ParseDecl.cpp revision 7ec419aa8f4ff83bc8ff707b45b9bec47fef3a1a
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Basic/OpenCL.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/PrettyDeclStackTrace.h"
20#include "RAIIObjectsForParser.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringSwitch.h"
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// C99 6.7: Declarations.
28//===----------------------------------------------------------------------===//
29
30/// ParseTypeName
31///       type-name: [C99 6.7.6]
32///         specifier-qualifier-list abstract-declarator[opt]
33///
34/// Called type-id in C++.
35TypeResult Parser::ParseTypeName(SourceRange *Range,
36                                 Declarator::TheContext Context,
37                                 AccessSpecifier AS,
38                                 Decl **OwnedType) {
39  // Parse the common declaration-specifiers piece.
40  DeclSpec DS(AttrFactory);
41  ParseSpecifierQualifierList(DS, AS);
42  if (OwnedType)
43    *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
44
45  // Parse the abstract-declarator, if present.
46  Declarator DeclaratorInfo(DS, Context);
47  ParseDeclarator(DeclaratorInfo);
48  if (Range)
49    *Range = DeclaratorInfo.getSourceRange();
50
51  if (DeclaratorInfo.isInvalidType())
52    return true;
53
54  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
55}
56
57
58/// isAttributeLateParsed - Return true if the attribute has arguments that
59/// require late parsing.
60static bool isAttributeLateParsed(const IdentifierInfo &II) {
61    return llvm::StringSwitch<bool>(II.getName())
62#include "clang/Parse/AttrLateParsed.inc"
63        .Default(false);
64}
65
66
67/// ParseGNUAttributes - Parse a non-empty attributes list.
68///
69/// [GNU] attributes:
70///         attribute
71///         attributes attribute
72///
73/// [GNU]  attribute:
74///          '__attribute__' '(' '(' attribute-list ')' ')'
75///
76/// [GNU]  attribute-list:
77///          attrib
78///          attribute_list ',' attrib
79///
80/// [GNU]  attrib:
81///          empty
82///          attrib-name
83///          attrib-name '(' identifier ')'
84///          attrib-name '(' identifier ',' nonempty-expr-list ')'
85///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
86///
87/// [GNU]  attrib-name:
88///          identifier
89///          typespec
90///          typequal
91///          storageclass
92///
93/// FIXME: The GCC grammar/code for this construct implies we need two
94/// token lookahead. Comment from gcc: "If they start with an identifier
95/// which is followed by a comma or close parenthesis, then the arguments
96/// start with that identifier; otherwise they are an expression list."
97///
98/// GCC does not require the ',' between attribs in an attribute-list.
99///
100/// At the moment, I am not doing 2 token lookahead. I am also unaware of
101/// any attributes that don't work (based on my limited testing). Most
102/// attributes are very simple in practice. Until we find a bug, I don't see
103/// a pressing need to implement the 2 token lookahead.
104
105void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
106                                SourceLocation *endLoc,
107                                LateParsedAttrList *LateAttrs) {
108  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
109
110  while (Tok.is(tok::kw___attribute)) {
111    ConsumeToken();
112    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
113                         "attribute")) {
114      SkipUntil(tok::r_paren, true); // skip until ) or ;
115      return;
116    }
117    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
118      SkipUntil(tok::r_paren, true); // skip until ) or ;
119      return;
120    }
121    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
122    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
123           Tok.is(tok::comma)) {
124      if (Tok.is(tok::comma)) {
125        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
126        ConsumeToken();
127        continue;
128      }
129      // we have an identifier or declaration specifier (const, int, etc.)
130      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
131      SourceLocation AttrNameLoc = ConsumeToken();
132
133      if (Tok.is(tok::l_paren)) {
134        // handle "parameterized" attributes
135        if (LateAttrs && isAttributeLateParsed(*AttrName)) {
136          LateParsedAttribute *LA =
137            new LateParsedAttribute(this, *AttrName, AttrNameLoc);
138          LateAttrs->push_back(LA);
139
140          // Attributes in a class are parsed at the end of the class, along
141          // with other late-parsed declarations.
142          if (!ClassStack.empty())
143            getCurrentClass().LateParsedDeclarations.push_back(LA);
144
145          // consume everything up to and including the matching right parens
146          ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
147
148          Token Eof;
149          Eof.startToken();
150          Eof.setLocation(Tok.getLocation());
151          LA->Toks.push_back(Eof);
152        } else {
153          ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
154        }
155      } else {
156        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
157                     0, SourceLocation(), 0, 0);
158      }
159    }
160    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
161      SkipUntil(tok::r_paren, false);
162    SourceLocation Loc = Tok.getLocation();
163    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
164      SkipUntil(tok::r_paren, false);
165    }
166    if (endLoc)
167      *endLoc = Loc;
168  }
169}
170
171
172/// Parse the arguments to a parameterized GNU attribute
173void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
174                                   SourceLocation AttrNameLoc,
175                                   ParsedAttributes &Attrs,
176                                   SourceLocation *EndLoc) {
177
178  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
179
180  // Availability attributes have their own grammar.
181  if (AttrName->isStr("availability")) {
182    ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
183    return;
184  }
185  // Thread safety attributes fit into the FIXME case above, so we
186  // just parse the arguments as a list of expressions
187  if (IsThreadSafetyAttribute(AttrName->getName())) {
188    ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
189    return;
190  }
191
192  ConsumeParen(); // ignore the left paren loc for now
193
194  IdentifierInfo *ParmName = 0;
195  SourceLocation ParmLoc;
196  bool BuiltinType = false;
197
198  switch (Tok.getKind()) {
199  case tok::kw_char:
200  case tok::kw_wchar_t:
201  case tok::kw_char16_t:
202  case tok::kw_char32_t:
203  case tok::kw_bool:
204  case tok::kw_short:
205  case tok::kw_int:
206  case tok::kw_long:
207  case tok::kw___int64:
208  case tok::kw_signed:
209  case tok::kw_unsigned:
210  case tok::kw_float:
211  case tok::kw_double:
212  case tok::kw_void:
213  case tok::kw_typeof:
214    // __attribute__(( vec_type_hint(char) ))
215    // FIXME: Don't just discard the builtin type token.
216    ConsumeToken();
217    BuiltinType = true;
218    break;
219
220  case tok::identifier:
221    ParmName = Tok.getIdentifierInfo();
222    ParmLoc = ConsumeToken();
223    break;
224
225  default:
226    break;
227  }
228
229  ExprVector ArgExprs(Actions);
230
231  if (!BuiltinType &&
232      (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
233    // Eat the comma.
234    if (ParmLoc.isValid())
235      ConsumeToken();
236
237    // Parse the non-empty comma-separated list of expressions.
238    while (1) {
239      ExprResult ArgExpr(ParseAssignmentExpression());
240      if (ArgExpr.isInvalid()) {
241        SkipUntil(tok::r_paren);
242        return;
243      }
244      ArgExprs.push_back(ArgExpr.release());
245      if (Tok.isNot(tok::comma))
246        break;
247      ConsumeToken(); // Eat the comma, move to the next argument
248    }
249  }
250  else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
251    if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
252                          tok::greater)) {
253      while (Tok.is(tok::identifier)) {
254        ConsumeToken();
255        if (Tok.is(tok::greater))
256          break;
257        if (Tok.is(tok::comma)) {
258          ConsumeToken();
259          continue;
260        }
261      }
262      if (Tok.isNot(tok::greater))
263        Diag(Tok, diag::err_iboutletcollection_with_protocol);
264      SkipUntil(tok::r_paren, false, true); // skip until ')'
265    }
266  }
267
268  SourceLocation RParen = Tok.getLocation();
269  if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
270    AttributeList *attr =
271      Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
272                   ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
273    if (BuiltinType && attr->getKind() == AttributeList::AT_IBOutletCollection)
274      Diag(Tok, diag::err_iboutletcollection_builtintype);
275  }
276}
277
278
279/// ParseMicrosoftDeclSpec - Parse an __declspec construct
280///
281/// [MS] decl-specifier:
282///             __declspec ( extended-decl-modifier-seq )
283///
284/// [MS] extended-decl-modifier-seq:
285///             extended-decl-modifier[opt]
286///             extended-decl-modifier extended-decl-modifier-seq
287
288void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
289  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
290
291  ConsumeToken();
292  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
293                       "declspec")) {
294    SkipUntil(tok::r_paren, true); // skip until ) or ;
295    return;
296  }
297
298  while (Tok.getIdentifierInfo()) {
299    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
300    SourceLocation AttrNameLoc = ConsumeToken();
301
302    // FIXME: Remove this when we have proper __declspec(property()) support.
303    // Just skip everything inside property().
304    if (AttrName->getName() == "property") {
305      ConsumeParen();
306      SkipUntil(tok::r_paren);
307    }
308    if (Tok.is(tok::l_paren)) {
309      ConsumeParen();
310      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
311      // correctly.
312      ExprResult ArgExpr(ParseAssignmentExpression());
313      if (!ArgExpr.isInvalid()) {
314        Expr *ExprList = ArgExpr.take();
315        attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
316                     SourceLocation(), &ExprList, 1, true);
317      }
318      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
319        SkipUntil(tok::r_paren, false);
320    } else {
321      attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
322                   0, SourceLocation(), 0, 0, true);
323    }
324  }
325  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
326    SkipUntil(tok::r_paren, false);
327  return;
328}
329
330void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
331  // Treat these like attributes
332  // FIXME: Allow Sema to distinguish between these and real attributes!
333  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
334         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
335         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
336         Tok.is(tok::kw___ptr32) ||
337         Tok.is(tok::kw___unaligned)) {
338    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
339    SourceLocation AttrNameLoc = ConsumeToken();
340    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
341        Tok.is(tok::kw___ptr32))
342      // FIXME: Support these properly!
343      continue;
344    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
345                 SourceLocation(), 0, 0, true);
346  }
347}
348
349void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
350  // Treat these like attributes
351  while (Tok.is(tok::kw___pascal)) {
352    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
353    SourceLocation AttrNameLoc = ConsumeToken();
354    attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
355                 SourceLocation(), 0, 0, true);
356  }
357}
358
359void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
360  // Treat these like attributes
361  while (Tok.is(tok::kw___kernel)) {
362    SourceLocation AttrNameLoc = ConsumeToken();
363    attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
364                 AttrNameLoc, 0, AttrNameLoc, 0,
365                 SourceLocation(), 0, 0, false);
366  }
367}
368
369void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
370  SourceLocation Loc = Tok.getLocation();
371  switch(Tok.getKind()) {
372    // OpenCL qualifiers:
373    case tok::kw___private:
374    case tok::kw_private:
375      DS.getAttributes().addNewInteger(
376          Actions.getASTContext(),
377          PP.getIdentifierInfo("address_space"), Loc, 0);
378      break;
379
380    case tok::kw___global:
381      DS.getAttributes().addNewInteger(
382          Actions.getASTContext(),
383          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
384      break;
385
386    case tok::kw___local:
387      DS.getAttributes().addNewInteger(
388          Actions.getASTContext(),
389          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
390      break;
391
392    case tok::kw___constant:
393      DS.getAttributes().addNewInteger(
394          Actions.getASTContext(),
395          PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
396      break;
397
398    case tok::kw___read_only:
399      DS.getAttributes().addNewInteger(
400          Actions.getASTContext(),
401          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
402      break;
403
404    case tok::kw___write_only:
405      DS.getAttributes().addNewInteger(
406          Actions.getASTContext(),
407          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
408      break;
409
410    case tok::kw___read_write:
411      DS.getAttributes().addNewInteger(
412          Actions.getASTContext(),
413          PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
414      break;
415    default: break;
416  }
417}
418
419/// \brief Parse a version number.
420///
421/// version:
422///   simple-integer
423///   simple-integer ',' simple-integer
424///   simple-integer ',' simple-integer ',' simple-integer
425VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
426  Range = Tok.getLocation();
427
428  if (!Tok.is(tok::numeric_constant)) {
429    Diag(Tok, diag::err_expected_version);
430    SkipUntil(tok::comma, tok::r_paren, true, true, true);
431    return VersionTuple();
432  }
433
434  // Parse the major (and possibly minor and subminor) versions, which
435  // are stored in the numeric constant. We utilize a quirk of the
436  // lexer, which is that it handles something like 1.2.3 as a single
437  // numeric constant, rather than two separate tokens.
438  SmallString<512> Buffer;
439  Buffer.resize(Tok.getLength()+1);
440  const char *ThisTokBegin = &Buffer[0];
441
442  // Get the spelling of the token, which eliminates trigraphs, etc.
443  bool Invalid = false;
444  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
445  if (Invalid)
446    return VersionTuple();
447
448  // Parse the major version.
449  unsigned AfterMajor = 0;
450  unsigned Major = 0;
451  while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
452    Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
453    ++AfterMajor;
454  }
455
456  if (AfterMajor == 0) {
457    Diag(Tok, diag::err_expected_version);
458    SkipUntil(tok::comma, tok::r_paren, true, true, true);
459    return VersionTuple();
460  }
461
462  if (AfterMajor == ActualLength) {
463    ConsumeToken();
464
465    // We only had a single version component.
466    if (Major == 0) {
467      Diag(Tok, diag::err_zero_version);
468      return VersionTuple();
469    }
470
471    return VersionTuple(Major);
472  }
473
474  if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
475    Diag(Tok, diag::err_expected_version);
476    SkipUntil(tok::comma, tok::r_paren, true, true, true);
477    return VersionTuple();
478  }
479
480  // Parse the minor version.
481  unsigned AfterMinor = AfterMajor + 1;
482  unsigned Minor = 0;
483  while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
484    Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
485    ++AfterMinor;
486  }
487
488  if (AfterMinor == ActualLength) {
489    ConsumeToken();
490
491    // We had major.minor.
492    if (Major == 0 && Minor == 0) {
493      Diag(Tok, diag::err_zero_version);
494      return VersionTuple();
495    }
496
497    return VersionTuple(Major, Minor);
498  }
499
500  // If what follows is not a '.', we have a problem.
501  if (ThisTokBegin[AfterMinor] != '.') {
502    Diag(Tok, diag::err_expected_version);
503    SkipUntil(tok::comma, tok::r_paren, true, true, true);
504    return VersionTuple();
505  }
506
507  // Parse the subminor version.
508  unsigned AfterSubminor = AfterMinor + 1;
509  unsigned Subminor = 0;
510  while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
511    Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
512    ++AfterSubminor;
513  }
514
515  if (AfterSubminor != ActualLength) {
516    Diag(Tok, diag::err_expected_version);
517    SkipUntil(tok::comma, tok::r_paren, true, true, true);
518    return VersionTuple();
519  }
520  ConsumeToken();
521  return VersionTuple(Major, Minor, Subminor);
522}
523
524/// \brief Parse the contents of the "availability" attribute.
525///
526/// availability-attribute:
527///   'availability' '(' platform ',' version-arg-list, opt-message')'
528///
529/// platform:
530///   identifier
531///
532/// version-arg-list:
533///   version-arg
534///   version-arg ',' version-arg-list
535///
536/// version-arg:
537///   'introduced' '=' version
538///   'deprecated' '=' version
539///   'removed' = version
540///   'unavailable'
541/// opt-message:
542///   'message' '=' <string>
543void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
544                                        SourceLocation AvailabilityLoc,
545                                        ParsedAttributes &attrs,
546                                        SourceLocation *endLoc) {
547  SourceLocation PlatformLoc;
548  IdentifierInfo *Platform = 0;
549
550  enum { Introduced, Deprecated, Obsoleted, Unknown };
551  AvailabilityChange Changes[Unknown];
552  ExprResult MessageExpr;
553
554  // Opening '('.
555  BalancedDelimiterTracker T(*this, tok::l_paren);
556  if (T.consumeOpen()) {
557    Diag(Tok, diag::err_expected_lparen);
558    return;
559  }
560
561  // Parse the platform name,
562  if (Tok.isNot(tok::identifier)) {
563    Diag(Tok, diag::err_availability_expected_platform);
564    SkipUntil(tok::r_paren);
565    return;
566  }
567  Platform = Tok.getIdentifierInfo();
568  PlatformLoc = ConsumeToken();
569
570  // Parse the ',' following the platform name.
571  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
572    return;
573
574  // If we haven't grabbed the pointers for the identifiers
575  // "introduced", "deprecated", and "obsoleted", do so now.
576  if (!Ident_introduced) {
577    Ident_introduced = PP.getIdentifierInfo("introduced");
578    Ident_deprecated = PP.getIdentifierInfo("deprecated");
579    Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
580    Ident_unavailable = PP.getIdentifierInfo("unavailable");
581    Ident_message = PP.getIdentifierInfo("message");
582  }
583
584  // Parse the set of introductions/deprecations/removals.
585  SourceLocation UnavailableLoc;
586  do {
587    if (Tok.isNot(tok::identifier)) {
588      Diag(Tok, diag::err_availability_expected_change);
589      SkipUntil(tok::r_paren);
590      return;
591    }
592    IdentifierInfo *Keyword = Tok.getIdentifierInfo();
593    SourceLocation KeywordLoc = ConsumeToken();
594
595    if (Keyword == Ident_unavailable) {
596      if (UnavailableLoc.isValid()) {
597        Diag(KeywordLoc, diag::err_availability_redundant)
598          << Keyword << SourceRange(UnavailableLoc);
599      }
600      UnavailableLoc = KeywordLoc;
601
602      if (Tok.isNot(tok::comma))
603        break;
604
605      ConsumeToken();
606      continue;
607    }
608
609    if (Tok.isNot(tok::equal)) {
610      Diag(Tok, diag::err_expected_equal_after)
611        << Keyword;
612      SkipUntil(tok::r_paren);
613      return;
614    }
615    ConsumeToken();
616    if (Keyword == Ident_message) {
617      if (!isTokenStringLiteral()) {
618        Diag(Tok, diag::err_expected_string_literal);
619        SkipUntil(tok::r_paren);
620        return;
621      }
622      MessageExpr = ParseStringLiteralExpression();
623      break;
624    }
625
626    SourceRange VersionRange;
627    VersionTuple Version = ParseVersionTuple(VersionRange);
628
629    if (Version.empty()) {
630      SkipUntil(tok::r_paren);
631      return;
632    }
633
634    unsigned Index;
635    if (Keyword == Ident_introduced)
636      Index = Introduced;
637    else if (Keyword == Ident_deprecated)
638      Index = Deprecated;
639    else if (Keyword == Ident_obsoleted)
640      Index = Obsoleted;
641    else
642      Index = Unknown;
643
644    if (Index < Unknown) {
645      if (!Changes[Index].KeywordLoc.isInvalid()) {
646        Diag(KeywordLoc, diag::err_availability_redundant)
647          << Keyword
648          << SourceRange(Changes[Index].KeywordLoc,
649                         Changes[Index].VersionRange.getEnd());
650      }
651
652      Changes[Index].KeywordLoc = KeywordLoc;
653      Changes[Index].Version = Version;
654      Changes[Index].VersionRange = VersionRange;
655    } else {
656      Diag(KeywordLoc, diag::err_availability_unknown_change)
657        << Keyword << VersionRange;
658    }
659
660    if (Tok.isNot(tok::comma))
661      break;
662
663    ConsumeToken();
664  } while (true);
665
666  // Closing ')'.
667  if (T.consumeClose())
668    return;
669
670  if (endLoc)
671    *endLoc = T.getCloseLocation();
672
673  // The 'unavailable' availability cannot be combined with any other
674  // availability changes. Make sure that hasn't happened.
675  if (UnavailableLoc.isValid()) {
676    bool Complained = false;
677    for (unsigned Index = Introduced; Index != Unknown; ++Index) {
678      if (Changes[Index].KeywordLoc.isValid()) {
679        if (!Complained) {
680          Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
681            << SourceRange(Changes[Index].KeywordLoc,
682                           Changes[Index].VersionRange.getEnd());
683          Complained = true;
684        }
685
686        // Clear out the availability.
