as a "parameter" and the rest of
868/// the arguments will be added to a list of "arguments". However,
869/// subsequent tokens in the first argument are lost. We instead parse each
870/// argument as an expression and add all arguments to the list of "arguments".
871/// In future, we will take advantage of this special case to also
872/// deal with some argument scoping issues here (for example, referring to a
873/// function parameter in the attribute on that function).
874void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
875                                        SourceLocation AttrNameLoc,
876                                        ParsedAttributes &Attrs,
877                                        SourceLocation *EndLoc) {
878  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
879
880  BalancedDelimiterTracker T(*this, tok::l_paren);
881  T.consumeOpen();
882
883  ExprVector ArgExprs(Actions);
884  bool ArgExprsOk = true;
885
886  // now parse the list of expressions
887  while (Tok.isNot(tok::r_paren)) {
888    ExprResult ArgExpr(ParseAssignmentExpression());
889    if (ArgExpr.isInvalid()) {
890      ArgExprsOk = false;
891      T.consumeClose();
892      break;
893    } else {
894      ArgExprs.push_back(ArgExpr.release());
895    }
896    if (Tok.isNot(tok::comma))
897      break;
898    ConsumeToken(); // Eat the comma, move to the next argument
899  }
900  // Match the ')'.
901  if (ArgExprsOk && !T.consumeClose()) {
902    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
903                 ArgExprs.take(), ArgExprs.size());
904  }
905  if (EndLoc)
906    *EndLoc = T.getCloseLocation();
907}
908
909/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
910/// of a C++11 attribute-specifier in a location where an attribute is not
911/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
912/// situation.
913///
914/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
915/// this doesn't appear to actually be an attribute-specifier, and the caller
916/// should try to parse it.
917bool Parser::DiagnoseProhibitedCXX11Attribute() {
918  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
919
920  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
921  case CAK_NotAttributeSpecifier:
922    // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
923    return false;
924
925  case CAK_InvalidAttributeSpecifier:
926    Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
927    return false;
928
929  case CAK_AttributeSpecifier:
930    // Parse and discard the attributes.
931    SourceLocation BeginLoc = ConsumeBracket();
932    ConsumeBracket();
933    SkipUntil(tok::r_square, /*StopAtSemi*/ false);
934    assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
935    SourceLocation EndLoc = ConsumeBracket();
936    Diag(BeginLoc, diag::err_attributes_not_allowed)
937      << SourceRange(BeginLoc, EndLoc);
938    return true;
939  }
940  llvm_unreachable("All cases handled above.");
941}
942
943void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
944  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
945    << attrs.Range;
946}
947
948/// ParseDeclaration - Parse a full 'declaration', which consists of
949/// declaration-specifiers, some number of declarators, and a semicolon.
950/// 'Context' should be a Declarator::TheContext value.  This returns the
951/// location of the semicolon in DeclEnd.
952///
953///       declaration: [C99 6.7]
954///         block-declaration ->
955///           simple-declaration
956///           others                   [FIXME]
957/// [C++]   template-declaration
958/// [C++]   namespace-definition
959/// [C++]   using-directive
960/// [C++]   using-declaration
961/// [C++11/C11] static_assert-declaration
962///         others... [FIXME]
963///
964Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
965                                                unsigned Context,
966                                                SourceLocation &DeclEnd,
967                                          ParsedAttributesWithRange &attrs) {
968  ParenBraceBracketBalancer BalancerRAIIObj(*this);
969  // Must temporarily exit the objective-c container scope for
970  // parsing c none objective-c decls.
971  ObjCDeclContextSwitch ObjCDC(*this);
972
973  Decl *SingleDecl = 0;
974  Decl *OwnedType = 0;
975  switch (Tok.getKind()) {
976  case tok::kw_template:
977  case tok::kw_export:
978    ProhibitAttributes(attrs);
979    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
980    break;
981  case tok::kw_inline:
982    // Could be the start of an inline namespace. Allowed as an ext in C++03.
983    if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
984      ProhibitAttributes(attrs);
985      SourceLocation InlineLoc = ConsumeToken();
986      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
987      break;
988    }
989    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
990                                  true);
991  case tok::kw_namespace:
992    ProhibitAttributes(attrs);
993    SingleDecl = ParseNamespace(Context, DeclEnd);
994    break;
995  case tok::kw_using:
996    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
997                                                  DeclEnd, attrs, &OwnedType);
998    break;
999  case tok::kw_static_assert:
1000  case tok::kw__Static_assert:
1001    ProhibitAttributes(attrs);
1002    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1003    break;
1004  default:
1005    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
1006  }
1007
1008  // This routine returns a DeclGroup, if the thing we parsed only contains a
1009  // single decl, convert it now. Alias declarations can also declare a type;
1010  // include that too if it is present.
1011  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1012}
1013
1014///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1015///         declaration-specifiers init-declarator-list[opt] ';'
1016///[C90/C++]init-declarator-list ';'                             [TODO]
1017/// [OMP]   threadprivate-directive                              [TODO]
1018///
1019///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
1020///         attribute-specifier-seq[opt] type-specifier-seq declarator
1021///
1022/// If RequireSemi is false, this does not check for a ';' at the end of the
1023/// declaration.  If it is true, it checks for and eats it.
1024///
1025/// If FRI is non-null, we might be parsing a for-range-declaration instead
1026/// of a simple-declaration. If we find that we are, we also parse the
1027/// for-range-initializer, and place it here.
1028Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
1029                                                      unsigned Context,
1030                                                      SourceLocation &DeclEnd,
1031                                                      ParsedAttributes &attrs,
1032                                                      bool RequireSemi,
1033                                                      ForRangeInit *FRI) {
1034  // Parse the common declaration-specifiers piece.
1035  ParsingDeclSpec DS(*this);
1036  DS.takeAttributesFrom(attrs);
1037
1038  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
1039                             getDeclSpecContextFromDeclaratorContext(Context));
1040
1041  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1042  // declaration-specifiers init-declarator-list[opt] ';'
1043  if (Tok.is(tok::semi)) {
1044    if (RequireSemi) ConsumeToken();
1045    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1046                                                       DS);
1047    DS.complete(TheDecl);
1048    return Actions.ConvertDeclToDeclGroup(TheDecl);
1049  }
1050
1051  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
1052}
1053
1054/// Returns true if this might be the start of a declarator, or a common typo
1055/// for a declarator.
1056bool Parser::MightBeDeclarator(unsigned Context) {
1057  switch (Tok.getKind()) {
1058  case tok::annot_cxxscope:
1059  case tok::annot_template_id:
1060  case tok::caret:
1061  case tok::code_completion:
1062  case tok::coloncolon:
1063  case tok::ellipsis:
1064  case tok::kw___attribute:
1065  case tok::kw_operator:
1066  case tok::l_paren:
1067  case tok::star:
1068    return true;
1069
1070  case tok::amp:
1071  case tok::ampamp:
1072    return getLangOpts().CPlusPlus;
1073
1074  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1075    return Context == Declarator::MemberContext && getLangOpts().CPlusPlus0x &&
1076           NextToken().is(tok::l_square);
1077
1078  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1079    return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1080
1081  case tok::identifier:
1082    switch (NextToken().getKind()) {
1083    case tok::code_completion:
1084    case tok::coloncolon:
1085    case tok::comma:
1086    case tok::equal:
1087    case tok::equalequal: // Might be a typo for '='.
1088    case tok::kw_alignas:
1089    case tok::kw_asm:
1090    case tok::kw___attribute:
1091    case tok::l_brace:
1092    case tok::l_paren:
1093    case tok::l_square:
1094    case tok::less:
1095    case tok::r_brace:
1096    case tok::r_paren:
1097    case tok::r_square:
1098    case tok::semi:
1099      return true;
1100
1101    case tok::colon:
1102      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1103      // and in block scope it's probably a label. Inside a class definition,
1104      // this is a bit-field.
1105      return Context == Declarator::MemberContext ||
1106             (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1107
1108    case tok::identifier: // Possible virt-specifier.
1109      return getLangOpts().CPlusPlus0x && isCXX0XVirtSpecifier(NextToken());
1110
1111    default:
1112      return false;
1113    }
1114
1115  default:
1116    return false;
1117  }
1118}
1119
1120/// Skip until we reach something which seems like a sensible place to pick
1121/// up parsing after a malformed declaration. This will sometimes stop sooner
1122/// than SkipUntil(tok::r_brace) would, but will never stop later.
1123void Parser::SkipMalformedDecl() {
1124  while (true) {
1125    switch (Tok.getKind()) {
1126    case tok::l_brace:
1127      // Skip until matching }, then stop. We've probably skipped over
1128      // a malformed class or function definition or similar.
1129      ConsumeBrace();
1130      SkipUntil(tok::r_brace, /*StopAtSemi*/false);
1131      if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1132        // This declaration isn't over yet. Keep skipping.
1133        continue;
1134      }
1135      if (Tok.is(tok::semi))
1136        ConsumeToken();
1137      return;
1138
1139    case tok::l_square:
1140      ConsumeBracket();
1141      SkipUntil(tok::r_square, /*StopAtSemi*/false);
1142      continue;
1143
1144    case tok::l_paren:
1145      ConsumeParen();
1146      SkipUntil(tok::r_paren, /*StopAtSemi*/false);
1147      continue;
1148
1149    case tok::r_brace:
1150      return;
1151
1152    case tok::semi:
1153      ConsumeToken();
1154      return;
1155
1156    case tok::kw_inline:
1157      // 'inline namespace' at the start of a line is almost certainly
1158      // a good place to pick back up parsing.
1159      if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace))
1160        return;
1161      break;
1162
1163    case tok::kw_namespace:
1164      // 'namespace' at the start of a line is almost certainly a good
1165      // place to pick back up parsing.
1166      if (Tok.isAtStartOfLine())
1167        return;
1168      break;
1169
1170    case tok::eof:
1171      return;
1172
1173    default:
1174      break;
1175    }
1176
1177    ConsumeAnyToken();
1178  }
1179}
1180
1181/// ParseDeclGroup - Having concluded that this is either a function
1182/// definition or a group of object declarations, actually parse the
1183/// result.
1184Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1185                                              unsigned Context,
1186                                              bool AllowFunctionDefinitions,
1187                                              SourceLocation *DeclEnd,
1188                                              ForRangeInit *FRI) {
1189  // Parse the first declarator.
1190  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1191  ParseDeclarator(D);
1192
1193  // Bail out if the first declarator didn't seem well-formed.
1194  if (!D.hasName() && !D.mayOmitIdentifier()) {
1195    SkipMalformedDecl();
1196    return DeclGroupPtrTy();
1197  }
1198
1199  // Save late-parsed attributes for now; they need to be parsed in the
1200  // appropriate function scope after the function Decl has been constructed.
1201  LateParsedAttrList LateParsedAttrs;
1202  if (D.isFunctionDeclarator())
1203    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1204
1205  // Check to see if we have a function *definition* which must have a body.
1206  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1207      // Look at the next token to make sure that this isn't a function
1208      // declaration.  We have to check this because __attribute__ might be the
1209      // start of a function definition in GCC-extended K&R C.
1210      !isDeclarationAfterDeclarator()) {
1211
1212    if (isStartOfFunctionDefinition(D)) {
1213      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1214        Diag(Tok, diag::err_function_declared_typedef);
1215
1216        // Recover by treating the 'typedef' as spurious.
1217        DS.ClearStorageClassSpecs();
1218      }
1219
1220      Decl *TheDecl =
1221        ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1222      return Actions.ConvertDeclToDeclGroup(TheDecl);
1223    }
1224
1225    if (isDeclarationSpecifier()) {
1226      // If there is an invalid declaration specifier right after the function
1227      // prototype, then we must be in a missing semicolon case where this isn't
1228      // actually a body.  Just fall through into the code that handles it as a
1229      // prototype, and let the top-level code handle the erroneous declspec
1230      // where it would otherwise expect a comma or semicolon.
1231    } else {
1232      Diag(Tok, diag::err_expected_fn_body);
1233      SkipUntil(tok::semi);
1234      return DeclGroupPtrTy();
1235    }
1236  }
1237
1238  if (ParseAsmAttributesAfterDeclarator(D))
1239    return DeclGroupPtrTy();
1240
1241  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1242  // must parse and analyze the for-range-initializer before the declaration is
1243  // analyzed.
1244  if (FRI && Tok.is(tok::colon)) {
1245    FRI->ColonLoc = ConsumeToken();
1246    if (Tok.is(tok::l_brace))
1247      FRI->RangeExpr = ParseBraceInitializer();
1248    else
1249      FRI->RangeExpr = ParseExpression();
1250    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1251    Actions.ActOnCXXForRangeDecl(ThisDecl);
1252    Actions.FinalizeDeclaration(ThisDecl);
1253    D.complete(ThisDecl);
1254    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1255  }
1256
1257  SmallVector<Decl *, 8> DeclsInGroup;
1258  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1259  if (LateParsedAttrs.size() > 0)
1260    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1261  D.complete(FirstDecl);
1262  if (FirstDecl)
1263    DeclsInGroup.push_back(FirstDecl);
1264
1265  bool ExpectSemi = Context != Declarator::ForContext;
1266
1267  // If we don't have a comma, it is either the end of the list (a ';') or an
1268  // error, bail out.
1269  while (Tok.is(tok::comma)) {
1270    SourceLocation CommaLoc = ConsumeToken();
1271
1272    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1273      // This comma was followed by a line-break and something which can't be
1274      // the start of a declarator. The comma was probably a typo for a
1275      // semicolon.
1276      Diag(CommaLoc, diag::err_expected_semi_declaration)
1277        << FixItHint::CreateReplacement(CommaLoc, ";");
1278      ExpectSemi = false;
1279      break;
1280    }
1281
1282    // Parse the next declarator.
1283    D.clear();
1284    D.setCommaLoc(CommaLoc);
1285
1286    // Accept attributes in an init-declarator.  In the first declarator in a
1287    // declaration, these would be part of the declspec.  In subsequent
1288    // declarators, they become part of the declarator itself, so that they
1289    // don't apply to declarators after *this* one.  Examples:
1290    //    short __attribute__((common)) var;    -> declspec
1291    //    short var __attribute__((common));    -> declarator
1292    //    short x, __attribute__((common)) var;    -> declarator
1293    MaybeParseGNUAttributes(D);
1294
1295    ParseDeclarator(D);
1296    if (!D.isInvalidType()) {
1297      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1298      D.complete(ThisDecl);
1299      if (ThisDecl)
1300        DeclsInGroup.push_back(ThisDecl);
1301    }
1302  }
1303
1304  if (DeclEnd)
1305    *DeclEnd = Tok.getLocation();
1306
1307  if (ExpectSemi &&
1308      ExpectAndConsume(tok::semi,
1309                       Context == Declarator::FileContext
1310                         ? diag::err_invalid_token_after_toplevel_declarator
1311                         : diag::err_expected_semi_declaration)) {
1312    // Okay, there was no semicolon and one was expected.  If we see a
1313    // declaration specifier, just assume it was missing and continue parsing.
1314    // Otherwise things are very confused and we skip to recover.
1315    if (!isDeclarationSpecifier()) {
1316      SkipUntil(tok::r_brace, true, true);
1317      if (Tok.is(tok::semi))
1318        ConsumeToken();
1319    }
1320  }
1321
1322  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1323                                         DeclsInGroup.data(),
1324                                         DeclsInGroup.size());
1325}
1326
1327/// Parse an optional simple-asm-expr and attributes, and attach them to a
1328/// declarator. Returns true on an error.
1329bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1330  // If a simple-asm-expr is present, parse it.
1331  if (Tok.is(tok::kw_asm)) {
1332    SourceLocation Loc;
1333    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1334    if (AsmLabel.isInvalid()) {
1335      SkipUntil(tok::semi, true, true);
1336      return true;
1337    }
1338
1339    D.setAsmLabel(AsmLabel.release());
1340    D.SetRangeEnd(Loc);
1341  }
1342
1343  MaybeParseGNUAttributes(D);
1344  return false;
1345}
1346
1347/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1348/// declarator'. This method parses the remainder of the declaration
1349/// (including any attributes or initializer, among other things) and
1350/// finalizes the declaration.
1351///
1352///       init-declarator: [C99 6.7]
1353///         declarator
1354///         declarator '=' initializer
1355/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1356/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1357/// [C++]   declarator initializer[opt]
1358///
1359/// [C++] initializer:
1360/// [C++]   '=' initializer-clause
1361/// [C++]   '(' expression-list ')'
1362/// [C++0x] '=' 'default'                                                [TODO]
1363/// [C++0x] '=' 'delete'
1364/// [C++0x] braced-init-list
1365///
1366/// According to the standard grammar, =default and =delete are function
1367/// definitions, but that definitely doesn't fit with the parser here.
