ParseDecl.cpp revision 682bf92db408a6cbc3d37b5496a99b6ef85041ec
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228/// [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context) {
232  DeclPtrTy SingleDecl;
233  switch (Tok.getKind()) {
234  case tok::kw_export:
235  case tok::kw_template:
236    SingleDecl = ParseTemplateDeclarationOrSpecialization(Context);
237    break;
238  case tok::kw_namespace:
239    SingleDecl = ParseNamespace(Context);
240    break;
241  case tok::kw_using:
242    SingleDecl = ParseUsingDirectiveOrDeclaration(Context);
243    break;
244  case tok::kw_static_assert:
245    SingleDecl = ParseStaticAssertDeclaration();
246    break;
247  default:
248    return ParseSimpleDeclaration(Context);
249  }
250
251  // This routine returns a DeclGroup, if the thing we parsed only contains a
252  // single decl, convert it now.
253  return Actions.ConvertDeclToDeclGroup(SingleDecl);
254}
255
256///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
257///         declaration-specifiers init-declarator-list[opt] ';'
258///[C90/C++]init-declarator-list ';'                             [TODO]
259/// [OMP]   threadprivate-directive                              [TODO]
260Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context) {
261  // Parse the common declaration-specifiers piece.
262  DeclSpec DS;
263  ParseDeclarationSpecifiers(DS);
264
265  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
266  // declaration-specifiers init-declarator-list[opt] ';'
267  if (Tok.is(tok::semi)) {
268    ConsumeToken();
269    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
270    return Actions.ConvertDeclToDeclGroup(TheDecl);
271  }
272
273  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
274  ParseDeclarator(DeclaratorInfo);
275
276  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
277}
278
279
280/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
281/// parsing 'declaration-specifiers declarator'.  This method is split out this
282/// way to handle the ambiguity between top-level function-definitions and
283/// declarations.
284///
285///       init-declarator-list: [C99 6.7]
286///         init-declarator
287///         init-declarator-list ',' init-declarator
288///       init-declarator: [C99 6.7]
289///         declarator
290///         declarator '=' initializer
291/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
292/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
293/// [C++]   declarator initializer[opt]
294///
295/// [C++] initializer:
296/// [C++]   '=' initializer-clause
297/// [C++]   '(' expression-list ')'
298/// [C++0x] '=' 'default'                                                [TODO]
299/// [C++0x] '=' 'delete'
300///
301/// According to the standard grammar, =default and =delete are function
302/// definitions, but that definitely doesn't fit with the parser here.
303///
304Parser::DeclGroupPtrTy Parser::
305ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
306  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
307  // that we parse together here.
308  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
309
310  // At this point, we know that it is not a function definition.  Parse the
311  // rest of the init-declarator-list.
312  while (1) {
313    // If a simple-asm-expr is present, parse it.
314    if (Tok.is(tok::kw_asm)) {
315      SourceLocation Loc;
316      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
317      if (AsmLabel.isInvalid()) {
318        SkipUntil(tok::semi);
319        return DeclGroupPtrTy();
320      }
321
322      D.setAsmLabel(AsmLabel.release());
323      D.SetRangeEnd(Loc);
324    }
325
326    // If attributes are present, parse them.
327    if (Tok.is(tok::kw___attribute)) {
328      SourceLocation Loc;
329      AttributeList *AttrList = ParseAttributes(&Loc);
330      D.AddAttributes(AttrList, Loc);
331    }
332
333    // Inform the current actions module that we just parsed this declarator.
334    DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
335    DeclsInGroup.push_back(ThisDecl);
336
337    // Parse declarator '=' initializer.
338    if (Tok.is(tok::equal)) {
339      ConsumeToken();
340      if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
341        SourceLocation DelLoc = ConsumeToken();
342        Actions.SetDeclDeleted(ThisDecl, DelLoc);
343      } else {
344        OwningExprResult Init(ParseInitializer());
345        if (Init.isInvalid()) {
346          SkipUntil(tok::semi);
347          return DeclGroupPtrTy();
348        }
349        Actions.AddInitializerToDecl(ThisDecl, move(Init));
350      }
351    } else if (Tok.is(tok::l_paren)) {
352      // Parse C++ direct initializer: '(' expression-list ')'
353      SourceLocation LParenLoc = ConsumeParen();
354      ExprVector Exprs(Actions);
355      CommaLocsTy CommaLocs;
356
357      bool InvalidExpr = false;
358      if (ParseExpressionList(Exprs, CommaLocs)) {
359        SkipUntil(tok::r_paren);
360        InvalidExpr = true;
361      }
362      // Match the ')'.
363      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
364
365      if (!InvalidExpr) {
366        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
367               "Unexpected number of commas!");
368        Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
369                                              move_arg(Exprs),
370                                              &CommaLocs[0], RParenLoc);
371      }
372    } else {
373      Actions.ActOnUninitializedDecl(ThisDecl);
374    }
375
376    // If we don't have a comma, it is either the end of the list (a ';') or an
377    // error, bail out.
378    if (Tok.isNot(tok::comma))
379      break;
380
381    // Consume the comma.
382    ConsumeToken();
383
384    // Parse the next declarator.
385    D.clear();
386
387    // Accept attributes in an init-declarator.  In the first declarator in a
388    // declaration, these would be part of the declspec.  In subsequent
389    // declarators, they become part of the declarator itself, so that they
390    // don't apply to declarators after *this* one.  Examples:
391    //    short __attribute__((common)) var;    -> declspec
392    //    short var __attribute__((common));    -> declarator
393    //    short x, __attribute__((common)) var;    -> declarator
394    if (Tok.is(tok::kw___attribute)) {
395      SourceLocation Loc;
396      AttributeList *AttrList = ParseAttributes(&Loc);
397      D.AddAttributes(AttrList, Loc);
398    }
399
400    ParseDeclarator(D);
401  }
402
403  if (Tok.is(tok::semi)) {
404    ConsumeToken();
405    // for(is key; in keys) is error.
406    if (D.getContext() == Declarator::ForContext && isTokIdentifier_in()) {
407      Diag(Tok, diag::err_parse_error);
408      return DeclGroupPtrTy();
409    }
410
411    return Actions.FinalizeDeclaratorGroup(CurScope, &DeclsInGroup[0],
412                                           DeclsInGroup.size());
413  }
414
415  // If this is an ObjC2 for-each loop, this is a successful declarator
416  // parse.  The syntax for these looks like:
417  // 'for' '(' declaration 'in' expr ')' statement
418  if (D.getContext() == Declarator::ForContext && isTokIdentifier_in())
419    return Actions.FinalizeDeclaratorGroup(CurScope, &DeclsInGroup[0],
420                                           DeclsInGroup.size());
421
422  Diag(Tok, diag::err_parse_error);
423  // Skip to end of block or statement
424  SkipUntil(tok::r_brace, true, true);
425  if (Tok.is(tok::semi))
426    ConsumeToken();
427  return DeclGroupPtrTy();
428}
429
430/// ParseSpecifierQualifierList
431///        specifier-qualifier-list:
432///          type-specifier specifier-qualifier-list[opt]
433///          type-qualifier specifier-qualifier-list[opt]
434/// [GNU]    attributes     specifier-qualifier-list[opt]
435///
436void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
437  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
438  /// parse declaration-specifiers and complain about extra stuff.
439  ParseDeclarationSpecifiers(DS);
440
441  // Validate declspec for type-name.
442  unsigned Specs = DS.getParsedSpecifiers();
443  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
444    Diag(Tok, diag::err_typename_requires_specqual);
445
446  // Issue diagnostic and remove storage class if present.
447  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
448    if (DS.getStorageClassSpecLoc().isValid())
449      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
450    else
451      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
452    DS.ClearStorageClassSpecs();
453  }
454
455  // Issue diagnostic and remove function specfier if present.
456  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
457    if (DS.isInlineSpecified())
458      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
459    if (DS.isVirtualSpecified())
460      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
461    if (DS.isExplicitSpecified())
462      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
463    DS.ClearFunctionSpecs();
464  }
465}
466
467/// ParseDeclarationSpecifiers
468///       declaration-specifiers: [C99 6.7]
469///         storage-class-specifier declaration-specifiers[opt]
470///         type-specifier declaration-specifiers[opt]
471/// [C99]   function-specifier declaration-specifiers[opt]
472/// [GNU]   attributes declaration-specifiers[opt]
473///
474///       storage-class-specifier: [C99 6.7.1]
475///         'typedef'
476///         'extern'
477///         'static'
478///         'auto'
479///         'register'
480/// [C++]   'mutable'
481/// [GNU]   '__thread'
482///       function-specifier: [C99 6.7.4]
483/// [C99]   'inline'
484/// [C++]   'virtual'
485/// [C++]   'explicit'
486///
487void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
488                                        TemplateParameterLists *TemplateParams,
489                                        AccessSpecifier AS){
490  DS.SetRangeStart(Tok.getLocation());
491  while (1) {
492    int isInvalid = false;
493    const char *PrevSpec = 0;
494    SourceLocation Loc = Tok.getLocation();
495
496    switch (Tok.getKind()) {
497    default:
498    DoneWithDeclSpec:
499      // If this is not a declaration specifier token, we're done reading decl
500      // specifiers.  First verify that DeclSpec's are consistent.