687        Changes[Index] = AvailabilityChange();
688      }
689    }
690  }
691
692  // Record this attribute
693  attrs.addNew(&Availability,
694               SourceRange(AvailabilityLoc, T.getCloseLocation()),
695               0, AvailabilityLoc,
696               Platform, PlatformLoc,
697               Changes[Introduced],
698               Changes[Deprecated],
699               Changes[Obsoleted],
700               UnavailableLoc, MessageExpr.take(),
701               false, false);
702}
703
704
705// Late Parsed Attributes:
706// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
707
708void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
709
710void Parser::LateParsedClass::ParseLexedAttributes() {
711  Self->ParseLexedAttributes(*Class);
712}
713
714void Parser::LateParsedAttribute::ParseLexedAttributes() {
715  Self->ParseLexedAttribute(*this, true, false);
716}
717
718/// Wrapper class which calls ParseLexedAttribute, after setting up the
719/// scope appropriately.
720void Parser::ParseLexedAttributes(ParsingClass &Class) {
721  // Deal with templates
722  // FIXME: Test cases to make sure this does the right thing for templates.
723  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
724  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
725                                HasTemplateScope);
726  if (HasTemplateScope)
727    Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
728
729  // Set or update the scope flags to include Scope::ThisScope.
730  bool AlreadyHasClassScope = Class.TopLevelClass;
731  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
732  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
733  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
734
735  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i) {
736    Class.LateParsedDeclarations[i]->ParseLexedAttributes();
737  }
738}
739
740
741/// \brief Parse all attributes in LAs, and attach them to Decl D.
742void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
743                                     bool EnterScope, bool OnDefinition) {
744  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
745    LAs[i]->addDecl(D);
746    ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
747  }
748  LAs.clear();
749}
750
751
752/// \brief Finish parsing an attribute for which parsing was delayed.
753/// This will be called at the end of parsing a class declaration
754/// for each LateParsedAttribute. We consume the saved tokens and
755/// create an attribute with the arguments filled in. We add this
756/// to the Attribute list for the decl.
757void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
758                                 bool EnterScope, bool OnDefinition) {
759  // Save the current token position.
760  SourceLocation OrigLoc = Tok.getLocation();
761
762  // Append the current token at the end of the new token stream so that it
763  // doesn't get lost.
764  LA.Toks.push_back(Tok);
765  PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
766  // Consume the previously pushed token.
767  ConsumeAnyToken();
768
769  if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) {
770    Diag(Tok, diag::warn_attribute_on_function_definition)
771      << LA.AttrName.getName();
772  }
773
774  ParsedAttributes Attrs(AttrFactory);
775  SourceLocation endLoc;
776
777  if (LA.Decls.size() == 1) {
778    Decl *D = LA.Decls[0];
779
780    // If the Decl is templatized, add template parameters to scope.
781    bool HasTemplateScope = EnterScope && D->isTemplateDecl();
782    ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
783    if (HasTemplateScope)
784      Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
785
786    // If the Decl is on a function, add function parameters to the scope.
787    bool HasFunctionScope = EnterScope && D->isFunctionOrFunctionTemplate();
788    ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
789    if (HasFunctionScope)
790      Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
791
792    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
793
794    if (HasFunctionScope) {
795      Actions.ActOnExitFunctionContext();
796      FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
797    }
798    if (HasTemplateScope) {
799      TempScope.Exit();
800    }
801  } else if (LA.Decls.size() > 0) {
802    // If there are multiple decls, then the decl cannot be within the
803    // function scope.
804    ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
805  } else {
806    Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
807  }
808
809  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) {
810    Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
811  }
812
813  if (Tok.getLocation() != OrigLoc) {
814    // Due to a parsing error, we either went over the cached tokens or
815    // there are still cached tokens left, so we skip the leftover tokens.
816    // Since this is an uncommon situation that should be avoided, use the
817    // expensive isBeforeInTranslationUnit call.
818    if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
819                                                        OrigLoc))
820    while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
821        ConsumeAnyToken();
822  }
823}
824
825/// \brief Wrapper around a case statement checking if AttrName is
826/// one of the thread safety attributes
827bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
828  return llvm::StringSwitch<bool>(AttrName)
829      .Case("guarded_by", true)
830      .Case("guarded_var", true)
831      .Case("pt_guarded_by", true)
832      .Case("pt_guarded_var", true)
833      .Case("lockable", true)
834      .Case("scoped_lockable", true)
835      .Case("no_thread_safety_analysis", true)
836      .Case("acquired_after", true)
837      .Case("acquired_before", true)
838      .Case("exclusive_lock_function", true)
839      .Case("shared_lock_function", true)
840      .Case("exclusive_trylock_function", true)
841      .Case("shared_trylock_function", true)
842      .Case("unlock_function", true)
843      .Case("lock_returned", true)
844      .Case("locks_excluded", true)
845      .Case("exclusive_locks_required", true)
846      .Case("shared_locks_required", true)
847      .Default(false);
848}
849
850/// \brief Parse the contents of thread safety attributes. These
851/// should always be parsed as an expression list.
852///
853/// We need to special case the parsing due to the fact that if the first token
854/// of the first argument is an identifier, the main parse loop will store
855/// that token as a "parameter" and the rest of
856/// the arguments will be added to a list of "arguments". However,
857/// subsequent tokens in the first argument are lost. We instead parse each
858/// argument as an expression and add all arguments to the list of "arguments".
859/// In future, we will take advantage of this special case to also
860/// deal with some argument scoping issues here (for example, referring to a
861/// function parameter in the attribute on that function).
862void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
863                                        SourceLocation AttrNameLoc,
864                                        ParsedAttributes &Attrs,
865                                        SourceLocation *EndLoc) {
866  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
867
868  BalancedDelimiterTracker T(*this, tok::l_paren);
869  T.consumeOpen();
870
871  ExprVector ArgExprs(Actions);
872  bool ArgExprsOk = true;
873
874  // now parse the list of expressions
875  while (Tok.isNot(tok::r_paren)) {
876    ExprResult ArgExpr(ParseAssignmentExpression());
877    if (ArgExpr.isInvalid()) {
878      ArgExprsOk = false;
879      T.consumeClose();
880      break;
881    } else {
882      ArgExprs.push_back(ArgExpr.release());
883    }
884    if (Tok.isNot(tok::comma))
885      break;
886    ConsumeToken(); // Eat the comma, move to the next argument
887  }
888  // Match the ')'.
889  if (ArgExprsOk && !T.consumeClose()) {
890    Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
891                 ArgExprs.take(), ArgExprs.size());
892  }
893  if (EndLoc)
894    *EndLoc = T.getCloseLocation();
895}
896
897void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
898  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
899    << attrs.Range;
900}
901
902/// ParseDeclaration - Parse a full 'declaration', which consists of
903/// declaration-specifiers, some number of declarators, and a semicolon.
904/// 'Context' should be a Declarator::TheContext value.  This returns the
905/// location of the semicolon in DeclEnd.
906///
907///       declaration: [C99 6.7]
908///         block-declaration ->
909///           simple-declaration
910///           others                   [FIXME]
911/// [C++]   template-declaration
912/// [C++]   namespace-definition
913/// [C++]   using-directive
914/// [C++]   using-declaration
915/// [C++0x/C11] static_assert-declaration
916///         others... [FIXME]
917///
918Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
919                                                unsigned Context,
920                                                SourceLocation &DeclEnd,
921                                          ParsedAttributesWithRange &attrs) {
922  ParenBraceBracketBalancer BalancerRAIIObj(*this);
923  // Must temporarily exit the objective-c container scope for
924  // parsing c none objective-c decls.
925  ObjCDeclContextSwitch ObjCDC(*this);
926
927  Decl *SingleDecl = 0;
928  Decl *OwnedType = 0;
929  switch (Tok.getKind()) {
930  case tok::kw_template:
931  case tok::kw_export:
932    ProhibitAttributes(attrs);
933    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
934    break;
935  case tok::kw_inline:
936    // Could be the start of an inline namespace. Allowed as an ext in C++03.
937    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
938      ProhibitAttributes(attrs);
939      SourceLocation InlineLoc = ConsumeToken();
940      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
941      break;
942    }
943    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
944                                  true);
945  case tok::kw_namespace:
946    ProhibitAttributes(attrs);
947    SingleDecl = ParseNamespace(Context, DeclEnd);
948    break;
949  case tok::kw_using:
950    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
951                                                  DeclEnd, attrs, &OwnedType);
952    break;
953  case tok::kw_static_assert:
954  case tok::kw__Static_assert:
955    ProhibitAttributes(attrs);
956    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
957    break;
958  default:
959    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
960  }
961
962  // This routine returns a DeclGroup, if the thing we parsed only contains a
963  // single decl, convert it now. Alias declarations can also declare a type;
964  // include that too if it is present.
965  return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
966}
967
968///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
969///         declaration-specifiers init-declarator-list[opt] ';'
970///[C90/C++]init-declarator-list ';'                             [TODO]
971/// [OMP]   threadprivate-directive                              [TODO]
972///
973///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
974///         attribute-specifier-seq[opt] type-specifier-seq declarator
975///
976/// If RequireSemi is false, this does not check for a ';' at the end of the
977/// declaration.  If it is true, it checks for and eats it.
978///
979/// If FRI is non-null, we might be parsing a for-range-declaration instead
980/// of a simple-declaration. If we find that we are, we also parse the
981/// for-range-initializer, and place it here.
982Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
983                                                      unsigned Context,
984                                                      SourceLocation &DeclEnd,
985                                                      ParsedAttributes &attrs,
986                                                      bool RequireSemi,
987                                                      ForRangeInit *FRI) {
988  // Parse the common declaration-specifiers piece.
989  ParsingDeclSpec DS(*this);
990  DS.takeAttributesFrom(attrs);
991
992  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
993                             getDeclSpecContextFromDeclaratorContext(Context));
994
995  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
996  // declaration-specifiers init-declarator-list[opt] ';'
997  if (Tok.is(tok::semi)) {
998    if (RequireSemi) ConsumeToken();
999    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1000                                                       DS);
1001    DS.complete(TheDecl);
1002    return Actions.ConvertDeclToDeclGroup(TheDecl);
1003  }
1004
1005  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
1006}
1007
1008/// Returns true if this might be the start of a declarator, or a common typo
1009/// for a declarator.
1010bool Parser::MightBeDeclarator(unsigned Context) {
1011  switch (Tok.getKind()) {
1012  case tok::annot_cxxscope:
1013  case tok::annot_template_id:
1014  case tok::caret:
1015  case tok::code_completion:
1016  case tok::coloncolon:
1017  case tok::ellipsis:
1018  case tok::kw___attribute:
1019  case tok::kw_operator:
1020  case tok::l_paren:
1021  case tok::star:
1022    return true;
1023
1024  case tok::amp:
1025  case tok::ampamp:
1026    return getLang().CPlusPlus;
1027
1028  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1029    return Context == Declarator::MemberContext && getLang().CPlusPlus0x &&
1030           NextToken().is(tok::l_square);
1031
1032  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1033    return Context == Declarator::MemberContext || getLang().CPlusPlus;
1034
1035  case tok::identifier:
1036    switch (NextToken().getKind()) {
1037    case tok::code_completion:
1038    case tok::coloncolon:
1039    case tok::comma:
1040    case tok::equal:
1041    case tok::equalequal: // Might be a typo for '='.
1042    case tok::kw_alignas:
1043    case tok::kw_asm:
1044    case tok::kw___attribute:
1045    case tok::l_brace:
1046    case tok::l_paren:
1047    case tok::l_square:
1048    case tok::less:
1049    case tok::r_brace:
1050    case tok::r_paren:
1051    case tok::r_square:
1052    case tok::semi:
1053      return true;
1054
1055    case tok::colon:
1056      // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1057      // and in block scope it's probably a label. Inside a class definition,
1058      // this is a bit-field.
1059      return Context == Declarator::MemberContext ||
1060             (getLang().CPlusPlus && Context == Declarator::FileContext);
1061
1062    case tok::identifier: // Possible virt-specifier.
1063      return getLang().CPlusPlus0x && isCXX0XVirtSpecifier(NextToken());
1064
1065    default:
1066      return false;
1067    }
1068
1069  default:
1070    return false;
1071  }
1072}
1073
1074/// ParseDeclGroup - Having concluded that this is either a function
1075/// definition or a group of object declarations, actually parse the
1076/// result.
1077Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1078                                              unsigned Context,
1079                                              bool AllowFunctionDefinitions,
1080                                              SourceLocation *DeclEnd,
1081                                              ForRangeInit *FRI) {
1082  // Parse the first declarator.
1083  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1084  ParseDeclarator(D);
1085
1086  // Bail out if the first declarator didn't seem well-formed.
1087  if (!D.hasName() && !D.mayOmitIdentifier()) {
1088    // Skip until ; or }.
1089    SkipUntil(tok::r_brace, true, true);
1090    if (Tok.is(tok::semi))
1091      ConsumeToken();
1092    return DeclGroupPtrTy();
1093  }
1094
1095  // Save late-parsed attributes for now; they need to be parsed in the
1096  // appropriate function scope after the function Decl has been constructed.
1097  LateParsedAttrList LateParsedAttrs;
1098  if (D.isFunctionDeclarator())
1099    MaybeParseGNUAttributes(D, &LateParsedAttrs);
1100
1101  // Check to see if we have a function *definition* which must have a body.
1102  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
1103      // Look at the next token to make sure that this isn't a function
1104      // declaration.  We have to check this because __attribute__ might be the
1105      // start of a function definition in GCC-extended K&R C.
1106      !isDeclarationAfterDeclarator()) {
1107
1108    if (isStartOfFunctionDefinition(D)) {
1109      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1110        Diag(Tok, diag::err_function_declared_typedef);
1111
1112        // Recover by treating the 'typedef' as spurious.
1113        DS.ClearStorageClassSpecs();
1114      }
1115
1116      Decl *TheDecl =
1117        ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1118      return Actions.ConvertDeclToDeclGroup(TheDecl);
1119    }
1120
1121    if (isDeclarationSpecifier()) {
1122      // If there is an invalid declaration specifier right after the function
1123      // prototype, then we must be in a missing semicolon case where this isn't
1124      // actually a body.  Just fall through into the code that handles it as a
1125      // prototype, and let the top-level code handle the erroneous declspec
1126      // where it would otherwise expect a comma or semicolon.
1127    } else {
1128      Diag(Tok, diag::err_expected_fn_body);
1129      SkipUntil(tok::semi);
1130      return DeclGroupPtrTy();
1131    }
1132  }
1133
1134  if (ParseAsmAttributesAfterDeclarator(D))
1135    return DeclGroupPtrTy();
1136
1137  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1138  // must parse and analyze the for-range-initializer before the declaration is
1139  // analyzed.
1140  if (FRI && Tok.is(tok::colon)) {
1141    FRI->ColonLoc = ConsumeToken();
1142    if (Tok.is(tok::l_brace))
1143      FRI->RangeExpr = ParseBraceInitializer();
1144    else
1145      FRI->RangeExpr = ParseExpression();
1146    Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1147    Actions.ActOnCXXForRangeDecl(ThisDecl);
1148    Actions.FinalizeDeclaration(ThisDecl);
1149    D.complete(ThisDecl);
1150    return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
1151  }
1152
1153  SmallVector<Decl *, 8> DeclsInGroup;
1154  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
1155  if (LateParsedAttrs.size() > 0)
1156    ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1157  D.complete(FirstDecl);
1158  if (FirstDecl)
1159    DeclsInGroup.push_back(FirstDecl);
1160
1161  bool ExpectSemi = Context != Declarator::ForContext;
1162
1163  // If we don't have a comma, it is either the end of the list (a ';') or an
1164  // error, bail out.
1165  while (Tok.is(tok::comma)) {
1166    SourceLocation CommaLoc = ConsumeToken();
1167
1168    if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1169      // This comma was followed by a line-break and something which can't be
1170      // the start of a declarator. The comma was probably a typo for a
1171      // semicolon.
1172      Diag(CommaLoc, diag::err_expected_semi_declaration)
1173        << FixItHint::CreateReplacement(CommaLoc, ";");
1174      ExpectSemi = false;
1175      break;
1176    }
1177
1178    // Parse the next declarator.
1179    D.clear();
1180    D.setCommaLoc(CommaLoc);
1181
1182    // Accept attributes in an init-declarator.  In the first declarator in a
1183    // declaration, these would be part of the declspec.  In subsequent
1184    // declarators, they become part of the declarator itself, so that they
1185    // don't apply to declarators after *this* one.  Examples:
1186    //    short __attribute__((common)) var;    -> declspec
1187    //    short var __attribute__((common));    -> declarator
1188    //    short x, __attribute__((common)) var;    -> declarator
1189    MaybeParseGNUAttributes(D);
1190
1191    ParseDeclarator(D);
1192    if (!D.isInvalidType()) {
1193      Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1194      D.complete(ThisDecl);
1195      if (ThisDecl)
1196        DeclsInGroup.push_back(ThisDecl);
1197    }
1198  }
1199
1200  if (DeclEnd)
1201    *DeclEnd = Tok.getLocation();
1202
1203  if (ExpectSemi &&
1204      ExpectAndConsume(tok::semi,
1205                       Context == Declarator::FileContext
1206                         ? diag::err_invalid_token_after_toplevel_declarator
1207                         : diag::err_expected_semi_declaration)) {
1208    // Okay, there was no semicolon and one was expected.  If we see a
1209    // declaration specifier, just assume it was missing and continue parsing.
1210    // Otherwise things are very confused and we skip to recover.
1211    if (!isDeclarationSpecifier()) {
1212      SkipUntil(tok::r_brace, true, true);
1213      if (Tok.is(tok::semi))
1214        ConsumeToken();
1215    }
1216  }
1217
1218  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
1219                                         DeclsInGroup.data(),
1220                                         DeclsInGroup.size());
1221}
1222
1223/// Parse an optional simple-asm-expr and attributes, and attach them to a
1224/// declarator. Returns true on an error.
1225bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1226  // If a simple-asm-expr is present, parse it.
1227  if (Tok.is(tok::kw_asm)) {
1228    SourceLocation Loc;
1229    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1230    if (AsmLabel.isInvalid()) {
1231      SkipUntil(tok::semi, true, true);
1232      return true;
1233    }
1234
1235    D.setAsmLabel(AsmLabel.release());
1236    D.SetRangeEnd(Loc);
1237  }
1238
1239  MaybeParseGNUAttributes(D);
1240  return false;
1241}
1242
1243/// \brief Parse 'declaration' after parsing 'declaration-specifiers
1244/// declarator'. This method parses the remainder of the declaration
1245/// (including any attributes or initializer, among other things) and
1246/// finalizes the declaration.
1247///
1248///       init-declarator: [C99 6.7]
1249///         declarator
1250///         declarator '=' initializer
1251/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1252/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1253/// [C++]   declarator initializer[opt]
1254///
1255/// [C++] initializer:
1256/// [C++]   '=' initializer-clause
1257/// [C++]   '(' expression-list ')'
1258/// [C++0x] '=' 'default'                                                [TODO]
1259/// [C++0x] '=' 'delete'
1260/// [C++0x] braced-init-list
1261///
1262/// According to the standard grammar, =default and =delete are function
1263/// definitions, but that definitely doesn't fit with the parser here.
1264///
1265Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
1266                                     const ParsedTemplateInfo &TemplateInfo) {
1267  if (ParseAsmAttributesAfterDeclarator(D))
1268    return 0;
1269
1270  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1271}
1272
1273Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
1274                                     const ParsedTemplateInfo &TemplateInfo) {
1275  // Inform the current actions module that we just parsed this declarator.
1276  Decl *ThisDecl = 0;
1277  switch (TemplateInfo.Kind) {
1278  case ParsedTemplateInfo::NonTemplate:
1279    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1280    break;
1281
1282  case ParsedTemplateInfo::Template:
1283  case ParsedTemplateInfo::ExplicitSpecialization:
1284    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1285                             MultiTemplateParamsArg(Actions,
1286                                          TemplateInfo.TemplateParams->data(),
1287                                          TemplateInfo.TemplateParams->size()),
1288                                               D);
1289    break;
1290
1291  case ParsedTemplateInfo::ExplicitInstantiation: {
1292    DeclResult ThisRes
1293      = Actions.ActOnExplicitInstantiation(getCurScope(),
1294                                           TemplateInfo.ExternLoc,
1295                                           TemplateInfo.TemplateLoc,
1296                                           D);
1297    if (ThisRes.isInvalid()) {
1298      SkipUntil(tok::semi, true, true);
1299      return 0;
1300    }
1301
1302    ThisDecl = ThisRes.get();
1303    break;
1304    }
1305  }
1306
1307  bool TypeContainsAuto =
1308    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
1309
1310  // Parse declarator '=' initializer.
