ParseDecl.cpp revision cd1477562e7cf03279850885583d615e1f631dd4
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228/// [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context) {
232  DeclPtrTy SingleDecl;
233  switch (Tok.getKind()) {
234  case tok::kw_export:
235  case tok::kw_template:
236    SingleDecl = ParseTemplateDeclarationOrSpecialization(Context);
237    break;
238  case tok::kw_namespace:
239    SingleDecl = ParseNamespace(Context);
240    break;
241  case tok::kw_using:
242    SingleDecl = ParseUsingDirectiveOrDeclaration(Context);
243    break;
244  case tok::kw_static_assert:
245    SingleDecl = ParseStaticAssertDeclaration();
246    break;
247  default:
248    return ParseSimpleDeclaration(Context);
249  }
250
251  // This routine returns a DeclGroup, if the thing we parsed only contains a
252  // single decl, convert it now.
253  return Actions.ConvertDeclToDeclGroup(SingleDecl);
254}
255
256///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
257///         declaration-specifiers init-declarator-list[opt] ';'
258///[C90/C++]init-declarator-list ';'                             [TODO]
259/// [OMP]   threadprivate-directive                              [TODO]
260///
261/// If RequireSemi is false, this does not check for a ';' at the end of the
262/// declaration.
263Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
264                                                      bool RequireSemi) {
265  // Parse the common declaration-specifiers piece.
266  DeclSpec DS;
267  ParseDeclarationSpecifiers(DS);
268
269  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
270  // declaration-specifiers init-declarator-list[opt] ';'
271  if (Tok.is(tok::semi)) {
272    ConsumeToken();
273    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
274    return Actions.ConvertDeclToDeclGroup(TheDecl);
275  }
276
277  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
278  ParseDeclarator(DeclaratorInfo);
279
280  DeclGroupPtrTy DG =
281    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
282
283  // If the client wants to check what comes after the declaration, just return
284  // immediately without checking anything!
285  if (!RequireSemi) return DG;
286
287  if (Tok.is(tok::semi)) {
288    ConsumeToken();
289    return DG;
290  }
291
292  Diag(Tok, diag::err_expected_semi_declation);
293  // Skip to end of block or statement
294  SkipUntil(tok::r_brace, true, true);
295  if (Tok.is(tok::semi))
296    ConsumeToken();
297  return DG;
298}
299
300
301/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
302/// parsing 'declaration-specifiers declarator'.  This method is split out this
303/// way to handle the ambiguity between top-level function-definitions and
304/// declarations.
305///
306///       init-declarator-list: [C99 6.7]
307///         init-declarator
308///         init-declarator-list ',' init-declarator
309///       init-declarator: [C99 6.7]
310///         declarator
311///         declarator '=' initializer
312/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
313/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
314/// [C++]   declarator initializer[opt]
315///
316/// [C++] initializer:
317/// [C++]   '=' initializer-clause
318/// [C++]   '(' expression-list ')'
319/// [C++0x] '=' 'default'                                                [TODO]
320/// [C++0x] '=' 'delete'
321///
322/// According to the standard grammar, =default and =delete are function
323/// definitions, but that definitely doesn't fit with the parser here.
324///
325Parser::DeclGroupPtrTy Parser::
326ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
327  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
328  // that we parse together here.
329  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
330
331  // At this point, we know that it is not a function definition.  Parse the
332  // rest of the init-declarator-list.
333  while (1) {
334    // If a simple-asm-expr is present, parse it.
335    if (Tok.is(tok::kw_asm)) {
336      SourceLocation Loc;
337      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
338      if (AsmLabel.isInvalid()) {
339        SkipUntil(tok::semi, true, true);
340        return DeclGroupPtrTy();
341      }
342
343      D.setAsmLabel(AsmLabel.release());
344      D.SetRangeEnd(Loc);
345    }
346
347    // If attributes are present, parse them.
348    if (Tok.is(tok::kw___attribute)) {
349      SourceLocation Loc;
350      AttributeList *AttrList = ParseAttributes(&Loc);
351      D.AddAttributes(AttrList, Loc);
352    }
353
354    // Inform the current actions module that we just parsed this declarator.
355    DeclPtrTy ThisDecl = Actions.ActOnDeclarator(CurScope, D);
356    DeclsInGroup.push_back(ThisDecl);
357
358    // Parse declarator '=' initializer.
359    if (Tok.is(tok::equal)) {
360      ConsumeToken();
361      if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
362        SourceLocation DelLoc = ConsumeToken();
363        Actions.SetDeclDeleted(ThisDecl, DelLoc);
364      } else {
365        OwningExprResult Init(ParseInitializer());
366        if (Init.isInvalid()) {
367          SkipUntil(tok::semi, true, true);
368          return DeclGroupPtrTy();
369        }
370        Actions.AddInitializerToDecl(ThisDecl, move(Init));
371      }
372    } else if (Tok.is(tok::l_paren)) {
373      // Parse C++ direct initializer: '(' expression-list ')'
374      SourceLocation LParenLoc = ConsumeParen();
375      ExprVector Exprs(Actions);
376      CommaLocsTy CommaLocs;
377
378      bool InvalidExpr = false;
379      if (ParseExpressionList(Exprs, CommaLocs)) {
380        SkipUntil(tok::r_paren);
381        InvalidExpr = true;
382      }
383      // Match the ')'.
384      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
385
386      if (!InvalidExpr) {
387        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
388               "Unexpected number of commas!");
389        Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
390                                              move_arg(Exprs),
391                                              &CommaLocs[0], RParenLoc);
392      }
393    } else {
394      Actions.ActOnUninitializedDecl(ThisDecl);
395    }
396
397    // If we don't have a comma, it is either the end of the list (a ';') or an
398    // error, bail out.
399    if (Tok.isNot(tok::comma))
400      break;
401
402    // Consume the comma.
403    ConsumeToken();
404
405    // Parse the next declarator.
