ParseDecl.cpp revision c1dc653b08226c1d8e1732f9d8b03b82869900bc
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "llvm/ADT/SmallSet.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// C99 6.7: Declarations.
23//===----------------------------------------------------------------------===//
24
25/// ParseTypeName
26///       type-name: [C99 6.7.6]
27///         specifier-qualifier-list abstract-declarator[opt]
28///
29/// Called type-id in C++.
30Action::TypeResult Parser::ParseTypeName() {
31  // Parse the common declaration-specifiers piece.
32  DeclSpec DS;
33  ParseSpecifierQualifierList(DS);
34
35  // Parse the abstract-declarator, if present.
36  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
37  ParseDeclarator(DeclaratorInfo);
38
39  if (DeclaratorInfo.isInvalidType())
40    return true;
41
42  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
43}
44
45/// ParseAttributes - Parse a non-empty attributes list.
46///
47/// [GNU] attributes:
48///         attribute
49///         attributes attribute
50///
51/// [GNU]  attribute:
52///          '__attribute__' '(' '(' attribute-list ')' ')'
53///
54/// [GNU]  attribute-list:
55///          attrib
56///          attribute_list ',' attrib
57///
58/// [GNU]  attrib:
59///          empty
60///          attrib-name
61///          attrib-name '(' identifier ')'
62///          attrib-name '(' identifier ',' nonempty-expr-list ')'
63///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
64///
65/// [GNU]  attrib-name:
66///          identifier
67///          typespec
68///          typequal
69///          storageclass
70///
71/// FIXME: The GCC grammar/code for this construct implies we need two
72/// token lookahead. Comment from gcc: "If they start with an identifier
73/// which is followed by a comma or close parenthesis, then the arguments
74/// start with that identifier; otherwise they are an expression list."
75///
76/// At the moment, I am not doing 2 token lookahead. I am also unaware of
77/// any attributes that don't work (based on my limited testing). Most
78/// attributes are very simple in practice. Until we find a bug, I don't see
79/// a pressing need to implement the 2 token lookahead.
80
81AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
82  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
83
84  AttributeList *CurrAttr = 0;
85
86  while (Tok.is(tok::kw___attribute)) {
87    ConsumeToken();
88    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
89                         "attribute")) {
90      SkipUntil(tok::r_paren, true); // skip until ) or ;
91      return CurrAttr;
92    }
93    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
94      SkipUntil(tok::r_paren, true); // skip until ) or ;
95      return CurrAttr;
96    }
97    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
98    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
99           Tok.is(tok::comma)) {
100
101      if (Tok.is(tok::comma)) {
102        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
103        ConsumeToken();
104        continue;
105      }
106      // we have an identifier or declaration specifier (const, int, etc.)
107      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
108      SourceLocation AttrNameLoc = ConsumeToken();
109
110      // check if we have a "paramterized" attribute
111      if (Tok.is(tok::l_paren)) {
112        ConsumeParen(); // ignore the left paren loc for now
113
114        if (Tok.is(tok::identifier)) {
115          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
116          SourceLocation ParmLoc = ConsumeToken();
117
118          if (Tok.is(tok::r_paren)) {
119            // __attribute__(( mode(byte) ))
120            ConsumeParen(); // ignore the right paren loc for now
121            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
122                                         ParmName, ParmLoc, 0, 0, CurrAttr);
123          } else if (Tok.is(tok::comma)) {
124            ConsumeToken();
125            // __attribute__(( format(printf, 1, 2) ))
126            ExprVector ArgExprs(Actions);
127            bool ArgExprsOk = true;
128
129            // now parse the non-empty comma separated list of expressions
130            while (1) {
131              OwningExprResult ArgExpr(ParseAssignmentExpression());
132              if (ArgExpr.isInvalid()) {
133                ArgExprsOk = false;
134                SkipUntil(tok::r_paren);
135                break;
136              } else {
137                ArgExprs.push_back(ArgExpr.release());
138              }
139              if (Tok.isNot(tok::comma))
140                break;
141              ConsumeToken(); // Eat the comma, move to the next argument
142            }
143            if (ArgExprsOk && Tok.is(tok::r_paren)) {
144              ConsumeParen(); // ignore the right paren loc for now
145              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
146                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
147            }
148          }
149        } else { // not an identifier
150          // parse a possibly empty comma separated list of expressions
151          if (Tok.is(tok::r_paren)) {
152            // __attribute__(( nonnull() ))
153            ConsumeParen(); // ignore the right paren loc for now
154            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
155                                         0, SourceLocation(), 0, 0, CurrAttr);
156          } else {
157            // __attribute__(( aligned(16) ))
158            ExprVector ArgExprs(Actions);
159            bool ArgExprsOk = true;
160
161            // now parse the list of expressions
162            while (1) {
163              OwningExprResult ArgExpr(ParseAssignmentExpression());
164              if (ArgExpr.isInvalid()) {
165                ArgExprsOk = false;
166                SkipUntil(tok::r_paren);
167                break;
168              } else {
169                ArgExprs.push_back(ArgExpr.release());
170              }
171              if (Tok.isNot(tok::comma))
172                break;
173              ConsumeToken(); // Eat the comma, move to the next argument
174            }
175            // Match the ')'.
176            if (ArgExprsOk && Tok.is(tok::r_paren)) {
177              ConsumeParen(); // ignore the right paren loc for now
178              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
179                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
180                           CurrAttr);
181            }
182          }
183        }
184      } else {
185        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
186                                     0, SourceLocation(), 0, 0, CurrAttr);
187      }
188    }
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191    SourceLocation Loc = Tok.getLocation();;
192    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
193      SkipUntil(tok::r_paren, false);
194    }
195    if (EndLoc)
196      *EndLoc = Loc;
197  }
198  return CurrAttr;
199}
200
201/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
202/// routine is called to skip/ignore tokens that comprise the MS declspec.
203void Parser::FuzzyParseMicrosoftDeclSpec() {
204  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
205  ConsumeToken();
206  if (Tok.is(tok::l_paren)) {
207    unsigned short savedParenCount = ParenCount;
208    do {
209      ConsumeAnyToken();
210    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
211  }
212  return;
213}
214
215/// ParseDeclaration - Parse a full 'declaration', which consists of
216/// declaration-specifiers, some number of declarators, and a semicolon.
217/// 'Context' should be a Declarator::TheContext value.  This returns the
218/// location of the semicolon in DeclEnd.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228/// [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
232                                                SourceLocation &DeclEnd) {
233  DeclPtrTy SingleDecl;
234  switch (Tok.getKind()) {
235  case tok::kw_template:
236  case tok::kw_export:
237    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
238    break;
239  case tok::kw_namespace:
240    SingleDecl = ParseNamespace(Context, DeclEnd);
241    break;
242  case tok::kw_using:
243    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
244    break;
245  case tok::kw_static_assert:
246    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
247    break;
248  default:
249    return ParseSimpleDeclaration(Context, DeclEnd);
250  }
251
252  // This routine returns a DeclGroup, if the thing we parsed only contains a
253  // single decl, convert it now.
254  return Actions.ConvertDeclToDeclGroup(SingleDecl);
255}
256
257///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
258///         declaration-specifiers init-declarator-list[opt] ';'
259///[C90/C++]init-declarator-list ';'                             [TODO]
260/// [OMP]   threadprivate-directive                              [TODO]
261///
262/// If RequireSemi is false, this does not check for a ';' at the end of the
263/// declaration.
264Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
265                                                      SourceLocation &DeclEnd,
266                                                      bool RequireSemi) {
267  // Parse the common declaration-specifiers piece.
268  DeclSpec DS;
269  ParseDeclarationSpecifiers(DS);
270
271  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
272  // declaration-specifiers init-declarator-list[opt] ';'
273  if (Tok.is(tok::semi)) {
274    ConsumeToken();
275    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
276    return Actions.ConvertDeclToDeclGroup(TheDecl);
277  }
278
279  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
280  ParseDeclarator(DeclaratorInfo);
281
282  DeclGroupPtrTy DG =
283    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
284
285  DeclEnd = Tok.getLocation();
286
287  // If the client wants to check what comes after the declaration, just return
288  // immediately without checking anything!
289  if (!RequireSemi) return DG;
290
291  if (Tok.is(tok::semi)) {
292    ConsumeToken();
293    return DG;
294  }
295
296  Diag(Tok, diag::err_expected_semi_declation);
297  // Skip to end of block or statement
298  SkipUntil(tok::r_brace, true, true);
299  if (Tok.is(tok::semi))
300    ConsumeToken();
301  return DG;
302}
303
304/// \brief Parse 'declaration' after parsing 'declaration-specifiers
305/// declarator'. This method parses the remainder of the declaration
306/// (including any attributes or initializer, among other things) and
307/// finalizes the declaration.
308///
309///       init-declarator: [C99 6.7]
310///         declarator
311///         declarator '=' initializer
312/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
313/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
314/// [C++]   declarator initializer[opt]
315///
316/// [C++] initializer:
317/// [C++]   '=' initializer-clause
318/// [C++]   '(' expression-list ')'
319/// [C++0x] '=' 'default'                                                [TODO]
320/// [C++0x] '=' 'delete'
321///
322/// According to the standard grammar, =default and =delete are function
323/// definitions, but that definitely doesn't fit with the parser here.
324///
325Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D) {
326  // If a simple-asm-expr is present, parse it.
327  if (Tok.is(tok::kw_asm)) {
328    SourceLocation Loc;
329    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
330    if (AsmLabel.isInvalid()) {
331      SkipUntil(tok::semi, true, true);
332      return DeclPtrTy();
333    }
334
335    D.setAsmLabel(AsmLabel.release());
336    D.SetRangeEnd(Loc);
337  }
338
339  // If attributes are present, parse them.
340  if (Tok.is(tok::kw___attribute)) {
341    SourceLocation Loc;
342    AttributeList *AttrList = ParseAttributes(&Loc);
343    D.AddAttributes(AttrList, Loc);
344  }
345
346  // Inform the current actions module that we just parsed this declarator.
347  DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
348
349  // Parse declarator '=' initializer.
350  if (Tok.is(tok::equal)) {
351    ConsumeToken();
352    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
353      SourceLocation DelLoc = ConsumeToken();
354      Actions.SetDeclDeleted(ThisDecl, DelLoc);
355    } else {
356      OwningExprResult Init(ParseInitializer());
357      if (Init.isInvalid()) {
358        SkipUntil(tok::semi, true, true);
359        return DeclPtrTy();
360      }
361      Actions.AddInitializerToDecl(ThisDecl, move(Init));
362    }
363  } else if (Tok.is(tok::l_paren)) {
364    // Parse C++ direct initializer: '(' expression-list ')'
365    SourceLocation LParenLoc = ConsumeParen();
366    ExprVector Exprs(Actions);
367    CommaLocsTy CommaLocs;
368
369    if (ParseExpressionList(Exprs, CommaLocs)) {
370      SkipUntil(tok::r_paren);
371    } else {
372      // Match the ')'.
