ParseDecl.cpp revision 837acd040662ba3e9fcfbf4be754416b00b18216
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Parser::TypeTy *Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  return Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val;
41}
42
43/// ParseAttributes - Parse a non-empty attributes list.
44///
45/// [GNU] attributes:
46///         attribute
47///         attributes attribute
48///
49/// [GNU]  attribute:
50///          '__attribute__' '(' '(' attribute-list ')' ')'
51///
52/// [GNU]  attribute-list:
53///          attrib
54///          attribute_list ',' attrib
55///
56/// [GNU]  attrib:
57///          empty
58///          attrib-name
59///          attrib-name '(' identifier ')'
60///          attrib-name '(' identifier ',' nonempty-expr-list ')'
61///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
62///
63/// [GNU]  attrib-name:
64///          identifier
65///          typespec
66///          typequal
67///          storageclass
68///
69/// FIXME: The GCC grammar/code for this construct implies we need two
70/// token lookahead. Comment from gcc: "If they start with an identifier
71/// which is followed by a comma or close parenthesis, then the arguments
72/// start with that identifier; otherwise they are an expression list."
73///
74/// At the moment, I am not doing 2 token lookahead. I am also unaware of
75/// any attributes that don't work (based on my limited testing). Most
76/// attributes are very simple in practice. Until we find a bug, I don't see
77/// a pressing need to implement the 2 token lookahead.
78
79AttributeList *Parser::ParseAttributes() {
80  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
81
82  AttributeList *CurrAttr = 0;
83
84  while (Tok.is(tok::kw___attribute)) {
85    ConsumeToken();
86    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
87                         "attribute")) {
88      SkipUntil(tok::r_paren, true); // skip until ) or ;
89      return CurrAttr;
90    }
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
96    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
97           Tok.is(tok::comma)) {
98
99      if (Tok.is(tok::comma)) {
100        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
101        ConsumeToken();
102        continue;
103      }
104      // we have an identifier or declaration specifier (const, int, etc.)
105      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
106      SourceLocation AttrNameLoc = ConsumeToken();
107
108      // check if we have a "paramterized" attribute
109      if (Tok.is(tok::l_paren)) {
110        ConsumeParen(); // ignore the left paren loc for now
111
112        if (Tok.is(tok::identifier)) {
113          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
114          SourceLocation ParmLoc = ConsumeToken();
115
116          if (Tok.is(tok::r_paren)) {
117            // __attribute__(( mode(byte) ))
118            ConsumeParen(); // ignore the right paren loc for now
119            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
120                                         ParmName, ParmLoc, 0, 0, CurrAttr);
121          } else if (Tok.is(tok::comma)) {
122            ConsumeToken();
123            // __attribute__(( format(printf, 1, 2) ))
124            ExprVector ArgExprs(Actions);
125            bool ArgExprsOk = true;
126
127            // now parse the non-empty comma separated list of expressions
128            while (1) {
129              OwningExprResult ArgExpr(ParseAssignmentExpression());
130              if (ArgExpr.isInvalid()) {
131                ArgExprsOk = false;
132                SkipUntil(tok::r_paren);
133                break;
134              } else {
135                ArgExprs.push_back(ArgExpr.release());
136              }
137              if (Tok.isNot(tok::comma))
138                break;
139              ConsumeToken(); // Eat the comma, move to the next argument
140            }
141            if (ArgExprsOk && Tok.is(tok::r_paren)) {
142              ConsumeParen(); // ignore the right paren loc for now
143              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
144                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
145            }
146          }
147        } else { // not an identifier
148          // parse a possibly empty comma separated list of expressions
149          if (Tok.is(tok::r_paren)) {
150            // __attribute__(( nonnull() ))
151            ConsumeParen(); // ignore the right paren loc for now
152            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
153                                         0, SourceLocation(), 0, 0, CurrAttr);
154          } else {
155            // __attribute__(( aligned(16) ))
156            ExprVector ArgExprs(Actions);
157            bool ArgExprsOk = true;
158
159            // now parse the list of expressions
160            while (1) {
161              OwningExprResult ArgExpr(ParseAssignmentExpression());
162              if (ArgExpr.isInvalid()) {
163                ArgExprsOk = false;
164                SkipUntil(tok::r_paren);
165                break;
166              } else {
167                ArgExprs.push_back(ArgExpr.release());
168              }
169              if (Tok.isNot(tok::comma))
170                break;
171              ConsumeToken(); // Eat the comma, move to the next argument
172            }
173            // Match the ')'.
174            if (ArgExprsOk && Tok.is(tok::r_paren)) {
175              ConsumeParen(); // ignore the right paren loc for now
176              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
177                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
178                           CurrAttr);
179            }
180          }
181        }
182      } else {
183        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
184                                     0, SourceLocation(), 0, 0, CurrAttr);
185      }
186    }
187    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
188      SkipUntil(tok::r_paren, false);
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191  }
192  return CurrAttr;
193}
194
195/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
196/// routine is called to skip/ignore tokens that comprise the MS declspec.
197void Parser::FuzzyParseMicrosoftDeclSpec() {
198  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
199  ConsumeToken();
200  if (Tok.is(tok::l_paren)) {
201    unsigned short savedParenCount = ParenCount;
202    do {
203      ConsumeAnyToken();
204    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
205  }
206  return;
207}
208
209/// ParseDeclaration - Parse a full 'declaration', which consists of
210/// declaration-specifiers, some number of declarators, and a semicolon.
211/// 'Context' should be a Declarator::TheContext value.
212///
213///       declaration: [C99 6.7]
214///         block-declaration ->
215///           simple-declaration
216///           others                   [FIXME]
217/// [C++]   template-declaration
218/// [C++]   namespace-definition
219/// [C++]   using-directive
220/// [C++]   using-declaration [TODO]
221///         others... [FIXME]
222///
223Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
224  switch (Tok.getKind()) {
225  case tok::kw_export:
226  case tok::kw_template:
227    return ParseTemplateDeclaration(Context);
228  case tok::kw_namespace:
229    return ParseNamespace(Context);
230  case tok::kw_using:
231    return ParseUsingDirectiveOrDeclaration(Context);
232  default:
233    return ParseSimpleDeclaration(Context);
234  }
235}
236
237///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
238///         declaration-specifiers init-declarator-list[opt] ';'
239///[C90/C++]init-declarator-list ';'                             [TODO]
240/// [OMP]   threadprivate-directive                              [TODO]
241Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
242  // Parse the common declaration-specifiers piece.
243  DeclSpec DS;
244  ParseDeclarationSpecifiers(DS);
245
246  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
247  // declaration-specifiers init-declarator-list[opt] ';'
248  if (Tok.is(tok::semi)) {
249    ConsumeToken();
250    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
251  }
252
253  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
254  ParseDeclarator(DeclaratorInfo);
255
256  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
257}
258
259
260/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
261/// parsing 'declaration-specifiers declarator'.  This method is split out this
262/// way to handle the ambiguity between top-level function-definitions and
263/// declarations.
264///
265///       init-declarator-list: [C99 6.7]
266///         init-declarator
267///         init-declarator-list ',' init-declarator
268///       init-declarator: [C99 6.7]
269///         declarator
270///         declarator '=' initializer
271/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
272/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
273/// [C++]   declarator initializer[opt]
274///
275/// [C++] initializer:
276/// [C++]   '=' initializer-clause
277/// [C++]   '(' expression-list ')'
278///
279Parser::DeclTy *Parser::
280ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
281
282  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
283  // that they can be chained properly if the actions want this.
284  Parser::DeclTy *LastDeclInGroup = 0;
285
286  // At this point, we know that it is not a function definition.  Parse the
287  // rest of the init-declarator-list.
288  while (1) {
289    // If a simple-asm-expr is present, parse it.
290    if (Tok.is(tok::kw_asm)) {
291      OwningExprResult AsmLabel(ParseSimpleAsm());
292      if (AsmLabel.isInvalid()) {
293        SkipUntil(tok::semi);
294        return 0;
295      }
296
297      D.setAsmLabel(AsmLabel.release());
298    }
299
300    // If attributes are present, parse them.
301    if (Tok.is(tok::kw___attribute))
302      D.AddAttributes(ParseAttributes());
303
304    // Inform the current actions module that we just parsed this declarator.
305    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
306
307    // Parse declarator '=' initializer.
308    if (Tok.is(tok::equal)) {
309      ConsumeToken();
310      OwningExprResult Init(ParseInitializer());
311      if (Init.isInvalid()) {
312        SkipUntil(tok::semi);
313        return 0;
314      }
315      Actions.AddInitializerToDecl(LastDeclInGroup, move_arg(Init));
316    } else if (Tok.is(tok::l_paren)) {
317      // Parse C++ direct initializer: '(' expression-list ')'
318      SourceLocation LParenLoc = ConsumeParen();
319      ExprVector Exprs(Actions);
320      CommaLocsTy CommaLocs;
321
322      bool InvalidExpr = false;
323      if (ParseExpressionList(Exprs, CommaLocs)) {
324        SkipUntil(tok::r_paren);
325        InvalidExpr = true;
326      }
327      // Match the ')'.