501      DS.Finish(Diags, PP.getSourceManager(), getLang());
502      return;
503
504    case tok::coloncolon: // ::foo::bar
505      // Annotate C++ scope specifiers.  If we get one, loop.
506      if (TryAnnotateCXXScopeToken())
507        continue;
508      goto DoneWithDeclSpec;
509
510    case tok::annot_cxxscope: {
511      if (DS.hasTypeSpecifier())
512        goto DoneWithDeclSpec;
513
514      // We are looking for a qualified typename.
515      Token Next = NextToken();
516      if (Next.is(tok::annot_template_id) &&
517          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
518          ->Kind == TNK_Class_template) {
519        // We have a qualified template-id, e.g., N::A<int>
520        CXXScopeSpec SS;
521        ParseOptionalCXXScopeSpecifier(SS);
522        assert(Tok.is(tok::annot_template_id) &&
523               "ParseOptionalCXXScopeSpecifier not working");
524        AnnotateTemplateIdTokenAsType(&SS);
525        continue;
526      }
527
528      if (Next.isNot(tok::identifier))
529        goto DoneWithDeclSpec;
530
531      CXXScopeSpec SS;
532      SS.setScopeRep(Tok.getAnnotationValue());
533      SS.setRange(Tok.getAnnotationRange());
534
535      // If the next token is the name of the class type that the C++ scope
536      // denotes, followed by a '(', then this is a constructor declaration.
537      // We're done with the decl-specifiers.
538      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
539                                     CurScope, &SS) &&
540          GetLookAheadToken(2).is(tok::l_paren))
541        goto DoneWithDeclSpec;
542
543      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
544                                            Next.getLocation(), CurScope, &SS);
545
546      if (TypeRep == 0)
547        goto DoneWithDeclSpec;
548
549      ConsumeToken(); // The C++ scope.
550
551      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
552                                     TypeRep);
553      if (isInvalid)
554        break;
555
556      DS.SetRangeEnd(Tok.getLocation());
557      ConsumeToken(); // The typename.
558
559      continue;
560    }
561
562    case tok::annot_typename: {
563      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
564                                     Tok.getAnnotationValue());
565      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
566      ConsumeToken(); // The typename
567
568      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
569      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
570      // Objective-C interface.  If we don't have Objective-C or a '<', this is
571      // just a normal reference to a typedef name.
572      if (!Tok.is(tok::less) || !getLang().ObjC1)
573        continue;
574
575      SourceLocation EndProtoLoc;
576      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
577      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
578      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
579
580      DS.SetRangeEnd(EndProtoLoc);
581      continue;
582    }
583
584      // typedef-name
585    case tok::identifier: {
586      // In C++, check to see if this is a scope specifier like foo::bar::, if
587      // so handle it as such.  This is important for ctor parsing.
588      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
589        continue;
590
591      // This identifier can only be a typedef name if we haven't already seen
592      // a type-specifier.  Without this check we misparse:
593      //  typedef int X; struct Y { short X; };  as 'short int'.
594      if (DS.hasTypeSpecifier())
595        goto DoneWithDeclSpec;
596
597      // It has to be available as a typedef too!
598      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
599                                            Tok.getLocation(), CurScope);
600
601      if (TypeRep == 0)
602        goto DoneWithDeclSpec;
603
604      // C++: If the identifier is actually the name of the class type
605      // being defined and the next token is a '(', then this is a
606      // constructor declaration. We're done with the decl-specifiers
607      // and will treat this token as an identifier.
608      if (getLang().CPlusPlus &&
609          CurScope->isClassScope() &&
610          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
611          NextToken().getKind() == tok::l_paren)
612        goto DoneWithDeclSpec;
613
614      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
615                                     TypeRep);
616      if (isInvalid)
617        break;
618
619      DS.SetRangeEnd(Tok.getLocation());
620      ConsumeToken(); // The identifier
621
622      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
623      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
624      // Objective-C interface.  If we don't have Objective-C or a '<', this is
625      // just a normal reference to a typedef name.
626      if (!Tok.is(tok::less) || !getLang().ObjC1)
627        continue;
628
629      SourceLocation EndProtoLoc;
630      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
631      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
632      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
633
634      DS.SetRangeEnd(EndProtoLoc);
635
636      // Need to support trailing type qualifiers (e.g. "id<p> const").
637      // If a type specifier follows, it will be diagnosed elsewhere.
638      continue;
639    }
640
641      // type-name
642    case tok::annot_template_id: {
643      TemplateIdAnnotation *TemplateId
644        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
645      if (TemplateId->Kind != TNK_Class_template) {
646        // This template-id does not refer to a type name, so we're
647        // done with the type-specifiers.
648        goto DoneWithDeclSpec;
649      }
650
651      // Turn the template-id annotation token into a type annotation
652      // token, then try again to parse it as a type-specifier.
653      if (AnnotateTemplateIdTokenAsType())
654        DS.SetTypeSpecError();
655
656      continue;
657    }
658
659    // GNU attributes support.
660    case tok::kw___attribute:
661      DS.AddAttributes(ParseAttributes());
662      continue;
663
664    // Microsoft declspec support.
665    case tok::kw___declspec:
666      if (!PP.getLangOptions().Microsoft)
667        goto DoneWithDeclSpec;
668      FuzzyParseMicrosoftDeclSpec();
669      continue;
670
671    // Microsoft single token adornments.
672    case tok::kw___forceinline:
673    case tok::kw___w64:
674    case tok::kw___cdecl:
675    case tok::kw___stdcall:
676    case tok::kw___fastcall:
677      if (!PP.getLangOptions().Microsoft)
678        goto DoneWithDeclSpec;
679      // Just ignore it.
680      break;
681
682    // storage-class-specifier
683    case tok::kw_typedef:
684      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
685      break;
686    case tok::kw_extern:
687      if (DS.isThreadSpecified())
688        Diag(Tok, diag::ext_thread_before) << "extern";
689      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
690      break;
691    case tok::kw___private_extern__:
692      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
693                                         PrevSpec);
694      break;
695    case tok::kw_static:
696      if (DS.isThreadSpecified())
697        Diag(Tok, diag::ext_thread_before) << "static";
698      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
699      break;
700    case tok::kw_auto:
701      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
702      break;
703    case tok::kw_register:
704      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
705      break;
706    case tok::kw_mutable:
707      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
708      break;
709    case tok::kw___thread:
710      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
711      break;
712
713      continue;
714
715    // function-specifier
716    case tok::kw_inline:
717      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
718      break;
719    case tok::kw_virtual:
720      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
721      break;
722    case tok::kw_explicit:
723      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
724      break;
725
726    // type-specifier
727    case tok::kw_short:
728      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
729      break;
730    case tok::kw_long:
731      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
732        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
733      else
734        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
735      break;
736    case tok::kw_signed:
737      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
738      break;
739    case tok::kw_unsigned:
740      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
741      break;
742    case tok::kw__Complex:
743      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
744      break;
745    case tok::kw__Imaginary:
746      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
747      break;
748    case tok::kw_void:
749      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
750      break;
751    case tok::kw_char:
752      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
753      break;
754    case tok::kw_int:
755      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
756      break;
757    case tok::kw_float:
758      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
759      break;
760    case tok::kw_double:
761      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
762      break;
763    case tok::kw_wchar_t:
764      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
765      break;
766    case tok::kw_bool:
767    case tok::kw__Bool:
768      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
769      break;
770    case tok::kw__Decimal32:
771      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
772      break;
773    case tok::kw__Decimal64:
774      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
775      break;
776    case tok::kw__Decimal128:
777      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
778      break;
779
780    // class-specifier:
781    case tok::kw_class:
782    case tok::kw_struct:
783    case tok::kw_union:
784      ParseClassSpecifier(DS, TemplateParams, AS);
785      continue;
786
787    // enum-specifier:
788    case tok::kw_enum:
789      ParseEnumSpecifier(DS, AS);
790      continue;
791
792    // cv-qualifier:
793    case tok::kw_const:
794      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
795      break;
796    case tok::kw_volatile:
797      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
798                                 getLang())*2;
799      break;
800    case tok::kw_restrict:
801      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
802                                 getLang())*2;
803      break;
804
805    // C++ typename-specifier:
806    case tok::kw_typename:
807      if (TryAnnotateTypeOrScopeToken())
808        continue;
809      break;
810
811    // GNU typeof support.
812    case tok::kw_typeof:
813      ParseTypeofSpecifier(DS);
814      continue;
815
816    case tok::less:
817      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
818      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
819      // but we support it.
820      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
821        goto DoneWithDeclSpec;
822
823      {
824        SourceLocation EndProtoLoc;
825        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
826        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
827        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
828        DS.SetRangeEnd(EndProtoLoc);
829
830        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
831          << SourceRange(Loc, EndProtoLoc);
832        // Need to support trailing type qualifiers (e.g. "id<p> const").
833        // If a type specifier follows, it will be diagnosed elsewhere.
834        continue;
835      }
836    }
837    // If the specifier combination wasn't legal, issue a diagnostic.
838    if (isInvalid) {
839      assert(PrevSpec && "Method did not return previous specifier!");
840      // Pick between error or extwarn.