1368///
1369Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1370                                     const ParsedTemplateInfo &TemplateInfo) {
1371  if (ParseAsmAttributesAfterDeclarator(D))
1372    return 0;
1373
1374  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1375}
1376
1377Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1378                                     const ParsedTemplateInfo &TemplateInfo) {
1379  // Inform the current actions module that we just parsed this declarator.
1380  Decl *ThisDecl = 0;
1381  switch (TemplateInfo.Kind) {
1382  case ParsedTemplateInfo::NonTemplate:
1383    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1384    break;
1385
1386  case ParsedTemplateInfo::Template:
1387  case ParsedTemplateInfo::ExplicitSpecialization:
1388    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1389                             MultiTemplateParamsArg(Actions,
1390                                          TemplateInfo.TemplateParams->data(),
1391                                          TemplateInfo.TemplateParams->size()),
1392                                               D);
1393    break;
1394
1395  case ParsedTemplateInfo::ExplicitInstantiation: {
1396    DeclResult ThisRes
1397      = Actions.ActOnExplicitInstantiation(getCurScope(),
1398                                           TemplateInfo.ExternLoc,
1399                                           TemplateInfo.TemplateLoc,
1400                                           D);
1401    if (ThisRes.isInvalid()) {
1402      SkipUntil(tok::semi, true, true);
1403      return 0;
1404    }
1405
1406    ThisDecl = ThisRes.get();
1407    break;
1408    }
1409  }
1410
1411  bool TypeContainsAuto =
1412    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1413
1414  // Parse declarator '=' initializer.
1415  // If a '==' or '+=' is found, suggest a fixit to '='.
1416  if (isTokenEqualOrEqualTypo()) {
1417    ConsumeToken();
1418    if (Tok.is(tok::kw_delete)) {
1419      if (D.isFunctionDeclarator())
1420        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1421          << 1 /* delete */;
1422      else
1423        Diag(ConsumeToken(), diag::err_deleted_non_function);
1424    } else if (Tok.is(tok::kw_default)) {
1425      if (D.isFunctionDeclarator())
1426        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1427          << 0 /* default */;
1428      else
1429        Diag(ConsumeToken(), diag::err_default_special_members);
1430    } else {
1431      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1432        EnterScope(0);
1433        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1434      }
1435
1436      if (Tok.is(tok::code_completion)) {
1437        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1438        cutOffParsing();
1439        return 0;
1440      }
1441
1442      ExprResult Init(ParseInitializer());
1443
1444      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1445        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1446        ExitScope();
1447      }
1448
1449      if (Init.isInvalid()) {
1450        SkipUntil(tok::comma, true, true);
1451        Actions.ActOnInitializerError(ThisDecl);
1452      } else
1453        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1454                                     /*DirectInit=*/false, TypeContainsAuto);
1455    }
1456  } else if (Tok.is(tok::l_paren)) {
1457    // Parse C++ direct initializer: '(' expression-list ')'
1458    BalancedDelimiterTracker T(*this, tok::l_paren);
1459    T.consumeOpen();
1460
1461    ExprVector Exprs(Actions);
1462    CommaLocsTy CommaLocs;
1463
1464    if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1465      EnterScope(0);
1466      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1467    }
1468
1469    if (ParseExpressionList(Exprs, CommaLocs)) {
1470      SkipUntil(tok::r_paren);
1471
1472      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1473        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1474        ExitScope();
1475      }
1476    } else {
1477      // Match the ')'.
1478      T.consumeClose();
1479
1480      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1481             "Unexpected number of commas!");
1482
1483      if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1484        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1485        ExitScope();
1486      }
1487
1488      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
1489                                                          T.getCloseLocation(),
1490                                                          move_arg(Exprs));
1491      Actions.AddInitializerToDecl(ThisDecl, Initializer.take(),
1492                                   /*DirectInit=*/true, TypeContainsAuto);
1493    }
1494  } else if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1495    // Parse C++0x braced-init-list.
1496    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1497
1498    if (D.getCXXScopeSpec().isSet()) {
1499      EnterScope(0);
1500      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1501    }
1502
1503    ExprResult Init(ParseBraceInitializer());
1504
1505    if (D.getCXXScopeSpec().isSet()) {
1506      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1507      ExitScope();
1508    }
1509
1510    if (Init.isInvalid()) {
1511      Actions.ActOnInitializerError(ThisDecl);
1512    } else
1513      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1514                                   /*DirectInit=*/true, TypeContainsAuto);
1515
1516  } else {
1517    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1518  }
1519
1520  Actions.FinalizeDeclaration(ThisDecl);
1521
1522  return ThisDecl;
1523}
1524
1525/// ParseSpecifierQualifierList
1526///        specifier-qualifier-list:
1527///          type-specifier specifier-qualifier-list[opt]
1528///          type-qualifier specifier-qualifier-list[opt]
1529/// [GNU]    attributes     specifier-qualifier-list[opt]
1530///
1531void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
1532                                         DeclSpecContext DSC) {
1533  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1534  /// parse declaration-specifiers and complain about extra stuff.
1535  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1536  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
1537
1538  // Validate declspec for type-name.
1539  unsigned Specs = DS.getParsedSpecifiers();
1540  if (DSC == DSC_type_specifier && !DS.hasTypeSpecifier()) {
1541    Diag(Tok, diag::err_expected_type);
1542    DS.SetTypeSpecError();
1543  } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1544             !DS.hasAttributes()) {
1545    Diag(Tok, diag::err_typename_requires_specqual);
1546    if (!DS.hasTypeSpecifier())
1547      DS.SetTypeSpecError();
1548  }
1549
1550  // Issue diagnostic and remove storage class if present.
1551  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1552    if (DS.getStorageClassSpecLoc().isValid())
1553      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1554    else
1555      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1556    DS.ClearStorageClassSpecs();
1557  }
1558
1559  // Issue diagnostic and remove function specfier if present.
1560  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1561    if (DS.isInlineSpecified())
1562      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1563    if (DS.isVirtualSpecified())
1564      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1565    if (DS.isExplicitSpecified())
1566      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1567    DS.ClearFunctionSpecs();
1568  }
1569
1570  // Issue diagnostic and remove constexpr specfier if present.
1571  if (DS.isConstexprSpecified()) {
1572    Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
1573    DS.ClearConstexprSpec();
1574  }
1575}
1576
1577/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1578/// specified token is valid after the identifier in a declarator which
1579/// immediately follows the declspec.  For example, these things are valid:
1580///
1581///      int x   [             4];         // direct-declarator
1582///      int x   (             int y);     // direct-declarator
1583///  int(int x   )                         // direct-declarator
1584///      int x   ;                         // simple-declaration
1585///      int x   =             17;         // init-declarator-list
1586///      int x   ,             y;          // init-declarator-list
1587///      int x   __asm__       ("foo");    // init-declarator-list
1588///      int x   :             4;          // struct-declarator
1589///      int x   {             5};         // C++'0x unified initializers
1590///
1591/// This is not, because 'x' does not immediately follow the declspec (though
1592/// ')' happens to be valid anyway).
1593///    int (x)
1594///
1595static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1596  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1597         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1598         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1599}
1600
1601
1602/// ParseImplicitInt - This method is called when we have an non-typename
1603/// identifier in a declspec (which normally terminates the decl spec) when
1604/// the declspec has no type specifier.  In this case, the declspec is either
1605/// malformed or is "implicit int" (in K&R and C89).
1606///
1607/// This method handles diagnosing this prettily and returns false if the
1608/// declspec is done being processed.  If it recovers and thinks there may be
1609/// other pieces of declspec after it, it returns true.
1610///
1611bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1612                              const ParsedTemplateInfo &TemplateInfo,
1613                              AccessSpecifier AS, DeclSpecContext DSC) {
1614  assert(Tok.is(tok::identifier) && "should have identifier");
1615
1616  SourceLocation Loc = Tok.getLocation();
1617  // If we see an identifier that is not a type name, we normally would
1618  // parse it as the identifer being declared.  However, when a typename
1619  // is typo'd or the definition is not included, this will incorrectly
1620  // parse the typename as the identifier name and fall over misparsing
1621  // later parts of the diagnostic.
1622  //
1623  // As such, we try to do some look-ahead in cases where this would
1624  // otherwise be an "implicit-int" case to see if this is invalid.  For
1625  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1626  // an identifier with implicit int, we'd get a parse error because the
1627  // next token is obviously invalid for a type.  Parse these as a case
1628  // with an invalid type specifier.
1629  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1630
1631  // Since we know that this either implicit int (which is rare) or an
1632  // error, do lookahead to try to do better recovery. This never applies within
1633  // a type specifier.
1634  // FIXME: Don't bail out here in languages with no implicit int (like
1635  // C++ with no -fms-extensions). This is much more likely to be an undeclared
1636  // type or typo than a use of implicit int.
1637  if (DSC != DSC_type_specifier &&
1638      isValidAfterIdentifierInDeclarator(NextToken())) {
1639    // If this token is valid for implicit int, e.g. "static x = 4", then
1640    // we just avoid eating the identifier, so it will be parsed as the
1641    // identifier in the declarator.
1642    return false;
1643  }
1644
1645  // Otherwise, if we don't consume this token, we are going to emit an
1646  // error anyway.  Try to recover from various common problems.  Check
1647  // to see if this was a reference to a tag name without a tag specified.
1648  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1649  //
1650  // C++ doesn't need this, and isTagName doesn't take SS.
1651  if (SS == 0) {
1652    const char *TagName = 0, *FixitTagName = 0;
1653    tok::TokenKind TagKind = tok::unknown;
1654
1655    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1656      default: break;
1657      case DeclSpec::TST_enum:
1658        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1659      case DeclSpec::TST_union:
1660        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1661      case DeclSpec::TST_struct:
1662        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1663      case DeclSpec::TST_class:
1664        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1665    }
1666
1667    if (TagName) {
1668      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1669        << Tok.getIdentifierInfo() << TagName << getLangOpts().CPlusPlus
1670        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1671
1672      // Parse this as a tag as if the missing tag were present.
1673      if (TagKind == tok::kw_enum)
1674        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
1675      else
1676        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
1677                            /*EnteringContext*/ false, DSC_normal);
1678      return true;
1679    }
1680  }
1681
1682  // This is almost certainly an invalid type name. Let the action emit a
1683  // diagnostic and attempt to recover.
1684  ParsedType T;
1685  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1686                                      getCurScope(), SS, T)) {
1687    // The action emitted a diagnostic, so we don't have to.
1688    if (T) {
1689      // The action has suggested that the type T could be used. Set that as
1690      // the type in the declaration specifiers, consume the would-be type
1691      // name token, and we're done.
1692      const char *PrevSpec;
1693      unsigned DiagID;
1694      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1695      DS.SetRangeEnd(Tok.getLocation());
1696      ConsumeToken();
1697
1698      // There may be other declaration specifiers after this.
1699      return true;
1700    }
1701
1702    // Fall through; the action had no suggestion for us.
1703  } else {
1704    // The action did not emit a diagnostic, so emit one now.
1705    SourceRange R;
1706    if (SS) R = SS->getRange();
1707    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1708  }
1709
1710  // Mark this as an error.
1711  DS.SetTypeSpecError();
1712  DS.SetRangeEnd(Tok.getLocation());
1713  ConsumeToken();
1714
1715  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1716  // avoid rippling error messages on subsequent uses of the same type,
1717  // could be useful if #include was forgotten.
1718  return false;
1719}
1720
1721/// \brief Determine the declaration specifier context from the declarator
1722/// context.
1723///
1724/// \param Context the declarator context, which is one of the
1725/// Declarator::TheContext enumerator values.
1726Parser::DeclSpecContext
1727Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1728  if (Context == Declarator::MemberContext)
1729    return DSC_class;
1730  if (Context == Declarator::FileContext)
1731    return DSC_top_level;
1732  if (Context == Declarator::TrailingReturnContext)
1733    return DSC_trailing;
1734  return DSC_normal;
1735}
1736
1737/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1738///
1739/// FIXME: Simply returns an alignof() expression if the argument is a
1740/// type. Ideally, the type should be propagated directly into Sema.
1741///
1742/// [C11]   type-id
1743/// [C11]   constant-expression
1744/// [C++0x] type-id ...[opt]
1745/// [C++0x] assignment-expression ...[opt]
1746ExprResult Parser::ParseAlignArgument(SourceLocation Start,
1747                                      SourceLocation &EllipsisLoc) {
1748  ExprResult ER;
1749  if (isTypeIdInParens()) {
1750    SourceLocation TypeLoc = Tok.getLocation();
1751    ParsedType Ty = ParseTypeName().get();
1752    SourceRange TypeRange(Start, Tok.getLocation());
1753    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1754                                               Ty.getAsOpaquePtr(), TypeRange);
1755  } else
1756    ER = ParseConstantExpression();
1757
1758  if (getLangOpts().CPlusPlus0x && Tok.is(tok::ellipsis))
1759    EllipsisLoc = ConsumeToken();
1760
1761  return ER;
1762}
1763
1764/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1765/// attribute to Attrs.
1766///
1767/// alignment-specifier:
1768/// [C11]   '_Alignas' '(' type-id ')'
1769/// [C11]   '_Alignas' '(' constant-expression ')'
1770/// [C++0x] 'alignas' '(' type-id ...[opt] ')'
1771/// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')'
1772void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1773                                     SourceLocation *endLoc) {
1774  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1775         "Not an alignment-specifier!");
1776
1777  SourceLocation KWLoc = Tok.getLocation();
1778  ConsumeToken();
1779
1780  BalancedDelimiterTracker T(*this, tok::l_paren);
1781  if (T.expectAndConsume(diag::err_expected_lparen))
1782    return;
1783
1784  SourceLocation EllipsisLoc;
1785  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
1786  if (ArgExpr.isInvalid()) {
1787    SkipUntil(tok::r_paren);
1788    return;
1789  }
1790
1791  T.consumeClose();
1792  if (endLoc)
1793    *endLoc = T.getCloseLocation();
1794
1795  // FIXME: Handle pack-expansions here.
1796  if (EllipsisLoc.isValid()) {
1797    Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported);
1798    return;
1799  }
1800
1801  ExprVector ArgExprs(Actions);
1802  ArgExprs.push_back(ArgExpr.release());
1803  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1804               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1805}
1806
1807/// ParseDeclarationSpecifiers
1808///       declaration-specifiers: [C99 6.7]
1809///         storage-class-specifier declaration-specifiers[opt]
1810///         type-specifier declaration-specifiers[opt]
1811/// [C99]   function-specifier declaration-specifiers[opt]
1812/// [C11]   alignment-specifier declaration-specifiers[opt]
1813/// [GNU]   attributes declaration-specifiers[opt]
1814/// [Clang] '__module_private__' declaration-specifiers[opt]
1815///
1816///       storage-class-specifier: [C99 6.7.1]
1817///         'typedef'
1818///         'extern'
1819///         'static'
1820///         'auto'
1821///         'register'
1822/// [C++]   'mutable'
1823/// [GNU]   '__thread'
1824///       function-specifier: [C99 6.7.4]
1825/// [C99]   'inline'
1826/// [C++]   'virtual'
1827/// [C++]   'explicit'
1828/// [OpenCL] '__kernel'
1829///       'friend': [C++ dcl.friend]
1830///       'constexpr': [C++0x dcl.constexpr]
1831
1832///
1833void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1834                                        const ParsedTemplateInfo &TemplateInfo,
1835                                        AccessSpecifier AS,
1836                                        DeclSpecContext DSContext,
1837                                        LateParsedAttrList *LateAttrs) {
1838  if (DS.getSourceRange().isInvalid()) {
1839    DS.SetRangeStart(Tok.getLocation());
1840    DS.SetRangeEnd(Tok.getLocation());
1841  }
1842
1843  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
1844  while (1) {
1845    bool isInvalid = false;
1846    const char *PrevSpec = 0;
1847    unsigned DiagID = 0;
1848
1849    SourceLocation Loc = Tok.getLocation();
1850
1851    switch (Tok.getKind()) {
1852    default:
1853    DoneWithDeclSpec:
1854      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1855      MaybeParseCXX0XAttributes(DS.getAttributes());
1856
1857      // If this is not a declaration specifier token, we're done reading decl
1858      // specifiers.  First verify that DeclSpec's are consistent.
