ParseDecl.cpp revision 71b0addffbdeed29cc062c962e236c34107755d6
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "llvm/ADT/SmallSet.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// C99 6.7: Declarations.
23//===----------------------------------------------------------------------===//
24
25/// ParseTypeName
26///       type-name: [C99 6.7.6]
27///         specifier-qualifier-list abstract-declarator[opt]
28///
29/// Called type-id in C++.
30Action::TypeResult Parser::ParseTypeName(SourceRange *Range) {
31  // Parse the common declaration-specifiers piece.
32  DeclSpec DS;
33  ParseSpecifierQualifierList(DS);
34
35  // Parse the abstract-declarator, if present.
36  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
37  ParseDeclarator(DeclaratorInfo);
38  if (Range)
39    *Range = DeclaratorInfo.getSourceRange();
40
41  if (DeclaratorInfo.isInvalidType())
42    return true;
43
44  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
45}
46
47/// ParseAttributes - Parse a non-empty attributes list.
48///
49/// [GNU] attributes:
50///         attribute
51///         attributes attribute
52///
53/// [GNU]  attribute:
54///          '__attribute__' '(' '(' attribute-list ')' ')'
55///
56/// [GNU]  attribute-list:
57///          attrib
58///          attribute_list ',' attrib
59///
60/// [GNU]  attrib:
61///          empty
62///          attrib-name
63///          attrib-name '(' identifier ')'
64///          attrib-name '(' identifier ',' nonempty-expr-list ')'
65///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
66///
67/// [GNU]  attrib-name:
68///          identifier
69///          typespec
70///          typequal
71///          storageclass
72///
73/// FIXME: The GCC grammar/code for this construct implies we need two
74/// token lookahead. Comment from gcc: "If they start with an identifier
75/// which is followed by a comma or close parenthesis, then the arguments
76/// start with that identifier; otherwise they are an expression list."
77///
78/// At the moment, I am not doing 2 token lookahead. I am also unaware of
79/// any attributes that don't work (based on my limited testing). Most
80/// attributes are very simple in practice. Until we find a bug, I don't see
81/// a pressing need to implement the 2 token lookahead.
82
83AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
84  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
85
86  AttributeList *CurrAttr = 0;
87
88  while (Tok.is(tok::kw___attribute)) {
89    ConsumeToken();
90    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
91                         "attribute")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
96      SkipUntil(tok::r_paren, true); // skip until ) or ;
97      return CurrAttr;
98    }
99    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
100    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
101           Tok.is(tok::comma)) {
102
103      if (Tok.is(tok::comma)) {
104        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
105        ConsumeToken();
106        continue;
107      }
108      // we have an identifier or declaration specifier (const, int, etc.)
109      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
110      SourceLocation AttrNameLoc = ConsumeToken();
111
112      // check if we have a "paramterized" attribute
113      if (Tok.is(tok::l_paren)) {
114        ConsumeParen(); // ignore the left paren loc for now
115
116        if (Tok.is(tok::identifier)) {
117          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
118          SourceLocation ParmLoc = ConsumeToken();
119
120          if (Tok.is(tok::r_paren)) {
121            // __attribute__(( mode(byte) ))
122            ConsumeParen(); // ignore the right paren loc for now
123            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
124                                         ParmName, ParmLoc, 0, 0, CurrAttr);
125          } else if (Tok.is(tok::comma)) {
126            ConsumeToken();
127            // __attribute__(( format(printf, 1, 2) ))
128            ExprVector ArgExprs(Actions);
129            bool ArgExprsOk = true;
130
131            // now parse the non-empty comma separated list of expressions
132            while (1) {
133              OwningExprResult ArgExpr(ParseAssignmentExpression());
134              if (ArgExpr.isInvalid()) {
135                ArgExprsOk = false;
136                SkipUntil(tok::r_paren);
137                break;
138              } else {
139                ArgExprs.push_back(ArgExpr.release());
140              }
141              if (Tok.isNot(tok::comma))
142                break;
143              ConsumeToken(); // Eat the comma, move to the next argument
144            }
145            if (ArgExprsOk && Tok.is(tok::r_paren)) {
146              ConsumeParen(); // ignore the right paren loc for now
147              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
148                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
149            }
150          }
151        } else { // not an identifier
152          switch (Tok.getKind()) {
153          case tok::r_paren:
154          // parse a possibly empty comma separated list of expressions
155            // __attribute__(( nonnull() ))
156            ConsumeParen(); // ignore the right paren loc for now
157            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
158                                         0, SourceLocation(), 0, 0, CurrAttr);
159            break;
160          case tok::kw_char:
161          case tok::kw_wchar_t:
162          case tok::kw_char16_t:
163          case tok::kw_char32_t:
164          case tok::kw_bool:
165          case tok::kw_short:
166          case tok::kw_int:
167          case tok::kw_long:
168          case tok::kw_signed:
169          case tok::kw_unsigned:
170          case tok::kw_float:
171          case tok::kw_double:
172          case tok::kw_void:
173          case tok::kw_typeof:
174            // If it's a builtin type name, eat it and expect a rparen
175            // __attribute__(( vec_type_hint(char) ))
176            ConsumeToken();
177            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
178                                         0, SourceLocation(), 0, 0, CurrAttr);
179            if (Tok.is(tok::r_paren))
180              ConsumeParen();
181            break;
182          default:
183            // __attribute__(( aligned(16) ))
184            ExprVector ArgExprs(Actions);
185            bool ArgExprsOk = true;
186
187            // now parse the list of expressions
188            while (1) {
189              OwningExprResult ArgExpr(ParseAssignmentExpression());
190              if (ArgExpr.isInvalid()) {
191                ArgExprsOk = false;
192                SkipUntil(tok::r_paren);
193                break;
194              } else {
195                ArgExprs.push_back(ArgExpr.release());
196              }
197              if (Tok.isNot(tok::comma))
198                break;
199              ConsumeToken(); // Eat the comma, move to the next argument
200            }
201            // Match the ')'.
202            if (ArgExprsOk && Tok.is(tok::r_paren)) {
203              ConsumeParen(); // ignore the right paren loc for now
204              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
205                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
206                           CurrAttr);
207            }
208            break;
209          }
210        }
211      } else {
212        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
213                                     0, SourceLocation(), 0, 0, CurrAttr);
214      }
215    }
216    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
217      SkipUntil(tok::r_paren, false);
218    SourceLocation Loc = Tok.getLocation();;
219    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
220      SkipUntil(tok::r_paren, false);
221    }
222    if (EndLoc)
223      *EndLoc = Loc;
224  }
225  return CurrAttr;
226}
227
228/// ParseMicrosoftDeclSpec - Parse an __declspec construct
229///
230/// [MS] decl-specifier:
231///             __declspec ( extended-decl-modifier-seq )
232///
233/// [MS] extended-decl-modifier-seq:
234///             extended-decl-modifier[opt]
235///             extended-decl-modifier extended-decl-modifier-seq
236
237AttributeList* Parser::ParseMicrosoftDeclSpec(AttributeList *CurrAttr) {
238  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
239
240  ConsumeToken();
241  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
242                       "declspec")) {
243    SkipUntil(tok::r_paren, true); // skip until ) or ;
244    return CurrAttr;
245  }
246  while (Tok.getIdentifierInfo()) {
247    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
248    SourceLocation AttrNameLoc = ConsumeToken();
249    if (Tok.is(tok::l_paren)) {
250      ConsumeParen();
251      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
252      // correctly.
253      OwningExprResult ArgExpr(ParseAssignmentExpression());
254      if (!ArgExpr.isInvalid()) {
255        ExprTy* ExprList = ArgExpr.take();
256        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
257                                     SourceLocation(), &ExprList, 1,
258                                     CurrAttr, true);
259      }
260      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
261        SkipUntil(tok::r_paren, false);
262    } else {
263      CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, SourceLocation(),
264                                   0, 0, CurrAttr, true);
265    }
266  }
267  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
268    SkipUntil(tok::r_paren, false);
269  return CurrAttr;
270}
271
272AttributeList* Parser::ParseMicrosoftTypeAttributes(AttributeList *CurrAttr) {
273  // Treat these like attributes
274  // FIXME: Allow Sema to distinguish between these and real attributes!
275  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
276         Tok.is(tok::kw___cdecl)    || Tok.is(tok::kw___ptr64) ||
277         Tok.is(tok::kw___w64)) {
278    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
279    SourceLocation AttrNameLoc = ConsumeToken();
280    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
281      // FIXME: Support these properly!
282      continue;
283    CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
284                                 SourceLocation(), 0, 0, CurrAttr, true);
285  }
286  return CurrAttr;
287}
288
289/// ParseDeclaration - Parse a full 'declaration', which consists of
290/// declaration-specifiers, some number of declarators, and a semicolon.
291/// 'Context' should be a Declarator::TheContext value.  This returns the
292/// location of the semicolon in DeclEnd.
293///
294///       declaration: [C99 6.7]
295///         block-declaration ->
296///           simple-declaration
297///           others                   [FIXME]
298/// [C++]   template-declaration
299/// [C++]   namespace-definition
300/// [C++]   using-directive
301/// [C++]   using-declaration
302/// [C++0x] static_assert-declaration
303///         others... [FIXME]
304///
305Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
306                                                SourceLocation &DeclEnd) {
307  DeclPtrTy SingleDecl;
308  switch (Tok.getKind()) {
309  case tok::kw_template:
310  case tok::kw_export:
311    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
312    break;
313  case tok::kw_namespace:
314    SingleDecl = ParseNamespace(Context, DeclEnd);
315    break;
316  case tok::kw_using:
317    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
318    break;
319  case tok::kw_static_assert:
320    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
321    break;
322  default:
323    return ParseSimpleDeclaration(Context, DeclEnd);
324  }
325
326  // This routine returns a DeclGroup, if the thing we parsed only contains a
327  // single decl, convert it now.
328  return Actions.ConvertDeclToDeclGroup(SingleDecl);
329}
330
331///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
332///         declaration-specifiers init-declarator-list[opt] ';'
333///[C90/C++]init-declarator-list ';'                             [TODO]
334/// [OMP]   threadprivate-directive                              [TODO]
335///
336/// If RequireSemi is false, this does not check for a ';' at the end of the
337/// declaration.
338Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
339                                                      SourceLocation &DeclEnd,
340                                                      bool RequireSemi) {
341  // Parse the common declaration-specifiers piece.
342  DeclSpec DS;
343  ParseDeclarationSpecifiers(DS);
344
345  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
346  // declaration-specifiers init-declarator-list[opt] ';'
347  if (Tok.is(tok::semi)) {
348    ConsumeToken();
349    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
350    return Actions.ConvertDeclToDeclGroup(TheDecl);
351  }
352
353  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
354  ParseDeclarator(DeclaratorInfo);
355
356  DeclGroupPtrTy DG =
357    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
358
359  DeclEnd = Tok.getLocation();
360
361  // If the client wants to check what comes after the declaration, just return
362  // immediately without checking anything!
363  if (!RequireSemi) return DG;
364
365  if (Tok.is(tok::semi)) {
366    ConsumeToken();
367    return DG;
368  }
369
370  Diag(Tok, diag::err_expected_semi_declaration);
371  // Skip to end of block or statement
372  SkipUntil(tok::r_brace, true, true);
373  if (Tok.is(tok::semi))
374    ConsumeToken();
375  return DG;
376}
377
378/// \brief Parse 'declaration' after parsing 'declaration-specifiers
379/// declarator'. This method parses the remainder of the declaration
380/// (including any attributes or initializer, among other things) and
381/// finalizes the declaration.
382///
383///       init-declarator: [C99 6.7]
384///         declarator
385///         declarator '=' initializer
386/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
387/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
388/// [C++]   declarator initializer[opt]
389///
390/// [C++] initializer:
391/// [C++]   '=' initializer-clause
392/// [C++]   '(' expression-list ')'
393/// [C++0x] '=' 'default'                                                [TODO]
394/// [C++0x] '=' 'delete'
395///
396/// According to the standard grammar, =default and =delete are function
397/// definitions, but that definitely doesn't fit with the parser here.