328      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
329
330      if (!InvalidExpr) {
331        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
332               "Unexpected number of commas!");
333        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
334                                              Exprs.take(), Exprs.size(),
335                                              &CommaLocs[0], RParenLoc);
336      }
337    } else {
338      Actions.ActOnUninitializedDecl(LastDeclInGroup);
339    }
340
341    // If we don't have a comma, it is either the end of the list (a ';') or an
342    // error, bail out.
343    if (Tok.isNot(tok::comma))
344      break;
345
346    // Consume the comma.
347    ConsumeToken();
348
349    // Parse the next declarator.
350    D.clear();
351
352    // Accept attributes in an init-declarator.  In the first declarator in a
353    // declaration, these would be part of the declspec.  In subsequent
354    // declarators, they become part of the declarator itself, so that they
355    // don't apply to declarators after *this* one.  Examples:
356    //    short __attribute__((common)) var;    -> declspec
357    //    short var __attribute__((common));    -> declarator
358    //    short x, __attribute__((common)) var;    -> declarator
359    if (Tok.is(tok::kw___attribute))
360      D.AddAttributes(ParseAttributes());
361
362    ParseDeclarator(D);
363  }
364
365  if (Tok.is(tok::semi)) {
366    ConsumeToken();
367    // for(is key; in keys) is error.
368    if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
369      Diag(Tok, diag::err_parse_error);
370      return 0;
371    }
372    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
373  }
374  // If this is an ObjC2 for-each loop, this is a successful declarator
375  // parse.  The syntax for these looks like:
376  // 'for' '(' declaration 'in' expr ')' statement
377  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
378    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
379  }
380  Diag(Tok, diag::err_parse_error);
381  // Skip to end of block or statement
382  SkipUntil(tok::r_brace, true, true);
383  if (Tok.is(tok::semi))
384    ConsumeToken();
385  return 0;
386}
387
388/// ParseSpecifierQualifierList
389///        specifier-qualifier-list:
390///          type-specifier specifier-qualifier-list[opt]
391///          type-qualifier specifier-qualifier-list[opt]
392/// [GNU]    attributes     specifier-qualifier-list[opt]
393///
394void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
395  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
396  /// parse declaration-specifiers and complain about extra stuff.
397  ParseDeclarationSpecifiers(DS);
398
399  // Validate declspec for type-name.
400  unsigned Specs = DS.getParsedSpecifiers();
401  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
402    Diag(Tok, diag::err_typename_requires_specqual);
403
404  // Issue diagnostic and remove storage class if present.
405  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
406    if (DS.getStorageClassSpecLoc().isValid())
407      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
408    else
409      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
410    DS.ClearStorageClassSpecs();
411  }
412
413  // Issue diagnostic and remove function specfier if present.
414  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
415    if (DS.isInlineSpecified())
416      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
417    if (DS.isVirtualSpecified())
418      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
419    if (DS.isExplicitSpecified())
420      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
421    DS.ClearFunctionSpecs();
422  }
423}
424
425/// ParseDeclarationSpecifiers
426///       declaration-specifiers: [C99 6.7]
427///         storage-class-specifier declaration-specifiers[opt]
428///         type-specifier declaration-specifiers[opt]
429/// [C99]   function-specifier declaration-specifiers[opt]
430/// [GNU]   attributes declaration-specifiers[opt]
431///
432///       storage-class-specifier: [C99 6.7.1]
433///         'typedef'
434///         'extern'
435///         'static'
436///         'auto'
437///         'register'
438/// [C++]   'mutable'
439/// [GNU]   '__thread'
440///       function-specifier: [C99 6.7.4]
441/// [C99]   'inline'
442/// [C++]   'virtual'
443/// [C++]   'explicit'
444///
445void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
446                                        TemplateParameterLists *TemplateParams){
447  DS.SetRangeStart(Tok.getLocation());
448  while (1) {
449    int isInvalid = false;
450    const char *PrevSpec = 0;
451    SourceLocation Loc = Tok.getLocation();
452
453    switch (Tok.getKind()) {
454    default:
455      // Try to parse a type-specifier; if we found one, continue. If it's not
456      // a type, this falls through.
457      if (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateParams))
458        continue;
459
460    DoneWithDeclSpec:
461      // If this is not a declaration specifier token, we're done reading decl
462      // specifiers.  First verify that DeclSpec's are consistent.
463      DS.Finish(Diags, PP.getSourceManager(), getLang());
464      return;
465
466    case tok::coloncolon: // ::foo::bar
467      // Annotate C++ scope specifiers.  If we get one, loop.
468      if (TryAnnotateCXXScopeToken())
469        continue;
470      goto DoneWithDeclSpec;
471
472    case tok::annot_cxxscope: {
473      if (DS.hasTypeSpecifier())
474        goto DoneWithDeclSpec;
475
476      // We are looking for a qualified typename.
477      if (NextToken().isNot(tok::identifier))
478        goto DoneWithDeclSpec;
479
480      CXXScopeSpec SS;
481      SS.setScopeRep(Tok.getAnnotationValue());
482      SS.setRange(Tok.getAnnotationRange());
483
484      // If the next token is the name of the class type that the C++ scope
485      // denotes, followed by a '(', then this is a constructor declaration.
486      // We're done with the decl-specifiers.
487      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
488                                     CurScope, &SS) &&
489          GetLookAheadToken(2).is(tok::l_paren))
490        goto DoneWithDeclSpec;
491
492      TypeTy *TypeRep = Actions.isTypeName(*NextToken().getIdentifierInfo(),
493                                           CurScope, &SS);
494      if (TypeRep == 0)
495        goto DoneWithDeclSpec;
496
497      ConsumeToken(); // The C++ scope.
498
499      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
500                                     TypeRep);
501      if (isInvalid)
502        break;
503
504      DS.SetRangeEnd(Tok.getLocation());
505      ConsumeToken(); // The typename.
506
507      continue;
508    }
509
510      // typedef-name
511    case tok::identifier: {
512      // In C++, check to see if this is a scope specifier like foo::bar::, if
513      // so handle it as such.  This is important for ctor parsing.
514      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
515        continue;
516
517      // This identifier can only be a typedef name if we haven't already seen
518      // a type-specifier.  Without this check we misparse:
519      //  typedef int X; struct Y { short X; };  as 'short int'.
520      if (DS.hasTypeSpecifier())
521        goto DoneWithDeclSpec;
522
523      // It has to be available as a typedef too!
524      TypeTy *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope);
525      if (TypeRep == 0)
526        goto DoneWithDeclSpec;
527
528      // C++: If the identifier is actually the name of the class type
529      // being defined and the next token is a '(', then this is a
530      // constructor declaration. We're done with the decl-specifiers
531      // and will treat this token as an identifier.
532      if (getLang().CPlusPlus &&
533          CurScope->isClassScope() &&
534          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
535          NextToken().getKind() == tok::l_paren)
536        goto DoneWithDeclSpec;
537
538      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
539                                     TypeRep);
540      if (isInvalid)
541        break;
542
543      DS.SetRangeEnd(Tok.getLocation());
544      ConsumeToken(); // The identifier
545
546      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
547      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
548      // Objective-C interface.  If we don't have Objective-C or a '<', this is
549      // just a normal reference to a typedef name.
550      if (!Tok.is(tok::less) || !getLang().ObjC1)
551        continue;
552
553      SourceLocation EndProtoLoc;
554      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
555      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
556      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
557
558      DS.SetRangeEnd(EndProtoLoc);
559
560      // Need to support trailing type qualifiers (e.g. "id<p> const").
561      // If a type specifier follows, it will be diagnosed elsewhere.
562      continue;
563    }
564    // GNU attributes support.
565    case tok::kw___attribute:
566      DS.AddAttributes(ParseAttributes());
567      continue;
568
569    // Microsoft declspec support.
570    case tok::kw___declspec:
571      if (!PP.getLangOptions().Microsoft)
572        goto DoneWithDeclSpec;
573      FuzzyParseMicrosoftDeclSpec();
574      continue;
575
576    // Microsoft single token adornments.
577    case tok::kw___forceinline:
578    case tok::kw___w64:
579    case tok::kw___cdecl:
580    case tok::kw___stdcall:
581    case tok::kw___fastcall:
582      if (!PP.getLangOptions().Microsoft)
583        goto DoneWithDeclSpec;
584      // Just ignore it.
