ParseDecl.cpp revision c83c27af6820585f4b6964f1e1f13f237a0d14fc
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.  This returns the
219/// location of the semicolon in DeclEnd.
220///
221///       declaration: [C99 6.7]
222///         block-declaration ->
223///           simple-declaration
224///           others                   [FIXME]
225/// [C++]   template-declaration
226/// [C++]   namespace-definition
227/// [C++]   using-directive
228/// [C++]   using-declaration [TODO]
229/// [C++0x] static_assert-declaration
230///         others... [FIXME]
231///
232Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
233                                                SourceLocation &DeclEnd) {
234  DeclPtrTy SingleDecl;
235  switch (Tok.getKind()) {
236  case tok::kw_export:
237  case tok::kw_template:
238    SingleDecl = ParseTemplateDeclarationOrSpecialization(Context, DeclEnd);
239    break;
240  case tok::kw_namespace:
241    SingleDecl = ParseNamespace(Context, DeclEnd);
242    break;
243  case tok::kw_using:
244    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
245    break;
246  case tok::kw_static_assert:
247    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
248    break;
249  default:
250    return ParseSimpleDeclaration(Context, DeclEnd);
251  }
252
253  // This routine returns a DeclGroup, if the thing we parsed only contains a
254  // single decl, convert it now.
255  return Actions.ConvertDeclToDeclGroup(SingleDecl);
256}
257
258///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
259///         declaration-specifiers init-declarator-list[opt] ';'
260///[C90/C++]init-declarator-list ';'                             [TODO]
261/// [OMP]   threadprivate-directive                              [TODO]
262///
263/// If RequireSemi is false, this does not check for a ';' at the end of the
264/// declaration.
265Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
266                                                      SourceLocation &DeclEnd,
267                                                      bool RequireSemi) {
268  // Parse the common declaration-specifiers piece.
269  DeclSpec DS;
270  ParseDeclarationSpecifiers(DS);
271
272  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
273  // declaration-specifiers init-declarator-list[opt] ';'
274  if (Tok.is(tok::semi)) {
275    ConsumeToken();
276    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
277    return Actions.ConvertDeclToDeclGroup(TheDecl);
278  }
279
280  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
281  ParseDeclarator(DeclaratorInfo);
282
283  DeclGroupPtrTy DG =
284    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
285
286  DeclEnd = Tok.getLocation();
287
288  // If the client wants to check what comes after the declaration, just return
289  // immediately without checking anything!
290  if (!RequireSemi) return DG;
291
292  if (Tok.is(tok::semi)) {
293    ConsumeToken();
294    return DG;
295  }
296
297  Diag(Tok, diag::err_expected_semi_declation);
298  // Skip to end of block or statement
299  SkipUntil(tok::r_brace, true, true);
300  if (Tok.is(tok::semi))
301    ConsumeToken();
302  return DG;
303}
304
305
306/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
307/// parsing 'declaration-specifiers declarator'.  This method is split out this
308/// way to handle the ambiguity between top-level function-definitions and
309/// declarations.
310///
311///       init-declarator-list: [C99 6.7]
312///         init-declarator
313///         init-declarator-list ',' init-declarator
314///       init-declarator: [C99 6.7]
315///         declarator
316///         declarator '=' initializer
317/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
318/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
319/// [C++]   declarator initializer[opt]
320///
321/// [C++] initializer:
322/// [C++]   '=' initializer-clause
323/// [C++]   '(' expression-list ')'
324/// [C++0x] '=' 'default'                                                [TODO]
325/// [C++0x] '=' 'delete'
326///
327/// According to the standard grammar, =default and =delete are function
328/// definitions, but that definitely doesn't fit with the parser here.
329///
330Parser::DeclGroupPtrTy Parser::
331ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
332  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
333  // that we parse together here.
334  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
335
336  // At this point, we know that it is not a function definition.  Parse the
337  // rest of the init-declarator-list.
338  while (1) {
339    // If a simple-asm-expr is present, parse it.
340    if (Tok.is(tok::kw_asm)) {
341      SourceLocation Loc;
342      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
343      if (AsmLabel.isInvalid()) {
344        SkipUntil(tok::semi, true, true);
345        return DeclGroupPtrTy();
346      }
347
348      D.setAsmLabel(AsmLabel.release());
349      D.SetRangeEnd(Loc);
350    }
351
352    // If attributes are present, parse them.
353    if (Tok.is(tok::kw___attribute)) {
354      SourceLocation Loc;
355      AttributeList *AttrList = ParseAttributes(&Loc);
356      D.AddAttributes(AttrList, Loc);
357    }
358
359    // Inform the current actions module that we just parsed this declarator.
360    DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
361    DeclsInGroup.push_back(ThisDecl);
362
363    // Parse declarator '=' initializer.
364    if (Tok.is(tok::equal)) {
365      ConsumeToken();
366      if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
367        SourceLocation DelLoc = ConsumeToken();
368        Actions.SetDeclDeleted(ThisDecl, DelLoc);
369      } else {
370        OwningExprResult Init(ParseInitializer());
371        if (Init.isInvalid()) {
372          SkipUntil(tok::semi, true, true);
373          return DeclGroupPtrTy();
374        }
375        Actions.AddInitializerToDecl(ThisDecl, move(Init));
376      }
377    } else if (Tok.is(tok::l_paren)) {
378      // Parse C++ direct initializer: '(' expression-list ')'
379      SourceLocation LParenLoc = ConsumeParen();
380      ExprVector Exprs(Actions);
381      CommaLocsTy CommaLocs;
382
383      if (ParseExpressionList(Exprs, CommaLocs)) {
384        SkipUntil(tok::r_paren);
385      } else {
386        // Match the ')'.
387        SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
388
389        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
390               "Unexpected number of commas!");
391        Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
392                                              move_arg(Exprs),
393                                              &CommaLocs[0], RParenLoc);
394      }
395    } else {
396      Actions.ActOnUninitializedDecl(ThisDecl);
397    }
398
399    // If we don't have a comma, it is either the end of the list (a ';') or an
400    // error, bail out.
401    if (Tok.isNot(tok::comma))
402      break;
403
404    // Consume the comma.
405    ConsumeToken();
406
407    // Parse the next declarator.
408    D.clear();
409
410    // Accept attributes in an init-declarator.  In the first declarator in a
411    // declaration, these would be part of the declspec.  In subsequent
412    // declarators, they become part of the declarator itself, so that they
413    // don't apply to declarators after *this* one.  Examples:
414    //    short __attribute__((common)) var;    -> declspec
415    //    short var __attribute__((common));    -> declarator
416    //    short x, __attribute__((common)) var;    -> declarator
417    if (Tok.is(tok::kw___attribute)) {
418      SourceLocation Loc;
419      AttributeList *AttrList = ParseAttributes(&Loc);
420      D.AddAttributes(AttrList, Loc);
421    }
422
423    ParseDeclarator(D);
424  }
425
426  return Actions.FinalizeDeclaratorGroup(CurScope, &DeclsInGroup[0],
427                                         DeclsInGroup.size());
428}
429
430/// ParseSpecifierQualifierList
431///        specifier-qualifier-list:
432///          type-specifier specifier-qualifier-list[opt]
433///          type-qualifier specifier-qualifier-list[opt]
434/// [GNU]    attributes     specifier-qualifier-list[opt]
435///
436void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
437  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
438  /// parse declaration-specifiers and complain about extra stuff.
439  ParseDeclarationSpecifiers(DS);
440
441  // Validate declspec for type-name.
442  unsigned Specs = DS.getParsedSpecifiers();
443  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
444    Diag(Tok, diag::err_typename_requires_specqual);
445
446  // Issue diagnostic and remove storage class if present.
447  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
448    if (DS.getStorageClassSpecLoc().isValid())
449      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
450    else
451      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
452    DS.ClearStorageClassSpecs();
453  }
454
455  // Issue diagnostic and remove function specfier if present.
456  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
457    if (DS.isInlineSpecified())
458      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
459    if (DS.isVirtualSpecified())
460      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
461    if (DS.isExplicitSpecified())
462      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
463    DS.ClearFunctionSpecs();
464  }
465}
466
467/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
468/// specified token is valid after the identifier in a declarator which
469/// immediately follows the declspec.  For example, these things are valid:
470///
471///      int x   [             4];         // direct-declarator
472///      int x   (             int y);     // direct-declarator
473///  int(int x   )                         // direct-declarator
474///      int x   ;                         // simple-declaration
475///      int x   =             17;         // init-declarator-list
476///      int x   ,             y;          // init-declarator-list
477///      int x   __asm__       ("foo");    // init-declarator-list
478///      int x   {             5};         // C++'0x unified initializers
479///
480/// This is not, because 'x' does not immediately follow the declspec (though
481/// ')' happens to be valid anyway).
482///    int (x)
483///
484static bool isValidAfterIdentifierInDeclarator(const Token &T) {
485  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
486         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
487         T.is(tok::kw_asm) || T.is(tok::l_brace);
488}
489
490/// ParseDeclarationSpecifiers
491///       declaration-specifiers: [C99 6.7]
492///         storage-class-specifier declaration-specifiers[opt]
493///         type-specifier declaration-specifiers[opt]
494/// [C99]   function-specifier declaration-specifiers[opt]
495/// [GNU]   attributes declaration-specifiers[opt]
496///
497///       storage-class-specifier: [C99 6.7.1]
498///         'typedef'
499///         'extern'
500///         'static'
501///         'auto'
502///         'register'
503/// [C++]   'mutable'
504/// [GNU]   '__thread'
505///       function-specifier: [C99 6.7.4]
506/// [C99]   'inline'
507/// [C++]   'virtual'
508/// [C++]   'explicit'
509///
510void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
511                                        TemplateParameterLists *TemplateParams,
512                                        AccessSpecifier AS) {
513  DS.SetRangeStart(Tok.getLocation());
514  while (1) {
515    int isInvalid = false;
516    const char *PrevSpec = 0;
517    SourceLocation Loc = Tok.getLocation();
518
519    switch (Tok.getKind()) {
520    default:
521    DoneWithDeclSpec:
522      // If this is not a declaration specifier token, we're done reading decl
523      // specifiers.  First verify that DeclSpec's are consistent.