1311  // If a '==' or '+=' is found, suggest a fixit to '='.
1312  if (isTokenEqualOrEqualTypo()) {
1313    ConsumeToken();
1314    if (Tok.is(tok::kw_delete)) {
1315      if (D.isFunctionDeclarator())
1316        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1317          << 1 /* delete */;
1318      else
1319        Diag(ConsumeToken(), diag::err_deleted_non_function);
1320    } else if (Tok.is(tok::kw_default)) {
1321      if (D.isFunctionDeclarator())
1322        Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1323          << 0 /* default */;
1324      else
1325        Diag(ConsumeToken(), diag::err_default_special_members);
1326    } else {
1327      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1328        EnterScope(0);
1329        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1330      }
1331
1332      if (Tok.is(tok::code_completion)) {
1333        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1334        cutOffParsing();
1335        return 0;
1336      }
1337
1338      ExprResult Init(ParseInitializer());
1339
1340      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1341        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1342        ExitScope();
1343      }
1344
1345      if (Init.isInvalid()) {
1346        SkipUntil(tok::comma, true, true);
1347        Actions.ActOnInitializerError(ThisDecl);
1348      } else
1349        Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1350                                     /*DirectInit=*/false, TypeContainsAuto);
1351    }
1352  } else if (Tok.is(tok::l_paren)) {
1353    // Parse C++ direct initializer: '(' expression-list ')'
1354    BalancedDelimiterTracker T(*this, tok::l_paren);
1355    T.consumeOpen();
1356
1357    ExprVector Exprs(Actions);
1358    CommaLocsTy CommaLocs;
1359
1360    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1361      EnterScope(0);
1362      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1363    }
1364
1365    if (ParseExpressionList(Exprs, CommaLocs)) {
1366      SkipUntil(tok::r_paren);
1367
1368      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1369        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1370        ExitScope();
1371      }
1372    } else {
1373      // Match the ')'.
1374      T.consumeClose();
1375
1376      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
1377             "Unexpected number of commas!");
1378
1379      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1380        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1381        ExitScope();
1382      }
1383
1384      ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
1385                                                          T.getCloseLocation(),
1386                                                          move_arg(Exprs));
1387      Actions.AddInitializerToDecl(ThisDecl, Initializer.take(),
1388                                   /*DirectInit=*/true, TypeContainsAuto);
1389    }
1390  } else if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) {
1391    // Parse C++0x braced-init-list.
1392    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1393
1394    if (D.getCXXScopeSpec().isSet()) {
1395      EnterScope(0);
1396      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1397    }
1398
1399    ExprResult Init(ParseBraceInitializer());
1400
1401    if (D.getCXXScopeSpec().isSet()) {
1402      Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1403      ExitScope();
1404    }
1405
1406    if (Init.isInvalid()) {
1407      Actions.ActOnInitializerError(ThisDecl);
1408    } else
1409      Actions.AddInitializerToDecl(ThisDecl, Init.take(),
1410                                   /*DirectInit=*/true, TypeContainsAuto);
1411
1412  } else {
1413    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
1414  }
1415
1416  Actions.FinalizeDeclaration(ThisDecl);
1417
1418  return ThisDecl;
1419}
1420
1421/// ParseSpecifierQualifierList
1422///        specifier-qualifier-list:
1423///          type-specifier specifier-qualifier-list[opt]
1424///          type-qualifier specifier-qualifier-list[opt]
1425/// [GNU]    attributes     specifier-qualifier-list[opt]
1426///
1427void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS) {
1428  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
1429  /// parse declaration-specifiers and complain about extra stuff.
1430  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
1431  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS);
1432
1433  // Validate declspec for type-name.
1434  unsigned Specs = DS.getParsedSpecifiers();
1435  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
1436      !DS.hasAttributes())
1437    Diag(Tok, diag::err_typename_requires_specqual);
1438
1439  // Issue diagnostic and remove storage class if present.
1440  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
1441    if (DS.getStorageClassSpecLoc().isValid())
1442      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
1443    else
1444      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
1445    DS.ClearStorageClassSpecs();
1446  }
1447
1448  // Issue diagnostic and remove function specfier if present.
1449  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
1450    if (DS.isInlineSpecified())
1451      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
1452    if (DS.isVirtualSpecified())
1453      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
1454    if (DS.isExplicitSpecified())
1455      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
1456    DS.ClearFunctionSpecs();
1457  }
1458}
1459
1460/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
1461/// specified token is valid after the identifier in a declarator which
1462/// immediately follows the declspec.  For example, these things are valid:
1463///
1464///      int x   [             4];         // direct-declarator
1465///      int x   (             int y);     // direct-declarator
1466///  int(int x   )                         // direct-declarator
1467///      int x   ;                         // simple-declaration
1468///      int x   =             17;         // init-declarator-list
1469///      int x   ,             y;          // init-declarator-list
1470///      int x   __asm__       ("foo");    // init-declarator-list
1471///      int x   :             4;          // struct-declarator
1472///      int x   {             5};         // C++'0x unified initializers
1473///
1474/// This is not, because 'x' does not immediately follow the declspec (though
1475/// ')' happens to be valid anyway).
1476///    int (x)
1477///
1478static bool isValidAfterIdentifierInDeclarator(const Token &T) {
1479  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
1480         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
1481         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
1482}
1483
1484
1485/// ParseImplicitInt - This method is called when we have an non-typename
1486/// identifier in a declspec (which normally terminates the decl spec) when
1487/// the declspec has no type specifier.  In this case, the declspec is either
1488/// malformed or is "implicit int" (in K&R and C89).
1489///
1490/// This method handles diagnosing this prettily and returns false if the
1491/// declspec is done being processed.  If it recovers and thinks there may be
1492/// other pieces of declspec after it, it returns true.
1493///
1494bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
1495                              const ParsedTemplateInfo &TemplateInfo,
1496                              AccessSpecifier AS) {
1497  assert(Tok.is(tok::identifier) && "should have identifier");
1498
1499  SourceLocation Loc = Tok.getLocation();
1500  // If we see an identifier that is not a type name, we normally would
1501  // parse it as the identifer being declared.  However, when a typename
1502  // is typo'd or the definition is not included, this will incorrectly
1503  // parse the typename as the identifier name and fall over misparsing
1504  // later parts of the diagnostic.
1505  //
1506  // As such, we try to do some look-ahead in cases where this would
1507  // otherwise be an "implicit-int" case to see if this is invalid.  For
1508  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
1509  // an identifier with implicit int, we'd get a parse error because the
1510  // next token is obviously invalid for a type.  Parse these as a case
1511  // with an invalid type specifier.
1512  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
1513
1514  // Since we know that this either implicit int (which is rare) or an
1515  // error, we'd do lookahead to try to do better recovery.
1516  if (isValidAfterIdentifierInDeclarator(NextToken())) {
1517    // If this token is valid for implicit int, e.g. "static x = 4", then
1518    // we just avoid eating the identifier, so it will be parsed as the
1519    // identifier in the declarator.
1520    return false;
1521  }
1522
1523  // Otherwise, if we don't consume this token, we are going to emit an
1524  // error anyway.  Try to recover from various common problems.  Check
1525  // to see if this was a reference to a tag name without a tag specified.
1526  // This is a common problem in C (saying 'foo' instead of 'struct foo').
1527  //
1528  // C++ doesn't need this, and isTagName doesn't take SS.
1529  if (SS == 0) {
1530    const char *TagName = 0, *FixitTagName = 0;
1531    tok::TokenKind TagKind = tok::unknown;
1532
1533    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
1534      default: break;
1535      case DeclSpec::TST_enum:
1536        TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
1537      case DeclSpec::TST_union:
1538        TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
1539      case DeclSpec::TST_struct:
1540        TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
1541      case DeclSpec::TST_class:
1542        TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
1543    }
1544
1545    if (TagName) {
1546      Diag(Loc, diag::err_use_of_tag_name_without_tag)
1547        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
1548        << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
1549
1550      // Parse this as a tag as if the missing tag were present.
1551      if (TagKind == tok::kw_enum)
1552        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1553      else
1554        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
1555      return true;
1556    }
1557  }
1558
1559  // This is almost certainly an invalid type name. Let the action emit a
1560  // diagnostic and attempt to recover.
1561  ParsedType T;
1562  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
1563                                      getCurScope(), SS, T)) {
1564    // The action emitted a diagnostic, so we don't have to.
1565    if (T) {
1566      // The action has suggested that the type T could be used. Set that as
1567      // the type in the declaration specifiers, consume the would-be type
1568      // name token, and we're done.
1569      const char *PrevSpec;
1570      unsigned DiagID;
1571      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
1572      DS.SetRangeEnd(Tok.getLocation());
1573      ConsumeToken();
1574
1575      // There may be other declaration specifiers after this.
1576      return true;
1577    }
1578
1579    // Fall through; the action had no suggestion for us.
1580  } else {
1581    // The action did not emit a diagnostic, so emit one now.
1582    SourceRange R;
1583    if (SS) R = SS->getRange();
1584    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
1585  }
1586
1587  // Mark this as an error.
1588  const char *PrevSpec;
1589  unsigned DiagID;
1590  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
1591  DS.SetRangeEnd(Tok.getLocation());
1592  ConsumeToken();
1593
1594  // TODO: Could inject an invalid typedef decl in an enclosing scope to
1595  // avoid rippling error messages on subsequent uses of the same type,
1596  // could be useful if #include was forgotten.
1597  return false;
1598}
1599
1600/// \brief Determine the declaration specifier context from the declarator
1601/// context.
1602///
1603/// \param Context the declarator context, which is one of the
1604/// Declarator::TheContext enumerator values.
1605Parser::DeclSpecContext
1606Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
1607  if (Context == Declarator::MemberContext)
1608    return DSC_class;
1609  if (Context == Declarator::FileContext)
1610    return DSC_top_level;
1611  return DSC_normal;
1612}
1613
1614/// ParseAlignArgument - Parse the argument to an alignment-specifier.
1615///
1616/// FIXME: Simply returns an alignof() expression if the argument is a
1617/// type. Ideally, the type should be propagated directly into Sema.
1618///
1619/// [C11]   type-id
1620/// [C11]   constant-expression
1621/// [C++0x] type-id ...[opt]
1622/// [C++0x] assignment-expression ...[opt]
1623ExprResult Parser::ParseAlignArgument(SourceLocation Start,
1624                                      SourceLocation &EllipsisLoc) {
1625  ExprResult ER;
1626  if (isTypeIdInParens()) {
1627    SourceLocation TypeLoc = Tok.getLocation();
1628    ParsedType Ty = ParseTypeName().get();
1629    SourceRange TypeRange(Start, Tok.getLocation());
1630    ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
1631                                               Ty.getAsOpaquePtr(), TypeRange);
1632  } else
1633    ER = ParseConstantExpression();
1634
1635  if (getLang().CPlusPlus0x && Tok.is(tok::ellipsis))
1636    EllipsisLoc = ConsumeToken();
1637
1638  return ER;
1639}
1640
1641/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
1642/// attribute to Attrs.
1643///
1644/// alignment-specifier:
1645/// [C11]   '_Alignas' '(' type-id ')'
1646/// [C11]   '_Alignas' '(' constant-expression ')'
1647/// [C++0x] 'alignas' '(' type-id ...[opt] ')'
1648/// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')'
1649void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
1650                                     SourceLocation *endLoc) {
1651  assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
1652         "Not an alignment-specifier!");
1653
1654  SourceLocation KWLoc = Tok.getLocation();
1655  ConsumeToken();
1656
1657  BalancedDelimiterTracker T(*this, tok::l_paren);
1658  if (T.expectAndConsume(diag::err_expected_lparen))
1659    return;
1660
1661  SourceLocation EllipsisLoc;
1662  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
1663  if (ArgExpr.isInvalid()) {
1664    SkipUntil(tok::r_paren);
1665    return;
1666  }
1667
1668  T.consumeClose();
1669  if (endLoc)
1670    *endLoc = T.getCloseLocation();
1671
1672  // FIXME: Handle pack-expansions here.
1673  if (EllipsisLoc.isValid()) {
1674    Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported);
1675    return;
1676  }
1677
1678  ExprVector ArgExprs(Actions);
1679  ArgExprs.push_back(ArgExpr.release());
1680  Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
1681               0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
1682}
1683
1684/// ParseDeclarationSpecifiers
1685///       declaration-specifiers: [C99 6.7]
1686///         storage-class-specifier declaration-specifiers[opt]
1687///         type-specifier declaration-specifiers[opt]
1688/// [C99]   function-specifier declaration-specifiers[opt]
1689/// [C11]   alignment-specifier declaration-specifiers[opt]
1690/// [GNU]   attributes declaration-specifiers[opt]
1691/// [Clang] '__module_private__' declaration-specifiers[opt]
1692///
1693///       storage-class-specifier: [C99 6.7.1]
1694///         'typedef'
1695///         'extern'
1696///         'static'
1697///         'auto'
1698///         'register'
1699/// [C++]   'mutable'
1700/// [GNU]   '__thread'
1701///       function-specifier: [C99 6.7.4]
1702/// [C99]   'inline'
1703/// [C++]   'virtual'
1704/// [C++]   'explicit'
1705/// [OpenCL] '__kernel'
1706///       'friend': [C++ dcl.friend]
1707///       'constexpr': [C++0x dcl.constexpr]
1708
1709///
1710void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
1711                                        const ParsedTemplateInfo &TemplateInfo,
1712                                        AccessSpecifier AS,
1713                                        DeclSpecContext DSContext,
1714                                        LateParsedAttrList *LateAttrs) {
1715  if (DS.getSourceRange().isInvalid()) {
1716    DS.SetRangeStart(Tok.getLocation());
1717    DS.SetRangeEnd(Tok.getLocation());
1718  }
1719
1720  bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
1721  while (1) {
1722    bool isInvalid = false;
1723    const char *PrevSpec = 0;
1724    unsigned DiagID = 0;
1725
1726    SourceLocation Loc = Tok.getLocation();
1727
1728    switch (Tok.getKind()) {
1729    default:
1730    DoneWithDeclSpec:
1731      // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
1732      MaybeParseCXX0XAttributes(DS.getAttributes());
1733
1734      // If this is not a declaration specifier token, we're done reading decl
1735      // specifiers.  First verify that DeclSpec's are consistent.
1736      DS.Finish(Diags, PP);
1737      return;
1738
1739    case tok::code_completion: {
1740      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
1741      if (DS.hasTypeSpecifier()) {
1742        bool AllowNonIdentifiers
1743          = (getCurScope()->getFlags() & (Scope::ControlScope |
1744                                          Scope::BlockScope |
1745                                          Scope::TemplateParamScope |
1746                                          Scope::FunctionPrototypeScope |
1747                                          Scope::AtCatchScope)) == 0;
1748        bool AllowNestedNameSpecifiers
1749          = DSContext == DSC_top_level ||
1750            (DSContext == DSC_class && DS.isFriendSpecified());
1751
1752        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
1753                                     AllowNonIdentifiers,
1754                                     AllowNestedNameSpecifiers);
1755        return cutOffParsing();
1756      }
1757
1758      if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
1759        CCC = Sema::PCC_LocalDeclarationSpecifiers;
1760      else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
1761        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
1762                                    : Sema::PCC_Template;
1763      else if (DSContext == DSC_class)
1764        CCC = Sema::PCC_Class;
1765      else if (CurParsedObjCImpl)
1766        CCC = Sema::PCC_ObjCImplementation;
1767
1768      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
1769      return cutOffParsing();
1770    }
1771
1772    case tok::coloncolon: // ::foo::bar
1773      // C++ scope specifier.  Annotate and loop, or bail out on error.
1774      if (TryAnnotateCXXScopeToken(true)) {
1775        if (!DS.hasTypeSpecifier())
1776          DS.SetTypeSpecError();
1777        goto DoneWithDeclSpec;
1778      }
1779      if (Tok.is(tok::coloncolon)) // ::new or ::delete
1780        goto DoneWithDeclSpec;
1781      continue;
1782
1783    case tok::annot_cxxscope: {
1784      if (DS.hasTypeSpecifier())
1785        goto DoneWithDeclSpec;
1786
1787      CXXScopeSpec SS;
1788      Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
1789                                                   Tok.getAnnotationRange(),
1790                                                   SS);
1791
1792      // We are looking for a qualified typename.
1793      Token Next = NextToken();
1794      if (Next.is(tok::annot_template_id) &&
1795          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
1796            ->Kind == TNK_Type_template) {
1797        // We have a qualified template-id, e.g., N::A<int>
1798
1799        // C++ [class.qual]p2:
1800        //   In a lookup in which the constructor is an acceptable lookup
1801        //   result and the nested-name-specifier nominates a class C:
1802        //
1803        //     - if the name specified after the
1804        //       nested-name-specifier, when looked up in C, is the
1805        //       injected-class-name of C (Clause 9), or
1806        //
1807        //     - if the name specified after the nested-name-specifier
1808        //       is the same as the identifier or the
1809        //       simple-template-id's template-name in the last
1810        //       component of the nested-name-specifier,
1811        //
1812        //   the name is instead considered to name the constructor of
1813        //   class C.
1814        //
1815        // Thus, if the template-name is actually the constructor
1816        // name, then the code is ill-formed; this interpretation is
1817        // reinforced by the NAD status of core issue 635.
1818        TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1819        if ((DSContext == DSC_top_level ||
1820             (DSContext == DSC_class && DS.isFriendSpecified())) &&
1821            TemplateId->Name &&
1822            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1823          if (isConstructorDeclarator()) {
1824            // The user meant this to be an out-of-line constructor
1825            // definition, but template arguments are not allowed
1826            // there.  Just allow this as a constructor; we'll
1827            // complain about it later.
1828            goto DoneWithDeclSpec;
1829          }
1830
1831          // The user meant this to name a type, but it actually names
1832          // a constructor with some extraneous template
1833          // arguments. Complain, then parse it as a type as the user
1834          // intended.
1835          Diag(TemplateId->TemplateNameLoc,
1836               diag::err_out_of_line_template_id_names_constructor)
1837            << TemplateId->Name;
1838        }
1839
1840        DS.getTypeSpecScope() = SS;
1841        ConsumeToken(); // The C++ scope.
1842        assert(Tok.is(tok::annot_template_id) &&
1843               "ParseOptionalCXXScopeSpecifier not working");
1844        AnnotateTemplateIdTokenAsType();
1845        continue;
1846      }
1847
1848      if (Next.is(tok::annot_typename)) {
1849        DS.getTypeSpecScope() = SS;
1850        ConsumeToken(); // The C++ scope.
1851        if (Tok.getAnnotationValue()) {
1852          ParsedType T = getTypeAnnotation(Tok);
1853          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1854                                         Tok.getAnnotationEndLoc(),
1855                                         PrevSpec, DiagID, T);
1856        }
1857        else
1858          DS.SetTypeSpecError();
1859        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1860        ConsumeToken(); // The typename
1861      }
1862
1863      if (Next.isNot(tok::identifier))
1864        goto DoneWithDeclSpec;
1865
1866      // If we're in a context where the identifier could be a class name,
1867      // check whether this is a constructor declaration.
1868      if ((DSContext == DSC_top_level ||
1869           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1870          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1871                                     &SS)) {
1872        if (isConstructorDeclarator())
1873          goto DoneWithDeclSpec;
1874
1875        // As noted in C++ [class.qual]p2 (cited above), when the name
1876        // of the class is qualified in a context where it could name
1877        // a constructor, its a constructor name. However, we've
1878        // looked at the declarator, and the user probably meant this
1879        // to be a type. Complain that it isn't supposed to be treated
1880        // as a type, then proceed to parse it as a type.