585      break;
586
587    // storage-class-specifier
588    case tok::kw_typedef:
589      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
590      break;
591    case tok::kw_extern:
592      if (DS.isThreadSpecified())
593        Diag(Tok, diag::ext_thread_before) << "extern";
594      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
595      break;
596    case tok::kw___private_extern__:
597      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
598                                         PrevSpec);
599      break;
600    case tok::kw_static:
601      if (DS.isThreadSpecified())
602        Diag(Tok, diag::ext_thread_before) << "static";
603      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
604      break;
605    case tok::kw_auto:
606      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
607      break;
608    case tok::kw_register:
609      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
610      break;
611    case tok::kw_mutable:
612      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
613      break;
614    case tok::kw___thread:
615      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
616      break;
617
618      continue;
619
620    // function-specifier
621    case tok::kw_inline:
622      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
623      break;
624
625    case tok::kw_virtual:
626      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
627      break;
628
629    case tok::kw_explicit:
630      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
631      break;
632
633    case tok::less:
634      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
635      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
636      // but we support it.
637      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
638        goto DoneWithDeclSpec;
639
640      {
641        SourceLocation EndProtoLoc;
642        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
643        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
644        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
645        DS.SetRangeEnd(EndProtoLoc);
646
647        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
648          << SourceRange(Loc, EndProtoLoc);
649        // Need to support trailing type qualifiers (e.g. "id<p> const").
650        // If a type specifier follows, it will be diagnosed elsewhere.
651        continue;
652      }
653    }
654    // If the specifier combination wasn't legal, issue a diagnostic.
655    if (isInvalid) {
656      assert(PrevSpec && "Method did not return previous specifier!");
657      // Pick between error or extwarn.
658      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
659                                       : diag::ext_duplicate_declspec;
660      Diag(Tok, DiagID) << PrevSpec;
661    }
662    DS.SetRangeEnd(Tok.getLocation());
663    ConsumeToken();
664  }
665}
666
667/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
668/// primarily follow the C++ grammar with additions for C99 and GNU,
669/// which together subsume the C grammar. Note that the C++
670/// type-specifier also includes the C type-qualifier (for const,
671/// volatile, and C99 restrict). Returns true if a type-specifier was
672/// found (and parsed), false otherwise.
673///
674///       type-specifier: [C++ 7.1.5]
675///         simple-type-specifier
676///         class-specifier
677///         enum-specifier
678///         elaborated-type-specifier  [TODO]
679///         cv-qualifier
680///
681///       cv-qualifier: [C++ 7.1.5.1]
682///         'const'
683///         'volatile'
684/// [C99]   'restrict'
685///
686///       simple-type-specifier: [ C++ 7.1.5.2]
687///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
688///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
689///         'char'
690///         'wchar_t'
691///         'bool'
692///         'short'
693///         'int'
694///         'long'
695///         'signed'
696///         'unsigned'
697///         'float'
698///         'double'
699///         'void'
700/// [C99]   '_Bool'
701/// [C99]   '_Complex'
702/// [C99]   '_Imaginary'  // Removed in TC2?
703/// [GNU]   '_Decimal32'
704/// [GNU]   '_Decimal64'
705/// [GNU]   '_Decimal128'
706/// [GNU]   typeof-specifier
707/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
708/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
709bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
710                                        const char *&PrevSpec,
711                                        TemplateParameterLists *TemplateParams){
712  SourceLocation Loc = Tok.getLocation();
713
714  switch (Tok.getKind()) {
715  case tok::identifier:   // foo::bar
716    // Annotate typenames and C++ scope specifiers.  If we get one, just
717    // recurse to handle whatever we get.
718    if (TryAnnotateTypeOrScopeToken())
719      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
720    // Otherwise, not a type specifier.
721    return false;
722  case tok::coloncolon:   // ::foo::bar
723    if (NextToken().is(tok::kw_new) ||    // ::new
724        NextToken().is(tok::kw_delete))   // ::delete
725      return false;
726
727    // Annotate typenames and C++ scope specifiers.  If we get one, just
728    // recurse to handle whatever we get.
729    if (TryAnnotateTypeOrScopeToken())
730      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
731    // Otherwise, not a type specifier.
732    return false;
733
734  // simple-type-specifier:
735  case tok::annot_typename: {
736    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
737                                   Tok.getAnnotationValue());
738    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
739    ConsumeToken(); // The typename
740
741    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
742    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
743    // Objective-C interface.  If we don't have Objective-C or a '<', this is
744    // just a normal reference to a typedef name.
745    if (!Tok.is(tok::less) || !getLang().ObjC1)
746      return true;
747
748    SourceLocation EndProtoLoc;
749    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
750    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
751    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
752
753    DS.SetRangeEnd(EndProtoLoc);
754    return true;
755  }
756
757  case tok::kw_short:
758    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
759    break;
760  case tok::kw_long:
761    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
762      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
763    else
764      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
765    break;
766  case tok::kw_signed:
767    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
768    break;
769  case tok::kw_unsigned:
770    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
771    break;
772  case tok::kw__Complex:
773    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
774    break;
775  case tok::kw__Imaginary:
776    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
777    break;
778  case tok::kw_void:
779    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
780    break;
781  case tok::kw_char:
782    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
783    break;
784  case tok::kw_int:
785    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
786    break;
787  case tok::kw_float:
788    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
789    break;
790  case tok::kw_double:
791    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
792    break;
793  case tok::kw_wchar_t:
794    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
795    break;
796  case tok::kw_bool:
797  case tok::kw__Bool:
798    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
799    break;
800  case tok::kw__Decimal32:
801    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
802    break;
803  case tok::kw__Decimal64:
804    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
805    break;
806  case tok::kw__Decimal128:
807    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
808    break;
809
810  // class-specifier:
811  case tok::kw_class:
812  case tok::kw_struct:
813  case tok::kw_union:
814    ParseClassSpecifier(DS, TemplateParams);
815    return true;
816
817  // enum-specifier:
818  case tok::kw_enum:
819    ParseEnumSpecifier(DS);
820    return true;
821
822  // cv-qualifier:
823  case tok::kw_const:
824    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
825                               getLang())*2;
826    break;
827  case tok::kw_volatile:
828    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
829                               getLang())*2;
830    break;
831  case tok::kw_restrict:
832    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
833                               getLang())*2;
834    break;
835
836  // GNU typeof support.
837  case tok::kw_typeof:
838    ParseTypeofSpecifier(DS);
839    return true;
840
841  case tok::kw___cdecl:
842  case tok::kw___stdcall:
843  case tok::kw___fastcall:
844    if (!PP.getLangOptions().Microsoft) return false;
845    ConsumeToken();
846    return true;
847
848  default:
849    // Not a type-specifier; do nothing.
850    return false;
851  }
852
853  // If the specifier combination wasn't legal, issue a diagnostic.
854  if (isInvalid) {
855    assert(PrevSpec && "Method did not return previous specifier!");
856    // Pick between error or extwarn.
857    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
858                                     : diag::ext_duplicate_declspec;
859    Diag(Tok, DiagID) << PrevSpec;
860  }
861  DS.SetRangeEnd(Tok.getLocation());
862  ConsumeToken(); // whatever we parsed above.
863  return true;
864}
865
866/// ParseStructDeclaration - Parse a struct declaration without the terminating
867/// semicolon.
868///
869///       struct-declaration:
870///         specifier-qualifier-list struct-declarator-list
871/// [GNU]   __extension__ struct-declaration
872/// [GNU]   specifier-qualifier-list
873///       struct-declarator-list:
874///         struct-declarator
875///         struct-declarator-list ',' struct-declarator
876/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
877///       struct-declarator:
878///         declarator
879/// [GNU]   declarator attributes[opt]
880///         declarator[opt] ':' constant-expression
881/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
882///
883void Parser::
884ParseStructDeclaration(DeclSpec &DS,
885                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
886  if (Tok.is(tok::kw___extension__)) {
887    // __extension__ silences extension warnings in the subexpression.
888    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
889    ConsumeToken();
890    return ParseStructDeclaration(DS, Fields);
891  }
892
893  // Parse the common specifier-qualifiers-list piece.
894  SourceLocation DSStart = Tok.getLocation();
895  ParseSpecifierQualifierList(DS);
896
897  // If there are no declarators, this is a free-standing declaration
898  // specifier. Let the actions module cope with it.
899  if (Tok.is(tok::semi)) {
900    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
901    return;
902  }
903
904  // Read struct-declarators until we find the semicolon.
905  Fields.push_back(FieldDeclarator(DS));
906  while (1) {
907    FieldDeclarator &DeclaratorInfo = Fields.back();
908
909    /// struct-declarator: declarator
910    /// struct-declarator: declarator[opt] ':' constant-expression
911    if (Tok.isNot(tok::colon))
912      ParseDeclarator(DeclaratorInfo.D);
913
914    if (Tok.is(tok::colon)) {
915      ConsumeToken();
916      OwningExprResult Res(ParseConstantExpression());
917      if (Res.isInvalid())
918        SkipUntil(tok::semi, true, true);
919      else
920        DeclaratorInfo.BitfieldSize = Res.release();
921    }
922
923    // If attributes exist after the declarator, parse them.
924    if (Tok.is(tok::kw___attribute))
925      DeclaratorInfo.D.AddAttributes(ParseAttributes());
926
927    // If we don't have a comma, it is either the end of the list (a ';')
928    // or an error, bail out.