524      DS.Finish(Diags, PP);
525      return;
526
527    case tok::coloncolon: // ::foo::bar
528      // Annotate C++ scope specifiers.  If we get one, loop.
529      if (TryAnnotateCXXScopeToken())
530        continue;
531      goto DoneWithDeclSpec;
532
533    case tok::annot_cxxscope: {
534      if (DS.hasTypeSpecifier())
535        goto DoneWithDeclSpec;
536
537      // We are looking for a qualified typename.
538      Token Next = NextToken();
539      if (Next.is(tok::annot_template_id) &&
540          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
541            ->Kind == TNK_Type_template) {
542        // We have a qualified template-id, e.g., N::A<int>
543        CXXScopeSpec SS;
544        ParseOptionalCXXScopeSpecifier(SS);
545        assert(Tok.is(tok::annot_template_id) &&
546               "ParseOptionalCXXScopeSpecifier not working");
547        AnnotateTemplateIdTokenAsType(&SS);
548        continue;
549      }
550
551      if (Next.isNot(tok::identifier))
552        goto DoneWithDeclSpec;
553
554      CXXScopeSpec SS;
555      SS.setScopeRep(Tok.getAnnotationValue());
556      SS.setRange(Tok.getAnnotationRange());
557
558      // If the next token is the name of the class type that the C++ scope
559      // denotes, followed by a '(', then this is a constructor declaration.
560      // We're done with the decl-specifiers.
561      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
562                                     CurScope, &SS) &&
563          GetLookAheadToken(2).is(tok::l_paren))
564        goto DoneWithDeclSpec;
565
566      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
567                                            Next.getLocation(), CurScope, &SS);
568
569      if (TypeRep == 0)
570        goto DoneWithDeclSpec;
571
572      ConsumeToken(); // The C++ scope.
573
574      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
575                                     TypeRep);
576      if (isInvalid)
577        break;
578
579      DS.SetRangeEnd(Tok.getLocation());
580      ConsumeToken(); // The typename.
581
582      continue;
583    }
584
585    case tok::annot_typename: {
586      if (Tok.getAnnotationValue())
587        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
588                                       Tok.getAnnotationValue());
589      else
590        DS.SetTypeSpecError();
591      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
592      ConsumeToken(); // The typename
593
594      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
595      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
596      // Objective-C interface.  If we don't have Objective-C or a '<', this is
597      // just a normal reference to a typedef name.
598      if (!Tok.is(tok::less) || !getLang().ObjC1)
599        continue;
600
601      SourceLocation EndProtoLoc;
602      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
603      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
604      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
605
606      DS.SetRangeEnd(EndProtoLoc);
607      continue;
608    }
609
610      // typedef-name
611    case tok::identifier: {
612      // In C++, check to see if this is a scope specifier like foo::bar::, if
613      // so handle it as such.  This is important for ctor parsing.
614      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
615        continue;
616
617      // This identifier can only be a typedef name if we haven't already seen
618      // a type-specifier.  Without this check we misparse:
619      //  typedef int X; struct Y { short X; };  as 'short int'.
620      if (DS.hasTypeSpecifier())
621        goto DoneWithDeclSpec;
622
623      // It has to be available as a typedef too!
624      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
625                                            Tok.getLocation(), CurScope);
626
627      // If this is not a typedef name, don't parse it as part of the declspec,
628      // it must be an implicit int or an error.
629      if (TypeRep == 0) {
630        // If we see an identifier that is not a type name, we normally would
631        // parse it as the identifer being declared.  However, when a typename
632        // is typo'd or the definition is not included, this will incorrectly
633        // parse the typename as the identifier name and fall over misparsing
634        // later parts of the diagnostic.
635        //
636        // As such, we try to do some look-ahead in cases where this would
637        // otherwise be an "implicit-int" case to see if this is invalid.  For
638        // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
639        // an identifier with implicit int, we'd get a parse error because the
640        // next token is obviously invalid for a type.  Parse these as a case
641        // with an invalid type specifier.
642        assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
643
644        // Since we know that this either implicit int (which is rare) or an
645        // error, we'd do lookahead to try to do better recovery.
646        if (isValidAfterIdentifierInDeclarator(NextToken())) {
647          // If this token is valid for implicit int, e.g. "static x = 4", then
648          // we just avoid eating the identifier, so it will be parsed as the
649          // identifier in the declarator.
650          goto DoneWithDeclSpec;
651        }
652
653        // Otherwise, if we don't consume this token, we are going to emit an
654        // error anyway.  Try to recover from various common problems.  Check
655        // to see if this was a reference to a tag name without a tag specified.
656        // This is a common problem in C (saying 'foo' insteat of 'struct foo').
657        const char *TagName = 0;
658        tok::TokenKind TagKind = tok::unknown;
659
660        switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
661        default: break;
662        case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
663        case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
664        case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
665        case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
666        }
667        if (TagName) {
668          Diag(Loc, diag::err_use_of_tag_name_without_tag)
669            << Tok.getIdentifierInfo() << TagName
670            << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
671
672          // Parse this as a tag as if the missing tag were present.
673          if (TagKind == tok::kw_enum)
674            ParseEnumSpecifier(Loc, DS, AS);
675          else
676            ParseClassSpecifier(TagKind, Loc, DS, TemplateParams, AS);
677          continue;
678        }
679
680        // Since this is almost certainly an invalid type name, emit a
681        // diagnostic that says it, eat the token, and mark the declspec as
682        // invalid.
683        Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo();
684        DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec);
685        DS.SetRangeEnd(Tok.getLocation());
686        ConsumeToken();
687
688        // TODO: Could inject an invalid typedef decl in an enclosing scope to
689        // avoid rippling error messages on subsequent uses of the same type,
690        // could be useful if #include was forgotten.
691
692        goto DoneWithDeclSpec;
693      }
694
695      // C++: If the identifier is actually the name of the class type
696      // being defined and the next token is a '(', then this is a
697      // constructor declaration. We're done with the decl-specifiers
698      // and will treat this token as an identifier.
699      if (getLang().CPlusPlus && CurScope->isClassScope() &&
700          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
701          NextToken().getKind() == tok::l_paren)
702        goto DoneWithDeclSpec;
703
704      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
705                                     TypeRep);
706      if (isInvalid)
707        break;
708
709      DS.SetRangeEnd(Tok.getLocation());
710      ConsumeToken(); // The identifier
711
712      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
713      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
714      // Objective-C interface.  If we don't have Objective-C or a '<', this is
715      // just a normal reference to a typedef name.
716      if (!Tok.is(tok::less) || !getLang().ObjC1)
717        continue;
718
719      SourceLocation EndProtoLoc;
720      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
721      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
722      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
723
724      DS.SetRangeEnd(EndProtoLoc);
725
726      // Need to support trailing type qualifiers (e.g. "id<p> const").
727      // If a type specifier follows, it will be diagnosed elsewhere.
728      continue;
729    }
730
731      // type-name
732    case tok::annot_template_id: {
733      TemplateIdAnnotation *TemplateId
734        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
735      if (TemplateId->Kind != TNK_Type_template) {
736        // This template-id does not refer to a type name, so we're
737        // done with the type-specifiers.
738        goto DoneWithDeclSpec;
739      }
740
741      // Turn the template-id annotation token into a type annotation
742      // token, then try again to parse it as a type-specifier.
743      AnnotateTemplateIdTokenAsType();
744      continue;
745    }
746
747    // GNU attributes support.
748    case tok::kw___attribute:
749      DS.AddAttributes(ParseAttributes());
750      continue;
751
752    // Microsoft declspec support.
753    case tok::kw___declspec:
754      if (!PP.getLangOptions().Microsoft)
755        goto DoneWithDeclSpec;
756      FuzzyParseMicrosoftDeclSpec();
757      continue;
758
759    // Microsoft single token adornments.
760    case tok::kw___forceinline:
761    case tok::kw___w64:
762    case tok::kw___cdecl:
763    case tok::kw___stdcall:
764    case tok::kw___fastcall:
765      if (!PP.getLangOptions().Microsoft)
766        goto DoneWithDeclSpec;
767      // Just ignore it.