373      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
374
375      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
376             "Unexpected number of commas!");
377      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
378                                            move_arg(Exprs),
379                                            CommaLocs.data(), RParenLoc);
380    }
381  } else {
382    Actions.ActOnUninitializedDecl(ThisDecl);
383  }
384
385  return ThisDecl;
386}
387
388/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
389/// parsing 'declaration-specifiers declarator'.  This method is split out this
390/// way to handle the ambiguity between top-level function-definitions and
391/// declarations.
392///
393///       init-declarator-list: [C99 6.7]
394///         init-declarator
395///         init-declarator-list ',' init-declarator
396///
397/// According to the standard grammar, =default and =delete are function
398/// definitions, but that definitely doesn't fit with the parser here.
399///
400Parser::DeclGroupPtrTy Parser::
401ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
402  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
403  // that we parse together here.
404  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
405
406  // At this point, we know that it is not a function definition.  Parse the
407  // rest of the init-declarator-list.
408  while (1) {
409    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
410    if (ThisDecl.get())
411      DeclsInGroup.push_back(ThisDecl);
412
413    // If we don't have a comma, it is either the end of the list (a ';') or an
414    // error, bail out.
415    if (Tok.isNot(tok::comma))
416      break;
417
418    // Consume the comma.
419    ConsumeToken();
420
421    // Parse the next declarator.
422    D.clear();
423
424    // Accept attributes in an init-declarator.  In the first declarator in a
425    // declaration, these would be part of the declspec.  In subsequent
426    // declarators, they become part of the declarator itself, so that they
427    // don't apply to declarators after *this* one.  Examples:
428    //    short __attribute__((common)) var;    -> declspec
429    //    short var __attribute__((common));    -> declarator
430    //    short x, __attribute__((common)) var;    -> declarator
431    if (Tok.is(tok::kw___attribute)) {
432      SourceLocation Loc;
433      AttributeList *AttrList = ParseAttributes(&Loc);
434      D.AddAttributes(AttrList, Loc);
435    }
436
437    ParseDeclarator(D);
438  }
439
440  return Actions.FinalizeDeclaratorGroup(CurScope, D.getDeclSpec(),
441                                         DeclsInGroup.data(),
442                                         DeclsInGroup.size());
443}
444
445/// ParseSpecifierQualifierList
446///        specifier-qualifier-list:
447///          type-specifier specifier-qualifier-list[opt]
448///          type-qualifier specifier-qualifier-list[opt]
449/// [GNU]    attributes     specifier-qualifier-list[opt]
450///
451void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
452  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
453  /// parse declaration-specifiers and complain about extra stuff.
454  ParseDeclarationSpecifiers(DS);
455
456  // Validate declspec for type-name.
457  unsigned Specs = DS.getParsedSpecifiers();
458  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
459      !DS.getAttributes())
460    Diag(Tok, diag::err_typename_requires_specqual);
461
462  // Issue diagnostic and remove storage class if present.
463  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
464    if (DS.getStorageClassSpecLoc().isValid())
465      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
466    else
467      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
468    DS.ClearStorageClassSpecs();
469  }
470
471  // Issue diagnostic and remove function specfier if present.
472  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
473    if (DS.isInlineSpecified())
474      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
475    if (DS.isVirtualSpecified())
476      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
477    if (DS.isExplicitSpecified())
478      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
479    DS.ClearFunctionSpecs();
480  }
481}
482
483/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
484/// specified token is valid after the identifier in a declarator which
485/// immediately follows the declspec.  For example, these things are valid:
486///
487///      int x   [             4];         // direct-declarator
488///      int x   (             int y);     // direct-declarator
489///  int(int x   )                         // direct-declarator
490///      int x   ;                         // simple-declaration
491///      int x   =             17;         // init-declarator-list
492///      int x   ,             y;          // init-declarator-list
493///      int x   __asm__       ("foo");    // init-declarator-list
494///      int x   :             4;          // struct-declarator
495///      int x   {             5};         // C++'0x unified initializers
496///
497/// This is not, because 'x' does not immediately follow the declspec (though
498/// ')' happens to be valid anyway).
499///    int (x)
500///
501static bool isValidAfterIdentifierInDeclarator(const Token &T) {
502  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
503         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
504         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
505}
506
507
508/// ParseImplicitInt - This method is called when we have an non-typename
509/// identifier in a declspec (which normally terminates the decl spec) when
510/// the declspec has no type specifier.  In this case, the declspec is either
511/// malformed or is "implicit int" (in K&R and C89).
512///
513/// This method handles diagnosing this prettily and returns false if the
514/// declspec is done being processed.  If it recovers and thinks there may be
515/// other pieces of declspec after it, it returns true.
516///
517bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
518                              const ParsedTemplateInfo &TemplateInfo,
519                              AccessSpecifier AS) {
520  assert(Tok.is(tok::identifier) && "should have identifier");
521
522  SourceLocation Loc = Tok.getLocation();
523  // If we see an identifier that is not a type name, we normally would
524  // parse it as the identifer being declared.  However, when a typename
525  // is typo'd or the definition is not included, this will incorrectly
526  // parse the typename as the identifier name and fall over misparsing
527  // later parts of the diagnostic.
528  //
529  // As such, we try to do some look-ahead in cases where this would
530  // otherwise be an "implicit-int" case to see if this is invalid.  For
531  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
532  // an identifier with implicit int, we'd get a parse error because the
533  // next token is obviously invalid for a type.  Parse these as a case
534  // with an invalid type specifier.
535  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
536
537  // Since we know that this either implicit int (which is rare) or an
538  // error, we'd do lookahead to try to do better recovery.
539  if (isValidAfterIdentifierInDeclarator(NextToken())) {
540    // If this token is valid for implicit int, e.g. "static x = 4", then
541    // we just avoid eating the identifier, so it will be parsed as the
542    // identifier in the declarator.
543    return false;
544  }
545
546  // Otherwise, if we don't consume this token, we are going to emit an
547  // error anyway.  Try to recover from various common problems.  Check
548  // to see if this was a reference to a tag name without a tag specified.
549  // This is a common problem in C (saying 'foo' instead of 'struct foo').
550  //
551  // C++ doesn't need this, and isTagName doesn't take SS.
552  if (SS == 0) {
553    const char *TagName = 0;
554    tok::TokenKind TagKind = tok::unknown;
555
556    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
557      default: break;
558      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
559      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
560      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
561      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
562    }
563
564    if (TagName) {
565      Diag(Loc, diag::err_use_of_tag_name_without_tag)
566        << Tok.getIdentifierInfo() << TagName
567        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
568
569      // Parse this as a tag as if the missing tag were present.
570      if (TagKind == tok::kw_enum)
571        ParseEnumSpecifier(Loc, DS, AS);
572      else
573        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
574      return true;
575    }
576  }
577
578  // Since this is almost certainly an invalid type name, emit a
579  // diagnostic that says it, eat the token, and mark the declspec as
580  // invalid.
581  SourceRange R;
582  if (SS) R = SS->getRange();
583
584  Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
585  const char *PrevSpec;
586  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec);
587  DS.SetRangeEnd(Tok.getLocation());
588  ConsumeToken();
589
590  // TODO: Could inject an invalid typedef decl in an enclosing scope to
591  // avoid rippling error messages on subsequent uses of the same type,
592  // could be useful if #include was forgotten.
593  return false;
594}
595
596/// ParseDeclarationSpecifiers
597///       declaration-specifiers: [C99 6.7]
598///         storage-class-specifier declaration-specifiers[opt]
599///         type-specifier declaration-specifiers[opt]
600/// [C99]   function-specifier declaration-specifiers[opt]
601/// [GNU]   attributes declaration-specifiers[opt]
602///
603///       storage-class-specifier: [C99 6.7.1]
604///         'typedef'
605///         'extern'
606///         'static'
607///         'auto'
608///         'register'
609/// [C++]   'mutable'
610/// [GNU]   '__thread'
611///       function-specifier: [C99 6.7.4]
612/// [C99]   'inline'
613/// [C++]   'virtual'
614/// [C++]   'explicit'
615///       'friend': [C++ dcl.friend]
616
617///
618void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
619                                        const ParsedTemplateInfo &TemplateInfo,
620                                        AccessSpecifier AS) {
621  DS.SetRangeStart(Tok.getLocation());
622  while (1) {
623    int isInvalid = false;
624    const char *PrevSpec = 0;
625    SourceLocation Loc = Tok.getLocation();
626
627    switch (Tok.getKind()) {
628    default:
629    DoneWithDeclSpec:
630      // If this is not a declaration specifier token, we're done reading decl
631      // specifiers.  First verify that DeclSpec's are consistent.
632      DS.Finish(Diags, PP);
633      return;
634
635    case tok::coloncolon: // ::foo::bar
636      // Annotate C++ scope specifiers.  If we get one, loop.
637      if (TryAnnotateCXXScopeToken())
638        continue;
639      goto DoneWithDeclSpec;
640
641    case tok::annot_cxxscope: {
642      if (DS.hasTypeSpecifier())
643        goto DoneWithDeclSpec;
644
645      // We are looking for a qualified typename.
646      Token Next = NextToken();
647      if (Next.is(tok::annot_template_id) &&
648          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
649            ->Kind == TNK_Type_template) {
650        // We have a qualified template-id, e.g., N::A<int>
651        CXXScopeSpec SS;
652        ParseOptionalCXXScopeSpecifier(SS);
653        assert(Tok.is(tok::annot_template_id) &&
654               "ParseOptionalCXXScopeSpecifier not working");
655        AnnotateTemplateIdTokenAsType(&SS);
656        continue;
657      }
658
659      if (Next.isNot(tok::identifier))
660        goto DoneWithDeclSpec;
661
662      CXXScopeSpec SS;
663      SS.setScopeRep(Tok.getAnnotationValue());
664      SS.setRange(Tok.getAnnotationRange());
665
666      // If the next token is the name of the class type that the C++ scope
667      // denotes, followed by a '(', then this is a constructor declaration.
668      // We're done with the decl-specifiers.
669      if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
670                                     CurScope, &SS) &&
671          GetLookAheadToken(2).is(tok::l_paren))
672        goto DoneWithDeclSpec;
673
674      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
675                                            Next.getLocation(), CurScope, &SS);
676
677      // If the referenced identifier is not a type, then this declspec is
678      // erroneous: We already checked about that it has no type specifier, and
679      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
680      // typename.