929    if (Tok.isNot(tok::comma))
930      return;
931
932    // Consume the comma.
933    ConsumeToken();
934
935    // Parse the next declarator.
936    Fields.push_back(FieldDeclarator(DS));
937
938    // Attributes are only allowed on the second declarator.
939    if (Tok.is(tok::kw___attribute))
940      Fields.back().D.AddAttributes(ParseAttributes());
941  }
942}
943
944/// ParseStructUnionBody
945///       struct-contents:
946///         struct-declaration-list
947/// [EXT]   empty
948/// [GNU]   "struct-declaration-list" without terminatoring ';'
949///       struct-declaration-list:
950///         struct-declaration
951///         struct-declaration-list struct-declaration
952/// [OBC]   '@' 'defs' '(' class-name ')'
953///
954void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
955                                  unsigned TagType, DeclTy *TagDecl) {
956  SourceLocation LBraceLoc = ConsumeBrace();
957
958  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
959  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
960
961  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
962  // C++.
963  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
964    Diag(Tok, diag::ext_empty_struct_union_enum)
965      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
966
967  llvm::SmallVector<DeclTy*, 32> FieldDecls;
968  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
969
970  // While we still have something to read, read the declarations in the struct.
971  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
972    // Each iteration of this loop reads one struct-declaration.
973
974    // Check for extraneous top-level semicolon.
975    if (Tok.is(tok::semi)) {
976      Diag(Tok, diag::ext_extra_struct_semi);
977      ConsumeToken();
978      continue;
979    }
980
981    // Parse all the comma separated declarators.
982    DeclSpec DS;
983    FieldDeclarators.clear();
984    if (!Tok.is(tok::at)) {
985      ParseStructDeclaration(DS, FieldDeclarators);
986
987      // Convert them all to fields.
988      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
989        FieldDeclarator &FD = FieldDeclarators[i];
990        // Install the declarator into the current TagDecl.
991        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
992                                           DS.getSourceRange().getBegin(),
993                                           FD.D, FD.BitfieldSize);
994        FieldDecls.push_back(Field);
995      }
996    } else { // Handle @defs
997      ConsumeToken();
998      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
999        Diag(Tok, diag::err_unexpected_at);
1000        SkipUntil(tok::semi, true, true);
1001        continue;
1002      }
1003      ConsumeToken();
1004      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1005      if (!Tok.is(tok::identifier)) {
1006        Diag(Tok, diag::err_expected_ident);
1007        SkipUntil(tok::semi, true, true);
1008        continue;
1009      }
1010      llvm::SmallVector<DeclTy*, 16> Fields;
1011      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1012                        Tok.getIdentifierInfo(), Fields);
1013      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1014      ConsumeToken();
1015      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1016    }
1017
1018    if (Tok.is(tok::semi)) {
1019      ConsumeToken();
1020    } else if (Tok.is(tok::r_brace)) {
1021      Diag(Tok, diag::ext_expected_semi_decl_list);
1022      break;
1023    } else {
1024      Diag(Tok, diag::err_expected_semi_decl_list);
1025      // Skip to end of block or statement
1026      SkipUntil(tok::r_brace, true, true);
1027    }
1028  }
1029
1030  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1031
1032  AttributeList *AttrList = 0;
1033  // If attributes exist after struct contents, parse them.
1034  if (Tok.is(tok::kw___attribute))
1035    AttrList = ParseAttributes();
1036
1037  Actions.ActOnFields(CurScope,
1038                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1039                      LBraceLoc, RBraceLoc,
1040                      AttrList);
1041  StructScope.Exit();
1042  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1043}
1044
1045
1046/// ParseEnumSpecifier
1047///       enum-specifier: [C99 6.7.2.2]
1048///         'enum' identifier[opt] '{' enumerator-list '}'
1049///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1050/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1051///                                                 '}' attributes[opt]
1052///         'enum' identifier
1053/// [GNU]   'enum' attributes[opt] identifier
1054///
1055/// [C++] elaborated-type-specifier:
1056/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1057///
1058void Parser::ParseEnumSpecifier(DeclSpec &DS) {
1059  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1060  SourceLocation StartLoc = ConsumeToken();
1061
1062  // Parse the tag portion of this.
1063
1064  AttributeList *Attr = 0;
1065  // If attributes exist after tag, parse them.
1066  if (Tok.is(tok::kw___attribute))
1067    Attr = ParseAttributes();
1068
1069  CXXScopeSpec SS;
1070  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1071    if (Tok.isNot(tok::identifier)) {
1072      Diag(Tok, diag::err_expected_ident);
1073      if (Tok.isNot(tok::l_brace)) {
1074        // Has no name and is not a definition.
1075        // Skip the rest of this declarator, up until the comma or semicolon.
1076        SkipUntil(tok::comma, true);
1077        return;
1078      }
1079    }
1080  }
1081
1082  // Must have either 'enum name' or 'enum {...}'.
1083  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1084    Diag(Tok, diag::err_expected_ident_lbrace);
1085
1086    // Skip the rest of this declarator, up until the comma or semicolon.
1087    SkipUntil(tok::comma, true);
1088    return;
1089  }
1090
1091  // If an identifier is present, consume and remember it.
1092  IdentifierInfo *Name = 0;
1093  SourceLocation NameLoc;
1094  if (Tok.is(tok::identifier)) {
1095    Name = Tok.getIdentifierInfo();
1096    NameLoc = ConsumeToken();
1097  }
1098
1099  // There are three options here.  If we have 'enum foo;', then this is a
1100  // forward declaration.  If we have 'enum foo {...' then this is a
1101  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1102  //
1103  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1104  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1105  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1106  //
1107  Action::TagKind TK;
1108  if (Tok.is(tok::l_brace))
1109    TK = Action::TK_Definition;
1110  else if (Tok.is(tok::semi))
1111    TK = Action::TK_Declaration;
1112  else
1113    TK = Action::TK_Reference;
1114  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1115                                     SS, Name, NameLoc, Attr,
1116                                     Action::MultiTemplateParamsArg(Actions));
1117
1118  if (Tok.is(tok::l_brace))
1119    ParseEnumBody(StartLoc, TagDecl);
1120
1121  // TODO: semantic analysis on the declspec for enums.
1122  const char *PrevSpec = 0;
1123  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1124    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1125}
1126
1127/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1128///       enumerator-list:
1129///         enumerator
1130///         enumerator-list ',' enumerator
1131///       enumerator:
1132///         enumeration-constant
1133///         enumeration-constant '=' constant-expression
1134///       enumeration-constant:
1135///         identifier
1136///
1137void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1138  // Enter the scope of the enum body and start the definition.
1139  ParseScope EnumScope(this, Scope::DeclScope);
1140  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1141
1142  SourceLocation LBraceLoc = ConsumeBrace();
1143
1144  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1145  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1146    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1147
1148  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1149
1150  DeclTy *LastEnumConstDecl = 0;
1151
1152  // Parse the enumerator-list.
1153  while (Tok.is(tok::identifier)) {
1154    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1155    SourceLocation IdentLoc = ConsumeToken();
1156
1157    SourceLocation EqualLoc;
1158    OwningExprResult AssignedVal(Actions);
1159    if (Tok.is(tok::equal)) {
1160      EqualLoc = ConsumeToken();
1161      AssignedVal = ParseConstantExpression();
1162      if (AssignedVal.isInvalid())
1163        SkipUntil(tok::comma, tok::r_brace, true, true);
1164    }
1165
1166    // Install the enumerator constant into EnumDecl.
1167    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1168                                                      LastEnumConstDecl,
1169                                                      IdentLoc, Ident,
1170                                                      EqualLoc,
1171                                                      AssignedVal.release());
1172    EnumConstantDecls.push_back(EnumConstDecl);
1173    LastEnumConstDecl = EnumConstDecl;
1174
1175    if (Tok.isNot(tok::comma))
1176      break;
1177    SourceLocation CommaLoc = ConsumeToken();
1178
1179    if (Tok.isNot(tok::identifier) && !getLang().C99)
1180      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1181  }
1182
1183  // Eat the }.
1184  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1185
1186  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1187                        EnumConstantDecls.size());
1188
1189  DeclTy *AttrList = 0;
1190  // If attributes exist after the identifier list, parse them.
1191  if (Tok.is(tok::kw___attribute))
1192    AttrList = ParseAttributes(); // FIXME: where do they do?
1193
1194  EnumScope.Exit();
1195  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1196}
1197
1198/// isTypeSpecifierQualifier - Return true if the current token could be the
1199/// start of a type-qualifier-list.
1200bool Parser::isTypeQualifier() const {
1201  switch (Tok.getKind()) {
1202  default: return false;
1203    // type-qualifier
1204  case tok::kw_const:
1205  case tok::kw_volatile:
1206  case tok::kw_restrict:
1207    return true;
1208  }
1209}
1210
1211/// isTypeSpecifierQualifier - Return true if the current token could be the
1212/// start of a specifier-qualifier-list.