841      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
842                                       : diag::ext_duplicate_declspec;
843      Diag(Tok, DiagID) << PrevSpec;
844    }
845    DS.SetRangeEnd(Tok.getLocation());
846    ConsumeToken();
847  }
848}
849
850/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
851/// primarily follow the C++ grammar with additions for C99 and GNU,
852/// which together subsume the C grammar. Note that the C++
853/// type-specifier also includes the C type-qualifier (for const,
854/// volatile, and C99 restrict). Returns true if a type-specifier was
855/// found (and parsed), false otherwise.
856///
857///       type-specifier: [C++ 7.1.5]
858///         simple-type-specifier
859///         class-specifier
860///         enum-specifier
861///         elaborated-type-specifier  [TODO]
862///         cv-qualifier
863///
864///       cv-qualifier: [C++ 7.1.5.1]
865///         'const'
866///         'volatile'
867/// [C99]   'restrict'
868///
869///       simple-type-specifier: [ C++ 7.1.5.2]
870///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
871///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
872///         'char'
873///         'wchar_t'
874///         'bool'
875///         'short'
876///         'int'
877///         'long'
878///         'signed'
879///         'unsigned'
880///         'float'
881///         'double'
882///         'void'
883/// [C99]   '_Bool'
884/// [C99]   '_Complex'
885/// [C99]   '_Imaginary'  // Removed in TC2?
886/// [GNU]   '_Decimal32'
887/// [GNU]   '_Decimal64'
888/// [GNU]   '_Decimal128'
889/// [GNU]   typeof-specifier
890/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
891/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
892bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
893                                        const char *&PrevSpec,
894                                        TemplateParameterLists *TemplateParams){
895  SourceLocation Loc = Tok.getLocation();
896
897  switch (Tok.getKind()) {
898  case tok::identifier:   // foo::bar
899  case tok::kw_typename:  // typename foo::bar
900    // Annotate typenames and C++ scope specifiers.  If we get one, just
901    // recurse to handle whatever we get.
902    if (TryAnnotateTypeOrScopeToken())
903      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
904    // Otherwise, not a type specifier.
905    return false;
906  case tok::coloncolon:   // ::foo::bar
907    if (NextToken().is(tok::kw_new) ||    // ::new
908        NextToken().is(tok::kw_delete))   // ::delete
909      return false;
910
911    // Annotate typenames and C++ scope specifiers.  If we get one, just
912    // recurse to handle whatever we get.
913    if (TryAnnotateTypeOrScopeToken())
914      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
915    // Otherwise, not a type specifier.
916    return false;
917
918  // simple-type-specifier:
919  case tok::annot_typename: {
920    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
921                                   Tok.getAnnotationValue());
922    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
923    ConsumeToken(); // The typename
924
925    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
926    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
927    // Objective-C interface.  If we don't have Objective-C or a '<', this is
928    // just a normal reference to a typedef name.
929    if (!Tok.is(tok::less) || !getLang().ObjC1)
930      return true;
931
932    SourceLocation EndProtoLoc;
933    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
934    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
935    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
936
937    DS.SetRangeEnd(EndProtoLoc);
938    return true;
939  }
940
941  case tok::kw_short:
942    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
943    break;
944  case tok::kw_long:
945    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
946      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
947    else
948      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
949    break;
950  case tok::kw_signed:
951    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
952    break;
953  case tok::kw_unsigned:
954    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
955    break;
956  case tok::kw__Complex:
957    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
958    break;
959  case tok::kw__Imaginary:
960    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
961    break;
962  case tok::kw_void:
963    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
964    break;
965  case tok::kw_char:
966    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
967    break;
968  case tok::kw_int:
969    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
970    break;
971  case tok::kw_float:
972    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
973    break;
974  case tok::kw_double:
975    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
976    break;
977  case tok::kw_wchar_t:
978    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
979    break;
980  case tok::kw_bool:
981  case tok::kw__Bool:
982    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
983    break;
984  case tok::kw__Decimal32:
985    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
986    break;
987  case tok::kw__Decimal64:
988    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
989    break;
990  case tok::kw__Decimal128:
991    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
992    break;
993
994  // class-specifier:
995  case tok::kw_class:
996  case tok::kw_struct:
997  case tok::kw_union:
998    ParseClassSpecifier(DS, TemplateParams);
999    return true;
1000
1001  // enum-specifier:
1002  case tok::kw_enum:
1003    ParseEnumSpecifier(DS);
1004    return true;
1005
1006  // cv-qualifier:
1007  case tok::kw_const:
1008    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1009                               getLang())*2;
1010    break;
1011  case tok::kw_volatile:
1012    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1013                               getLang())*2;
1014    break;
1015  case tok::kw_restrict:
1016    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1017                               getLang())*2;
1018    break;
1019
1020  // GNU typeof support.
1021  case tok::kw_typeof:
1022    ParseTypeofSpecifier(DS);
1023    return true;
1024
1025  case tok::kw___cdecl:
1026  case tok::kw___stdcall:
1027  case tok::kw___fastcall:
1028    if (!PP.getLangOptions().Microsoft) return false;
1029    ConsumeToken();
1030    return true;
1031
1032  default:
1033    // Not a type-specifier; do nothing.
1034    return false;
1035  }
1036
1037  // If the specifier combination wasn't legal, issue a diagnostic.
1038  if (isInvalid) {
1039    assert(PrevSpec && "Method did not return previous specifier!");
1040    // Pick between error or extwarn.
1041    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1042                                     : diag::ext_duplicate_declspec;
1043    Diag(Tok, DiagID) << PrevSpec;
1044  }
1045  DS.SetRangeEnd(Tok.getLocation());
1046  ConsumeToken(); // whatever we parsed above.
1047  return true;
1048}
1049
1050/// ParseStructDeclaration - Parse a struct declaration without the terminating
1051/// semicolon.
1052///
1053///       struct-declaration:
1054///         specifier-qualifier-list struct-declarator-list
1055/// [GNU]   __extension__ struct-declaration
1056/// [GNU]   specifier-qualifier-list
1057///       struct-declarator-list:
1058///         struct-declarator
1059///         struct-declarator-list ',' struct-declarator
1060/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1061///       struct-declarator:
1062///         declarator
1063/// [GNU]   declarator attributes[opt]
1064///         declarator[opt] ':' constant-expression
1065/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1066///
1067void Parser::
1068ParseStructDeclaration(DeclSpec &DS,
1069                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1070  if (Tok.is(tok::kw___extension__)) {
1071    // __extension__ silences extension warnings in the subexpression.
1072    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1073    ConsumeToken();
1074    return ParseStructDeclaration(DS, Fields);
1075  }
1076
1077  // Parse the common specifier-qualifiers-list piece.
1078  SourceLocation DSStart = Tok.getLocation();
1079  ParseSpecifierQualifierList(DS);
1080
1081  // If there are no declarators, this is a free-standing declaration
1082  // specifier. Let the actions module cope with it.
1083  if (Tok.is(tok::semi)) {
1084    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1085    return;
1086  }
1087
1088  // Read struct-declarators until we find the semicolon.
1089  Fields.push_back(FieldDeclarator(DS));
1090  while (1) {
1091    FieldDeclarator &DeclaratorInfo = Fields.back();
1092
1093    /// struct-declarator: declarator
1094    /// struct-declarator: declarator[opt] ':' constant-expression
1095    if (Tok.isNot(tok::colon))
1096      ParseDeclarator(DeclaratorInfo.D);
1097
1098    if (Tok.is(tok::colon)) {
1099      ConsumeToken();
1100      OwningExprResult Res(ParseConstantExpression());
1101      if (Res.isInvalid())
1102        SkipUntil(tok::semi, true, true);
1103      else
1104        DeclaratorInfo.BitfieldSize = Res.release();
1105    }
1106
1107    // If attributes exist after the declarator, parse them.
1108    if (Tok.is(tok::kw___attribute)) {
1109      SourceLocation Loc;
1110      AttributeList *AttrList = ParseAttributes(&Loc);
1111      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1112    }
1113
1114    // If we don't have a comma, it is either the end of the list (a ';')
1115    // or an error, bail out.
1116    if (Tok.isNot(tok::comma))
1117      return;
1118
1119    // Consume the comma.
1120    ConsumeToken();
1121
1122    // Parse the next declarator.
1123    Fields.push_back(FieldDeclarator(DS));
1124
1125    // Attributes are only allowed on the second declarator.
1126    if (Tok.is(tok::kw___attribute)) {
1127      SourceLocation Loc;
1128      AttributeList *AttrList = ParseAttributes(&Loc);
1129      Fields.back().D.AddAttributes(AttrList, Loc);
1130    }
1131  }
1132}
1133
1134/// ParseStructUnionBody
1135///       struct-contents:
1136///         struct-declaration-list
1137/// [EXT]   empty
1138/// [GNU]   "struct-declaration-list" without terminatoring ';'
1139///       struct-declaration-list:
1140///         struct-declaration
1141///         struct-declaration-list struct-declaration
1142/// [OBC]   '@' 'defs' '(' class-name ')'
1143///
1144void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1145                                  unsigned TagType, DeclPtrTy TagDecl) {
1146  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1147                                        PP.getSourceManager(),
1148                                        "parsing struct/union body");
1149
1150  SourceLocation LBraceLoc = ConsumeBrace();
1151
1152  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1153  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1154
1155  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1156  // C++.