406    D.clear();
407
408    // Accept attributes in an init-declarator.  In the first declarator in a
409    // declaration, these would be part of the declspec.  In subsequent
410    // declarators, they become part of the declarator itself, so that they
411    // don't apply to declarators after *this* one.  Examples:
412    //    short __attribute__((common)) var;    -> declspec
413    //    short var __attribute__((common));    -> declarator
414    //    short x, __attribute__((common)) var;    -> declarator
415    if (Tok.is(tok::kw___attribute)) {
416      SourceLocation Loc;
417      AttributeList *AttrList = ParseAttributes(&Loc);
418      D.AddAttributes(AttrList, Loc);
419    }
420
421    ParseDeclarator(D);
422  }
423
424  return Actions.FinalizeDeclaratorGroup(CurScope, &DeclsInGroup[0],
425                                         DeclsInGroup.size());
426}
427
428/// ParseSpecifierQualifierList
429///        specifier-qualifier-list:
430///          type-specifier specifier-qualifier-list[opt]
431///          type-qualifier specifier-qualifier-list[opt]
432/// [GNU]    attributes     specifier-qualifier-list[opt]
433///
434void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
435  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
436  /// parse declaration-specifiers and complain about extra stuff.
437  ParseDeclarationSpecifiers(DS);
438
439  // Validate declspec for type-name.
440  unsigned Specs = DS.getParsedSpecifiers();
441  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
442    Diag(Tok, diag::err_typename_requires_specqual);
443
444  // Issue diagnostic and remove storage class if present.
445  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
446    if (DS.getStorageClassSpecLoc().isValid())
447      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
448    else
449      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
450    DS.ClearStorageClassSpecs();
451  }
452
453  // Issue diagnostic and remove function specfier if present.
454  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
455    if (DS.isInlineSpecified())
456      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
457    if (DS.isVirtualSpecified())
458      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
459    if (DS.isExplicitSpecified())
460      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
461    DS.ClearFunctionSpecs();
462  }
463}
464
465/// ParseDeclarationSpecifiers
466///       declaration-specifiers: [C99 6.7]
467///         storage-class-specifier declaration-specifiers[opt]
468///         type-specifier declaration-specifiers[opt]
469/// [C99]   function-specifier declaration-specifiers[opt]
470/// [GNU]   attributes declaration-specifiers[opt]
471///
472///       storage-class-specifier: [C99 6.7.1]
473///         'typedef'
474///         'extern'
475///         'static'
476///         'auto'
477///         'register'
478/// [C++]   'mutable'
479/// [GNU]   '__thread'
480///       function-specifier: [C99 6.7.4]
481/// [C99]   'inline'
482/// [C++]   'virtual'
483/// [C++]   'explicit'
484///
485void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
486                                        TemplateParameterLists *TemplateParams,
487                                        AccessSpecifier AS){
488  DS.SetRangeStart(Tok.getLocation());
489  while (1) {
490    int isInvalid = false;
491    const char *PrevSpec = 0;
492    SourceLocation Loc = Tok.getLocation();
493
494    switch (Tok.getKind()) {
495    default:
496    DoneWithDeclSpec:
497      // If this is not a declaration specifier token, we're done reading decl
498      // specifiers.  First verify that DeclSpec's are consistent.
499      DS.Finish(Diags, PP.getSourceManager(), getLang());
500      return;
501
502    case tok::coloncolon: // ::foo::bar
503      // Annotate C++ scope specifiers.  If we get one, loop.
504      if (TryAnnotateCXXScopeToken())
505        continue;
506      goto DoneWithDeclSpec;
507
508    case tok::annot_cxxscope: {
509      if (DS.hasTypeSpecifier())
510        goto DoneWithDeclSpec;
511
512      // We are looking for a qualified typename.
513      Token Next = NextToken();
514      if (Next.is(tok::annot_template_id) &&
515          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
516          ->Kind == TNK_Class_template) {
517        // We have a qualified template-id, e.g., N::A<int>
518        CXXScopeSpec SS;
519        ParseOptionalCXXScopeSpecifier(SS);
520        assert(Tok.is(tok::annot_template_id) &&
521               "ParseOptionalCXXScopeSpecifier not working");
522        AnnotateTemplateIdTokenAsType(&SS);
523        continue;
524      }
525
526      if (Next.isNot(tok::identifier))
527        goto DoneWithDeclSpec;
528
529      CXXScopeSpec SS;
530      SS.setScopeRep(Tok.getAnnotationValue());
531      SS.setRange(Tok.getAnnotationRange());
532
533      // If the next token is the name of the class type that the C++ scope
534      // denotes, followed by a '(', then this is a constructor declaration.
535      // We're done with the decl-specifiers.
536      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
537                                     CurScope, &SS) &&
538          GetLookAheadToken(2).is(tok::l_paren))
539        goto DoneWithDeclSpec;
540
541      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
542                                            Next.getLocation(), CurScope, &SS);
543
544      if (TypeRep == 0)
545        goto DoneWithDeclSpec;
546
547      ConsumeToken(); // The C++ scope.
548
549      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
550                                     TypeRep);
551      if (isInvalid)
552        break;
553
554      DS.SetRangeEnd(Tok.getLocation());
555      ConsumeToken(); // The typename.
556
557      continue;
558    }
559
560    case tok::annot_typename: {
561      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
562                                     Tok.getAnnotationValue());
563      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
564      ConsumeToken(); // The typename
565
566      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
567      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
568      // Objective-C interface.  If we don't have Objective-C or a '<', this is
569      // just a normal reference to a typedef name.
570      if (!Tok.is(tok::less) || !getLang().ObjC1)
571        continue;
572
573      SourceLocation EndProtoLoc;
574      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
575      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
576      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
577
578      DS.SetRangeEnd(EndProtoLoc);
579      continue;
580    }
581
582      // typedef-name
583    case tok::identifier: {
584      // In C++, check to see if this is a scope specifier like foo::bar::, if
585      // so handle it as such.  This is important for ctor parsing.
586      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
587        continue;
588
589      // This identifier can only be a typedef name if we haven't already seen
590      // a type-specifier.  Without this check we misparse:
591      //  typedef int X; struct Y { short X; };  as 'short int'.
592      if (DS.hasTypeSpecifier())
593        goto DoneWithDeclSpec;
594
595      // It has to be available as a typedef too!
596      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
597                                            Tok.getLocation(), CurScope);
598
599      if (TypeRep == 0)
600        goto DoneWithDeclSpec;
601
602      // C++: If the identifier is actually the name of the class type
603      // being defined and the next token is a '(', then this is a
604      // constructor declaration. We're done with the decl-specifiers
605      // and will treat this token as an identifier.