1213bool Parser::isTypeSpecifierQualifier() {
1214  switch (Tok.getKind()) {
1215  default: return false;
1216
1217  case tok::identifier:   // foo::bar
1218    // Annotate typenames and C++ scope specifiers.  If we get one, just
1219    // recurse to handle whatever we get.
1220    if (TryAnnotateTypeOrScopeToken())
1221      return isTypeSpecifierQualifier();
1222    // Otherwise, not a type specifier.
1223    return false;
1224  case tok::coloncolon:   // ::foo::bar
1225    if (NextToken().is(tok::kw_new) ||    // ::new
1226        NextToken().is(tok::kw_delete))   // ::delete
1227      return false;
1228
1229    // Annotate typenames and C++ scope specifiers.  If we get one, just
1230    // recurse to handle whatever we get.
1231    if (TryAnnotateTypeOrScopeToken())
1232      return isTypeSpecifierQualifier();
1233    // Otherwise, not a type specifier.
1234    return false;
1235
1236    // GNU attributes support.
1237  case tok::kw___attribute:
1238    // GNU typeof support.
1239  case tok::kw_typeof:
1240
1241    // type-specifiers
1242  case tok::kw_short:
1243  case tok::kw_long:
1244  case tok::kw_signed:
1245  case tok::kw_unsigned:
1246  case tok::kw__Complex:
1247  case tok::kw__Imaginary:
1248  case tok::kw_void:
1249  case tok::kw_char:
1250  case tok::kw_wchar_t:
1251  case tok::kw_int:
1252  case tok::kw_float:
1253  case tok::kw_double:
1254  case tok::kw_bool:
1255  case tok::kw__Bool:
1256  case tok::kw__Decimal32:
1257  case tok::kw__Decimal64:
1258  case tok::kw__Decimal128:
1259
1260    // struct-or-union-specifier (C99) or class-specifier (C++)
1261  case tok::kw_class:
1262  case tok::kw_struct:
1263  case tok::kw_union:
1264    // enum-specifier
1265  case tok::kw_enum:
1266
1267    // type-qualifier
1268  case tok::kw_const:
1269  case tok::kw_volatile:
1270  case tok::kw_restrict:
1271
1272    // typedef-name
1273  case tok::annot_typename:
1274    return true;
1275
1276    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1277  case tok::less:
1278    return getLang().ObjC1;
1279
1280  case tok::kw___cdecl:
1281  case tok::kw___stdcall:
1282  case tok::kw___fastcall:
1283    return PP.getLangOptions().Microsoft;
1284  }
1285}
1286
1287/// isDeclarationSpecifier() - Return true if the current token is part of a
1288/// declaration specifier.
1289bool Parser::isDeclarationSpecifier() {
1290  switch (Tok.getKind()) {
1291  default: return false;
1292
1293  case tok::identifier:   // foo::bar
1294    // Annotate typenames and C++ scope specifiers.  If we get one, just
1295    // recurse to handle whatever we get.
1296    if (TryAnnotateTypeOrScopeToken())
1297      return isDeclarationSpecifier();
1298    // Otherwise, not a declaration specifier.
1299    return false;
1300  case tok::coloncolon:   // ::foo::bar
1301    if (NextToken().is(tok::kw_new) ||    // ::new
1302        NextToken().is(tok::kw_delete))   // ::delete
1303      return false;
1304
1305    // Annotate typenames and C++ scope specifiers.  If we get one, just
1306    // recurse to handle whatever we get.
1307    if (TryAnnotateTypeOrScopeToken())
1308      return isDeclarationSpecifier();
1309    // Otherwise, not a declaration specifier.
1310    return false;
1311
1312    // storage-class-specifier
1313  case tok::kw_typedef:
1314  case tok::kw_extern:
1315  case tok::kw___private_extern__:
1316  case tok::kw_static:
1317  case tok::kw_auto:
1318  case tok::kw_register:
1319  case tok::kw___thread:
1320
1321    // type-specifiers
1322  case tok::kw_short:
1323  case tok::kw_long:
1324  case tok::kw_signed:
1325  case tok::kw_unsigned:
1326  case tok::kw__Complex:
1327  case tok::kw__Imaginary:
1328  case tok::kw_void:
1329  case tok::kw_char:
1330  case tok::kw_wchar_t:
1331  case tok::kw_int:
1332  case tok::kw_float:
1333  case tok::kw_double:
1334  case tok::kw_bool:
1335  case tok::kw__Bool:
1336  case tok::kw__Decimal32:
1337  case tok::kw__Decimal64:
1338  case tok::kw__Decimal128:
1339
1340    // struct-or-union-specifier (C99) or class-specifier (C++)
1341  case tok::kw_class:
1342  case tok::kw_struct:
1343  case tok::kw_union:
1344    // enum-specifier
1345  case tok::kw_enum:
1346
1347    // type-qualifier
1348  case tok::kw_const:
1349  case tok::kw_volatile:
1350  case tok::kw_restrict:
1351
1352    // function-specifier
1353  case tok::kw_inline:
1354  case tok::kw_virtual:
1355  case tok::kw_explicit:
1356
1357    // typedef-name
1358  case tok::annot_typename:
1359
1360    // GNU typeof support.
1361  case tok::kw_typeof:
1362
1363    // GNU attributes.
1364  case tok::kw___attribute:
1365    return true;
1366
1367    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1368  case tok::less:
1369    return getLang().ObjC1;
1370
1371  case tok::kw___declspec:
1372  case tok::kw___cdecl:
1373  case tok::kw___stdcall:
1374  case tok::kw___fastcall:
1375    return PP.getLangOptions().Microsoft;
1376  }
1377}
1378
1379
1380/// ParseTypeQualifierListOpt
1381///       type-qualifier-list: [C99 6.7.5]
1382///         type-qualifier
1383/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1384///         type-qualifier-list type-qualifier
1385/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1386///
1387void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1388  while (1) {
1389    int isInvalid = false;
1390    const char *PrevSpec = 0;
1391    SourceLocation Loc = Tok.getLocation();
1392
1393    switch (Tok.getKind()) {
1394    case tok::kw_const:
1395      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1396                                 getLang())*2;
1397      break;
1398    case tok::kw_volatile:
1399      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1400                                 getLang())*2;
1401      break;
1402    case tok::kw_restrict:
1403      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1404                                 getLang())*2;
1405      break;
1406    case tok::kw___ptr64:
1407    case tok::kw___cdecl:
1408    case tok::kw___stdcall:
1409    case tok::kw___fastcall:
1410      if (!PP.getLangOptions().Microsoft)
1411        goto DoneWithTypeQuals;
1412      // Just ignore it.
1413      break;
1414    case tok::kw___attribute:
1415      if (AttributesAllowed) {
1416        DS.AddAttributes(ParseAttributes());
1417        continue; // do *not* consume the next token!
1418      }
1419      // otherwise, FALL THROUGH!
1420    default:
1421      DoneWithTypeQuals:
1422      // If this is not a type-qualifier token, we're done reading type
1423      // qualifiers.  First verify that DeclSpec's are consistent.
1424      DS.Finish(Diags, PP.getSourceManager(), getLang());
1425      return;
1426    }
1427
1428    // If the specifier combination wasn't legal, issue a diagnostic.
1429    if (isInvalid) {
1430      assert(PrevSpec && "Method did not return previous specifier!");
1431      // Pick between error or extwarn.
1432      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1433                                      : diag::ext_duplicate_declspec;
1434      Diag(Tok, DiagID) << PrevSpec;
1435    }
1436    ConsumeToken();
1437  }
1438}
1439
1440
1441/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1442///
1443void Parser::ParseDeclarator(Declarator &D) {
1444  /// This implements the 'declarator' production in the C grammar, then checks
1445  /// for well-formedness and issues diagnostics.
1446  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1447}
1448
1449/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1450/// is parsed by the function passed to it. Pass null, and the direct-declarator
1451/// isn't parsed at all, making this function effectively parse the C++
1452/// ptr-operator production.
1453///
1454///       declarator: [C99 6.7.5]
1455///         pointer[opt] direct-declarator
1456/// [C++]   '&' declarator [C++ 8p4, dcl.decl]
1457/// [GNU]   '&' restrict[opt] attributes[opt] declarator
1458///
1459///       pointer: [C99 6.7.5]
1460///         '*' type-qualifier-list[opt]
1461///         '*' type-qualifier-list[opt] pointer
1462///
1463///       ptr-operator:
1464///         '*' cv-qualifier-seq[opt]
1465///         '&'
1466/// [GNU]   '&' restrict[opt] attributes[opt]
1467///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] [TODO]
1468void Parser::ParseDeclaratorInternal(Declarator &D,
1469                                     DirectDeclParseFunction DirectDeclParser) {
1470  tok::TokenKind Kind = Tok.getKind();
1471
1472  // Not a pointer, C++ reference, or block.