681      if (TypeRep == 0) {
682        ConsumeToken();   // Eat the scope spec so the identifier is current.
683        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
684        goto DoneWithDeclSpec;
685      }
686
687      ConsumeToken(); // The C++ scope.
688
689      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
690                                     TypeRep);
691      if (isInvalid)
692        break;
693
694      DS.SetRangeEnd(Tok.getLocation());
695      ConsumeToken(); // The typename.
696
697      continue;
698    }
699
700    case tok::annot_typename: {
701      if (Tok.getAnnotationValue())
702        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
703                                       Tok.getAnnotationValue());
704      else
705        DS.SetTypeSpecError();
706      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
707      ConsumeToken(); // The typename
708
709      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
710      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
711      // Objective-C interface.  If we don't have Objective-C or a '<', this is
712      // just a normal reference to a typedef name.
713      if (!Tok.is(tok::less) || !getLang().ObjC1)
714        continue;
715
716      SourceLocation EndProtoLoc;
717      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
718      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
719      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
720
721      DS.SetRangeEnd(EndProtoLoc);
722      continue;
723    }
724
725      // typedef-name
726    case tok::identifier: {
727      // In C++, check to see if this is a scope specifier like foo::bar::, if
728      // so handle it as such.  This is important for ctor parsing.
729      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
730        continue;
731
732      // This identifier can only be a typedef name if we haven't already seen
733      // a type-specifier.  Without this check we misparse:
734      //  typedef int X; struct Y { short X; };  as 'short int'.
735      if (DS.hasTypeSpecifier())
736        goto DoneWithDeclSpec;
737
738      // It has to be available as a typedef too!
739      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
740                                            Tok.getLocation(), CurScope);
741
742      // If this is not a typedef name, don't parse it as part of the declspec,
743      // it must be an implicit int or an error.
744      if (TypeRep == 0) {
745        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
746        goto DoneWithDeclSpec;
747      }
748
749      // C++: If the identifier is actually the name of the class type
750      // being defined and the next token is a '(', then this is a
751      // constructor declaration. We're done with the decl-specifiers
752      // and will treat this token as an identifier.
753      if (getLang().CPlusPlus && CurScope->isClassScope() &&
754          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
755          NextToken().getKind() == tok::l_paren)
756        goto DoneWithDeclSpec;
757
758      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
759                                     TypeRep);
760      if (isInvalid)
761        break;
762
763      DS.SetRangeEnd(Tok.getLocation());
764      ConsumeToken(); // The identifier
765
766      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
767      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
768      // Objective-C interface.  If we don't have Objective-C or a '<', this is
769      // just a normal reference to a typedef name.
770      if (!Tok.is(tok::less) || !getLang().ObjC1)
771        continue;
772
773      SourceLocation EndProtoLoc;
774      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
775      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
776      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
777
778      DS.SetRangeEnd(EndProtoLoc);
779
780      // Need to support trailing type qualifiers (e.g. "id<p> const").
781      // If a type specifier follows, it will be diagnosed elsewhere.
782      continue;
783    }
784
785      // type-name
786    case tok::annot_template_id: {
787      TemplateIdAnnotation *TemplateId
788        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
789      if (TemplateId->Kind != TNK_Type_template) {
790        // This template-id does not refer to a type name, so we're
791        // done with the type-specifiers.
792        goto DoneWithDeclSpec;
793      }
794
795      // Turn the template-id annotation token into a type annotation
796      // token, then try again to parse it as a type-specifier.
797      AnnotateTemplateIdTokenAsType();
798      continue;
799    }
800
801    // GNU attributes support.
802    case tok::kw___attribute:
803      DS.AddAttributes(ParseAttributes());
804      continue;
805
806    // Microsoft declspec support.
807    case tok::kw___declspec:
808      if (!PP.getLangOptions().Microsoft)
809        goto DoneWithDeclSpec;
810      FuzzyParseMicrosoftDeclSpec();
811      continue;
812
813    // Microsoft single token adornments.
814    case tok::kw___forceinline:
815    case tok::kw___w64:
816    case tok::kw___cdecl:
817    case tok::kw___stdcall:
818    case tok::kw___fastcall:
819      if (!PP.getLangOptions().Microsoft)
820        goto DoneWithDeclSpec;
821      // Just ignore it.
822      break;
823
824    // storage-class-specifier
825    case tok::kw_typedef:
826      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
827      break;
828    case tok::kw_extern:
829      if (DS.isThreadSpecified())
830        Diag(Tok, diag::ext_thread_before) << "extern";
831      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
832      break;
833    case tok::kw___private_extern__:
834      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
835                                         PrevSpec);
836      break;
837    case tok::kw_static:
838      if (DS.isThreadSpecified())
839        Diag(Tok, diag::ext_thread_before) << "static";
840      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
841      break;
842    case tok::kw_auto:
843      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
844      break;
845    case tok::kw_register:
846      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
847      break;
848    case tok::kw_mutable:
849      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
850      break;
851    case tok::kw___thread:
852      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
853      break;
854
855    // function-specifier
856    case tok::kw_inline:
857      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
858      break;
859    case tok::kw_virtual:
860      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
861      break;
862    case tok::kw_explicit:
863      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
864      break;
865
866    // friend
867    case tok::kw_friend:
868      isInvalid = DS.SetFriendSpec(Loc, PrevSpec);
869      break;
870
871    // type-specifier
872    case tok::kw_short:
873      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
874      break;
875    case tok::kw_long:
876      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
877        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
878      else
879        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
880      break;
881    case tok::kw_signed:
882      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
883      break;
884    case tok::kw_unsigned:
885      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
886      break;
887    case tok::kw__Complex:
888      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
889      break;
890    case tok::kw__Imaginary:
891      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
892      break;
893    case tok::kw_void:
894      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
895      break;
896    case tok::kw_char:
897      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
898      break;
899    case tok::kw_int:
900      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
901      break;
902    case tok::kw_float:
903      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
904      break;
905    case tok::kw_double:
906      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
907      break;
908    case tok::kw_wchar_t:
909      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
910      break;
911    case tok::kw_bool:
912    case tok::kw__Bool:
913      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
914      break;
915    case tok::kw__Decimal32:
916      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
917      break;
918    case tok::kw__Decimal64:
919      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
920      break;
921    case tok::kw__Decimal128:
922      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
923      break;
924
925    // class-specifier:
926    case tok::kw_class:
927    case tok::kw_struct:
928    case tok::kw_union: {
929      tok::TokenKind Kind = Tok.getKind();
930      ConsumeToken();
931      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
932      continue;
933    }
934
935    // enum-specifier:
936    case tok::kw_enum:
937      ConsumeToken();
938      ParseEnumSpecifier(Loc, DS, AS);
939      continue;
940
941    // cv-qualifier:
942    case tok::kw_const:
943      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
944      break;
945    case tok::kw_volatile:
946      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
947                                 getLang())*2;
948      break;
949    case tok::kw_restrict:
950      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
951                                 getLang())*2;
952      break;
953
954    // C++ typename-specifier:
955    case tok::kw_typename:
956      if (TryAnnotateTypeOrScopeToken())
957        continue;
958      break;
959
960    // GNU typeof support.
961    case tok::kw_typeof:
962      ParseTypeofSpecifier(DS);
963      continue;
964
965    case tok::less:
966      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
967      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
968      // but we support it.
969      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
970        goto DoneWithDeclSpec;
971
972      {
973        SourceLocation EndProtoLoc;
974        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
975        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
976        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
977        DS.SetRangeEnd(EndProtoLoc);
978
979        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
980          << CodeModificationHint::CreateInsertion(Loc, "id")
981          << SourceRange(Loc, EndProtoLoc);
982        // Need to support trailing type qualifiers (e.g. "id<p> const").
983        // If a type specifier follows, it will be diagnosed elsewhere.
984        continue;
985      }
986    }
987    // If the specifier combination wasn't legal, issue a diagnostic.
988    if (isInvalid) {
989      assert(PrevSpec && "Method did not return previous specifier!");
990      // Pick between error or extwarn.
991      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
992                                       : diag::ext_duplicate_declspec;
993      Diag(Tok, DiagID) << PrevSpec;
994    }
995    DS.SetRangeEnd(Tok.getLocation());
996    ConsumeToken();
997  }
998}
999
1000/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1001/// primarily follow the C++ grammar with additions for C99 and GNU,
1002/// which together subsume the C grammar. Note that the C++
1003/// type-specifier also includes the C type-qualifier (for const,
1004/// volatile, and C99 restrict). Returns true if a type-specifier was
1005/// found (and parsed), false otherwise.
1006///
1007///       type-specifier: [C++ 7.1.5]
1008///         simple-type-specifier
1009///         class-specifier
1010///         enum-specifier
1011///         elaborated-type-specifier  [TODO]
1012///         cv-qualifier
1013///
1014///       cv-qualifier: [C++ 7.1.5.1]
1015///         'const'
1016///         'volatile'
1017/// [C99]   'restrict'
1018///
1019///       simple-type-specifier: [ C++ 7.1.5.2]
1020///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1021///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1022///         'char'
1023///         'wchar_t'
1024///         'bool'
1025///         'short'
1026///         'int'
1027///         'long'
1028///         'signed'
1029///         'unsigned'
1030///         'float'
1031///         'double'
1032///         'void'
1033/// [C99]   '_Bool'
1034/// [C99]   '_Complex'
1035/// [C99]   '_Imaginary'  // Removed in TC2?
1036/// [GNU]   '_Decimal32'
1037/// [GNU]   '_Decimal64'
1038/// [GNU]   '_Decimal128'
1039/// [GNU]   typeof-specifier
1040/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1041/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1042bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
1043                                        const char *&PrevSpec,
1044                                      const ParsedTemplateInfo &TemplateInfo) {
1045  SourceLocation Loc = Tok.getLocation();
1046
1047  switch (Tok.getKind()) {
1048  case tok::identifier:   // foo::bar
1049  case tok::kw_typename:  // typename foo::bar
1050    // Annotate typenames and C++ scope specifiers.  If we get one, just
1051    // recurse to handle whatever we get.
1052    if (TryAnnotateTypeOrScopeToken())
1053      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1054    // Otherwise, not a type specifier.
1055    return false;
1056  case tok::coloncolon:   // ::foo::bar
1057    if (NextToken().is(tok::kw_new) ||    // ::new
1058        NextToken().is(tok::kw_delete))   // ::delete
1059      return false;
1060
1061    // Annotate typenames and C++ scope specifiers.  If we get one, just
1062    // recurse to handle whatever we get.
1063    if (TryAnnotateTypeOrScopeToken())
1064      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, TemplateInfo);
1065    // Otherwise, not a type specifier.
1066    return false;
1067
1068  // simple-type-specifier:
1069  case tok::annot_typename: {
1070    if (Tok.getAnnotationValue())
1071      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1072                                     Tok.getAnnotationValue());
1073    else
1074      DS.SetTypeSpecError();
1075    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1076    ConsumeToken(); // The typename
1077
1078    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1079    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1080    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1081    // just a normal reference to a typedef name.