606      if (getLang().CPlusPlus &&
607          CurScope->isClassScope() &&
608          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
609          NextToken().getKind() == tok::l_paren)
610        goto DoneWithDeclSpec;
611
612      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
613                                     TypeRep);
614      if (isInvalid)
615        break;
616
617      DS.SetRangeEnd(Tok.getLocation());
618      ConsumeToken(); // The identifier
619
620      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
621      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
622      // Objective-C interface.  If we don't have Objective-C or a '<', this is
623      // just a normal reference to a typedef name.
624      if (!Tok.is(tok::less) || !getLang().ObjC1)
625        continue;
626
627      SourceLocation EndProtoLoc;
628      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
629      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
630      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
631
632      DS.SetRangeEnd(EndProtoLoc);
633
634      // Need to support trailing type qualifiers (e.g. "id<p> const").
635      // If a type specifier follows, it will be diagnosed elsewhere.
636      continue;
637    }
638
639      // type-name
640    case tok::annot_template_id: {
641      TemplateIdAnnotation *TemplateId
642        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
643      if (TemplateId->Kind != TNK_Class_template) {
644        // This template-id does not refer to a type name, so we're
645        // done with the type-specifiers.
646        goto DoneWithDeclSpec;
647      }
648
649      // Turn the template-id annotation token into a type annotation
650      // token, then try again to parse it as a type-specifier.
651      if (AnnotateTemplateIdTokenAsType())
652        DS.SetTypeSpecError();
653
654      continue;
655    }
656
657    // GNU attributes support.
658    case tok::kw___attribute:
659      DS.AddAttributes(ParseAttributes());
660      continue;
661
662    // Microsoft declspec support.
663    case tok::kw___declspec:
664      if (!PP.getLangOptions().Microsoft)
665        goto DoneWithDeclSpec;
666      FuzzyParseMicrosoftDeclSpec();
667      continue;
668
669    // Microsoft single token adornments.
670    case tok::kw___forceinline:
671    case tok::kw___w64:
672    case tok::kw___cdecl:
673    case tok::kw___stdcall:
674    case tok::kw___fastcall:
675      if (!PP.getLangOptions().Microsoft)
676        goto DoneWithDeclSpec;
677      // Just ignore it.
678      break;
679
680    // storage-class-specifier
681    case tok::kw_typedef:
682      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
683      break;
684    case tok::kw_extern:
685      if (DS.isThreadSpecified())
686        Diag(Tok, diag::ext_thread_before) << "extern";
687      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
688      break;
689    case tok::kw___private_extern__:
690      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
691                                         PrevSpec);
692      break;
693    case tok::kw_static:
694      if (DS.isThreadSpecified())
695        Diag(Tok, diag::ext_thread_before) << "static";
696      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
697      break;
698    case tok::kw_auto:
699      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
700      break;
701    case tok::kw_register:
702      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
703      break;
704    case tok::kw_mutable:
705      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
706      break;
707    case tok::kw___thread:
708      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
709      break;
710
711      continue;
712
713    // function-specifier
714    case tok::kw_inline:
715      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
716      break;
717    case tok::kw_virtual:
718      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
719      break;
720    case tok::kw_explicit:
721      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
722      break;
723
724    // type-specifier
725    case tok::kw_short:
726      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
727      break;
728    case tok::kw_long:
729      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
730        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
731      else
732        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
733      break;
734    case tok::kw_signed:
735      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
736      break;
737    case tok::kw_unsigned:
738      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
739      break;
740    case tok::kw__Complex:
741      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
742      break;
743    case tok::kw__Imaginary:
744      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
745      break;
746    case tok::kw_void:
747      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
748      break;
749    case tok::kw_char:
750      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
751      break;
752    case tok::kw_int:
753      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
754      break;
755    case tok::kw_float:
756      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
757      break;
758    case tok::kw_double:
759      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
760      break;
761    case tok::kw_wchar_t:
762      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
763      break;
764    case tok::kw_bool:
765    case tok::kw__Bool:
766      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
767      break;
768    case tok::kw__Decimal32:
769      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
770      break;
771    case tok::kw__Decimal64:
772      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
773      break;
774    case tok::kw__Decimal128:
775      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
776      break;
777
778    // class-specifier:
779    case tok::kw_class:
780    case tok::kw_struct:
781    case tok::kw_union:
782      ParseClassSpecifier(DS, TemplateParams, AS);
783      continue;
784
785    // enum-specifier:
786    case tok::kw_enum:
787      ParseEnumSpecifier(DS, AS);
788      continue;
789
790    // cv-qualifier:
791    case tok::kw_const:
792      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
793      break;
794    case tok::kw_volatile:
795      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
796                                 getLang())*2;
797      break;
798    case tok::kw_restrict:
799      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
800                                 getLang())*2;
801      break;
802
803    // C++ typename-specifier:
804    case tok::kw_typename:
805      if (TryAnnotateTypeOrScopeToken())
806        continue;
807      break;
808
809    // GNU typeof support.
810    case tok::kw_typeof:
811      ParseTypeofSpecifier(DS);
812      continue;
813
814    case tok::less:
815      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
816      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
817      // but we support it.
818      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
819        goto DoneWithDeclSpec;
820
821      {
822        SourceLocation EndProtoLoc;
823        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
824        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
825        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
826        DS.SetRangeEnd(EndProtoLoc);
827
828        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
829          << SourceRange(Loc, EndProtoLoc);
830        // Need to support trailing type qualifiers (e.g. "id<p> const").
831        // If a type specifier follows, it will be diagnosed elsewhere.
832        continue;
833      }
834    }
835    // If the specifier combination wasn't legal, issue a diagnostic.
836    if (isInvalid) {
837      assert(PrevSpec && "Method did not return previous specifier!");
838      // Pick between error or extwarn.
839      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
840                                       : diag::ext_duplicate_declspec;
841      Diag(Tok, DiagID) << PrevSpec;
842    }
843    DS.SetRangeEnd(Tok.getLocation());
844    ConsumeToken();
845  }
846}
847
848/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
849/// primarily follow the C++ grammar with additions for C99 and GNU,
850/// which together subsume the C grammar. Note that the C++
851/// type-specifier also includes the C type-qualifier (for const,
852/// volatile, and C99 restrict). Returns true if a type-specifier was
853/// found (and parsed), false otherwise.