1859      DS.Finish(Diags, PP);
1860      return;
1861
1862    case tok::code_completion: {
1863      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1864      if (DS.hasTypeSpecifier()) {
1865        bool AllowNonIdentifiers
1866          = (getCurScope()->getFlags() & (Scope::ControlScope |
1867                                          Scope::BlockScope |
1868                                          Scope::TemplateParamScope |
1869                                          Scope::FunctionPrototypeScope |
1870                                          Scope::AtCatchScope)) == 0;
1871        bool AllowNestedNameSpecifiers
1872          = DSContext == DSC_top_level ||
1873            (DSContext == DSC_class && DS.isFriendSpecified());
1874
1875        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1876                                     AllowNonIdentifiers,
1877                                     AllowNestedNameSpecifiers);
1878        return cutOffParsing();
1879      }
1880
1881      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1882        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1883      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1884        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1885                                    : Sema::PCC_Template;
1886      else if (DSContext == DSC_class)
1887        CCC = Sema::PCC_Class;
1888      else if (CurParsedObjCImpl)
1889        CCC = Sema::PCC_ObjCImplementation;
1890
1891      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1892      return cutOffParsing();
1893    }
1894
1895    case tok::coloncolon: // ::foo::bar
1896      // C++ scope specifier.  Annotate and loop, or bail out on error.
1897      if (TryAnnotateCXXScopeToken(true)) {
1898        if (!DS.hasTypeSpecifier())
1899          DS.SetTypeSpecError();
1900        goto DoneWithDeclSpec;
1901      }
1902      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1903        goto DoneWithDeclSpec;
1904      continue;
1905
1906    case tok::annot_cxxscope: {
1907      if (DS.hasTypeSpecifier())
1908        goto DoneWithDeclSpec;
1909
1910      CXXScopeSpec SS;
1911      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1912                                                   Tok.getAnnotationRange(),
1913                                                   SS);
1914
1915      // We are looking for a qualified typename.
1916      Token Next = NextToken();
1917      if (Next.is(tok::annot_template_id) &&
1918          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1919            ->Kind == TNK_Type_template) {
1920        // We have a qualified template-id, e.g., N::A<int>
1921
1922        // C++ [class.qual]p2:
1923        //   In a lookup in which the constructor is an acceptable lookup
1924        //   result and the nested-name-specifier nominates a class C:
1925        //
1926        //     - if the name specified after the
1927        //       nested-name-specifier, when looked up in C, is the
1928        //       injected-class-name of C (Clause 9), or
1929        //
1930        //     - if the name specified after the nested-name-specifier
1931        //       is the same as the identifier or the
1932        //       simple-template-id's template-name in the last
1933        //       component of the nested-name-specifier,
1934        //
1935        //   the name is instead considered to name the constructor of
1936        //   class C.
1937        //
1938        // Thus, if the template-name is actually the constructor
1939        // name, then the code is ill-formed; this interpretation is
1940        // reinforced by the NAD status of core issue 635.
1941        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1942        if ((DSContext == DSC_top_level ||
1943             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1944            TemplateId->Name &&
1945            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1946          if (isConstructorDeclarator()) {
1947            // The user meant this to be an out-of-line constructor
1948            // definition, but template arguments are not allowed
1949            // there.  Just allow this as a constructor; we'll
1950            // complain about it later.
1951            goto DoneWithDeclSpec;
1952          }
1953
1954          // The user meant this to name a type, but it actually names
1955          // a constructor with some extraneous template
1956          // arguments. Complain, then parse it as a type as the user
1957          // intended.
1958          Diag(TemplateId->TemplateNameLoc,
1959               diag::err_out_of_line_template_id_names_constructor)
1960            << TemplateId->Name;
1961        }
1962
1963        DS.getTypeSpecScope() = SS;
1964        ConsumeToken(); // The C++ scope.
1965        assert(Tok.is(tok::annot_template_id) &&
1966               "ParseOptionalCXXScopeSpecifier not working");
1967        AnnotateTemplateIdTokenAsType();
1968        continue;
1969      }
1970
1971      if (Next.is(tok::annot_typename)) {
1972        DS.getTypeSpecScope() = SS;
1973        ConsumeToken(); // The C++ scope.
1974        if (Tok.getAnnotationValue()) {
1975          ParsedType T = getTypeAnnotation(Tok);
1976          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1977                                         Tok.getAnnotationEndLoc(),
1978                                         PrevSpec, DiagID, T);
1979        }
1980        else
1981          DS.SetTypeSpecError();
1982        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1983        ConsumeToken(); // The typename
1984      }
1985
1986      if (Next.isNot(tok::identifier))
1987        goto DoneWithDeclSpec;
1988
1989      // If we're in a context where the identifier could be a class name,
1990      // check whether this is a constructor declaration.
1991      if ((DSContext == DSC_top_level ||
1992           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1993          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1994                                     &SS)) {
1995        if (isConstructorDeclarator())
1996          goto DoneWithDeclSpec;
1997
1998        // As noted in C++ [class.qual]p2 (cited above), when the name
1999        // of the class is qualified in a context where it could name
2000        // a constructor, its a constructor name. However, we've
2001        // looked at the declarator, and the user probably meant this
2002        // to be a type. Complain that it isn't supposed to be treated
2003        // as a type, then proceed to parse it as a type.
2004        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2005          << Next.getIdentifierInfo();
2006      }
2007
2008      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2009                                               Next.getLocation(),
2010                                               getCurScope(), &SS,
2011                                               false, false, ParsedType(),
2012                                               /*IsCtorOrDtorName=*/false,
2013                                               /*NonTrivialSourceInfo=*/true);
2014
2015      // If the referenced identifier is not a type, then this declspec is
2016      // erroneous: We already checked about that it has no type specifier, and
2017      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
2018      // typename.
2019      if (TypeRep == 0) {
2020        ConsumeToken();   // Eat the scope spec so the identifier is current.
2021        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext)) continue;
2022        goto DoneWithDeclSpec;
2023      }
2024
2025      DS.getTypeSpecScope() = SS;
2026      ConsumeToken(); // The C++ scope.
2027
2028      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2029                                     DiagID, TypeRep);
2030      if (isInvalid)
2031        break;
2032
2033      DS.SetRangeEnd(Tok.getLocation());
2034      ConsumeToken(); // The typename.
2035
2036      continue;
2037    }
2038
2039    case tok::annot_typename: {
2040      if (Tok.getAnnotationValue()) {
2041        ParsedType T = getTypeAnnotation(Tok);
2042        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2043                                       DiagID, T);
2044      } else
2045        DS.SetTypeSpecError();
2046
2047      if (isInvalid)
2048        break;
2049
2050      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2051      ConsumeToken(); // The typename
2052
2053      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2054      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2055      // Objective-C interface.
2056      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2057        ParseObjCProtocolQualifiers(DS);
2058
2059      continue;
2060    }
2061
2062    case tok::kw___is_signed:
2063      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2064      // typically treats it as a trait. If we see __is_signed as it appears
2065      // in libstdc++, e.g.,
2066      //
2067      //   static const bool __is_signed;
2068      //
2069      // then treat __is_signed as an identifier rather than as a keyword.
2070      if (DS.getTypeSpecType() == TST_bool &&
2071          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2072          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
2073        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
2074        Tok.setKind(tok::identifier);
2075      }
2076
2077      // We're done with the declaration-specifiers.
2078      goto DoneWithDeclSpec;
2079
2080      // typedef-name
2081    case tok::kw_decltype:
2082    case tok::identifier: {
2083      // In C++, check to see if this is a scope specifier like foo::bar::, if
2084      // so handle it as such.  This is important for ctor parsing.
2085      if (getLangOpts().CPlusPlus) {
2086        if (TryAnnotateCXXScopeToken(true)) {
2087          if (!DS.hasTypeSpecifier())
2088            DS.SetTypeSpecError();
2089          goto DoneWithDeclSpec;
2090        }
2091        if (!Tok.is(tok::identifier))
2092          continue;
2093      }
2094
2095      // This identifier can only be a typedef name if we haven't already seen
2096      // a type-specifier.  Without this check we misparse:
2097      //  typedef int X; struct Y { short X; };  as 'short int'.
2098      if (DS.hasTypeSpecifier())
2099        goto DoneWithDeclSpec;
2100
2101      // Check for need to substitute AltiVec keyword tokens.
2102      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2103        break;
2104
2105      ParsedType TypeRep =
2106        Actions.getTypeName(*Tok.getIdentifierInfo(),
2107                            Tok.getLocation(), getCurScope());
2108
2109      // If this is not a typedef name, don't parse it as part of the declspec,
2110      // it must be an implicit int or an error.
2111      if (!TypeRep) {
2112        if (ParseImplicitInt(DS, 0, TemplateInfo, AS, DSContext)) continue;
2113        goto DoneWithDeclSpec;
2114      }
2115
2116      // If we're in a context where the identifier could be a class name,
2117      // check whether this is a constructor declaration.
2118      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2119          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2120          isConstructorDeclarator())
2121        goto DoneWithDeclSpec;
2122
2123      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2124                                     DiagID, TypeRep);
2125      if (isInvalid)
2126        break;
2127
2128      DS.SetRangeEnd(Tok.getLocation());
2129      ConsumeToken(); // The identifier
2130
2131      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2132      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2133      // Objective-C interface.
2134      if (Tok.is(tok::less) && getLangOpts().ObjC1)
2135        ParseObjCProtocolQualifiers(DS);
2136
2137      // Need to support trailing type qualifiers (e.g. "id<p> const").
2138      // If a type specifier follows, it will be diagnosed elsewhere.
2139      continue;
2140    }
2141
2142      // type-name
2143    case tok::annot_template_id: {
2144      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2145      if (TemplateId->Kind != TNK_Type_template) {
2146        // This template-id does not refer to a type name, so we're
2147        // done with the type-specifiers.
2148        goto DoneWithDeclSpec;
2149      }
2150
2151      // If we're in a context where the template-id could be a
2152      // constructor name or specialization, check whether this is a
2153      // constructor declaration.
2154      if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2155          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2156          isConstructorDeclarator())
2157        goto DoneWithDeclSpec;
2158
2159      // Turn the template-id annotation token into a type annotation
2160      // token, then try again to parse it as a type-specifier.
2161      AnnotateTemplateIdTokenAsType();
2162      continue;
2163    }
2164
2165    // GNU attributes support.
2166    case tok::kw___attribute:
2167      ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs);
2168      continue;
2169
2170    // Microsoft declspec support.
2171    case tok::kw___declspec:
2172      ParseMicrosoftDeclSpec(DS.getAttributes());
2173      continue;
2174
2175    // Microsoft single token adornments.
2176    case tok::kw___forceinline:
2177      // FIXME: Add handling here!
2178      break;
2179
2180    case tok::kw___ptr64:
2181    case tok::kw___ptr32:
2182    case tok::kw___w64:
2183    case tok::kw___cdecl:
2184    case tok::kw___stdcall:
2185    case tok::kw___fastcall:
2186    case tok::kw___thiscall:
2187    case tok::kw___unaligned:
2188      ParseMicrosoftTypeAttributes(DS.getAttributes());
2189      continue;
2190
2191    // Borland single token adornments.
2192    case tok::kw___pascal:
2193      ParseBorlandTypeAttributes(DS.getAttributes());
2194      continue;
2195
2196    // OpenCL single token adornments.
2197    case tok::kw___kernel:
2198      ParseOpenCLAttributes(DS.getAttributes());
2199      continue;
2200
2201    // storage-class-specifier
2202    case tok::kw_typedef:
2203      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2204                                         PrevSpec, DiagID);
2205      break;
2206    case tok::kw_extern:
2207      if (DS.isThreadSpecified())
2208        Diag(Tok, diag::ext_thread_before) << "extern";
2209      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2210                                         PrevSpec, DiagID);
2211      break;
2212    case tok::kw___private_extern__:
2213      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2214                                         Loc, PrevSpec, DiagID);
2215      break;
2216    case tok::kw_static:
2217      if (DS.isThreadSpecified())
2218        Diag(Tok, diag::ext_thread_before) << "static";
2219      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2220                                         PrevSpec, DiagID);
2221      break;
2222    case tok::kw_auto:
2223      if (getLangOpts().CPlusPlus0x) {
2224        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2225          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2226                                             PrevSpec, DiagID);
2227          if (!isInvalid)
2228            Diag(Tok, diag::ext_auto_storage_class)
2229              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2230        } else
2231          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2232                                         DiagID);
2233      } else
2234        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2235                                           PrevSpec, DiagID);
2236      break;
2237    case tok::kw_register:
2238      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2239                                         PrevSpec, DiagID);
2240      break;
2241    case tok::kw_mutable:
2242      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2243                                         PrevSpec, DiagID);
2244      break;
2245    case tok::kw___thread:
2246      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
2247      break;
2248
2249    // function-specifier
2250    case tok::kw_inline:
2251      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
2252      break;
2253    case tok::kw_virtual:
2254      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2255      break;
2256    case tok::kw_explicit:
2257      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2258      break;
2259
2260    // alignment-specifier
2261    case tok::kw__Alignas:
2262      if (!getLangOpts().C11)
2263        Diag(Tok, diag::ext_c11_alignas);
2264      ParseAlignmentSpecifier(DS.getAttributes());
2265      continue;
2266
2267    // friend
2268    case tok::kw_friend:
2269      if (DSContext == DSC_class)
2270        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2271      else {
2272        PrevSpec = ""; // not actually used by the diagnostic
2273        DiagID = diag::err_friend_invalid_in_context;
2274        isInvalid = true;
2275      }
2276      break;
2277
2278    // Modules
2279    case tok::kw___module_private__:
2280      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2281      break;
2282
2283    // constexpr
2284    case tok::kw_constexpr:
2285      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2286      break;
2287
2288    // type-specifier
2289    case tok::kw_short:
2290      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2291                                      DiagID);
2292      break;
2293    case tok::kw_long:
2294      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2295        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2296                                        DiagID);
2297      else
2298        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2299                                        DiagID);
2300      break;
2301    case tok::kw___int64:
2302        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2303                                        DiagID);
2304      break;
2305    case tok::kw_signed:
2306      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2307                                     DiagID);
2308      break;
2309    case tok::kw_unsigned:
2310      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2311                                     DiagID);
2312      break;
2313    case tok::kw__Complex:
2314      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2315                                        DiagID);
2316      break;
2317    case tok::kw__Imaginary:
2318      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2319                                        DiagID);
2320      break;
2321    case tok::kw_void:
2322      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2323                                     DiagID);
2324      break;
2325    case tok::kw_char:
2326      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2327                                     DiagID);
2328      break;
2329    case tok::kw_int:
2330      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2331                                     DiagID);
2332      break;
2333    case tok::kw___int128:
2334      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
2335                                     DiagID);
2336      break;
2337    case tok::kw_half:
2338      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2339                                     DiagID);
2340      break;
2341    case tok::kw_float:
2342      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2343                                     DiagID);
2344      break;
2345    case tok::kw_double:
2346      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2347                                     DiagID);
2348      break;
2349    case tok::kw_wchar_t:
2350      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2351                                     DiagID);
2352      break;
2353    case tok::kw_char16_t:
2354      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2355                                     DiagID);
2356      break;
2357    case tok::kw_char32_t:
2358      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2359                                     DiagID);
2360      break;
2361    case tok::kw_bool:
2362    case tok::kw__Bool:
2363      if (Tok.is(tok::kw_bool) &&
2364          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2365          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2366        PrevSpec = ""; // Not used by the diagnostic.
2367        DiagID = diag::err_bool_redeclaration;
2368        // For better error recovery.
2369        Tok.setKind(tok::identifier);
2370        isInvalid = true;
2371      } else {
2372        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2373                                       DiagID);
2374      }
2375      break;
2376    case tok::kw__Decimal32:
2377      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2378                                     DiagID);
2379      break;
2380    case tok::kw__Decimal64:
2381      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2382                                     DiagID);
2383      break;
2384    case tok::kw__Decimal128:
2385      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2386                                     DiagID);
2387      break;
2388    case tok::kw___vector:
2389      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2390      break;
2391    case tok::kw___pixel:
2392      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2393      break;
2394    case tok::kw___unknown_anytype:
2395      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2396                                     PrevSpec, DiagID);
2397      break;
2398
2399    // class-specifier:
2400    case tok::kw_class:
2401    case tok::kw_struct:
2402    case tok::kw_union: {
2403      tok::TokenKind Kind = Tok.getKind();
2404      ConsumeToken();
2405      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
2406                          EnteringContext, DSContext);
2407      continue;
2408    }
2409
2410    // enum-specifier:
2411    case tok::kw_enum:
2412      ConsumeToken();
2413      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
2414      continue;
2415
2416    // cv-qualifier:
2417    case tok::kw_const:
2418      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2419                                 getLangOpts());
2420      break;
2421    case tok::kw_volatile:
2422      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2423                                 getLangOpts());
2424      break;
2425    case tok::kw_restrict:
2426      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2427                                 getLangOpts());
2428      break;
2429
2430    // C++ typename-specifier:
2431    case tok::kw_typename:
2432      if (TryAnnotateTypeOrScopeToken()) {
2433        DS.SetTypeSpecError();
2434        goto DoneWithDeclSpec;
2435      }
2436      if (!Tok.is(tok::kw_typename))
2437        continue;
2438      break;
2439
2440    // GNU typeof support.