1157  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1158    Diag(Tok, diag::ext_empty_struct_union_enum)
1159      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1160
1161  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1162  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1163
1164  // While we still have something to read, read the declarations in the struct.
1165  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1166    // Each iteration of this loop reads one struct-declaration.
1167
1168    // Check for extraneous top-level semicolon.
1169    if (Tok.is(tok::semi)) {
1170      Diag(Tok, diag::ext_extra_struct_semi);
1171      ConsumeToken();
1172      continue;
1173    }
1174
1175    // Parse all the comma separated declarators.
1176    DeclSpec DS;
1177    FieldDeclarators.clear();
1178    if (!Tok.is(tok::at)) {
1179      ParseStructDeclaration(DS, FieldDeclarators);
1180
1181      // Convert them all to fields.
1182      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1183        FieldDeclarator &FD = FieldDeclarators[i];
1184        // Install the declarator into the current TagDecl.
1185        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1186                                             DS.getSourceRange().getBegin(),
1187                                             FD.D, FD.BitfieldSize);
1188        FieldDecls.push_back(Field);
1189      }
1190    } else { // Handle @defs
1191      ConsumeToken();
1192      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1193        Diag(Tok, diag::err_unexpected_at);
1194        SkipUntil(tok::semi, true, true);
1195        continue;
1196      }
1197      ConsumeToken();
1198      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1199      if (!Tok.is(tok::identifier)) {
1200        Diag(Tok, diag::err_expected_ident);
1201        SkipUntil(tok::semi, true, true);
1202        continue;
1203      }
1204      llvm::SmallVector<DeclPtrTy, 16> Fields;
1205      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1206                        Tok.getIdentifierInfo(), Fields);
1207      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1208      ConsumeToken();
1209      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1210    }
1211
1212    if (Tok.is(tok::semi)) {
1213      ConsumeToken();
1214    } else if (Tok.is(tok::r_brace)) {
1215      Diag(Tok, diag::ext_expected_semi_decl_list);
1216      break;
1217    } else {
1218      Diag(Tok, diag::err_expected_semi_decl_list);
1219      // Skip to end of block or statement
1220      SkipUntil(tok::r_brace, true, true);
1221    }
1222  }
1223
1224  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1225
1226  AttributeList *AttrList = 0;
1227  // If attributes exist after struct contents, parse them.
1228  if (Tok.is(tok::kw___attribute))
1229    AttrList = ParseAttributes();
1230
1231  Actions.ActOnFields(CurScope,
1232                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1233                      LBraceLoc, RBraceLoc,
1234                      AttrList);
1235  StructScope.Exit();
1236  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1237}
1238
1239
1240/// ParseEnumSpecifier
1241///       enum-specifier: [C99 6.7.2.2]
1242///         'enum' identifier[opt] '{' enumerator-list '}'
1243///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1244/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1245///                                                 '}' attributes[opt]
1246///         'enum' identifier
1247/// [GNU]   'enum' attributes[opt] identifier
1248///
1249/// [C++] elaborated-type-specifier:
1250/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1251///
1252void Parser::ParseEnumSpecifier(DeclSpec &DS, AccessSpecifier AS) {
1253  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1254  SourceLocation StartLoc = ConsumeToken();
1255
1256  // Parse the tag portion of this.
1257
1258  AttributeList *Attr = 0;
1259  // If attributes exist after tag, parse them.
1260  if (Tok.is(tok::kw___attribute))
1261    Attr = ParseAttributes();
1262
1263  CXXScopeSpec SS;
1264  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1265    if (Tok.isNot(tok::identifier)) {
1266      Diag(Tok, diag::err_expected_ident);
1267      if (Tok.isNot(tok::l_brace)) {
1268        // Has no name and is not a definition.
1269        // Skip the rest of this declarator, up until the comma or semicolon.
1270        SkipUntil(tok::comma, true);
1271        return;
1272      }
1273    }
1274  }
1275
1276  // Must have either 'enum name' or 'enum {...}'.
1277  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1278    Diag(Tok, diag::err_expected_ident_lbrace);
1279
1280    // Skip the rest of this declarator, up until the comma or semicolon.
1281    SkipUntil(tok::comma, true);
1282    return;
1283  }
1284
1285  // If an identifier is present, consume and remember it.
1286  IdentifierInfo *Name = 0;
1287  SourceLocation NameLoc;
1288  if (Tok.is(tok::identifier)) {
1289    Name = Tok.getIdentifierInfo();
1290    NameLoc = ConsumeToken();
1291  }
1292
1293  // There are three options here.  If we have 'enum foo;', then this is a
1294  // forward declaration.  If we have 'enum foo {...' then this is a
1295  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1296  //
1297  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1298  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1299  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1300  //
1301  Action::TagKind TK;
1302  if (Tok.is(tok::l_brace))
1303    TK = Action::TK_Definition;
1304  else if (Tok.is(tok::semi))
1305    TK = Action::TK_Declaration;
1306  else
1307    TK = Action::TK_Reference;
1308  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1309                                       StartLoc, SS, Name, NameLoc, Attr, AS);
1310
1311  if (Tok.is(tok::l_brace))
1312    ParseEnumBody(StartLoc, TagDecl);
1313
1314  // TODO: semantic analysis on the declspec for enums.
1315  const char *PrevSpec = 0;
1316  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1317                         TagDecl.getAs<void>()))
1318    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1319}
1320
1321/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1322///       enumerator-list:
1323///         enumerator
1324///         enumerator-list ',' enumerator
1325///       enumerator:
1326///         enumeration-constant
1327///         enumeration-constant '=' constant-expression
1328///       enumeration-constant:
1329///         identifier
1330///
1331void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1332  // Enter the scope of the enum body and start the definition.
1333  ParseScope EnumScope(this, Scope::DeclScope);
1334  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1335
1336  SourceLocation LBraceLoc = ConsumeBrace();
1337
1338  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1339  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1340    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1341
1342  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1343
1344  DeclPtrTy LastEnumConstDecl;
1345
1346  // Parse the enumerator-list.
1347  while (Tok.is(tok::identifier)) {
1348    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1349    SourceLocation IdentLoc = ConsumeToken();
1350
1351    SourceLocation EqualLoc;
1352    OwningExprResult AssignedVal(Actions);
1353    if (Tok.is(tok::equal)) {
1354      EqualLoc = ConsumeToken();
1355      AssignedVal = ParseConstantExpression();
1356      if (AssignedVal.isInvalid())
1357        SkipUntil(tok::comma, tok::r_brace, true, true);
1358    }
1359
1360    // Install the enumerator constant into EnumDecl.
1361    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1362                                                        LastEnumConstDecl,
1363                                                        IdentLoc, Ident,
1364                                                        EqualLoc,
1365                                                        AssignedVal.release());
1366    EnumConstantDecls.push_back(EnumConstDecl);
1367    LastEnumConstDecl = EnumConstDecl;
1368
1369    if (Tok.isNot(tok::comma))
1370      break;
1371    SourceLocation CommaLoc = ConsumeToken();
1372
1373    if (Tok.isNot(tok::identifier) && !getLang().C99)
1374      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1375  }
1376
1377  // Eat the }.
1378  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1379
1380  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1381                        EnumConstantDecls.size());
1382
1383  Action::AttrTy *AttrList = 0;
1384  // If attributes exist after the identifier list, parse them.
1385  if (Tok.is(tok::kw___attribute))
1386    AttrList = ParseAttributes(); // FIXME: where do they do?
1387
1388  EnumScope.Exit();
1389  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1390}
1391
1392/// isTypeSpecifierQualifier - Return true if the current token could be the
1393/// start of a type-qualifier-list.
1394bool Parser::isTypeQualifier() const {
1395  switch (Tok.getKind()) {
1396  default: return false;
1397    // type-qualifier
1398  case tok::kw_const:
1399  case tok::kw_volatile:
1400  case tok::kw_restrict:
1401    return true;
1402  }
1403}
1404
1405/// isTypeSpecifierQualifier - Return true if the current token could be the
1406/// start of a specifier-qualifier-list.
1407bool Parser::isTypeSpecifierQualifier() {
1408  switch (Tok.getKind()) {
1409  default: return false;
1410
1411  case tok::identifier:   // foo::bar
1412  case tok::kw_typename:  // typename T::type
1413    // Annotate typenames and C++ scope specifiers.  If we get one, just
1414    // recurse to handle whatever we get.
1415    if (TryAnnotateTypeOrScopeToken())
1416      return isTypeSpecifierQualifier();
1417    // Otherwise, not a type specifier.
1418    return false;
1419
1420  case tok::coloncolon:   // ::foo::bar
1421    if (NextToken().is(tok::kw_new) ||    // ::new
1422        NextToken().is(tok::kw_delete))   // ::delete
1423      return false;
1424
1425    // Annotate typenames and C++ scope specifiers.  If we get one, just
1426    // recurse to handle whatever we get.
1427    if (TryAnnotateTypeOrScopeToken())
1428      return isTypeSpecifierQualifier();
1429    // Otherwise, not a type specifier.
1430    return false;
1431
1432    // GNU attributes support.