854///
855///       type-specifier: [C++ 7.1.5]
856///         simple-type-specifier
857///         class-specifier
858///         enum-specifier
859///         elaborated-type-specifier  [TODO]
860///         cv-qualifier
861///
862///       cv-qualifier: [C++ 7.1.5.1]
863///         'const'
864///         'volatile'
865/// [C99]   'restrict'
866///
867///       simple-type-specifier: [ C++ 7.1.5.2]
868///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
869///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
870///         'char'
871///         'wchar_t'
872///         'bool'
873///         'short'
874///         'int'
875///         'long'
876///         'signed'
877///         'unsigned'
878///         'float'
879///         'double'
880///         'void'
881/// [C99]   '_Bool'
882/// [C99]   '_Complex'
883/// [C99]   '_Imaginary'  // Removed in TC2?
884/// [GNU]   '_Decimal32'
885/// [GNU]   '_Decimal64'
886/// [GNU]   '_Decimal128'
887/// [GNU]   typeof-specifier
888/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
889/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
890bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
891                                        const char *&PrevSpec,
892                                        TemplateParameterLists *TemplateParams){
893  SourceLocation Loc = Tok.getLocation();
894
895  switch (Tok.getKind()) {
896  case tok::identifier:   // foo::bar
897  case tok::kw_typename:  // typename foo::bar
898    // Annotate typenames and C++ scope specifiers.  If we get one, just
899    // recurse to handle whatever we get.
900    if (TryAnnotateTypeOrScopeToken())
901      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
902    // Otherwise, not a type specifier.
903    return false;
904  case tok::coloncolon:   // ::foo::bar
905    if (NextToken().is(tok::kw_new) ||    // ::new
906        NextToken().is(tok::kw_delete))   // ::delete
907      return false;
908
909    // Annotate typenames and C++ scope specifiers.  If we get one, just
910    // recurse to handle whatever we get.
911    if (TryAnnotateTypeOrScopeToken())
912      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
913    // Otherwise, not a type specifier.
914    return false;
915
916  // simple-type-specifier:
917  case tok::annot_typename: {
918    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
919                                   Tok.getAnnotationValue());
920    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
921    ConsumeToken(); // The typename
922
923    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
924    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
925    // Objective-C interface.  If we don't have Objective-C or a '<', this is
926    // just a normal reference to a typedef name.
927    if (!Tok.is(tok::less) || !getLang().ObjC1)
928      return true;
929
930    SourceLocation EndProtoLoc;
931    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
932    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
933    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
934
935    DS.SetRangeEnd(EndProtoLoc);
936    return true;
937  }
938
939  case tok::kw_short:
940    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
941    break;
942  case tok::kw_long:
943    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
944      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
945    else
946      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
947    break;
948  case tok::kw_signed:
949    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
950    break;
951  case tok::kw_unsigned:
952    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
953    break;
954  case tok::kw__Complex:
955    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
956    break;
957  case tok::kw__Imaginary:
958    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
959    break;
960  case tok::kw_void:
961    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
962    break;
963  case tok::kw_char:
964    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
965    break;
966  case tok::kw_int:
967    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
968    break;
969  case tok::kw_float:
970    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
971    break;
972  case tok::kw_double:
973    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
974    break;
975  case tok::kw_wchar_t:
976    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
977    break;
978  case tok::kw_bool:
979  case tok::kw__Bool:
980    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
981    break;
982  case tok::kw__Decimal32:
983    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
984    break;
985  case tok::kw__Decimal64:
986    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
987    break;
988  case tok::kw__Decimal128:
989    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
990    break;
991
992  // class-specifier:
993  case tok::kw_class:
994  case tok::kw_struct:
995  case tok::kw_union:
996    ParseClassSpecifier(DS, TemplateParams);
997    return true;
998
999  // enum-specifier:
1000  case tok::kw_enum:
1001    ParseEnumSpecifier(DS);
1002    return true;
1003
1004  // cv-qualifier:
1005  case tok::kw_const:
1006    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1007                               getLang())*2;
1008    break;
1009  case tok::kw_volatile:
1010    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1011                               getLang())*2;
1012    break;
1013  case tok::kw_restrict:
1014    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1015                               getLang())*2;
1016    break;
1017
1018  // GNU typeof support.
1019  case tok::kw_typeof:
1020    ParseTypeofSpecifier(DS);
1021    return true;
1022
1023  case tok::kw___cdecl:
1024  case tok::kw___stdcall:
1025  case tok::kw___fastcall:
1026    if (!PP.getLangOptions().Microsoft) return false;
1027    ConsumeToken();
1028    return true;
1029
1030  default:
1031    // Not a type-specifier; do nothing.
1032    return false;
1033  }
1034
1035  // If the specifier combination wasn't legal, issue a diagnostic.
1036  if (isInvalid) {
1037    assert(PrevSpec && "Method did not return previous specifier!");
1038    // Pick between error or extwarn.
1039    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1040                                     : diag::ext_duplicate_declspec;
1041    Diag(Tok, DiagID) << PrevSpec;
1042  }
1043  DS.SetRangeEnd(Tok.getLocation());
1044  ConsumeToken(); // whatever we parsed above.
1045  return true;
1046}
1047
1048/// ParseStructDeclaration - Parse a struct declaration without the terminating
1049/// semicolon.
1050///
1051///       struct-declaration:
1052///         specifier-qualifier-list struct-declarator-list
1053/// [GNU]   __extension__ struct-declaration
1054/// [GNU]   specifier-qualifier-list
1055///       struct-declarator-list:
1056///         struct-declarator
1057///         struct-declarator-list ',' struct-declarator
1058/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1059///       struct-declarator:
1060///         declarator
1061/// [GNU]   declarator attributes[opt]
1062///         declarator[opt] ':' constant-expression
1063/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1064///
1065void Parser::
1066ParseStructDeclaration(DeclSpec &DS,
1067                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1068  if (Tok.is(tok::kw___extension__)) {
1069    // __extension__ silences extension warnings in the subexpression.
1070    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1071    ConsumeToken();
1072    return ParseStructDeclaration(DS, Fields);
1073  }
1074
1075  // Parse the common specifier-qualifiers-list piece.