2441    case tok::kw_typeof:
2442      ParseTypeofSpecifier(DS);
2443      continue;
2444
2445    case tok::annot_decltype:
2446      ParseDecltypeSpecifier(DS);
2447      continue;
2448
2449    case tok::kw___underlying_type:
2450      ParseUnderlyingTypeSpecifier(DS);
2451      continue;
2452
2453    case tok::kw__Atomic:
2454      ParseAtomicSpecifier(DS);
2455      continue;
2456
2457    // OpenCL qualifiers:
2458    case tok::kw_private:
2459      if (!getLangOpts().OpenCL)
2460        goto DoneWithDeclSpec;
2461    case tok::kw___private:
2462    case tok::kw___global:
2463    case tok::kw___local:
2464    case tok::kw___constant:
2465    case tok::kw___read_only:
2466    case tok::kw___write_only:
2467    case tok::kw___read_write:
2468      ParseOpenCLQualifiers(DS);
2469      break;
2470
2471    case tok::less:
2472      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2473      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2474      // but we support it.
2475      if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
2476        goto DoneWithDeclSpec;
2477
2478      if (!ParseObjCProtocolQualifiers(DS))
2479        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2480          << FixItHint::CreateInsertion(Loc, "id")
2481          << SourceRange(Loc, DS.getSourceRange().getEnd());
2482
2483      // Need to support trailing type qualifiers (e.g. "id<p> const").
2484      // If a type specifier follows, it will be diagnosed elsewhere.
2485      continue;
2486    }
2487    // If the specifier wasn't legal, issue a diagnostic.
2488    if (isInvalid) {
2489      assert(PrevSpec && "Method did not return previous specifier!");
2490      assert(DiagID);
2491
2492      if (DiagID == diag::ext_duplicate_declspec)
2493        Diag(Tok, DiagID)
2494          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2495      else
2496        Diag(Tok, DiagID) << PrevSpec;
2497    }
2498
2499    DS.SetRangeEnd(Tok.getLocation());
2500    if (DiagID != diag::err_bool_redeclaration)
2501      ConsumeToken();
2502  }
2503}
2504
2505/// ParseStructDeclaration - Parse a struct declaration without the terminating
2506/// semicolon.
2507///
2508///       struct-declaration:
2509///         specifier-qualifier-list struct-declarator-list
2510/// [GNU]   __extension__ struct-declaration
2511/// [GNU]   specifier-qualifier-list
2512///       struct-declarator-list:
2513///         struct-declarator
2514///         struct-declarator-list ',' struct-declarator
2515/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2516///       struct-declarator:
2517///         declarator
2518/// [GNU]   declarator attributes[opt]
2519///         declarator[opt] ':' constant-expression
2520/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2521///
2522void Parser::
2523ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2524
2525  if (Tok.is(tok::kw___extension__)) {
2526    // __extension__ silences extension warnings in the subexpression.
2527    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2528    ConsumeToken();
2529    return ParseStructDeclaration(DS, Fields);
2530  }
2531
2532  // Parse the common specifier-qualifiers-list piece.
2533  ParseSpecifierQualifierList(DS);
2534
2535  // If there are no declarators, this is a free-standing declaration
2536  // specifier. Let the actions module cope with it.
2537  if (Tok.is(tok::semi)) {
2538    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2539    return;
2540  }
2541
2542  // Read struct-declarators until we find the semicolon.
2543  bool FirstDeclarator = true;
2544  SourceLocation CommaLoc;
2545  while (1) {
2546    ParsingDeclRAIIObject PD(*this);
2547    FieldDeclarator DeclaratorInfo(DS);
2548    DeclaratorInfo.D.setCommaLoc(CommaLoc);
2549
2550    // Attributes are only allowed here on successive declarators.
2551    if (!FirstDeclarator)
2552      MaybeParseGNUAttributes(DeclaratorInfo.D);
2553
2554    /// struct-declarator: declarator
2555    /// struct-declarator: declarator[opt] ':' constant-expression
2556    if (Tok.isNot(tok::colon)) {
2557      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2558      ColonProtectionRAIIObject X(*this);
2559      ParseDeclarator(DeclaratorInfo.D);
2560    }
2561
2562    if (Tok.is(tok::colon)) {
2563      ConsumeToken();
2564      ExprResult Res(ParseConstantExpression());
2565      if (Res.isInvalid())
2566        SkipUntil(tok::semi, true, true);
2567      else
2568        DeclaratorInfo.BitfieldSize = Res.release();
2569    }
2570
2571    // If attributes exist after the declarator, parse them.
2572    MaybeParseGNUAttributes(DeclaratorInfo.D);
2573
2574    // We're done with this declarator;  invoke the callback.
2575    Decl *D = Fields.invoke(DeclaratorInfo);
2576    PD.complete(D);
2577
2578    // If we don't have a comma, it is either the end of the list (a ';')
2579    // or an error, bail out.
2580    if (Tok.isNot(tok::comma))
2581      return;
2582
2583    // Consume the comma.
2584    CommaLoc = ConsumeToken();
2585
2586    FirstDeclarator = false;
2587  }
2588}
2589
2590/// ParseStructUnionBody
2591///       struct-contents:
2592///         struct-declaration-list
2593/// [EXT]   empty
2594/// [GNU]   "struct-declaration-list" without terminatoring ';'
2595///       struct-declaration-list:
2596///         struct-declaration
2597///         struct-declaration-list struct-declaration
2598/// [OBC]   '@' 'defs' '(' class-name ')'
2599///
2600void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2601                                  unsigned TagType, Decl *TagDecl) {
2602  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2603                                      "parsing struct/union body");
2604
2605  BalancedDelimiterTracker T(*this, tok::l_brace);
2606  if (T.consumeOpen())
2607    return;
2608
2609  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2610  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2611
2612  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2613  // C++.
2614  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) {
2615    Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union);
2616    Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union);
2617  }
2618
2619  SmallVector<Decl *, 32> FieldDecls;
2620
2621  // While we still have something to read, read the declarations in the struct.
2622  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2623    // Each iteration of this loop reads one struct-declaration.
2624
2625    // Check for extraneous top-level semicolon.
2626    if (Tok.is(tok::semi)) {
2627      Diag(Tok, diag::ext_extra_struct_semi)
2628        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2629        << FixItHint::CreateRemoval(Tok.getLocation());
2630      ConsumeToken();
2631      continue;
2632    }
2633
2634    // Parse all the comma separated declarators.
2635    DeclSpec DS(AttrFactory);
2636
2637    if (!Tok.is(tok::at)) {
2638      struct CFieldCallback : FieldCallback {
2639        Parser &P;
2640        Decl *TagDecl;
2641        SmallVectorImpl<Decl *> &FieldDecls;
2642
2643        CFieldCallback(Parser &P, Decl *TagDecl,
2644                       SmallVectorImpl<Decl *> &FieldDecls) :
2645          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2646
2647        virtual Decl *invoke(FieldDeclarator &FD) {
2648          // Install the declarator into the current TagDecl.
2649          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2650                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2651                                                 FD.D, FD.BitfieldSize);
2652          FieldDecls.push_back(Field);
2653          return Field;
2654        }
2655      } Callback(*this, TagDecl, FieldDecls);
2656
2657      ParseStructDeclaration(DS, Callback);
2658    } else { // Handle @defs
2659      ConsumeToken();
2660      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2661        Diag(Tok, diag::err_unexpected_at);
2662        SkipUntil(tok::semi, true);
2663        continue;
2664      }
2665      ConsumeToken();
2666      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2667      if (!Tok.is(tok::identifier)) {
2668        Diag(Tok, diag::err_expected_ident);
2669        SkipUntil(tok::semi, true);
2670        continue;
2671      }
2672      SmallVector<Decl *, 16> Fields;
2673      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2674                        Tok.getIdentifierInfo(), Fields);
2675      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2676      ConsumeToken();
2677      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2678    }
2679
2680    if (Tok.is(tok::semi)) {
2681      ConsumeToken();
2682    } else if (Tok.is(tok::r_brace)) {
2683      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2684      break;
2685    } else {
2686      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2687      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2688      SkipUntil(tok::r_brace, true, true);
2689      // If we stopped at a ';', eat it.
2690      if (Tok.is(tok::semi)) ConsumeToken();
2691    }
2692  }
2693
2694  T.consumeClose();
2695
2696  ParsedAttributes attrs(AttrFactory);
2697  // If attributes exist after struct contents, parse them.
2698  MaybeParseGNUAttributes(attrs);
2699
2700  Actions.ActOnFields(getCurScope(),
2701                      RecordLoc, TagDecl, FieldDecls,
2702                      T.getOpenLocation(), T.getCloseLocation(),
2703                      attrs.getList());
2704  StructScope.Exit();
2705  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2706                                   T.getCloseLocation());
2707}
2708
2709/// ParseEnumSpecifier
2710///       enum-specifier: [C99 6.7.2.2]
2711///         'enum' identifier[opt] '{' enumerator-list '}'
2712///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2713/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2714///                                                 '}' attributes[opt]
2715/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
2716///                                                 '}'
2717///         'enum' identifier
2718/// [GNU]   'enum' attributes[opt] identifier
2719///
2720/// [C++11] enum-head '{' enumerator-list[opt] '}'
2721/// [C++11] enum-head '{' enumerator-list ','  '}'
2722///
2723///       enum-head: [C++11]
2724///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
2725///         enum-key attribute-specifier-seq[opt] nested-name-specifier
2726///             identifier enum-base[opt]
2727///
2728///       enum-key: [C++11]
2729///         'enum'
2730///         'enum' 'class'
2731///         'enum' 'struct'
2732///
2733///       enum-base: [C++11]
2734///         ':' type-specifier-seq
2735///
2736/// [C++] elaborated-type-specifier:
2737/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2738///
2739void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2740                                const ParsedTemplateInfo &TemplateInfo,
2741                                AccessSpecifier AS, DeclSpecContext DSC) {
2742  // Parse the tag portion of this.
2743  if (Tok.is(tok::code_completion)) {
2744    // Code completion for an enum name.
2745    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2746    return cutOffParsing();
2747  }
2748
2749  SourceLocation ScopedEnumKWLoc;
2750  bool IsScopedUsingClassTag = false;
2751
2752  if (getLangOpts().CPlusPlus0x &&
2753      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2754    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2755    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2756    ScopedEnumKWLoc = ConsumeToken();
2757  }
2758
2759  // C++11 [temp.explicit]p12: The usual access controls do not apply to names
2760  // used to specify explicit instantiations. We extend this to also cover
2761  // explicit specializations.
2762  Sema::SuppressAccessChecksRAII SuppressAccess(Actions,
2763    TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
2764    TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
2765
2766  // If attributes exist after tag, parse them.
2767  ParsedAttributes attrs(AttrFactory);
2768  MaybeParseGNUAttributes(attrs);
2769
2770  // If declspecs exist after tag, parse them.
2771  while (Tok.is(tok::kw___declspec))
2772    ParseMicrosoftDeclSpec(attrs);
2773
2774  // Enum definitions should not be parsed in a trailing-return-type.
2775  bool AllowDeclaration = DSC != DSC_trailing;
2776
2777  bool AllowFixedUnderlyingType = AllowDeclaration &&
2778    (getLangOpts().CPlusPlus0x || getLangOpts().MicrosoftExt ||
2779     getLangOpts().ObjC2);
2780
2781  CXXScopeSpec &SS = DS.getTypeSpecScope();
2782  if (getLangOpts().CPlusPlus) {
2783    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2784    // if a fixed underlying type is allowed.
2785    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2786
2787    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
2788                                       /*EnteringContext=*/false))
2789      return;
2790
2791    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2792      Diag(Tok, diag::err_expected_ident);
2793      if (Tok.isNot(tok::l_brace)) {
2794        // Has no name and is not a definition.
2795        // Skip the rest of this declarator, up until the comma or semicolon.
2796        SkipUntil(tok::comma, true);
2797        return;
2798      }
2799    }
2800  }
2801
2802  // Must have either 'enum name' or 'enum {...}'.
2803  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2804      !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
2805    Diag(Tok, diag::err_expected_ident_lbrace);
2806
2807    // Skip the rest of this declarator, up until the comma or semicolon.
2808    SkipUntil(tok::comma, true);
2809    return;
2810  }
2811
2812  // If an identifier is present, consume and remember it.
2813  IdentifierInfo *Name = 0;
2814  SourceLocation NameLoc;
2815  if (Tok.is(tok::identifier)) {
2816    Name = Tok.getIdentifierInfo();
2817    NameLoc = ConsumeToken();
2818  }
2819
2820  if (!Name && ScopedEnumKWLoc.isValid()) {
2821    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2822    // declaration of a scoped enumeration.
2823    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2824    ScopedEnumKWLoc = SourceLocation();
2825    IsScopedUsingClassTag = false;
2826  }
2827
2828  // Stop suppressing access control now we've parsed the enum name.
2829  SuppressAccess.done();
2830
2831  TypeResult BaseType;
2832
2833  // Parse the fixed underlying type.
2834  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2835    bool PossibleBitfield = false;
2836    if (getCurScope()->getFlags() & Scope::ClassScope) {
2837      // If we're in class scope, this can either be an enum declaration with
2838      // an underlying type, or a declaration of a bitfield member. We try to
2839      // use a simple disambiguation scheme first to catch the common cases
2840      // (integer literal, sizeof); if it's still ambiguous, we then consider
2841      // anything that's a simple-type-specifier followed by '(' as an
2842      // expression. This suffices because function types are not valid
2843      // underlying types anyway.
2844      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2845      // If the next token starts an expression, we know we're parsing a
2846      // bit-field. This is the common case.
2847      if (TPR == TPResult::True())
2848        PossibleBitfield = true;
2849      // If the next token starts a type-specifier-seq, it may be either a
2850      // a fixed underlying type or the start of a function-style cast in C++;
2851      // lookahead one more token to see if it's obvious that we have a
2852      // fixed underlying type.
2853      else if (TPR == TPResult::False() &&
2854               GetLookAheadToken(2).getKind() == tok::semi) {
2855        // Consume the ':'.
2856        ConsumeToken();
2857      } else {
2858        // We have the start of a type-specifier-seq, so we have to perform
2859        // tentative parsing to determine whether we have an expression or a
2860        // type.
2861        TentativeParsingAction TPA(*this);
2862
2863        // Consume the ':'.
2864        ConsumeToken();
2865
2866        // If we see a type specifier followed by an open-brace, we have an
2867        // ambiguity between an underlying type and a C++11 braced
2868        // function-style cast. Resolve this by always treating it as an
2869        // underlying type.
2870        // FIXME: The standard is not entirely clear on how to disambiguate in
2871        // this case.
2872        if ((getLangOpts().CPlusPlus &&
2873             isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) ||
2874            (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
2875          // We'll parse this as a bitfield later.
2876          PossibleBitfield = true;
2877          TPA.Revert();
2878        } else {
2879          // We have a type-specifier-seq.
2880          TPA.Commit();
2881        }
2882      }
2883    } else {
2884      // Consume the ':'.
2885      ConsumeToken();
2886    }
2887
2888    if (!PossibleBitfield) {
2889      SourceRange Range;
2890      BaseType = ParseTypeName(&Range);
2891
2892      if (!getLangOpts().CPlusPlus0x && !getLangOpts().ObjC2)
2893        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
2894          << Range;
2895      if (getLangOpts().CPlusPlus0x)
2896        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
2897    }
2898  }
2899
2900  // There are four options here.  If we have 'friend enum foo;' then this is a
2901  // friend declaration, and cannot have an accompanying definition. If we have
2902  // 'enum foo;', then this is a forward declaration.  If we have
2903  // 'enum foo {...' then this is a definition. Otherwise we have something
2904  // like 'enum foo xyz', a reference.
2905  //
2906  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2907  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2908  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2909  //
2910  Sema::TagUseKind TUK;
2911  if (DS.isFriendSpecified())
2912    TUK = Sema::TUK_Friend;
2913  else if (!AllowDeclaration)
2914    TUK = Sema::TUK_Reference;
2915  else if (Tok.is(tok::l_brace))
2916    TUK = Sema::TUK_Definition;
2917  else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
2918    TUK = Sema::TUK_Declaration;
2919  else
2920    TUK = Sema::TUK_Reference;
2921
2922  MultiTemplateParamsArg TParams;
2923  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2924      TUK != Sema::TUK_Reference) {
2925    if (!getLangOpts().CPlusPlus0x || !SS.isSet()) {
2926      // Skip the rest of this declarator, up until the comma or semicolon.