768      break;
769
770    // storage-class-specifier
771    case tok::kw_typedef:
772      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
773      break;
774    case tok::kw_extern:
775      if (DS.isThreadSpecified())
776        Diag(Tok, diag::ext_thread_before) << "extern";
777      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
778      break;
779    case tok::kw___private_extern__:
780      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
781                                         PrevSpec);
782      break;
783    case tok::kw_static:
784      if (DS.isThreadSpecified())
785        Diag(Tok, diag::ext_thread_before) << "static";
786      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
787      break;
788    case tok::kw_auto:
789      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
790      break;
791    case tok::kw_register:
792      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
793      break;
794    case tok::kw_mutable:
795      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
796      break;
797    case tok::kw___thread:
798      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
799      break;
800
801    // function-specifier
802    case tok::kw_inline:
803      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
804      break;
805    case tok::kw_virtual:
806      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
807      break;
808    case tok::kw_explicit:
809      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
810      break;
811
812    // type-specifier
813    case tok::kw_short:
814      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
815      break;
816    case tok::kw_long:
817      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
818        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
819      else
820        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
821      break;
822    case tok::kw_signed:
823      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
824      break;
825    case tok::kw_unsigned:
826      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
827      break;
828    case tok::kw__Complex:
829      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
830      break;
831    case tok::kw__Imaginary:
832      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
833      break;
834    case tok::kw_void:
835      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
836      break;
837    case tok::kw_char:
838      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
839      break;
840    case tok::kw_int:
841      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
842      break;
843    case tok::kw_float:
844      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
845      break;
846    case tok::kw_double:
847      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
848      break;
849    case tok::kw_wchar_t:
850      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
851      break;
852    case tok::kw_bool:
853    case tok::kw__Bool:
854      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
855      break;
856    case tok::kw__Decimal32:
857      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
858      break;
859    case tok::kw__Decimal64:
860      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
861      break;
862    case tok::kw__Decimal128:
863      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
864      break;
865
866    // class-specifier:
867    case tok::kw_class:
868    case tok::kw_struct:
869    case tok::kw_union: {
870      tok::TokenKind Kind = Tok.getKind();
871      ConsumeToken();
872      ParseClassSpecifier(Kind, Loc, DS, TemplateParams, AS);
873      continue;
874    }
875
876    // enum-specifier:
877    case tok::kw_enum:
878      ConsumeToken();
879      ParseEnumSpecifier(Loc, DS, AS);
880      continue;
881
882    // cv-qualifier:
883    case tok::kw_const:
884      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
885      break;
886    case tok::kw_volatile:
887      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
888                                 getLang())*2;
889      break;
890    case tok::kw_restrict:
891      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
892                                 getLang())*2;
893      break;
894
895    // C++ typename-specifier:
896    case tok::kw_typename:
897      if (TryAnnotateTypeOrScopeToken())
898        continue;
899      break;
900
901    // GNU typeof support.
902    case tok::kw_typeof:
903      ParseTypeofSpecifier(DS);
904      continue;
905
906    case tok::less:
907      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
908      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
909      // but we support it.
910      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
911        goto DoneWithDeclSpec;
912
913      {
914        SourceLocation EndProtoLoc;
915        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
916        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
917        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
918        DS.SetRangeEnd(EndProtoLoc);
919
920        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
921          << CodeModificationHint::CreateInsertion(Loc, "id")
922          << SourceRange(Loc, EndProtoLoc);
923        // Need to support trailing type qualifiers (e.g. "id<p> const").
924        // If a type specifier follows, it will be diagnosed elsewhere.
925        continue;
926      }
927    }
928    // If the specifier combination wasn't legal, issue a diagnostic.
929    if (isInvalid) {
930      assert(PrevSpec && "Method did not return previous specifier!");
931      // Pick between error or extwarn.
932      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
933                                       : diag::ext_duplicate_declspec;
934      Diag(Tok, DiagID) << PrevSpec;
935    }
936    DS.SetRangeEnd(Tok.getLocation());
937    ConsumeToken();
938  }
939}
940
941/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
942/// primarily follow the C++ grammar with additions for C99 and GNU,
943/// which together subsume the C grammar. Note that the C++
944/// type-specifier also includes the C type-qualifier (for const,
945/// volatile, and C99 restrict). Returns true if a type-specifier was
946/// found (and parsed), false otherwise.
947///
948///       type-specifier: [C++ 7.1.5]
949///         simple-type-specifier
950///         class-specifier
951///         enum-specifier
952///         elaborated-type-specifier  [TODO]
953///         cv-qualifier
954///
955///       cv-qualifier: [C++ 7.1.5.1]
956///         'const'
957///         'volatile'
958/// [C99]   'restrict'
959///
960///       simple-type-specifier: [ C++ 7.1.5.2]
961///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
962///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
963///         'char'
964///         'wchar_t'
965///         'bool'
966///         'short'
967///         'int'
968///         'long'
969///         'signed'
970///         'unsigned'
971///         'float'
972///         'double'
973///         'void'
974/// [C99]   '_Bool'
975/// [C99]   '_Complex'
976/// [C99]   '_Imaginary'  // Removed in TC2?
977/// [GNU]   '_Decimal32'
978/// [GNU]   '_Decimal64'
979/// [GNU]   '_Decimal128'
980/// [GNU]   typeof-specifier
981/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
982/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
983bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
984                                        const char *&PrevSpec,
985                                        TemplateParameterLists *TemplateParams){
986  SourceLocation Loc = Tok.getLocation();
987
988  switch (Tok.getKind()) {
989  case tok::identifier:   // foo::bar
990  case tok::kw_typename:  // typename foo::bar
991    // Annotate typenames and C++ scope specifiers.  If we get one, just
992    // recurse to handle whatever we get.
993    if (TryAnnotateTypeOrScopeToken())
994      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
995    // Otherwise, not a type specifier.
996    return false;
997  case tok::coloncolon:   // ::foo::bar
998    if (NextToken().is(tok::kw_new) ||    // ::new
999        NextToken().is(tok::kw_delete))   // ::delete
1000      return false;
1001
1002    // Annotate typenames and C++ scope specifiers.  If we get one, just
1003    // recurse to handle whatever we get.
1004    if (TryAnnotateTypeOrScopeToken())
1005      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
1006    // Otherwise, not a type specifier.
1007    return false;
1008
1009  // simple-type-specifier:
1010  case tok::annot_typename: {
1011    if (Tok.getAnnotationValue())
1012      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1013                                     Tok.getAnnotationValue());
1014    else
1015      DS.SetTypeSpecError();
1016    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1017    ConsumeToken(); // The typename
1018
1019    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1020    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1021    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1022    // just a normal reference to a typedef name.
1023    if (!Tok.is(tok::less) || !getLang().ObjC1)
1024      return true;
1025
1026    SourceLocation EndProtoLoc;
1027    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1028    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1029    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
1030
1031    DS.SetRangeEnd(EndProtoLoc);
1032    return true;
1033  }
1034
1035  case tok::kw_short:
1036    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
1037    break;
1038  case tok::kw_long:
1039    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1040      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
1041    else
1042      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
1043    break;
1044  case tok::kw_signed:
1045    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
1046    break;
1047  case tok::kw_unsigned:
1048    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
1049    break;
1050  case tok::kw__Complex:
1051    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
1052    break;
1053  case tok::kw__Imaginary:
1054    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
1055    break;
1056  case tok::kw_void:
1057    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
1058    break;
1059  case tok::kw_char:
1060    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
1061    break;
1062  case tok::kw_int:
1063    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
1064    break;
1065  case tok::kw_float:
1066    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
1067    break;
1068  case tok::kw_double:
1069    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
1070    break;
1071  case tok::kw_wchar_t:
1072    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
1073    break;
1074  case tok::kw_bool:
1075  case tok::kw__Bool:
1076    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
1077    break;
1078  case tok::kw__Decimal32:
1079    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
1080    break;
1081  case tok::kw__Decimal64:
1082    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
1083    break;
1084  case tok::kw__Decimal128:
1085    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
1086    break;
1087
1088  // class-specifier:
1089  case tok::kw_class:
1090  case tok::kw_struct:
1091  case tok::kw_union: {
1092    tok::TokenKind Kind = Tok.getKind();
1093    ConsumeToken();
1094    ParseClassSpecifier(Kind, Loc, DS, TemplateParams);
1095    return true;
1096  }
1097
1098  // enum-specifier:
1099  case tok::kw_enum:
1100    ConsumeToken();
1101    ParseEnumSpecifier(Loc, DS);
1102    return true;
1103
1104  // cv-qualifier:
1105  case tok::kw_const:
1106    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1107                               getLang())*2;
1108    break;
1109  case tok::kw_volatile:
1110    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1111                               getLang())*2;
1112    break;
1113  case tok::kw_restrict:
1114    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1115                               getLang())*2;
1116    break;
1117
1118  // GNU typeof support.
1119  case tok::kw_typeof:
1120    ParseTypeofSpecifier(DS);
1121    return true;
1122
1123  case tok::kw___cdecl:
1124  case tok::kw___stdcall:
1125  case tok::kw___fastcall:
1126    if (!PP.getLangOptions().Microsoft) return false;
1127    ConsumeToken();
1128    return true;
1129
1130  default:
1131    // Not a type-specifier; do nothing.
1132    return false;
1133  }
1134
1135  // If the specifier combination wasn't legal, issue a diagnostic.
1136  if (isInvalid) {
1137    assert(PrevSpec && "Method did not return previous specifier!");
1138    // Pick between error or extwarn.
1139    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1140                                     : diag::ext_duplicate_declspec;
1141    Diag(Tok, DiagID) << PrevSpec;
1142  }
1143  DS.SetRangeEnd(Tok.getLocation());
1144  ConsumeToken(); // whatever we parsed above.
1145  return true;
1146}
1147
1148/// ParseStructDeclaration - Parse a struct declaration without the terminating
1149/// semicolon.
1150///
1151///       struct-declaration:
1152///         specifier-qualifier-list struct-declarator-list
1153/// [GNU]   __extension__ struct-declaration
1154/// [GNU]   specifier-qualifier-list
1155///       struct-declarator-list:
1156///         struct-declarator
1157///         struct-declarator-list ',' struct-declarator
1158/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1159///       struct-declarator:
1160///         declarator
1161/// [GNU]   declarator attributes[opt]
1162///         declarator[opt] ':' constant-expression
1163/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1164///
1165void Parser::
1166ParseStructDeclaration(DeclSpec &DS,
1167                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1168  if (Tok.is(tok::kw___extension__)) {
1169    // __extension__ silences extension warnings in the subexpression.
1170    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1171    ConsumeToken();
1172    return ParseStructDeclaration(DS, Fields);
1173  }
1174
1175  // Parse the common specifier-qualifiers-list piece.