398///
399Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D,
400                                     const ParsedTemplateInfo &TemplateInfo) {
401  // If a simple-asm-expr is present, parse it.
402  if (Tok.is(tok::kw_asm)) {
403    SourceLocation Loc;
404    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
405    if (AsmLabel.isInvalid()) {
406      SkipUntil(tok::semi, true, true);
407      return DeclPtrTy();
408    }
409
410    D.setAsmLabel(AsmLabel.release());
411    D.SetRangeEnd(Loc);
412  }
413
414  // If attributes are present, parse them.
415  if (Tok.is(tok::kw___attribute)) {
416    SourceLocation Loc;
417    AttributeList *AttrList = ParseAttributes(&Loc);
418    D.AddAttributes(AttrList, Loc);
419  }
420
421  // Inform the current actions module that we just parsed this declarator.
422  DeclPtrTy ThisDecl;
423  switch (TemplateInfo.Kind) {
424  case ParsedTemplateInfo::NonTemplate:
425    ThisDecl = Actions.ActOnDeclarator(CurScope, D);
426    break;
427
428  case ParsedTemplateInfo::Template:
429  case ParsedTemplateInfo::ExplicitSpecialization:
430    ThisDecl = Actions.ActOnTemplateDeclarator(CurScope,
431                             Action::MultiTemplateParamsArg(Actions,
432                                          TemplateInfo.TemplateParams->data(),
433                                          TemplateInfo.TemplateParams->size()),
434                                               D);
435    break;
436
437  case ParsedTemplateInfo::ExplicitInstantiation: {
438    Action::DeclResult ThisRes
439      = Actions.ActOnExplicitInstantiation(CurScope,
440                                           TemplateInfo.ExternLoc,
441                                           TemplateInfo.TemplateLoc,
442                                           D);
443    if (ThisRes.isInvalid()) {
444      SkipUntil(tok::semi, true, true);
445      return DeclPtrTy();
446    }
447
448    ThisDecl = ThisRes.get();
449    break;
450    }
451  }
452
453  // Parse declarator '=' initializer.
454  if (Tok.is(tok::equal)) {
455    ConsumeToken();
456    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
457      SourceLocation DelLoc = ConsumeToken();
458      Actions.SetDeclDeleted(ThisDecl, DelLoc);
459    } else {
460      if (getLang().CPlusPlus)
461        Actions.ActOnCXXEnterDeclInitializer(CurScope, ThisDecl);
462
463      OwningExprResult Init(ParseInitializer());
464
465      if (getLang().CPlusPlus)
466        Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
467
468      if (Init.isInvalid()) {
469        SkipUntil(tok::semi, true, true);
470        return DeclPtrTy();
471      }
472      Actions.AddInitializerToDecl(ThisDecl, move(Init));
473    }
474  } else if (Tok.is(tok::l_paren)) {
475    // Parse C++ direct initializer: '(' expression-list ')'
476    SourceLocation LParenLoc = ConsumeParen();
477    ExprVector Exprs(Actions);
478    CommaLocsTy CommaLocs;
479
480    if (ParseExpressionList(Exprs, CommaLocs)) {
481      SkipUntil(tok::r_paren);
482    } else {
483      // Match the ')'.
484      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
485
486      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
487             "Unexpected number of commas!");
488      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
489                                            move_arg(Exprs),
490                                            CommaLocs.data(), RParenLoc);
491    }
492  } else {
493    bool TypeContainsUndeducedAuto =
494      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
495    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
496  }
497
498  return ThisDecl;
499}
500
501/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
502/// parsing 'declaration-specifiers declarator'.  This method is split out this
503/// way to handle the ambiguity between top-level function-definitions and
504/// declarations.
505///
506///       init-declarator-list: [C99 6.7]
507///         init-declarator
508///         init-declarator-list ',' init-declarator
509///
510/// According to the standard grammar, =default and =delete are function
511/// definitions, but that definitely doesn't fit with the parser here.
512///
513Parser::DeclGroupPtrTy Parser::
514ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
515  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
516  // that we parse together here.
517  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
518
519  // At this point, we know that it is not a function definition.  Parse the
520  // rest of the init-declarator-list.
521  while (1) {
522    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
523    if (ThisDecl.get())
524      DeclsInGroup.push_back(ThisDecl);
525
526    // If we don't have a comma, it is either the end of the list (a ';') or an
527    // error, bail out.
528    if (Tok.isNot(tok::comma))
529      break;
530
531    // Consume the comma.
532    ConsumeToken();
533
534    // Parse the next declarator.
535    D.clear();
536
537    // Accept attributes in an init-declarator.  In the first declarator in a
538    // declaration, these would be part of the declspec.  In subsequent
539    // declarators, they become part of the declarator itself, so that they
540    // don't apply to declarators after *this* one.  Examples:
541    //    short __attribute__((common)) var;    -> declspec
542    //    short var __attribute__((common));    -> declarator
543    //    short x, __attribute__((common)) var;    -> declarator
544    if (Tok.is(tok::kw___attribute)) {
545      SourceLocation Loc;
546      AttributeList *AttrList = ParseAttributes(&Loc);
547      D.AddAttributes(AttrList, Loc);
548    }
549
550    ParseDeclarator(D);
551  }
552
553  return Actions.FinalizeDeclaratorGroup(CurScope, D.getDeclSpec(),
554                                         DeclsInGroup.data(),
555                                         DeclsInGroup.size());
556}
557
558/// ParseSpecifierQualifierList
559///        specifier-qualifier-list:
560///          type-specifier specifier-qualifier-list[opt]
561///          type-qualifier specifier-qualifier-list[opt]
562/// [GNU]    attributes     specifier-qualifier-list[opt]
563///
564void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
565  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
566  /// parse declaration-specifiers and complain about extra stuff.
567  ParseDeclarationSpecifiers(DS);
568
569  // Validate declspec for type-name.
570  unsigned Specs = DS.getParsedSpecifiers();
571  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
572      !DS.getAttributes())
573    Diag(Tok, diag::err_typename_requires_specqual);
574
575  // Issue diagnostic and remove storage class if present.
576  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
577    if (DS.getStorageClassSpecLoc().isValid())
578      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
579    else
580      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
581    DS.ClearStorageClassSpecs();
582  }
583
584  // Issue diagnostic and remove function specfier if present.
585  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
586    if (DS.isInlineSpecified())
587      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
588    if (DS.isVirtualSpecified())
589      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
590    if (DS.isExplicitSpecified())
591      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
592    DS.ClearFunctionSpecs();
593  }
594}
595
596/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
597/// specified token is valid after the identifier in a declarator which
598/// immediately follows the declspec.  For example, these things are valid:
599///
600///      int x   [             4];         // direct-declarator
601///      int x   (             int y);     // direct-declarator
602///  int(int x   )                         // direct-declarator
603///      int x   ;                         // simple-declaration
604///      int x   =             17;         // init-declarator-list
605///      int x   ,             y;          // init-declarator-list
606///      int x   __asm__       ("foo");    // init-declarator-list
607///      int x   :             4;          // struct-declarator
608///      int x   {             5};         // C++'0x unified initializers
609///
610/// This is not, because 'x' does not immediately follow the declspec (though
611/// ')' happens to be valid anyway).
612///    int (x)
613///
614static bool isValidAfterIdentifierInDeclarator(const Token &T) {
615  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
616         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
617         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
618}
619
620
621/// ParseImplicitInt - This method is called when we have an non-typename
622/// identifier in a declspec (which normally terminates the decl spec) when
623/// the declspec has no type specifier.  In this case, the declspec is either
624/// malformed or is "implicit int" (in K&R and C89).
625///
626/// This method handles diagnosing this prettily and returns false if the
627/// declspec is done being processed.  If it recovers and thinks there may be
628/// other pieces of declspec after it, it returns true.
629///
630bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
631                              const ParsedTemplateInfo &TemplateInfo,
632                              AccessSpecifier AS) {
633  assert(Tok.is(tok::identifier) && "should have identifier");
634
635  SourceLocation Loc = Tok.getLocation();
636  // If we see an identifier that is not a type name, we normally would
637  // parse it as the identifer being declared.  However, when a typename
638  // is typo'd or the definition is not included, this will incorrectly
639  // parse the typename as the identifier name and fall over misparsing
640  // later parts of the diagnostic.
641  //
642  // As such, we try to do some look-ahead in cases where this would
643  // otherwise be an "implicit-int" case to see if this is invalid.  For
644  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
645  // an identifier with implicit int, we'd get a parse error because the
646  // next token is obviously invalid for a type.  Parse these as a case
647  // with an invalid type specifier.
648  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
649
650  // Since we know that this either implicit int (which is rare) or an
651  // error, we'd do lookahead to try to do better recovery.
652  if (isValidAfterIdentifierInDeclarator(NextToken())) {
653    // If this token is valid for implicit int, e.g. "static x = 4", then
654    // we just avoid eating the identifier, so it will be parsed as the
655    // identifier in the declarator.
656    return false;
657  }
658
659  // Otherwise, if we don't consume this token, we are going to emit an
660  // error anyway.  Try to recover from various common problems.  Check
661  // to see if this was a reference to a tag name without a tag specified.
662  // This is a common problem in C (saying 'foo' instead of 'struct foo').
663  //
664  // C++ doesn't need this, and isTagName doesn't take SS.
665  if (SS == 0) {
666    const char *TagName = 0;
667    tok::TokenKind TagKind = tok::unknown;
668
669    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
670      default: break;
671      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
672      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
673      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
674      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
675    }
676
677    if (TagName) {
678      Diag(Loc, diag::err_use_of_tag_name_without_tag)
679        << Tok.getIdentifierInfo() << TagName
680        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
681
682      // Parse this as a tag as if the missing tag were present.
683      if (TagKind == tok::kw_enum)
684        ParseEnumSpecifier(Loc, DS, AS);
685      else
686        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
687      return true;
688    }
689  }
690
691  // Since this is almost certainly an invalid type name, emit a
692  // diagnostic that says it, eat the token, and mark the declspec as
693  // invalid.
694  SourceRange R;
695  if (SS) R = SS->getRange();
696
697  Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
698  const char *PrevSpec;
699  unsigned DiagID;
700  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
701  DS.SetRangeEnd(Tok.getLocation());
702  ConsumeToken();
703
704  // TODO: Could inject an invalid typedef decl in an enclosing scope to
705  // avoid rippling error messages on subsequent uses of the same type,
706  // could be useful if #include was forgotten.
707  return false;
708}
709
710/// ParseDeclarationSpecifiers
711///       declaration-specifiers: [C99 6.7]
712///         storage-class-specifier declaration-specifiers[opt]
713///         type-specifier declaration-specifiers[opt]
714/// [C99]   function-specifier declaration-specifiers[opt]
715/// [GNU]   attributes declaration-specifiers[opt]
716///
717///       storage-class-specifier: [C99 6.7.1]
718///         'typedef'
719///         'extern'
720///         'static'
721///         'auto'
722///         'register'
723/// [C++]   'mutable'
724/// [GNU]   '__thread'
725///       function-specifier: [C99 6.7.4]
726/// [C99]   'inline'
727/// [C++]   'virtual'
728/// [C++]   'explicit'
729///       'friend': [C++ dcl.friend]
730
731///
732void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
733                                        const ParsedTemplateInfo &TemplateInfo,
734                                        AccessSpecifier AS,
735                                        DeclSpecContext DSContext) {
736  if (Tok.is(tok::code_completion)) {
737    Actions.CodeCompleteOrdinaryName(CurScope);
738    ConsumeToken();
739  }
740
741  DS.SetRangeStart(Tok.getLocation());
742  while (1) {
743    bool isInvalid = false;
744    const char *PrevSpec = 0;
745    unsigned DiagID = 0;
746
747    SourceLocation Loc = Tok.getLocation();
748
749    switch (Tok.getKind()) {
750    default:
751    DoneWithDeclSpec:
752      // If this is not a declaration specifier token, we're done reading decl
753      // specifiers.  First verify that DeclSpec's are consistent.
754      DS.Finish(Diags, PP);
755      return;
756
757    case tok::coloncolon: // ::foo::bar
758      // Annotate C++ scope specifiers.  If we get one, loop.