1473  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1474      (Kind != tok::caret || !getLang().Blocks)) {
1475    if (DirectDeclParser)
1476      (this->*DirectDeclParser)(D);
1477    return;
1478  }
1479
1480  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1481  SourceLocation Loc = ConsumeToken();  // Eat the * or &.
1482
1483  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1484    // Is a pointer.
1485    DeclSpec DS;
1486
1487    ParseTypeQualifierListOpt(DS);
1488
1489    // Recursively parse the declarator.
1490    ParseDeclaratorInternal(D, DirectDeclParser);
1491    if (Kind == tok::star)
1492      // Remember that we parsed a pointer type, and remember the type-quals.
1493      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1494                                                DS.TakeAttributes()));
1495    else
1496      // Remember that we parsed a Block type, and remember the type-quals.
1497      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1498                                                     Loc));
1499  } else {
1500    // Is a reference
1501    DeclSpec DS;
1502
1503    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1504    // cv-qualifiers are introduced through the use of a typedef or of a
1505    // template type argument, in which case the cv-qualifiers are ignored.
1506    //
1507    // [GNU] Retricted references are allowed.
1508    // [GNU] Attributes on references are allowed.
1509    ParseTypeQualifierListOpt(DS);
1510
1511    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1512      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1513        Diag(DS.getConstSpecLoc(),
1514             diag::err_invalid_reference_qualifier_application) << "const";
1515      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1516        Diag(DS.getVolatileSpecLoc(),
1517             diag::err_invalid_reference_qualifier_application) << "volatile";
1518    }
1519
1520    // Recursively parse the declarator.
1521    ParseDeclaratorInternal(D, DirectDeclParser);
1522
1523    if (D.getNumTypeObjects() > 0) {
1524      // C++ [dcl.ref]p4: There shall be no references to references.
1525      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1526      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1527        if (const IdentifierInfo *II = D.getIdentifier())
1528          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1529           << II;
1530        else
1531          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1532            << "type name";
1533
1534        // Once we've complained about the reference-to-reference, we
1535        // can go ahead and build the (technically ill-formed)
1536        // declarator: reference collapsing will take care of it.
1537      }
1538    }
1539
1540    // Remember that we parsed a reference type. It doesn't have type-quals.
1541    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1542                                                DS.TakeAttributes()));
1543  }
1544}
1545
1546/// ParseDirectDeclarator
1547///       direct-declarator: [C99 6.7.5]
1548/// [C99]   identifier
1549///         '(' declarator ')'
1550/// [GNU]   '(' attributes declarator ')'
1551/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1552/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1553/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1554/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1555/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1556///         direct-declarator '(' parameter-type-list ')'
1557///         direct-declarator '(' identifier-list[opt] ')'
1558/// [GNU]   direct-declarator '(' parameter-forward-declarations
1559///                    parameter-type-list[opt] ')'
1560/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1561///                    cv-qualifier-seq[opt] exception-specification[opt]
1562/// [C++]   declarator-id
1563///
1564///       declarator-id: [C++ 8]
1565///         id-expression
1566///         '::'[opt] nested-name-specifier[opt] type-name
1567///
1568///       id-expression: [C++ 5.1]
1569///         unqualified-id
1570///         qualified-id            [TODO]
1571///
1572///       unqualified-id: [C++ 5.1]
1573///         identifier
1574///         operator-function-id
1575///         conversion-function-id  [TODO]
1576///          '~' class-name
1577///         template-id             [TODO]
1578///
1579void Parser::ParseDirectDeclarator(Declarator &D) {
1580  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1581
1582  if (getLang().CPlusPlus) {
1583    if (D.mayHaveIdentifier()) {
1584      bool afterCXXScope = ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1585      if (afterCXXScope) {
1586        // Change the declaration context for name lookup, until this function
1587        // is exited (and the declarator has been parsed).
1588        DeclScopeObj.EnterDeclaratorScope();
1589      }
1590
1591      if (Tok.is(tok::identifier)) {
1592        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1593
1594        // If this identifier is followed by a '<', we may have a template-id.
1595        DeclTy *Template;
1596        if (NextToken().is(tok::less) &&
1597            (Template = Actions.isTemplateName(*Tok.getIdentifierInfo(),
1598                                               CurScope))) {
1599          IdentifierInfo *II = Tok.getIdentifierInfo();
1600          AnnotateTemplateIdToken(Template, 0);
1601          // FIXME: Set the declarator to a template-id. How? I don't
1602          // know... for now, just use the identifier.
1603          D.SetIdentifier(II, Tok.getLocation());
1604        }
1605        // If this identifier is the name of the current class, it's a
1606        // constructor name.
1607        else if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope))
1608          D.setConstructor(Actions.isTypeName(*Tok.getIdentifierInfo(),
1609                                              CurScope),
1610                           Tok.getLocation());
1611        // This is a normal identifier.
1612        else
1613          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1614        ConsumeToken();
1615        goto PastIdentifier;
1616      } else if (Tok.is(tok::kw_operator)) {
1617        SourceLocation OperatorLoc = Tok.getLocation();
1618
1619        // First try the name of an overloaded operator
1620        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) {
1621          D.setOverloadedOperator(Op, OperatorLoc);
1622        } else {
1623          // This must be a conversion function (C++ [class.conv.fct]).
1624          if (TypeTy *ConvType = ParseConversionFunctionId())
1625            D.setConversionFunction(ConvType, OperatorLoc);
1626          else
1627            D.SetIdentifier(0, Tok.getLocation());
1628        }
1629        goto PastIdentifier;
1630      } else if (Tok.is(tok::tilde)) {
1631        // This should be a C++ destructor.
1632        SourceLocation TildeLoc = ConsumeToken();
1633        if (Tok.is(tok::identifier)) {
1634          if (TypeTy *Type = ParseClassName())
1635            D.setDestructor(Type, TildeLoc);
1636          else
1637            D.SetIdentifier(0, TildeLoc);
1638        } else {
1639          Diag(Tok, diag::err_expected_class_name);
1640          D.SetIdentifier(0, TildeLoc);
1641        }
1642        goto PastIdentifier;
1643      }
1644
1645      // If we reached this point, token is not identifier and not '~'.
1646
1647      if (afterCXXScope) {
1648        Diag(Tok, diag::err_expected_unqualified_id);
1649        D.SetIdentifier(0, Tok.getLocation());
1650        D.setInvalidType(true);
1651        goto PastIdentifier;
1652      }
1653    }
1654  }
1655
1656  // If we reached this point, we are either in C/ObjC or the token didn't
1657  // satisfy any of the C++-specific checks.
1658
1659  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1660    assert(!getLang().CPlusPlus &&
1661           "There's a C++-specific check for tok::identifier above");
1662    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1663    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1664    ConsumeToken();
1665  } else if (Tok.is(tok::l_paren)) {
1666    // direct-declarator: '(' declarator ')'
1667    // direct-declarator: '(' attributes declarator ')'
1668    // Example: 'char (*X)'   or 'int (*XX)(void)'
1669    ParseParenDeclarator(D);
1670  } else if (D.mayOmitIdentifier()) {
1671    // This could be something simple like "int" (in which case the declarator
1672    // portion is empty), if an abstract-declarator is allowed.
1673    D.SetIdentifier(0, Tok.getLocation());
1674  } else {
1675    if (getLang().CPlusPlus)
1676      Diag(Tok, diag::err_expected_unqualified_id);
1677    else
1678      Diag(Tok, diag::err_expected_ident_lparen);
1679    D.SetIdentifier(0, Tok.getLocation());
1680    D.setInvalidType(true);
1681  }
1682
1683 PastIdentifier:
1684  assert(D.isPastIdentifier() &&
1685         "Haven't past the location of the identifier yet?");
1686
1687  while (1) {
1688    if (Tok.is(tok::l_paren)) {
1689      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1690      // In such a case, check if we actually have a function declarator; if it
1691      // is not, the declarator has been fully parsed.
1692      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1693        // When not in file scope, warn for ambiguous function declarators, just
1694        // in case the author intended it as a variable definition.
1695        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1696        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1697          break;
1698      }
1699      ParseFunctionDeclarator(ConsumeParen(), D);
1700    } else if (Tok.is(tok::l_square)) {
1701      ParseBracketDeclarator(D);
1702    } else {
1703      break;
1704    }
1705  }
1706}
1707
1708/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1709/// only called before the identifier, so these are most likely just grouping
1710/// parens for precedence.  If we find that these are actually function
1711/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1712///
1713///       direct-declarator:
1714///         '(' declarator ')'
1715/// [GNU]   '(' attributes declarator ')'
1716///         direct-declarator '(' parameter-type-list ')'
1717///         direct-declarator '(' identifier-list[opt] ')'
1718/// [GNU]   direct-declarator '(' parameter-forward-declarations
1719///                    parameter-type-list[opt] ')'
1720///
1721void Parser::ParseParenDeclarator(Declarator &D) {
1722  SourceLocation StartLoc = ConsumeParen();
1723  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1724
1725  // Eat any attributes before we look at whether this is a grouping or function
1726  // declarator paren.  If this is a grouping paren, the attribute applies to
1727  // the type being built up, for example:
1728  //     int (__attribute__(()) *x)(long y)
1729  // If this ends up not being a grouping paren, the attribute applies to the
1730  // first argument, for example:
1731  //     int (__attribute__(()) int x)
1732  // In either case, we need to eat any attributes to be able to determine what
1733  // sort of paren this is.