1176  SourceLocation DSStart = Tok.getLocation();
1177  ParseSpecifierQualifierList(DS);
1178
1179  // If there are no declarators, this is a free-standing declaration
1180  // specifier. Let the actions module cope with it.
1181  if (Tok.is(tok::semi)) {
1182    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1183    return;
1184  }
1185
1186  // Read struct-declarators until we find the semicolon.
1187  Fields.push_back(FieldDeclarator(DS));
1188  while (1) {
1189    FieldDeclarator &DeclaratorInfo = Fields.back();
1190
1191    /// struct-declarator: declarator
1192    /// struct-declarator: declarator[opt] ':' constant-expression
1193    if (Tok.isNot(tok::colon))
1194      ParseDeclarator(DeclaratorInfo.D);
1195
1196    if (Tok.is(tok::colon)) {
1197      ConsumeToken();
1198      OwningExprResult Res(ParseConstantExpression());
1199      if (Res.isInvalid())
1200        SkipUntil(tok::semi, true, true);
1201      else
1202        DeclaratorInfo.BitfieldSize = Res.release();
1203    }
1204
1205    // If attributes exist after the declarator, parse them.
1206    if (Tok.is(tok::kw___attribute)) {
1207      SourceLocation Loc;
1208      AttributeList *AttrList = ParseAttributes(&Loc);
1209      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1210    }
1211
1212    // If we don't have a comma, it is either the end of the list (a ';')
1213    // or an error, bail out.
1214    if (Tok.isNot(tok::comma))
1215      return;
1216
1217    // Consume the comma.
1218    ConsumeToken();
1219
1220    // Parse the next declarator.
1221    Fields.push_back(FieldDeclarator(DS));
1222
1223    // Attributes are only allowed on the second declarator.
1224    if (Tok.is(tok::kw___attribute)) {
1225      SourceLocation Loc;
1226      AttributeList *AttrList = ParseAttributes(&Loc);
1227      Fields.back().D.AddAttributes(AttrList, Loc);
1228    }
1229  }
1230}
1231
1232/// ParseStructUnionBody
1233///       struct-contents:
1234///         struct-declaration-list
1235/// [EXT]   empty
1236/// [GNU]   "struct-declaration-list" without terminatoring ';'
1237///       struct-declaration-list:
1238///         struct-declaration
1239///         struct-declaration-list struct-declaration
1240/// [OBC]   '@' 'defs' '(' class-name ')'
1241///
1242void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1243                                  unsigned TagType, DeclPtrTy TagDecl) {
1244  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1245                                        PP.getSourceManager(),
1246                                        "parsing struct/union body");
1247
1248  SourceLocation LBraceLoc = ConsumeBrace();
1249
1250  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1251  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1252
1253  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1254  // C++.
1255  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1256    Diag(Tok, diag::ext_empty_struct_union_enum)
1257      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1258
1259  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1260  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1261
1262  // While we still have something to read, read the declarations in the struct.
1263  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1264    // Each iteration of this loop reads one struct-declaration.
1265
1266    // Check for extraneous top-level semicolon.
1267    if (Tok.is(tok::semi)) {
1268      Diag(Tok, diag::ext_extra_struct_semi)
1269        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1270      ConsumeToken();
1271      continue;
1272    }
1273
1274    // Parse all the comma separated declarators.
1275    DeclSpec DS;
1276    FieldDeclarators.clear();
1277    if (!Tok.is(tok::at)) {
1278      ParseStructDeclaration(DS, FieldDeclarators);
1279
1280      // Convert them all to fields.
1281      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1282        FieldDeclarator &FD = FieldDeclarators[i];
1283        // Install the declarator into the current TagDecl.
1284        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1285                                             DS.getSourceRange().getBegin(),
1286                                             FD.D, FD.BitfieldSize);
1287        FieldDecls.push_back(Field);
1288      }
1289    } else { // Handle @defs
1290      ConsumeToken();
1291      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1292        Diag(Tok, diag::err_unexpected_at);
1293        SkipUntil(tok::semi, true, true);
1294        continue;
1295      }
1296      ConsumeToken();
1297      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1298      if (!Tok.is(tok::identifier)) {
1299        Diag(Tok, diag::err_expected_ident);
1300        SkipUntil(tok::semi, true, true);
1301        continue;
1302      }
1303      llvm::SmallVector<DeclPtrTy, 16> Fields;
1304      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1305                        Tok.getIdentifierInfo(), Fields);
1306      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1307      ConsumeToken();
1308      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1309    }
1310
1311    if (Tok.is(tok::semi)) {
1312      ConsumeToken();
1313    } else if (Tok.is(tok::r_brace)) {
1314      Diag(Tok, diag::ext_expected_semi_decl_list);
1315      break;
1316    } else {
1317      Diag(Tok, diag::err_expected_semi_decl_list);
1318      // Skip to end of block or statement
1319      SkipUntil(tok::r_brace, true, true);
1320    }
1321  }
1322
1323  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1324
1325  AttributeList *AttrList = 0;
1326  // If attributes exist after struct contents, parse them.
1327  if (Tok.is(tok::kw___attribute))
1328    AttrList = ParseAttributes();
1329
1330  Actions.ActOnFields(CurScope,
1331                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1332                      LBraceLoc, RBraceLoc,
1333                      AttrList);
1334  StructScope.Exit();
1335  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1336}
1337
1338
1339/// ParseEnumSpecifier
1340///       enum-specifier: [C99 6.7.2.2]
1341///         'enum' identifier[opt] '{' enumerator-list '}'
1342///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1343/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1344///                                                 '}' attributes[opt]
1345///         'enum' identifier
1346/// [GNU]   'enum' attributes[opt] identifier
1347///
1348/// [C++] elaborated-type-specifier:
1349/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1350///
1351void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1352                                AccessSpecifier AS) {
1353  // Parse the tag portion of this.
1354
1355  AttributeList *Attr = 0;
1356  // If attributes exist after tag, parse them.
1357  if (Tok.is(tok::kw___attribute))
1358    Attr = ParseAttributes();
1359
1360  CXXScopeSpec SS;
1361  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1362    if (Tok.isNot(tok::identifier)) {
1363      Diag(Tok, diag::err_expected_ident);
1364      if (Tok.isNot(tok::l_brace)) {
1365        // Has no name and is not a definition.
1366        // Skip the rest of this declarator, up until the comma or semicolon.
1367        SkipUntil(tok::comma, true);
1368        return;
1369      }
1370    }
1371  }
1372
1373  // Must have either 'enum name' or 'enum {...}'.
1374  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1375    Diag(Tok, diag::err_expected_ident_lbrace);
1376
1377    // Skip the rest of this declarator, up until the comma or semicolon.
1378    SkipUntil(tok::comma, true);
1379    return;
1380  }
1381
1382  // If an identifier is present, consume and remember it.
1383  IdentifierInfo *Name = 0;
1384  SourceLocation NameLoc;
1385  if (Tok.is(tok::identifier)) {
1386    Name = Tok.getIdentifierInfo();
1387    NameLoc = ConsumeToken();
1388  }
1389
1390  // There are three options here.  If we have 'enum foo;', then this is a
1391  // forward declaration.  If we have 'enum foo {...' then this is a
1392  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1393  //
1394  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1395  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1396  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1397  //
1398  Action::TagKind TK;
1399  if (Tok.is(tok::l_brace))
1400    TK = Action::TK_Definition;
1401  else if (Tok.is(tok::semi))
1402    TK = Action::TK_Declaration;
1403  else
1404    TK = Action::TK_Reference;
1405  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1406                                       StartLoc, SS, Name, NameLoc, Attr, AS);
1407
1408  if (Tok.is(tok::l_brace))
1409    ParseEnumBody(StartLoc, TagDecl);
1410
1411  // TODO: semantic analysis on the declspec for enums.
1412  const char *PrevSpec = 0;
1413  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1414                         TagDecl.getAs<void>()))
1415    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1416}
1417
1418/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1419///       enumerator-list:
1420///         enumerator
1421///         enumerator-list ',' enumerator
1422///       enumerator:
1423///         enumeration-constant
1424///         enumeration-constant '=' constant-expression
1425///       enumeration-constant:
1426///         identifier
1427///
1428void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1429  // Enter the scope of the enum body and start the definition.
1430  ParseScope EnumScope(this, Scope::DeclScope);
1431  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1432
1433  SourceLocation LBraceLoc = ConsumeBrace();
1434
1435  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1436  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1437    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1438
1439  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1440
1441  DeclPtrTy LastEnumConstDecl;
1442
1443  // Parse the enumerator-list.
1444  while (Tok.is(tok::identifier)) {
1445    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1446    SourceLocation IdentLoc = ConsumeToken();
1447
1448    SourceLocation EqualLoc;
1449    OwningExprResult AssignedVal(Actions);
1450    if (Tok.is(tok::equal)) {
1451      EqualLoc = ConsumeToken();
1452      AssignedVal = ParseConstantExpression();
1453      if (AssignedVal.isInvalid())
1454        SkipUntil(tok::comma, tok::r_brace, true, true);
1455    }
1456
1457    // Install the enumerator constant into EnumDecl.
1458    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1459                                                        LastEnumConstDecl,
1460                                                        IdentLoc, Ident,
1461                                                        EqualLoc,
1462                                                        AssignedVal.release());
1463    EnumConstantDecls.push_back(EnumConstDecl);
1464    LastEnumConstDecl = EnumConstDecl;
1465
1466    if (Tok.isNot(tok::comma))
1467      break;
1468    SourceLocation CommaLoc = ConsumeToken();
1469
1470    if (Tok.isNot(tok::identifier) &&
1471        !(getLang().C99 || getLang().CPlusPlus0x))
1472      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1473        << getLang().CPlusPlus
1474        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1475  }
1476
1477  // Eat the }.