759      if (TryAnnotateCXXScopeToken(true))
760        continue;
761      goto DoneWithDeclSpec;
762
763    case tok::annot_cxxscope: {
764      if (DS.hasTypeSpecifier())
765        goto DoneWithDeclSpec;
766
767      // We are looking for a qualified typename.
768      Token Next = NextToken();
769      if (Next.is(tok::annot_template_id) &&
770          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
771            ->Kind == TNK_Type_template) {
772        // We have a qualified template-id, e.g., N::A<int>
773        CXXScopeSpec SS;
774        ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, true);
775        assert(Tok.is(tok::annot_template_id) &&
776               "ParseOptionalCXXScopeSpecifier not working");
777        AnnotateTemplateIdTokenAsType(&SS);
778        continue;
779      }
780
781      if (Next.is(tok::annot_typename)) {
782        // FIXME: is this scope-specifier getting dropped?
783        ConsumeToken(); // the scope-specifier
784        if (Tok.getAnnotationValue())
785          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc,
786                                         PrevSpec, DiagID,
787                                         Tok.getAnnotationValue());
788        else
789          DS.SetTypeSpecError();
790        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
791        ConsumeToken(); // The typename
792      }
793
794      if (Next.isNot(tok::identifier))
795        goto DoneWithDeclSpec;
796
797      CXXScopeSpec SS;
798      SS.setScopeRep(Tok.getAnnotationValue());
799      SS.setRange(Tok.getAnnotationRange());
800
801      // If the next token is the name of the class type that the C++ scope
802      // denotes, followed by a '(', then this is a constructor declaration.
803      // We're done with the decl-specifiers.
804      if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
805                                     CurScope, &SS) &&
806          GetLookAheadToken(2).is(tok::l_paren))
807        goto DoneWithDeclSpec;
808
809      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
810                                            Next.getLocation(), CurScope, &SS);
811
812      // If the referenced identifier is not a type, then this declspec is
813      // erroneous: We already checked about that it has no type specifier, and
814      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
815      // typename.
816      if (TypeRep == 0) {
817        ConsumeToken();   // Eat the scope spec so the identifier is current.
818        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
819        goto DoneWithDeclSpec;
820      }
821
822      ConsumeToken(); // The C++ scope.
823
824      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
825                                     DiagID, TypeRep);
826      if (isInvalid)
827        break;
828
829      DS.SetRangeEnd(Tok.getLocation());
830      ConsumeToken(); // The typename.
831
832      continue;
833    }
834
835    case tok::annot_typename: {
836      if (Tok.getAnnotationValue())
837        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
838                                       DiagID, Tok.getAnnotationValue());
839      else
840        DS.SetTypeSpecError();
841      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
842      ConsumeToken(); // The typename
843
844      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
845      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
846      // Objective-C interface.  If we don't have Objective-C or a '<', this is
847      // just a normal reference to a typedef name.
848      if (!Tok.is(tok::less) || !getLang().ObjC1)
849        continue;
850
851      SourceLocation LAngleLoc, EndProtoLoc;
852      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
853      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
854      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
855                                  LAngleLoc, EndProtoLoc);
856      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
857                               ProtocolLocs.data(), LAngleLoc);
858
859      DS.SetRangeEnd(EndProtoLoc);
860      continue;
861    }
862
863      // typedef-name
864    case tok::identifier: {
865      // In C++, check to see if this is a scope specifier like foo::bar::, if
866      // so handle it as such.  This is important for ctor parsing.
867      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken(true))
868        continue;
869
870      // This identifier can only be a typedef name if we haven't already seen
871      // a type-specifier.  Without this check we misparse:
872      //  typedef int X; struct Y { short X; };  as 'short int'.
873      if (DS.hasTypeSpecifier())
874        goto DoneWithDeclSpec;
875
876      // It has to be available as a typedef too!
877      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
878                                            Tok.getLocation(), CurScope);
879
880      // If this is not a typedef name, don't parse it as part of the declspec,
881      // it must be an implicit int or an error.
882      if (TypeRep == 0) {
883        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
884        goto DoneWithDeclSpec;
885      }
886
887      // C++: If the identifier is actually the name of the class type
888      // being defined and the next token is a '(', then this is a
889      // constructor declaration. We're done with the decl-specifiers
890      // and will treat this token as an identifier.
891      if (getLang().CPlusPlus &&
892          (CurScope->isClassScope() ||
893           (CurScope->isTemplateParamScope() &&
894            CurScope->getParent()->isClassScope())) &&
895          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
896          NextToken().getKind() == tok::l_paren)
897        goto DoneWithDeclSpec;
898
899      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
900                                     DiagID, TypeRep);
901      if (isInvalid)
902        break;
903
904      DS.SetRangeEnd(Tok.getLocation());
905      ConsumeToken(); // The identifier
906
907      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
908      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
909      // Objective-C interface.  If we don't have Objective-C or a '<', this is
910      // just a normal reference to a typedef name.
911      if (!Tok.is(tok::less) || !getLang().ObjC1)
912        continue;
913
914      SourceLocation LAngleLoc, EndProtoLoc;
915      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
916      llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
917      ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
918                                  LAngleLoc, EndProtoLoc);
919      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
920                               ProtocolLocs.data(), LAngleLoc);
921
922      DS.SetRangeEnd(EndProtoLoc);
923
924      // Need to support trailing type qualifiers (e.g. "id<p> const").
925      // If a type specifier follows, it will be diagnosed elsewhere.
926      continue;
927    }
928
929      // type-name
930    case tok::annot_template_id: {
931      TemplateIdAnnotation *TemplateId
932        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
933      if (TemplateId->Kind != TNK_Type_template) {
934        // This template-id does not refer to a type name, so we're
935        // done with the type-specifiers.
936        goto DoneWithDeclSpec;
937      }
938
939      // Turn the template-id annotation token into a type annotation
940      // token, then try again to parse it as a type-specifier.
941      AnnotateTemplateIdTokenAsType();
942      continue;
943    }
944
945    // GNU attributes support.
946    case tok::kw___attribute:
947      DS.AddAttributes(ParseAttributes());
948      continue;
949
950    // Microsoft declspec support.
951    case tok::kw___declspec:
952      DS.AddAttributes(ParseMicrosoftDeclSpec());
953      continue;
954
955    // Microsoft single token adornments.
956    case tok::kw___forceinline:
957      // FIXME: Add handling here!
958      break;
959
960    case tok::kw___ptr64:
961    case tok::kw___w64:
962    case tok::kw___cdecl:
963    case tok::kw___stdcall:
964    case tok::kw___fastcall:
965      DS.AddAttributes(ParseMicrosoftTypeAttributes());
966      continue;
967
968    // storage-class-specifier
969    case tok::kw_typedef:
970      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
971                                         DiagID);
972      break;
973    case tok::kw_extern:
974      if (DS.isThreadSpecified())
975        Diag(Tok, diag::ext_thread_before) << "extern";
976      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
977                                         DiagID);
978      break;
979    case tok::kw___private_extern__:
980      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
981                                         PrevSpec, DiagID);
982      break;
983    case tok::kw_static:
984      if (DS.isThreadSpecified())
985        Diag(Tok, diag::ext_thread_before) << "static";
986      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
987                                         DiagID);
988      break;
989    case tok::kw_auto:
990      if (getLang().CPlusPlus0x)
991        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
992                                       DiagID);
993      else
994        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
995                                           DiagID);
996      break;
997    case tok::kw_register:
998      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
999                                         DiagID);
1000      break;
1001    case tok::kw_mutable:
1002      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1003                                         DiagID);
1004      break;
1005    case tok::kw___thread:
1006      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1007      break;
1008
1009    // function-specifier
1010    case tok::kw_inline:
1011      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1012      break;
1013    case tok::kw_virtual:
1014      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1015      break;
1016    case tok::kw_explicit:
1017      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1018      break;
1019
1020    // friend
1021    case tok::kw_friend:
1022      if (DSContext == DSC_class)
1023        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1024      else {
1025        PrevSpec = ""; // not actually used by the diagnostic
1026        DiagID = diag::err_friend_invalid_in_context;
1027        isInvalid = true;
1028      }
1029      break;
1030
1031    // type-specifier
1032    case tok::kw_short:
1033      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1034                                      DiagID);
1035      break;
1036    case tok::kw_long:
1037      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1038        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1039                                        DiagID);
1040      else
1041        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1042                                        DiagID);
1043      break;
1044    case tok::kw_signed:
1045      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1046                                     DiagID);
1047      break;
1048    case tok::kw_unsigned:
1049      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1050                                     DiagID);
1051      break;
1052    case tok::kw__Complex:
1053      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1054                                        DiagID);
1055      break;
1056    case tok::kw__Imaginary:
1057      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1058                                        DiagID);
1059      break;
1060    case tok::kw_void:
1061      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1062                                     DiagID);
1063      break;
1064    case tok::kw_char:
1065      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1066                                     DiagID);
1067      break;
1068    case tok::kw_int:
1069      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1070                                     DiagID);
1071      break;
1072    case tok::kw_float:
1073      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1074                                     DiagID);
1075      break;
1076    case tok::kw_double:
1077      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1078                                     DiagID);
1079      break;
1080    case tok::kw_wchar_t:
1081      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1082                                     DiagID);
1083      break;
1084    case tok::kw_char16_t:
1085      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1086                                     DiagID);
1087      break;
1088    case tok::kw_char32_t:
1089      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1090                                     DiagID);
1091      break;
1092    case tok::kw_bool:
1093    case tok::kw__Bool:
1094      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1095                                     DiagID);
1096      break;
1097    case tok::kw__Decimal32:
1098      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1099                                     DiagID);
1100      break;
1101    case tok::kw__Decimal64:
1102      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1103                                     DiagID);
1104      break;
1105    case tok::kw__Decimal128:
1106      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1107                                     DiagID);
1108      break;
1109
1110    // class-specifier:
1111    case tok::kw_class:
1112    case tok::kw_struct:
1113    case tok::kw_union: {
1114      tok::TokenKind Kind = Tok.getKind();
1115      ConsumeToken();
1116      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1117      continue;
1118    }
1119
1120    // enum-specifier:
1121    case tok::kw_enum:
1122      ConsumeToken();
1123      ParseEnumSpecifier(Loc, DS, AS);
1124      continue;
1125
1126    // cv-qualifier:
1127    case tok::kw_const:
1128      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1129                                 getLang());
1130      break;
1131    case tok::kw_volatile:
1132      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1133                                 getLang());
1134      break;
1135    case tok::kw_restrict:
1136      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1137                                 getLang());
1138      break;
1139
1140    // C++ typename-specifier:
1141    case tok::kw_typename:
1142      if (TryAnnotateTypeOrScopeToken())
1143        continue;
1144      break;
1145
1146    // GNU typeof support.
1147    case tok::kw_typeof:
1148      ParseTypeofSpecifier(DS);
1149      continue;
1150
1151    case tok::kw_decltype:
1152      ParseDecltypeSpecifier(DS);
1153      continue;
1154
1155    case tok::less:
1156      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1157      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1158      // but we support it.
1159      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1160        goto DoneWithDeclSpec;
1161
1162      {
1163        SourceLocation LAngleLoc, EndProtoLoc;
1164        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1165        llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1166        ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1167                                    LAngleLoc, EndProtoLoc);
1168        DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1169                                 ProtocolLocs.data(), LAngleLoc);
1170        DS.SetRangeEnd(EndProtoLoc);
1171
1172        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1173          << CodeModificationHint::CreateInsertion(Loc, "id")
1174          << SourceRange(Loc, EndProtoLoc);
1175        // Need to support trailing type qualifiers (e.g. "id<p> const").
1176        // If a type specifier follows, it will be diagnosed elsewhere.
1177        continue;
1178      }
1179    }
1180    // If the specifier wasn't legal, issue a diagnostic.