1082    if (!Tok.is(tok::less) || !getLang().ObjC1)
1083      return true;
1084
1085    SourceLocation EndProtoLoc;
1086    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1087    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1088    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
1089
1090    DS.SetRangeEnd(EndProtoLoc);
1091    return true;
1092  }
1093
1094  case tok::kw_short:
1095    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
1096    break;
1097  case tok::kw_long:
1098    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1099      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
1100    else
1101      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
1102    break;
1103  case tok::kw_signed:
1104    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
1105    break;
1106  case tok::kw_unsigned:
1107    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
1108    break;
1109  case tok::kw__Complex:
1110    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
1111    break;
1112  case tok::kw__Imaginary:
1113    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
1114    break;
1115  case tok::kw_void:
1116    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
1117    break;
1118  case tok::kw_char:
1119    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
1120    break;
1121  case tok::kw_int:
1122    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
1123    break;
1124  case tok::kw_float:
1125    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
1126    break;
1127  case tok::kw_double:
1128    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
1129    break;
1130  case tok::kw_wchar_t:
1131    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
1132    break;
1133  case tok::kw_bool:
1134  case tok::kw__Bool:
1135    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
1136    break;
1137  case tok::kw__Decimal32:
1138    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
1139    break;
1140  case tok::kw__Decimal64:
1141    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
1142    break;
1143  case tok::kw__Decimal128:
1144    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
1145    break;
1146
1147  // class-specifier:
1148  case tok::kw_class:
1149  case tok::kw_struct:
1150  case tok::kw_union: {
1151    tok::TokenKind Kind = Tok.getKind();
1152    ConsumeToken();
1153    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
1154    return true;
1155  }
1156
1157  // enum-specifier:
1158  case tok::kw_enum:
1159    ConsumeToken();
1160    ParseEnumSpecifier(Loc, DS);
1161    return true;
1162
1163  // cv-qualifier:
1164  case tok::kw_const:
1165    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1166                               getLang())*2;
1167    break;
1168  case tok::kw_volatile:
1169    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1170                               getLang())*2;
1171    break;
1172  case tok::kw_restrict:
1173    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1174                               getLang())*2;
1175    break;
1176
1177  // GNU typeof support.
1178  case tok::kw_typeof:
1179    ParseTypeofSpecifier(DS);
1180    return true;
1181
1182  case tok::kw___cdecl:
1183  case tok::kw___stdcall:
1184  case tok::kw___fastcall:
1185    if (!PP.getLangOptions().Microsoft) return false;
1186    ConsumeToken();
1187    return true;
1188
1189  default:
1190    // Not a type-specifier; do nothing.
1191    return false;
1192  }
1193
1194  // If the specifier combination wasn't legal, issue a diagnostic.
1195  if (isInvalid) {
1196    assert(PrevSpec && "Method did not return previous specifier!");
1197    // Pick between error or extwarn.
1198    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1199                                     : diag::ext_duplicate_declspec;
1200    Diag(Tok, DiagID) << PrevSpec;
1201  }
1202  DS.SetRangeEnd(Tok.getLocation());
1203  ConsumeToken(); // whatever we parsed above.
1204  return true;
1205}
1206
1207/// ParseStructDeclaration - Parse a struct declaration without the terminating
1208/// semicolon.
1209///
1210///       struct-declaration:
1211///         specifier-qualifier-list struct-declarator-list
1212/// [GNU]   __extension__ struct-declaration
1213/// [GNU]   specifier-qualifier-list
1214///       struct-declarator-list:
1215///         struct-declarator
1216///         struct-declarator-list ',' struct-declarator
1217/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1218///       struct-declarator:
1219///         declarator
1220/// [GNU]   declarator attributes[opt]
1221///         declarator[opt] ':' constant-expression
1222/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1223///
1224void Parser::
1225ParseStructDeclaration(DeclSpec &DS,
1226                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1227  if (Tok.is(tok::kw___extension__)) {
1228    // __extension__ silences extension warnings in the subexpression.
1229    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1230    ConsumeToken();
1231    return ParseStructDeclaration(DS, Fields);
1232  }
1233
1234  // Parse the common specifier-qualifiers-list piece.
1235  SourceLocation DSStart = Tok.getLocation();
1236  ParseSpecifierQualifierList(DS);
1237
1238  // If there are no declarators, this is a free-standing declaration
1239  // specifier. Let the actions module cope with it.
1240  if (Tok.is(tok::semi)) {
1241    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1242    return;
1243  }
1244
1245  // Read struct-declarators until we find the semicolon.
1246  Fields.push_back(FieldDeclarator(DS));
1247  while (1) {
1248    FieldDeclarator &DeclaratorInfo = Fields.back();
1249
1250    /// struct-declarator: declarator
1251    /// struct-declarator: declarator[opt] ':' constant-expression
1252    if (Tok.isNot(tok::colon))
1253      ParseDeclarator(DeclaratorInfo.D);
1254
1255    if (Tok.is(tok::colon)) {
1256      ConsumeToken();
1257      OwningExprResult Res(ParseConstantExpression());
1258      if (Res.isInvalid())
1259        SkipUntil(tok::semi, true, true);
1260      else
1261        DeclaratorInfo.BitfieldSize = Res.release();
1262    }
1263
1264    // If attributes exist after the declarator, parse them.
1265    if (Tok.is(tok::kw___attribute)) {
1266      SourceLocation Loc;
1267      AttributeList *AttrList = ParseAttributes(&Loc);
1268      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1269    }
1270
1271    // If we don't have a comma, it is either the end of the list (a ';')
1272    // or an error, bail out.
1273    if (Tok.isNot(tok::comma))
1274      return;
1275
1276    // Consume the comma.
1277    ConsumeToken();
1278
1279    // Parse the next declarator.
1280    Fields.push_back(FieldDeclarator(DS));
1281
1282    // Attributes are only allowed on the second declarator.
1283    if (Tok.is(tok::kw___attribute)) {
1284      SourceLocation Loc;
1285      AttributeList *AttrList = ParseAttributes(&Loc);
1286      Fields.back().D.AddAttributes(AttrList, Loc);
1287    }
1288  }
1289}
1290
1291/// ParseStructUnionBody
1292///       struct-contents:
1293///         struct-declaration-list
1294/// [EXT]   empty
1295/// [GNU]   "struct-declaration-list" without terminatoring ';'
1296///       struct-declaration-list:
1297///         struct-declaration
1298///         struct-declaration-list struct-declaration
1299/// [OBC]   '@' 'defs' '(' class-name ')'
1300///
1301void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1302                                  unsigned TagType, DeclPtrTy TagDecl) {
1303  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1304                                        PP.getSourceManager(),
1305                                        "parsing struct/union body");
1306
1307  SourceLocation LBraceLoc = ConsumeBrace();
1308
1309  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1310  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1311
1312  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1313  // C++.
1314  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1315    Diag(Tok, diag::ext_empty_struct_union_enum)
1316      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1317
1318  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1319  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1320
1321  // While we still have something to read, read the declarations in the struct.
1322  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1323    // Each iteration of this loop reads one struct-declaration.
1324
1325    // Check for extraneous top-level semicolon.
1326    if (Tok.is(tok::semi)) {
1327      Diag(Tok, diag::ext_extra_struct_semi)
1328        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1329      ConsumeToken();
1330      continue;
1331    }
1332
1333    // Parse all the comma separated declarators.
1334    DeclSpec DS;
1335    FieldDeclarators.clear();
1336    if (!Tok.is(tok::at)) {
1337      ParseStructDeclaration(DS, FieldDeclarators);
1338
1339      // Convert them all to fields.
1340      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1341        FieldDeclarator &FD = FieldDeclarators[i];
1342        // Install the declarator into the current TagDecl.
1343        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1344                                             DS.getSourceRange().getBegin(),
1345                                             FD.D, FD.BitfieldSize);
1346        FieldDecls.push_back(Field);
1347      }
1348    } else { // Handle @defs
1349      ConsumeToken();
1350      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1351        Diag(Tok, diag::err_unexpected_at);
1352        SkipUntil(tok::semi, true, true);
1353        continue;
1354      }
1355      ConsumeToken();
1356      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1357      if (!Tok.is(tok::identifier)) {
1358        Diag(Tok, diag::err_expected_ident);
1359        SkipUntil(tok::semi, true, true);
1360        continue;
1361      }
1362      llvm::SmallVector<DeclPtrTy, 16> Fields;
1363      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1364                        Tok.getIdentifierInfo(), Fields);
1365      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1366      ConsumeToken();
1367      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1368    }
1369
1370    if (Tok.is(tok::semi)) {
1371      ConsumeToken();
1372    } else if (Tok.is(tok::r_brace)) {
1373      Diag(Tok, diag::ext_expected_semi_decl_list);
1374      break;
1375    } else {
1376      Diag(Tok, diag::err_expected_semi_decl_list);
1377      // Skip to end of block or statement
1378      SkipUntil(tok::r_brace, true, true);
1379    }
1380  }
1381
1382  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1383
1384  AttributeList *AttrList = 0;
1385  // If attributes exist after struct contents, parse them.
1386  if (Tok.is(tok::kw___attribute))
1387    AttrList = ParseAttributes();
1388
1389  Actions.ActOnFields(CurScope,
1390                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1391                      LBraceLoc, RBraceLoc,
1392                      AttrList);
1393  StructScope.Exit();
1394  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1395}
1396
1397
1398/// ParseEnumSpecifier
1399///       enum-specifier: [C99 6.7.2.2]
1400///         'enum' identifier[opt] '{' enumerator-list '}'
1401///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1402/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1403///                                                 '}' attributes[opt]
1404///         'enum' identifier
1405/// [GNU]   'enum' attributes[opt] identifier
1406///
1407/// [C++] elaborated-type-specifier:
1408/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1409///
1410void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1411                                AccessSpecifier AS) {
1412  // Parse the tag portion of this.
1413
1414  AttributeList *Attr = 0;
1415  // If attributes exist after tag, parse them.
1416  if (Tok.is(tok::kw___attribute))
1417    Attr = ParseAttributes();
1418
1419  CXXScopeSpec SS;
1420  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1421    if (Tok.isNot(tok::identifier)) {
1422      Diag(Tok, diag::err_expected_ident);
1423      if (Tok.isNot(tok::l_brace)) {
1424        // Has no name and is not a definition.
1425        // Skip the rest of this declarator, up until the comma or semicolon.
1426        SkipUntil(tok::comma, true);
1427        return;
1428      }
1429    }
1430  }
1431
1432  // Must have either 'enum name' or 'enum {...}'.