1881        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1882          << Next.getIdentifierInfo();
1883      }
1884
1885      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1886                                               Next.getLocation(),
1887                                               getCurScope(), &SS,
1888                                               false, false, ParsedType(),
1889                                               /*IsCtorOrDtorName=*/false,
1890                                               /*NonTrivialSourceInfo=*/true);
1891
1892      // If the referenced identifier is not a type, then this declspec is
1893      // erroneous: We already checked about that it has no type specifier, and
1894      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1895      // typename.
1896      if (TypeRep == 0) {
1897        ConsumeToken();   // Eat the scope spec so the identifier is current.
1898        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1899        goto DoneWithDeclSpec;
1900      }
1901
1902      DS.getTypeSpecScope() = SS;
1903      ConsumeToken(); // The C++ scope.
1904
1905      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1906                                     DiagID, TypeRep);
1907      if (isInvalid)
1908        break;
1909
1910      DS.SetRangeEnd(Tok.getLocation());
1911      ConsumeToken(); // The typename.
1912
1913      continue;
1914    }
1915
1916    case tok::annot_typename: {
1917      if (Tok.getAnnotationValue()) {
1918        ParsedType T = getTypeAnnotation(Tok);
1919        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1920                                       DiagID, T);
1921      } else
1922        DS.SetTypeSpecError();
1923
1924      if (isInvalid)
1925        break;
1926
1927      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1928      ConsumeToken(); // The typename
1929
1930      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1931      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1932      // Objective-C interface.
1933      if (Tok.is(tok::less) && getLang().ObjC1)
1934        ParseObjCProtocolQualifiers(DS);
1935
1936      continue;
1937    }
1938
1939    case tok::kw___is_signed:
1940      // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
1941      // typically treats it as a trait. If we see __is_signed as it appears
1942      // in libstdc++, e.g.,
1943      //
1944      //   static const bool __is_signed;
1945      //
1946      // then treat __is_signed as an identifier rather than as a keyword.
1947      if (DS.getTypeSpecType() == TST_bool &&
1948          DS.getTypeQualifiers() == DeclSpec::TQ_const &&
1949          DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1950        Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
1951        Tok.setKind(tok::identifier);
1952      }
1953
1954      // We're done with the declaration-specifiers.
1955      goto DoneWithDeclSpec;
1956
1957      // typedef-name
1958    case tok::kw_decltype:
1959    case tok::identifier: {
1960      // In C++, check to see if this is a scope specifier like foo::bar::, if
1961      // so handle it as such.  This is important for ctor parsing.
1962      if (getLang().CPlusPlus) {
1963        if (TryAnnotateCXXScopeToken(true)) {
1964          if (!DS.hasTypeSpecifier())
1965            DS.SetTypeSpecError();
1966          goto DoneWithDeclSpec;
1967        }
1968        if (!Tok.is(tok::identifier))
1969          continue;
1970      }
1971
1972      // This identifier can only be a typedef name if we haven't already seen
1973      // a type-specifier.  Without this check we misparse:
1974      //  typedef int X; struct Y { short X; };  as 'short int'.
1975      if (DS.hasTypeSpecifier())
1976        goto DoneWithDeclSpec;
1977
1978      // Check for need to substitute AltiVec keyword tokens.
1979      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1980        break;
1981
1982      // It has to be available as a typedef too!
1983      ParsedType TypeRep =
1984        Actions.getTypeName(*Tok.getIdentifierInfo(),
1985                            Tok.getLocation(), getCurScope());
1986
1987      // If this is not a typedef name, don't parse it as part of the declspec,
1988      // it must be an implicit int or an error.
1989      if (!TypeRep) {
1990        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1991        goto DoneWithDeclSpec;
1992      }
1993
1994      // If we're in a context where the identifier could be a class name,
1995      // check whether this is a constructor declaration.
1996      if (getLang().CPlusPlus && DSContext == DSC_class &&
1997          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1998          isConstructorDeclarator())
1999        goto DoneWithDeclSpec;
2000
2001      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2002                                     DiagID, TypeRep);
2003      if (isInvalid)
2004        break;
2005
2006      DS.SetRangeEnd(Tok.getLocation());
2007      ConsumeToken(); // The identifier
2008
2009      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2010      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2011      // Objective-C interface.
2012      if (Tok.is(tok::less) && getLang().ObjC1)
2013        ParseObjCProtocolQualifiers(DS);
2014
2015      // Need to support trailing type qualifiers (e.g. "id<p> const").
2016      // If a type specifier follows, it will be diagnosed elsewhere.
2017      continue;
2018    }
2019
2020      // type-name
2021    case tok::annot_template_id: {
2022      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2023      if (TemplateId->Kind != TNK_Type_template) {
2024        // This template-id does not refer to a type name, so we're
2025        // done with the type-specifiers.
2026        goto DoneWithDeclSpec;
2027      }
2028
2029      // If we're in a context where the template-id could be a
2030      // constructor name or specialization, check whether this is a
2031      // constructor declaration.
2032      if (getLang().CPlusPlus && DSContext == DSC_class &&
2033          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2034          isConstructorDeclarator())
2035        goto DoneWithDeclSpec;
2036
2037      // Turn the template-id annotation token into a type annotation
2038      // token, then try again to parse it as a type-specifier.
2039      AnnotateTemplateIdTokenAsType();
2040      continue;
2041    }
2042
2043    // GNU attributes support.
2044    case tok::kw___attribute:
2045      ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs);
2046      continue;
2047
2048    // Microsoft declspec support.
2049    case tok::kw___declspec:
2050      ParseMicrosoftDeclSpec(DS.getAttributes());
2051      continue;
2052
2053    // Microsoft single token adornments.
2054    case tok::kw___forceinline:
2055      // FIXME: Add handling here!
2056      break;
2057
2058    case tok::kw___ptr64:
2059    case tok::kw___ptr32:
2060    case tok::kw___w64:
2061    case tok::kw___cdecl:
2062    case tok::kw___stdcall:
2063    case tok::kw___fastcall:
2064    case tok::kw___thiscall:
2065    case tok::kw___unaligned:
2066      ParseMicrosoftTypeAttributes(DS.getAttributes());
2067      continue;
2068
2069    // Borland single token adornments.
2070    case tok::kw___pascal:
2071      ParseBorlandTypeAttributes(DS.getAttributes());
2072      continue;
2073
2074    // OpenCL single token adornments.
2075    case tok::kw___kernel:
2076      ParseOpenCLAttributes(DS.getAttributes());
2077      continue;
2078
2079    // storage-class-specifier
2080    case tok::kw_typedef:
2081      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2082                                         PrevSpec, DiagID);
2083      break;
2084    case tok::kw_extern:
2085      if (DS.isThreadSpecified())
2086        Diag(Tok, diag::ext_thread_before) << "extern";
2087      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
2088                                         PrevSpec, DiagID);
2089      break;
2090    case tok::kw___private_extern__:
2091      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
2092                                         Loc, PrevSpec, DiagID);
2093      break;
2094    case tok::kw_static:
2095      if (DS.isThreadSpecified())
2096        Diag(Tok, diag::ext_thread_before) << "static";
2097      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
2098                                         PrevSpec, DiagID);
2099      break;
2100    case tok::kw_auto:
2101      if (getLang().CPlusPlus0x) {
2102        if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
2103          isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2104                                             PrevSpec, DiagID);
2105          if (!isInvalid)
2106            Diag(Tok, diag::ext_auto_storage_class)
2107              << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2108        } else
2109          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
2110                                         DiagID);
2111      } else
2112        isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
2113                                           PrevSpec, DiagID);
2114      break;
2115    case tok::kw_register:
2116      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
2117                                         PrevSpec, DiagID);
2118      break;
2119    case tok::kw_mutable:
2120      isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
2121                                         PrevSpec, DiagID);
2122      break;
2123    case tok::kw___thread:
2124      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
2125      break;
2126
2127    // function-specifier
2128    case tok::kw_inline:
2129      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
2130      break;
2131    case tok::kw_virtual:
2132      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
2133      break;
2134    case tok::kw_explicit:
2135      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
2136      break;
2137
2138    // alignment-specifier
2139    case tok::kw__Alignas:
2140      if (!getLang().C11)
2141        Diag(Tok, diag::ext_c11_alignas);
2142      ParseAlignmentSpecifier(DS.getAttributes());
2143      continue;
2144
2145    // friend
2146    case tok::kw_friend:
2147      if (DSContext == DSC_class)
2148        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
2149      else {
2150        PrevSpec = ""; // not actually used by the diagnostic
2151        DiagID = diag::err_friend_invalid_in_context;
2152        isInvalid = true;
2153      }
2154      break;
2155
2156    // Modules
2157    case tok::kw___module_private__:
2158      isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
2159      break;
2160
2161    // constexpr
2162    case tok::kw_constexpr:
2163      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
2164      break;
2165
2166    // type-specifier
2167    case tok::kw_short:
2168      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
2169                                      DiagID);
2170      break;
2171    case tok::kw_long:
2172      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2173        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2174                                        DiagID);
2175      else
2176        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2177                                        DiagID);
2178      break;
2179    case tok::kw___int64:
2180        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2181                                        DiagID);
2182      break;
2183    case tok::kw_signed:
2184      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
2185                                     DiagID);
2186      break;
2187    case tok::kw_unsigned:
2188      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2189                                     DiagID);
2190      break;
2191    case tok::kw__Complex:
2192      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2193                                        DiagID);
2194      break;
2195    case tok::kw__Imaginary:
2196      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2197                                        DiagID);
2198      break;
2199    case tok::kw_void:
2200      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
2201                                     DiagID);
2202      break;
2203    case tok::kw_char:
2204      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
2205                                     DiagID);
2206      break;
2207    case tok::kw_int:
2208      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
2209                                     DiagID);
2210      break;
2211     case tok::kw_half:
2212       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
2213                                      DiagID);
2214       break;
2215    case tok::kw_float:
2216      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
2217                                     DiagID);
2218      break;
2219    case tok::kw_double:
2220      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
2221                                     DiagID);
2222      break;
2223    case tok::kw_wchar_t:
2224      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
2225                                     DiagID);
2226      break;
2227    case tok::kw_char16_t:
2228      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
2229                                     DiagID);
2230      break;
2231    case tok::kw_char32_t:
2232      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
2233                                     DiagID);
2234      break;
2235    case tok::kw_bool:
2236    case tok::kw__Bool:
2237      if (Tok.is(tok::kw_bool) &&
2238          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
2239          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2240        PrevSpec = ""; // Not used by the diagnostic.
2241        DiagID = diag::err_bool_redeclaration;
2242        // For better error recovery.
2243        Tok.setKind(tok::identifier);
2244        isInvalid = true;
2245      } else {
2246        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
2247                                       DiagID);
2248      }
2249      break;
2250    case tok::kw__Decimal32:
2251      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2252                                     DiagID);
2253      break;
2254    case tok::kw__Decimal64:
2255      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2256                                     DiagID);
2257      break;
2258    case tok::kw__Decimal128:
2259      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2260                                     DiagID);
2261      break;
2262    case tok::kw___vector:
2263      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2264      break;
2265    case tok::kw___pixel:
2266      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2267      break;
2268    case tok::kw___unknown_anytype:
2269      isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
2270                                     PrevSpec, DiagID);
2271      break;
2272
2273    // class-specifier:
2274    case tok::kw_class:
2275    case tok::kw_struct:
2276    case tok::kw_union: {
2277      tok::TokenKind Kind = Tok.getKind();
2278      ConsumeToken();
2279      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, EnteringContext);
2280      continue;
2281    }
2282
2283    // enum-specifier:
2284    case tok::kw_enum:
2285      ConsumeToken();
2286      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
2287      continue;
2288
2289    // cv-qualifier:
2290    case tok::kw_const:
2291      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
2292                                 getLang());
2293      break;
2294    case tok::kw_volatile:
2295      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2296                                 getLang());
2297      break;
2298    case tok::kw_restrict:
2299      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2300                                 getLang());
2301      break;
2302
2303    // C++ typename-specifier:
2304    case tok::kw_typename:
2305      if (TryAnnotateTypeOrScopeToken()) {
2306        DS.SetTypeSpecError();
2307        goto DoneWithDeclSpec;
2308      }
2309      if (!Tok.is(tok::kw_typename))
2310        continue;
2311      break;
2312
2313    // GNU typeof support.
2314    case tok::kw_typeof:
2315      ParseTypeofSpecifier(DS);
2316      continue;
2317
2318    case tok::annot_decltype:
2319      ParseDecltypeSpecifier(DS);
2320      continue;
2321
2322    case tok::kw___underlying_type:
2323      ParseUnderlyingTypeSpecifier(DS);
2324      continue;
2325
2326    case tok::kw__Atomic:
2327      ParseAtomicSpecifier(DS);
2328      continue;
2329
2330    // OpenCL qualifiers:
2331    case tok::kw_private:
2332      if (!getLang().OpenCL)
2333        goto DoneWithDeclSpec;
2334    case tok::kw___private:
2335    case tok::kw___global:
2336    case tok::kw___local:
2337    case tok::kw___constant:
2338    case tok::kw___read_only:
2339    case tok::kw___write_only:
2340    case tok::kw___read_write:
2341      ParseOpenCLQualifiers(DS);
2342      break;
2343
2344    case tok::less:
2345      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
2346      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
2347      // but we support it.
2348      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
2349        goto DoneWithDeclSpec;
2350
2351      if (!ParseObjCProtocolQualifiers(DS))
2352        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
2353          << FixItHint::CreateInsertion(Loc, "id")
2354          << SourceRange(Loc, DS.getSourceRange().getEnd());
2355
2356      // Need to support trailing type qualifiers (e.g. "id<p> const").
2357      // If a type specifier follows, it will be diagnosed elsewhere.
2358      continue;
2359    }
2360    // If the specifier wasn't legal, issue a diagnostic.
2361    if (isInvalid) {
2362      assert(PrevSpec && "Method did not return previous specifier!");
2363      assert(DiagID);
2364
2365      if (DiagID == diag::ext_duplicate_declspec)
2366        Diag(Tok, DiagID)
2367          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
2368      else
2369        Diag(Tok, DiagID) << PrevSpec;
2370    }
2371
2372    DS.SetRangeEnd(Tok.getLocation());
2373    if (DiagID != diag::err_bool_redeclaration)
2374      ConsumeToken();
2375  }
2376}
2377
2378/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
2379/// primarily follow the C++ grammar with additions for C99 and GNU,
2380/// which together subsume the C grammar. Note that the C++
2381/// type-specifier also includes the C type-qualifier (for const,
2382/// volatile, and C99 restrict). Returns true if a type-specifier was
2383/// found (and parsed), false otherwise.
2384///
2385///       type-specifier: [C++ 7.1.5]
2386///         simple-type-specifier
2387///         class-specifier
2388///         enum-specifier
2389///         elaborated-type-specifier  [TODO]
2390///         cv-qualifier
2391///
2392///       cv-qualifier: [C++ 7.1.5.1]
2393///         'const'
2394///         'volatile'
2395/// [C99]   'restrict'
2396///
2397///       simple-type-specifier: [ C++ 7.1.5.2]
2398///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
2399///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
2400///         'char'
2401///         'wchar_t'
2402///         'bool'
2403///         'short'
2404///         'int'
2405///         'long'
2406///         'signed'
2407///         'unsigned'
2408///         'float'
2409///         'double'
2410///         'void'
2411/// [C99]   '_Bool'
2412/// [C99]   '_Complex'
2413/// [C99]   '_Imaginary'  // Removed in TC2?
2414/// [GNU]   '_Decimal32'
2415/// [GNU]   '_Decimal64'
2416/// [GNU]   '_Decimal128'
2417/// [GNU]   typeof-specifier
2418/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
2419/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
2420/// [C++0x] 'decltype' ( expression )
2421/// [AltiVec] '__vector'
2422bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
2423                                        const char *&PrevSpec,
2424                                        unsigned &DiagID,
2425                                        const ParsedTemplateInfo &TemplateInfo,
2426                                        bool SuppressDeclarations) {
2427  SourceLocation Loc = Tok.getLocation();
2428
2429  switch (Tok.getKind()) {
2430  case tok::identifier:   // foo::bar
2431    // If we already have a type specifier, this identifier is not a type.
2432    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
2433        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
2434        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
2435      return false;
2436    // Check for need to substitute AltiVec keyword tokens.
2437    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2438      break;
2439    // Fall through.
2440  case tok::kw_decltype:
2441  case tok::kw_typename:  // typename foo::bar
2442    // Annotate typenames and C++ scope specifiers.  If we get one, just
2443    // recurse to handle whatever we get.
2444    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2445                                    /*NeedType=*/true))
2446      return true;
2447    if (Tok.is(tok::identifier))
2448      return false;
2449    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2450                                      TemplateInfo, SuppressDeclarations);
2451  case tok::coloncolon:   // ::foo::bar
2452    if (NextToken().is(tok::kw_new) ||    // ::new
2453        NextToken().is(tok::kw_delete))   // ::delete
2454      return false;
2455
2456    // Annotate typenames and C++ scope specifiers.  If we get one, just
2457    // recurse to handle whatever we get.
2458    if (TryAnnotateTypeOrScopeToken(/*EnteringContext=*/false,
2459                                    /*NeedType=*/true))
2460      return true;
2461    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
2462                                      TemplateInfo, SuppressDeclarations);
2463
2464  // simple-type-specifier:
2465  case tok::annot_typename: {
2466    if (ParsedType T = getTypeAnnotation(Tok)) {
2467      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2468                                     Tok.getAnnotationEndLoc(), PrevSpec,
2469                                     DiagID, T);
2470    } else
2471      DS.SetTypeSpecError();
2472    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2473    ConsumeToken(); // The typename
2474
2475    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2476    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2477    // Objective-C interface.  If we don't have Objective-C or a '<', this is
2478    // just a normal reference to a typedef name.
2479    if (Tok.is(tok::less) && getLang().ObjC1)
2480      ParseObjCProtocolQualifiers(DS);
2481
2482    return true;
2483  }
2484
2485  case tok::kw_short:
2486    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
2487    break;
2488  case tok::kw_long:
2489    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
2490      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
2491                                      DiagID);
2492    else
2493      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2494                                      DiagID);
2495    break;
2496  case tok::kw___int64:
2497      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
2498                                      DiagID);
2499    break;
2500  case tok::kw_signed:
2501    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2502    break;
2503  case tok::kw_unsigned:
2504    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
2505                                   DiagID);
2506    break;
2507  case tok::kw__Complex:
2508    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
2509                                      DiagID);
2510    break;
2511  case tok::kw__Imaginary:
2512    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
2513                                      DiagID);
2514    break;
2515  case tok::kw_void:
2516    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
2517    break;
2518  case tok::kw_char:
2519    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
2520    break;
2521  case tok::kw_int:
2522    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
2523    break;
2524  case tok::kw_half:
2525    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
2526    break;
2527  case tok::kw_float:
2528    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
2529    break;
2530  case tok::kw_double:
2531    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
2532    break;
2533  case tok::kw_wchar_t:
2534    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
2535    break;
2536  case tok::kw_char16_t:
2537    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
2538    break;
2539  case tok::kw_char32_t:
2540    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
2541    break;
2542  case tok::kw_bool:
2543  case tok::kw__Bool:
2544    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
2545    break;
2546  case tok::kw__Decimal32:
2547    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
2548                                   DiagID);
2549    break;
2550  case tok::kw__Decimal64:
2551    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
2552                                   DiagID);
2553    break;
2554  case tok::kw__Decimal128:
2555    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
2556                                   DiagID);
2557    break;
2558  case tok::kw___vector:
2559    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
2560    break;
2561  case tok::kw___pixel:
2562    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
2563    break;
2564
2565  // class-specifier:
2566  case tok::kw_class:
2567  case tok::kw_struct:
2568  case tok::kw_union: {
2569    tok::TokenKind Kind = Tok.getKind();
2570    ConsumeToken();
2571    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
2572                        /*EnteringContext=*/false,
2573                        SuppressDeclarations);
2574    return true;
2575  }
2576
2577  // enum-specifier:
2578  case tok::kw_enum:
2579    ConsumeToken();
2580    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
2581    return true;
2582
2583  // cv-qualifier:
2584  case tok::kw_const:
2585    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
2586                               DiagID, getLang());
2587    break;
2588  case tok::kw_volatile:
2589    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
2590                               DiagID, getLang());
2591    break;
2592  case tok::kw_restrict:
2593    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
2594                               DiagID, getLang());
2595    break;
2596
2597  // GNU typeof support.