1076  SourceLocation DSStart = Tok.getLocation();
1077  ParseSpecifierQualifierList(DS);
1078
1079  // If there are no declarators, this is a free-standing declaration
1080  // specifier. Let the actions module cope with it.
1081  if (Tok.is(tok::semi)) {
1082    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1083    return;
1084  }
1085
1086  // Read struct-declarators until we find the semicolon.
1087  Fields.push_back(FieldDeclarator(DS));
1088  while (1) {
1089    FieldDeclarator &DeclaratorInfo = Fields.back();
1090
1091    /// struct-declarator: declarator
1092    /// struct-declarator: declarator[opt] ':' constant-expression
1093    if (Tok.isNot(tok::colon))
1094      ParseDeclarator(DeclaratorInfo.D);
1095
1096    if (Tok.is(tok::colon)) {
1097      ConsumeToken();
1098      OwningExprResult Res(ParseConstantExpression());
1099      if (Res.isInvalid())
1100        SkipUntil(tok::semi, true, true);
1101      else
1102        DeclaratorInfo.BitfieldSize = Res.release();
1103    }
1104
1105    // If attributes exist after the declarator, parse them.
1106    if (Tok.is(tok::kw___attribute)) {
1107      SourceLocation Loc;
1108      AttributeList *AttrList = ParseAttributes(&Loc);
1109      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1110    }
1111
1112    // If we don't have a comma, it is either the end of the list (a ';')
1113    // or an error, bail out.
1114    if (Tok.isNot(tok::comma))
1115      return;
1116
1117    // Consume the comma.
1118    ConsumeToken();
1119
1120    // Parse the next declarator.
1121    Fields.push_back(FieldDeclarator(DS));
1122
1123    // Attributes are only allowed on the second declarator.
1124    if (Tok.is(tok::kw___attribute)) {
1125      SourceLocation Loc;
1126      AttributeList *AttrList = ParseAttributes(&Loc);
1127      Fields.back().D.AddAttributes(AttrList, Loc);
1128    }
1129  }
1130}
1131
1132/// ParseStructUnionBody
1133///       struct-contents:
1134///         struct-declaration-list
1135/// [EXT]   empty
1136/// [GNU]   "struct-declaration-list" without terminatoring ';'
1137///       struct-declaration-list:
1138///         struct-declaration
1139///         struct-declaration-list struct-declaration
1140/// [OBC]   '@' 'defs' '(' class-name ')'
1141///
1142void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1143                                  unsigned TagType, DeclPtrTy TagDecl) {
1144  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1145                                        PP.getSourceManager(),
1146                                        "parsing struct/union body");
1147
1148  SourceLocation LBraceLoc = ConsumeBrace();
1149
1150  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1151  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1152
1153  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1154  // C++.
1155  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1156    Diag(Tok, diag::ext_empty_struct_union_enum)
1157      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1158
1159  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1160  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1161
1162  // While we still have something to read, read the declarations in the struct.
1163  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1164    // Each iteration of this loop reads one struct-declaration.
1165
1166    // Check for extraneous top-level semicolon.
1167    if (Tok.is(tok::semi)) {
1168      Diag(Tok, diag::ext_extra_struct_semi);
1169      ConsumeToken();
1170      continue;
1171    }
1172
1173    // Parse all the comma separated declarators.
1174    DeclSpec DS;
1175    FieldDeclarators.clear();
1176    if (!Tok.is(tok::at)) {
1177      ParseStructDeclaration(DS, FieldDeclarators);
1178
1179      // Convert them all to fields.
1180      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1181        FieldDeclarator &FD = FieldDeclarators[i];
1182        // Install the declarator into the current TagDecl.
1183        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1184                                             DS.getSourceRange().getBegin(),
1185                                             FD.D, FD.BitfieldSize);
1186        FieldDecls.push_back(Field);
1187      }
1188    } else { // Handle @defs
1189      ConsumeToken();
1190      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1191        Diag(Tok, diag::err_unexpected_at);
1192        SkipUntil(tok::semi, true, true);
1193        continue;
1194      }
1195      ConsumeToken();
1196      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1197      if (!Tok.is(tok::identifier)) {
1198        Diag(Tok, diag::err_expected_ident);
1199        SkipUntil(tok::semi, true, true);
1200        continue;
1201      }
1202      llvm::SmallVector<DeclPtrTy, 16> Fields;
1203      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1204                        Tok.getIdentifierInfo(), Fields);
1205      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1206      ConsumeToken();
1207      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1208    }
1209
1210    if (Tok.is(tok::semi)) {
1211      ConsumeToken();
1212    } else if (Tok.is(tok::r_brace)) {
1213      Diag(Tok, diag::ext_expected_semi_decl_list);
1214      break;
1215    } else {
1216      Diag(Tok, diag::err_expected_semi_decl_list);
1217      // Skip to end of block or statement
1218      SkipUntil(tok::r_brace, true, true);
1219    }
1220  }
1221
1222  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1223
1224  AttributeList *AttrList = 0;
1225  // If attributes exist after struct contents, parse them.
1226  if (Tok.is(tok::kw___attribute))
1227    AttrList = ParseAttributes();
1228
1229  Actions.ActOnFields(CurScope,
1230                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1231                      LBraceLoc, RBraceLoc,
1232                      AttrList);
1233  StructScope.Exit();
1234  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1235}
1236
1237
1238/// ParseEnumSpecifier
1239///       enum-specifier: [C99 6.7.2.2]
1240///         'enum' identifier[opt] '{' enumerator-list '}'
1241///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1242/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1243///                                                 '}' attributes[opt]
1244///         'enum' identifier
1245/// [GNU]   'enum' attributes[opt] identifier
1246///
1247/// [C++] elaborated-type-specifier:
1248/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1249///
1250void Parser::ParseEnumSpecifier(DeclSpec &DS, AccessSpecifier AS) {
1251  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1252  SourceLocation StartLoc = ConsumeToken();
1253
1254  // Parse the tag portion of this.
1255
1256  AttributeList *Attr = 0;
1257  // If attributes exist after tag, parse them.
1258  if (Tok.is(tok::kw___attribute))
1259    Attr = ParseAttributes();
1260
1261  CXXScopeSpec SS;
1262  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1263    if (Tok.isNot(tok::identifier)) {
1264      Diag(Tok, diag::err_expected_ident);
1265      if (Tok.isNot(tok::l_brace)) {
1266        // Has no name and is not a definition.