1478  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1479
1480  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1481                        EnumConstantDecls.size());
1482
1483  Action::AttrTy *AttrList = 0;
1484  // If attributes exist after the identifier list, parse them.
1485  if (Tok.is(tok::kw___attribute))
1486    AttrList = ParseAttributes(); // FIXME: where do they do?
1487
1488  EnumScope.Exit();
1489  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1490}
1491
1492/// isTypeSpecifierQualifier - Return true if the current token could be the
1493/// start of a type-qualifier-list.
1494bool Parser::isTypeQualifier() const {
1495  switch (Tok.getKind()) {
1496  default: return false;
1497    // type-qualifier
1498  case tok::kw_const:
1499  case tok::kw_volatile:
1500  case tok::kw_restrict:
1501    return true;
1502  }
1503}
1504
1505/// isTypeSpecifierQualifier - Return true if the current token could be the
1506/// start of a specifier-qualifier-list.
1507bool Parser::isTypeSpecifierQualifier() {
1508  switch (Tok.getKind()) {
1509  default: return false;
1510
1511  case tok::identifier:   // foo::bar
1512  case tok::kw_typename:  // typename T::type
1513    // Annotate typenames and C++ scope specifiers.  If we get one, just
1514    // recurse to handle whatever we get.
1515    if (TryAnnotateTypeOrScopeToken())
1516      return isTypeSpecifierQualifier();
1517    // Otherwise, not a type specifier.
1518    return false;
1519
1520  case tok::coloncolon:   // ::foo::bar
1521    if (NextToken().is(tok::kw_new) ||    // ::new
1522        NextToken().is(tok::kw_delete))   // ::delete
1523      return false;
1524
1525    // Annotate typenames and C++ scope specifiers.  If we get one, just
1526    // recurse to handle whatever we get.
1527    if (TryAnnotateTypeOrScopeToken())
1528      return isTypeSpecifierQualifier();
1529    // Otherwise, not a type specifier.
1530    return false;
1531
1532    // GNU attributes support.
1533  case tok::kw___attribute:
1534    // GNU typeof support.
1535  case tok::kw_typeof:
1536
1537    // type-specifiers
1538  case tok::kw_short:
1539  case tok::kw_long:
1540  case tok::kw_signed:
1541  case tok::kw_unsigned:
1542  case tok::kw__Complex:
1543  case tok::kw__Imaginary:
1544  case tok::kw_void:
1545  case tok::kw_char:
1546  case tok::kw_wchar_t:
1547  case tok::kw_int:
1548  case tok::kw_float:
1549  case tok::kw_double:
1550  case tok::kw_bool:
1551  case tok::kw__Bool:
1552  case tok::kw__Decimal32:
1553  case tok::kw__Decimal64:
1554  case tok::kw__Decimal128:
1555
1556    // struct-or-union-specifier (C99) or class-specifier (C++)
1557  case tok::kw_class:
1558  case tok::kw_struct:
1559  case tok::kw_union:
1560    // enum-specifier
1561  case tok::kw_enum:
1562
1563    // type-qualifier
1564  case tok::kw_const:
1565  case tok::kw_volatile:
1566  case tok::kw_restrict:
1567
1568    // typedef-name
1569  case tok::annot_typename:
1570    return true;
1571
1572    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1573  case tok::less:
1574    return getLang().ObjC1;
1575
1576  case tok::kw___cdecl:
1577  case tok::kw___stdcall:
1578  case tok::kw___fastcall:
1579    return PP.getLangOptions().Microsoft;
1580  }
1581}
1582
1583/// isDeclarationSpecifier() - Return true if the current token is part of a
1584/// declaration specifier.
1585bool Parser::isDeclarationSpecifier() {
1586  switch (Tok.getKind()) {
1587  default: return false;
1588
1589  case tok::identifier:   // foo::bar
1590    // Unfortunate hack to support "Class.factoryMethod" notation.
1591    if (getLang().ObjC1 && NextToken().is(tok::period))
1592      return false;
1593    // Fall through
1594
1595  case tok::kw_typename: // typename T::type
1596    // Annotate typenames and C++ scope specifiers.  If we get one, just
1597    // recurse to handle whatever we get.
1598    if (TryAnnotateTypeOrScopeToken())
1599      return isDeclarationSpecifier();
1600    // Otherwise, not a declaration specifier.
1601    return false;
1602  case tok::coloncolon:   // ::foo::bar
1603    if (NextToken().is(tok::kw_new) ||    // ::new
1604        NextToken().is(tok::kw_delete))   // ::delete
1605      return false;
1606
1607    // Annotate typenames and C++ scope specifiers.  If we get one, just
1608    // recurse to handle whatever we get.
1609    if (TryAnnotateTypeOrScopeToken())
1610      return isDeclarationSpecifier();
1611    // Otherwise, not a declaration specifier.
1612    return false;
1613
1614    // storage-class-specifier
1615  case tok::kw_typedef:
1616  case tok::kw_extern:
1617  case tok::kw___private_extern__:
1618  case tok::kw_static:
1619  case tok::kw_auto:
1620  case tok::kw_register:
1621  case tok::kw___thread:
1622
1623    // type-specifiers
1624  case tok::kw_short:
1625  case tok::kw_long:
1626  case tok::kw_signed:
1627  case tok::kw_unsigned:
1628  case tok::kw__Complex:
1629  case tok::kw__Imaginary:
1630  case tok::kw_void:
1631  case tok::kw_char:
1632  case tok::kw_wchar_t:
1633  case tok::kw_int:
1634  case tok::kw_float:
1635  case tok::kw_double:
1636  case tok::kw_bool:
1637  case tok::kw__Bool:
1638  case tok::kw__Decimal32:
1639  case tok::kw__Decimal64:
1640  case tok::kw__Decimal128:
1641
1642    // struct-or-union-specifier (C99) or class-specifier (C++)
1643  case tok::kw_class:
1644  case tok::kw_struct:
1645  case tok::kw_union:
1646    // enum-specifier
1647  case tok::kw_enum:
1648
1649    // type-qualifier
1650  case tok::kw_const:
1651  case tok::kw_volatile:
1652  case tok::kw_restrict:
1653
1654    // function-specifier
1655  case tok::kw_inline:
1656  case tok::kw_virtual:
1657  case tok::kw_explicit:
1658
1659    // typedef-name
1660  case tok::annot_typename:
1661
1662    // GNU typeof support.
1663  case tok::kw_typeof:
1664
1665    // GNU attributes.
1666  case tok::kw___attribute:
1667    return true;
1668
1669    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1670  case tok::less:
1671    return getLang().ObjC1;
1672
1673  case tok::kw___declspec:
1674  case tok::kw___cdecl:
1675  case tok::kw___stdcall:
1676  case tok::kw___fastcall:
1677    return PP.getLangOptions().Microsoft;
1678  }
1679}
1680
1681
1682/// ParseTypeQualifierListOpt
1683///       type-qualifier-list: [C99 6.7.5]
1684///         type-qualifier
1685/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1686///         type-qualifier-list type-qualifier
1687/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1688///
1689void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1690  while (1) {
1691    int isInvalid = false;
1692    const char *PrevSpec = 0;
1693    SourceLocation Loc = Tok.getLocation();
1694
1695    switch (Tok.getKind()) {
1696    case tok::kw_const:
1697      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1698                                 getLang())*2;
1699      break;
1700    case tok::kw_volatile:
1701      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1702                                 getLang())*2;
1703      break;
1704    case tok::kw_restrict:
1705      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1706                                 getLang())*2;
1707      break;
1708    case tok::kw___ptr64:
1709    case tok::kw___cdecl:
1710    case tok::kw___stdcall:
1711    case tok::kw___fastcall:
1712      if (!PP.getLangOptions().Microsoft)
1713        goto DoneWithTypeQuals;
1714      // Just ignore it.
1715      break;
1716    case tok::kw___attribute:
1717      if (AttributesAllowed) {
1718        DS.AddAttributes(ParseAttributes());
1719        continue; // do *not* consume the next token!
1720      }
1721      // otherwise, FALL THROUGH!
1722    default:
1723      DoneWithTypeQuals:
1724      // If this is not a type-qualifier token, we're done reading type
1725      // qualifiers.  First verify that DeclSpec's are consistent.
1726      DS.Finish(Diags, PP);
1727      return;
1728    }
1729
1730    // If the specifier combination wasn't legal, issue a diagnostic.
1731    if (isInvalid) {
1732      assert(PrevSpec && "Method did not return previous specifier!");
1733      // Pick between error or extwarn.
1734      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1735                                      : diag::ext_duplicate_declspec;
1736      Diag(Tok, DiagID) << PrevSpec;
1737    }
1738    ConsumeToken();
1739  }
1740}
1741
1742
1743/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1744///
1745void Parser::ParseDeclarator(Declarator &D) {
1746  /// This implements the 'declarator' production in the C grammar, then checks
1747  /// for well-formedness and issues diagnostics.
1748  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1749}
1750
1751/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1752/// is parsed by the function passed to it. Pass null, and the direct-declarator
1753/// isn't parsed at all, making this function effectively parse the C++
1754/// ptr-operator production.
1755///
1756///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1757/// [C]     pointer[opt] direct-declarator
1758/// [C++]   direct-declarator
1759/// [C++]   ptr-operator declarator
1760///
1761///       pointer: [C99 6.7.5]
1762///         '*' type-qualifier-list[opt]
1763///         '*' type-qualifier-list[opt] pointer
1764///
1765///       ptr-operator:
1766///         '*' cv-qualifier-seq[opt]
1767///         '&'
1768/// [C++0x] '&&'
1769/// [GNU]   '&' restrict[opt] attributes[opt]
1770/// [GNU?]  '&&' restrict[opt] attributes[opt]
1771///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1772void Parser::ParseDeclaratorInternal(Declarator &D,
1773                                     DirectDeclParseFunction DirectDeclParser) {
1774
1775  // C++ member pointers start with a '::' or a nested-name.