2927      Diag(Tok, diag::err_enum_template);
2928      SkipUntil(tok::comma, true);
2929      return;
2930    }
2931
2932    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
2933      // Enumerations can't be explicitly instantiated.
2934      DS.SetTypeSpecError();
2935      Diag(StartLoc, diag::err_explicit_instantiation_enum);
2936      return;
2937    }
2938
2939    assert(TemplateInfo.TemplateParams && "no template parameters");
2940    TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
2941                                     TemplateInfo.TemplateParams->size());
2942  }
2943
2944  if (!Name && TUK != Sema::TUK_Definition) {
2945    Diag(Tok, diag::err_enumerator_unnamed_no_def);
2946
2947    // Skip the rest of this declarator, up until the comma or semicolon.
2948    SkipUntil(tok::comma, true);
2949    return;
2950  }
2951
2952  bool Owned = false;
2953  bool IsDependent = false;
2954  const char *PrevSpec = 0;
2955  unsigned DiagID;
2956  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2957                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2958                                   AS, DS.getModulePrivateSpecLoc(), TParams,
2959                                   Owned, IsDependent, ScopedEnumKWLoc,
2960                                   IsScopedUsingClassTag, BaseType);
2961
2962  if (IsDependent) {
2963    // This enum has a dependent nested-name-specifier. Handle it as a
2964    // dependent tag.
2965    if (!Name) {
2966      DS.SetTypeSpecError();
2967      Diag(Tok, diag::err_expected_type_name_after_typename);
2968      return;
2969    }
2970
2971    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2972                                                TUK, SS, Name, StartLoc,
2973                                                NameLoc);
2974    if (Type.isInvalid()) {
2975      DS.SetTypeSpecError();
2976      return;
2977    }
2978
2979    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
2980                           NameLoc.isValid() ? NameLoc : StartLoc,
2981                           PrevSpec, DiagID, Type.get()))
2982      Diag(StartLoc, DiagID) << PrevSpec;
2983
2984    return;
2985  }
2986
2987  if (!TagDecl) {
2988    // The action failed to produce an enumeration tag. If this is a
2989    // definition, consume the entire definition.
2990    if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
2991      ConsumeBrace();
2992      SkipUntil(tok::r_brace);
2993    }
2994
2995    DS.SetTypeSpecError();
2996    return;
2997  }
2998
2999  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3000    if (TUK == Sema::TUK_Friend) {
3001      Diag(Tok, diag::err_friend_decl_defines_type)
3002        << SourceRange(DS.getFriendSpecLoc());
3003      ConsumeBrace();
3004      SkipUntil(tok::r_brace);
3005    } else {
3006      ParseEnumBody(StartLoc, TagDecl);
3007    }
3008  }
3009
3010  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3011                         NameLoc.isValid() ? NameLoc : StartLoc,
3012                         PrevSpec, DiagID, TagDecl, Owned))
3013    Diag(StartLoc, DiagID) << PrevSpec;
3014}
3015
3016/// ParseEnumBody - Parse a {} enclosed enumerator-list.
3017///       enumerator-list:
3018///         enumerator
3019///         enumerator-list ',' enumerator
3020///       enumerator:
3021///         enumeration-constant
3022///         enumeration-constant '=' constant-expression
3023///       enumeration-constant:
3024///         identifier
3025///
3026void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3027  // Enter the scope of the enum body and start the definition.
3028  ParseScope EnumScope(this, Scope::DeclScope);
3029  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3030
3031  BalancedDelimiterTracker T(*this, tok::l_brace);
3032  T.consumeOpen();
3033
3034  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3035  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3036    Diag(Tok, diag::error_empty_enum);
3037
3038  SmallVector<Decl *, 32> EnumConstantDecls;
3039
3040  Decl *LastEnumConstDecl = 0;
3041
3042  // Parse the enumerator-list.
3043  while (Tok.is(tok::identifier)) {
3044    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3045    SourceLocation IdentLoc = ConsumeToken();
3046
3047    // If attributes exist after the enumerator, parse them.
3048    ParsedAttributes attrs(AttrFactory);
3049    MaybeParseGNUAttributes(attrs);
3050
3051    SourceLocation EqualLoc;
3052    ExprResult AssignedVal;
3053    ParsingDeclRAIIObject PD(*this);
3054
3055    if (Tok.is(tok::equal)) {
3056      EqualLoc = ConsumeToken();
3057      AssignedVal = ParseConstantExpression();
3058      if (AssignedVal.isInvalid())
3059        SkipUntil(tok::comma, tok::r_brace, true, true);
3060    }
3061
3062    // Install the enumerator constant into EnumDecl.
3063    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3064                                                    LastEnumConstDecl,
3065                                                    IdentLoc, Ident,
3066                                                    attrs.getList(), EqualLoc,
3067                                                    AssignedVal.release());
3068    PD.complete(EnumConstDecl);
3069
3070    EnumConstantDecls.push_back(EnumConstDecl);
3071    LastEnumConstDecl = EnumConstDecl;
3072
3073    if (Tok.is(tok::identifier)) {
3074      // We're missing a comma between enumerators.
3075      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3076      Diag(Loc, diag::err_enumerator_list_missing_comma)
3077        << FixItHint::CreateInsertion(Loc, ", ");
3078      continue;
3079    }
3080
3081    if (Tok.isNot(tok::comma))
3082      break;
3083    SourceLocation CommaLoc = ConsumeToken();
3084
3085    if (Tok.isNot(tok::identifier)) {
3086      if (!getLangOpts().C99 && !getLangOpts().CPlusPlus0x)
3087        Diag(CommaLoc, diag::ext_enumerator_list_comma)
3088          << getLangOpts().CPlusPlus
3089          << FixItHint::CreateRemoval(CommaLoc);
3090      else if (getLangOpts().CPlusPlus0x)
3091        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3092          << FixItHint::CreateRemoval(CommaLoc);
3093    }
3094  }
3095
3096  // Eat the }.
3097  T.consumeClose();
3098
3099  // If attributes exist after the identifier list, parse them.
3100  ParsedAttributes attrs(AttrFactory);
3101  MaybeParseGNUAttributes(attrs);
3102
3103  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3104                        EnumDecl, EnumConstantDecls.data(),
3105                        EnumConstantDecls.size(), getCurScope(),
3106                        attrs.getList());
3107
3108  EnumScope.Exit();
3109  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3110                                   T.getCloseLocation());
3111}
3112
3113/// isTypeSpecifierQualifier - Return true if the current token could be the
3114/// start of a type-qualifier-list.
3115bool Parser::isTypeQualifier() const {
3116  switch (Tok.getKind()) {
3117  default: return false;
3118
3119    // type-qualifier only in OpenCL
3120  case tok::kw_private:
3121    return getLangOpts().OpenCL;
3122
3123    // type-qualifier
3124  case tok::kw_const:
3125  case tok::kw_volatile:
3126  case tok::kw_restrict:
3127  case tok::kw___private:
3128  case tok::kw___local:
3129  case tok::kw___global:
3130  case tok::kw___constant:
3131  case tok::kw___read_only:
3132  case tok::kw___read_write:
3133  case tok::kw___write_only:
3134    return true;
3135  }
3136}
3137
3138/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3139/// is definitely a type-specifier.  Return false if it isn't part of a type
3140/// specifier or if we're not sure.
3141bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3142  switch (Tok.getKind()) {
3143  default: return false;
3144    // type-specifiers
3145  case tok::kw_short:
3146  case tok::kw_long:
3147  case tok::kw___int64:
3148  case tok::kw___int128:
3149  case tok::kw_signed:
3150  case tok::kw_unsigned:
3151  case tok::kw__Complex:
3152  case tok::kw__Imaginary:
3153  case tok::kw_void:
3154  case tok::kw_char:
3155  case tok::kw_wchar_t:
3156  case tok::kw_char16_t:
3157  case tok::kw_char32_t:
3158  case tok::kw_int:
3159  case tok::kw_half:
3160  case tok::kw_float:
3161  case tok::kw_double:
3162  case tok::kw_bool:
3163  case tok::kw__Bool:
3164  case tok::kw__Decimal32:
3165  case tok::kw__Decimal64:
3166  case tok::kw__Decimal128:
3167  case tok::kw___vector:
3168
3169    // struct-or-union-specifier (C99) or class-specifier (C++)
3170  case tok::kw_class:
3171  case tok::kw_struct:
3172  case tok::kw_union:
3173    // enum-specifier
3174  case tok::kw_enum:
3175
3176    // typedef-name
3177  case tok::annot_typename:
3178    return true;
3179  }
3180}
3181
3182/// isTypeSpecifierQualifier - Return true if the current token could be the
3183/// start of a specifier-qualifier-list.
3184bool Parser::isTypeSpecifierQualifier() {
3185  switch (Tok.getKind()) {
3186  default: return false;
3187
3188  case tok::identifier:   // foo::bar
3189    if (TryAltiVecVectorToken())
3190      return true;
3191    // Fall through.
3192  case tok::kw_typename:  // typename T::type
3193    // Annotate typenames and C++ scope specifiers.  If we get one, just
3194    // recurse to handle whatever we get.
3195    if (TryAnnotateTypeOrScopeToken())
3196      return true;
3197    if (Tok.is(tok::identifier))
3198      return false;
3199    return isTypeSpecifierQualifier();
3200
3201  case tok::coloncolon:   // ::foo::bar
3202    if (NextToken().is(tok::kw_new) ||    // ::new
3203        NextToken().is(tok::kw_delete))   // ::delete
3204      return false;
3205
3206    if (TryAnnotateTypeOrScopeToken())
3207      return true;
3208    return isTypeSpecifierQualifier();
3209
3210    // GNU attributes support.
3211  case tok::kw___attribute:
3212    // GNU typeof support.
3213  case tok::kw_typeof:
3214
3215    // type-specifiers
3216  case tok::kw_short:
3217  case tok::kw_long:
3218  case tok::kw___int64:
3219  case tok::kw___int128:
3220  case tok::kw_signed:
3221  case tok::kw_unsigned:
3222  case tok::kw__Complex:
3223  case tok::kw__Imaginary:
3224  case tok::kw_void:
3225  case tok::kw_char:
3226  case tok::kw_wchar_t:
3227  case tok::kw_char16_t:
3228  case tok::kw_char32_t:
3229  case tok::kw_int:
3230  case tok::kw_half:
3231  case tok::kw_float:
3232  case tok::kw_double:
3233  case tok::kw_bool:
3234  case tok::kw__Bool:
3235  case tok::kw__Decimal32:
3236  case tok::kw__Decimal64:
3237  case tok::kw__Decimal128:
3238  case tok::kw___vector:
3239
3240    // struct-or-union-specifier (C99) or class-specifier (C++)
3241  case tok::kw_class:
3242  case tok::kw_struct:
3243  case tok::kw_union:
3244    // enum-specifier
3245  case tok::kw_enum:
3246
3247    // type-qualifier
3248  case tok::kw_const:
3249  case tok::kw_volatile:
3250  case tok::kw_restrict:
3251
3252    // typedef-name
3253  case tok::annot_typename:
3254    return true;
3255
3256    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3257  case tok::less:
3258    return getLangOpts().ObjC1;
3259
3260  case tok::kw___cdecl:
3261  case tok::kw___stdcall:
3262  case tok::kw___fastcall:
3263  case tok::kw___thiscall:
3264  case tok::kw___w64:
3265  case tok::kw___ptr64:
3266  case tok::kw___ptr32:
3267  case tok::kw___pascal:
3268  case tok::kw___unaligned:
3269
3270  case tok::kw___private:
3271  case tok::kw___local:
3272  case tok::kw___global:
3273  case tok::kw___constant:
3274  case tok::kw___read_only:
3275  case tok::kw___read_write:
3276  case tok::kw___write_only:
3277
3278    return true;
3279
3280  case tok::kw_private:
3281    return getLangOpts().OpenCL;
3282
3283  // C11 _Atomic()
3284  case tok::kw__Atomic:
3285    return true;
3286  }
3287}
3288
3289/// isDeclarationSpecifier() - Return true if the current token is part of a
3290/// declaration specifier.
3291///
3292/// \param DisambiguatingWithExpression True to indicate that the purpose of
3293/// this check is to disambiguate between an expression and a declaration.
3294bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3295  switch (Tok.getKind()) {
3296  default: return false;
3297
3298  case tok::kw_private:
3299    return getLangOpts().OpenCL;
3300
3301  case tok::identifier:   // foo::bar
3302    // Unfortunate hack to support "Class.factoryMethod" notation.
3303    if (getLangOpts().ObjC1 && NextToken().is(tok::period))
3304      return false;
3305    if (TryAltiVecVectorToken())
3306      return true;
3307    // Fall through.
3308  case tok::kw_decltype: // decltype(T())::type
3309  case tok::kw_typename: // typename T::type
3310    // Annotate typenames and C++ scope specifiers.  If we get one, just
3311    // recurse to handle whatever we get.
3312    if (TryAnnotateTypeOrScopeToken())
3313      return true;
3314    if (Tok.is(tok::identifier))
3315      return false;
3316
3317    // If we're in Objective-C and we have an Objective-C class type followed
3318    // by an identifier and then either ':' or ']', in a place where an
3319    // expression is permitted, then this is probably a class message send
3320    // missing the initial '['. In this case, we won't consider this to be
3321    // the start of a declaration.
3322    if (DisambiguatingWithExpression &&
3323        isStartOfObjCClassMessageMissingOpenBracket())
3324      return false;
3325
3326    return isDeclarationSpecifier();
3327
3328  case tok::coloncolon:   // ::foo::bar
3329    if (NextToken().is(tok::kw_new) ||    // ::new
3330        NextToken().is(tok::kw_delete))   // ::delete
3331      return false;
3332
3333    // Annotate typenames and C++ scope specifiers.  If we get one, just
3334    // recurse to handle whatever we get.
3335    if (TryAnnotateTypeOrScopeToken())
3336      return true;
3337    return isDeclarationSpecifier();
3338
3339    // storage-class-specifier
3340  case tok::kw_typedef:
3341  case tok::kw_extern:
3342  case tok::kw___private_extern__:
3343  case tok::kw_static:
3344  case tok::kw_auto:
3345  case tok::kw_register:
3346  case tok::kw___thread:
3347
3348    // Modules
3349  case tok::kw___module_private__:
3350
3351    // type-specifiers
3352  case tok::kw_short:
3353  case tok::kw_long:
3354  case tok::kw___int64:
3355  case tok::kw___int128:
3356  case tok::kw_signed:
3357  case tok::kw_unsigned:
3358  case tok::kw__Complex:
3359  case tok::kw__Imaginary:
3360  case tok::kw_void:
3361  case tok::kw_char:
3362  case tok::kw_wchar_t:
3363  case tok::kw_char16_t:
3364  case tok::kw_char32_t:
3365
3366  case tok::kw_int:
3367  case tok::kw_half:
3368  case tok::kw_float:
3369  case tok::kw_double:
3370  case tok::kw_bool:
3371  case tok::kw__Bool:
3372  case tok::kw__Decimal32:
3373  case tok::kw__Decimal64:
3374  case tok::kw__Decimal128:
3375  case tok::kw___vector:
3376
3377    // struct-or-union-specifier (C99) or class-specifier (C++)
3378  case tok::kw_class:
3379  case tok::kw_struct:
3380  case tok::kw_union:
3381    // enum-specifier
3382  case tok::kw_enum:
3383
3384    // type-qualifier
3385  case tok::kw_const:
3386  case tok::kw_volatile:
3387  case tok::kw_restrict:
3388
3389    // function-specifier
3390  case tok::kw_inline:
3391  case tok::kw_virtual:
3392  case tok::kw_explicit:
3393
3394    // static_assert-declaration
3395  case tok::kw__Static_assert:
3396
3397    // GNU typeof support.
3398  case tok::kw_typeof:
3399
3400    // GNU attributes.
3401  case tok::kw___attribute:
3402    return true;
3403
3404    // C++0x decltype.
3405  case tok::annot_decltype:
3406    return true;
3407
3408    // C11 _Atomic()
3409  case tok::kw__Atomic:
3410    return true;
3411
3412    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3413  case tok::less:
3414    return getLangOpts().ObjC1;
3415
3416    // typedef-name
3417  case tok::annot_typename:
3418    return !DisambiguatingWithExpression ||
3419           !isStartOfObjCClassMessageMissingOpenBracket();
3420
3421  case tok::kw___declspec:
3422  case tok::kw___cdecl:
3423  case tok::kw___stdcall:
3424  case tok::kw___fastcall:
3425  case tok::kw___thiscall:
3426  case tok::kw___w64:
3427  case tok::kw___ptr64:
3428  case tok::kw___ptr32:
3429  case tok::kw___forceinline:
3430  case tok::kw___pascal:
3431  case tok::kw___unaligned:
3432
3433  case tok::kw___private:
3434  case tok::kw___local:
3435  case tok::kw___global:
3436  case tok::kw___constant:
3437  case tok::kw___read_only:
3438  case tok::kw___read_write:
3439  case tok::kw___write_only:
3440
3441    return true;
3442  }
3443}
3444
3445bool Parser::isConstructorDeclarator() {
3446  TentativeParsingAction TPA(*this);
3447
3448  // Parse the C++ scope specifier.