1734  //
1735  AttributeList *AttrList = 0;
1736  bool RequiresArg = false;
1737  if (Tok.is(tok::kw___attribute)) {
1738    AttrList = ParseAttributes();
1739
1740    // We require that the argument list (if this is a non-grouping paren) be
1741    // present even if the attribute list was empty.
1742    RequiresArg = true;
1743  }
1744  // Eat any Microsoft extensions.
1745  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1746          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
1747    ConsumeToken();
1748
1749  // If we haven't past the identifier yet (or where the identifier would be
1750  // stored, if this is an abstract declarator), then this is probably just
1751  // grouping parens. However, if this could be an abstract-declarator, then
1752  // this could also be the start of function arguments (consider 'void()').
1753  bool isGrouping;
1754
1755  if (!D.mayOmitIdentifier()) {
1756    // If this can't be an abstract-declarator, this *must* be a grouping
1757    // paren, because we haven't seen the identifier yet.
1758    isGrouping = true;
1759  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1760             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1761             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1762    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1763    // considered to be a type, not a K&R identifier-list.
1764    isGrouping = false;
1765  } else {
1766    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1767    isGrouping = true;
1768  }
1769
1770  // If this is a grouping paren, handle:
1771  // direct-declarator: '(' declarator ')'
1772  // direct-declarator: '(' attributes declarator ')'
1773  if (isGrouping) {
1774    bool hadGroupingParens = D.hasGroupingParens();
1775    D.setGroupingParens(true);
1776    if (AttrList)
1777      D.AddAttributes(AttrList);
1778
1779    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1780    // Match the ')'.
1781    MatchRHSPunctuation(tok::r_paren, StartLoc);
1782
1783    D.setGroupingParens(hadGroupingParens);
1784    return;
1785  }
1786
1787  // Okay, if this wasn't a grouping paren, it must be the start of a function
1788  // argument list.  Recognize that this declarator will never have an
1789  // identifier (and remember where it would have been), then call into
1790  // ParseFunctionDeclarator to handle of argument list.
1791  D.SetIdentifier(0, Tok.getLocation());
1792
1793  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
1794}
1795
1796/// ParseFunctionDeclarator - We are after the identifier and have parsed the
1797/// declarator D up to a paren, which indicates that we are parsing function
1798/// arguments.
1799///
1800/// If AttrList is non-null, then the caller parsed those arguments immediately
1801/// after the open paren - they should be considered to be the first argument of
1802/// a parameter.  If RequiresArg is true, then the first argument of the
1803/// function is required to be present and required to not be an identifier
1804/// list.
1805///
1806/// This method also handles this portion of the grammar:
1807///       parameter-type-list: [C99 6.7.5]
1808///         parameter-list
1809///         parameter-list ',' '...'
1810///
1811///       parameter-list: [C99 6.7.5]
1812///         parameter-declaration
1813///         parameter-list ',' parameter-declaration
1814///
1815///       parameter-declaration: [C99 6.7.5]
1816///         declaration-specifiers declarator
1817/// [C++]   declaration-specifiers declarator '=' assignment-expression
1818/// [GNU]   declaration-specifiers declarator attributes
1819///         declaration-specifiers abstract-declarator[opt]
1820/// [C++]   declaration-specifiers abstract-declarator[opt]
1821///           '=' assignment-expression
1822/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
1823///
1824/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
1825/// and "exception-specification[opt]"(TODO).
1826///
1827void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
1828                                     AttributeList *AttrList,
1829                                     bool RequiresArg) {
1830  // lparen is already consumed!
1831  assert(D.isPastIdentifier() && "Should not call before identifier!");
1832
1833  // This parameter list may be empty.
1834  if (Tok.is(tok::r_paren)) {
1835    if (RequiresArg) {
1836      Diag(Tok, diag::err_argument_required_after_attribute);
1837      delete AttrList;
1838    }
1839
1840    ConsumeParen();  // Eat the closing ')'.
1841
1842    // cv-qualifier-seq[opt].
1843    DeclSpec DS;
1844    if (getLang().CPlusPlus) {
1845      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1846
1847      // Parse exception-specification[opt].
1848      if (Tok.is(tok::kw_throw))
1849        ParseExceptionSpecification();
1850    }
1851
1852    // Remember that we parsed a function type, and remember the attributes.
1853    // int() -> no prototype, no '...'.
1854    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
1855                                               /*variadic*/ false,
1856                                               /*arglist*/ 0, 0,
1857                                               DS.getTypeQualifiers(),
1858                                               LParenLoc, D));
1859    return;
1860  }
1861
1862  // Alternatively, this parameter list may be an identifier list form for a
1863  // K&R-style function:  void foo(a,b,c)
1864  if (!getLang().CPlusPlus && Tok.is(tok::identifier) &&
1865      // K&R identifier lists can't have typedefs as identifiers, per
1866      // C99 6.7.5.3p11.
1867      !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) {
1868    if (RequiresArg) {
1869      Diag(Tok, diag::err_argument_required_after_attribute);
1870      delete AttrList;
1871    }
1872
1873    // Identifier list.  Note that '(' identifier-list ')' is only allowed for
1874    // normal declarators, not for abstract-declarators.
1875    return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
1876  }
1877
1878  // Finally, a normal, non-empty parameter type list.
1879
1880  // Build up an array of information about the parsed arguments.
1881  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1882
1883  // Enter function-declaration scope, limiting any declarators to the
1884  // function prototype scope, including parameter declarators.
1885  ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope);
1886
1887  bool IsVariadic = false;
1888  while (1) {
1889    if (Tok.is(tok::ellipsis)) {
1890      IsVariadic = true;
1891
1892      // Check to see if this is "void(...)" which is not allowed.
1893      if (!getLang().CPlusPlus && ParamInfo.empty()) {
1894        // Otherwise, parse parameter type list.  If it starts with an
1895        // ellipsis,  diagnose the malformed function.
1896        Diag(Tok, diag::err_ellipsis_first_arg);
1897        IsVariadic = false;       // Treat this like 'void()'.
1898      }
1899
1900      ConsumeToken();     // Consume the ellipsis.
1901      break;
1902    }
1903
1904    SourceLocation DSStart = Tok.getLocation();
1905
1906    // Parse the declaration-specifiers.
1907    DeclSpec DS;
1908
1909    // If the caller parsed attributes for the first argument, add them now.
1910    if (AttrList) {
1911      DS.AddAttributes(AttrList);
1912      AttrList = 0;  // Only apply the attributes to the first parameter.
1913    }
1914    ParseDeclarationSpecifiers(DS);
1915
1916    // Parse the declarator.  This is "PrototypeContext", because we must
1917    // accept either 'declarator' or 'abstract-declarator' here.
1918    Declarator ParmDecl(DS, Declarator::PrototypeContext);
1919    ParseDeclarator(ParmDecl);
1920
1921    // Parse GNU attributes, if present.
1922    if (Tok.is(tok::kw___attribute))
1923      ParmDecl.AddAttributes(ParseAttributes());
1924
1925    // Remember this parsed parameter in ParamInfo.
1926    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
1927
1928    // DefArgToks is used when the parsing of default arguments needs
1929    // to be delayed.
1930    CachedTokens *DefArgToks = 0;
1931
1932    // If no parameter was specified, verify that *something* was specified,
1933    // otherwise we have a missing type and identifier.
1934    if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
1935        ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
1936      // Completely missing, emit error.
1937      Diag(DSStart, diag::err_missing_param);
1938    } else {
1939      // Otherwise, we have something.  Add it and let semantic analysis try
1940      // to grok it and add the result to the ParamInfo we are building.
1941
1942      // Inform the actions module about the parameter declarator, so it gets
1943      // added to the current scope.
1944      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
1945
1946      // Parse the default argument, if any. We parse the default
1947      // arguments in all dialects; the semantic analysis in
1948      // ActOnParamDefaultArgument will reject the default argument in
1949      // C.
1950      if (Tok.is(tok::equal)) {
1951        SourceLocation EqualLoc = Tok.getLocation();
1952
1953        // Parse the default argument
1954        if (D.getContext() == Declarator::MemberContext) {
1955          // If we're inside a class definition, cache the tokens
1956          // corresponding to the default argument. We'll actually parse
1957          // them when we see the end of the class definition.
1958          // FIXME: Templates will require something similar.
1959          // FIXME: Can we use a smart pointer for Toks?