1433  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1434    Diag(Tok, diag::err_expected_ident_lbrace);
1435
1436    // Skip the rest of this declarator, up until the comma or semicolon.
1437    SkipUntil(tok::comma, true);
1438    return;
1439  }
1440
1441  // If an identifier is present, consume and remember it.
1442  IdentifierInfo *Name = 0;
1443  SourceLocation NameLoc;
1444  if (Tok.is(tok::identifier)) {
1445    Name = Tok.getIdentifierInfo();
1446    NameLoc = ConsumeToken();
1447  }
1448
1449  // There are three options here.  If we have 'enum foo;', then this is a
1450  // forward declaration.  If we have 'enum foo {...' then this is a
1451  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1452  //
1453  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1454  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1455  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1456  //
1457  Action::TagKind TK;
1458  if (Tok.is(tok::l_brace))
1459    TK = Action::TK_Definition;
1460  else if (Tok.is(tok::semi))
1461    TK = Action::TK_Declaration;
1462  else
1463    TK = Action::TK_Reference;
1464  bool Owned = false;
1465  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1466                                       StartLoc, SS, Name, NameLoc, Attr, AS,
1467                                       Owned);
1468
1469  if (Tok.is(tok::l_brace))
1470    ParseEnumBody(StartLoc, TagDecl);
1471
1472  // TODO: semantic analysis on the declspec for enums.
1473  const char *PrevSpec = 0;
1474  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1475                         TagDecl.getAs<void>(), Owned))
1476    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1477}
1478
1479/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1480///       enumerator-list:
1481///         enumerator
1482///         enumerator-list ',' enumerator
1483///       enumerator:
1484///         enumeration-constant
1485///         enumeration-constant '=' constant-expression
1486///       enumeration-constant:
1487///         identifier
1488///
1489void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1490  // Enter the scope of the enum body and start the definition.
1491  ParseScope EnumScope(this, Scope::DeclScope);
1492  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1493
1494  SourceLocation LBraceLoc = ConsumeBrace();
1495
1496  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1497  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1498    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1499
1500  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1501
1502  DeclPtrTy LastEnumConstDecl;
1503
1504  // Parse the enumerator-list.
1505  while (Tok.is(tok::identifier)) {
1506    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1507    SourceLocation IdentLoc = ConsumeToken();
1508
1509    SourceLocation EqualLoc;
1510    OwningExprResult AssignedVal(Actions);
1511    if (Tok.is(tok::equal)) {
1512      EqualLoc = ConsumeToken();
1513      AssignedVal = ParseConstantExpression();
1514      if (AssignedVal.isInvalid())
1515        SkipUntil(tok::comma, tok::r_brace, true, true);
1516    }
1517
1518    // Install the enumerator constant into EnumDecl.
1519    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1520                                                        LastEnumConstDecl,
1521                                                        IdentLoc, Ident,
1522                                                        EqualLoc,
1523                                                        AssignedVal.release());
1524    EnumConstantDecls.push_back(EnumConstDecl);
1525    LastEnumConstDecl = EnumConstDecl;
1526
1527    if (Tok.isNot(tok::comma))
1528      break;
1529    SourceLocation CommaLoc = ConsumeToken();
1530
1531    if (Tok.isNot(tok::identifier) &&
1532        !(getLang().C99 || getLang().CPlusPlus0x))
1533      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1534        << getLang().CPlusPlus
1535        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1536  }
1537
1538  // Eat the }.
1539  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1540
1541  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
1542                        EnumConstantDecls.data(), EnumConstantDecls.size());
1543
1544  Action::AttrTy *AttrList = 0;
1545  // If attributes exist after the identifier list, parse them.
1546  if (Tok.is(tok::kw___attribute))
1547    AttrList = ParseAttributes(); // FIXME: where do they do?
1548
1549  EnumScope.Exit();
1550  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1551}
1552
1553/// isTypeSpecifierQualifier - Return true if the current token could be the
1554/// start of a type-qualifier-list.
1555bool Parser::isTypeQualifier() const {
1556  switch (Tok.getKind()) {
1557  default: return false;
1558    // type-qualifier
1559  case tok::kw_const:
1560  case tok::kw_volatile:
1561  case tok::kw_restrict:
1562    return true;
1563  }
1564}
1565
1566/// isTypeSpecifierQualifier - Return true if the current token could be the
1567/// start of a specifier-qualifier-list.
1568bool Parser::isTypeSpecifierQualifier() {
1569  switch (Tok.getKind()) {
1570  default: return false;
1571
1572  case tok::identifier:   // foo::bar
1573  case tok::kw_typename:  // typename T::type
1574    // Annotate typenames and C++ scope specifiers.  If we get one, just
1575    // recurse to handle whatever we get.
1576    if (TryAnnotateTypeOrScopeToken())
1577      return isTypeSpecifierQualifier();
1578    // Otherwise, not a type specifier.
1579    return false;
1580
1581  case tok::coloncolon:   // ::foo::bar
1582    if (NextToken().is(tok::kw_new) ||    // ::new
1583        NextToken().is(tok::kw_delete))   // ::delete
1584      return false;
1585
1586    // Annotate typenames and C++ scope specifiers.  If we get one, just
1587    // recurse to handle whatever we get.
1588    if (TryAnnotateTypeOrScopeToken())
1589      return isTypeSpecifierQualifier();
1590    // Otherwise, not a type specifier.
1591    return false;
1592
1593    // GNU attributes support.
1594  case tok::kw___attribute:
1595    // GNU typeof support.
1596  case tok::kw_typeof:
1597
1598    // type-specifiers
1599  case tok::kw_short:
1600  case tok::kw_long:
1601  case tok::kw_signed:
1602  case tok::kw_unsigned:
1603  case tok::kw__Complex:
1604  case tok::kw__Imaginary:
1605  case tok::kw_void:
1606  case tok::kw_char:
1607  case tok::kw_wchar_t:
1608  case tok::kw_int:
1609  case tok::kw_float:
1610  case tok::kw_double:
1611  case tok::kw_bool:
1612  case tok::kw__Bool:
1613  case tok::kw__Decimal32:
1614  case tok::kw__Decimal64:
1615  case tok::kw__Decimal128:
1616
1617    // struct-or-union-specifier (C99) or class-specifier (C++)
1618  case tok::kw_class:
1619  case tok::kw_struct:
1620  case tok::kw_union:
1621    // enum-specifier
1622  case tok::kw_enum:
1623
1624    // type-qualifier
1625  case tok::kw_const:
1626  case tok::kw_volatile:
1627  case tok::kw_restrict:
1628
1629    // typedef-name
1630  case tok::annot_typename:
1631    return true;
1632
1633    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1634  case tok::less:
1635    return getLang().ObjC1;
1636
1637  case tok::kw___cdecl:
1638  case tok::kw___stdcall:
1639  case tok::kw___fastcall:
1640    return PP.getLangOptions().Microsoft;
1641  }
1642}
1643
1644/// isDeclarationSpecifier() - Return true if the current token is part of a
1645/// declaration specifier.
1646bool Parser::isDeclarationSpecifier() {
1647  switch (Tok.getKind()) {
1648  default: return false;
1649
1650  case tok::identifier:   // foo::bar
1651    // Unfortunate hack to support "Class.factoryMethod" notation.
1652    if (getLang().ObjC1 && NextToken().is(tok::period))
1653      return false;
1654    // Fall through
1655
1656  case tok::kw_typename: // typename T::type
1657    // Annotate typenames and C++ scope specifiers.  If we get one, just
1658    // recurse to handle whatever we get.
1659    if (TryAnnotateTypeOrScopeToken())
1660      return isDeclarationSpecifier();
1661    // Otherwise, not a declaration specifier.
1662    return false;
1663  case tok::coloncolon:   // ::foo::bar
1664    if (NextToken().is(tok::kw_new) ||    // ::new
1665        NextToken().is(tok::kw_delete))   // ::delete
1666      return false;
1667
1668    // Annotate typenames and C++ scope specifiers.  If we get one, just
1669    // recurse to handle whatever we get.
1670    if (TryAnnotateTypeOrScopeToken())
1671      return isDeclarationSpecifier();
1672    // Otherwise, not a declaration specifier.
1673    return false;
1674
1675    // storage-class-specifier
1676  case tok::kw_typedef:
1677  case tok::kw_extern:
1678  case tok::kw___private_extern__:
1679  case tok::kw_static:
1680  case tok::kw_auto:
1681  case tok::kw_register:
1682  case tok::kw___thread:
1683
1684    // type-specifiers
1685  case tok::kw_short:
1686  case tok::kw_long:
1687  case tok::kw_signed:
1688  case tok::kw_unsigned:
1689  case tok::kw__Complex:
1690  case tok::kw__Imaginary:
1691  case tok::kw_void:
1692  case tok::kw_char:
1693  case tok::kw_wchar_t:
1694  case tok::kw_int:
1695  case tok::kw_float:
1696  case tok::kw_double:
1697  case tok::kw_bool:
1698  case tok::kw__Bool:
1699  case tok::kw__Decimal32:
1700  case tok::kw__Decimal64:
1701  case tok::kw__Decimal128:
1702
1703    // struct-or-union-specifier (C99) or class-specifier (C++)
1704  case tok::kw_class:
1705  case tok::kw_struct:
1706  case tok::kw_union:
1707    // enum-specifier
1708  case tok::kw_enum:
1709
1710    // type-qualifier
1711  case tok::kw_const:
1712  case tok::kw_volatile:
1713  case tok::kw_restrict:
1714
1715    // function-specifier
1716  case tok::kw_inline:
1717  case tok::kw_virtual:
1718  case tok::kw_explicit:
1719
1720    // typedef-name
1721  case tok::annot_typename:
1722
1723    // GNU typeof support.
1724  case tok::kw_typeof:
1725
1726    // GNU attributes.
1727  case tok::kw___attribute:
1728    return true;
1729
1730    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1731  case tok::less:
1732    return getLang().ObjC1;
1733
1734  case tok::kw___declspec:
1735  case tok::kw___cdecl:
1736  case tok::kw___stdcall:
1737  case tok::kw___fastcall:
1738    return PP.getLangOptions().Microsoft;
1739  }
1740}
1741
1742
1743/// ParseTypeQualifierListOpt
1744///       type-qualifier-list: [C99 6.7.5]
1745///         type-qualifier
1746/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1747///         type-qualifier-list type-qualifier
1748/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1749///
1750void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1751  while (1) {
1752    int isInvalid = false;
1753    const char *PrevSpec = 0;
1754    SourceLocation Loc = Tok.getLocation();
1755
1756    switch (Tok.getKind()) {
1757    case tok::kw_const:
1758      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1759                                 getLang())*2;
1760      break;
1761    case tok::kw_volatile:
1762      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1763                                 getLang())*2;
1764      break;
1765    case tok::kw_restrict:
1766      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1767                                 getLang())*2;
1768      break;
1769    case tok::kw___ptr64:
1770    case tok::kw___cdecl:
1771    case tok::kw___stdcall:
1772    case tok::kw___fastcall:
1773      if (!PP.getLangOptions().Microsoft)
1774        goto DoneWithTypeQuals;
1775      // Just ignore it.