3449  CXXScopeSpec SS;
3450  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3451                                     /*EnteringContext=*/true)) {
3452    TPA.Revert();
3453    return false;
3454  }
3455
3456  // Parse the constructor name.
3457  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3458    // We already know that we have a constructor name; just consume
3459    // the token.
3460    ConsumeToken();
3461  } else {
3462    TPA.Revert();
3463    return false;
3464  }
3465
3466  // Current class name must be followed by a left parenthesis.
3467  if (Tok.isNot(tok::l_paren)) {
3468    TPA.Revert();
3469    return false;
3470  }
3471  ConsumeParen();
3472
3473  // A right parenthesis, or ellipsis followed by a right parenthesis signals
3474  // that we have a constructor.
3475  if (Tok.is(tok::r_paren) ||
3476      (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
3477    TPA.Revert();
3478    return true;
3479  }
3480
3481  // If we need to, enter the specified scope.
3482  DeclaratorScopeObj DeclScopeObj(*this, SS);
3483  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3484    DeclScopeObj.EnterDeclaratorScope();
3485
3486  // Optionally skip Microsoft attributes.
3487  ParsedAttributes Attrs(AttrFactory);
3488  MaybeParseMicrosoftAttributes(Attrs);
3489
3490  // Check whether the next token(s) are part of a declaration
3491  // specifier, in which case we have the start of a parameter and,
3492  // therefore, we know that this is a constructor.
3493  bool IsConstructor = false;
3494  if (isDeclarationSpecifier())
3495    IsConstructor = true;
3496  else if (Tok.is(tok::identifier) ||
3497           (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
3498    // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
3499    // This might be a parenthesized member name, but is more likely to
3500    // be a constructor declaration with an invalid argument type. Keep
3501    // looking.
3502    if (Tok.is(tok::annot_cxxscope))
3503      ConsumeToken();
3504    ConsumeToken();
3505
3506    // If this is not a constructor, we must be parsing a declarator,
3507    // which must have one of the following syntactic forms (see the
3508    // grammar extract at the start of ParseDirectDeclarator):
3509    switch (Tok.getKind()) {
3510    case tok::l_paren:
3511      // C(X   (   int));
3512    case tok::l_square:
3513      // C(X   [   5]);
3514      // C(X   [   [attribute]]);
3515    case tok::coloncolon:
3516      // C(X   ::   Y);
3517      // C(X   ::   *p);
3518    case tok::r_paren:
3519      // C(X   )
3520      // Assume this isn't a constructor, rather than assuming it's a
3521      // constructor with an unnamed parameter of an ill-formed type.
3522      break;
3523
3524    default:
3525      IsConstructor = true;
3526      break;
3527    }
3528  }
3529
3530  TPA.Revert();
3531  return IsConstructor;
3532}
3533
3534/// ParseTypeQualifierListOpt
3535///          type-qualifier-list: [C99 6.7.5]
3536///            type-qualifier
3537/// [vendor]   attributes
3538///              [ only if VendorAttributesAllowed=true ]
3539///            type-qualifier-list type-qualifier
3540/// [vendor]   type-qualifier-list attributes
3541///              [ only if VendorAttributesAllowed=true ]
3542/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3543///              [ only if CXX0XAttributesAllowed=true ]
3544/// Note: vendor can be GNU, MS, etc.
3545///
3546void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3547                                       bool VendorAttributesAllowed,
3548                                       bool CXX11AttributesAllowed) {
3549  if (getLangOpts().CPlusPlus0x && CXX11AttributesAllowed &&
3550      isCXX11AttributeSpecifier()) {
3551    ParsedAttributesWithRange attrs(AttrFactory);
3552    ParseCXX11Attributes(attrs);
3553    DS.takeAttributesFrom(attrs);
3554  }
3555
3556  SourceLocation EndLoc;
3557
3558  while (1) {
3559    bool isInvalid = false;
3560    const char *PrevSpec = 0;
3561    unsigned DiagID = 0;
3562    SourceLocation Loc = Tok.getLocation();
3563
3564    switch (Tok.getKind()) {
3565    case tok::code_completion:
3566      Actions.CodeCompleteTypeQualifiers(DS);
3567      return cutOffParsing();
3568
3569    case tok::kw_const:
3570      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3571                                 getLangOpts());
3572      break;
3573    case tok::kw_volatile:
3574      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3575                                 getLangOpts());
3576      break;
3577    case tok::kw_restrict:
3578      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3579                                 getLangOpts());
3580      break;
3581
3582    // OpenCL qualifiers:
3583    case tok::kw_private:
3584      if (!getLangOpts().OpenCL)
3585        goto DoneWithTypeQuals;
3586    case tok::kw___private:
3587    case tok::kw___global:
3588    case tok::kw___local:
3589    case tok::kw___constant:
3590    case tok::kw___read_only:
3591    case tok::kw___write_only:
3592    case tok::kw___read_write:
3593      ParseOpenCLQualifiers(DS);
3594      break;
3595
3596    case tok::kw___w64:
3597    case tok::kw___ptr64:
3598    case tok::kw___ptr32:
3599    case tok::kw___cdecl:
3600    case tok::kw___stdcall:
3601    case tok::kw___fastcall:
3602    case tok::kw___thiscall:
3603    case tok::kw___unaligned:
3604      if (VendorAttributesAllowed) {
3605        ParseMicrosoftTypeAttributes(DS.getAttributes());
3606        continue;
3607      }
3608      goto DoneWithTypeQuals;
3609    case tok::kw___pascal:
3610      if (VendorAttributesAllowed) {
3611        ParseBorlandTypeAttributes(DS.getAttributes());
3612        continue;
3613      }
3614      goto DoneWithTypeQuals;
3615    case tok::kw___attribute:
3616      if (VendorAttributesAllowed) {
3617        ParseGNUAttributes(DS.getAttributes());
3618        continue; // do *not* consume the next token!
3619      }
3620      // otherwise, FALL THROUGH!
3621    default:
3622      DoneWithTypeQuals:
3623      // If this is not a type-qualifier token, we're done reading type
3624      // qualifiers.  First verify that DeclSpec's are consistent.
3625      DS.Finish(Diags, PP);
3626      if (EndLoc.isValid())
3627        DS.SetRangeEnd(EndLoc);
3628      return;
3629    }
3630
3631    // If the specifier combination wasn't legal, issue a diagnostic.
3632    if (isInvalid) {
3633      assert(PrevSpec && "Method did not return previous specifier!");
3634      Diag(Tok, DiagID) << PrevSpec;
3635    }
3636    EndLoc = ConsumeToken();
3637  }
3638}
3639
3640
3641/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3642///
3643void Parser::ParseDeclarator(Declarator &D) {
3644  /// This implements the 'declarator' production in the C grammar, then checks
3645  /// for well-formedness and issues diagnostics.
3646  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3647}
3648
3649static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) {
3650  if (Kind == tok::star || Kind == tok::caret)
3651    return true;
3652
3653  // We parse rvalue refs in C++03, because otherwise the errors are scary.
3654  if (!Lang.CPlusPlus)
3655    return false;
3656
3657  return Kind == tok::amp || Kind == tok::ampamp;
3658}
3659
3660/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3661/// is parsed by the function passed to it. Pass null, and the direct-declarator
3662/// isn't parsed at all, making this function effectively parse the C++
3663/// ptr-operator production.
3664///
3665/// If the grammar of this construct is extended, matching changes must also be
3666/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
3667/// isConstructorDeclarator.
3668///
3669///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3670/// [C]     pointer[opt] direct-declarator
3671/// [C++]   direct-declarator
3672/// [C++]   ptr-operator declarator
3673///
3674///       pointer: [C99 6.7.5]
3675///         '*' type-qualifier-list[opt]
3676///         '*' type-qualifier-list[opt] pointer
3677///
3678///       ptr-operator:
3679///         '*' cv-qualifier-seq[opt]
3680///         '&'
3681/// [C++0x] '&&'
3682/// [GNU]   '&' restrict[opt] attributes[opt]
3683/// [GNU?]  '&&' restrict[opt] attributes[opt]
3684///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3685void Parser::ParseDeclaratorInternal(Declarator &D,
3686                                     DirectDeclParseFunction DirectDeclParser) {
3687  if (Diags.hasAllExtensionsSilenced())
3688    D.setExtension();
3689
3690  // C++ member pointers start with a '::' or a nested-name.
3691  // Member pointers get special handling, since there's no place for the
3692  // scope spec in the generic path below.
3693  if (getLangOpts().CPlusPlus &&
3694      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3695       Tok.is(tok::annot_cxxscope))) {
3696    bool EnteringContext = D.getContext() == Declarator::FileContext ||
3697                           D.getContext() == Declarator::MemberContext;
3698    CXXScopeSpec SS;
3699    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
3700
3701    if (SS.isNotEmpty()) {
3702      if (Tok.isNot(tok::star)) {
3703        // The scope spec really belongs to the direct-declarator.
3704        D.getCXXScopeSpec() = SS;
3705        if (DirectDeclParser)
3706          (this->*DirectDeclParser)(D);
3707        return;
3708      }
3709
3710      SourceLocation Loc = ConsumeToken();
3711      D.SetRangeEnd(Loc);
3712      DeclSpec DS(AttrFactory);
3713      ParseTypeQualifierListOpt(DS);
3714      D.ExtendWithDeclSpec(DS);
3715
3716      // Recurse to parse whatever is left.
3717      ParseDeclaratorInternal(D, DirectDeclParser);
3718
3719      // Sema will have to catch (syntactically invalid) pointers into global
3720      // scope. It has to catch pointers into namespace scope anyway.
3721      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3722                                                      Loc),
3723                    DS.getAttributes(),
3724                    /* Don't replace range end. */SourceLocation());
3725      return;
3726    }
3727  }
3728
3729  tok::TokenKind Kind = Tok.getKind();
3730  // Not a pointer, C++ reference, or block.
3731  if (!isPtrOperatorToken(Kind, getLangOpts())) {
3732    if (DirectDeclParser)
3733      (this->*DirectDeclParser)(D);
3734    return;
3735  }
3736
3737  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3738  // '&&' -> rvalue reference
3739  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3740  D.SetRangeEnd(Loc);
3741
3742  if (Kind == tok::star || Kind == tok::caret) {
3743    // Is a pointer.
3744    DeclSpec DS(AttrFactory);
3745
3746    // FIXME: GNU attributes are not allowed here in a new-type-id.
3747    ParseTypeQualifierListOpt(DS);
3748    D.ExtendWithDeclSpec(DS);
3749
3750    // Recursively parse the declarator.
3751    ParseDeclaratorInternal(D, DirectDeclParser);
3752    if (Kind == tok::star)
3753      // Remember that we parsed a pointer type, and remember the type-quals.
3754      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3755                                                DS.getConstSpecLoc(),
3756                                                DS.getVolatileSpecLoc(),
3757                                                DS.getRestrictSpecLoc()),
3758                    DS.getAttributes(),
3759                    SourceLocation());
3760    else
3761      // Remember that we parsed a Block type, and remember the type-quals.
3762      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3763                                                     Loc),
3764                    DS.getAttributes(),
3765                    SourceLocation());
3766  } else {
3767    // Is a reference
3768    DeclSpec DS(AttrFactory);
3769
3770    // Complain about rvalue references in C++03, but then go on and build
3771    // the declarator.
3772    if (Kind == tok::ampamp)
3773      Diag(Loc, getLangOpts().CPlusPlus0x ?
3774           diag::warn_cxx98_compat_rvalue_reference :
3775           diag::ext_rvalue_reference);
3776
3777    // GNU-style and C++11 attributes are allowed here, as is restrict.
3778    ParseTypeQualifierListOpt(DS);
3779    D.ExtendWithDeclSpec(DS);
3780
3781    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3782    // cv-qualifiers are introduced through the use of a typedef or of a
3783    // template type argument, in which case the cv-qualifiers are ignored.
3784    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3785      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3786        Diag(DS.getConstSpecLoc(),
3787             diag::err_invalid_reference_qualifier_application) << "const";
3788      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3789        Diag(DS.getVolatileSpecLoc(),
3790             diag::err_invalid_reference_qualifier_application) << "volatile";
3791    }
3792
3793    // Recursively parse the declarator.
3794    ParseDeclaratorInternal(D, DirectDeclParser);
3795
3796    if (D.getNumTypeObjects() > 0) {
3797      // C++ [dcl.ref]p4: There shall be no references to references.
3798      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3799      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3800        if (const IdentifierInfo *II = D.getIdentifier())
3801          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3802           << II;
3803        else
3804          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3805            << "type name";
3806
3807        // Once we've complained about the reference-to-reference, we
3808        // can go ahead and build the (technically ill-formed)
3809        // declarator: reference collapsing will take care of it.
3810      }
3811    }
3812
3813    // Remember that we parsed a reference type. It doesn't have type-quals.
3814    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3815                                                Kind == tok::amp),
3816                  DS.getAttributes(),
3817                  SourceLocation());
3818  }
3819}
3820
3821static void diagnoseMisplacedEllipsis(Parser &P, Declarator &D,
3822                                      SourceLocation EllipsisLoc) {
3823  if (EllipsisLoc.isValid()) {
3824    FixItHint Insertion;
3825    if (!D.getEllipsisLoc().isValid()) {
3826      Insertion = FixItHint::CreateInsertion(D.getIdentifierLoc(), "...");
3827      D.setEllipsisLoc(EllipsisLoc);
3828    }
3829    P.Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration)
3830      << FixItHint::CreateRemoval(EllipsisLoc) << Insertion << !D.hasName();
3831  }
3832}
3833
3834/// ParseDirectDeclarator
3835///       direct-declarator: [C99 6.7.5]
3836/// [C99]   identifier
3837///         '(' declarator ')'
3838/// [GNU]   '(' attributes declarator ')'
3839/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3840/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3841/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3842/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3843/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3844/// [C++11] direct-declarator '[' constant-expression[opt] ']'
3845///                    attribute-specifier-seq[opt]
3846///         direct-declarator '(' parameter-type-list ')'
3847///         direct-declarator '(' identifier-list[opt] ')'
3848/// [GNU]   direct-declarator '(' parameter-forward-declarations
3849///                    parameter-type-list[opt] ')'
3850/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3851///                    cv-qualifier-seq[opt] exception-specification[opt]
3852/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
3853///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
3854///                    ref-qualifier[opt] exception-specification[opt]
3855/// [C++]   declarator-id
3856/// [C++11] declarator-id attribute-specifier-seq[opt]
3857///
3858///       declarator-id: [C++ 8]
3859///         '...'[opt] id-expression
3860///         '::'[opt] nested-name-specifier[opt] type-name
3861///
3862///       id-expression: [C++ 5.1]
3863///         unqualified-id
3864///         qualified-id
3865///
3866///       unqualified-id: [C++ 5.1]
3867///         identifier
3868///         operator-function-id
3869///         conversion-function-id
3870///          '~' class-name
3871///         template-id
3872///
3873/// Note, any additional constructs added here may need corresponding changes
3874/// in isConstructorDeclarator.
3875void Parser::ParseDirectDeclarator(Declarator &D) {
3876  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3877
3878  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
3879    // ParseDeclaratorInternal might already have parsed the scope.
3880    if (D.getCXXScopeSpec().isEmpty()) {
3881      bool EnteringContext = D.getContext() == Declarator::FileContext ||
3882                             D.getContext() == Declarator::MemberContext;
3883      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
3884                                     EnteringContext);
3885    }
3886
3887    if (D.getCXXScopeSpec().isValid()) {
3888      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3889        // Change the declaration context for name lookup, until this function
3890        // is exited (and the declarator has been parsed).
3891        DeclScopeObj.EnterDeclaratorScope();
3892    }
3893
3894    // C++0x [dcl.fct]p14:
3895    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3896    //   of a parameter-declaration-clause without a preceding comma. In
3897    //   this case, the ellipsis is parsed as part of the
3898    //   abstract-declarator if the type of the parameter names a template
3899    //   parameter pack that has not been expanded; otherwise, it is parsed
3900    //   as part of the parameter-declaration-clause.