1181    if (isInvalid) {
1182      assert(PrevSpec && "Method did not return previous specifier!");
1183      assert(DiagID);
1184      Diag(Tok, DiagID) << PrevSpec;
1185    }
1186    DS.SetRangeEnd(Tok.getLocation());
1187    ConsumeToken();
1188  }
1189}
1190
1191/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1192/// primarily follow the C++ grammar with additions for C99 and GNU,
1193/// which together subsume the C grammar. Note that the C++
1194/// type-specifier also includes the C type-qualifier (for const,
1195/// volatile, and C99 restrict). Returns true if a type-specifier was
1196/// found (and parsed), false otherwise.
1197///
1198///       type-specifier: [C++ 7.1.5]
1199///         simple-type-specifier
1200///         class-specifier
1201///         enum-specifier
1202///         elaborated-type-specifier  [TODO]
1203///         cv-qualifier
1204///
1205///       cv-qualifier: [C++ 7.1.5.1]
1206///         'const'
1207///         'volatile'
1208/// [C99]   'restrict'
1209///
1210///       simple-type-specifier: [ C++ 7.1.5.2]
1211///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1212///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1213///         'char'
1214///         'wchar_t'
1215///         'bool'
1216///         'short'
1217///         'int'
1218///         'long'
1219///         'signed'
1220///         'unsigned'
1221///         'float'
1222///         'double'
1223///         'void'
1224/// [C99]   '_Bool'
1225/// [C99]   '_Complex'
1226/// [C99]   '_Imaginary'  // Removed in TC2?
1227/// [GNU]   '_Decimal32'
1228/// [GNU]   '_Decimal64'
1229/// [GNU]   '_Decimal128'
1230/// [GNU]   typeof-specifier
1231/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1232/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1233/// [C++0x] 'decltype' ( expression )
1234bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1235                                        const char *&PrevSpec,
1236                                        unsigned &DiagID,
1237                                      const ParsedTemplateInfo &TemplateInfo) {
1238  SourceLocation Loc = Tok.getLocation();
1239
1240  switch (Tok.getKind()) {
1241  case tok::identifier:   // foo::bar
1242  case tok::kw_typename:  // typename foo::bar
1243    // Annotate typenames and C++ scope specifiers.  If we get one, just
1244    // recurse to handle whatever we get.
1245    if (TryAnnotateTypeOrScopeToken())
1246      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1247                                        TemplateInfo);
1248    // Otherwise, not a type specifier.
1249    return false;
1250  case tok::coloncolon:   // ::foo::bar
1251    if (NextToken().is(tok::kw_new) ||    // ::new
1252        NextToken().is(tok::kw_delete))   // ::delete
1253      return false;
1254
1255    // Annotate typenames and C++ scope specifiers.  If we get one, just
1256    // recurse to handle whatever we get.
1257    if (TryAnnotateTypeOrScopeToken())
1258      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1259                                        TemplateInfo);
1260    // Otherwise, not a type specifier.
1261    return false;
1262
1263  // simple-type-specifier:
1264  case tok::annot_typename: {
1265    if (Tok.getAnnotationValue())
1266      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1267                                     DiagID, Tok.getAnnotationValue());
1268    else
1269      DS.SetTypeSpecError();
1270    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1271    ConsumeToken(); // The typename
1272
1273    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1274    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1275    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1276    // just a normal reference to a typedef name.
1277    if (!Tok.is(tok::less) || !getLang().ObjC1)
1278      return true;
1279
1280    SourceLocation LAngleLoc, EndProtoLoc;
1281    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1282    llvm::SmallVector<SourceLocation, 8> ProtocolLocs;
1283    ParseObjCProtocolReferences(ProtocolDecl, ProtocolLocs, false,
1284                                LAngleLoc, EndProtoLoc);
1285    DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size(),
1286                             ProtocolLocs.data(), LAngleLoc);
1287
1288    DS.SetRangeEnd(EndProtoLoc);
1289    return true;
1290  }
1291
1292  case tok::kw_short:
1293    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1294    break;
1295  case tok::kw_long:
1296    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1297      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1298                                      DiagID);
1299    else
1300      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1301                                      DiagID);
1302    break;
1303  case tok::kw_signed:
1304    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1305    break;
1306  case tok::kw_unsigned:
1307    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1308                                   DiagID);
1309    break;
1310  case tok::kw__Complex:
1311    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1312                                      DiagID);
1313    break;
1314  case tok::kw__Imaginary:
1315    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1316                                      DiagID);
1317    break;
1318  case tok::kw_void:
1319    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1320    break;
1321  case tok::kw_char:
1322    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1323    break;
1324  case tok::kw_int:
1325    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1326    break;
1327  case tok::kw_float:
1328    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1329    break;
1330  case tok::kw_double:
1331    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1332    break;
1333  case tok::kw_wchar_t:
1334    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1335    break;
1336  case tok::kw_char16_t:
1337    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1338    break;
1339  case tok::kw_char32_t:
1340    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1341    break;
1342  case tok::kw_bool:
1343  case tok::kw__Bool:
1344    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1345    break;
1346  case tok::kw__Decimal32:
1347    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1348                                   DiagID);
1349    break;
1350  case tok::kw__Decimal64:
1351    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1352                                   DiagID);
1353    break;
1354  case tok::kw__Decimal128:
1355    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1356                                   DiagID);
1357    break;
1358
1359  // class-specifier:
1360  case tok::kw_class:
1361  case tok::kw_struct:
1362  case tok::kw_union: {
1363    tok::TokenKind Kind = Tok.getKind();
1364    ConsumeToken();
1365    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
1366    return true;
1367  }
1368
1369  // enum-specifier:
1370  case tok::kw_enum:
1371    ConsumeToken();
1372    ParseEnumSpecifier(Loc, DS);
1373    return true;
1374
1375  // cv-qualifier:
1376  case tok::kw_const:
1377    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1378                               DiagID, getLang());
1379    break;
1380  case tok::kw_volatile:
1381    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1382                               DiagID, getLang());
1383    break;
1384  case tok::kw_restrict:
1385    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1386                               DiagID, getLang());
1387    break;
1388
1389  // GNU typeof support.
1390  case tok::kw_typeof:
1391    ParseTypeofSpecifier(DS);
1392    return true;
1393
1394  // C++0x decltype support.
1395  case tok::kw_decltype:
1396    ParseDecltypeSpecifier(DS);
1397    return true;
1398
1399  // C++0x auto support.
1400  case tok::kw_auto:
1401    if (!getLang().CPlusPlus0x)
1402      return false;
1403
1404    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1405    break;
1406  case tok::kw___ptr64:
1407  case tok::kw___w64:
1408  case tok::kw___cdecl:
1409  case tok::kw___stdcall:
1410  case tok::kw___fastcall:
1411    DS.AddAttributes(ParseMicrosoftTypeAttributes());
1412    return true;
1413
1414  default:
1415    // Not a type-specifier; do nothing.
1416    return false;
1417  }
1418
1419  // If the specifier combination wasn't legal, issue a diagnostic.
1420  if (isInvalid) {
1421    assert(PrevSpec && "Method did not return previous specifier!");
1422    // Pick between error or extwarn.
1423    Diag(Tok, DiagID) << PrevSpec;
1424  }
1425  DS.SetRangeEnd(Tok.getLocation());
1426  ConsumeToken(); // whatever we parsed above.
1427  return true;
1428}
1429
1430/// ParseStructDeclaration - Parse a struct declaration without the terminating
1431/// semicolon.
1432///
1433///       struct-declaration:
1434///         specifier-qualifier-list struct-declarator-list
1435/// [GNU]   __extension__ struct-declaration
1436/// [GNU]   specifier-qualifier-list
1437///       struct-declarator-list:
1438///         struct-declarator
1439///         struct-declarator-list ',' struct-declarator
1440/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1441///       struct-declarator:
1442///         declarator
1443/// [GNU]   declarator attributes[opt]
1444///         declarator[opt] ':' constant-expression
1445/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1446///
1447void Parser::
1448ParseStructDeclaration(DeclSpec &DS,
1449                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1450  if (Tok.is(tok::kw___extension__)) {
1451    // __extension__ silences extension warnings in the subexpression.
1452    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1453    ConsumeToken();
1454    return ParseStructDeclaration(DS, Fields);
1455  }
1456
1457  // Parse the common specifier-qualifiers-list piece.
1458  SourceLocation DSStart = Tok.getLocation();
1459  ParseSpecifierQualifierList(DS);
1460
1461  // If there are no declarators, this is a free-standing declaration
1462  // specifier. Let the actions module cope with it.
1463  if (Tok.is(tok::semi)) {
1464    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1465    return;
1466  }
1467
1468  // Read struct-declarators until we find the semicolon.
1469  Fields.push_back(FieldDeclarator(DS));
1470  while (1) {
1471    FieldDeclarator &DeclaratorInfo = Fields.back();
1472
1473    /// struct-declarator: declarator
1474    /// struct-declarator: declarator[opt] ':' constant-expression
1475    if (Tok.isNot(tok::colon))
1476      ParseDeclarator(DeclaratorInfo.D);
1477
1478    if (Tok.is(tok::colon)) {
1479      ConsumeToken();
1480      OwningExprResult Res(ParseConstantExpression());
1481      if (Res.isInvalid())
1482        SkipUntil(tok::semi, true, true);
1483      else
1484        DeclaratorInfo.BitfieldSize = Res.release();
1485    }
1486
1487    // If attributes exist after the declarator, parse them.
1488    if (Tok.is(tok::kw___attribute)) {
1489      SourceLocation Loc;
1490      AttributeList *AttrList = ParseAttributes(&Loc);
1491      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1492    }
1493
1494    // If we don't have a comma, it is either the end of the list (a ';')
1495    // or an error, bail out.
1496    if (Tok.isNot(tok::comma))
1497      return;
1498
1499    // Consume the comma.
1500    ConsumeToken();
1501
1502    // Parse the next declarator.
1503    Fields.push_back(FieldDeclarator(DS));
1504
1505    // Attributes are only allowed on the second declarator.
1506    if (Tok.is(tok::kw___attribute)) {
1507      SourceLocation Loc;
1508      AttributeList *AttrList = ParseAttributes(&Loc);
1509      Fields.back().D.AddAttributes(AttrList, Loc);
1510    }
1511  }
1512}
1513
1514/// ParseStructUnionBody
1515///       struct-contents:
1516///         struct-declaration-list
1517/// [EXT]   empty
1518/// [GNU]   "struct-declaration-list" without terminatoring ';'
1519///       struct-declaration-list:
1520///         struct-declaration
1521///         struct-declaration-list struct-declaration
1522/// [OBC]   '@' 'defs' '(' class-name ')'
1523///
1524void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1525                                  unsigned TagType, DeclPtrTy TagDecl) {
1526  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1527                                        PP.getSourceManager(),
1528                                        "parsing struct/union body");
1529
1530  SourceLocation LBraceLoc = ConsumeBrace();
1531
1532  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1533  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1534
1535  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1536  // C++.
1537  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1538    Diag(Tok, diag::ext_empty_struct_union_enum)
1539      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1540
1541  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1542  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1543
1544  // While we still have something to read, read the declarations in the struct.
1545  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1546    // Each iteration of this loop reads one struct-declaration.
1547
1548    // Check for extraneous top-level semicolon.
1549    if (Tok.is(tok::semi)) {
1550      Diag(Tok, diag::ext_extra_struct_semi)
1551        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1552      ConsumeToken();
1553      continue;
1554    }
1555
1556    // Parse all the comma separated declarators.
1557    DeclSpec DS;
1558    FieldDeclarators.clear();
1559    if (!Tok.is(tok::at)) {
1560      ParseStructDeclaration(DS, FieldDeclarators);
1561
1562      // Convert them all to fields.
1563      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1564        FieldDeclarator &FD = FieldDeclarators[i];
1565        DeclPtrTy Field;
1566        // Install the declarator into the current TagDecl.