1267        // Skip the rest of this declarator, up until the comma or semicolon.
1268        SkipUntil(tok::comma, true);
1269        return;
1270      }
1271    }
1272  }
1273
1274  // Must have either 'enum name' or 'enum {...}'.
1275  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1276    Diag(Tok, diag::err_expected_ident_lbrace);
1277
1278    // Skip the rest of this declarator, up until the comma or semicolon.
1279    SkipUntil(tok::comma, true);
1280    return;
1281  }
1282
1283  // If an identifier is present, consume and remember it.
1284  IdentifierInfo *Name = 0;
1285  SourceLocation NameLoc;
1286  if (Tok.is(tok::identifier)) {
1287    Name = Tok.getIdentifierInfo();
1288    NameLoc = ConsumeToken();
1289  }
1290
1291  // There are three options here.  If we have 'enum foo;', then this is a
1292  // forward declaration.  If we have 'enum foo {...' then this is a
1293  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1294  //
1295  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1296  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1297  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1298  //
1299  Action::TagKind TK;
1300  if (Tok.is(tok::l_brace))
1301    TK = Action::TK_Definition;
1302  else if (Tok.is(tok::semi))
1303    TK = Action::TK_Declaration;
1304  else
1305    TK = Action::TK_Reference;
1306  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK,
1307                                       StartLoc, SS, Name, NameLoc, Attr, AS);
1308
1309  if (Tok.is(tok::l_brace))
1310    ParseEnumBody(StartLoc, TagDecl);
1311
1312  // TODO: semantic analysis on the declspec for enums.
1313  const char *PrevSpec = 0;
1314  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec,
1315                         TagDecl.getAs<void>()))
1316    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1317}
1318
1319/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1320///       enumerator-list:
1321///         enumerator
1322///         enumerator-list ',' enumerator
1323///       enumerator:
1324///         enumeration-constant
1325///         enumeration-constant '=' constant-expression
1326///       enumeration-constant:
1327///         identifier
1328///
1329void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1330  // Enter the scope of the enum body and start the definition.
1331  ParseScope EnumScope(this, Scope::DeclScope);
1332  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1333
1334  SourceLocation LBraceLoc = ConsumeBrace();
1335
1336  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1337  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1338    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1339
1340  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1341
1342  DeclPtrTy LastEnumConstDecl;
1343
1344  // Parse the enumerator-list.
1345  while (Tok.is(tok::identifier)) {
1346    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1347    SourceLocation IdentLoc = ConsumeToken();
1348
1349    SourceLocation EqualLoc;
1350    OwningExprResult AssignedVal(Actions);
1351    if (Tok.is(tok::equal)) {
1352      EqualLoc = ConsumeToken();
1353      AssignedVal = ParseConstantExpression();
1354      if (AssignedVal.isInvalid())
1355        SkipUntil(tok::comma, tok::r_brace, true, true);
1356    }
1357
1358    // Install the enumerator constant into EnumDecl.
1359    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1360                                                        LastEnumConstDecl,
1361                                                        IdentLoc, Ident,
1362                                                        EqualLoc,
1363                                                        AssignedVal.release());
1364    EnumConstantDecls.push_back(EnumConstDecl);
1365    LastEnumConstDecl = EnumConstDecl;
1366
1367    if (Tok.isNot(tok::comma))
1368      break;
1369    SourceLocation CommaLoc = ConsumeToken();
1370
1371    if (Tok.isNot(tok::identifier) && !getLang().C99)
1372      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1373  }
1374
1375  // Eat the }.
1376  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1377
1378  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1379                        EnumConstantDecls.size());
1380
1381  Action::AttrTy *AttrList = 0;
1382  // If attributes exist after the identifier list, parse them.
1383  if (Tok.is(tok::kw___attribute))
1384    AttrList = ParseAttributes(); // FIXME: where do they do?
1385
1386  EnumScope.Exit();
1387  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1388}
1389
1390/// isTypeSpecifierQualifier - Return true if the current token could be the
1391/// start of a type-qualifier-list.
1392bool Parser::isTypeQualifier() const {
1393  switch (Tok.getKind()) {
1394  default: return false;
1395    // type-qualifier
1396  case tok::kw_const:
1397  case tok::kw_volatile:
1398  case tok::kw_restrict:
1399    return true;
1400  }
1401}
1402
1403/// isTypeSpecifierQualifier - Return true if the current token could be the
1404/// start of a specifier-qualifier-list.
1405bool Parser::isTypeSpecifierQualifier() {
1406  switch (Tok.getKind()) {
1407  default: return false;
1408
1409  case tok::identifier:   // foo::bar
1410  case tok::kw_typename:  // typename T::type
1411    // Annotate typenames and C++ scope specifiers.  If we get one, just
1412    // recurse to handle whatever we get.
1413    if (TryAnnotateTypeOrScopeToken())
1414      return isTypeSpecifierQualifier();
1415    // Otherwise, not a type specifier.
1416    return false;
1417
1418  case tok::coloncolon:   // ::foo::bar
1419    if (NextToken().is(tok::kw_new) ||    // ::new
1420        NextToken().is(tok::kw_delete))   // ::delete
1421      return false;
1422
1423    // Annotate typenames and C++ scope specifiers.  If we get one, just
1424    // recurse to handle whatever we get.
1425    if (TryAnnotateTypeOrScopeToken())
1426      return isTypeSpecifierQualifier();
1427    // Otherwise, not a type specifier.
1428    return false;
1429
1430    // GNU attributes support.
1431  case tok::kw___attribute:
1432    // GNU typeof support.