1433  case tok::kw___attribute:
1434    // GNU typeof support.
1435  case tok::kw_typeof:
1436
1437    // type-specifiers
1438  case tok::kw_short:
1439  case tok::kw_long:
1440  case tok::kw_signed:
1441  case tok::kw_unsigned:
1442  case tok::kw__Complex:
1443  case tok::kw__Imaginary:
1444  case tok::kw_void:
1445  case tok::kw_char:
1446  case tok::kw_wchar_t:
1447  case tok::kw_int:
1448  case tok::kw_float:
1449  case tok::kw_double:
1450  case tok::kw_bool:
1451  case tok::kw__Bool:
1452  case tok::kw__Decimal32:
1453  case tok::kw__Decimal64:
1454  case tok::kw__Decimal128:
1455
1456    // struct-or-union-specifier (C99) or class-specifier (C++)
1457  case tok::kw_class:
1458  case tok::kw_struct:
1459  case tok::kw_union:
1460    // enum-specifier
1461  case tok::kw_enum:
1462
1463    // type-qualifier
1464  case tok::kw_const:
1465  case tok::kw_volatile:
1466  case tok::kw_restrict:
1467
1468    // typedef-name
1469  case tok::annot_typename:
1470    return true;
1471
1472    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1473  case tok::less:
1474    return getLang().ObjC1;
1475
1476  case tok::kw___cdecl:
1477  case tok::kw___stdcall:
1478  case tok::kw___fastcall:
1479    return PP.getLangOptions().Microsoft;
1480  }
1481}
1482
1483/// isDeclarationSpecifier() - Return true if the current token is part of a
1484/// declaration specifier.
1485bool Parser::isDeclarationSpecifier() {
1486  switch (Tok.getKind()) {
1487  default: return false;
1488
1489  case tok::identifier:   // foo::bar
1490    // Unfortunate hack to support "Class.factoryMethod" notation.
1491    if (getLang().ObjC1 && NextToken().is(tok::period))
1492      return false;
1493    // Fall through
1494
1495  case tok::kw_typename: // typename T::type
1496    // Annotate typenames and C++ scope specifiers.  If we get one, just
1497    // recurse to handle whatever we get.
1498    if (TryAnnotateTypeOrScopeToken())
1499      return isDeclarationSpecifier();
1500    // Otherwise, not a declaration specifier.
1501    return false;
1502  case tok::coloncolon:   // ::foo::bar
1503    if (NextToken().is(tok::kw_new) ||    // ::new
1504        NextToken().is(tok::kw_delete))   // ::delete
1505      return false;
1506
1507    // Annotate typenames and C++ scope specifiers.  If we get one, just
1508    // recurse to handle whatever we get.
1509    if (TryAnnotateTypeOrScopeToken())
1510      return isDeclarationSpecifier();
1511    // Otherwise, not a declaration specifier.
1512    return false;
1513
1514    // storage-class-specifier
1515  case tok::kw_typedef:
1516  case tok::kw_extern:
1517  case tok::kw___private_extern__:
1518  case tok::kw_static:
1519  case tok::kw_auto:
1520  case tok::kw_register:
1521  case tok::kw___thread:
1522
1523    // type-specifiers
1524  case tok::kw_short:
1525  case tok::kw_long:
1526  case tok::kw_signed:
1527  case tok::kw_unsigned:
1528  case tok::kw__Complex:
1529  case tok::kw__Imaginary:
1530  case tok::kw_void:
1531  case tok::kw_char:
1532  case tok::kw_wchar_t:
1533  case tok::kw_int:
1534  case tok::kw_float:
1535  case tok::kw_double:
1536  case tok::kw_bool:
1537  case tok::kw__Bool:
1538  case tok::kw__Decimal32:
1539  case tok::kw__Decimal64:
1540  case tok::kw__Decimal128:
1541
1542    // struct-or-union-specifier (C99) or class-specifier (C++)
1543  case tok::kw_class:
1544  case tok::kw_struct:
1545  case tok::kw_union:
1546    // enum-specifier
1547  case tok::kw_enum:
1548
1549    // type-qualifier
1550  case tok::kw_const:
1551  case tok::kw_volatile:
1552  case tok::kw_restrict:
1553
1554    // function-specifier
1555  case tok::kw_inline:
1556  case tok::kw_virtual:
1557  case tok::kw_explicit:
1558
1559    // typedef-name
1560  case tok::annot_typename:
1561
1562    // GNU typeof support.
1563  case tok::kw_typeof:
1564
1565    // GNU attributes.
1566  case tok::kw___attribute:
1567    return true;
1568
1569    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1570  case tok::less:
1571    return getLang().ObjC1;
1572
1573  case tok::kw___declspec:
1574  case tok::kw___cdecl:
1575  case tok::kw___stdcall:
1576  case tok::kw___fastcall:
1577    return PP.getLangOptions().Microsoft;
1578  }
1579}
1580
1581
1582/// ParseTypeQualifierListOpt
1583///       type-qualifier-list: [C99 6.7.5]
1584///         type-qualifier
1585/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1586///         type-qualifier-list type-qualifier
1587/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1588///
1589void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1590  while (1) {
1591    int isInvalid = false;
1592    const char *PrevSpec = 0;
1593    SourceLocation Loc = Tok.getLocation();
1594
1595    switch (Tok.getKind()) {
1596    case tok::kw_const:
1597      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1598                                 getLang())*2;
1599      break;
1600    case tok::kw_volatile:
1601      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1602                                 getLang())*2;
1603      break;
1604    case tok::kw_restrict:
1605      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1606                                 getLang())*2;
1607      break;
1608    case tok::kw___ptr64:
1609    case tok::kw___cdecl:
1610    case tok::kw___stdcall:
1611    case tok::kw___fastcall:
1612      if (!PP.getLangOptions().Microsoft)
1613        goto DoneWithTypeQuals;
1614      // Just ignore it.
1615      break;
1616    case tok::kw___attribute:
1617      if (AttributesAllowed) {
1618        DS.AddAttributes(ParseAttributes());
1619        continue; // do *not* consume the next token!
1620      }
1621      // otherwise, FALL THROUGH!
1622    default:
1623      DoneWithTypeQuals:
1624      // If this is not a type-qualifier token, we're done reading type
1625      // qualifiers.  First verify that DeclSpec's are consistent.
1626      DS.Finish(Diags, PP.getSourceManager(), getLang());
1627      return;
1628    }
1629
1630    // If the specifier combination wasn't legal, issue a diagnostic.
1631    if (isInvalid) {
1632      assert(PrevSpec && "Method did not return previous specifier!");
1633      // Pick between error or extwarn.
1634      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1635                                      : diag::ext_duplicate_declspec;
1636      Diag(Tok, DiagID) << PrevSpec;
1637    }
1638    ConsumeToken();
1639  }
1640}
1641
1642
1643/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1644///
1645void Parser::ParseDeclarator(Declarator &D) {
1646  /// This implements the 'declarator' production in the C grammar, then checks
1647  /// for well-formedness and issues diagnostics.
1648  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1649}
1650
1651/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1652/// is parsed by the function passed to it. Pass null, and the direct-declarator
1653/// isn't parsed at all, making this function effectively parse the C++
1654/// ptr-operator production.
1655///
1656///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1657/// [C]     pointer[opt] direct-declarator
1658/// [C++]   direct-declarator
1659/// [C++]   ptr-operator declarator
1660///
1661///       pointer: [C99 6.7.5]
1662///         '*' type-qualifier-list[opt]
1663///         '*' type-qualifier-list[opt] pointer
1664///
1665///       ptr-operator:
1666///         '*' cv-qualifier-seq[opt]
1667///         '&'
1668/// [C++0x] '&&'
1669/// [GNU]   '&' restrict[opt] attributes[opt]
1670/// [GNU?]  '&&' restrict[opt] attributes[opt]
1671///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1672void Parser::ParseDeclaratorInternal(Declarator &D,
1673                                     DirectDeclParseFunction DirectDeclParser) {
1674
1675  // C++ member pointers start with a '::' or a nested-name.
1676  // Member pointers get special handling, since there's no place for the
1677  // scope spec in the generic path below.
1678  if (getLang().CPlusPlus &&
1679      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1680       Tok.is(tok::annot_cxxscope))) {
1681    CXXScopeSpec SS;
1682    if (ParseOptionalCXXScopeSpecifier(SS)) {
1683      if(Tok.isNot(tok::star)) {
1684        // The scope spec really belongs to the direct-declarator.
1685        D.getCXXScopeSpec() = SS;
1686        if (DirectDeclParser)
1687          (this->*DirectDeclParser)(D);
1688        return;
1689      }
1690
1691      SourceLocation Loc = ConsumeToken();
1692      D.SetRangeEnd(Loc);
1693      DeclSpec DS;
1694      ParseTypeQualifierListOpt(DS);
1695      D.ExtendWithDeclSpec(DS);
1696
1697      // Recurse to parse whatever is left.
1698      ParseDeclaratorInternal(D, DirectDeclParser);
1699
1700      // Sema will have to catch (syntactically invalid) pointers into global
1701      // scope. It has to catch pointers into namespace scope anyway.