1567        if (FD.D.getExtension()) {
1568          // Silences extension warnings
1569          ExtensionRAIIObject O(Diags);
1570          Field = Actions.ActOnField(CurScope, TagDecl,
1571                                     DS.getSourceRange().getBegin(),
1572                                     FD.D, FD.BitfieldSize);
1573        } else {
1574          Field = Actions.ActOnField(CurScope, TagDecl,
1575                                     DS.getSourceRange().getBegin(),
1576                                     FD.D, FD.BitfieldSize);
1577        }
1578        FieldDecls.push_back(Field);
1579      }
1580    } else { // Handle @defs
1581      ConsumeToken();
1582      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1583        Diag(Tok, diag::err_unexpected_at);
1584        SkipUntil(tok::semi, true, true);
1585        continue;
1586      }
1587      ConsumeToken();
1588      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1589      if (!Tok.is(tok::identifier)) {
1590        Diag(Tok, diag::err_expected_ident);
1591        SkipUntil(tok::semi, true, true);
1592        continue;
1593      }
1594      llvm::SmallVector<DeclPtrTy, 16> Fields;
1595      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1596                        Tok.getIdentifierInfo(), Fields);
1597      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1598      ConsumeToken();
1599      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1600    }
1601
1602    if (Tok.is(tok::semi)) {
1603      ConsumeToken();
1604    } else if (Tok.is(tok::r_brace)) {
1605      Diag(Tok, diag::ext_expected_semi_decl_list);
1606      break;
1607    } else {
1608      Diag(Tok, diag::err_expected_semi_decl_list);
1609      // Skip to end of block or statement
1610      SkipUntil(tok::r_brace, true, true);
1611    }
1612  }
1613
1614  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1615
1616  AttributeList *AttrList = 0;
1617  // If attributes exist after struct contents, parse them.
1618  if (Tok.is(tok::kw___attribute))
1619    AttrList = ParseAttributes();
1620
1621  Actions.ActOnFields(CurScope,
1622                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1623                      LBraceLoc, RBraceLoc,
1624                      AttrList);
1625  StructScope.Exit();
1626  Actions.ActOnTagFinishDefinition(CurScope, TagDecl, RBraceLoc);
1627}
1628
1629
1630/// ParseEnumSpecifier
1631///       enum-specifier: [C99 6.7.2.2]
1632///         'enum' identifier[opt] '{' enumerator-list '}'
1633///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1634/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1635///                                                 '}' attributes[opt]
1636///         'enum' identifier
1637/// [GNU]   'enum' attributes[opt] identifier
1638///
1639/// [C++] elaborated-type-specifier:
1640/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1641///
1642void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1643                                AccessSpecifier AS) {
1644  // Parse the tag portion of this.
1645  if (Tok.is(tok::code_completion)) {
1646    // Code completion for an enum name.
1647    Actions.CodeCompleteTag(CurScope, DeclSpec::TST_enum);
1648    ConsumeToken();
1649  }
1650
1651  AttributeList *Attr = 0;
1652  // If attributes exist after tag, parse them.
1653  if (Tok.is(tok::kw___attribute))
1654    Attr = ParseAttributes();
1655
1656  CXXScopeSpec SS;
1657  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS, 0, false)) {
1658    if (Tok.isNot(tok::identifier)) {
1659      Diag(Tok, diag::err_expected_ident);
1660      if (Tok.isNot(tok::l_brace)) {
1661        // Has no name and is not a definition.
1662        // Skip the rest of this declarator, up until the comma or semicolon.
1663        SkipUntil(tok::comma, true);
1664        return;
1665      }
1666    }
1667  }
1668
1669  // Must have either 'enum name' or 'enum {...}'.
1670  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1671    Diag(Tok, diag::err_expected_ident_lbrace);
1672
1673    // Skip the rest of this declarator, up until the comma or semicolon.
1674    SkipUntil(tok::comma, true);
1675    return;
1676  }
1677
1678  // If an identifier is present, consume and remember it.
1679  IdentifierInfo *Name = 0;
1680  SourceLocation NameLoc;
1681  if (Tok.is(tok::identifier)) {
1682    Name = Tok.getIdentifierInfo();
1683    NameLoc = ConsumeToken();
1684  }
1685
1686  // There are three options here.  If we have 'enum foo;', then this is a
1687  // forward declaration.  If we have 'enum foo {...' then this is a
1688  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1689  //
1690  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1691  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1692  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1693  //
1694  Action::TagUseKind TUK;
1695  if (Tok.is(tok::l_brace))
1696    TUK = Action::TUK_Definition;
1697  else if (Tok.is(tok::semi))
1698    TUK = Action::TUK_Declaration;
1699  else
1700    TUK = Action::TUK_Reference;
1701  bool Owned = false;
1702  bool IsDependent = false;
1703  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TUK,
1704                                       StartLoc, SS, Name, NameLoc, Attr, AS,
1705                                       Action::MultiTemplateParamsArg(Actions),
1706                                       Owned, IsDependent);
1707  assert(!IsDependent && "didn't expect dependent enum");
1708
1709  if (Tok.is(tok::l_brace))
1710    ParseEnumBody(StartLoc, TagDecl);
1711
1712  // TODO: semantic analysis on the declspec for enums.
1713  const char *PrevSpec = 0;
1714  unsigned DiagID;
1715  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, DiagID,
1716                         TagDecl.getAs<void>(), Owned))
1717    Diag(StartLoc, DiagID) << PrevSpec;
1718}
1719
1720/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1721///       enumerator-list:
1722///         enumerator
1723///         enumerator-list ',' enumerator
1724///       enumerator:
1725///         enumeration-constant
1726///         enumeration-constant '=' constant-expression
1727///       enumeration-constant:
1728///         identifier
1729///
1730void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1731  // Enter the scope of the enum body and start the definition.
1732  ParseScope EnumScope(this, Scope::DeclScope);
1733  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1734
1735  SourceLocation LBraceLoc = ConsumeBrace();
1736
1737  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1738  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1739    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1740
1741  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1742
1743  DeclPtrTy LastEnumConstDecl;
1744
1745  // Parse the enumerator-list.
1746  while (Tok.is(tok::identifier)) {
1747    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1748    SourceLocation IdentLoc = ConsumeToken();
1749
1750    SourceLocation EqualLoc;
1751    OwningExprResult AssignedVal(Actions);
1752    if (Tok.is(tok::equal)) {
1753      EqualLoc = ConsumeToken();
1754      AssignedVal = ParseConstantExpression();
1755      if (AssignedVal.isInvalid())
1756        SkipUntil(tok::comma, tok::r_brace, true, true);
1757    }
1758
1759    // Install the enumerator constant into EnumDecl.
1760    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1761                                                        LastEnumConstDecl,
1762                                                        IdentLoc, Ident,
1763                                                        EqualLoc,
1764                                                        AssignedVal.release());
1765    EnumConstantDecls.push_back(EnumConstDecl);
1766    LastEnumConstDecl = EnumConstDecl;
1767
1768    if (Tok.isNot(tok::comma))
1769      break;
1770    SourceLocation CommaLoc = ConsumeToken();
1771
1772    if (Tok.isNot(tok::identifier) &&
1773        !(getLang().C99 || getLang().CPlusPlus0x))
1774      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1775        << getLang().CPlusPlus
1776        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1777  }
1778
1779  // Eat the }.
1780  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1781
1782  AttributeList *Attr = 0;
1783  // If attributes exist after the identifier list, parse them.
1784  if (Tok.is(tok::kw___attribute))
1785    Attr = ParseAttributes();
1786
1787  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
1788                        EnumConstantDecls.data(), EnumConstantDecls.size(),
1789                        CurScope, Attr);
1790
1791  EnumScope.Exit();
1792  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl, RBraceLoc);
1793}
1794
1795/// isTypeSpecifierQualifier - Return true if the current token could be the
1796/// start of a type-qualifier-list.
1797bool Parser::isTypeQualifier() const {
1798  switch (Tok.getKind()) {
1799  default: return false;
1800    // type-qualifier
1801  case tok::kw_const:
1802  case tok::kw_volatile:
1803  case tok::kw_restrict:
1804    return true;
1805  }
1806}
1807
1808/// isTypeSpecifierQualifier - Return true if the current token could be the
1809/// start of a specifier-qualifier-list.
1810bool Parser::isTypeSpecifierQualifier() {
1811  switch (Tok.getKind()) {
1812  default: return false;
1813
1814  case tok::identifier:   // foo::bar
1815  case tok::kw_typename:  // typename T::type
1816    // Annotate typenames and C++ scope specifiers.  If we get one, just
1817    // recurse to handle whatever we get.
1818    if (TryAnnotateTypeOrScopeToken())
1819      return isTypeSpecifierQualifier();
1820    // Otherwise, not a type specifier.
1821    return false;
1822
1823  case tok::coloncolon:   // ::foo::bar
1824    if (NextToken().is(tok::kw_new) ||    // ::new
1825        NextToken().is(tok::kw_delete))   // ::delete
1826      return false;
1827
1828    // Annotate typenames and C++ scope specifiers.  If we get one, just
1829    // recurse to handle whatever we get.
1830    if (TryAnnotateTypeOrScopeToken())
1831      return isTypeSpecifierQualifier();
1832    // Otherwise, not a type specifier.
1833    return false;
1834
1835    // GNU attributes support.
1836  case tok::kw___attribute:
1837    // GNU typeof support.
1838  case tok::kw_typeof:
1839
1840    // type-specifiers
1841  case tok::kw_short:
1842  case tok::kw_long:
1843  case tok::kw_signed:
1844  case tok::kw_unsigned:
1845  case tok::kw__Complex:
1846  case tok::kw__Imaginary:
1847  case tok::kw_void:
1848  case tok::kw_char:
1849  case tok::kw_wchar_t:
1850  case tok::kw_char16_t:
1851  case tok::kw_char32_t:
1852  case tok::kw_int:
1853  case tok::kw_float:
1854  case tok::kw_double:
1855  case tok::kw_bool:
1856  case tok::kw__Bool:
1857  case tok::kw__Decimal32:
1858  case tok::kw__Decimal64:
1859  case tok::kw__Decimal128:
1860
1861    // struct-or-union-specifier (C99) or class-specifier (C++)
1862  case tok::kw_class:
1863  case tok::kw_struct:
1864  case tok::kw_union:
1865    // enum-specifier
1866  case tok::kw_enum:
1867
1868    // type-qualifier
1869  case tok::kw_const:
1870  case tok::kw_volatile:
1871  case tok::kw_restrict:
1872
1873    // typedef-name
1874  case tok::annot_typename:
1875    return true;
1876
1877    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1878  case tok::less:
1879    return getLang().ObjC1;
1880
1881  case tok::kw___cdecl:
1882  case tok::kw___stdcall:
1883  case tok::kw___fastcall:
1884  case tok::kw___w64:
1885  case tok::kw___ptr64:
1886    return true;
1887  }
1888}
1889
1890/// isDeclarationSpecifier() - Return true if the current token is part of a
1891/// declaration specifier.
1892bool Parser::isDeclarationSpecifier() {
1893  switch (Tok.getKind()) {
1894  default: return false;
1895
1896  case tok::identifier:   // foo::bar
1897    // Unfortunate hack to support "Class.factoryMethod" notation.
1898    if (getLang().ObjC1 && NextToken().is(tok::period))
1899      return false;
1900    // Fall through
1901
1902  case tok::kw_typename: // typename T::type
1903    // Annotate typenames and C++ scope specifiers.  If we get one, just
1904    // recurse to handle whatever we get.
1905    if (TryAnnotateTypeOrScopeToken())
1906      return isDeclarationSpecifier();
1907    // Otherwise, not a declaration specifier.
1908    return false;
1909  case tok::coloncolon:   // ::foo::bar
1910    if (NextToken().is(tok::kw_new) ||    // ::new
1911        NextToken().is(tok::kw_delete))   // ::delete
1912      return false;
1913
1914    // Annotate typenames and C++ scope specifiers.  If we get one, just
1915    // recurse to handle whatever we get.
1916    if (TryAnnotateTypeOrScopeToken())
1917      return isDeclarationSpecifier();
1918    // Otherwise, not a declaration specifier.