2598  case tok::kw_typeof:
2599    ParseTypeofSpecifier(DS);
2600    return true;
2601
2602  // C++0x decltype support.
2603  case tok::annot_decltype:
2604    ParseDecltypeSpecifier(DS);
2605    return true;
2606
2607  // C++0x type traits support.
2608  case tok::kw___underlying_type:
2609    ParseUnderlyingTypeSpecifier(DS);
2610    return true;
2611
2612  case tok::kw__Atomic:
2613    ParseAtomicSpecifier(DS);
2614    return true;
2615
2616  // OpenCL qualifiers:
2617  case tok::kw_private:
2618    if (!getLang().OpenCL)
2619      return false;
2620  case tok::kw___private:
2621  case tok::kw___global:
2622  case tok::kw___local:
2623  case tok::kw___constant:
2624  case tok::kw___read_only:
2625  case tok::kw___write_only:
2626  case tok::kw___read_write:
2627    ParseOpenCLQualifiers(DS);
2628    break;
2629
2630  // C++0x auto support.
2631  case tok::kw_auto:
2632    // This is only called in situations where a storage-class specifier is
2633    // illegal, so we can assume an auto type specifier was intended even in
2634    // C++98. In C++98 mode, DeclSpec::Finish will produce an appropriate
2635    // extension diagnostic.
2636    if (!getLang().CPlusPlus)
2637      return false;
2638
2639    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
2640    break;
2641
2642  case tok::kw___ptr64:
2643  case tok::kw___ptr32:
2644  case tok::kw___w64:
2645  case tok::kw___cdecl:
2646  case tok::kw___stdcall:
2647  case tok::kw___fastcall:
2648  case tok::kw___thiscall:
2649  case tok::kw___unaligned:
2650    ParseMicrosoftTypeAttributes(DS.getAttributes());
2651    return true;
2652
2653  case tok::kw___pascal:
2654    ParseBorlandTypeAttributes(DS.getAttributes());
2655    return true;
2656
2657  default:
2658    // Not a type-specifier; do nothing.
2659    return false;
2660  }
2661
2662  // If the specifier combination wasn't legal, issue a diagnostic.
2663  if (isInvalid) {
2664    assert(PrevSpec && "Method did not return previous specifier!");
2665    // Pick between error or extwarn.
2666    Diag(Tok, DiagID) << PrevSpec;
2667  }
2668  DS.SetRangeEnd(Tok.getLocation());
2669  ConsumeToken(); // whatever we parsed above.
2670  return true;
2671}
2672
2673/// ParseStructDeclaration - Parse a struct declaration without the terminating
2674/// semicolon.
2675///
2676///       struct-declaration:
2677///         specifier-qualifier-list struct-declarator-list
2678/// [GNU]   __extension__ struct-declaration
2679/// [GNU]   specifier-qualifier-list
2680///       struct-declarator-list:
2681///         struct-declarator
2682///         struct-declarator-list ',' struct-declarator
2683/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
2684///       struct-declarator:
2685///         declarator
2686/// [GNU]   declarator attributes[opt]
2687///         declarator[opt] ':' constant-expression
2688/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
2689///
2690void Parser::
2691ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
2692
2693  if (Tok.is(tok::kw___extension__)) {
2694    // __extension__ silences extension warnings in the subexpression.
2695    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
2696    ConsumeToken();
2697    return ParseStructDeclaration(DS, Fields);
2698  }
2699
2700  // Parse the common specifier-qualifiers-list piece.
2701  ParseSpecifierQualifierList(DS);
2702
2703  // If there are no declarators, this is a free-standing declaration
2704  // specifier. Let the actions module cope with it.
2705  if (Tok.is(tok::semi)) {
2706    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
2707    return;
2708  }
2709
2710  // Read struct-declarators until we find the semicolon.
2711  bool FirstDeclarator = true;
2712  SourceLocation CommaLoc;
2713  while (1) {
2714    ParsingDeclRAIIObject PD(*this);
2715    FieldDeclarator DeclaratorInfo(DS);
2716    DeclaratorInfo.D.setCommaLoc(CommaLoc);
2717
2718    // Attributes are only allowed here on successive declarators.
2719    if (!FirstDeclarator)
2720      MaybeParseGNUAttributes(DeclaratorInfo.D);
2721
2722    /// struct-declarator: declarator
2723    /// struct-declarator: declarator[opt] ':' constant-expression
2724    if (Tok.isNot(tok::colon)) {
2725      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
2726      ColonProtectionRAIIObject X(*this);
2727      ParseDeclarator(DeclaratorInfo.D);
2728    }
2729
2730    if (Tok.is(tok::colon)) {
2731      ConsumeToken();
2732      ExprResult Res(ParseConstantExpression());
2733      if (Res.isInvalid())
2734        SkipUntil(tok::semi, true, true);
2735      else
2736        DeclaratorInfo.BitfieldSize = Res.release();
2737    }
2738
2739    // If attributes exist after the declarator, parse them.
2740    MaybeParseGNUAttributes(DeclaratorInfo.D);
2741
2742    // We're done with this declarator;  invoke the callback.
2743    Decl *D = Fields.invoke(DeclaratorInfo);
2744    PD.complete(D);
2745
2746    // If we don't have a comma, it is either the end of the list (a ';')
2747    // or an error, bail out.
2748    if (Tok.isNot(tok::comma))
2749      return;
2750
2751    // Consume the comma.
2752    CommaLoc = ConsumeToken();
2753
2754    FirstDeclarator = false;
2755  }
2756}
2757
2758/// ParseStructUnionBody
2759///       struct-contents:
2760///         struct-declaration-list
2761/// [EXT]   empty
2762/// [GNU]   "struct-declaration-list" without terminatoring ';'
2763///       struct-declaration-list:
2764///         struct-declaration
2765///         struct-declaration-list struct-declaration
2766/// [OBC]   '@' 'defs' '(' class-name ')'
2767///
2768void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
2769                                  unsigned TagType, Decl *TagDecl) {
2770  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2771                                      "parsing struct/union body");
2772
2773  BalancedDelimiterTracker T(*this, tok::l_brace);
2774  if (T.consumeOpen())
2775    return;
2776
2777  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
2778  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2779
2780  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
2781  // C++.
2782  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus) {
2783    Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union);
2784    Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union);
2785  }
2786
2787  SmallVector<Decl *, 32> FieldDecls;
2788
2789  // While we still have something to read, read the declarations in the struct.
2790  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2791    // Each iteration of this loop reads one struct-declaration.
2792
2793    // Check for extraneous top-level semicolon.
2794    if (Tok.is(tok::semi)) {
2795      Diag(Tok, diag::ext_extra_struct_semi)
2796        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2797        << FixItHint::CreateRemoval(Tok.getLocation());
2798      ConsumeToken();
2799      continue;
2800    }
2801
2802    // Parse all the comma separated declarators.
2803    DeclSpec DS(AttrFactory);
2804
2805    if (!Tok.is(tok::at)) {
2806      struct CFieldCallback : FieldCallback {
2807        Parser &P;
2808        Decl *TagDecl;
2809        SmallVectorImpl<Decl *> &FieldDecls;
2810
2811        CFieldCallback(Parser &P, Decl *TagDecl,
2812                       SmallVectorImpl<Decl *> &FieldDecls) :
2813          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
2814
2815        virtual Decl *invoke(FieldDeclarator &FD) {
2816          // Install the declarator into the current TagDecl.
2817          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
2818                              FD.D.getDeclSpec().getSourceRange().getBegin(),
2819                                                 FD.D, FD.BitfieldSize);
2820          FieldDecls.push_back(Field);
2821          return Field;
2822        }
2823      } Callback(*this, TagDecl, FieldDecls);
2824
2825      ParseStructDeclaration(DS, Callback);
2826    } else { // Handle @defs
2827      ConsumeToken();
2828      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
2829        Diag(Tok, diag::err_unexpected_at);
2830        SkipUntil(tok::semi, true);
2831        continue;
2832      }
2833      ConsumeToken();
2834      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
2835      if (!Tok.is(tok::identifier)) {
2836        Diag(Tok, diag::err_expected_ident);
2837        SkipUntil(tok::semi, true);
2838        continue;
2839      }
2840      SmallVector<Decl *, 16> Fields;
2841      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
2842                        Tok.getIdentifierInfo(), Fields);
2843      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
2844      ConsumeToken();
2845      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
2846    }
2847
2848    if (Tok.is(tok::semi)) {
2849      ConsumeToken();
2850    } else if (Tok.is(tok::r_brace)) {
2851      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
2852      break;
2853    } else {
2854      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
2855      // Skip to end of block or statement to avoid ext-warning on extra ';'.
2856      SkipUntil(tok::r_brace, true, true);
2857      // If we stopped at a ';', eat it.
2858      if (Tok.is(tok::semi)) ConsumeToken();
2859    }
2860  }
2861
2862  T.consumeClose();
2863
2864  ParsedAttributes attrs(AttrFactory);
2865  // If attributes exist after struct contents, parse them.
2866  MaybeParseGNUAttributes(attrs);
2867
2868  Actions.ActOnFields(getCurScope(),
2869                      RecordLoc, TagDecl, FieldDecls,
2870                      T.getOpenLocation(), T.getCloseLocation(),
2871                      attrs.getList());
2872  StructScope.Exit();
2873  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2874                                   T.getCloseLocation());
2875}
2876
2877/// ParseEnumSpecifier
2878///       enum-specifier: [C99 6.7.2.2]
2879///         'enum' identifier[opt] '{' enumerator-list '}'
2880///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
2881/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
2882///                                                 '}' attributes[opt]
2883/// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
2884///                                                 '}'
2885///         'enum' identifier
2886/// [GNU]   'enum' attributes[opt] identifier
2887///
2888/// [C++0x] enum-head '{' enumerator-list[opt] '}'
2889/// [C++0x] enum-head '{' enumerator-list ','  '}'
2890///
2891///       enum-head: [C++0x]
2892///         enum-key attributes[opt] identifier[opt] enum-base[opt]
2893///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
2894///
2895///       enum-key: [C++0x]
2896///         'enum'
2897///         'enum' 'class'
2898///         'enum' 'struct'
2899///
2900///       enum-base: [C++0x]
2901///         ':' type-specifier-seq
2902///
2903/// [C++] elaborated-type-specifier:
2904/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
2905///
2906void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
2907                                const ParsedTemplateInfo &TemplateInfo,
2908                                AccessSpecifier AS) {
2909  // Parse the tag portion of this.
2910  if (Tok.is(tok::code_completion)) {
2911    // Code completion for an enum name.
2912    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
2913    return cutOffParsing();
2914  }
2915
2916  SourceLocation ScopedEnumKWLoc;
2917  bool IsScopedUsingClassTag = false;
2918
2919  if (getLang().CPlusPlus0x &&
2920      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
2921    Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
2922    IsScopedUsingClassTag = Tok.is(tok::kw_class);
2923    ScopedEnumKWLoc = ConsumeToken();
2924  }
2925
2926  // If attributes exist after tag, parse them.
2927  ParsedAttributes attrs(AttrFactory);
2928  MaybeParseGNUAttributes(attrs);
2929
2930  // If declspecs exist after tag, parse them.
2931  while (Tok.is(tok::kw___declspec))
2932    ParseMicrosoftDeclSpec(attrs);
2933
2934  bool AllowFixedUnderlyingType
2935    = getLang().CPlusPlus0x || getLang().MicrosoftExt || getLang().ObjC2;
2936
2937  CXXScopeSpec &SS = DS.getTypeSpecScope();
2938  if (getLang().CPlusPlus) {
2939    // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
2940    // if a fixed underlying type is allowed.
2941    ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
2942
2943    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
2944                                       /*EnteringContext=*/false))
2945      return;
2946
2947    if (SS.isSet() && Tok.isNot(tok::identifier)) {
2948      Diag(Tok, diag::err_expected_ident);
2949      if (Tok.isNot(tok::l_brace)) {
2950        // Has no name and is not a definition.
2951        // Skip the rest of this declarator, up until the comma or semicolon.
2952        SkipUntil(tok::comma, true);
2953        return;
2954      }
2955    }
2956  }
2957
2958  // Must have either 'enum name' or 'enum {...}'.
2959  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
2960      (AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
2961    Diag(Tok, diag::err_expected_ident_lbrace);
2962
2963    // Skip the rest of this declarator, up until the comma or semicolon.
2964    SkipUntil(tok::comma, true);
2965    return;
2966  }
2967
2968  // If an identifier is present, consume and remember it.
2969  IdentifierInfo *Name = 0;
2970  SourceLocation NameLoc;
2971  if (Tok.is(tok::identifier)) {
2972    Name = Tok.getIdentifierInfo();
2973    NameLoc = ConsumeToken();
2974  }
2975
2976  if (!Name && ScopedEnumKWLoc.isValid()) {
2977    // C++0x 7.2p2: The optional identifier shall not be omitted in the
2978    // declaration of a scoped enumeration.
2979    Diag(Tok, diag::err_scoped_enum_missing_identifier);
2980    ScopedEnumKWLoc = SourceLocation();
2981    IsScopedUsingClassTag = false;
2982  }
2983
2984  TypeResult BaseType;
2985
2986  // Parse the fixed underlying type.
2987  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
2988    bool PossibleBitfield = false;
2989    if (getCurScope()->getFlags() & Scope::ClassScope) {
2990      // If we're in class scope, this can either be an enum declaration with
2991      // an underlying type, or a declaration of a bitfield member. We try to
2992      // use a simple disambiguation scheme first to catch the common cases
2993      // (integer literal, sizeof); if it's still ambiguous, we then consider
2994      // anything that's a simple-type-specifier followed by '(' as an
2995      // expression. This suffices because function types are not valid
2996      // underlying types anyway.
2997      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2998      // If the next token starts an expression, we know we're parsing a
2999      // bit-field. This is the common case.
3000      if (TPR == TPResult::True())
3001        PossibleBitfield = true;
3002      // If the next token starts a type-specifier-seq, it may be either a
3003      // a fixed underlying type or the start of a function-style cast in C++;
3004      // lookahead one more token to see if it's obvious that we have a
3005      // fixed underlying type.
3006      else if (TPR == TPResult::False() &&
3007               GetLookAheadToken(2).getKind() == tok::semi) {
3008        // Consume the ':'.
3009        ConsumeToken();
3010      } else {
3011        // We have the start of a type-specifier-seq, so we have to perform
3012        // tentative parsing to determine whether we have an expression or a
3013        // type.
3014        TentativeParsingAction TPA(*this);
3015
3016        // Consume the ':'.
3017        ConsumeToken();
3018
3019        // If we see a type specifier followed by an open-brace, we have an
3020        // ambiguity between an underlying type and a C++11 braced
3021        // function-style cast. Resolve this by always treating it as an
3022        // underlying type.
3023        // FIXME: The standard is not entirely clear on how to disambiguate in
3024        // this case.
3025        if ((getLang().CPlusPlus &&
3026             isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) ||
3027            (!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
3028          // We'll parse this as a bitfield later.
3029          PossibleBitfield = true;
3030          TPA.Revert();
3031        } else {
3032          // We have a type-specifier-seq.
3033          TPA.Commit();
3034        }
3035      }
3036    } else {
3037      // Consume the ':'.
3038      ConsumeToken();
3039    }
3040
3041    if (!PossibleBitfield) {
3042      SourceRange Range;
3043      BaseType = ParseTypeName(&Range);
3044
3045      if (!getLang().CPlusPlus0x && !getLang().ObjC2)
3046        Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
3047          << Range;
3048      if (getLang().CPlusPlus0x)
3049        Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3050    }
3051  }
3052
3053  // There are four options here.  If we have 'friend enum foo;' then this is a
3054  // friend declaration, and cannot have an accompanying definition. If we have
3055  // 'enum foo;', then this is a forward declaration.  If we have
3056  // 'enum foo {...' then this is a definition. Otherwise we have something
3057  // like 'enum foo xyz', a reference.
3058  //
3059  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3060  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
3061  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
3062  //
3063  Sema::TagUseKind TUK;
3064  if (DS.isFriendSpecified())
3065    TUK = Sema::TUK_Friend;
3066  else if (Tok.is(tok::l_brace))
3067    TUK = Sema::TUK_Definition;
3068  else if (Tok.is(tok::semi))
3069    TUK = Sema::TUK_Declaration;
3070  else
3071    TUK = Sema::TUK_Reference;
3072
3073  // enums cannot be templates, although they can be referenced from a
3074  // template.
3075  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3076      TUK != Sema::TUK_Reference) {
3077    Diag(Tok, diag::err_enum_template);
3078
3079    // Skip the rest of this declarator, up until the comma or semicolon.
3080    SkipUntil(tok::comma, true);
3081    return;
3082  }
3083
3084  if (!Name && TUK != Sema::TUK_Definition) {
3085    Diag(Tok, diag::err_enumerator_unnamed_no_def);
3086
3087    // Skip the rest of this declarator, up until the comma or semicolon.
3088    SkipUntil(tok::comma, true);
3089    return;
3090  }
3091
3092  bool Owned = false;
3093  bool IsDependent = false;
3094  const char *PrevSpec = 0;
3095  unsigned DiagID;
3096  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3097                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
3098                                   AS, DS.getModulePrivateSpecLoc(),
3099                                   MultiTemplateParamsArg(Actions),
3100                                   Owned, IsDependent, ScopedEnumKWLoc,
3101                                   IsScopedUsingClassTag, BaseType);
3102
3103  if (IsDependent) {
3104    // This enum has a dependent nested-name-specifier. Handle it as a
3105    // dependent tag.
3106    if (!Name) {
3107      DS.SetTypeSpecError();
3108      Diag(Tok, diag::err_expected_type_name_after_typename);
3109      return;
3110    }
3111
3112    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
3113                                                TUK, SS, Name, StartLoc,
3114                                                NameLoc);
3115    if (Type.isInvalid()) {
3116      DS.SetTypeSpecError();
3117      return;
3118    }
3119
3120    if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3121                           NameLoc.isValid() ? NameLoc : StartLoc,
3122                           PrevSpec, DiagID, Type.get()))
3123      Diag(StartLoc, DiagID) << PrevSpec;
3124
3125    return;
3126  }
3127
3128  if (!TagDecl) {
3129    // The action failed to produce an enumeration tag. If this is a
3130    // definition, consume the entire definition.
3131    if (Tok.is(tok::l_brace)) {
3132      ConsumeBrace();
3133      SkipUntil(tok::r_brace);
3134    }
3135
3136    DS.SetTypeSpecError();
3137    return;
3138  }
3139
3140  if (Tok.is(tok::l_brace)) {
3141    if (TUK == Sema::TUK_Friend)
3142      Diag(Tok, diag::err_friend_decl_defines_type)
3143        << SourceRange(DS.getFriendSpecLoc());
3144    ParseEnumBody(StartLoc, TagDecl);
3145  }
3146
3147  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3148                         NameLoc.isValid() ? NameLoc : StartLoc,
3149                         PrevSpec, DiagID, TagDecl, Owned))
3150    Diag(StartLoc, DiagID) << PrevSpec;
3151}
3152
3153/// ParseEnumBody - Parse a {} enclosed enumerator-list.
3154///       enumerator-list:
3155///         enumerator
3156///         enumerator-list ',' enumerator
3157///       enumerator:
3158///         enumeration-constant
3159///         enumeration-constant '=' constant-expression
3160///       enumeration-constant:
3161///         identifier
3162///
3163void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3164  // Enter the scope of the enum body and start the definition.