1702      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1703                                                      Loc, DS.TakeAttributes()),
1704                    /* Don't replace range end. */SourceLocation());
1705      return;
1706    }
1707  }
1708
1709  tok::TokenKind Kind = Tok.getKind();
1710  // Not a pointer, C++ reference, or block.
1711  if (Kind != tok::star && Kind != tok::caret &&
1712      (Kind != tok::amp || !getLang().CPlusPlus) &&
1713      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1714      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1715    if (DirectDeclParser)
1716      (this->*DirectDeclParser)(D);
1717    return;
1718  }
1719
1720  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1721  // '&&' -> rvalue reference
1722  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1723  D.SetRangeEnd(Loc);
1724
1725  if (Kind == tok::star || Kind == tok::caret) {
1726    // Is a pointer.
1727    DeclSpec DS;
1728
1729    ParseTypeQualifierListOpt(DS);
1730    D.ExtendWithDeclSpec(DS);
1731
1732    // Recursively parse the declarator.
1733    ParseDeclaratorInternal(D, DirectDeclParser);
1734    if (Kind == tok::star)
1735      // Remember that we parsed a pointer type, and remember the type-quals.
1736      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1737                                                DS.TakeAttributes()),
1738                    SourceLocation());
1739    else
1740      // Remember that we parsed a Block type, and remember the type-quals.
1741      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1742                                                     Loc),
1743                    SourceLocation());
1744  } else {
1745    // Is a reference
1746    DeclSpec DS;
1747
1748    // Complain about rvalue references in C++03, but then go on and build
1749    // the declarator.
1750    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1751      Diag(Loc, diag::err_rvalue_reference);
1752
1753    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1754    // cv-qualifiers are introduced through the use of a typedef or of a
1755    // template type argument, in which case the cv-qualifiers are ignored.
1756    //
1757    // [GNU] Retricted references are allowed.
1758    // [GNU] Attributes on references are allowed.
1759    ParseTypeQualifierListOpt(DS);
1760    D.ExtendWithDeclSpec(DS);
1761
1762    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1763      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1764        Diag(DS.getConstSpecLoc(),
1765             diag::err_invalid_reference_qualifier_application) << "const";
1766      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1767        Diag(DS.getVolatileSpecLoc(),
1768             diag::err_invalid_reference_qualifier_application) << "volatile";
1769    }
1770
1771    // Recursively parse the declarator.
1772    ParseDeclaratorInternal(D, DirectDeclParser);
1773
1774    if (D.getNumTypeObjects() > 0) {
1775      // C++ [dcl.ref]p4: There shall be no references to references.
1776      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1777      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1778        if (const IdentifierInfo *II = D.getIdentifier())
1779          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1780           << II;
1781        else
1782          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1783            << "type name";
1784
1785        // Once we've complained about the reference-to-reference, we
1786        // can go ahead and build the (technically ill-formed)
1787        // declarator: reference collapsing will take care of it.
1788      }
1789    }
1790
1791    // Remember that we parsed a reference type. It doesn't have type-quals.
1792    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1793                                                DS.TakeAttributes(),
1794                                                Kind == tok::amp),
1795                  SourceLocation());
1796  }
1797}
1798
1799/// ParseDirectDeclarator
1800///       direct-declarator: [C99 6.7.5]
1801/// [C99]   identifier
1802///         '(' declarator ')'
1803/// [GNU]   '(' attributes declarator ')'
1804/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1805/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1806/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1807/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1808/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1809///         direct-declarator '(' parameter-type-list ')'
1810///         direct-declarator '(' identifier-list[opt] ')'
1811/// [GNU]   direct-declarator '(' parameter-forward-declarations
1812///                    parameter-type-list[opt] ')'
1813/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1814///                    cv-qualifier-seq[opt] exception-specification[opt]
1815/// [C++]   declarator-id
1816///
1817///       declarator-id: [C++ 8]
1818///         id-expression
1819///         '::'[opt] nested-name-specifier[opt] type-name
1820///
1821///       id-expression: [C++ 5.1]
1822///         unqualified-id
1823///         qualified-id            [TODO]
1824///
1825///       unqualified-id: [C++ 5.1]
1826///         identifier
1827///         operator-function-id
1828///         conversion-function-id  [TODO]
1829///          '~' class-name
1830///         template-id
1831///
1832void Parser::ParseDirectDeclarator(Declarator &D) {
1833  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1834
1835  if (getLang().CPlusPlus) {
1836    if (D.mayHaveIdentifier()) {
1837      // ParseDeclaratorInternal might already have parsed the scope.
1838      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1839        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1840      if (afterCXXScope) {
1841        // Change the declaration context for name lookup, until this function
1842        // is exited (and the declarator has been parsed).
1843        DeclScopeObj.EnterDeclaratorScope();
1844      }
1845
1846      if (Tok.is(tok::identifier)) {
1847        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1848
1849        // If this identifier is the name of the current class, it's a
1850        // constructor name.
1851        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1852          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1853                                               Tok.getLocation(), CurScope),
1854                           Tok.getLocation());
1855        // This is a normal identifier.
1856        } else
1857          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1858        ConsumeToken();
1859        goto PastIdentifier;
1860      } else if (Tok.is(tok::annot_template_id)) {
1861        TemplateIdAnnotation *TemplateId
1862          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1863
1864        // FIXME: Could this template-id name a constructor?
1865
1866        // FIXME: This is an egregious hack, where we silently ignore
1867        // the specialization (which should be a function template
1868        // specialization name) and use the name instead. This hack
1869        // will go away when we have support for function
1870        // specializations.
1871        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1872        TemplateId->Destroy();
1873        ConsumeToken();
1874        goto PastIdentifier;
1875      } else if (Tok.is(tok::kw_operator)) {
1876        SourceLocation OperatorLoc = Tok.getLocation();
1877        SourceLocation EndLoc;
1878
1879        // First try the name of an overloaded operator
1880        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1881          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1882        } else {
1883          // This must be a conversion function (C++ [class.conv.fct]).
1884          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1885            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1886          else {
1887            D.SetIdentifier(0, Tok.getLocation());
1888          }
1889        }
1890        goto PastIdentifier;
1891      } else if (Tok.is(tok::tilde)) {
1892        // This should be a C++ destructor.
1893        SourceLocation TildeLoc = ConsumeToken();
1894        if (Tok.is(tok::identifier)) {
1895          // FIXME: Inaccurate.
1896          SourceLocation NameLoc = Tok.getLocation();
1897          SourceLocation EndLoc;
1898          if (TypeTy *Type = ParseClassName(EndLoc)) {
1899            D.setDestructor(Type, TildeLoc, NameLoc);
1900          } else {
1901            D.SetIdentifier(0, TildeLoc);
1902          }
1903        } else {
1904          Diag(Tok, diag::err_expected_class_name);
1905          D.SetIdentifier(0, TildeLoc);
1906        }
1907        goto PastIdentifier;
1908      }
1909
1910      // If we reached this point, token is not identifier and not '~'.
1911
1912      if (afterCXXScope) {
1913        Diag(Tok, diag::err_expected_unqualified_id);
1914        D.SetIdentifier(0, Tok.getLocation());
1915        D.setInvalidType(true);
1916        goto PastIdentifier;
1917      }
1918    }
1919  }
1920
1921  // If we reached this point, we are either in C/ObjC or the token didn't
1922  // satisfy any of the C++-specific checks.
1923  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1924    assert(!getLang().CPlusPlus &&
1925           "There's a C++-specific check for tok::identifier above");
1926    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1927    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1928    ConsumeToken();
1929  } else if (Tok.is(tok::l_paren)) {
1930    // direct-declarator: '(' declarator ')'
1931    // direct-declarator: '(' attributes declarator ')'
1932    // Example: 'char (*X)'   or 'int (*XX)(void)'
1933    ParseParenDeclarator(D);
1934  } else if (D.mayOmitIdentifier()) {
1935    // This could be something simple like "int" (in which case the declarator
1936    // portion is empty), if an abstract-declarator is allowed.
1937    D.SetIdentifier(0, Tok.getLocation());
1938  } else {
1939    if (D.getContext() == Declarator::MemberContext)
1940      Diag(Tok, diag::err_expected_member_name_or_semi)
1941        << D.getDeclSpec().getSourceRange();
1942    else if (getLang().CPlusPlus)
1943      Diag(Tok, diag::err_expected_unqualified_id);
1944    else
1945      Diag(Tok, diag::err_expected_ident_lparen);
1946    D.SetIdentifier(0, Tok.getLocation());
1947    D.setInvalidType(true);
1948  }
1949
1950 PastIdentifier:
1951  assert(D.isPastIdentifier() &&
1952         "Haven't past the location of the identifier yet?");
1953
1954  while (1) {
1955    if (Tok.is(tok::l_paren)) {
1956      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1957      // In such a case, check if we actually have a function declarator; if it
1958      // is not, the declarator has been fully parsed.
1959      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1960        // When not in file scope, warn for ambiguous function declarators, just
1961        // in case the author intended it as a variable definition.