3901    if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
3902        !((D.getContext() == Declarator::PrototypeContext ||
3903           D.getContext() == Declarator::BlockLiteralContext) &&
3904          NextToken().is(tok::r_paren) &&
3905          !Actions.containsUnexpandedParameterPacks(D))) {
3906      SourceLocation EllipsisLoc = ConsumeToken();
3907      if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) {
3908        // The ellipsis was put in the wrong place. Recover, and explain to
3909        // the user what they should have done.
3910        ParseDeclarator(D);
3911        diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
3912        return;
3913      } else
3914        D.setEllipsisLoc(EllipsisLoc);
3915
3916      // The ellipsis can't be followed by a parenthesized declarator. We
3917      // check for that in ParseParenDeclarator, after we have disambiguated
3918      // the l_paren token.
3919    }
3920
3921    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3922        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3923      // We found something that indicates the start of an unqualified-id.
3924      // Parse that unqualified-id.
3925      bool AllowConstructorName;
3926      if (D.getDeclSpec().hasTypeSpecifier())
3927        AllowConstructorName = false;
3928      else if (D.getCXXScopeSpec().isSet())
3929        AllowConstructorName =
3930          (D.getContext() == Declarator::FileContext ||
3931           (D.getContext() == Declarator::MemberContext &&
3932            D.getDeclSpec().isFriendSpecified()));
3933      else
3934        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3935
3936      SourceLocation TemplateKWLoc;
3937      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3938                             /*EnteringContext=*/true,
3939                             /*AllowDestructorName=*/true,
3940                             AllowConstructorName,
3941                             ParsedType(),
3942                             TemplateKWLoc,
3943                             D.getName()) ||
3944          // Once we're past the identifier, if the scope was bad, mark the
3945          // whole declarator bad.
3946          D.getCXXScopeSpec().isInvalid()) {
3947        D.SetIdentifier(0, Tok.getLocation());
3948        D.setInvalidType(true);
3949      } else {
3950        // Parsed the unqualified-id; update range information and move along.
3951        if (D.getSourceRange().getBegin().isInvalid())
3952          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
3953        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
3954      }
3955      goto PastIdentifier;
3956    }
3957  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
3958    assert(!getLangOpts().CPlusPlus &&
3959           "There's a C++-specific check for tok::identifier above");
3960    assert(Tok.getIdentifierInfo() && "Not an identifier?");
3961    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
3962    ConsumeToken();
3963    goto PastIdentifier;
3964  }
3965
3966  if (Tok.is(tok::l_paren)) {
3967    // direct-declarator: '(' declarator ')'
3968    // direct-declarator: '(' attributes declarator ')'
3969    // Example: 'char (*X)'   or 'int (*XX)(void)'
3970    ParseParenDeclarator(D);
3971
3972    // If the declarator was parenthesized, we entered the declarator
3973    // scope when parsing the parenthesized declarator, then exited
3974    // the scope already. Re-enter the scope, if we need to.
3975    if (D.getCXXScopeSpec().isSet()) {
3976      // If there was an error parsing parenthesized declarator, declarator
3977      // scope may have been entered before. Don't do it again.
3978      if (!D.isInvalidType() &&
3979          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3980        // Change the declaration context for name lookup, until this function
3981        // is exited (and the declarator has been parsed).
3982        DeclScopeObj.EnterDeclaratorScope();
3983    }
3984  } else if (D.mayOmitIdentifier()) {
3985    // This could be something simple like "int" (in which case the declarator
3986    // portion is empty), if an abstract-declarator is allowed.
3987    D.SetIdentifier(0, Tok.getLocation());
3988  } else {
3989    if (D.getContext() == Declarator::MemberContext)
3990      Diag(Tok, diag::err_expected_member_name_or_semi)
3991        << D.getDeclSpec().getSourceRange();
3992    else if (getLangOpts().CPlusPlus)
3993      Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3994    else
3995      Diag(Tok, diag::err_expected_ident_lparen);
3996    D.SetIdentifier(0, Tok.getLocation());
3997    D.setInvalidType(true);
3998  }
3999
4000 PastIdentifier:
4001  assert(D.isPastIdentifier() &&
4002         "Haven't past the location of the identifier yet?");
4003
4004  // Don't parse attributes unless we have parsed an unparenthesized name.
4005  if (D.hasName() && !D.getNumTypeObjects())
4006    MaybeParseCXX0XAttributes(D);
4007
4008  while (1) {
4009    if (Tok.is(tok::l_paren)) {
4010      // Enter function-declaration scope, limiting any declarators to the
4011      // function prototype scope, including parameter declarators.
4012      ParseScope PrototypeScope(this,
4013                                Scope::FunctionPrototypeScope|Scope::DeclScope);
4014      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
4015      // In such a case, check if we actually have a function declarator; if it
4016      // is not, the declarator has been fully parsed.
4017      if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
4018        // When not in file scope, warn for ambiguous function declarators, just
4019        // in case the author intended it as a variable definition.
4020        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
4021        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
4022          break;
4023      }
4024      ParsedAttributes attrs(AttrFactory);
4025      BalancedDelimiterTracker T(*this, tok::l_paren);
4026      T.consumeOpen();
4027      ParseFunctionDeclarator(D, attrs, T);
4028      PrototypeScope.Exit();
4029    } else if (Tok.is(tok::l_square)) {
4030      ParseBracketDeclarator(D);
4031    } else {
4032      break;
4033    }
4034  }
4035}
4036
4037/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
4038/// only called before the identifier, so these are most likely just grouping
4039/// parens for precedence.  If we find that these are actually function
4040/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
4041///
4042///       direct-declarator:
4043///         '(' declarator ')'
4044/// [GNU]   '(' attributes declarator ')'
4045///         direct-declarator '(' parameter-type-list ')'
4046///         direct-declarator '(' identifier-list[opt] ')'
4047/// [GNU]   direct-declarator '(' parameter-forward-declarations
4048///                    parameter-type-list[opt] ')'
4049///
4050void Parser::ParseParenDeclarator(Declarator &D) {
4051  BalancedDelimiterTracker T(*this, tok::l_paren);
4052  T.consumeOpen();
4053
4054  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
4055
4056  // Eat any attributes before we look at whether this is a grouping or function
4057  // declarator paren.  If this is a grouping paren, the attribute applies to
4058  // the type being built up, for example:
4059  //     int (__attribute__(()) *x)(long y)
4060  // If this ends up not being a grouping paren, the attribute applies to the
4061  // first argument, for example:
4062  //     int (__attribute__(()) int x)
4063  // In either case, we need to eat any attributes to be able to determine what
4064  // sort of paren this is.
4065  //
4066  ParsedAttributes attrs(AttrFactory);
4067  bool RequiresArg = false;
4068  if (Tok.is(tok::kw___attribute)) {
4069    ParseGNUAttributes(attrs);
4070
4071    // We require that the argument list (if this is a non-grouping paren) be
4072    // present even if the attribute list was empty.
4073    RequiresArg = true;
4074  }
4075  // Eat any Microsoft extensions.
4076  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
4077       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
4078       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
4079       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
4080    ParseMicrosoftTypeAttributes(attrs);
4081  }
4082  // Eat any Borland extensions.
4083  if  (Tok.is(tok::kw___pascal))
4084    ParseBorlandTypeAttributes(attrs);
4085
4086  // If we haven't past the identifier yet (or where the identifier would be
4087  // stored, if this is an abstract declarator), then this is probably just
4088  // grouping parens. However, if this could be an abstract-declarator, then
4089  // this could also be the start of function arguments (consider 'void()').
4090  bool isGrouping;
4091
4092  if (!D.mayOmitIdentifier()) {
4093    // If this can't be an abstract-declarator, this *must* be a grouping
4094    // paren, because we haven't seen the identifier yet.
4095    isGrouping = true;
4096  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
4097             (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
4098              NextToken().is(tok::r_paren)) || // C++ int(...)
4099             isDeclarationSpecifier() ||       // 'int(int)' is a function.
4100             isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
4101    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
4102    // considered to be a type, not a K&R identifier-list.
4103    isGrouping = false;
4104  } else {
4105    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
4106    isGrouping = true;
4107  }
4108
4109  // If this is a grouping paren, handle:
4110  // direct-declarator: '(' declarator ')'
4111  // direct-declarator: '(' attributes declarator ')'
4112  if (isGrouping) {
4113    SourceLocation EllipsisLoc = D.getEllipsisLoc();
4114    D.setEllipsisLoc(SourceLocation());
4115
4116    bool hadGroupingParens = D.hasGroupingParens();
4117    D.setGroupingParens(true);
4118    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4119    // Match the ')'.
4120    T.consumeClose();
4121    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
4122                                            T.getCloseLocation()),
4123                  attrs, T.getCloseLocation());
4124
4125    D.setGroupingParens(hadGroupingParens);
4126
4127    // An ellipsis cannot be placed outside parentheses.
4128    if (EllipsisLoc.isValid())
4129      diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
4130
4131    return;
4132  }
4133
4134  // Okay, if this wasn't a grouping paren, it must be the start of a function
4135  // argument list.  Recognize that this declarator will never have an
4136  // identifier (and remember where it would have been), then call into
4137  // ParseFunctionDeclarator to handle of argument list.
4138  D.SetIdentifier(0, Tok.getLocation());
4139
4140  // Enter function-declaration scope, limiting any declarators to the
4141  // function prototype scope, including parameter declarators.
4142  ParseScope PrototypeScope(this,
4143                            Scope::FunctionPrototypeScope|Scope::DeclScope);
4144  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
4145  PrototypeScope.Exit();
4146}
4147
4148/// ParseFunctionDeclarator - We are after the identifier and have parsed the
4149/// declarator D up to a paren, which indicates that we are parsing function
4150/// arguments.
4151///
4152/// If FirstArgAttrs is non-null, then the caller parsed those arguments
4153/// immediately after the open paren - they should be considered to be the
4154/// first argument of a parameter.
4155///
4156/// If RequiresArg is true, then the first argument of the function is required
4157/// to be present and required to not be an identifier list.
4158///
4159/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
4160/// (C++11) ref-qualifier[opt], exception-specification[opt],
4161/// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
4162///
4163/// [C++11] exception-specification:
4164///           dynamic-exception-specification
4165///           noexcept-specification
4166///
4167void Parser::ParseFunctionDeclarator(Declarator &D,
4168                                     ParsedAttributes &FirstArgAttrs,
4169                                     BalancedDelimiterTracker &Tracker,
4170                                     bool RequiresArg) {
4171  assert(getCurScope()->isFunctionPrototypeScope() &&
4172         "Should call from a Function scope");
4173  // lparen is already consumed!
4174  assert(D.isPastIdentifier() && "Should not call before identifier!");
4175
4176  // This should be true when the function has typed arguments.
4177  // Otherwise, it is treated as a K&R-style function.
4178  bool HasProto = false;
4179  // Build up an array of information about the parsed arguments.
4180  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4181  // Remember where we see an ellipsis, if any.
4182  SourceLocation EllipsisLoc;
4183
4184  DeclSpec DS(AttrFactory);
4185  bool RefQualifierIsLValueRef = true;
4186  SourceLocation RefQualifierLoc;
4187  SourceLocation ConstQualifierLoc;
4188  SourceLocation VolatileQualifierLoc;
4189  ExceptionSpecificationType ESpecType = EST_None;
4190  SourceRange ESpecRange;
4191  SmallVector<ParsedType, 2> DynamicExceptions;
4192  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4193  ExprResult NoexceptExpr;
4194  ParsedAttributes FnAttrs(AttrFactory);
4195  ParsedType TrailingReturnType;
4196
4197  Actions.ActOnStartFunctionDeclarator();
4198
4199  SourceLocation EndLoc;
4200  if (isFunctionDeclaratorIdentifierList()) {
4201    if (RequiresArg)
4202      Diag(Tok, diag::err_argument_required_after_attribute);
4203
4204    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4205
4206    Tracker.consumeClose();
4207    EndLoc = Tracker.getCloseLocation();
4208  } else {
4209    if (Tok.isNot(tok::r_paren))
4210      ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
4211    else if (RequiresArg)
4212      Diag(Tok, diag::err_argument_required_after_attribute);
4213
4214    HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
4215
4216    // If we have the closing ')', eat it.
4217    Tracker.consumeClose();
4218    EndLoc = Tracker.getCloseLocation();
4219
4220    if (getLangOpts().CPlusPlus) {
4221      // FIXME: Accept these components in any order, and produce fixits to
4222      // correct the order if the user gets it wrong. Ideally we should deal
4223      // with the virt-specifier-seq and pure-specifier in the same way.
4224
4225      // Parse cv-qualifier-seq[opt].
4226      ParseTypeQualifierListOpt(DS, false /*no attributes*/, false);
4227      if (!DS.getSourceRange().getEnd().isInvalid()) {
4228        EndLoc = DS.getSourceRange().getEnd();
4229        ConstQualifierLoc = DS.getConstSpecLoc();
4230        VolatileQualifierLoc = DS.getVolatileSpecLoc();
4231      }
4232
4233      // Parse ref-qualifier[opt].
4234      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4235        Diag(Tok, getLangOpts().CPlusPlus0x ?
4236             diag::warn_cxx98_compat_ref_qualifier :
4237             diag::ext_ref_qualifier);
4238
4239        RefQualifierIsLValueRef = Tok.is(tok::amp);
4240        RefQualifierLoc = ConsumeToken();
4241        EndLoc = RefQualifierLoc;
4242      }
4243
4244      // Parse exception-specification[opt].
4245      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4246                                                   DynamicExceptions,
4247                                                   DynamicExceptionRanges,
4248                                                   NoexceptExpr);
4249      if (ESpecType != EST_None)
4250        EndLoc = ESpecRange.getEnd();
4251
4252      // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
4253      // after the exception-specification.
4254      MaybeParseCXX0XAttributes(FnAttrs);
4255
4256      // Parse trailing-return-type[opt].
4257      if (getLangOpts().CPlusPlus0x && Tok.is(tok::arrow)) {
4258        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4259        SourceRange Range;
4260        TrailingReturnType = ParseTrailingReturnType(Range).get();
4261        if (Range.getEnd().isValid())
4262          EndLoc = Range.getEnd();
4263      }
4264    }
4265  }
4266
4267  // Remember that we parsed a function type, and remember the attributes.
4268  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4269                                             /*isVariadic=*/EllipsisLoc.isValid(),
4270                                             EllipsisLoc,
4271                                             ParamInfo.data(), ParamInfo.size(),
4272                                             DS.getTypeQualifiers(),
4273                                             RefQualifierIsLValueRef,
4274                                             RefQualifierLoc, ConstQualifierLoc,
4275                                             VolatileQualifierLoc,
4276                                             /*MutableLoc=*/SourceLocation(),
4277                                             ESpecType, ESpecRange.getBegin(),
4278                                             DynamicExceptions.data(),
4279                                             DynamicExceptionRanges.data(),
4280                                             DynamicExceptions.size(),
4281                                             NoexceptExpr.isUsable() ?
4282                                               NoexceptExpr.get() : 0,
4283                                             Tracker.getOpenLocation(),
4284                                             EndLoc, D,
4285                                             TrailingReturnType),
4286                FnAttrs, EndLoc);
4287
4288  Actions.ActOnEndFunctionDeclarator();
4289}
4290
4291/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4292/// identifier list form for a K&R-style function:  void foo(a,b,c)
4293///
4294/// Note that identifier-lists are only allowed for normal declarators, not for
4295/// abstract-declarators.
4296bool Parser::isFunctionDeclaratorIdentifierList() {
4297  return !getLangOpts().CPlusPlus
4298         && Tok.is(tok::identifier)
4299         && !TryAltiVecVectorToken()
4300         // K&R identifier lists can't have typedefs as identifiers, per C99
4301         // 6.7.5.3p11.
4302         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4303         // Identifier lists follow a really simple grammar: the identifiers can
4304         // be followed *only* by a ", identifier" or ")".  However, K&R
4305         // identifier lists are really rare in the brave new modern world, and
4306         // it is very common for someone to typo a type in a non-K&R style
4307         // list.  If we are presented with something like: "void foo(intptr x,
4308         // float y)", we don't want to start parsing the function declarator as
4309         // though it is a K&R style declarator just because intptr is an
4310         // invalid type.
4311         //
4312         // To handle this, we check to see if the token after the first
4313         // identifier is a "," or ")".  Only then do we parse it as an
4314         // identifier list.
4315         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4316}
4317
4318/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4319/// we found a K&R-style identifier list instead of a typed parameter list.
4320///
4321/// After returning, ParamInfo will hold the parsed parameters.