3165  ParseScope EnumScope(this, Scope::DeclScope);
3166  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3167
3168  BalancedDelimiterTracker T(*this, tok::l_brace);
3169  T.consumeOpen();
3170
3171  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3172  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
3173    Diag(Tok, diag::error_empty_enum);
3174
3175  SmallVector<Decl *, 32> EnumConstantDecls;
3176
3177  Decl *LastEnumConstDecl = 0;
3178
3179  // Parse the enumerator-list.
3180  while (Tok.is(tok::identifier)) {
3181    IdentifierInfo *Ident = Tok.getIdentifierInfo();
3182    SourceLocation IdentLoc = ConsumeToken();
3183
3184    // If attributes exist after the enumerator, parse them.
3185    ParsedAttributes attrs(AttrFactory);
3186    MaybeParseGNUAttributes(attrs);
3187
3188    SourceLocation EqualLoc;
3189    ExprResult AssignedVal;
3190    ParsingDeclRAIIObject PD(*this);
3191
3192    if (Tok.is(tok::equal)) {
3193      EqualLoc = ConsumeToken();
3194      AssignedVal = ParseConstantExpression();
3195      if (AssignedVal.isInvalid())
3196        SkipUntil(tok::comma, tok::r_brace, true, true);
3197    }
3198
3199    // Install the enumerator constant into EnumDecl.
3200    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3201                                                    LastEnumConstDecl,
3202                                                    IdentLoc, Ident,
3203                                                    attrs.getList(), EqualLoc,
3204                                                    AssignedVal.release());
3205    PD.complete(EnumConstDecl);
3206
3207    EnumConstantDecls.push_back(EnumConstDecl);
3208    LastEnumConstDecl = EnumConstDecl;
3209
3210    if (Tok.is(tok::identifier)) {
3211      // We're missing a comma between enumerators.
3212      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3213      Diag(Loc, diag::err_enumerator_list_missing_comma)
3214        << FixItHint::CreateInsertion(Loc, ", ");
3215      continue;
3216    }
3217
3218    if (Tok.isNot(tok::comma))
3219      break;
3220    SourceLocation CommaLoc = ConsumeToken();
3221
3222    if (Tok.isNot(tok::identifier)) {
3223      if (!getLang().C99 && !getLang().CPlusPlus0x)
3224        Diag(CommaLoc, diag::ext_enumerator_list_comma)
3225          << getLang().CPlusPlus
3226          << FixItHint::CreateRemoval(CommaLoc);
3227      else if (getLang().CPlusPlus0x)
3228        Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
3229          << FixItHint::CreateRemoval(CommaLoc);
3230    }
3231  }
3232
3233  // Eat the }.
3234  T.consumeClose();
3235
3236  // If attributes exist after the identifier list, parse them.
3237  ParsedAttributes attrs(AttrFactory);
3238  MaybeParseGNUAttributes(attrs);
3239
3240  Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
3241                        EnumDecl, EnumConstantDecls.data(),
3242                        EnumConstantDecls.size(), getCurScope(),
3243                        attrs.getList());
3244
3245  EnumScope.Exit();
3246  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
3247                                   T.getCloseLocation());
3248}
3249
3250/// isTypeSpecifierQualifier - Return true if the current token could be the
3251/// start of a type-qualifier-list.
3252bool Parser::isTypeQualifier() const {
3253  switch (Tok.getKind()) {
3254  default: return false;
3255
3256    // type-qualifier only in OpenCL
3257  case tok::kw_private:
3258    return getLang().OpenCL;
3259
3260    // type-qualifier
3261  case tok::kw_const:
3262  case tok::kw_volatile:
3263  case tok::kw_restrict:
3264  case tok::kw___private:
3265  case tok::kw___local:
3266  case tok::kw___global:
3267  case tok::kw___constant:
3268  case tok::kw___read_only:
3269  case tok::kw___read_write:
3270  case tok::kw___write_only:
3271    return true;
3272  }
3273}
3274
3275/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
3276/// is definitely a type-specifier.  Return false if it isn't part of a type
3277/// specifier or if we're not sure.
3278bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
3279  switch (Tok.getKind()) {
3280  default: return false;
3281    // type-specifiers
3282  case tok::kw_short:
3283  case tok::kw_long:
3284  case tok::kw___int64:
3285  case tok::kw_signed:
3286  case tok::kw_unsigned:
3287  case tok::kw__Complex:
3288  case tok::kw__Imaginary:
3289  case tok::kw_void:
3290  case tok::kw_char:
3291  case tok::kw_wchar_t:
3292  case tok::kw_char16_t:
3293  case tok::kw_char32_t:
3294  case tok::kw_int:
3295  case tok::kw_half:
3296  case tok::kw_float:
3297  case tok::kw_double:
3298  case tok::kw_bool:
3299  case tok::kw__Bool:
3300  case tok::kw__Decimal32:
3301  case tok::kw__Decimal64:
3302  case tok::kw__Decimal128:
3303  case tok::kw___vector:
3304
3305    // struct-or-union-specifier (C99) or class-specifier (C++)
3306  case tok::kw_class:
3307  case tok::kw_struct:
3308  case tok::kw_union:
3309    // enum-specifier
3310  case tok::kw_enum:
3311
3312    // typedef-name
3313  case tok::annot_typename:
3314    return true;
3315  }
3316}
3317
3318/// isTypeSpecifierQualifier - Return true if the current token could be the
3319/// start of a specifier-qualifier-list.
3320bool Parser::isTypeSpecifierQualifier() {
3321  switch (Tok.getKind()) {
3322  default: return false;
3323
3324  case tok::identifier:   // foo::bar
3325    if (TryAltiVecVectorToken())
3326      return true;
3327    // Fall through.
3328  case tok::kw_typename:  // typename T::type
3329    // Annotate typenames and C++ scope specifiers.  If we get one, just
3330    // recurse to handle whatever we get.
3331    if (TryAnnotateTypeOrScopeToken())
3332      return true;
3333    if (Tok.is(tok::identifier))
3334      return false;
3335    return isTypeSpecifierQualifier();
3336
3337  case tok::coloncolon:   // ::foo::bar
3338    if (NextToken().is(tok::kw_new) ||    // ::new
3339        NextToken().is(tok::kw_delete))   // ::delete
3340      return false;
3341
3342    if (TryAnnotateTypeOrScopeToken())
3343      return true;
3344    return isTypeSpecifierQualifier();
3345
3346    // GNU attributes support.
3347  case tok::kw___attribute:
3348    // GNU typeof support.
3349  case tok::kw_typeof:
3350
3351    // type-specifiers
3352  case tok::kw_short:
3353  case tok::kw_long:
3354  case tok::kw___int64:
3355  case tok::kw_signed:
3356  case tok::kw_unsigned:
3357  case tok::kw__Complex:
3358  case tok::kw__Imaginary:
3359  case tok::kw_void:
3360  case tok::kw_char:
3361  case tok::kw_wchar_t:
3362  case tok::kw_char16_t:
3363  case tok::kw_char32_t:
3364  case tok::kw_int:
3365  case tok::kw_half:
3366  case tok::kw_float:
3367  case tok::kw_double:
3368  case tok::kw_bool:
3369  case tok::kw__Bool:
3370  case tok::kw__Decimal32:
3371  case tok::kw__Decimal64:
3372  case tok::kw__Decimal128:
3373  case tok::kw___vector:
3374
3375    // struct-or-union-specifier (C99) or class-specifier (C++)
3376  case tok::kw_class:
3377  case tok::kw_struct:
3378  case tok::kw_union:
3379    // enum-specifier
3380  case tok::kw_enum:
3381
3382    // type-qualifier
3383  case tok::kw_const:
3384  case tok::kw_volatile:
3385  case tok::kw_restrict:
3386
3387    // typedef-name
3388  case tok::annot_typename:
3389    return true;
3390
3391    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3392  case tok::less:
3393    return getLang().ObjC1;
3394
3395  case tok::kw___cdecl:
3396  case tok::kw___stdcall:
3397  case tok::kw___fastcall:
3398  case tok::kw___thiscall:
3399  case tok::kw___w64:
3400  case tok::kw___ptr64:
3401  case tok::kw___ptr32:
3402  case tok::kw___pascal:
3403  case tok::kw___unaligned:
3404
3405  case tok::kw___private:
3406  case tok::kw___local:
3407  case tok::kw___global:
3408  case tok::kw___constant:
3409  case tok::kw___read_only:
3410  case tok::kw___read_write:
3411  case tok::kw___write_only:
3412
3413    return true;
3414
3415  case tok::kw_private:
3416    return getLang().OpenCL;
3417
3418  // C11 _Atomic()
3419  case tok::kw__Atomic:
3420    return true;
3421  }
3422}
3423
3424/// isDeclarationSpecifier() - Return true if the current token is part of a
3425/// declaration specifier.
3426///
3427/// \param DisambiguatingWithExpression True to indicate that the purpose of
3428/// this check is to disambiguate between an expression and a declaration.
3429bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
3430  switch (Tok.getKind()) {
3431  default: return false;
3432
3433  case tok::kw_private:
3434    return getLang().OpenCL;
3435
3436  case tok::identifier:   // foo::bar
3437    // Unfortunate hack to support "Class.factoryMethod" notation.
3438    if (getLang().ObjC1 && NextToken().is(tok::period))
3439      return false;
3440    if (TryAltiVecVectorToken())
3441      return true;
3442    // Fall through.
3443  case tok::kw_decltype: // decltype(T())::type
3444  case tok::kw_typename: // typename T::type
3445    // Annotate typenames and C++ scope specifiers.  If we get one, just
3446    // recurse to handle whatever we get.
3447    if (TryAnnotateTypeOrScopeToken())
3448      return true;
3449    if (Tok.is(tok::identifier))
3450      return false;
3451
3452    // If we're in Objective-C and we have an Objective-C class type followed
3453    // by an identifier and then either ':' or ']', in a place where an
3454    // expression is permitted, then this is probably a class message send
3455    // missing the initial '['. In this case, we won't consider this to be
3456    // the start of a declaration.
3457    if (DisambiguatingWithExpression &&
3458        isStartOfObjCClassMessageMissingOpenBracket())
3459      return false;
3460
3461    return isDeclarationSpecifier();
3462
3463  case tok::coloncolon:   // ::foo::bar
3464    if (NextToken().is(tok::kw_new) ||    // ::new
3465        NextToken().is(tok::kw_delete))   // ::delete
3466      return false;
3467
3468    // Annotate typenames and C++ scope specifiers.  If we get one, just
3469    // recurse to handle whatever we get.
3470    if (TryAnnotateTypeOrScopeToken())
3471      return true;
3472    return isDeclarationSpecifier();
3473
3474    // storage-class-specifier
3475  case tok::kw_typedef:
3476  case tok::kw_extern:
3477  case tok::kw___private_extern__:
3478  case tok::kw_static:
3479  case tok::kw_auto:
3480  case tok::kw_register:
3481  case tok::kw___thread:
3482
3483    // Modules
3484  case tok::kw___module_private__:
3485
3486    // type-specifiers
3487  case tok::kw_short:
3488  case tok::kw_long:
3489  case tok::kw___int64:
3490  case tok::kw_signed:
3491  case tok::kw_unsigned:
3492  case tok::kw__Complex:
3493  case tok::kw__Imaginary:
3494  case tok::kw_void:
3495  case tok::kw_char:
3496  case tok::kw_wchar_t:
3497  case tok::kw_char16_t:
3498  case tok::kw_char32_t:
3499
3500  case tok::kw_int:
3501  case tok::kw_half:
3502  case tok::kw_float:
3503  case tok::kw_double:
3504  case tok::kw_bool:
3505  case tok::kw__Bool:
3506  case tok::kw__Decimal32:
3507  case tok::kw__Decimal64:
3508  case tok::kw__Decimal128:
3509  case tok::kw___vector:
3510
3511    // struct-or-union-specifier (C99) or class-specifier (C++)
3512  case tok::kw_class:
3513  case tok::kw_struct:
3514  case tok::kw_union:
3515    // enum-specifier
3516  case tok::kw_enum:
3517
3518    // type-qualifier
3519  case tok::kw_const:
3520  case tok::kw_volatile:
3521  case tok::kw_restrict:
3522
3523    // function-specifier
3524  case tok::kw_inline:
3525  case tok::kw_virtual:
3526  case tok::kw_explicit:
3527
3528    // static_assert-declaration
3529  case tok::kw__Static_assert:
3530
3531    // GNU typeof support.
3532  case tok::kw_typeof:
3533
3534    // GNU attributes.
3535  case tok::kw___attribute:
3536    return true;
3537
3538    // C++0x decltype.
3539  case tok::annot_decltype:
3540    return true;
3541
3542    // C11 _Atomic()
3543  case tok::kw__Atomic:
3544    return true;
3545
3546    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
3547  case tok::less:
3548    return getLang().ObjC1;
3549
3550    // typedef-name
3551  case tok::annot_typename:
3552    return !DisambiguatingWithExpression ||
3553           !isStartOfObjCClassMessageMissingOpenBracket();
3554
3555  case tok::kw___declspec:
3556  case tok::kw___cdecl:
3557  case tok::kw___stdcall:
3558  case tok::kw___fastcall:
3559  case tok::kw___thiscall:
3560  case tok::kw___w64:
3561  case tok::kw___ptr64:
3562  case tok::kw___ptr32:
3563  case tok::kw___forceinline:
3564  case tok::kw___pascal:
3565  case tok::kw___unaligned:
3566
3567  case tok::kw___private:
3568  case tok::kw___local:
3569  case tok::kw___global:
3570  case tok::kw___constant:
3571  case tok::kw___read_only:
3572  case tok::kw___read_write:
3573  case tok::kw___write_only:
3574
3575    return true;
3576  }
3577}
3578
3579bool Parser::isConstructorDeclarator() {
3580  TentativeParsingAction TPA(*this);
3581
3582  // Parse the C++ scope specifier.
3583  CXXScopeSpec SS;
3584  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3585                                     /*EnteringContext=*/true)) {
3586    TPA.Revert();
3587    return false;
3588  }
3589
3590  // Parse the constructor name.
3591  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
3592    // We already know that we have a constructor name; just consume
3593    // the token.
3594    ConsumeToken();
3595  } else {
3596    TPA.Revert();
3597    return false;
3598  }
3599
3600  // Current class name must be followed by a left parentheses.
3601  if (Tok.isNot(tok::l_paren)) {
3602    TPA.Revert();
3603    return false;
3604  }
3605  ConsumeParen();
3606
3607  // A right parentheses or ellipsis signals that we have a constructor.
3608  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
3609    TPA.Revert();
3610    return true;
3611  }
3612
3613  // If we need to, enter the specified scope.
3614  DeclaratorScopeObj DeclScopeObj(*this, SS);
3615  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3616    DeclScopeObj.EnterDeclaratorScope();
3617
3618  // Optionally skip Microsoft attributes.
3619  ParsedAttributes Attrs(AttrFactory);
3620  MaybeParseMicrosoftAttributes(Attrs);
3621
3622  // Check whether the next token(s) are part of a declaration
3623  // specifier, in which case we have the start of a parameter and,
3624  // therefore, we know that this is a constructor.
3625  bool IsConstructor = isDeclarationSpecifier();
3626  TPA.Revert();
3627  return IsConstructor;
3628}
3629
3630/// ParseTypeQualifierListOpt
3631///          type-qualifier-list: [C99 6.7.5]
3632///            type-qualifier
3633/// [vendor]   attributes
3634///              [ only if VendorAttributesAllowed=true ]
3635///            type-qualifier-list type-qualifier
3636/// [vendor]   type-qualifier-list attributes
3637///              [ only if VendorAttributesAllowed=true ]
3638/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
3639///              [ only if CXX0XAttributesAllowed=true ]
3640/// Note: vendor can be GNU, MS, etc.
3641///
3642void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
3643                                       bool VendorAttributesAllowed,
3644                                       bool CXX0XAttributesAllowed) {
3645  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
3646    SourceLocation Loc = Tok.getLocation();
3647    ParsedAttributesWithRange attrs(AttrFactory);
3648    ParseCXX0XAttributes(attrs);
3649    if (CXX0XAttributesAllowed)
3650      DS.takeAttributesFrom(attrs);
3651    else
3652      Diag(Loc, diag::err_attributes_not_allowed);
3653  }
3654
3655  SourceLocation EndLoc;
3656
3657  while (1) {
3658    bool isInvalid = false;
3659    const char *PrevSpec = 0;
3660    unsigned DiagID = 0;
3661    SourceLocation Loc = Tok.getLocation();
3662
3663    switch (Tok.getKind()) {
3664    case tok::code_completion:
3665      Actions.CodeCompleteTypeQualifiers(DS);
3666      return cutOffParsing();
3667
3668    case tok::kw_const:
3669      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
3670                                 getLang());
3671      break;
3672    case tok::kw_volatile:
3673      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3674                                 getLang());
3675      break;
3676    case tok::kw_restrict:
3677      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3678                                 getLang());
3679      break;
3680
3681    // OpenCL qualifiers:
3682    case tok::kw_private:
3683      if (!getLang().OpenCL)
3684        goto DoneWithTypeQuals;
3685    case tok::kw___private:
3686    case tok::kw___global:
3687    case tok::kw___local:
3688    case tok::kw___constant:
3689    case tok::kw___read_only:
3690    case tok::kw___write_only:
3691    case tok::kw___read_write:
3692      ParseOpenCLQualifiers(DS);
3693      break;
3694
3695    case tok::kw___w64:
3696    case tok::kw___ptr64:
3697    case tok::kw___ptr32:
3698    case tok::kw___cdecl:
3699    case tok::kw___stdcall:
3700    case tok::kw___fastcall:
3701    case tok::kw___thiscall:
3702    case tok::kw___unaligned:
3703      if (VendorAttributesAllowed) {
3704        ParseMicrosoftTypeAttributes(DS.getAttributes());
3705        continue;
3706      }
3707      goto DoneWithTypeQuals;
3708    case tok::kw___pascal:
3709      if (VendorAttributesAllowed) {
3710        ParseBorlandTypeAttributes(DS.getAttributes());
3711        continue;
3712      }
3713      goto DoneWithTypeQuals;
3714    case tok::kw___attribute:
3715      if (VendorAttributesAllowed) {
3716        ParseGNUAttributes(DS.getAttributes());
3717        continue; // do *not* consume the next token!
3718      }
3719      // otherwise, FALL THROUGH!
3720    default:
3721      DoneWithTypeQuals:
3722      // If this is not a type-qualifier token, we're done reading type
3723      // qualifiers.  First verify that DeclSpec's are consistent.
3724      DS.Finish(Diags, PP);
3725      if (EndLoc.isValid())
3726        DS.SetRangeEnd(EndLoc);
3727      return;
3728    }
3729
3730    // If the specifier combination wasn't legal, issue a diagnostic.
3731    if (isInvalid) {
3732      assert(PrevSpec && "Method did not return previous specifier!");
3733      Diag(Tok, DiagID) << PrevSpec;
3734    }
3735    EndLoc = ConsumeToken();
3736  }
3737}
3738
3739
3740/// ParseDeclarator - Parse and verify a newly-initialized declarator.
3741///
3742void Parser::ParseDeclarator(Declarator &D) {
3743  /// This implements the 'declarator' production in the C grammar, then checks
3744  /// for well-formedness and issues diagnostics.
3745  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3746}
3747
3748/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
3749/// is parsed by the function passed to it. Pass null, and the direct-declarator
3750/// isn't parsed at all, making this function effectively parse the C++
3751/// ptr-operator production.
3752///
3753/// If the grammar of this construct is extended, matching changes must also be
3754/// made to TryParseDeclarator and MightBeDeclarator.
3755///
3756///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
3757/// [C]     pointer[opt] direct-declarator
3758/// [C++]   direct-declarator
3759/// [C++]   ptr-operator declarator
3760///
3761///       pointer: [C99 6.7.5]
3762///         '*' type-qualifier-list[opt]
3763///         '*' type-qualifier-list[opt] pointer
3764///
3765///       ptr-operator:
3766///         '*' cv-qualifier-seq[opt]
3767///         '&'
3768/// [C++0x] '&&'
3769/// [GNU]   '&' restrict[opt] attributes[opt]
3770/// [GNU?]  '&&' restrict[opt] attributes[opt]
3771///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
3772void Parser::ParseDeclaratorInternal(Declarator &D,
3773                                     DirectDeclParseFunction DirectDeclParser) {
3774  if (Diags.hasAllExtensionsSilenced())
3775    D.setExtension();
3776
3777  // C++ member pointers start with a '::' or a nested-name.