1776      break;
1777    case tok::kw___attribute:
1778      if (AttributesAllowed) {
1779        DS.AddAttributes(ParseAttributes());
1780        continue; // do *not* consume the next token!
1781      }
1782      // otherwise, FALL THROUGH!
1783    default:
1784      DoneWithTypeQuals:
1785      // If this is not a type-qualifier token, we're done reading type
1786      // qualifiers.  First verify that DeclSpec's are consistent.
1787      DS.Finish(Diags, PP);
1788      return;
1789    }
1790
1791    // If the specifier combination wasn't legal, issue a diagnostic.
1792    if (isInvalid) {
1793      assert(PrevSpec && "Method did not return previous specifier!");
1794      // Pick between error or extwarn.
1795      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1796                                      : diag::ext_duplicate_declspec;
1797      Diag(Tok, DiagID) << PrevSpec;
1798    }
1799    ConsumeToken();
1800  }
1801}
1802
1803
1804/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1805///
1806void Parser::ParseDeclarator(Declarator &D) {
1807  /// This implements the 'declarator' production in the C grammar, then checks
1808  /// for well-formedness and issues diagnostics.
1809  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1810}
1811
1812/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1813/// is parsed by the function passed to it. Pass null, and the direct-declarator
1814/// isn't parsed at all, making this function effectively parse the C++
1815/// ptr-operator production.
1816///
1817///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1818/// [C]     pointer[opt] direct-declarator
1819/// [C++]   direct-declarator
1820/// [C++]   ptr-operator declarator
1821///
1822///       pointer: [C99 6.7.5]
1823///         '*' type-qualifier-list[opt]
1824///         '*' type-qualifier-list[opt] pointer
1825///
1826///       ptr-operator:
1827///         '*' cv-qualifier-seq[opt]
1828///         '&'
1829/// [C++0x] '&&'
1830/// [GNU]   '&' restrict[opt] attributes[opt]
1831/// [GNU?]  '&&' restrict[opt] attributes[opt]
1832///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1833void Parser::ParseDeclaratorInternal(Declarator &D,
1834                                     DirectDeclParseFunction DirectDeclParser) {
1835
1836  // C++ member pointers start with a '::' or a nested-name.
1837  // Member pointers get special handling, since there's no place for the
1838  // scope spec in the generic path below.
1839  if (getLang().CPlusPlus &&
1840      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1841       Tok.is(tok::annot_cxxscope))) {
1842    CXXScopeSpec SS;
1843    if (ParseOptionalCXXScopeSpecifier(SS)) {
1844      if(Tok.isNot(tok::star)) {
1845        // The scope spec really belongs to the direct-declarator.
1846        D.getCXXScopeSpec() = SS;
1847        if (DirectDeclParser)
1848          (this->*DirectDeclParser)(D);
1849        return;
1850      }
1851
1852      SourceLocation Loc = ConsumeToken();
1853      D.SetRangeEnd(Loc);
1854      DeclSpec DS;
1855      ParseTypeQualifierListOpt(DS);
1856      D.ExtendWithDeclSpec(DS);
1857
1858      // Recurse to parse whatever is left.
1859      ParseDeclaratorInternal(D, DirectDeclParser);
1860
1861      // Sema will have to catch (syntactically invalid) pointers into global
1862      // scope. It has to catch pointers into namespace scope anyway.
1863      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1864                                                      Loc, DS.TakeAttributes()),
1865                    /* Don't replace range end. */SourceLocation());
1866      return;
1867    }
1868  }
1869
1870  tok::TokenKind Kind = Tok.getKind();
1871  // Not a pointer, C++ reference, or block.
1872  if (Kind != tok::star && Kind != tok::caret &&
1873      (Kind != tok::amp || !getLang().CPlusPlus) &&
1874      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1875      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1876    if (DirectDeclParser)
1877      (this->*DirectDeclParser)(D);
1878    return;
1879  }
1880
1881  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1882  // '&&' -> rvalue reference
1883  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1884  D.SetRangeEnd(Loc);
1885
1886  if (Kind == tok::star || Kind == tok::caret) {
1887    // Is a pointer.
1888    DeclSpec DS;
1889
1890    ParseTypeQualifierListOpt(DS);
1891    D.ExtendWithDeclSpec(DS);
1892
1893    // Recursively parse the declarator.
1894    ParseDeclaratorInternal(D, DirectDeclParser);
1895    if (Kind == tok::star)
1896      // Remember that we parsed a pointer type, and remember the type-quals.
1897      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1898                                                DS.TakeAttributes()),
1899                    SourceLocation());
1900    else
1901      // Remember that we parsed a Block type, and remember the type-quals.
1902      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1903                                                     Loc, DS.TakeAttributes()),
1904                    SourceLocation());
1905  } else {
1906    // Is a reference
1907    DeclSpec DS;
1908
1909    // Complain about rvalue references in C++03, but then go on and build
1910    // the declarator.
1911    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1912      Diag(Loc, diag::err_rvalue_reference);
1913
1914    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1915    // cv-qualifiers are introduced through the use of a typedef or of a
1916    // template type argument, in which case the cv-qualifiers are ignored.
1917    //
1918    // [GNU] Retricted references are allowed.
1919    // [GNU] Attributes on references are allowed.
1920    ParseTypeQualifierListOpt(DS);
1921    D.ExtendWithDeclSpec(DS);
1922
1923    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1924      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1925        Diag(DS.getConstSpecLoc(),
1926             diag::err_invalid_reference_qualifier_application) << "const";
1927      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1928        Diag(DS.getVolatileSpecLoc(),
1929             diag::err_invalid_reference_qualifier_application) << "volatile";
1930    }
1931
1932    // Recursively parse the declarator.
1933    ParseDeclaratorInternal(D, DirectDeclParser);
1934
1935    if (D.getNumTypeObjects() > 0) {
1936      // C++ [dcl.ref]p4: There shall be no references to references.
1937      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1938      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1939        if (const IdentifierInfo *II = D.getIdentifier())
1940          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1941           << II;
1942        else
1943          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1944            << "type name";
1945
1946        // Once we've complained about the reference-to-reference, we
1947        // can go ahead and build the (technically ill-formed)
1948        // declarator: reference collapsing will take care of it.
1949      }
1950    }
1951
1952    // Remember that we parsed a reference type. It doesn't have type-quals.
1953    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1954                                                DS.TakeAttributes(),
1955                                                Kind == tok::amp),
1956                  SourceLocation());
1957  }
1958}
1959
1960/// ParseDirectDeclarator
1961///       direct-declarator: [C99 6.7.5]
1962/// [C99]   identifier
1963///         '(' declarator ')'
1964/// [GNU]   '(' attributes declarator ')'
1965/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1966/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1967/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1968/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1969/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1970///         direct-declarator '(' parameter-type-list ')'
1971///         direct-declarator '(' identifier-list[opt] ')'
1972/// [GNU]   direct-declarator '(' parameter-forward-declarations
1973///                    parameter-type-list[opt] ')'
1974/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1975///                    cv-qualifier-seq[opt] exception-specification[opt]
1976/// [C++]   declarator-id
1977///
1978///       declarator-id: [C++ 8]
1979///         id-expression
1980///         '::'[opt] nested-name-specifier[opt] type-name
1981///
1982///       id-expression: [C++ 5.1]
1983///         unqualified-id
1984///         qualified-id            [TODO]
1985///
1986///       unqualified-id: [C++ 5.1]
1987///         identifier
1988///         operator-function-id
1989///         conversion-function-id  [TODO]
1990///          '~' class-name
1991///         template-id
1992///
1993void Parser::ParseDirectDeclarator(Declarator &D) {
1994  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1995
1996  if (getLang().CPlusPlus) {
1997    if (D.mayHaveIdentifier()) {
1998      // ParseDeclaratorInternal might already have parsed the scope.
1999      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
2000        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
2001      if (afterCXXScope) {
2002        // Change the declaration context for name lookup, until this function
2003        // is exited (and the declarator has been parsed).
2004        DeclScopeObj.EnterDeclaratorScope();
2005      }
2006
2007      if (Tok.is(tok::identifier)) {
2008        assert(Tok.getIdentifierInfo() && "Not an identifier?");
2009
2010        // If this identifier is the name of the current class, it's a
2011        // constructor name.
2012        if (!D.getDeclSpec().hasTypeSpecifier() &&
2013            Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)) {
2014          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
2015                                               Tok.getLocation(), CurScope),
2016                           Tok.getLocation());
2017        // This is a normal identifier.
2018        } else
2019          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2020        ConsumeToken();
2021        goto PastIdentifier;
2022      } else if (Tok.is(tok::annot_template_id)) {
2023        TemplateIdAnnotation *TemplateId
2024          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
2025
2026        // FIXME: Could this template-id name a constructor?
2027
2028        // FIXME: This is an egregious hack, where we silently ignore
2029        // the specialization (which should be a function template
2030        // specialization name) and use the name instead. This hack
2031        // will go away when we have support for function
2032        // specializations.
2033        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
2034        TemplateId->Destroy();
2035        ConsumeToken();
2036        goto PastIdentifier;
2037      } else if (Tok.is(tok::kw_operator)) {
2038        SourceLocation OperatorLoc = Tok.getLocation();
2039        SourceLocation EndLoc;
2040
2041        // First try the name of an overloaded operator
2042        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
2043          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
2044        } else {
2045          // This must be a conversion function (C++ [class.conv.fct]).
2046          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
2047            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
2048          else {
2049            D.SetIdentifier(0, Tok.getLocation());
2050          }
2051        }
2052        goto PastIdentifier;
2053      } else if (Tok.is(tok::tilde)) {
2054        // This should be a C++ destructor.
2055        SourceLocation TildeLoc = ConsumeToken();
2056        if (Tok.is(tok::identifier)) {
2057          // FIXME: Inaccurate.
2058          SourceLocation NameLoc = Tok.getLocation();
2059          SourceLocation EndLoc;
2060          TypeResult Type = ParseClassName(EndLoc);
2061          if (Type.isInvalid())
2062            D.SetIdentifier(0, TildeLoc);
2063          else
2064            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2065        } else {
2066          Diag(Tok, diag::err_expected_class_name);
2067          D.SetIdentifier(0, TildeLoc);
2068        }
2069        goto PastIdentifier;
2070      }
2071
2072      // If we reached this point, token is not identifier and not '~'.