1960          DefArgToks = new CachedTokens;
1961
1962          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
1963                                    tok::semi, false)) {
1964            delete DefArgToks;
1965            DefArgToks = 0;
1966            Actions.ActOnParamDefaultArgumentError(Param);
1967          } else
1968            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
1969        } else {
1970          // Consume the '='.
1971          ConsumeToken();
1972
1973          OwningExprResult DefArgResult(ParseAssignmentExpression());
1974          if (DefArgResult.isInvalid()) {
1975            Actions.ActOnParamDefaultArgumentError(Param);
1976            SkipUntil(tok::comma, tok::r_paren, true, true);
1977          } else {
1978            // Inform the actions module about the default argument
1979            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
1980                                              DefArgResult.release());
1981          }
1982        }
1983      }
1984
1985      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1986                                          ParmDecl.getIdentifierLoc(), Param,
1987                                          DefArgToks));
1988    }
1989
1990    // If the next token is a comma, consume it and keep reading arguments.
1991    if (Tok.isNot(tok::comma)) break;
1992
1993    // Consume the comma.
1994    ConsumeToken();
1995  }
1996
1997  // Leave prototype scope.
1998  PrototypeScope.Exit();
1999
2000  // If we have the closing ')', eat it.
2001  MatchRHSPunctuation(tok::r_paren, LParenLoc);
2002
2003  DeclSpec DS;
2004  if (getLang().CPlusPlus) {
2005    // Parse cv-qualifier-seq[opt].
2006    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2007
2008    // Parse exception-specification[opt].
2009    if (Tok.is(tok::kw_throw))
2010      ParseExceptionSpecification();
2011  }
2012
2013  // Remember that we parsed a function type, and remember the attributes.
2014  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2015                                             &ParamInfo[0], ParamInfo.size(),
2016                                             DS.getTypeQualifiers(),
2017                                             LParenLoc, D));
2018}
2019
2020/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2021/// we found a K&R-style identifier list instead of a type argument list.  The
2022/// current token is known to be the first identifier in the list.
2023///
2024///       identifier-list: [C99 6.7.5]
2025///         identifier
2026///         identifier-list ',' identifier
2027///
2028void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2029                                                   Declarator &D) {
2030  // Build up an array of information about the parsed arguments.
2031  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2032  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2033
2034  // If there was no identifier specified for the declarator, either we are in
2035  // an abstract-declarator, or we are in a parameter declarator which was found
2036  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2037  // diagnose this.
2038  if (!D.getIdentifier())
2039    Diag(Tok, diag::ext_ident_list_in_param);
2040
2041  // Tok is known to be the first identifier in the list.  Remember this
2042  // identifier in ParamInfo.
2043  ParamsSoFar.insert(Tok.getIdentifierInfo());
2044  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2045                                                 Tok.getLocation(), 0));
2046
2047  ConsumeToken();  // eat the first identifier.
2048
2049  while (Tok.is(tok::comma)) {
2050    // Eat the comma.
2051    ConsumeToken();
2052
2053    // If this isn't an identifier, report the error and skip until ')'.
2054    if (Tok.isNot(tok::identifier)) {
2055      Diag(Tok, diag::err_expected_ident);
2056      SkipUntil(tok::r_paren);
2057      return;
2058    }
2059
2060    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2061
2062    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2063    if (Actions.isTypeName(*ParmII, CurScope))
2064      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2065
2066    // Verify that the argument identifier has not already been mentioned.
2067    if (!ParamsSoFar.insert(ParmII)) {
2068      Diag(Tok, diag::err_param_redefinition) << ParmII;
2069    } else {
2070      // Remember this identifier in ParamInfo.
2071      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2072                                                     Tok.getLocation(), 0));
2073    }
2074
2075    // Eat the identifier.
2076    ConsumeToken();
2077  }
2078
2079  // Remember that we parsed a function type, and remember the attributes.  This
2080  // function type is always a K&R style function type, which is not varargs and
2081  // has no prototype.
2082  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2083                                             &ParamInfo[0], ParamInfo.size(),
2084                                             /*TypeQuals*/0, LParenLoc, D));
2085
2086  // If we have the closing ')', eat it and we're done.
2087  MatchRHSPunctuation(tok::r_paren, LParenLoc);
2088}
2089
2090/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2091/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2092/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2093/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2094/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2095void Parser::ParseBracketDeclarator(Declarator &D) {
2096  SourceLocation StartLoc = ConsumeBracket();
2097
2098  // C array syntax has many features, but by-far the most common is [] and [4].
2099  // This code does a fast path to handle some of the most obvious cases.
2100  if (Tok.getKind() == tok::r_square) {
2101    MatchRHSPunctuation(tok::r_square, StartLoc);
2102    // Remember that we parsed the empty array type.
2103    OwningExprResult NumElements(Actions);
2104    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc));
2105    return;
2106  } else if (Tok.getKind() == tok::numeric_constant &&
2107             GetLookAheadToken(1).is(tok::r_square)) {
2108    // [4] is very common.  Parse the numeric constant expression.
2109    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2110    ConsumeToken();
2111
2112    MatchRHSPunctuation(tok::r_square, StartLoc);
2113
2114    // If there was an error parsing the assignment-expression, recover.
2115    if (ExprRes.isInvalid())
2116      ExprRes.release();  // Deallocate expr, just use [].
2117
2118    // Remember that we parsed a array type, and remember its features.
2119    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2120                                            ExprRes.release(), StartLoc));
2121    return;
2122  }
2123
2124  // If valid, this location is the position where we read the 'static' keyword.
2125  SourceLocation StaticLoc;
2126  if (Tok.is(tok::kw_static))
2127    StaticLoc = ConsumeToken();
2128
2129  // If there is a type-qualifier-list, read it now.
2130  // Type qualifiers in an array subscript are a C99 feature.
2131  DeclSpec DS;
2132  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2133
2134  // If we haven't already read 'static', check to see if there is one after the
2135  // type-qualifier-list.
2136  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2137    StaticLoc = ConsumeToken();
2138
2139  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2140  bool isStar = false;
2141  OwningExprResult NumElements(Actions);
2142
2143  // Handle the case where we have '[*]' as the array size.  However, a leading
2144  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2145  // the the token after the star is a ']'.  Since stars in arrays are
2146  // infrequent, use of lookahead is not costly here.
2147  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2148    ConsumeToken();  // Eat the '*'.
2149
2150    if (StaticLoc.isValid()) {
2151      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2152      StaticLoc = SourceLocation();  // Drop the static.
2153    }
2154    isStar = true;
2155  } else if (Tok.isNot(tok::r_square)) {
2156    // Note, in C89, this production uses the constant-expr production instead
2157    // of assignment-expr.  The only difference is that assignment-expr allows
2158    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2159    // are not i-c-e's, so we don't need to distinguish between the two here.
2160
2161    // Parse the assignment-expression now.
2162    NumElements = ParseAssignmentExpression();
2163  }
2164
2165  // If there was an error parsing the assignment-expression, recover.
2166  if (NumElements.isInvalid()) {
2167    // If the expression was invalid, skip it.
2168    SkipUntil(tok::r_square);
2169    return;
2170  }
2171
2172  MatchRHSPunctuation(tok::r_square, StartLoc);
2173
2174  // Remember that we parsed a array type, and remember its features.
2175  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2176                                          StaticLoc.isValid(), isStar,
2177                                          NumElements.release(), StartLoc));
2178}
2179
2180/// [GNU]   typeof-specifier:
2181///           typeof ( expressions )
2182///           typeof ( type-name )
2183/// [GNU/C++] typeof unary-expression
2184///
2185void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2186  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2187  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2188  SourceLocation StartLoc = ConsumeToken();
2189
2190  if (Tok.isNot(tok::l_paren)) {
2191    if (!getLang().CPlusPlus) {
2192      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2193      return;
2194    }
2195
2196    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2197    if (Result.isInvalid())
2198      return;
2199
2200    const char *PrevSpec = 0;
2201    // Check for duplicate type specifiers.
2202    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2203                           Result.release()))
2204      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2205
2206    // FIXME: Not accurate, the range gets one token more than it should.
2207    DS.SetRangeEnd(Tok.getLocation());
2208    return;
2209  }
2210
2211  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2212
2213  if (isTypeIdInParens()) {
2214    TypeTy *Ty = ParseTypeName();
2215
2216    assert(Ty && "Parser::ParseTypeofSpecifier(): missing type");
2217
2218    if (Tok.isNot(tok::r_paren)) {
2219      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2220      return;
2221    }
2222    RParenLoc = ConsumeParen();
2223    const char *PrevSpec = 0;
2224    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2225    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty))
2226      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2227  } else { // we have an expression.
2228    OwningExprResult Result(ParseExpression());
2229
2230    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2231      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2232      return;
2233    }
2234    RParenLoc = ConsumeParen();
2235    const char *PrevSpec = 0;
2236    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2237    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2238                           Result.release()))
2239      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2240  }
2241  DS.SetRangeEnd(RParenLoc);
2242}
2243
2244
2245