3778  // Member pointers get special handling, since there's no place for the
3779  // scope spec in the generic path below.
3780  if (getLang().CPlusPlus &&
3781      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
3782       Tok.is(tok::annot_cxxscope))) {
3783    bool EnteringContext = D.getContext() == Declarator::FileContext ||
3784                           D.getContext() == Declarator::MemberContext;
3785    CXXScopeSpec SS;
3786    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
3787
3788    if (SS.isNotEmpty()) {
3789      if (Tok.isNot(tok::star)) {
3790        // The scope spec really belongs to the direct-declarator.
3791        D.getCXXScopeSpec() = SS;
3792        if (DirectDeclParser)
3793          (this->*DirectDeclParser)(D);
3794        return;
3795      }
3796
3797      SourceLocation Loc = ConsumeToken();
3798      D.SetRangeEnd(Loc);
3799      DeclSpec DS(AttrFactory);
3800      ParseTypeQualifierListOpt(DS);
3801      D.ExtendWithDeclSpec(DS);
3802
3803      // Recurse to parse whatever is left.
3804      ParseDeclaratorInternal(D, DirectDeclParser);
3805
3806      // Sema will have to catch (syntactically invalid) pointers into global
3807      // scope. It has to catch pointers into namespace scope anyway.
3808      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
3809                                                      Loc),
3810                    DS.getAttributes(),
3811                    /* Don't replace range end. */SourceLocation());
3812      return;
3813    }
3814  }
3815
3816  tok::TokenKind Kind = Tok.getKind();
3817  // Not a pointer, C++ reference, or block.
3818  if (Kind != tok::star && Kind != tok::caret &&
3819      (Kind != tok::amp || !getLang().CPlusPlus) &&
3820      // We parse rvalue refs in C++03, because otherwise the errors are scary.
3821      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
3822    if (DirectDeclParser)
3823      (this->*DirectDeclParser)(D);
3824    return;
3825  }
3826
3827  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
3828  // '&&' -> rvalue reference
3829  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
3830  D.SetRangeEnd(Loc);
3831
3832  if (Kind == tok::star || Kind == tok::caret) {
3833    // Is a pointer.
3834    DeclSpec DS(AttrFactory);
3835
3836    ParseTypeQualifierListOpt(DS);
3837    D.ExtendWithDeclSpec(DS);
3838
3839    // Recursively parse the declarator.
3840    ParseDeclaratorInternal(D, DirectDeclParser);
3841    if (Kind == tok::star)
3842      // Remember that we parsed a pointer type, and remember the type-quals.
3843      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
3844                                                DS.getConstSpecLoc(),
3845                                                DS.getVolatileSpecLoc(),
3846                                                DS.getRestrictSpecLoc()),
3847                    DS.getAttributes(),
3848                    SourceLocation());
3849    else
3850      // Remember that we parsed a Block type, and remember the type-quals.
3851      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
3852                                                     Loc),
3853                    DS.getAttributes(),
3854                    SourceLocation());
3855  } else {
3856    // Is a reference
3857    DeclSpec DS(AttrFactory);
3858
3859    // Complain about rvalue references in C++03, but then go on and build
3860    // the declarator.
3861    if (Kind == tok::ampamp)
3862      Diag(Loc, getLang().CPlusPlus0x ?
3863           diag::warn_cxx98_compat_rvalue_reference :
3864           diag::ext_rvalue_reference);
3865
3866    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
3867    // cv-qualifiers are introduced through the use of a typedef or of a
3868    // template type argument, in which case the cv-qualifiers are ignored.
3869    //
3870    // [GNU] Retricted references are allowed.
3871    // [GNU] Attributes on references are allowed.
3872    // [C++0x] Attributes on references are not allowed.
3873    ParseTypeQualifierListOpt(DS, true, false);
3874    D.ExtendWithDeclSpec(DS);
3875
3876    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
3877      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3878        Diag(DS.getConstSpecLoc(),
3879             diag::err_invalid_reference_qualifier_application) << "const";
3880      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3881        Diag(DS.getVolatileSpecLoc(),
3882             diag::err_invalid_reference_qualifier_application) << "volatile";
3883    }
3884
3885    // Recursively parse the declarator.
3886    ParseDeclaratorInternal(D, DirectDeclParser);
3887
3888    if (D.getNumTypeObjects() > 0) {
3889      // C++ [dcl.ref]p4: There shall be no references to references.
3890      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
3891      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
3892        if (const IdentifierInfo *II = D.getIdentifier())
3893          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3894           << II;
3895        else
3896          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
3897            << "type name";
3898
3899        // Once we've complained about the reference-to-reference, we
3900        // can go ahead and build the (technically ill-formed)
3901        // declarator: reference collapsing will take care of it.
3902      }
3903    }
3904
3905    // Remember that we parsed a reference type. It doesn't have type-quals.
3906    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
3907                                                Kind == tok::amp),
3908                  DS.getAttributes(),
3909                  SourceLocation());
3910  }
3911}
3912
3913/// ParseDirectDeclarator
3914///       direct-declarator: [C99 6.7.5]
3915/// [C99]   identifier
3916///         '(' declarator ')'
3917/// [GNU]   '(' attributes declarator ')'
3918/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3919/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3920/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3921/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3922/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3923///         direct-declarator '(' parameter-type-list ')'
3924///         direct-declarator '(' identifier-list[opt] ')'
3925/// [GNU]   direct-declarator '(' parameter-forward-declarations
3926///                    parameter-type-list[opt] ')'
3927/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
3928///                    cv-qualifier-seq[opt] exception-specification[opt]
3929/// [C++]   declarator-id
3930///
3931///       declarator-id: [C++ 8]
3932///         '...'[opt] id-expression
3933///         '::'[opt] nested-name-specifier[opt] type-name
3934///
3935///       id-expression: [C++ 5.1]
3936///         unqualified-id
3937///         qualified-id
3938///
3939///       unqualified-id: [C++ 5.1]
3940///         identifier
3941///         operator-function-id
3942///         conversion-function-id
3943///          '~' class-name
3944///         template-id
3945///
3946void Parser::ParseDirectDeclarator(Declarator &D) {
3947  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
3948
3949  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
3950    // ParseDeclaratorInternal might already have parsed the scope.
3951    if (D.getCXXScopeSpec().isEmpty()) {
3952      bool EnteringContext = D.getContext() == Declarator::FileContext ||
3953                             D.getContext() == Declarator::MemberContext;
3954      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
3955                                     EnteringContext);
3956    }
3957
3958    if (D.getCXXScopeSpec().isValid()) {
3959      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
3960        // Change the declaration context for name lookup, until this function
3961        // is exited (and the declarator has been parsed).
3962        DeclScopeObj.EnterDeclaratorScope();
3963    }
3964
3965    // C++0x [dcl.fct]p14:
3966    //   There is a syntactic ambiguity when an ellipsis occurs at the end
3967    //   of a parameter-declaration-clause without a preceding comma. In
3968    //   this case, the ellipsis is parsed as part of the
3969    //   abstract-declarator if the type of the parameter names a template
3970    //   parameter pack that has not been expanded; otherwise, it is parsed
3971    //   as part of the parameter-declaration-clause.
3972    if (Tok.is(tok::ellipsis) &&
3973        !((D.getContext() == Declarator::PrototypeContext ||
3974           D.getContext() == Declarator::BlockLiteralContext) &&
3975          NextToken().is(tok::r_paren) &&
3976          !Actions.containsUnexpandedParameterPacks(D)))
3977      D.setEllipsisLoc(ConsumeToken());
3978
3979    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
3980        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
3981      // We found something that indicates the start of an unqualified-id.
3982      // Parse that unqualified-id.
3983      bool AllowConstructorName;
3984      if (D.getDeclSpec().hasTypeSpecifier())
3985        AllowConstructorName = false;
3986      else if (D.getCXXScopeSpec().isSet())
3987        AllowConstructorName =
3988          (D.getContext() == Declarator::FileContext ||
3989           (D.getContext() == Declarator::MemberContext &&
3990            D.getDeclSpec().isFriendSpecified()));
3991      else
3992        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
3993
3994      SourceLocation TemplateKWLoc;
3995      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
3996                             /*EnteringContext=*/true,
3997                             /*AllowDestructorName=*/true,
3998                             AllowConstructorName,
3999                             ParsedType(),
4000                             TemplateKWLoc,
4001                             D.getName()) ||
4002          // Once we're past the identifier, if the scope was bad, mark the
4003          // whole declarator bad.
4004          D.getCXXScopeSpec().isInvalid()) {
4005        D.SetIdentifier(0, Tok.getLocation());
4006        D.setInvalidType(true);
4007      } else {
4008        // Parsed the unqualified-id; update range information and move along.
4009        if (D.getSourceRange().getBegin().isInvalid())
4010          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
4011        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
4012      }
4013      goto PastIdentifier;
4014    }
4015  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
4016    assert(!getLang().CPlusPlus &&
4017           "There's a C++-specific check for tok::identifier above");
4018    assert(Tok.getIdentifierInfo() && "Not an identifier?");
4019    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
4020    ConsumeToken();
4021    goto PastIdentifier;
4022  }
4023
4024  if (Tok.is(tok::l_paren)) {
4025    // direct-declarator: '(' declarator ')'
4026    // direct-declarator: '(' attributes declarator ')'
4027    // Example: 'char (*X)'   or 'int (*XX)(void)'
4028    ParseParenDeclarator(D);
4029
4030    // If the declarator was parenthesized, we entered the declarator
4031    // scope when parsing the parenthesized declarator, then exited
4032    // the scope already. Re-enter the scope, if we need to.
4033    if (D.getCXXScopeSpec().isSet()) {
4034      // If there was an error parsing parenthesized declarator, declarator
4035      // scope may have been enterred before. Don't do it again.
4036      if (!D.isInvalidType() &&
4037          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
4038        // Change the declaration context for name lookup, until this function
4039        // is exited (and the declarator has been parsed).
4040        DeclScopeObj.EnterDeclaratorScope();
4041    }
4042  } else if (D.mayOmitIdentifier()) {
4043    // This could be something simple like "int" (in which case the declarator
4044    // portion is empty), if an abstract-declarator is allowed.
4045    D.SetIdentifier(0, Tok.getLocation());
4046  } else {
4047    if (D.getContext() == Declarator::MemberContext)
4048      Diag(Tok, diag::err_expected_member_name_or_semi)
4049        << D.getDeclSpec().getSourceRange();
4050    else if (getLang().CPlusPlus)
4051      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
4052    else
4053      Diag(Tok, diag::err_expected_ident_lparen);
4054    D.SetIdentifier(0, Tok.getLocation());
4055    D.setInvalidType(true);
4056  }
4057
4058 PastIdentifier:
4059  assert(D.isPastIdentifier() &&
4060         "Haven't past the location of the identifier yet?");
4061
4062  // Don't parse attributes unless we have an identifier.
4063  if (D.getIdentifier())
4064    MaybeParseCXX0XAttributes(D);
4065
4066  while (1) {
4067    if (Tok.is(tok::l_paren)) {
4068      // Enter function-declaration scope, limiting any declarators to the
4069      // function prototype scope, including parameter declarators.
4070      ParseScope PrototypeScope(this,
4071                                Scope::FunctionPrototypeScope|Scope::DeclScope);
4072      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
4073      // In such a case, check if we actually have a function declarator; if it
4074      // is not, the declarator has been fully parsed.
4075      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
4076        // When not in file scope, warn for ambiguous function declarators, just
4077        // in case the author intended it as a variable definition.
4078        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
4079        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
4080          break;
4081      }
4082      ParsedAttributes attrs(AttrFactory);
4083      BalancedDelimiterTracker T(*this, tok::l_paren);
4084      T.consumeOpen();
4085      ParseFunctionDeclarator(D, attrs, T);
4086      PrototypeScope.Exit();
4087    } else if (Tok.is(tok::l_square)) {
4088      ParseBracketDeclarator(D);
4089    } else {
4090      break;
4091    }
4092  }
4093}
4094
4095/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
4096/// only called before the identifier, so these are most likely just grouping
4097/// parens for precedence.  If we find that these are actually function
4098/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
4099///
4100///       direct-declarator:
4101///         '(' declarator ')'
4102/// [GNU]   '(' attributes declarator ')'
4103///         direct-declarator '(' parameter-type-list ')'
4104///         direct-declarator '(' identifier-list[opt] ')'
4105/// [GNU]   direct-declarator '(' parameter-forward-declarations
4106///                    parameter-type-list[opt] ')'
4107///
4108void Parser::ParseParenDeclarator(Declarator &D) {
4109  BalancedDelimiterTracker T(*this, tok::l_paren);
4110  T.consumeOpen();
4111
4112  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
4113
4114  // Eat any attributes before we look at whether this is a grouping or function
4115  // declarator paren.  If this is a grouping paren, the attribute applies to
4116  // the type being built up, for example:
4117  //     int (__attribute__(()) *x)(long y)
4118  // If this ends up not being a grouping paren, the attribute applies to the
4119  // first argument, for example:
4120  //     int (__attribute__(()) int x)
4121  // In either case, we need to eat any attributes to be able to determine what
4122  // sort of paren this is.
4123  //
4124  ParsedAttributes attrs(AttrFactory);
4125  bool RequiresArg = false;
4126  if (Tok.is(tok::kw___attribute)) {
4127    ParseGNUAttributes(attrs);
4128
4129    // We require that the argument list (if this is a non-grouping paren) be
4130    // present even if the attribute list was empty.
4131    RequiresArg = true;
4132  }
4133  // Eat any Microsoft extensions.
4134  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
4135       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
4136       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
4137       Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
4138    ParseMicrosoftTypeAttributes(attrs);
4139  }
4140  // Eat any Borland extensions.
4141  if  (Tok.is(tok::kw___pascal))
4142    ParseBorlandTypeAttributes(attrs);
4143
4144  // If we haven't past the identifier yet (or where the identifier would be
4145  // stored, if this is an abstract declarator), then this is probably just
4146  // grouping parens. However, if this could be an abstract-declarator, then
4147  // this could also be the start of function arguments (consider 'void()').
4148  bool isGrouping;
4149
4150  if (!D.mayOmitIdentifier()) {
4151    // If this can't be an abstract-declarator, this *must* be a grouping
4152    // paren, because we haven't seen the identifier yet.
4153    isGrouping = true;
4154  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
4155             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
4156             isDeclarationSpecifier()) {       // 'int(int)' is a function.
4157    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
4158    // considered to be a type, not a K&R identifier-list.
4159    isGrouping = false;
4160  } else {
4161    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
4162    isGrouping = true;
4163  }
4164
4165  // If this is a grouping paren, handle:
4166  // direct-declarator: '(' declarator ')'
4167  // direct-declarator: '(' attributes declarator ')'
4168  if (isGrouping) {
4169    bool hadGroupingParens = D.hasGroupingParens();
4170    D.setGroupingParens(true);
4171
4172    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4173    // Match the ')'.
4174    T.consumeClose();
4175    D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
4176                                            T.getCloseLocation()),
4177                  attrs, T.getCloseLocation());
4178
4179    D.setGroupingParens(hadGroupingParens);
4180    return;
4181  }
4182
4183  // Okay, if this wasn't a grouping paren, it must be the start of a function
4184  // argument list.  Recognize that this declarator will never have an
4185  // identifier (and remember where it would have been), then call into
4186  // ParseFunctionDeclarator to handle of argument list.
4187  D.SetIdentifier(0, Tok.getLocation());
4188
4189  // Enter function-declaration scope, limiting any declarators to the
4190  // function prototype scope, including parameter declarators.
4191  ParseScope PrototypeScope(this,
4192                            Scope::FunctionPrototypeScope|Scope::DeclScope);
4193  ParseFunctionDeclarator(D, attrs, T, RequiresArg);
4194  PrototypeScope.Exit();
4195}
4196
4197/// ParseFunctionDeclarator - We are after the identifier and have parsed the
4198/// declarator D up to a paren, which indicates that we are parsing function
4199/// arguments.
4200///
4201/// If attrs is non-null, then the caller parsed those arguments immediately
4202/// after the open paren - they should be considered to be the first argument of
4203/// a parameter.  If RequiresArg is true, then the first argument of the
4204/// function is required to be present and required to not be an identifier
4205/// list.
4206///
4207/// For C++, after the parameter-list, it also parses cv-qualifier-seq[opt],
4208/// (C++0x) ref-qualifier[opt], exception-specification[opt], and
4209/// (C++0x) trailing-return-type[opt].
4210///
4211/// [C++0x] exception-specification:
4212///           dynamic-exception-specification
4213///           noexcept-specification
4214///
4215void Parser::ParseFunctionDeclarator(Declarator &D,
4216                                     ParsedAttributes &attrs,
4217                                     BalancedDelimiterTracker &Tracker,
4218                                     bool RequiresArg) {
4219  assert(getCurScope()->isFunctionPrototypeScope() &&
4220         "Should call from a Function scope");
4221  // lparen is already consumed!
4222  assert(D.isPastIdentifier() && "Should not call before identifier!");
4223
4224  // This should be true when the function has typed arguments.
4225  // Otherwise, it is treated as a K&R-style function.
4226  bool HasProto = false;
4227  // Build up an array of information about the parsed arguments.
4228  SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
4229  // Remember where we see an ellipsis, if any.
4230  SourceLocation EllipsisLoc;
4231
4232  DeclSpec DS(AttrFactory);
4233  bool RefQualifierIsLValueRef = true;
4234  SourceLocation RefQualifierLoc;
4235  SourceLocation ConstQualifierLoc;
4236  SourceLocation VolatileQualifierLoc;
4237  ExceptionSpecificationType ESpecType = EST_None;
4238  SourceRange ESpecRange;
4239  SmallVector<ParsedType, 2> DynamicExceptions;
4240  SmallVector<SourceRange, 2> DynamicExceptionRanges;
4241  ExprResult NoexceptExpr;
4242  ParsedType TrailingReturnType;
4243
4244  Actions.ActOnStartFunctionDeclarator();
4245
4246  SourceLocation EndLoc;
4247  if (isFunctionDeclaratorIdentifierList()) {
4248    if (RequiresArg)
4249      Diag(Tok, diag::err_argument_required_after_attribute);
4250
4251    ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
4252
4253    Tracker.consumeClose();
4254    EndLoc = Tracker.getCloseLocation();
4255  } else {
4256    if (Tok.isNot(tok::r_paren))
4257      ParseParameterDeclarationClause(D, attrs, ParamInfo, EllipsisLoc);
4258    else if (RequiresArg)
4259      Diag(Tok, diag::err_argument_required_after_attribute);
4260
4261    HasProto = ParamInfo.size() || getLang().CPlusPlus;
4262
4263    // If we have the closing ')', eat it.
4264    Tracker.consumeClose();
4265    EndLoc = Tracker.getCloseLocation();
4266
4267    if (getLang().CPlusPlus) {
4268      MaybeParseCXX0XAttributes(attrs);
4269
4270      // Parse cv-qualifier-seq[opt].
4271      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4272        if (!DS.getSourceRange().getEnd().isInvalid()) {
4273          EndLoc = DS.getSourceRange().getEnd();
4274          ConstQualifierLoc = DS.getConstSpecLoc();
4275          VolatileQualifierLoc = DS.getVolatileSpecLoc();
4276        }
4277
4278      // Parse ref-qualifier[opt].
4279      if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
4280        Diag(Tok, getLang().CPlusPlus0x ?
4281             diag::warn_cxx98_compat_ref_qualifier :
4282             diag::ext_ref_qualifier);
4283
4284        RefQualifierIsLValueRef = Tok.is(tok::amp);
4285        RefQualifierLoc = ConsumeToken();
4286        EndLoc = RefQualifierLoc;
4287      }
4288
4289      // Parse exception-specification[opt].