2073
2074      if (afterCXXScope) {
2075        Diag(Tok, diag::err_expected_unqualified_id);
2076        D.SetIdentifier(0, Tok.getLocation());
2077        D.setInvalidType(true);
2078        goto PastIdentifier;
2079      }
2080    }
2081  }
2082
2083  // If we reached this point, we are either in C/ObjC or the token didn't
2084  // satisfy any of the C++-specific checks.
2085  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2086    assert(!getLang().CPlusPlus &&
2087           "There's a C++-specific check for tok::identifier above");
2088    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2089    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2090    ConsumeToken();
2091  } else if (Tok.is(tok::l_paren)) {
2092    // direct-declarator: '(' declarator ')'
2093    // direct-declarator: '(' attributes declarator ')'
2094    // Example: 'char (*X)'   or 'int (*XX)(void)'
2095    ParseParenDeclarator(D);
2096  } else if (D.mayOmitIdentifier()) {
2097    // This could be something simple like "int" (in which case the declarator
2098    // portion is empty), if an abstract-declarator is allowed.
2099    D.SetIdentifier(0, Tok.getLocation());
2100  } else {
2101    if (D.getContext() == Declarator::MemberContext)
2102      Diag(Tok, diag::err_expected_member_name_or_semi)
2103        << D.getDeclSpec().getSourceRange();
2104    else if (getLang().CPlusPlus)
2105      Diag(Tok, diag::err_expected_unqualified_id);
2106    else
2107      Diag(Tok, diag::err_expected_ident_lparen);
2108    D.SetIdentifier(0, Tok.getLocation());
2109    D.setInvalidType(true);
2110  }
2111
2112 PastIdentifier:
2113  assert(D.isPastIdentifier() &&
2114         "Haven't past the location of the identifier yet?");
2115
2116  while (1) {
2117    if (Tok.is(tok::l_paren)) {
2118      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2119      // In such a case, check if we actually have a function declarator; if it
2120      // is not, the declarator has been fully parsed.
2121      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2122        // When not in file scope, warn for ambiguous function declarators, just
2123        // in case the author intended it as a variable definition.
2124        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2125        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2126          break;
2127      }
2128      ParseFunctionDeclarator(ConsumeParen(), D);
2129    } else if (Tok.is(tok::l_square)) {
2130      ParseBracketDeclarator(D);
2131    } else {
2132      break;
2133    }
2134  }
2135}
2136
2137/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2138/// only called before the identifier, so these are most likely just grouping
2139/// parens for precedence.  If we find that these are actually function
2140/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2141///
2142///       direct-declarator:
2143///         '(' declarator ')'
2144/// [GNU]   '(' attributes declarator ')'
2145///         direct-declarator '(' parameter-type-list ')'
2146///         direct-declarator '(' identifier-list[opt] ')'
2147/// [GNU]   direct-declarator '(' parameter-forward-declarations
2148///                    parameter-type-list[opt] ')'
2149///
2150void Parser::ParseParenDeclarator(Declarator &D) {
2151  SourceLocation StartLoc = ConsumeParen();
2152  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2153
2154  // Eat any attributes before we look at whether this is a grouping or function
2155  // declarator paren.  If this is a grouping paren, the attribute applies to
2156  // the type being built up, for example:
2157  //     int (__attribute__(()) *x)(long y)
2158  // If this ends up not being a grouping paren, the attribute applies to the
2159  // first argument, for example:
2160  //     int (__attribute__(()) int x)
2161  // In either case, we need to eat any attributes to be able to determine what
2162  // sort of paren this is.
2163  //
2164  AttributeList *AttrList = 0;
2165  bool RequiresArg = false;
2166  if (Tok.is(tok::kw___attribute)) {
2167    AttrList = ParseAttributes();
2168
2169    // We require that the argument list (if this is a non-grouping paren) be
2170    // present even if the attribute list was empty.
2171    RequiresArg = true;
2172  }
2173  // Eat any Microsoft extensions.
2174  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2175          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2176    ConsumeToken();
2177
2178  // If we haven't past the identifier yet (or where the identifier would be
2179  // stored, if this is an abstract declarator), then this is probably just
2180  // grouping parens. However, if this could be an abstract-declarator, then
2181  // this could also be the start of function arguments (consider 'void()').
2182  bool isGrouping;
2183
2184  if (!D.mayOmitIdentifier()) {
2185    // If this can't be an abstract-declarator, this *must* be a grouping
2186    // paren, because we haven't seen the identifier yet.
2187    isGrouping = true;
2188  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2189             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2190             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2191    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2192    // considered to be a type, not a K&R identifier-list.
2193    isGrouping = false;
2194  } else {
2195    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2196    isGrouping = true;
2197  }
2198
2199  // If this is a grouping paren, handle:
2200  // direct-declarator: '(' declarator ')'
2201  // direct-declarator: '(' attributes declarator ')'
2202  if (isGrouping) {
2203    bool hadGroupingParens = D.hasGroupingParens();
2204    D.setGroupingParens(true);
2205    if (AttrList)
2206      D.AddAttributes(AttrList, SourceLocation());
2207
2208    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2209    // Match the ')'.
2210    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2211
2212    D.setGroupingParens(hadGroupingParens);
2213    D.SetRangeEnd(Loc);
2214    return;
2215  }
2216
2217  // Okay, if this wasn't a grouping paren, it must be the start of a function
2218  // argument list.  Recognize that this declarator will never have an
2219  // identifier (and remember where it would have been), then call into
2220  // ParseFunctionDeclarator to handle of argument list.
2221  D.SetIdentifier(0, Tok.getLocation());
2222
2223  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2224}
2225
2226/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2227/// declarator D up to a paren, which indicates that we are parsing function
2228/// arguments.
2229///
2230/// If AttrList is non-null, then the caller parsed those arguments immediately
2231/// after the open paren - they should be considered to be the first argument of
2232/// a parameter.  If RequiresArg is true, then the first argument of the
2233/// function is required to be present and required to not be an identifier
2234/// list.
2235///
2236/// This method also handles this portion of the grammar:
2237///       parameter-type-list: [C99 6.7.5]
2238///         parameter-list
2239///         parameter-list ',' '...'
2240///
2241///       parameter-list: [C99 6.7.5]
2242///         parameter-declaration
2243///         parameter-list ',' parameter-declaration
2244///
2245///       parameter-declaration: [C99 6.7.5]
2246///         declaration-specifiers declarator
2247/// [C++]   declaration-specifiers declarator '=' assignment-expression
2248/// [GNU]   declaration-specifiers declarator attributes
2249///         declaration-specifiers abstract-declarator[opt]
2250/// [C++]   declaration-specifiers abstract-declarator[opt]
2251///           '=' assignment-expression
2252/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2253///
2254/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2255/// and "exception-specification[opt]".
2256///
2257void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2258                                     AttributeList *AttrList,
2259                                     bool RequiresArg) {
2260  // lparen is already consumed!
2261  assert(D.isPastIdentifier() && "Should not call before identifier!");
2262
2263  // This parameter list may be empty.
2264  if (Tok.is(tok::r_paren)) {
2265    if (RequiresArg) {
2266      Diag(Tok, diag::err_argument_required_after_attribute);
2267      delete AttrList;
2268    }
2269
2270    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2271
2272    // cv-qualifier-seq[opt].
2273    DeclSpec DS;
2274    bool hasExceptionSpec = false;
2275    bool hasAnyExceptionSpec = false;
2276    // FIXME: Does an empty vector ever allocate? Exception specifications are
2277    // extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
2278    std::vector<TypeTy*> Exceptions;
2279    if (getLang().CPlusPlus) {
2280      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2281      if (!DS.getSourceRange().getEnd().isInvalid())
2282        Loc = DS.getSourceRange().getEnd();
2283
2284      // Parse exception-specification[opt].
2285      if (Tok.is(tok::kw_throw)) {
2286        hasExceptionSpec = true;
2287        ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
2288      }
2289    }
2290
2291    // Remember that we parsed a function type, and remember the attributes.
2292    // int() -> no prototype, no '...'.
2293    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2294                                               /*variadic*/ false,
2295                                               SourceLocation(),
2296                                               /*arglist*/ 0, 0,
2297                                               DS.getTypeQualifiers(),
2298                                               hasExceptionSpec,
2299                                               hasAnyExceptionSpec,
2300                                               Exceptions.empty() ? 0 :
2301                                                 &Exceptions[0],
2302                                               Exceptions.size(),
2303                                               LParenLoc, D),
2304                  Loc);
2305    return;
2306  }
2307
2308  // Alternatively, this parameter list may be an identifier list form for a
2309  // K&R-style function:  void foo(a,b,c)
2310  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2311    if (!TryAnnotateTypeOrScopeToken()) {
2312      // K&R identifier lists can't have typedefs as identifiers, per
2313      // C99 6.7.5.3p11.
2314      if (RequiresArg) {
2315        Diag(Tok, diag::err_argument_required_after_attribute);
2316        delete AttrList;
2317      }
2318      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2319      // normal declarators, not for abstract-declarators.
2320      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2321    }
2322  }
2323
2324  // Finally, a normal, non-empty parameter type list.
2325
2326  // Build up an array of information about the parsed arguments.
2327  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2328
2329  // Enter function-declaration scope, limiting any declarators to the
2330  // function prototype scope, including parameter declarators.
2331  ParseScope PrototypeScope(this,
2332                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2333
2334  bool IsVariadic = false;
2335  SourceLocation EllipsisLoc;
2336  while (1) {
2337    if (Tok.is(tok::ellipsis)) {
2338      IsVariadic = true;
2339      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2340      break;
2341    }
2342
2343    SourceLocation DSStart = Tok.getLocation();
2344
2345    // Parse the declaration-specifiers.
2346    DeclSpec DS;
2347
2348    // If the caller parsed attributes for the first argument, add them now.
2349    if (AttrList) {
2350      DS.AddAttributes(AttrList);
2351      AttrList = 0;  // Only apply the attributes to the first parameter.
2352    }
2353    ParseDeclarationSpecifiers(DS);
2354
2355    // Parse the declarator.  This is "PrototypeContext", because we must
2356    // accept either 'declarator' or 'abstract-declarator' here.
2357    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2358    ParseDeclarator(ParmDecl);
2359
2360    // Parse GNU attributes, if present.
2361    if (Tok.is(tok::kw___attribute)) {
2362      SourceLocation Loc;
2363      AttributeList *AttrList = ParseAttributes(&Loc);
2364      ParmDecl.AddAttributes(AttrList, Loc);
2365    }
2366
2367    // Remember this parsed parameter in ParamInfo.
2368    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2369
2370    // DefArgToks is used when the parsing of default arguments needs
2371    // to be delayed.