1919    return false;
1920
1921    // storage-class-specifier
1922  case tok::kw_typedef:
1923  case tok::kw_extern:
1924  case tok::kw___private_extern__:
1925  case tok::kw_static:
1926  case tok::kw_auto:
1927  case tok::kw_register:
1928  case tok::kw___thread:
1929
1930    // type-specifiers
1931  case tok::kw_short:
1932  case tok::kw_long:
1933  case tok::kw_signed:
1934  case tok::kw_unsigned:
1935  case tok::kw__Complex:
1936  case tok::kw__Imaginary:
1937  case tok::kw_void:
1938  case tok::kw_char:
1939  case tok::kw_wchar_t:
1940  case tok::kw_char16_t:
1941  case tok::kw_char32_t:
1942
1943  case tok::kw_int:
1944  case tok::kw_float:
1945  case tok::kw_double:
1946  case tok::kw_bool:
1947  case tok::kw__Bool:
1948  case tok::kw__Decimal32:
1949  case tok::kw__Decimal64:
1950  case tok::kw__Decimal128:
1951
1952    // struct-or-union-specifier (C99) or class-specifier (C++)
1953  case tok::kw_class:
1954  case tok::kw_struct:
1955  case tok::kw_union:
1956    // enum-specifier
1957  case tok::kw_enum:
1958
1959    // type-qualifier
1960  case tok::kw_const:
1961  case tok::kw_volatile:
1962  case tok::kw_restrict:
1963
1964    // function-specifier
1965  case tok::kw_inline:
1966  case tok::kw_virtual:
1967  case tok::kw_explicit:
1968
1969    // typedef-name
1970  case tok::annot_typename:
1971
1972    // GNU typeof support.
1973  case tok::kw_typeof:
1974
1975    // GNU attributes.
1976  case tok::kw___attribute:
1977    return true;
1978
1979    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1980  case tok::less:
1981    return getLang().ObjC1;
1982
1983  case tok::kw___declspec:
1984  case tok::kw___cdecl:
1985  case tok::kw___stdcall:
1986  case tok::kw___fastcall:
1987  case tok::kw___w64:
1988  case tok::kw___ptr64:
1989  case tok::kw___forceinline:
1990    return true;
1991  }
1992}
1993
1994
1995/// ParseTypeQualifierListOpt
1996///       type-qualifier-list: [C99 6.7.5]
1997///         type-qualifier
1998/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1999///         type-qualifier-list type-qualifier
2000/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
2001///
2002void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
2003  while (1) {
2004    bool isInvalid = false;
2005    const char *PrevSpec = 0;
2006    unsigned DiagID = 0;
2007    SourceLocation Loc = Tok.getLocation();
2008
2009    switch (Tok.getKind()) {
2010    case tok::kw_const:
2011      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
2012                                 getLang());
2013      break;
2014    case tok::kw_volatile:
2015      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2016                                 getLang());
2017      break;
2018    case tok::kw_restrict:
2019      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2020                                 getLang());
2021      break;
2022    case tok::kw___w64:
2023    case tok::kw___ptr64:
2024    case tok::kw___cdecl:
2025    case tok::kw___stdcall:
2026    case tok::kw___fastcall:
2027      if (AttributesAllowed) {
2028        DS.AddAttributes(ParseMicrosoftTypeAttributes());
2029        continue;
2030      }
2031      goto DoneWithTypeQuals;
2032    case tok::kw___attribute:
2033      if (AttributesAllowed) {
2034        DS.AddAttributes(ParseAttributes());
2035        continue; // do *not* consume the next token!
2036      }
2037      // otherwise, FALL THROUGH!
2038    default:
2039      DoneWithTypeQuals:
2040      // If this is not a type-qualifier token, we're done reading type
2041      // qualifiers.  First verify that DeclSpec's are consistent.
2042      DS.Finish(Diags, PP);
2043      return;
2044    }
2045
2046    // If the specifier combination wasn't legal, issue a diagnostic.
2047    if (isInvalid) {
2048      assert(PrevSpec && "Method did not return previous specifier!");
2049      Diag(Tok, DiagID) << PrevSpec;
2050    }
2051    ConsumeToken();
2052  }
2053}
2054
2055
2056/// ParseDeclarator - Parse and verify a newly-initialized declarator.
2057///
2058void Parser::ParseDeclarator(Declarator &D) {
2059  /// This implements the 'declarator' production in the C grammar, then checks
2060  /// for well-formedness and issues diagnostics.
2061  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2062}
2063
2064/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
2065/// is parsed by the function passed to it. Pass null, and the direct-declarator
2066/// isn't parsed at all, making this function effectively parse the C++
2067/// ptr-operator production.
2068///
2069///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
2070/// [C]     pointer[opt] direct-declarator
2071/// [C++]   direct-declarator
2072/// [C++]   ptr-operator declarator
2073///
2074///       pointer: [C99 6.7.5]
2075///         '*' type-qualifier-list[opt]
2076///         '*' type-qualifier-list[opt] pointer
2077///
2078///       ptr-operator:
2079///         '*' cv-qualifier-seq[opt]
2080///         '&'
2081/// [C++0x] '&&'
2082/// [GNU]   '&' restrict[opt] attributes[opt]
2083/// [GNU?]  '&&' restrict[opt] attributes[opt]
2084///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2085void Parser::ParseDeclaratorInternal(Declarator &D,
2086                                     DirectDeclParseFunction DirectDeclParser) {
2087
2088  if (Diags.hasAllExtensionsSilenced())
2089    D.setExtension();
2090  // C++ member pointers start with a '::' or a nested-name.
2091  // Member pointers get special handling, since there's no place for the
2092  // scope spec in the generic path below.
2093  if (getLang().CPlusPlus &&
2094      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2095       Tok.is(tok::annot_cxxscope))) {
2096    CXXScopeSpec SS;
2097    if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, true)) {
2098      if (Tok.isNot(tok::star)) {
2099        // The scope spec really belongs to the direct-declarator.
2100        D.getCXXScopeSpec() = SS;
2101        if (DirectDeclParser)
2102          (this->*DirectDeclParser)(D);
2103        return;
2104      }
2105
2106      SourceLocation Loc = ConsumeToken();
2107      D.SetRangeEnd(Loc);
2108      DeclSpec DS;
2109      ParseTypeQualifierListOpt(DS);
2110      D.ExtendWithDeclSpec(DS);
2111
2112      // Recurse to parse whatever is left.
2113      ParseDeclaratorInternal(D, DirectDeclParser);
2114
2115      // Sema will have to catch (syntactically invalid) pointers into global
2116      // scope. It has to catch pointers into namespace scope anyway.
2117      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2118                                                      Loc, DS.TakeAttributes()),
2119                    /* Don't replace range end. */SourceLocation());
2120      return;
2121    }
2122  }
2123
2124  tok::TokenKind Kind = Tok.getKind();
2125  // Not a pointer, C++ reference, or block.
2126  if (Kind != tok::star && Kind != tok::caret &&
2127      (Kind != tok::amp || !getLang().CPlusPlus) &&
2128      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2129      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2130    if (DirectDeclParser)
2131      (this->*DirectDeclParser)(D);
2132    return;
2133  }
2134
2135  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2136  // '&&' -> rvalue reference
2137  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2138  D.SetRangeEnd(Loc);
2139
2140  if (Kind == tok::star || Kind == tok::caret) {
2141    // Is a pointer.
2142    DeclSpec DS;
2143
2144    ParseTypeQualifierListOpt(DS);
2145    D.ExtendWithDeclSpec(DS);
2146
2147    // Recursively parse the declarator.
2148    ParseDeclaratorInternal(D, DirectDeclParser);
2149    if (Kind == tok::star)
2150      // Remember that we parsed a pointer type, and remember the type-quals.
2151      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2152                                                DS.TakeAttributes()),
2153                    SourceLocation());
2154    else
2155      // Remember that we parsed a Block type, and remember the type-quals.
2156      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2157                                                     Loc, DS.TakeAttributes()),
2158                    SourceLocation());
2159  } else {
2160    // Is a reference
2161    DeclSpec DS;
2162
2163    // Complain about rvalue references in C++03, but then go on and build
2164    // the declarator.
2165    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2166      Diag(Loc, diag::err_rvalue_reference);
2167
2168    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2169    // cv-qualifiers are introduced through the use of a typedef or of a
2170    // template type argument, in which case the cv-qualifiers are ignored.
2171    //
2172    // [GNU] Retricted references are allowed.
2173    // [GNU] Attributes on references are allowed.
2174    ParseTypeQualifierListOpt(DS);
2175    D.ExtendWithDeclSpec(DS);
2176
2177    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2178      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2179        Diag(DS.getConstSpecLoc(),
2180             diag::err_invalid_reference_qualifier_application) << "const";
2181      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2182        Diag(DS.getVolatileSpecLoc(),
2183             diag::err_invalid_reference_qualifier_application) << "volatile";
2184    }
2185
2186    // Recursively parse the declarator.
2187    ParseDeclaratorInternal(D, DirectDeclParser);
2188
2189    if (D.getNumTypeObjects() > 0) {
2190      // C++ [dcl.ref]p4: There shall be no references to references.
2191      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2192      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2193        if (const IdentifierInfo *II = D.getIdentifier())
2194          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2195           << II;
2196        else
2197          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2198            << "type name";
2199
2200        // Once we've complained about the reference-to-reference, we
2201        // can go ahead and build the (technically ill-formed)
2202        // declarator: reference collapsing will take care of it.
2203      }
2204    }
2205
2206    // Remember that we parsed a reference type. It doesn't have type-quals.
2207    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2208                                                DS.TakeAttributes(),
2209                                                Kind == tok::amp),
2210                  SourceLocation());
2211  }
2212}
2213
2214/// ParseDirectDeclarator
2215///       direct-declarator: [C99 6.7.5]
2216/// [C99]   identifier
2217///         '(' declarator ')'
2218/// [GNU]   '(' attributes declarator ')'
2219/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2220/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2221/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2222/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2223/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2224///         direct-declarator '(' parameter-type-list ')'
2225///         direct-declarator '(' identifier-list[opt] ')'
2226/// [GNU]   direct-declarator '(' parameter-forward-declarations
2227///                    parameter-type-list[opt] ')'
2228/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2229///                    cv-qualifier-seq[opt] exception-specification[opt]
2230/// [C++]   declarator-id
2231///
2232///       declarator-id: [C++ 8]
2233///         id-expression
2234///         '::'[opt] nested-name-specifier[opt] type-name
2235///
2236///       id-expression: [C++ 5.1]
2237///         unqualified-id
2238///         qualified-id
2239///
2240///       unqualified-id: [C++ 5.1]
2241///         identifier
2242///         operator-function-id
2243///         conversion-function-id
2244///          '~' class-name
2245///         template-id
2246///
2247void Parser::ParseDirectDeclarator(Declarator &D) {
2248  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2249
2250  if (getLang().CPlusPlus) {
2251    if (D.mayHaveIdentifier()) {
2252      // ParseDeclaratorInternal might already have parsed the scope.
2253      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
2254        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), /*ObjectType=*/0,
2255                                       true);
2256      if (afterCXXScope) {
2257        // Change the declaration context for name lookup, until this function
2258        // is exited (and the declarator has been parsed).
2259        DeclScopeObj.EnterDeclaratorScope();
2260      }
2261
2262      if (Tok.is(tok::identifier)) {
2263        assert(Tok.getIdentifierInfo() && "Not an identifier?");
2264
2265        // If this identifier is the name of the current class, it's a
2266        // constructor name.
2267        if (!D.getDeclSpec().hasTypeSpecifier() &&
2268            Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)) {
2269          CXXScopeSpec *SS = afterCXXScope? &D.getCXXScopeSpec() : 0;
2270          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
2271                                               Tok.getLocation(), CurScope, SS),
2272                           Tok.getLocation());
2273        // This is a normal identifier.
2274        } else
2275          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2276        ConsumeToken();
2277        goto PastIdentifier;
2278      } else if (Tok.is(tok::annot_template_id)) {
2279        TemplateIdAnnotation *TemplateId
2280          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
2281
2282        D.setTemplateId(TemplateId);
2283        ConsumeToken();
2284        goto PastIdentifier;
2285      } else if (Tok.is(tok::kw_operator)) {
2286        SourceLocation OperatorLoc = Tok.getLocation();
2287        SourceLocation EndLoc;
2288
2289        // First try the name of an overloaded operator
2290        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
2291          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
2292        } else {
2293          // This must be a conversion function (C++ [class.conv.fct]).