1776  // Member pointers get special handling, since there's no place for the
1777  // scope spec in the generic path below.
1778  if (getLang().CPlusPlus &&
1779      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1780       Tok.is(tok::annot_cxxscope))) {
1781    CXXScopeSpec SS;
1782    if (ParseOptionalCXXScopeSpecifier(SS)) {
1783      if(Tok.isNot(tok::star)) {
1784        // The scope spec really belongs to the direct-declarator.
1785        D.getCXXScopeSpec() = SS;
1786        if (DirectDeclParser)
1787          (this->*DirectDeclParser)(D);
1788        return;
1789      }
1790
1791      SourceLocation Loc = ConsumeToken();
1792      D.SetRangeEnd(Loc);
1793      DeclSpec DS;
1794      ParseTypeQualifierListOpt(DS);
1795      D.ExtendWithDeclSpec(DS);
1796
1797      // Recurse to parse whatever is left.
1798      ParseDeclaratorInternal(D, DirectDeclParser);
1799
1800      // Sema will have to catch (syntactically invalid) pointers into global
1801      // scope. It has to catch pointers into namespace scope anyway.
1802      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1803                                                      Loc, DS.TakeAttributes()),
1804                    /* Don't replace range end. */SourceLocation());
1805      return;
1806    }
1807  }
1808
1809  tok::TokenKind Kind = Tok.getKind();
1810  // Not a pointer, C++ reference, or block.
1811  if (Kind != tok::star && Kind != tok::caret &&
1812      (Kind != tok::amp || !getLang().CPlusPlus) &&
1813      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1814      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1815    if (DirectDeclParser)
1816      (this->*DirectDeclParser)(D);
1817    return;
1818  }
1819
1820  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1821  // '&&' -> rvalue reference
1822  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1823  D.SetRangeEnd(Loc);
1824
1825  if (Kind == tok::star || Kind == tok::caret) {
1826    // Is a pointer.
1827    DeclSpec DS;
1828
1829    ParseTypeQualifierListOpt(DS);
1830    D.ExtendWithDeclSpec(DS);
1831
1832    // Recursively parse the declarator.
1833    ParseDeclaratorInternal(D, DirectDeclParser);
1834    if (Kind == tok::star)
1835      // Remember that we parsed a pointer type, and remember the type-quals.
1836      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1837                                                DS.TakeAttributes()),
1838                    SourceLocation());
1839    else
1840      // Remember that we parsed a Block type, and remember the type-quals.
1841      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1842                                                     Loc),
1843                    SourceLocation());
1844  } else {
1845    // Is a reference
1846    DeclSpec DS;
1847
1848    // Complain about rvalue references in C++03, but then go on and build
1849    // the declarator.
1850    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1851      Diag(Loc, diag::err_rvalue_reference);
1852
1853    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1854    // cv-qualifiers are introduced through the use of a typedef or of a
1855    // template type argument, in which case the cv-qualifiers are ignored.
1856    //
1857    // [GNU] Retricted references are allowed.
1858    // [GNU] Attributes on references are allowed.
1859    ParseTypeQualifierListOpt(DS);
1860    D.ExtendWithDeclSpec(DS);
1861
1862    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1863      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1864        Diag(DS.getConstSpecLoc(),
1865             diag::err_invalid_reference_qualifier_application) << "const";
1866      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1867        Diag(DS.getVolatileSpecLoc(),
1868             diag::err_invalid_reference_qualifier_application) << "volatile";
1869    }
1870
1871    // Recursively parse the declarator.
1872    ParseDeclaratorInternal(D, DirectDeclParser);
1873
1874    if (D.getNumTypeObjects() > 0) {
1875      // C++ [dcl.ref]p4: There shall be no references to references.
1876      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1877      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1878        if (const IdentifierInfo *II = D.getIdentifier())
1879          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1880           << II;
1881        else
1882          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1883            << "type name";
1884
1885        // Once we've complained about the reference-to-reference, we
1886        // can go ahead and build the (technically ill-formed)
1887        // declarator: reference collapsing will take care of it.
1888      }
1889    }
1890
1891    // Remember that we parsed a reference type. It doesn't have type-quals.
1892    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1893                                                DS.TakeAttributes(),
1894                                                Kind == tok::amp),
1895                  SourceLocation());
1896  }
1897}
1898
1899/// ParseDirectDeclarator
1900///       direct-declarator: [C99 6.7.5]
1901/// [C99]   identifier
1902///         '(' declarator ')'
1903/// [GNU]   '(' attributes declarator ')'
1904/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1905/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1906/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1907/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1908/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1909///         direct-declarator '(' parameter-type-list ')'
1910///         direct-declarator '(' identifier-list[opt] ')'
1911/// [GNU]   direct-declarator '(' parameter-forward-declarations
1912///                    parameter-type-list[opt] ')'
1913/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1914///                    cv-qualifier-seq[opt] exception-specification[opt]
1915/// [C++]   declarator-id
1916///
1917///       declarator-id: [C++ 8]
1918///         id-expression
1919///         '::'[opt] nested-name-specifier[opt] type-name
1920///
1921///       id-expression: [C++ 5.1]
1922///         unqualified-id
1923///         qualified-id            [TODO]
1924///
1925///       unqualified-id: [C++ 5.1]
1926///         identifier
1927///         operator-function-id
1928///         conversion-function-id  [TODO]
1929///          '~' class-name
1930///         template-id
1931///
1932void Parser::ParseDirectDeclarator(Declarator &D) {
1933  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1934
1935  if (getLang().CPlusPlus) {
1936    if (D.mayHaveIdentifier()) {
1937      // ParseDeclaratorInternal might already have parsed the scope.
1938      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1939        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1940      if (afterCXXScope) {
1941        // Change the declaration context for name lookup, until this function
1942        // is exited (and the declarator has been parsed).
1943        DeclScopeObj.EnterDeclaratorScope();
1944      }
1945
1946      if (Tok.is(tok::identifier)) {
1947        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1948
1949        // If this identifier is the name of the current class, it's a
1950        // constructor name.
1951        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1952          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1953                                               Tok.getLocation(), CurScope),
1954                           Tok.getLocation());
1955        // This is a normal identifier.
1956        } else
1957          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1958        ConsumeToken();
1959        goto PastIdentifier;
1960      } else if (Tok.is(tok::annot_template_id)) {
1961        TemplateIdAnnotation *TemplateId
1962          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1963
1964        // FIXME: Could this template-id name a constructor?
1965
1966        // FIXME: This is an egregious hack, where we silently ignore
1967        // the specialization (which should be a function template
1968        // specialization name) and use the name instead. This hack
1969        // will go away when we have support for function
1970        // specializations.
1971        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1972        TemplateId->Destroy();
1973        ConsumeToken();
1974        goto PastIdentifier;
1975      } else if (Tok.is(tok::kw_operator)) {
1976        SourceLocation OperatorLoc = Tok.getLocation();
1977        SourceLocation EndLoc;
1978
1979        // First try the name of an overloaded operator
1980        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1981          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1982        } else {
1983          // This must be a conversion function (C++ [class.conv.fct]).
1984          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1985            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1986          else {
1987            D.SetIdentifier(0, Tok.getLocation());
1988          }
1989        }
1990        goto PastIdentifier;
1991      } else if (Tok.is(tok::tilde)) {
1992        // This should be a C++ destructor.
1993        SourceLocation TildeLoc = ConsumeToken();
1994        if (Tok.is(tok::identifier)) {
1995          // FIXME: Inaccurate.
1996          SourceLocation NameLoc = Tok.getLocation();
1997          SourceLocation EndLoc;
1998          TypeResult Type = ParseClassName(EndLoc);
1999          if (Type.isInvalid())
2000            D.SetIdentifier(0, TildeLoc);
2001          else
2002            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2003        } else {
2004          Diag(Tok, diag::err_expected_class_name);
2005          D.SetIdentifier(0, TildeLoc);
2006        }
2007        goto PastIdentifier;
2008      }
2009
2010      // If we reached this point, token is not identifier and not '~'.
2011
2012      if (afterCXXScope) {
2013        Diag(Tok, diag::err_expected_unqualified_id);
2014        D.SetIdentifier(0, Tok.getLocation());
2015        D.setInvalidType(true);
2016        goto PastIdentifier;
2017      }
2018    }
2019  }
2020
2021  // If we reached this point, we are either in C/ObjC or the token didn't
2022  // satisfy any of the C++-specific checks.
2023  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2024    assert(!getLang().CPlusPlus &&
2025           "There's a C++-specific check for tok::identifier above");
2026    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2027    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2028    ConsumeToken();
2029  } else if (Tok.is(tok::l_paren)) {
2030    // direct-declarator: '(' declarator ')'
2031    // direct-declarator: '(' attributes declarator ')'
2032    // Example: 'char (*X)'   or 'int (*XX)(void)'
2033    ParseParenDeclarator(D);
2034  } else if (D.mayOmitIdentifier()) {
2035    // This could be something simple like "int" (in which case the declarator
2036    // portion is empty), if an abstract-declarator is allowed.