1433  case tok::kw_typeof:
1434
1435    // type-specifiers
1436  case tok::kw_short:
1437  case tok::kw_long:
1438  case tok::kw_signed:
1439  case tok::kw_unsigned:
1440  case tok::kw__Complex:
1441  case tok::kw__Imaginary:
1442  case tok::kw_void:
1443  case tok::kw_char:
1444  case tok::kw_wchar_t:
1445  case tok::kw_int:
1446  case tok::kw_float:
1447  case tok::kw_double:
1448  case tok::kw_bool:
1449  case tok::kw__Bool:
1450  case tok::kw__Decimal32:
1451  case tok::kw__Decimal64:
1452  case tok::kw__Decimal128:
1453
1454    // struct-or-union-specifier (C99) or class-specifier (C++)
1455  case tok::kw_class:
1456  case tok::kw_struct:
1457  case tok::kw_union:
1458    // enum-specifier
1459  case tok::kw_enum:
1460
1461    // type-qualifier
1462  case tok::kw_const:
1463  case tok::kw_volatile:
1464  case tok::kw_restrict:
1465
1466    // typedef-name
1467  case tok::annot_typename:
1468    return true;
1469
1470    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1471  case tok::less:
1472    return getLang().ObjC1;
1473
1474  case tok::kw___cdecl:
1475  case tok::kw___stdcall:
1476  case tok::kw___fastcall:
1477    return PP.getLangOptions().Microsoft;
1478  }
1479}
1480
1481/// isDeclarationSpecifier() - Return true if the current token is part of a
1482/// declaration specifier.
1483bool Parser::isDeclarationSpecifier() {
1484  switch (Tok.getKind()) {
1485  default: return false;
1486
1487  case tok::identifier:   // foo::bar
1488    // Unfortunate hack to support "Class.factoryMethod" notation.
1489    if (getLang().ObjC1 && NextToken().is(tok::period))
1490      return false;
1491    // Fall through
1492
1493  case tok::kw_typename: // typename T::type
1494    // Annotate typenames and C++ scope specifiers.  If we get one, just
1495    // recurse to handle whatever we get.
1496    if (TryAnnotateTypeOrScopeToken())
1497      return isDeclarationSpecifier();
1498    // Otherwise, not a declaration specifier.
1499    return false;
1500  case tok::coloncolon:   // ::foo::bar
1501    if (NextToken().is(tok::kw_new) ||    // ::new
1502        NextToken().is(tok::kw_delete))   // ::delete
1503      return false;
1504
1505    // Annotate typenames and C++ scope specifiers.  If we get one, just
1506    // recurse to handle whatever we get.
1507    if (TryAnnotateTypeOrScopeToken())
1508      return isDeclarationSpecifier();
1509    // Otherwise, not a declaration specifier.
1510    return false;
1511
1512    // storage-class-specifier
1513  case tok::kw_typedef:
1514  case tok::kw_extern:
1515  case tok::kw___private_extern__:
1516  case tok::kw_static:
1517  case tok::kw_auto:
1518  case tok::kw_register:
1519  case tok::kw___thread:
1520
1521    // type-specifiers
1522  case tok::kw_short:
1523  case tok::kw_long:
1524  case tok::kw_signed:
1525  case tok::kw_unsigned:
1526  case tok::kw__Complex:
1527  case tok::kw__Imaginary:
1528  case tok::kw_void:
1529  case tok::kw_char:
1530  case tok::kw_wchar_t:
1531  case tok::kw_int:
1532  case tok::kw_float:
1533  case tok::kw_double:
1534  case tok::kw_bool:
1535  case tok::kw__Bool:
1536  case tok::kw__Decimal32:
1537  case tok::kw__Decimal64:
1538  case tok::kw__Decimal128:
1539
1540    // struct-or-union-specifier (C99) or class-specifier (C++)
1541  case tok::kw_class:
1542  case tok::kw_struct:
1543  case tok::kw_union:
1544    // enum-specifier
1545  case tok::kw_enum:
1546
1547    // type-qualifier
1548  case tok::kw_const:
1549  case tok::kw_volatile:
1550  case tok::kw_restrict:
1551
1552    // function-specifier
1553  case tok::kw_inline:
1554  case tok::kw_virtual:
1555  case tok::kw_explicit:
1556
1557    // typedef-name
1558  case tok::annot_typename:
1559
1560    // GNU typeof support.
1561  case tok::kw_typeof:
1562
1563    // GNU attributes.
1564  case tok::kw___attribute:
1565    return true;
1566
1567    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1568  case tok::less:
1569    return getLang().ObjC1;
1570
1571  case tok::kw___declspec:
1572  case tok::kw___cdecl:
1573  case tok::kw___stdcall:
1574  case tok::kw___fastcall:
1575    return PP.getLangOptions().Microsoft;
1576  }
1577}
1578
1579
1580/// ParseTypeQualifierListOpt
1581///       type-qualifier-list: [C99 6.7.5]
1582///         type-qualifier
1583/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1584///         type-qualifier-list type-qualifier
1585/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1586///
1587void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1588  while (1) {
1589    int isInvalid = false;
1590    const char *PrevSpec = 0;
1591    SourceLocation Loc = Tok.getLocation();
1592
1593    switch (Tok.getKind()) {
1594    case tok::kw_const:
1595      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1596                                 getLang())*2;
1597      break;
1598    case tok::kw_volatile:
1599      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1600                                 getLang())*2;
1601      break;
1602    case tok::kw_restrict:
1603      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1604                                 getLang())*2;
1605      break;
1606    case tok::kw___ptr64:
1607    case tok::kw___cdecl:
1608    case tok::kw___stdcall:
1609    case tok::kw___fastcall:
1610      if (!PP.getLangOptions().Microsoft)
1611        goto DoneWithTypeQuals;
1612      // Just ignore it.
1613      break;
1614    case tok::kw___attribute:
1615      if (AttributesAllowed) {
1616        DS.AddAttributes(ParseAttributes());
1617        continue; // do *not* consume the next token!
1618      }
1619      // otherwise, FALL THROUGH!
1620    default:
1621      DoneWithTypeQuals:
1622      // If this is not a type-qualifier token, we're done reading type
1623      // qualifiers.  First verify that DeclSpec's are consistent.
1624      DS.Finish(Diags, PP.getSourceManager(), getLang());
1625      return;
1626    }
1627
1628    // If the specifier combination wasn't legal, issue a diagnostic.
1629    if (isInvalid) {
1630      assert(PrevSpec && "Method did not return previous specifier!");
1631      // Pick between error or extwarn.
1632      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1633                                      : diag::ext_duplicate_declspec;
1634      Diag(Tok, DiagID) << PrevSpec;
1635    }
1636    ConsumeToken();
1637  }
1638}
1639
1640
1641/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1642///
1643void Parser::ParseDeclarator(Declarator &D) {
1644  /// This implements the 'declarator' production in the C grammar, then checks
1645  /// for well-formedness and issues diagnostics.