1962        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1963        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1964          break;
1965      }
1966      ParseFunctionDeclarator(ConsumeParen(), D);
1967    } else if (Tok.is(tok::l_square)) {
1968      ParseBracketDeclarator(D);
1969    } else {
1970      break;
1971    }
1972  }
1973}
1974
1975/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1976/// only called before the identifier, so these are most likely just grouping
1977/// parens for precedence.  If we find that these are actually function
1978/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1979///
1980///       direct-declarator:
1981///         '(' declarator ')'
1982/// [GNU]   '(' attributes declarator ')'
1983///         direct-declarator '(' parameter-type-list ')'
1984///         direct-declarator '(' identifier-list[opt] ')'
1985/// [GNU]   direct-declarator '(' parameter-forward-declarations
1986///                    parameter-type-list[opt] ')'
1987///
1988void Parser::ParseParenDeclarator(Declarator &D) {
1989  SourceLocation StartLoc = ConsumeParen();
1990  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1991
1992  // Eat any attributes before we look at whether this is a grouping or function
1993  // declarator paren.  If this is a grouping paren, the attribute applies to
1994  // the type being built up, for example:
1995  //     int (__attribute__(()) *x)(long y)
1996  // If this ends up not being a grouping paren, the attribute applies to the
1997  // first argument, for example:
1998  //     int (__attribute__(()) int x)
1999  // In either case, we need to eat any attributes to be able to determine what
2000  // sort of paren this is.
2001  //
2002  AttributeList *AttrList = 0;
2003  bool RequiresArg = false;
2004  if (Tok.is(tok::kw___attribute)) {
2005    AttrList = ParseAttributes();
2006
2007    // We require that the argument list (if this is a non-grouping paren) be
2008    // present even if the attribute list was empty.
2009    RequiresArg = true;
2010  }
2011  // Eat any Microsoft extensions.
2012  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2013          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2014    ConsumeToken();
2015
2016  // If we haven't past the identifier yet (or where the identifier would be
2017  // stored, if this is an abstract declarator), then this is probably just
2018  // grouping parens. However, if this could be an abstract-declarator, then
2019  // this could also be the start of function arguments (consider 'void()').
2020  bool isGrouping;
2021
2022  if (!D.mayOmitIdentifier()) {
2023    // If this can't be an abstract-declarator, this *must* be a grouping
2024    // paren, because we haven't seen the identifier yet.
2025    isGrouping = true;
2026  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2027             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2028             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2029    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2030    // considered to be a type, not a K&R identifier-list.
2031    isGrouping = false;
2032  } else {
2033    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2034    isGrouping = true;
2035  }
2036
2037  // If this is a grouping paren, handle:
2038  // direct-declarator: '(' declarator ')'
2039  // direct-declarator: '(' attributes declarator ')'
2040  if (isGrouping) {
2041    bool hadGroupingParens = D.hasGroupingParens();
2042    D.setGroupingParens(true);
2043    if (AttrList)
2044      D.AddAttributes(AttrList, SourceLocation());
2045
2046    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2047    // Match the ')'.
2048    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2049
2050    D.setGroupingParens(hadGroupingParens);
2051    D.SetRangeEnd(Loc);
2052    return;
2053  }
2054
2055  // Okay, if this wasn't a grouping paren, it must be the start of a function
2056  // argument list.  Recognize that this declarator will never have an
2057  // identifier (and remember where it would have been), then call into
2058  // ParseFunctionDeclarator to handle of argument list.
2059  D.SetIdentifier(0, Tok.getLocation());
2060
2061  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2062}
2063
2064/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2065/// declarator D up to a paren, which indicates that we are parsing function
2066/// arguments.
2067///
2068/// If AttrList is non-null, then the caller parsed those arguments immediately
2069/// after the open paren - they should be considered to be the first argument of
2070/// a parameter.  If RequiresArg is true, then the first argument of the
2071/// function is required to be present and required to not be an identifier
2072/// list.
2073///
2074/// This method also handles this portion of the grammar:
2075///       parameter-type-list: [C99 6.7.5]
2076///         parameter-list
2077///         parameter-list ',' '...'
2078///
2079///       parameter-list: [C99 6.7.5]
2080///         parameter-declaration
2081///         parameter-list ',' parameter-declaration
2082///
2083///       parameter-declaration: [C99 6.7.5]
2084///         declaration-specifiers declarator
2085/// [C++]   declaration-specifiers declarator '=' assignment-expression
2086/// [GNU]   declaration-specifiers declarator attributes
2087///         declaration-specifiers abstract-declarator[opt]
2088/// [C++]   declaration-specifiers abstract-declarator[opt]
2089///           '=' assignment-expression
2090/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2091///
2092/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2093/// and "exception-specification[opt]".
2094///
2095void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2096                                     AttributeList *AttrList,
2097                                     bool RequiresArg) {
2098  // lparen is already consumed!
2099  assert(D.isPastIdentifier() && "Should not call before identifier!");
2100
2101  // This parameter list may be empty.
2102  if (Tok.is(tok::r_paren)) {
2103    if (RequiresArg) {
2104      Diag(Tok, diag::err_argument_required_after_attribute);
2105      delete AttrList;
2106    }
2107
2108    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2109
2110    // cv-qualifier-seq[opt].
2111    DeclSpec DS;
2112    if (getLang().CPlusPlus) {
2113      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2114      if (!DS.getSourceRange().getEnd().isInvalid())
2115        Loc = DS.getSourceRange().getEnd();
2116
2117      // Parse exception-specification[opt].
2118      if (Tok.is(tok::kw_throw))
2119        ParseExceptionSpecification(Loc);
2120    }
2121
2122    // Remember that we parsed a function type, and remember the attributes.
2123    // int() -> no prototype, no '...'.
2124    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2125                                               /*variadic*/ false,
2126                                               SourceLocation(),
2127                                               /*arglist*/ 0, 0,
2128                                               DS.getTypeQualifiers(),
2129                                               LParenLoc, D),
2130                  Loc);
2131    return;
2132  }
2133
2134  // Alternatively, this parameter list may be an identifier list form for a
2135  // K&R-style function:  void foo(a,b,c)
2136  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2137    if (!TryAnnotateTypeOrScopeToken()) {
2138      // K&R identifier lists can't have typedefs as identifiers, per
2139      // C99 6.7.5.3p11.
2140      if (RequiresArg) {
2141        Diag(Tok, diag::err_argument_required_after_attribute);
2142        delete AttrList;
2143      }
2144      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2145      // normal declarators, not for abstract-declarators.
2146      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2147    }
2148  }
2149
2150  // Finally, a normal, non-empty parameter type list.
2151
2152  // Build up an array of information about the parsed arguments.
2153  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2154
2155  // Enter function-declaration scope, limiting any declarators to the
2156  // function prototype scope, including parameter declarators.
2157  ParseScope PrototypeScope(this,
2158                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2159
2160  bool IsVariadic = false;
2161  SourceLocation EllipsisLoc;
2162  while (1) {
2163    if (Tok.is(tok::ellipsis)) {
2164      IsVariadic = true;
2165      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2166      break;
2167    }
2168
2169    SourceLocation DSStart = Tok.getLocation();
2170
2171    // Parse the declaration-specifiers.
2172    DeclSpec DS;
2173
2174    // If the caller parsed attributes for the first argument, add them now.
2175    if (AttrList) {
2176      DS.AddAttributes(AttrList);
2177      AttrList = 0;  // Only apply the attributes to the first parameter.
2178    }
2179    ParseDeclarationSpecifiers(DS);
2180
2181    // Parse the declarator.  This is "PrototypeContext", because we must
2182    // accept either 'declarator' or 'abstract-declarator' here.
2183    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2184    ParseDeclarator(ParmDecl);
2185
2186    // Parse GNU attributes, if present.
2187    if (Tok.is(tok::kw___attribute)) {
2188      SourceLocation Loc;
2189      AttributeList *AttrList = ParseAttributes(&Loc);
2190      ParmDecl.AddAttributes(AttrList, Loc);
2191    }
2192
2193    // Remember this parsed parameter in ParamInfo.
2194    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2195
2196    // DefArgToks is used when the parsing of default arguments needs
2197    // to be delayed.
2198    CachedTokens *DefArgToks = 0;
2199
2200    // If no parameter was specified, verify that *something* was specified,
2201    // otherwise we have a missing type and identifier.
2202    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2203        ParmDecl.getNumTypeObjects() == 0) {
2204      // Completely missing, emit error.
2205      Diag(DSStart, diag::err_missing_param);
2206    } else {
2207      // Otherwise, we have something.  Add it and let semantic analysis try
2208      // to grok it and add the result to the ParamInfo we are building.
2209
2210      // Inform the actions module about the parameter declarator, so it gets
2211      // added to the current scope.
2212      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2213
2214      // Parse the default argument, if any. We parse the default
2215      // arguments in all dialects; the semantic analysis in
2216      // ActOnParamDefaultArgument will reject the default argument in
2217      // C.
2218      if (Tok.is(tok::equal)) {
2219        SourceLocation EqualLoc = Tok.getLocation();
2220
2221        // Parse the default argument
2222        if (D.getContext() == Declarator::MemberContext) {
2223          // If we're inside a class definition, cache the tokens
2224          // corresponding to the default argument. We'll actually parse
2225          // them when we see the end of the class definition.
2226          // FIXME: Templates will require something similar.
2227          // FIXME: Can we use a smart pointer for Toks?