4290      ESpecType = MaybeParseExceptionSpecification(ESpecRange,
4291                                                   DynamicExceptions,
4292                                                   DynamicExceptionRanges,
4293                                                   NoexceptExpr);
4294      if (ESpecType != EST_None)
4295        EndLoc = ESpecRange.getEnd();
4296
4297      // Parse trailing-return-type[opt].
4298      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
4299        Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
4300        SourceRange Range;
4301        TrailingReturnType = ParseTrailingReturnType(Range).get();
4302        if (Range.getEnd().isValid())
4303          EndLoc = Range.getEnd();
4304      }
4305    }
4306  }
4307
4308  // Remember that we parsed a function type, and remember the attributes.
4309  D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
4310                                             /*isVariadic=*/EllipsisLoc.isValid(),
4311                                             EllipsisLoc,
4312                                             ParamInfo.data(), ParamInfo.size(),
4313                                             DS.getTypeQualifiers(),
4314                                             RefQualifierIsLValueRef,
4315                                             RefQualifierLoc, ConstQualifierLoc,
4316                                             VolatileQualifierLoc,
4317                                             /*MutableLoc=*/SourceLocation(),
4318                                             ESpecType, ESpecRange.getBegin(),
4319                                             DynamicExceptions.data(),
4320                                             DynamicExceptionRanges.data(),
4321                                             DynamicExceptions.size(),
4322                                             NoexceptExpr.isUsable() ?
4323                                               NoexceptExpr.get() : 0,
4324                                             Tracker.getOpenLocation(),
4325                                             EndLoc, D,
4326                                             TrailingReturnType),
4327                attrs, EndLoc);
4328
4329  Actions.ActOnEndFunctionDeclarator();
4330}
4331
4332/// isFunctionDeclaratorIdentifierList - This parameter list may have an
4333/// identifier list form for a K&R-style function:  void foo(a,b,c)
4334///
4335/// Note that identifier-lists are only allowed for normal declarators, not for
4336/// abstract-declarators.
4337bool Parser::isFunctionDeclaratorIdentifierList() {
4338  return !getLang().CPlusPlus
4339         && Tok.is(tok::identifier)
4340         && !TryAltiVecVectorToken()
4341         // K&R identifier lists can't have typedefs as identifiers, per C99
4342         // 6.7.5.3p11.
4343         && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
4344         // Identifier lists follow a really simple grammar: the identifiers can
4345         // be followed *only* by a ", identifier" or ")".  However, K&R
4346         // identifier lists are really rare in the brave new modern world, and
4347         // it is very common for someone to typo a type in a non-K&R style
4348         // list.  If we are presented with something like: "void foo(intptr x,
4349         // float y)", we don't want to start parsing the function declarator as
4350         // though it is a K&R style declarator just because intptr is an
4351         // invalid type.
4352         //
4353         // To handle this, we check to see if the token after the first
4354         // identifier is a "," or ")".  Only then do we parse it as an
4355         // identifier list.
4356         && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
4357}
4358
4359/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
4360/// we found a K&R-style identifier list instead of a typed parameter list.
4361///
4362/// After returning, ParamInfo will hold the parsed parameters.
4363///
4364///       identifier-list: [C99 6.7.5]
4365///         identifier
4366///         identifier-list ',' identifier
4367///
4368void Parser::ParseFunctionDeclaratorIdentifierList(
4369       Declarator &D,
4370       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
4371  // If there was no identifier specified for the declarator, either we are in
4372  // an abstract-declarator, or we are in a parameter declarator which was found
4373  // to be abstract.  In abstract-declarators, identifier lists are not valid:
4374  // diagnose this.
4375  if (!D.getIdentifier())
4376    Diag(Tok, diag::ext_ident_list_in_param);
4377
4378  // Maintain an efficient lookup of params we have seen so far.
4379  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
4380
4381  while (1) {
4382    // If this isn't an identifier, report the error and skip until ')'.
4383    if (Tok.isNot(tok::identifier)) {
4384      Diag(Tok, diag::err_expected_ident);
4385      SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
4386      // Forget we parsed anything.
4387      ParamInfo.clear();
4388      return;
4389    }
4390
4391    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
4392
4393    // Reject 'typedef int y; int test(x, y)', but continue parsing.
4394    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
4395      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
4396
4397    // Verify that the argument identifier has not already been mentioned.
4398    if (!ParamsSoFar.insert(ParmII)) {
4399      Diag(Tok, diag::err_param_redefinition) << ParmII;
4400    } else {
4401      // Remember this identifier in ParamInfo.
4402      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4403                                                     Tok.getLocation(),
4404                                                     0));
4405    }
4406
4407    // Eat the identifier.
4408    ConsumeToken();
4409
4410    // The list continues if we see a comma.
4411    if (Tok.isNot(tok::comma))
4412      break;
4413    ConsumeToken();
4414  }
4415}
4416
4417/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
4418/// after the opening parenthesis. This function will not parse a K&R-style
4419/// identifier list.
4420///
4421/// D is the declarator being parsed.  If attrs is non-null, then the caller
4422/// parsed those arguments immediately after the open paren - they should be
4423/// considered to be the first argument of a parameter.
4424///
4425/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
4426/// be the location of the ellipsis, if any was parsed.
4427///
4428///       parameter-type-list: [C99 6.7.5]
4429///         parameter-list
4430///         parameter-list ',' '...'
4431/// [C++]   parameter-list '...'
4432///
4433///       parameter-list: [C99 6.7.5]
4434///         parameter-declaration
4435///         parameter-list ',' parameter-declaration
4436///
4437///       parameter-declaration: [C99 6.7.5]
4438///         declaration-specifiers declarator
4439/// [C++]   declaration-specifiers declarator '=' assignment-expression
4440/// [GNU]   declaration-specifiers declarator attributes
4441///         declaration-specifiers abstract-declarator[opt]
4442/// [C++]   declaration-specifiers abstract-declarator[opt]
4443///           '=' assignment-expression
4444/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
4445///
4446void Parser::ParseParameterDeclarationClause(
4447       Declarator &D,
4448       ParsedAttributes &attrs,
4449       SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
4450       SourceLocation &EllipsisLoc) {
4451
4452  while (1) {
4453    if (Tok.is(tok::ellipsis)) {
4454      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4455      break;
4456    }
4457
4458    // Parse the declaration-specifiers.
4459    // Just use the ParsingDeclaration "scope" of the declarator.
4460    DeclSpec DS(AttrFactory);
4461
4462    // Skip any Microsoft attributes before a param.
4463    if (getLang().MicrosoftExt && Tok.is(tok::l_square))
4464      ParseMicrosoftAttributes(DS.getAttributes());
4465
4466    SourceLocation DSStart = Tok.getLocation();
4467
4468    // If the caller parsed attributes for the first argument, add them now.
4469    // Take them so that we only apply the attributes to the first parameter.
4470    // FIXME: If we saw an ellipsis first, this code is not reached. Are the
4471    // attributes lost? Should they even be allowed?
4472    // FIXME: If we can leave the attributes in the token stream somehow, we can
4473    // get rid of a parameter (attrs) and this statement. It might be too much
4474    // hassle.
4475    DS.takeAttributesFrom(attrs);
4476
4477    ParseDeclarationSpecifiers(DS);
4478
4479    // Parse the declarator.  This is "PrototypeContext", because we must
4480    // accept either 'declarator' or 'abstract-declarator' here.
4481    Declarator ParmDecl(DS, Declarator::PrototypeContext);
4482    ParseDeclarator(ParmDecl);
4483
4484    // Parse GNU attributes, if present.
4485    MaybeParseGNUAttributes(ParmDecl);
4486
4487    // Remember this parsed parameter in ParamInfo.
4488    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
4489
4490    // DefArgToks is used when the parsing of default arguments needs
4491    // to be delayed.
4492    CachedTokens *DefArgToks = 0;
4493
4494    // If no parameter was specified, verify that *something* was specified,
4495    // otherwise we have a missing type and identifier.
4496    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
4497        ParmDecl.getNumTypeObjects() == 0) {
4498      // Completely missing, emit error.
4499      Diag(DSStart, diag::err_missing_param);
4500    } else {
4501      // Otherwise, we have something.  Add it and let semantic analysis try
4502      // to grok it and add the result to the ParamInfo we are building.
4503
4504      // Inform the actions module about the parameter declarator, so it gets
4505      // added to the current scope.
4506      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
4507
4508      // Parse the default argument, if any. We parse the default
4509      // arguments in all dialects; the semantic analysis in
4510      // ActOnParamDefaultArgument will reject the default argument in
4511      // C.
4512      if (Tok.is(tok::equal)) {
4513        SourceLocation EqualLoc = Tok.getLocation();
4514
4515        // Parse the default argument
4516        if (D.getContext() == Declarator::MemberContext) {
4517          // If we're inside a class definition, cache the tokens
4518          // corresponding to the default argument. We'll actually parse
4519          // them when we see the end of the class definition.
4520          // FIXME: Templates will require something similar.
4521          // FIXME: Can we use a smart pointer for Toks?
4522          DefArgToks = new CachedTokens;
4523
4524          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
4525                                    /*StopAtSemi=*/true,
4526                                    /*ConsumeFinalToken=*/false)) {
4527            delete DefArgToks;
4528            DefArgToks = 0;
4529            Actions.ActOnParamDefaultArgumentError(Param);
4530          } else {
4531            // Mark the end of the default argument so that we know when to
4532            // stop when we parse it later on.
4533            Token DefArgEnd;
4534            DefArgEnd.startToken();
4535            DefArgEnd.setKind(tok::cxx_defaultarg_end);
4536            DefArgEnd.setLocation(Tok.getLocation());
4537            DefArgToks->push_back(DefArgEnd);
4538            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
4539                                                (*DefArgToks)[1].getLocation());
4540          }
4541        } else {
4542          // Consume the '='.
4543          ConsumeToken();
4544
4545          // The argument isn't actually potentially evaluated unless it is
4546          // used.
4547          EnterExpressionEvaluationContext Eval(Actions,
4548                                              Sema::PotentiallyEvaluatedIfUsed,
4549                                                Param);
4550
4551          ExprResult DefArgResult(ParseAssignmentExpression());
4552          if (DefArgResult.isInvalid()) {
4553            Actions.ActOnParamDefaultArgumentError(Param);
4554            SkipUntil(tok::comma, tok::r_paren, true, true);
4555          } else {
4556            // Inform the actions module about the default argument
4557            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
4558                                              DefArgResult.take());
4559          }
4560        }
4561      }
4562
4563      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
4564                                          ParmDecl.getIdentifierLoc(), Param,
4565                                          DefArgToks));
4566    }
4567
4568    // If the next token is a comma, consume it and keep reading arguments.
4569    if (Tok.isNot(tok::comma)) {
4570      if (Tok.is(tok::ellipsis)) {
4571        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
4572
4573        if (!getLang().CPlusPlus) {
4574          // We have ellipsis without a preceding ',', which is ill-formed
4575          // in C. Complain and provide the fix.
4576          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
4577            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
4578        }
4579      }
4580
4581      break;
4582    }
4583
4584    // Consume the comma.
4585    ConsumeToken();
4586  }
4587
4588}
4589
4590/// [C90]   direct-declarator '[' constant-expression[opt] ']'
4591/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4592/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4593/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4594/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4595void Parser::ParseBracketDeclarator(Declarator &D) {
4596  BalancedDelimiterTracker T(*this, tok::l_square);
4597  T.consumeOpen();
4598
4599  // C array syntax has many features, but by-far the most common is [] and [4].
4600  // This code does a fast path to handle some of the most obvious cases.
4601  if (Tok.getKind() == tok::r_square) {
4602    T.consumeClose();
4603    ParsedAttributes attrs(AttrFactory);
4604    MaybeParseCXX0XAttributes(attrs);
4605
4606    // Remember that we parsed the empty array type.
4607    ExprResult NumElements;
4608    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
4609                                            T.getOpenLocation(),
4610                                            T.getCloseLocation()),
4611                  attrs, T.getCloseLocation());
4612    return;
4613  } else if (Tok.getKind() == tok::numeric_constant &&
4614             GetLookAheadToken(1).is(tok::r_square)) {
4615    // [4] is very common.  Parse the numeric constant expression.
4616    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
4617    ConsumeToken();
4618
4619    T.consumeClose();
4620    ParsedAttributes attrs(AttrFactory);
4621    MaybeParseCXX0XAttributes(attrs);
4622
4623    // Remember that we parsed a array type, and remember its features.
4624    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
4625                                            ExprRes.release(),
4626                                            T.getOpenLocation(),
4627                                            T.getCloseLocation()),
4628                  attrs, T.getCloseLocation());
4629    return;
4630  }
4631
4632  // If valid, this location is the position where we read the 'static' keyword.
4633  SourceLocation StaticLoc;
4634  if (Tok.is(tok::kw_static))
4635    StaticLoc = ConsumeToken();
4636
4637  // If there is a type-qualifier-list, read it now.
4638  // Type qualifiers in an array subscript are a C99 feature.
4639  DeclSpec DS(AttrFactory);
4640  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
4641
4642  // If we haven't already read 'static', check to see if there is one after the
4643  // type-qualifier-list.
4644  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
4645    StaticLoc = ConsumeToken();
4646
4647  // Handle "direct-declarator [ type-qual-list[opt] * ]".
4648  bool isStar = false;
4649  ExprResult NumElements;
4650
4651  // Handle the case where we have '[*]' as the array size.  However, a leading
4652  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
4653  // the the token after the star is a ']'.  Since stars in arrays are
4654  // infrequent, use of lookahead is not costly here.
4655  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
4656    ConsumeToken();  // Eat the '*'.
4657
4658    if (StaticLoc.isValid()) {
4659      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
4660      StaticLoc = SourceLocation();  // Drop the static.
4661    }
4662    isStar = true;
4663  } else if (Tok.isNot(tok::r_square)) {
4664    // Note, in C89, this production uses the constant-expr production instead
4665    // of assignment-expr.  The only difference is that assignment-expr allows
4666    // things like '=' and '*='.  Sema rejects these in C89 mode because they
4667    // are not i-c-e's, so we don't need to distinguish between the two here.
4668
4669    // Parse the constant-expression or assignment-expression now (depending
4670    // on dialect).
4671    if (getLang().CPlusPlus) {
4672      NumElements = ParseConstantExpression();
4673    } else {
4674      EnterExpressionEvaluationContext Unevaluated(Actions,
4675                                                   Sema::ConstantEvaluated);
4676      NumElements = ParseAssignmentExpression();
4677    }
4678  }
4679
4680  // If there was an error parsing the assignment-expression, recover.
4681  if (NumElements.isInvalid()) {
4682    D.setInvalidType(true);
4683    // If the expression was invalid, skip it.
4684    SkipUntil(tok::r_square);
4685    return;
4686  }
4687
4688  T.consumeClose();
4689
4690  ParsedAttributes attrs(AttrFactory);
4691  MaybeParseCXX0XAttributes(attrs);
4692
4693  // Remember that we parsed a array type, and remember its features.
4694  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
4695                                          StaticLoc.isValid(), isStar,
4696                                          NumElements.release(),
4697                                          T.getOpenLocation(),
4698                                          T.getCloseLocation()),
4699                attrs, T.getCloseLocation());
4700}
4701
4702/// [GNU]   typeof-specifier:
4703///           typeof ( expressions )
4704///           typeof ( type-name )
4705/// [GNU/C++] typeof unary-expression
4706///
4707void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
4708  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
4709  Token OpTok = Tok;
4710  SourceLocation StartLoc = ConsumeToken();
4711
4712  const bool hasParens = Tok.is(tok::l_paren);
4713
4714  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
4715
4716  bool isCastExpr;
4717  ParsedType CastTy;
4718  SourceRange CastRange;
4719  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
4720                                                          CastTy, CastRange);
4721  if (hasParens)
4722    DS.setTypeofParensRange(CastRange);
4723
4724  if (CastRange.getEnd().isInvalid())
4725    // FIXME: Not accurate, the range gets one token more than it should.
4726    DS.SetRangeEnd(Tok.getLocation());
4727  else
4728    DS.SetRangeEnd(CastRange.getEnd());
4729
4730  if (isCastExpr) {
4731    if (!CastTy) {
4732      DS.SetTypeSpecError();
4733      return;
4734    }
4735
4736    const char *PrevSpec = 0;
4737    unsigned DiagID;
4738    // Check for duplicate type specifiers (e.g. "int typeof(int)").
4739    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
4740                           DiagID, CastTy))
4741      Diag(StartLoc, DiagID) << PrevSpec;
4742    return;
4743  }
4744
4745  // If we get here, the operand to the typeof was an expresion.
4746  if (Operand.isInvalid()) {
4747    DS.SetTypeSpecError();
4748    return;
4749  }
4750
4751  // We might need to transform the operand if it is potentially evaluated.
4752  Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
4753  if (Operand.isInvalid()) {
4754    DS.SetTypeSpecError();
4755    return;
4756  }
4757
4758  const char *PrevSpec = 0;
4759  unsigned DiagID;
4760  // Check for duplicate type specifiers (e.g. "int typeof(int)").
4761  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
4762                         DiagID, Operand.get()))
4763    Diag(StartLoc, DiagID) << PrevSpec;
4764}
4765
4766/// [C11]   atomic-specifier:
4767///           _Atomic ( type-name )
4768///
4769void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
4770  assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
4771
4772  SourceLocation StartLoc = ConsumeToken();
4773  BalancedDelimiterTracker T(*this, tok::l_paren);
4774  if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
4775    SkipUntil(tok::r_paren);
4776    return;
4777  }
4778
4779  TypeResult Result = ParseTypeName();
4780  if (Result.isInvalid()) {
4781    SkipUntil(tok::r_paren);
4782    return;
4783  }
4784
4785  // Match the ')'
4786  T.consumeClose();
4787
4788  if (T.getCloseLocation().isInvalid())
4789    return;
4790
4791  DS.setTypeofParensRange(T.getRange());
4792  DS.SetRangeEnd(T.getCloseLocation());
4793
4794  const char *PrevSpec = 0;
4795  unsigned DiagID;
4796  if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
4797                         DiagID, Result.release()))
4798    Diag(StartLoc, DiagID) << PrevSpec;
4799}
4800
4801
4802/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
4803/// from TryAltiVecVectorToken.
4804bool Parser::TryAltiVecVectorTokenOutOfLine() {
4805  Token Next = NextToken();
4806  switch (Next.getKind()) {
4807  default: return false;
4808  case tok::kw_short:
4809  case tok::kw_long:
4810  case tok::kw_signed:
4811  case tok::kw_unsigned:
4812  case tok::kw_void:
4813  case tok::kw_char:
4814  case tok::kw_int:
4815  case tok::kw_float:
4816  case tok::kw_double:
4817  case tok::kw_bool:
4818  case tok::kw___pixel:
4819    Tok.setKind(tok::kw___vector);
4820    return true;
4821  case tok::identifier:
4822    if (Next.getIdentifierInfo() == Ident_pixel) {
4823      Tok.setKind(tok::kw___vector);
4824      return true;
4825    }
4826    return false;
4827  }
4828}
4829
4830bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
4831                                      const char *&PrevSpec, unsigned &DiagID,
4832                                      bool &isInvalid) {
4833  if (Tok.getIdentifierInfo() == Ident_vector) {
4834    Token Next = NextToken();
4835    switch (Next.getKind()) {
4836    case tok::kw_short:
4837    case tok::kw_long:
4838    case tok::kw_signed:
4839    case tok::kw_unsigned:
4840    case tok::kw_void:
4841    case tok::kw_char:
4842    case tok::kw_int:
4843    case tok::kw_float:
4844    case tok::kw_double:
4845    case tok::kw_bool:
4846    case tok::kw___pixel:
4847      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4848      return true;
4849    case tok::identifier:
4850      if (Next.getIdentifierInfo() == Ident_pixel) {
4851        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
4852        return true;
4853      }
4854      break;
4855    default:
4856      break;
4857    }
4858  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
4859             DS.isTypeAltiVecVector()) {
4860    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
4861    return true;
4862  }
4863  return false;
4864}
4865