2037    D.SetIdentifier(0, Tok.getLocation());
2038  } else {
2039    if (D.getContext() == Declarator::MemberContext)
2040      Diag(Tok, diag::err_expected_member_name_or_semi)
2041        << D.getDeclSpec().getSourceRange();
2042    else if (getLang().CPlusPlus)
2043      Diag(Tok, diag::err_expected_unqualified_id);
2044    else
2045      Diag(Tok, diag::err_expected_ident_lparen);
2046    D.SetIdentifier(0, Tok.getLocation());
2047    D.setInvalidType(true);
2048  }
2049
2050 PastIdentifier:
2051  assert(D.isPastIdentifier() &&
2052         "Haven't past the location of the identifier yet?");
2053
2054  while (1) {
2055    if (Tok.is(tok::l_paren)) {
2056      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2057      // In such a case, check if we actually have a function declarator; if it
2058      // is not, the declarator has been fully parsed.
2059      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2060        // When not in file scope, warn for ambiguous function declarators, just
2061        // in case the author intended it as a variable definition.
2062        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2063        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2064          break;
2065      }
2066      ParseFunctionDeclarator(ConsumeParen(), D);
2067    } else if (Tok.is(tok::l_square)) {
2068      ParseBracketDeclarator(D);
2069    } else {
2070      break;
2071    }
2072  }
2073}
2074
2075/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2076/// only called before the identifier, so these are most likely just grouping
2077/// parens for precedence.  If we find that these are actually function
2078/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2079///
2080///       direct-declarator:
2081///         '(' declarator ')'
2082/// [GNU]   '(' attributes declarator ')'
2083///         direct-declarator '(' parameter-type-list ')'
2084///         direct-declarator '(' identifier-list[opt] ')'
2085/// [GNU]   direct-declarator '(' parameter-forward-declarations
2086///                    parameter-type-list[opt] ')'
2087///
2088void Parser::ParseParenDeclarator(Declarator &D) {
2089  SourceLocation StartLoc = ConsumeParen();
2090  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2091
2092  // Eat any attributes before we look at whether this is a grouping or function
2093  // declarator paren.  If this is a grouping paren, the attribute applies to
2094  // the type being built up, for example:
2095  //     int (__attribute__(()) *x)(long y)
2096  // If this ends up not being a grouping paren, the attribute applies to the
2097  // first argument, for example:
2098  //     int (__attribute__(()) int x)
2099  // In either case, we need to eat any attributes to be able to determine what
2100  // sort of paren this is.
2101  //
2102  AttributeList *AttrList = 0;
2103  bool RequiresArg = false;
2104  if (Tok.is(tok::kw___attribute)) {
2105    AttrList = ParseAttributes();
2106
2107    // We require that the argument list (if this is a non-grouping paren) be
2108    // present even if the attribute list was empty.
2109    RequiresArg = true;
2110  }
2111  // Eat any Microsoft extensions.
2112  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2113          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2114    ConsumeToken();
2115
2116  // If we haven't past the identifier yet (or where the identifier would be
2117  // stored, if this is an abstract declarator), then this is probably just
2118  // grouping parens. However, if this could be an abstract-declarator, then
2119  // this could also be the start of function arguments (consider 'void()').
2120  bool isGrouping;
2121
2122  if (!D.mayOmitIdentifier()) {
2123    // If this can't be an abstract-declarator, this *must* be a grouping
2124    // paren, because we haven't seen the identifier yet.
2125    isGrouping = true;
2126  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2127             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2128             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2129    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2130    // considered to be a type, not a K&R identifier-list.
2131    isGrouping = false;
2132  } else {
2133    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2134    isGrouping = true;
2135  }
2136
2137  // If this is a grouping paren, handle:
2138  // direct-declarator: '(' declarator ')'
2139  // direct-declarator: '(' attributes declarator ')'
2140  if (isGrouping) {
2141    bool hadGroupingParens = D.hasGroupingParens();
2142    D.setGroupingParens(true);
2143    if (AttrList)
2144      D.AddAttributes(AttrList, SourceLocation());
2145
2146    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2147    // Match the ')'.
2148    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2149
2150    D.setGroupingParens(hadGroupingParens);
2151    D.SetRangeEnd(Loc);
2152    return;
2153  }
2154
2155  // Okay, if this wasn't a grouping paren, it must be the start of a function
2156  // argument list.  Recognize that this declarator will never have an
2157  // identifier (and remember where it would have been), then call into
2158  // ParseFunctionDeclarator to handle of argument list.
2159  D.SetIdentifier(0, Tok.getLocation());
2160
2161  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2162}
2163
2164/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2165/// declarator D up to a paren, which indicates that we are parsing function
2166/// arguments.
2167///
2168/// If AttrList is non-null, then the caller parsed those arguments immediately
2169/// after the open paren - they should be considered to be the first argument of
2170/// a parameter.  If RequiresArg is true, then the first argument of the
2171/// function is required to be present and required to not be an identifier
2172/// list.
2173///
2174/// This method also handles this portion of the grammar:
2175///       parameter-type-list: [C99 6.7.5]
2176///         parameter-list
2177///         parameter-list ',' '...'
2178///
2179///       parameter-list: [C99 6.7.5]
2180///         parameter-declaration
2181///         parameter-list ',' parameter-declaration
2182///
2183///       parameter-declaration: [C99 6.7.5]
2184///         declaration-specifiers declarator
2185/// [C++]   declaration-specifiers declarator '=' assignment-expression
2186/// [GNU]   declaration-specifiers declarator attributes
2187///         declaration-specifiers abstract-declarator[opt]
2188/// [C++]   declaration-specifiers abstract-declarator[opt]
2189///           '=' assignment-expression
2190/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2191///
2192/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2193/// and "exception-specification[opt]".
2194///
2195void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2196                                     AttributeList *AttrList,
2197                                     bool RequiresArg) {
2198  // lparen is already consumed!
2199  assert(D.isPastIdentifier() && "Should not call before identifier!");
2200
2201  // This parameter list may be empty.
2202  if (Tok.is(tok::r_paren)) {
2203    if (RequiresArg) {
2204      Diag(Tok, diag::err_argument_required_after_attribute);
2205      delete AttrList;
2206    }
2207
2208    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2209
2210    // cv-qualifier-seq[opt].
2211    DeclSpec DS;
2212    if (getLang().CPlusPlus) {
2213      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2214      if (!DS.getSourceRange().getEnd().isInvalid())
2215        Loc = DS.getSourceRange().getEnd();
2216
2217      // Parse exception-specification[opt].
2218      if (Tok.is(tok::kw_throw))
2219        ParseExceptionSpecification(Loc);
2220    }
2221
2222    // Remember that we parsed a function type, and remember the attributes.
2223    // int() -> no prototype, no '...'.
2224    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2225                                               /*variadic*/ false,
2226                                               SourceLocation(),
2227                                               /*arglist*/ 0, 0,
2228                                               DS.getTypeQualifiers(),
2229                                               LParenLoc, D),
2230                  Loc);
2231    return;
2232  }
2233
2234  // Alternatively, this parameter list may be an identifier list form for a
2235  // K&R-style function:  void foo(a,b,c)
2236  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2237    if (!TryAnnotateTypeOrScopeToken()) {
2238      // K&R identifier lists can't have typedefs as identifiers, per
2239      // C99 6.7.5.3p11.
2240      if (RequiresArg) {
2241        Diag(Tok, diag::err_argument_required_after_attribute);
2242        delete AttrList;
2243      }
2244      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2245      // normal declarators, not for abstract-declarators.
2246      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2247    }
2248  }
2249
2250  // Finally, a normal, non-empty parameter type list.
2251
2252  // Build up an array of information about the parsed arguments.
2253  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2254
2255  // Enter function-declaration scope, limiting any declarators to the
2256  // function prototype scope, including parameter declarators.
2257  ParseScope PrototypeScope(this,
2258                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2259
2260  bool IsVariadic = false;
2261  SourceLocation EllipsisLoc;
2262  while (1) {
2263    if (Tok.is(tok::ellipsis)) {
2264      IsVariadic = true;
2265      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2266      break;
2267    }
2268
2269    SourceLocation DSStart = Tok.getLocation();
2270
2271    // Parse the declaration-specifiers.
2272    DeclSpec DS;
2273
2274    // If the caller parsed attributes for the first argument, add them now.
2275    if (AttrList) {
2276      DS.AddAttributes(AttrList);
2277      AttrList = 0;  // Only apply the attributes to the first parameter.
2278    }
2279    ParseDeclarationSpecifiers(DS);
2280
2281    // Parse the declarator.  This is "PrototypeContext", because we must
2282    // accept either 'declarator' or 'abstract-declarator' here.
2283    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2284    ParseDeclarator(ParmDecl);
2285
2286    // Parse GNU attributes, if present.
2287    if (Tok.is(tok::kw___attribute)) {
2288      SourceLocation Loc;
2289      AttributeList *AttrList = ParseAttributes(&Loc);
2290      ParmDecl.AddAttributes(AttrList, Loc);
2291    }
2292
2293    // Remember this parsed parameter in ParamInfo.
2294    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2295
2296    // DefArgToks is used when the parsing of default arguments needs
2297    // to be delayed.
2298    CachedTokens *DefArgToks = 0;
2299
2300    // If no parameter was specified, verify that *something* was specified,
2301    // otherwise we have a missing type and identifier.
2302    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2303        ParmDecl.getNumTypeObjects() == 0) {
2304      // Completely missing, emit error.
2305      Diag(DSStart, diag::err_missing_param);
2306    } else {
2307      // Otherwise, we have something.  Add it and let semantic analysis try
2308      // to grok it and add the result to the ParamInfo we are building.
2309
2310      // Inform the actions module about the parameter declarator, so it gets
2311      // added to the current scope.
2312      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2313
2314      // Parse the default argument, if any. We parse the default
2315      // arguments in all dialects; the semantic analysis in
2316      // ActOnParamDefaultArgument will reject the default argument in
2317      // C.