4322///
4323///       identifier-list: [C99 6.7.5]
4324///         identifier
4325///         identifier-list ',' identifier
4326///
4327void Parser::ParseFunctionDeclaratorIdentifierList(
4328       Declarator &D,
4329       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4330  // If there was no identifier specified for the declarator, either we are in
4331  // an abstract-declarator, or we are in a parameter declarator which was found
4332  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4333  // diagnose this.
4334  if (!D.getIdentifier())
4335    Diag(Tok, diag::ext_ident_list_in_param);
4336
4337  // Maintain an efficient lookup of params we have seen so far.
4338  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4339
4340  while (1) {
4341    // If this isn't an identifier, report the error and skip until ')'.
4342    if (Tok.isNot(tok::identifier)) {
4343      Diag(Tok, diag::err_expected_ident);
4344      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4345      // Forget we parsed anything.
4346      ParamInfo.clear();
4347      return;
4348    }
4349
4350    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4351
4352    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4353    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4354      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4355
4356    // Verify that the argument identifier has not already been mentioned.
4357    if (!ParamsSoFar.insert(ParmII)) {
4358      Diag(Tok, diag::err_param_redefinition) << ParmII;
4359    } else {
4360      // Remember this identifier in ParamInfo.
4361      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4362                                                     Tok.getLocation(),
4363                                                     0));
4364    }
4365
4366    // Eat the identifier.
4367    ConsumeToken();
4368
4369    // The list continues if we see a comma.
4370    if (Tok.isNot(tok::comma))
4371      break;
4372    ConsumeToken();
4373  }
4374}
4375
4376/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4377/// after the opening parenthesis. This function will not parse a K&R-style
4378/// identifier list.
4379///
4380/// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
4381/// caller parsed those arguments immediately after the open paren - they should
4382/// be considered to be part of the first parameter.
4383///
4384/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4385/// be the location of the ellipsis, if any was parsed.
4386///
4387///       parameter-type-list: [C99 6.7.5]
4388///         parameter-list
4389///         parameter-list ',' '...'
4390/// [C++]   parameter-list '...'
4391///
4392///       parameter-list: [C99 6.7.5]
4393///         parameter-declaration
4394///         parameter-list ',' parameter-declaration
4395///
4396///       parameter-declaration: [C99 6.7.5]
4397///         declaration-specifiers declarator
4398/// [C++]   declaration-specifiers declarator '=' assignment-expression
4399/// [C++11]                                       initializer-clause
4400/// [GNU]   declaration-specifiers declarator attributes
4401///         declaration-specifiers abstract-declarator[opt]
4402/// [C++]   declaration-specifiers abstract-declarator[opt]
4403///           '=' assignment-expression
4404/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4405/// [C++11] attribute-specifier-seq parameter-declaration
4406///
4407void Parser::ParseParameterDeclarationClause(
4408       Declarator &D,
4409       ParsedAttributes &FirstArgAttrs,
4410       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4411       SourceLocation &EllipsisLoc) {
4412
4413  while (1) {
4414    if (Tok.is(tok::ellipsis)) {
4415      // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
4416      // before deciding this was a parameter-declaration-clause.
4417      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4418      break;
4419    }
4420
4421    // Parse the declaration-specifiers.
4422    // Just use the ParsingDeclaration "scope" of the declarator.
4423    DeclSpec DS(AttrFactory);
4424
4425    // Parse any C++11 attributes.
4426    MaybeParseCXX0XAttributes(DS.getAttributes());
4427
4428    // Skip any Microsoft attributes before a param.
4429    if (getLangOpts().MicrosoftExt && Tok.is(tok::l_square))
4430      ParseMicrosoftAttributes(DS.getAttributes());
4431
4432    SourceLocation DSStart = Tok.getLocation();
4433
4434    // If the caller parsed attributes for the first argument, add them now.
4435    // Take them so that we only apply the attributes to the first parameter.
4436    // FIXME: If we can leave the attributes in the token stream somehow, we can
4437    // get rid of a parameter (FirstArgAttrs) and this statement. It might be
4438    // too much hassle.
4439    DS.takeAttributesFrom(FirstArgAttrs);
4440
4441    ParseDeclarationSpecifiers(DS);
4442
4443    // Parse the declarator.  This is "PrototypeContext", because we must
4444    // accept either 'declarator' or 'abstract-declarator' here.
4445    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4446    ParseDeclarator(ParmDecl);
4447
4448    // Parse GNU attributes, if present.
4449    MaybeParseGNUAttributes(ParmDecl);
4450
4451    // Remember this parsed parameter in ParamInfo.
4452    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4453
4454    // DefArgToks is used when the parsing of default arguments needs
4455    // to be delayed.
4456    CachedTokens *DefArgToks = 0;
4457
4458    // If no parameter was specified, verify that *something* was specified,
4459    // otherwise we have a missing type and identifier.
4460    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4461        ParmDecl.getNumTypeObjects() == 0) {
4462      // Completely missing, emit error.
4463      Diag(DSStart, diag::err_missing_param);
4464    } else {
4465      // Otherwise, we have something.  Add it and let semantic analysis try
4466      // to grok it and add the result to the ParamInfo we are building.
4467
4468      // Inform the actions module about the parameter declarator, so it gets
4469      // added to the current scope.
4470      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4471
4472      // Parse the default argument, if any. We parse the default
4473      // arguments in all dialects; the semantic analysis in
4474      // ActOnParamDefaultArgument will reject the default argument in
4475      // C.
4476      if (Tok.is(tok::equal)) {
4477        SourceLocation EqualLoc = Tok.getLocation();
4478
4479        // Parse the default argument
4480        if (D.getContext() == Declarator::MemberContext) {
4481          // If we're inside a class definition, cache the tokens
4482          // corresponding to the default argument. We'll actually parse
4483          // them when we see the end of the class definition.
4484          // FIXME: Templates will require something similar.
4485          // FIXME: Can we use a smart pointer for Toks?
4486          DefArgToks = new CachedTokens;
4487
4488          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4489                                    /*StopAtSemi=*/true,
4490                                    /*ConsumeFinalToken=*/false)) {
4491            delete DefArgToks;
4492            DefArgToks = 0;
4493            Actions.ActOnParamDefaultArgumentError(Param);
4494          } else {
4495            // Mark the end of the default argument so that we know when to
4496            // stop when we parse it later on.
4497            Token DefArgEnd;
4498            DefArgEnd.startToken();
4499            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4500            DefArgEnd.setLocation(Tok.getLocation());
4501            DefArgToks->push_back(DefArgEnd);
4502            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4503                                                (*DefArgToks)[1].getLocation());
4504          }
4505        } else {
4506          // Consume the '='.
4507          ConsumeToken();
4508
4509          // The argument isn't actually potentially evaluated unless it is
4510          // used.
4511          EnterExpressionEvaluationContext Eval(Actions,
4512                                              Sema::PotentiallyEvaluatedIfUsed,
4513                                                Param);
4514
4515          ExprResult DefArgResult;
4516          if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
4517            Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
4518            DefArgResult = ParseBraceInitializer();
4519          } else
4520            DefArgResult = ParseAssignmentExpression();
4521          if (DefArgResult.isInvalid()) {
4522            Actions.ActOnParamDefaultArgumentError(Param);
4523            SkipUntil(tok::comma, tok::r_paren, true, true);
4524          } else {
4525            // Inform the actions module about the default argument
4526            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4527                                              DefArgResult.take());
4528          }
4529        }
4530      }
4531
4532      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4533                                          ParmDecl.getIdentifierLoc(), Param,
4534                                          DefArgToks));
4535    }
4536
4537    // If the next token is a comma, consume it and keep reading arguments.
4538    if (Tok.isNot(tok::comma)) {
4539      if (Tok.is(tok::ellipsis)) {
4540        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4541
4542        if (!getLangOpts().CPlusPlus) {
4543          // We have ellipsis without a preceding ',', which is ill-formed
4544          // in C. Complain and provide the fix.
4545          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4546            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4547        }
4548      }
4549
4550      break;
4551    }
4552
4553    // Consume the comma.
4554    ConsumeToken();
4555  }
4556
4557}
4558
4559/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4560/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4561/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4562/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4563/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4564/// [C++11] direct-declarator '[' constant-expression[opt] ']'
4565///                           attribute-specifier-seq[opt]
4566void Parser::ParseBracketDeclarator(Declarator &D) {
4567  if (CheckProhibitedCXX11Attribute())
4568    return;
4569
4570  BalancedDelimiterTracker T(*this, tok::l_square);
4571  T.consumeOpen();
4572
4573  // C array syntax has many features, but by-far the most common is [] and [4].
4574  // This code does a fast path to handle some of the most obvious cases.
4575  if (Tok.getKind() == tok::r_square) {
4576    T.consumeClose();
4577    ParsedAttributes attrs(AttrFactory);
4578    MaybeParseCXX0XAttributes(attrs);
4579
4580    // Remember that we parsed the empty array type.
4581    ExprResult NumElements;
4582    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4583                                            T.getOpenLocation(),
4584                                            T.getCloseLocation()),
4585                  attrs, T.getCloseLocation());
4586    return;
4587  } else if (Tok.getKind() == tok::numeric_constant &&
4588             GetLookAheadToken(1).is(tok::r_square)) {
4589    // [4] is very common.  Parse the numeric constant expression.
4590    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
4591    ConsumeToken();
4592
4593    T.consumeClose();
4594    ParsedAttributes attrs(AttrFactory);
4595    MaybeParseCXX0XAttributes(attrs);
4596
4597    // Remember that we parsed a array type, and remember its features.
4598    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4599                                            ExprRes.release(),
4600                                            T.getOpenLocation(),
4601                                            T.getCloseLocation()),
4602                  attrs, T.getCloseLocation());
4603    return;
4604  }
4605
4606  // If valid, this location is the position where we read the 'static' keyword.
4607  SourceLocation StaticLoc;
4608  if (Tok.is(tok::kw_static))
4609    StaticLoc = ConsumeToken();
4610
4611  // If there is a type-qualifier-list, read it now.
4612  // Type qualifiers in an array subscript are a C99 feature.
4613  DeclSpec DS(AttrFactory);
4614  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4615
4616  // If we haven't already read 'static', check to see if there is one after the
4617  // type-qualifier-list.
4618  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4619    StaticLoc = ConsumeToken();
4620
4621  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4622  bool isStar = false;
4623  ExprResult NumElements;
4624
4625  // Handle the case where we have '[*]' as the array size.  However, a leading
4626  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4627  // the the token after the star is a ']'.  Since stars in arrays are
4628  // infrequent, use of lookahead is not costly here.
4629  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4630    ConsumeToken();  // Eat the '*'.
4631
4632    if (StaticLoc.isValid()) {
4633      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4634      StaticLoc = SourceLocation();  // Drop the static.
4635    }
4636    isStar = true;
4637  } else if (Tok.isNot(tok::r_square)) {
4638    // Note, in C89, this production uses the constant-expr production instead
4639    // of assignment-expr.  The only difference is that assignment-expr allows
4640    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4641    // are not i-c-e's, so we don't need to distinguish between the two here.
4642
4643    // Parse the constant-expression or assignment-expression now (depending
4644    // on dialect).
4645    if (getLangOpts().CPlusPlus) {
4646      NumElements = ParseConstantExpression();
4647    } else {
4648      EnterExpressionEvaluationContext Unevaluated(Actions,
4649                                                   Sema::ConstantEvaluated);
4650      NumElements = ParseAssignmentExpression();
4651    }
4652  }
4653
4654  // If there was an error parsing the assignment-expression, recover.
4655  if (NumElements.isInvalid()) {
4656    D.setInvalidType(true);
4657    // If the expression was invalid, skip it.
4658    SkipUntil(tok::r_square);
4659    return;
4660  }
4661
4662  T.consumeClose();
4663
4664  ParsedAttributes attrs(AttrFactory);
4665  MaybeParseCXX0XAttributes(attrs);
4666
4667  // Remember that we parsed a array type, and remember its features.
4668  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4669                                          StaticLoc.isValid(), isStar,
4670                                          NumElements.release(),
4671                                          T.getOpenLocation(),
4672                                          T.getCloseLocation()),
4673                attrs, T.getCloseLocation());
4674}
4675
4676/// [GNU]   typeof-specifier:
4677///           typeof ( expressions )
4678///           typeof ( type-name )
4679/// [GNU/C++] typeof unary-expression
4680///
4681void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4682  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4683  Token OpTok = Tok;
4684  SourceLocation StartLoc = ConsumeToken();
4685
4686  const bool hasParens = Tok.is(tok::l_paren);
4687
4688  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
4689
4690  bool isCastExpr;
4691  ParsedType CastTy;
4692  SourceRange CastRange;
4693  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4694                                                          CastTy, CastRange);
4695  if (hasParens)
4696    DS.setTypeofParensRange(CastRange);
4697
4698  if (CastRange.getEnd().isInvalid())
4699    // FIXME: Not accurate, the range gets one token more than it should.
4700    DS.SetRangeEnd(Tok.getLocation());
4701  else
4702    DS.SetRangeEnd(CastRange.getEnd());
4703
4704  if (isCastExpr) {
4705    if (!CastTy) {
4706      DS.SetTypeSpecError();
4707      return;
4708    }
4709
4710    const char *PrevSpec = 0;
4711    unsigned DiagID;
4712    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4713    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4714                           DiagID, CastTy))
4715      Diag(StartLoc, DiagID) << PrevSpec;
4716    return;
4717  }
4718
4719  // If we get here, the operand to the typeof was an expresion.
4720  if (Operand.isInvalid()) {
4721    DS.SetTypeSpecError();
4722    return;
4723  }
4724
4725  // We might need to transform the operand if it is potentially evaluated.
4726  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
4727  if (Operand.isInvalid()) {
4728    DS.SetTypeSpecError();
4729    return;
4730  }
4731
4732  const char *PrevSpec = 0;
4733  unsigned DiagID;
4734  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4735  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4736                         DiagID, Operand.get()))
4737    Diag(StartLoc, DiagID) << PrevSpec;
4738}
4739
4740/// [C11]   atomic-specifier:
4741///           _Atomic ( type-name )
4742///
4743void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4744  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4745
4746  SourceLocation StartLoc = ConsumeToken();
4747  BalancedDelimiterTracker T(*this, tok::l_paren);
4748  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4749    SkipUntil(tok::r_paren);
4750    return;
4751  }
4752
4753  TypeResult Result = ParseTypeName();
4754  if (Result.isInvalid()) {
4755    SkipUntil(tok::r_paren);
4756    return;
4757  }
4758
4759  // Match the ')'
4760  T.consumeClose();
4761
4762  if (T.getCloseLocation().isInvalid())
4763    return;
4764
4765  DS.setTypeofParensRange(T.getRange());
4766  DS.SetRangeEnd(T.getCloseLocation());
4767
4768  const char *PrevSpec = 0;
4769  unsigned DiagID;
4770  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4771                         DiagID, Result.release()))
4772    Diag(StartLoc, DiagID) << PrevSpec;
4773}
4774
4775
4776/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4777/// from TryAltiVecVectorToken.
4778bool Parser::TryAltiVecVectorTokenOutOfLine() {
4779  Token Next = NextToken();
4780  switch (Next.getKind()) {
4781  default: return false;
4782  case tok::kw_short:
4783  case tok::kw_long:
4784  case tok::kw_signed:
4785  case tok::kw_unsigned:
4786  case tok::kw_void:
4787  case tok::kw_char:
4788  case tok::kw_int:
4789  case tok::kw_float:
4790  case tok::kw_double:
4791  case tok::kw_bool:
4792  case tok::kw___pixel:
4793    Tok.setKind(tok::kw___vector);
4794    return true;
4795  case tok::identifier:
4796    if (Next.getIdentifierInfo() == Ident_pixel) {
4797      Tok.setKind(tok::kw___vector);
4798      return true;
4799    }
4800    return false;
4801  }
4802}
4803
4804bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4805                                      const char *&PrevSpec, unsigned &DiagID,
4806                                      bool &isInvalid) {
4807  if (Tok.getIdentifierInfo() == Ident_vector) {
4808    Token Next = NextToken();
4809    switch (Next.getKind()) {
4810    case tok::kw_short:
4811    case tok::kw_long:
4812    case tok::kw_signed:
4813    case tok::kw_unsigned:
4814    case tok::kw_void:
4815    case tok::kw_char:
4816    case tok::kw_int:
4817    case tok::kw_float:
4818    case tok::kw_double:
4819    case tok::kw_bool:
4820    case tok::kw___pixel:
4821      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4822      return true;
4823    case tok::identifier:
4824      if (Next.getIdentifierInfo() == Ident_pixel) {
4825        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4826        return true;
4827      }
4828      break;
4829    default:
4830      break;
4831    }
4832  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4833             DS.isTypeAltiVecVector()) {
4834    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4835    return true;
4836  }
4837  return false;
4838}
4839