2294          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
2295            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
2296          else {
2297            D.SetIdentifier(0, Tok.getLocation());
2298          }
2299        }
2300        goto PastIdentifier;
2301      } else if (Tok.is(tok::tilde)) {
2302        // This should be a C++ destructor.
2303        SourceLocation TildeLoc = ConsumeToken();
2304        if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
2305          // FIXME: Inaccurate.
2306          SourceLocation NameLoc = Tok.getLocation();
2307          SourceLocation EndLoc;
2308          CXXScopeSpec *SS = afterCXXScope? &D.getCXXScopeSpec() : 0;
2309          TypeResult Type = ParseClassName(EndLoc, SS, true);
2310          if (Type.isInvalid())
2311            D.SetIdentifier(0, TildeLoc);
2312          else
2313            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2314        } else {
2315          Diag(Tok, diag::err_destructor_class_name);
2316          D.SetIdentifier(0, TildeLoc);
2317        }
2318        goto PastIdentifier;
2319      }
2320
2321      // If we reached this point, token is not identifier and not '~'.
2322
2323      if (afterCXXScope) {
2324        Diag(Tok, diag::err_expected_unqualified_id);
2325        D.SetIdentifier(0, Tok.getLocation());
2326        D.setInvalidType(true);
2327        goto PastIdentifier;
2328      }
2329    }
2330  }
2331
2332  // If we reached this point, we are either in C/ObjC or the token didn't
2333  // satisfy any of the C++-specific checks.
2334  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2335    assert(!getLang().CPlusPlus &&
2336           "There's a C++-specific check for tok::identifier above");
2337    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2338    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2339    ConsumeToken();
2340  } else if (Tok.is(tok::l_paren)) {
2341    // direct-declarator: '(' declarator ')'
2342    // direct-declarator: '(' attributes declarator ')'
2343    // Example: 'char (*X)'   or 'int (*XX)(void)'
2344    ParseParenDeclarator(D);
2345  } else if (D.mayOmitIdentifier()) {
2346    // This could be something simple like "int" (in which case the declarator
2347    // portion is empty), if an abstract-declarator is allowed.
2348    D.SetIdentifier(0, Tok.getLocation());
2349  } else {
2350    if (D.getContext() == Declarator::MemberContext)
2351      Diag(Tok, diag::err_expected_member_name_or_semi)
2352        << D.getDeclSpec().getSourceRange();
2353    else if (getLang().CPlusPlus)
2354      Diag(Tok, diag::err_expected_unqualified_id);
2355    else
2356      Diag(Tok, diag::err_expected_ident_lparen);
2357    D.SetIdentifier(0, Tok.getLocation());
2358    D.setInvalidType(true);
2359  }
2360
2361 PastIdentifier:
2362  assert(D.isPastIdentifier() &&
2363         "Haven't past the location of the identifier yet?");
2364
2365  while (1) {
2366    if (Tok.is(tok::l_paren)) {
2367      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2368      // In such a case, check if we actually have a function declarator; if it
2369      // is not, the declarator has been fully parsed.
2370      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2371        // When not in file scope, warn for ambiguous function declarators, just
2372        // in case the author intended it as a variable definition.
2373        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2374        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2375          break;
2376      }
2377      ParseFunctionDeclarator(ConsumeParen(), D);
2378    } else if (Tok.is(tok::l_square)) {
2379      ParseBracketDeclarator(D);
2380    } else {
2381      break;
2382    }
2383  }
2384}
2385
2386/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2387/// only called before the identifier, so these are most likely just grouping
2388/// parens for precedence.  If we find that these are actually function
2389/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2390///
2391///       direct-declarator:
2392///         '(' declarator ')'
2393/// [GNU]   '(' attributes declarator ')'
2394///         direct-declarator '(' parameter-type-list ')'
2395///         direct-declarator '(' identifier-list[opt] ')'
2396/// [GNU]   direct-declarator '(' parameter-forward-declarations
2397///                    parameter-type-list[opt] ')'
2398///
2399void Parser::ParseParenDeclarator(Declarator &D) {
2400  SourceLocation StartLoc = ConsumeParen();
2401  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2402
2403  // Eat any attributes before we look at whether this is a grouping or function
2404  // declarator paren.  If this is a grouping paren, the attribute applies to
2405  // the type being built up, for example:
2406  //     int (__attribute__(()) *x)(long y)
2407  // If this ends up not being a grouping paren, the attribute applies to the
2408  // first argument, for example:
2409  //     int (__attribute__(()) int x)
2410  // In either case, we need to eat any attributes to be able to determine what
2411  // sort of paren this is.
2412  //
2413  AttributeList *AttrList = 0;
2414  bool RequiresArg = false;
2415  if (Tok.is(tok::kw___attribute)) {
2416    AttrList = ParseAttributes();
2417
2418    // We require that the argument list (if this is a non-grouping paren) be
2419    // present even if the attribute list was empty.
2420    RequiresArg = true;
2421  }
2422  // Eat any Microsoft extensions.
2423  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2424       Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___w64) ||
2425       Tok.is(tok::kw___ptr64)) {
2426    AttrList = ParseMicrosoftTypeAttributes(AttrList);
2427  }
2428
2429  // If we haven't past the identifier yet (or where the identifier would be
2430  // stored, if this is an abstract declarator), then this is probably just
2431  // grouping parens. However, if this could be an abstract-declarator, then
2432  // this could also be the start of function arguments (consider 'void()').
2433  bool isGrouping;
2434
2435  if (!D.mayOmitIdentifier()) {
2436    // If this can't be an abstract-declarator, this *must* be a grouping
2437    // paren, because we haven't seen the identifier yet.
2438    isGrouping = true;
2439  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2440             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2441             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2442    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2443    // considered to be a type, not a K&R identifier-list.
2444    isGrouping = false;
2445  } else {
2446    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2447    isGrouping = true;
2448  }
2449
2450  // If this is a grouping paren, handle:
2451  // direct-declarator: '(' declarator ')'
2452  // direct-declarator: '(' attributes declarator ')'
2453  if (isGrouping) {
2454    bool hadGroupingParens = D.hasGroupingParens();
2455    D.setGroupingParens(true);
2456    if (AttrList)
2457      D.AddAttributes(AttrList, SourceLocation());
2458
2459    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2460    // Match the ')'.
2461    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2462
2463    D.setGroupingParens(hadGroupingParens);
2464    D.SetRangeEnd(Loc);
2465    return;
2466  }
2467
2468  // Okay, if this wasn't a grouping paren, it must be the start of a function
2469  // argument list.  Recognize that this declarator will never have an
2470  // identifier (and remember where it would have been), then call into
2471  // ParseFunctionDeclarator to handle of argument list.
2472  D.SetIdentifier(0, Tok.getLocation());
2473
2474  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2475}
2476
2477/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2478/// declarator D up to a paren, which indicates that we are parsing function
2479/// arguments.
2480///
2481/// If AttrList is non-null, then the caller parsed those arguments immediately
2482/// after the open paren - they should be considered to be the first argument of
2483/// a parameter.  If RequiresArg is true, then the first argument of the
2484/// function is required to be present and required to not be an identifier
2485/// list.
2486///
2487/// This method also handles this portion of the grammar:
2488///       parameter-type-list: [C99 6.7.5]
2489///         parameter-list
2490///         parameter-list ',' '...'
2491/// [C++]   parameter-list '...'
2492///
2493///       parameter-list: [C99 6.7.5]
2494///         parameter-declaration
2495///         parameter-list ',' parameter-declaration
2496///
2497///       parameter-declaration: [C99 6.7.5]
2498///         declaration-specifiers declarator
2499/// [C++]   declaration-specifiers declarator '=' assignment-expression
2500/// [GNU]   declaration-specifiers declarator attributes
2501///         declaration-specifiers abstract-declarator[opt]
2502/// [C++]   declaration-specifiers abstract-declarator[opt]
2503///           '=' assignment-expression
2504/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2505///
2506/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2507/// and "exception-specification[opt]".
2508///
2509void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2510                                     AttributeList *AttrList,
2511                                     bool RequiresArg) {
2512  // lparen is already consumed!
2513  assert(D.isPastIdentifier() && "Should not call before identifier!");
2514
2515  // This parameter list may be empty.
2516  if (Tok.is(tok::r_paren)) {
2517    if (RequiresArg) {
2518      Diag(Tok, diag::err_argument_required_after_attribute);
2519      delete AttrList;
2520    }
2521
2522    SourceLocation RParenLoc = ConsumeParen();  // Eat the closing ')'.
2523    SourceLocation EndLoc = RParenLoc;
2524
2525    // cv-qualifier-seq[opt].
2526    DeclSpec DS;
2527    bool hasExceptionSpec = false;
2528    SourceLocation ThrowLoc;
2529    bool hasAnyExceptionSpec = false;
2530    llvm::SmallVector<TypeTy*, 2> Exceptions;
2531    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2532    if (getLang().CPlusPlus) {
2533      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2534      if (!DS.getSourceRange().getEnd().isInvalid())
2535        EndLoc = DS.getSourceRange().getEnd();
2536
2537      // Parse exception-specification[opt].
2538      if (Tok.is(tok::kw_throw)) {
2539        hasExceptionSpec = true;
2540        ThrowLoc = Tok.getLocation();
2541        ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
2542                                    hasAnyExceptionSpec);
2543        assert(Exceptions.size() == ExceptionRanges.size() &&
2544               "Produced different number of exception types and ranges.");
2545      }
2546    }
2547
2548    // Remember that we parsed a function type, and remember the attributes.
2549    // int() -> no prototype, no '...'.
2550    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2551                                               /*variadic*/ false,
2552                                               SourceLocation(),
2553                                               /*arglist*/ 0, 0,
2554                                               DS.getTypeQualifiers(),
2555                                               hasExceptionSpec, ThrowLoc,
2556                                               hasAnyExceptionSpec,
2557                                               Exceptions.data(),
2558                                               ExceptionRanges.data(),
2559                                               Exceptions.size(),
2560                                               LParenLoc, RParenLoc, D),
2561                  EndLoc);
2562    return;
2563  }
2564
2565  // Alternatively, this parameter list may be an identifier list form for a
2566  // K&R-style function:  void foo(a,b,c)
2567  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2568    if (!TryAnnotateTypeOrScopeToken()) {
2569      // K&R identifier lists can't have typedefs as identifiers, per
2570      // C99 6.7.5.3p11.
2571      if (RequiresArg) {
2572        Diag(Tok, diag::err_argument_required_after_attribute);
2573        delete AttrList;
2574      }
2575      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2576      // normal declarators, not for abstract-declarators.
2577      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2578    }
2579  }
2580
2581  // Finally, a normal, non-empty parameter type list.
2582
2583  // Build up an array of information about the parsed arguments.
2584  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2585
2586  // Enter function-declaration scope, limiting any declarators to the
2587  // function prototype scope, including parameter declarators.
2588  ParseScope PrototypeScope(this,
2589                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2590
2591  bool IsVariadic = false;
2592  SourceLocation EllipsisLoc;
2593  while (1) {
2594    if (Tok.is(tok::ellipsis)) {
2595      IsVariadic = true;
2596      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2597      break;
2598    }
2599
2600    SourceLocation DSStart = Tok.getLocation();
2601
2602    // Parse the declaration-specifiers.
2603    DeclSpec DS;
2604
2605    // If the caller parsed attributes for the first argument, add them now.
2606    if (AttrList) {
2607      DS.AddAttributes(AttrList);
2608      AttrList = 0;  // Only apply the attributes to the first parameter.
2609    }
2610    ParseDeclarationSpecifiers(DS);
2611
2612    // Parse the declarator.  This is "PrototypeContext", because we must
2613    // accept either 'declarator' or 'abstract-declarator' here.
2614    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2615    ParseDeclarator(ParmDecl);
2616
2617    // Parse GNU attributes, if present.
2618    if (Tok.is(tok::kw___attribute)) {
2619      SourceLocation Loc;
2620      AttributeList *AttrList = ParseAttributes(&Loc);
2621      ParmDecl.AddAttributes(AttrList, Loc);
2622    }
2623
2624    // Remember this parsed parameter in ParamInfo.