2318      if (Tok.is(tok::equal)) {
2319        SourceLocation EqualLoc = Tok.getLocation();
2320
2321        // Parse the default argument
2322        if (D.getContext() == Declarator::MemberContext) {
2323          // If we're inside a class definition, cache the tokens
2324          // corresponding to the default argument. We'll actually parse
2325          // them when we see the end of the class definition.
2326          // FIXME: Templates will require something similar.
2327          // FIXME: Can we use a smart pointer for Toks?
2328          DefArgToks = new CachedTokens;
2329
2330          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2331                                    tok::semi, false)) {
2332            delete DefArgToks;
2333            DefArgToks = 0;
2334            Actions.ActOnParamDefaultArgumentError(Param);
2335          } else
2336            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2337        } else {
2338          // Consume the '='.
2339          ConsumeToken();
2340
2341          OwningExprResult DefArgResult(ParseAssignmentExpression());
2342          if (DefArgResult.isInvalid()) {
2343            Actions.ActOnParamDefaultArgumentError(Param);
2344            SkipUntil(tok::comma, tok::r_paren, true, true);
2345          } else {
2346            // Inform the actions module about the default argument
2347            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2348                                              move(DefArgResult));
2349          }
2350        }
2351      }
2352
2353      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2354                                          ParmDecl.getIdentifierLoc(), Param,
2355                                          DefArgToks));
2356    }
2357
2358    // If the next token is a comma, consume it and keep reading arguments.
2359    if (Tok.isNot(tok::comma)) break;
2360
2361    // Consume the comma.
2362    ConsumeToken();
2363  }
2364
2365  // Leave prototype scope.
2366  PrototypeScope.Exit();
2367
2368  // If we have the closing ')', eat it.
2369  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2370
2371  DeclSpec DS;
2372  if (getLang().CPlusPlus) {
2373    // Parse cv-qualifier-seq[opt].
2374    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2375      if (!DS.getSourceRange().getEnd().isInvalid())
2376        Loc = DS.getSourceRange().getEnd();
2377
2378    // Parse exception-specification[opt].
2379    if (Tok.is(tok::kw_throw))
2380      ParseExceptionSpecification(Loc);
2381  }
2382
2383  // Remember that we parsed a function type, and remember the attributes.
2384  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2385                                             EllipsisLoc,
2386                                             &ParamInfo[0], ParamInfo.size(),
2387                                             DS.getTypeQualifiers(),
2388                                             LParenLoc, D),
2389                Loc);
2390}
2391
2392/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2393/// we found a K&R-style identifier list instead of a type argument list.  The
2394/// current token is known to be the first identifier in the list.
2395///
2396///       identifier-list: [C99 6.7.5]
2397///         identifier
2398///         identifier-list ',' identifier
2399///
2400void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2401                                                   Declarator &D) {
2402  // Build up an array of information about the parsed arguments.
2403  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2404  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2405
2406  // If there was no identifier specified for the declarator, either we are in
2407  // an abstract-declarator, or we are in a parameter declarator which was found
2408  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2409  // diagnose this.
2410  if (!D.getIdentifier())
2411    Diag(Tok, diag::ext_ident_list_in_param);
2412
2413  // Tok is known to be the first identifier in the list.  Remember this
2414  // identifier in ParamInfo.
2415  ParamsSoFar.insert(Tok.getIdentifierInfo());
2416  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2417                                                 Tok.getLocation(),
2418                                                 DeclPtrTy()));
2419
2420  ConsumeToken();  // eat the first identifier.
2421
2422  while (Tok.is(tok::comma)) {
2423    // Eat the comma.
2424    ConsumeToken();
2425
2426    // If this isn't an identifier, report the error and skip until ')'.
2427    if (Tok.isNot(tok::identifier)) {
2428      Diag(Tok, diag::err_expected_ident);
2429      SkipUntil(tok::r_paren);
2430      return;
2431    }
2432
2433    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2434
2435    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2436    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2437      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2438
2439    // Verify that the argument identifier has not already been mentioned.
2440    if (!ParamsSoFar.insert(ParmII)) {
2441      Diag(Tok, diag::err_param_redefinition) << ParmII;
2442    } else {
2443      // Remember this identifier in ParamInfo.
2444      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2445                                                     Tok.getLocation(),
2446                                                     DeclPtrTy()));
2447    }
2448
2449    // Eat the identifier.
2450    ConsumeToken();
2451  }
2452
2453  // If we have the closing ')', eat it and we're done.
2454  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2455
2456  // Remember that we parsed a function type, and remember the attributes.  This
2457  // function type is always a K&R style function type, which is not varargs and
2458  // has no prototype.
2459  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2460                                             SourceLocation(),
2461                                             &ParamInfo[0], ParamInfo.size(),
2462                                             /*TypeQuals*/0, LParenLoc, D),
2463                RLoc);
2464}
2465
2466/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2467/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2468/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2469/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2470/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2471void Parser::ParseBracketDeclarator(Declarator &D) {
2472  SourceLocation StartLoc = ConsumeBracket();
2473
2474  // C array syntax has many features, but by-far the most common is [] and [4].
2475  // This code does a fast path to handle some of the most obvious cases.
2476  if (Tok.getKind() == tok::r_square) {
2477    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2478    // Remember that we parsed the empty array type.
2479    OwningExprResult NumElements(Actions);
2480    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2481                  EndLoc);
2482    return;
2483  } else if (Tok.getKind() == tok::numeric_constant &&
2484             GetLookAheadToken(1).is(tok::r_square)) {
2485    // [4] is very common.  Parse the numeric constant expression.
2486    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2487    ConsumeToken();
2488
2489    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2490
2491    // If there was an error parsing the assignment-expression, recover.
2492    if (ExprRes.isInvalid())
2493      ExprRes.release();  // Deallocate expr, just use [].
2494
2495    // Remember that we parsed a array type, and remember its features.
2496    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2497                                            ExprRes.release(), StartLoc),
2498                  EndLoc);
2499    return;
2500  }
2501
2502  // If valid, this location is the position where we read the 'static' keyword.
2503  SourceLocation StaticLoc;
2504  if (Tok.is(tok::kw_static))
2505    StaticLoc = ConsumeToken();
2506
2507  // If there is a type-qualifier-list, read it now.
2508  // Type qualifiers in an array subscript are a C99 feature.
2509  DeclSpec DS;
2510  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2511
2512  // If we haven't already read 'static', check to see if there is one after the
2513  // type-qualifier-list.
2514  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2515    StaticLoc = ConsumeToken();
2516
2517  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2518  bool isStar = false;
2519  OwningExprResult NumElements(Actions);
2520
2521  // Handle the case where we have '[*]' as the array size.  However, a leading
2522  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2523  // the the token after the star is a ']'.  Since stars in arrays are
2524  // infrequent, use of lookahead is not costly here.
2525  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2526    ConsumeToken();  // Eat the '*'.
2527
2528    if (StaticLoc.isValid()) {
2529      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2530      StaticLoc = SourceLocation();  // Drop the static.
2531    }
2532    isStar = true;
2533  } else if (Tok.isNot(tok::r_square)) {
2534    // Note, in C89, this production uses the constant-expr production instead
2535    // of assignment-expr.  The only difference is that assignment-expr allows
2536    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2537    // are not i-c-e's, so we don't need to distinguish between the two here.
2538
2539    // Parse the assignment-expression now.
2540    NumElements = ParseAssignmentExpression();
2541  }
2542
2543  // If there was an error parsing the assignment-expression, recover.
2544  if (NumElements.isInvalid()) {
2545    // If the expression was invalid, skip it.
2546    SkipUntil(tok::r_square);
2547    return;
2548  }
2549
2550  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2551
2552  // Remember that we parsed a array type, and remember its features.
2553  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2554                                          StaticLoc.isValid(), isStar,
2555                                          NumElements.release(), StartLoc),
2556                EndLoc);
2557}
2558
2559/// [GNU]   typeof-specifier:
2560///           typeof ( expressions )
2561///           typeof ( type-name )
2562/// [GNU/C++] typeof unary-expression
2563///
2564void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2565  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2566  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2567  SourceLocation StartLoc = ConsumeToken();
2568
2569  if (Tok.isNot(tok::l_paren)) {
2570    if (!getLang().CPlusPlus) {
2571      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2572      return;
2573    }
2574
2575    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2576    if (Result.isInvalid()) {
2577      DS.SetTypeSpecError();
2578      return;
2579    }
2580
2581    const char *PrevSpec = 0;
2582    // Check for duplicate type specifiers.
2583    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2584                           Result.release()))
2585      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2586
2587    // FIXME: Not accurate, the range gets one token more than it should.
2588    DS.SetRangeEnd(Tok.getLocation());
2589    return;
2590  }
2591
2592  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2593
2594  if (isTypeIdInParens()) {
2595    Action::TypeResult Ty = ParseTypeName();
2596
2597    assert((Ty.isInvalid() || Ty.get()) &&
2598           "Parser::ParseTypeofSpecifier(): missing type");
2599
2600    if (Tok.isNot(tok::r_paren)) {
2601      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2602      return;
2603    }
2604    RParenLoc = ConsumeParen();
2605
2606    if (Ty.isInvalid())
2607      DS.SetTypeSpecError();
2608    else {
2609      const char *PrevSpec = 0;
2610      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2611      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2612                             Ty.get()))
2613        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2614    }
2615  } else { // we have an expression.
2616    OwningExprResult Result(ParseExpression());
2617
2618    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2619      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2620      DS.SetTypeSpecError();
2621      return;
2622    }
2623    RParenLoc = ConsumeParen();
2624    const char *PrevSpec = 0;
2625    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2626    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2627                           Result.release()))
2628      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2629  }
2630  DS.SetRangeEnd(RParenLoc);
2631}
2632
2633
2634