2372    CachedTokens *DefArgToks = 0;
2373
2374    // If no parameter was specified, verify that *something* was specified,
2375    // otherwise we have a missing type and identifier.
2376    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2377        ParmDecl.getNumTypeObjects() == 0) {
2378      // Completely missing, emit error.
2379      Diag(DSStart, diag::err_missing_param);
2380    } else {
2381      // Otherwise, we have something.  Add it and let semantic analysis try
2382      // to grok it and add the result to the ParamInfo we are building.
2383
2384      // Inform the actions module about the parameter declarator, so it gets
2385      // added to the current scope.
2386      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2387
2388      // Parse the default argument, if any. We parse the default
2389      // arguments in all dialects; the semantic analysis in
2390      // ActOnParamDefaultArgument will reject the default argument in
2391      // C.
2392      if (Tok.is(tok::equal)) {
2393        SourceLocation EqualLoc = Tok.getLocation();
2394
2395        // Parse the default argument
2396        if (D.getContext() == Declarator::MemberContext) {
2397          // If we're inside a class definition, cache the tokens
2398          // corresponding to the default argument. We'll actually parse
2399          // them when we see the end of the class definition.
2400          // FIXME: Templates will require something similar.
2401          // FIXME: Can we use a smart pointer for Toks?
2402          DefArgToks = new CachedTokens;
2403
2404          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2405                                    tok::semi, false)) {
2406            delete DefArgToks;
2407            DefArgToks = 0;
2408            Actions.ActOnParamDefaultArgumentError(Param);
2409          } else
2410            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2411        } else {
2412          // Consume the '='.
2413          ConsumeToken();
2414
2415          OwningExprResult DefArgResult(ParseAssignmentExpression());
2416          if (DefArgResult.isInvalid()) {
2417            Actions.ActOnParamDefaultArgumentError(Param);
2418            SkipUntil(tok::comma, tok::r_paren, true, true);
2419          } else {
2420            // Inform the actions module about the default argument
2421            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2422                                              move(DefArgResult));
2423          }
2424        }
2425      }
2426
2427      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2428                                          ParmDecl.getIdentifierLoc(), Param,
2429                                          DefArgToks));
2430    }
2431
2432    // If the next token is a comma, consume it and keep reading arguments.
2433    if (Tok.isNot(tok::comma)) break;
2434
2435    // Consume the comma.
2436    ConsumeToken();
2437  }
2438
2439  // Leave prototype scope.
2440  PrototypeScope.Exit();
2441
2442  // If we have the closing ')', eat it.
2443  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2444
2445  DeclSpec DS;
2446  bool hasExceptionSpec = false;
2447  bool hasAnyExceptionSpec = false;
2448  // FIXME: Does an empty vector ever allocate? Exception specifications are
2449  // extremely rare, so we want something like a SmallVector<TypeTy*, 0>. :-)
2450  std::vector<TypeTy*> Exceptions;
2451  if (getLang().CPlusPlus) {
2452    // Parse cv-qualifier-seq[opt].
2453    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2454      if (!DS.getSourceRange().getEnd().isInvalid())
2455        Loc = DS.getSourceRange().getEnd();
2456
2457    // Parse exception-specification[opt].
2458    if (Tok.is(tok::kw_throw)) {
2459      hasExceptionSpec = true;
2460      ParseExceptionSpecification(Loc, Exceptions, hasAnyExceptionSpec);
2461    }
2462  }
2463
2464  // Remember that we parsed a function type, and remember the attributes.
2465  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2466                                             EllipsisLoc,
2467                                             ParamInfo.data(), ParamInfo.size(),
2468                                             DS.getTypeQualifiers(),
2469                                             hasExceptionSpec,
2470                                             hasAnyExceptionSpec,
2471                                             Exceptions.empty() ? 0 :
2472                                               &Exceptions[0],
2473                                             Exceptions.size(), LParenLoc, D),
2474                Loc);
2475}
2476
2477/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2478/// we found a K&R-style identifier list instead of a type argument list.  The
2479/// current token is known to be the first identifier in the list.
2480///
2481///       identifier-list: [C99 6.7.5]
2482///         identifier
2483///         identifier-list ',' identifier
2484///
2485void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2486                                                   Declarator &D) {
2487  // Build up an array of information about the parsed arguments.
2488  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2489  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2490
2491  // If there was no identifier specified for the declarator, either we are in
2492  // an abstract-declarator, or we are in a parameter declarator which was found
2493  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2494  // diagnose this.
2495  if (!D.getIdentifier())
2496    Diag(Tok, diag::ext_ident_list_in_param);
2497
2498  // Tok is known to be the first identifier in the list.  Remember this
2499  // identifier in ParamInfo.
2500  ParamsSoFar.insert(Tok.getIdentifierInfo());
2501  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2502                                                 Tok.getLocation(),
2503                                                 DeclPtrTy()));
2504
2505  ConsumeToken();  // eat the first identifier.
2506
2507  while (Tok.is(tok::comma)) {
2508    // Eat the comma.
2509    ConsumeToken();
2510
2511    // If this isn't an identifier, report the error and skip until ')'.
2512    if (Tok.isNot(tok::identifier)) {
2513      Diag(Tok, diag::err_expected_ident);
2514      SkipUntil(tok::r_paren);
2515      return;
2516    }
2517
2518    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2519
2520    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2521    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2522      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2523
2524    // Verify that the argument identifier has not already been mentioned.
2525    if (!ParamsSoFar.insert(ParmII)) {
2526      Diag(Tok, diag::err_param_redefinition) << ParmII;
2527    } else {
2528      // Remember this identifier in ParamInfo.
2529      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2530                                                     Tok.getLocation(),
2531                                                     DeclPtrTy()));
2532    }
2533
2534    // Eat the identifier.
2535    ConsumeToken();
2536  }
2537
2538  // If we have the closing ')', eat it and we're done.
2539  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2540
2541  // Remember that we parsed a function type, and remember the attributes.  This
2542  // function type is always a K&R style function type, which is not varargs and
2543  // has no prototype.
2544  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2545                                             SourceLocation(),
2546                                             &ParamInfo[0], ParamInfo.size(),
2547                                             /*TypeQuals*/0,
2548                                             /*exception*/false, false, 0, 0,
2549                                             LParenLoc, D),
2550                RLoc);
2551}
2552
2553/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2554/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2555/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2556/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2557/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2558void Parser::ParseBracketDeclarator(Declarator &D) {
2559  SourceLocation StartLoc = ConsumeBracket();
2560
2561  // C array syntax has many features, but by-far the most common is [] and [4].
2562  // This code does a fast path to handle some of the most obvious cases.
2563  if (Tok.getKind() == tok::r_square) {
2564    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2565    // Remember that we parsed the empty array type.
2566    OwningExprResult NumElements(Actions);
2567    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2568                  EndLoc);
2569    return;
2570  } else if (Tok.getKind() == tok::numeric_constant &&
2571             GetLookAheadToken(1).is(tok::r_square)) {
2572    // [4] is very common.  Parse the numeric constant expression.
2573    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2574    ConsumeToken();
2575
2576    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2577
2578    // If there was an error parsing the assignment-expression, recover.
2579    if (ExprRes.isInvalid())
2580      ExprRes.release();  // Deallocate expr, just use [].
2581
2582    // Remember that we parsed a array type, and remember its features.
2583    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2584                                            ExprRes.release(), StartLoc),
2585                  EndLoc);
2586    return;
2587  }
2588
2589  // If valid, this location is the position where we read the 'static' keyword.
2590  SourceLocation StaticLoc;
2591  if (Tok.is(tok::kw_static))
2592    StaticLoc = ConsumeToken();
2593
2594  // If there is a type-qualifier-list, read it now.
2595  // Type qualifiers in an array subscript are a C99 feature.
2596  DeclSpec DS;
2597  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2598
2599  // If we haven't already read 'static', check to see if there is one after the
2600  // type-qualifier-list.
2601  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2602    StaticLoc = ConsumeToken();
2603
2604  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2605  bool isStar = false;
2606  OwningExprResult NumElements(Actions);
2607
2608  // Handle the case where we have '[*]' as the array size.  However, a leading
2609  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2610  // the the token after the star is a ']'.  Since stars in arrays are
2611  // infrequent, use of lookahead is not costly here.
2612  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2613    ConsumeToken();  // Eat the '*'.
2614
2615    if (StaticLoc.isValid()) {
2616      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2617      StaticLoc = SourceLocation();  // Drop the static.
2618    }
2619    isStar = true;
2620  } else if (Tok.isNot(tok::r_square)) {
2621    // Note, in C89, this production uses the constant-expr production instead
2622    // of assignment-expr.  The only difference is that assignment-expr allows
2623    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2624    // are not i-c-e's, so we don't need to distinguish between the two here.
2625
2626    // Parse the assignment-expression now.
2627    NumElements = ParseAssignmentExpression();
2628  }
2629
2630  // If there was an error parsing the assignment-expression, recover.
2631  if (NumElements.isInvalid()) {
2632    D.setInvalidType(true);
2633    // If the expression was invalid, skip it.
2634    SkipUntil(tok::r_square);
2635    return;
2636  }
2637
2638  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2639
2640  // Remember that we parsed a array type, and remember its features.
2641  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2642                                          StaticLoc.isValid(), isStar,
2643                                          NumElements.release(), StartLoc),
2644                EndLoc);
2645}
2646
2647/// [GNU]   typeof-specifier:
2648///           typeof ( expressions )
2649///           typeof ( type-name )
2650/// [GNU/C++] typeof unary-expression
2651///
2652void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2653  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2654  Token OpTok = Tok;
2655  SourceLocation StartLoc = ConsumeToken();
2656
2657  bool isCastExpr;
2658  TypeTy *CastTy;
2659  SourceRange CastRange;
2660  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
2661                                                               isCastExpr,
2662                                                               CastTy,
2663                                                               CastRange);
2664
2665  if (CastRange.getEnd().isInvalid())
2666    // FIXME: Not accurate, the range gets one token more than it should.
2667    DS.SetRangeEnd(Tok.getLocation());
2668  else
2669    DS.SetRangeEnd(CastRange.getEnd());
2670
2671  if (isCastExpr) {
2672    if (!CastTy) {
2673      DS.SetTypeSpecError();
2674      return;
2675    }
2676
2677    const char *PrevSpec = 0;
2678    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2679    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2680                           CastTy))
2681      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2682    return;
2683  }
2684
2685  // If we get here, the operand to the typeof was an expresion.
2686  if (Operand.isInvalid()) {
2687    DS.SetTypeSpecError();
2688    return;
2689  }
2690
2691  const char *PrevSpec = 0;
2692  // Check for duplicate type specifiers (e.g. "int typeof(int)").
2693  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2694                         Operand.release()))
2695    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2696}
2697