2625    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2626
2627    // DefArgToks is used when the parsing of default arguments needs
2628    // to be delayed.
2629    CachedTokens *DefArgToks = 0;
2630
2631    // If no parameter was specified, verify that *something* was specified,
2632    // otherwise we have a missing type and identifier.
2633    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2634        ParmDecl.getNumTypeObjects() == 0) {
2635      // Completely missing, emit error.
2636      Diag(DSStart, diag::err_missing_param);
2637    } else {
2638      // Otherwise, we have something.  Add it and let semantic analysis try
2639      // to grok it and add the result to the ParamInfo we are building.
2640
2641      // Inform the actions module about the parameter declarator, so it gets
2642      // added to the current scope.
2643      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2644
2645      // Parse the default argument, if any. We parse the default
2646      // arguments in all dialects; the semantic analysis in
2647      // ActOnParamDefaultArgument will reject the default argument in
2648      // C.
2649      if (Tok.is(tok::equal)) {
2650        SourceLocation EqualLoc = Tok.getLocation();
2651
2652        // Parse the default argument
2653        if (D.getContext() == Declarator::MemberContext) {
2654          // If we're inside a class definition, cache the tokens
2655          // corresponding to the default argument. We'll actually parse
2656          // them when we see the end of the class definition.
2657          // FIXME: Templates will require something similar.
2658          // FIXME: Can we use a smart pointer for Toks?
2659          DefArgToks = new CachedTokens;
2660
2661          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2662                                    tok::semi, false)) {
2663            delete DefArgToks;
2664            DefArgToks = 0;
2665            Actions.ActOnParamDefaultArgumentError(Param);
2666          } else
2667            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
2668                                                (*DefArgToks)[1].getLocation());
2669        } else {
2670          // Consume the '='.
2671          ConsumeToken();
2672
2673          OwningExprResult DefArgResult(ParseAssignmentExpression());
2674          if (DefArgResult.isInvalid()) {
2675            Actions.ActOnParamDefaultArgumentError(Param);
2676            SkipUntil(tok::comma, tok::r_paren, true, true);
2677          } else {
2678            // Inform the actions module about the default argument
2679            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2680                                              move(DefArgResult));
2681          }
2682        }
2683      }
2684
2685      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2686                                          ParmDecl.getIdentifierLoc(), Param,
2687                                          DefArgToks));
2688    }
2689
2690    // If the next token is a comma, consume it and keep reading arguments.
2691    if (Tok.isNot(tok::comma)) {
2692      if (Tok.is(tok::ellipsis)) {
2693        IsVariadic = true;
2694        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2695
2696        if (!getLang().CPlusPlus) {
2697          // We have ellipsis without a preceding ',', which is ill-formed
2698          // in C. Complain and provide the fix.
2699          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
2700            << CodeModificationHint::CreateInsertion(EllipsisLoc, ", ");
2701        }
2702      }
2703
2704      break;
2705    }
2706
2707    // Consume the comma.
2708    ConsumeToken();
2709  }
2710
2711  // Leave prototype scope.
2712  PrototypeScope.Exit();
2713
2714  // If we have the closing ')', eat it.
2715  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2716  SourceLocation EndLoc = RParenLoc;
2717
2718  DeclSpec DS;
2719  bool hasExceptionSpec = false;
2720  SourceLocation ThrowLoc;
2721  bool hasAnyExceptionSpec = false;
2722  llvm::SmallVector<TypeTy*, 2> Exceptions;
2723  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2724  if (getLang().CPlusPlus) {
2725    // Parse cv-qualifier-seq[opt].
2726    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2727      if (!DS.getSourceRange().getEnd().isInvalid())
2728        EndLoc = DS.getSourceRange().getEnd();
2729
2730    // Parse exception-specification[opt].
2731    if (Tok.is(tok::kw_throw)) {
2732      hasExceptionSpec = true;
2733      ThrowLoc = Tok.getLocation();
2734      ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
2735                                  hasAnyExceptionSpec);
2736      assert(Exceptions.size() == ExceptionRanges.size() &&
2737             "Produced different number of exception types and ranges.");
2738    }
2739  }
2740
2741  // Remember that we parsed a function type, and remember the attributes.
2742  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2743                                             EllipsisLoc,
2744                                             ParamInfo.data(), ParamInfo.size(),
2745                                             DS.getTypeQualifiers(),
2746                                             hasExceptionSpec, ThrowLoc,
2747                                             hasAnyExceptionSpec,
2748                                             Exceptions.data(),
2749                                             ExceptionRanges.data(),
2750                                             Exceptions.size(),
2751                                             LParenLoc, RParenLoc, D),
2752                EndLoc);
2753}
2754
2755/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2756/// we found a K&R-style identifier list instead of a type argument list.  The
2757/// current token is known to be the first identifier in the list.
2758///
2759///       identifier-list: [C99 6.7.5]
2760///         identifier
2761///         identifier-list ',' identifier
2762///
2763void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2764                                                   Declarator &D) {
2765  // Build up an array of information about the parsed arguments.
2766  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2767  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2768
2769  // If there was no identifier specified for the declarator, either we are in
2770  // an abstract-declarator, or we are in a parameter declarator which was found
2771  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2772  // diagnose this.
2773  if (!D.getIdentifier())
2774    Diag(Tok, diag::ext_ident_list_in_param);
2775
2776  // Tok is known to be the first identifier in the list.  Remember this
2777  // identifier in ParamInfo.
2778  ParamsSoFar.insert(Tok.getIdentifierInfo());
2779  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2780                                                 Tok.getLocation(),
2781                                                 DeclPtrTy()));
2782
2783  ConsumeToken();  // eat the first identifier.
2784
2785  while (Tok.is(tok::comma)) {
2786    // Eat the comma.
2787    ConsumeToken();
2788
2789    // If this isn't an identifier, report the error and skip until ')'.
2790    if (Tok.isNot(tok::identifier)) {
2791      Diag(Tok, diag::err_expected_ident);
2792      SkipUntil(tok::r_paren);
2793      return;
2794    }
2795
2796    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2797
2798    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2799    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2800      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2801
2802    // Verify that the argument identifier has not already been mentioned.
2803    if (!ParamsSoFar.insert(ParmII)) {
2804      Diag(Tok, diag::err_param_redefinition) << ParmII;
2805    } else {
2806      // Remember this identifier in ParamInfo.
2807      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2808                                                     Tok.getLocation(),
2809                                                     DeclPtrTy()));
2810    }
2811
2812    // Eat the identifier.
2813    ConsumeToken();
2814  }
2815
2816  // If we have the closing ')', eat it and we're done.
2817  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2818
2819  // Remember that we parsed a function type, and remember the attributes.  This
2820  // function type is always a K&R style function type, which is not varargs and
2821  // has no prototype.
2822  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2823                                             SourceLocation(),
2824                                             &ParamInfo[0], ParamInfo.size(),
2825                                             /*TypeQuals*/0,
2826                                             /*exception*/false,
2827                                             SourceLocation(), false, 0, 0, 0,
2828                                             LParenLoc, RLoc, D),
2829                RLoc);
2830}
2831
2832/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2833/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2834/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2835/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2836/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2837void Parser::ParseBracketDeclarator(Declarator &D) {
2838  SourceLocation StartLoc = ConsumeBracket();
2839
2840  // C array syntax has many features, but by-far the most common is [] and [4].
2841  // This code does a fast path to handle some of the most obvious cases.
2842  if (Tok.getKind() == tok::r_square) {
2843    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2844    // Remember that we parsed the empty array type.
2845    OwningExprResult NumElements(Actions);
2846    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
2847                                            StartLoc, EndLoc),
2848                  EndLoc);
2849    return;
2850  } else if (Tok.getKind() == tok::numeric_constant &&
2851             GetLookAheadToken(1).is(tok::r_square)) {
2852    // [4] is very common.  Parse the numeric constant expression.
2853    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2854    ConsumeToken();
2855
2856    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2857
2858    // If there was an error parsing the assignment-expression, recover.
2859    if (ExprRes.isInvalid())
2860      ExprRes.release();  // Deallocate expr, just use [].
2861
2862    // Remember that we parsed a array type, and remember its features.
2863    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(),
2864                                            StartLoc, EndLoc),
2865                  EndLoc);
2866    return;
2867  }
2868
2869  // If valid, this location is the position where we read the 'static' keyword.
2870  SourceLocation StaticLoc;
2871  if (Tok.is(tok::kw_static))
2872    StaticLoc = ConsumeToken();
2873
2874  // If there is a type-qualifier-list, read it now.
2875  // Type qualifiers in an array subscript are a C99 feature.
2876  DeclSpec DS;
2877  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2878
2879  // If we haven't already read 'static', check to see if there is one after the
2880  // type-qualifier-list.
2881  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2882    StaticLoc = ConsumeToken();
2883
2884  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2885  bool isStar = false;
2886  OwningExprResult NumElements(Actions);
2887
2888  // Handle the case where we have '[*]' as the array size.  However, a leading
2889  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2890  // the the token after the star is a ']'.  Since stars in arrays are
2891  // infrequent, use of lookahead is not costly here.
2892  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2893    ConsumeToken();  // Eat the '*'.
2894
2895    if (StaticLoc.isValid()) {
2896      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2897      StaticLoc = SourceLocation();  // Drop the static.
2898    }
2899    isStar = true;
2900  } else if (Tok.isNot(tok::r_square)) {
2901    // Note, in C89, this production uses the constant-expr production instead
2902    // of assignment-expr.  The only difference is that assignment-expr allows
2903    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2904    // are not i-c-e's, so we don't need to distinguish between the two here.
2905
2906    // Parse the constant-expression or assignment-expression now (depending
2907    // on dialect).
2908    if (getLang().CPlusPlus)
2909      NumElements = ParseConstantExpression();
2910    else
2911      NumElements = ParseAssignmentExpression();
2912  }
2913
2914  // If there was an error parsing the assignment-expression, recover.
2915  if (NumElements.isInvalid()) {
2916    D.setInvalidType(true);
2917    // If the expression was invalid, skip it.
2918    SkipUntil(tok::r_square);
2919    return;
2920  }
2921
2922  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2923
2924  // Remember that we parsed a array type, and remember its features.
2925  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2926                                          StaticLoc.isValid(), isStar,
2927                                          NumElements.release(),
2928                                          StartLoc, EndLoc),
2929                EndLoc);
2930}
2931
2932/// [GNU]   typeof-specifier:
2933///           typeof ( expressions )
2934///           typeof ( type-name )
2935/// [GNU/C++] typeof unary-expression
2936///
2937void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2938  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2939  Token OpTok = Tok;
2940  SourceLocation StartLoc = ConsumeToken();
2941
2942  bool isCastExpr;
2943  TypeTy *CastTy;
2944  SourceRange CastRange;
2945  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
2946                                                               isCastExpr,
2947                                                               CastTy,
2948                                                               CastRange);
2949
2950  if (CastRange.getEnd().isInvalid())
2951    // FIXME: Not accurate, the range gets one token more than it should.
2952    DS.SetRangeEnd(Tok.getLocation());
2953  else
2954    DS.SetRangeEnd(CastRange.getEnd());
2955
2956  if (isCastExpr) {
2957    if (!CastTy) {
2958      DS.SetTypeSpecError();
2959      return;
2960    }
2961
2962    const char *PrevSpec = 0;
2963    unsigned DiagID;
2964    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2965    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2966                           DiagID, CastTy))
2967      Diag(StartLoc, DiagID) << PrevSpec;
2968    return;
2969  }
2970
2971  // If we get here, the operand to the typeof was an expresion.
2972  if (Operand.isInvalid()) {
2973    DS.SetTypeSpecError();
2974    return;
2975  }
2976
2977  const char *PrevSpec = 0;
2978  unsigned DiagID;
2979  // Check for duplicate type specifiers (e.g. "int typeof(int)").
2980  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2981                         DiagID, Operand.release()))
2982    Diag(StartLoc, DiagID) << PrevSpec;
2983}
2984