2228          DefArgToks = new CachedTokens;
2229
2230          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2231                                    tok::semi, false)) {
2232            delete DefArgToks;
2233            DefArgToks = 0;
2234            Actions.ActOnParamDefaultArgumentError(Param);
2235          } else
2236            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2237        } else {
2238          // Consume the '='.
2239          ConsumeToken();
2240
2241          OwningExprResult DefArgResult(ParseAssignmentExpression());
2242          if (DefArgResult.isInvalid()) {
2243            Actions.ActOnParamDefaultArgumentError(Param);
2244            SkipUntil(tok::comma, tok::r_paren, true, true);
2245          } else {
2246            // Inform the actions module about the default argument
2247            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2248                                              move(DefArgResult));
2249          }
2250        }
2251      }
2252
2253      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2254                                          ParmDecl.getIdentifierLoc(), Param,
2255                                          DefArgToks));
2256    }
2257
2258    // If the next token is a comma, consume it and keep reading arguments.
2259    if (Tok.isNot(tok::comma)) break;
2260
2261    // Consume the comma.
2262    ConsumeToken();
2263  }
2264
2265  // Leave prototype scope.
2266  PrototypeScope.Exit();
2267
2268  // If we have the closing ')', eat it.
2269  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2270
2271  DeclSpec DS;
2272  if (getLang().CPlusPlus) {
2273    // Parse cv-qualifier-seq[opt].
2274    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2275      if (!DS.getSourceRange().getEnd().isInvalid())
2276        Loc = DS.getSourceRange().getEnd();
2277
2278    // Parse exception-specification[opt].
2279    if (Tok.is(tok::kw_throw))
2280      ParseExceptionSpecification(Loc);
2281  }
2282
2283  // Remember that we parsed a function type, and remember the attributes.
2284  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2285                                             EllipsisLoc,
2286                                             &ParamInfo[0], ParamInfo.size(),
2287                                             DS.getTypeQualifiers(),
2288                                             LParenLoc, D),
2289                Loc);
2290}
2291
2292/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2293/// we found a K&R-style identifier list instead of a type argument list.  The
2294/// current token is known to be the first identifier in the list.
2295///
2296///       identifier-list: [C99 6.7.5]
2297///         identifier
2298///         identifier-list ',' identifier
2299///
2300void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2301                                                   Declarator &D) {
2302  // Build up an array of information about the parsed arguments.
2303  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2304  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2305
2306  // If there was no identifier specified for the declarator, either we are in
2307  // an abstract-declarator, or we are in a parameter declarator which was found
2308  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2309  // diagnose this.
2310  if (!D.getIdentifier())
2311    Diag(Tok, diag::ext_ident_list_in_param);
2312
2313  // Tok is known to be the first identifier in the list.  Remember this
2314  // identifier in ParamInfo.
2315  ParamsSoFar.insert(Tok.getIdentifierInfo());
2316  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2317                                                 Tok.getLocation(),
2318                                                 DeclPtrTy()));
2319
2320  ConsumeToken();  // eat the first identifier.
2321
2322  while (Tok.is(tok::comma)) {
2323    // Eat the comma.
2324    ConsumeToken();
2325
2326    // If this isn't an identifier, report the error and skip until ')'.
2327    if (Tok.isNot(tok::identifier)) {
2328      Diag(Tok, diag::err_expected_ident);
2329      SkipUntil(tok::r_paren);
2330      return;
2331    }
2332
2333    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2334
2335    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2336    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2337      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2338
2339    // Verify that the argument identifier has not already been mentioned.
2340    if (!ParamsSoFar.insert(ParmII)) {
2341      Diag(Tok, diag::err_param_redefinition) << ParmII;
2342    } else {
2343      // Remember this identifier in ParamInfo.
2344      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2345                                                     Tok.getLocation(),
2346                                                     DeclPtrTy()));
2347    }
2348
2349    // Eat the identifier.
2350    ConsumeToken();
2351  }
2352
2353  // If we have the closing ')', eat it and we're done.
2354  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2355
2356  // Remember that we parsed a function type, and remember the attributes.  This
2357  // function type is always a K&R style function type, which is not varargs and
2358  // has no prototype.
2359  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2360                                             SourceLocation(),
2361                                             &ParamInfo[0], ParamInfo.size(),
2362                                             /*TypeQuals*/0, LParenLoc, D),
2363                RLoc);
2364}
2365
2366/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2367/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2368/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2369/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2370/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2371void Parser::ParseBracketDeclarator(Declarator &D) {
2372  SourceLocation StartLoc = ConsumeBracket();
2373
2374  // C array syntax has many features, but by-far the most common is [] and [4].
2375  // This code does a fast path to handle some of the most obvious cases.
2376  if (Tok.getKind() == tok::r_square) {
2377    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2378    // Remember that we parsed the empty array type.
2379    OwningExprResult NumElements(Actions);
2380    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2381                  EndLoc);
2382    return;
2383  } else if (Tok.getKind() == tok::numeric_constant &&
2384             GetLookAheadToken(1).is(tok::r_square)) {
2385    // [4] is very common.  Parse the numeric constant expression.
2386    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2387    ConsumeToken();
2388
2389    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2390
2391    // If there was an error parsing the assignment-expression, recover.
2392    if (ExprRes.isInvalid())
2393      ExprRes.release();  // Deallocate expr, just use [].
2394
2395    // Remember that we parsed a array type, and remember its features.
2396    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2397                                            ExprRes.release(), StartLoc),
2398                  EndLoc);
2399    return;
2400  }
2401
2402  // If valid, this location is the position where we read the 'static' keyword.
2403  SourceLocation StaticLoc;
2404  if (Tok.is(tok::kw_static))
2405    StaticLoc = ConsumeToken();
2406
2407  // If there is a type-qualifier-list, read it now.
2408  // Type qualifiers in an array subscript are a C99 feature.
2409  DeclSpec DS;
2410  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2411
2412  // If we haven't already read 'static', check to see if there is one after the
2413  // type-qualifier-list.
2414  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2415    StaticLoc = ConsumeToken();
2416
2417  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2418  bool isStar = false;
2419  OwningExprResult NumElements(Actions);
2420
2421  // Handle the case where we have '[*]' as the array size.  However, a leading
2422  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2423  // the the token after the star is a ']'.  Since stars in arrays are
2424  // infrequent, use of lookahead is not costly here.
2425  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2426    ConsumeToken();  // Eat the '*'.
2427
2428    if (StaticLoc.isValid()) {
2429      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2430      StaticLoc = SourceLocation();  // Drop the static.
2431    }
2432    isStar = true;
2433  } else if (Tok.isNot(tok::r_square)) {
2434    // Note, in C89, this production uses the constant-expr production instead
2435    // of assignment-expr.  The only difference is that assignment-expr allows
2436    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2437    // are not i-c-e's, so we don't need to distinguish between the two here.
2438
2439    // Parse the assignment-expression now.
2440    NumElements = ParseAssignmentExpression();
2441  }
2442
2443  // If there was an error parsing the assignment-expression, recover.
2444  if (NumElements.isInvalid()) {
2445    // If the expression was invalid, skip it.
2446    SkipUntil(tok::r_square);
2447    return;
2448  }
2449
2450  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2451
2452  // Remember that we parsed a array type, and remember its features.
2453  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2454                                          StaticLoc.isValid(), isStar,
2455                                          NumElements.release(), StartLoc),
2456                EndLoc);
2457}
2458
2459/// [GNU]   typeof-specifier:
2460///           typeof ( expressions )
2461///           typeof ( type-name )
2462/// [GNU/C++] typeof unary-expression
2463///
2464void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2465  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2466  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2467  SourceLocation StartLoc = ConsumeToken();
2468
2469  if (Tok.isNot(tok::l_paren)) {
2470    if (!getLang().CPlusPlus) {
2471      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2472      return;
2473    }
2474
2475    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2476    if (Result.isInvalid()) {
2477      DS.SetTypeSpecError();
2478      return;
2479    }
2480
2481    const char *PrevSpec = 0;
2482    // Check for duplicate type specifiers.
2483    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2484                           Result.release()))
2485      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2486
2487    // FIXME: Not accurate, the range gets one token more than it should.
2488    DS.SetRangeEnd(Tok.getLocation());
2489    return;
2490  }
2491
2492  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2493
2494  if (isTypeIdInParens()) {
2495    Action::TypeResult Ty = ParseTypeName();
2496
2497    assert((Ty.isInvalid() || Ty.get()) &&
2498           "Parser::ParseTypeofSpecifier(): missing type");
2499
2500    if (Tok.isNot(tok::r_paren)) {
2501      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2502      return;
2503    }
2504    RParenLoc = ConsumeParen();
2505
2506    if (Ty.isInvalid())
2507      DS.SetTypeSpecError();
2508    else {
2509      const char *PrevSpec = 0;
2510      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2511      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2512                             Ty.get()))
2513        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2514    }
2515  } else { // we have an expression.
2516    OwningExprResult Result(ParseExpression());
2517
2518    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2519      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2520      DS.SetTypeSpecError();
2521      return;
2522    }
2523    RParenLoc = ConsumeParen();
2524    const char *PrevSpec = 0;
2525    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2526    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2527                           Result.release()))
2528      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2529  }
2530  DS.SetRangeEnd(RParenLoc);
2531}
2532
2533
2534