1646  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1647}
1648
1649/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1650/// is parsed by the function passed to it. Pass null, and the direct-declarator
1651/// isn't parsed at all, making this function effectively parse the C++
1652/// ptr-operator production.
1653///
1654///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1655/// [C]     pointer[opt] direct-declarator
1656/// [C++]   direct-declarator
1657/// [C++]   ptr-operator declarator
1658///
1659///       pointer: [C99 6.7.5]
1660///         '*' type-qualifier-list[opt]
1661///         '*' type-qualifier-list[opt] pointer
1662///
1663///       ptr-operator:
1664///         '*' cv-qualifier-seq[opt]
1665///         '&'
1666/// [C++0x] '&&'
1667/// [GNU]   '&' restrict[opt] attributes[opt]
1668/// [GNU?]  '&&' restrict[opt] attributes[opt]
1669///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1670void Parser::ParseDeclaratorInternal(Declarator &D,
1671                                     DirectDeclParseFunction DirectDeclParser) {
1672
1673  // C++ member pointers start with a '::' or a nested-name.
1674  // Member pointers get special handling, since there's no place for the
1675  // scope spec in the generic path below.
1676  if (getLang().CPlusPlus &&
1677      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1678       Tok.is(tok::annot_cxxscope))) {
1679    CXXScopeSpec SS;
1680    if (ParseOptionalCXXScopeSpecifier(SS)) {
1681      if(Tok.isNot(tok::star)) {
1682        // The scope spec really belongs to the direct-declarator.
1683        D.getCXXScopeSpec() = SS;
1684        if (DirectDeclParser)
1685          (this->*DirectDeclParser)(D);
1686        return;
1687      }
1688
1689      SourceLocation Loc = ConsumeToken();
1690      D.SetRangeEnd(Loc);
1691      DeclSpec DS;
1692      ParseTypeQualifierListOpt(DS);
1693      D.ExtendWithDeclSpec(DS);
1694
1695      // Recurse to parse whatever is left.
1696      ParseDeclaratorInternal(D, DirectDeclParser);
1697
1698      // Sema will have to catch (syntactically invalid) pointers into global
1699      // scope. It has to catch pointers into namespace scope anyway.
1700      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1701                                                      Loc, DS.TakeAttributes()),
1702                    /* Don't replace range end. */SourceLocation());
1703      return;
1704    }
1705  }
1706
1707  tok::TokenKind Kind = Tok.getKind();
1708  // Not a pointer, C++ reference, or block.
1709  if (Kind != tok::star && Kind != tok::caret &&
1710      (Kind != tok::amp || !getLang().CPlusPlus) &&
1711      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1712      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1713    if (DirectDeclParser)
1714      (this->*DirectDeclParser)(D);
1715    return;
1716  }
1717
1718  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1719  // '&&' -> rvalue reference
1720  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1721  D.SetRangeEnd(Loc);
1722
1723  if (Kind == tok::star || Kind == tok::caret) {
1724    // Is a pointer.
1725    DeclSpec DS;
1726
1727    ParseTypeQualifierListOpt(DS);
1728    D.ExtendWithDeclSpec(DS);
1729
1730    // Recursively parse the declarator.
1731    ParseDeclaratorInternal(D, DirectDeclParser);
1732    if (Kind == tok::star)
1733      // Remember that we parsed a pointer type, and remember the type-quals.
1734      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1735                                                DS.TakeAttributes()),
1736                    SourceLocation());
1737    else
1738      // Remember that we parsed a Block type, and remember the type-quals.
1739      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1740                                                     Loc),
1741                    SourceLocation());
1742  } else {
1743    // Is a reference
1744    DeclSpec DS;
1745
1746    // Complain about rvalue references in C++03, but then go on and build
1747    // the declarator.
1748    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1749      Diag(Loc, diag::err_rvalue_reference);
1750
1751    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1752    // cv-qualifiers are introduced through the use of a typedef or of a
1753    // template type argument, in which case the cv-qualifiers are ignored.
1754    //
1755    // [GNU] Retricted references are allowed.
1756    // [GNU] Attributes on references are allowed.
1757    ParseTypeQualifierListOpt(DS);
1758    D.ExtendWithDeclSpec(DS);
1759
1760    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1761      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1762        Diag(DS.getConstSpecLoc(),
1763             diag::err_invalid_reference_qualifier_application) << "const";
1764      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1765        Diag(DS.getVolatileSpecLoc(),
1766             diag::err_invalid_reference_qualifier_application) << "volatile";
1767    }
1768
1769    // Recursively parse the declarator.
1770    ParseDeclaratorInternal(D, DirectDeclParser);
1771
1772    if (D.getNumTypeObjects() > 0) {
1773      // C++ [dcl.ref]p4: There shall be no references to references.
1774      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1775      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1776        if (const IdentifierInfo *II = D.getIdentifier())
1777          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1778           << II;
1779        else
1780          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1781            << "type name";
1782
1783        // Once we've complained about the reference-to-reference, we
1784        // can go ahead and build the (technically ill-formed)
1785        // declarator: reference collapsing will take care of it.
1786      }
1787    }
1788
1789    // Remember that we parsed a reference type. It doesn't have type-quals.
1790    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1791                                                DS.TakeAttributes(),
1792                                                Kind == tok::amp),
1793                  SourceLocation());
1794  }
1795}
1796
1797/// ParseDirectDeclarator
1798///       direct-declarator: [C99 6.7.5]
1799/// [C99]   identifier
1800///         '(' declarator ')'
1801/// [GNU]   '(' attributes declarator ')'
1802/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1803/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1804/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1805/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1806/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1807///         direct-declarator '(' parameter-type-list ')'
1808///         direct-declarator '(' identifier-list[opt] ')'
1809/// [GNU]   direct-declarator '(' parameter-forward-declarations
1810///                    parameter-type-list[opt] ')'
1811/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1812///                    cv-qualifier-seq[opt] exception-specification[opt]
1813/// [C++]   declarator-id
1814///
1815///       declarator-id: [C++ 8]
1816///         id-expression
1817///         '::'[opt] nested-name-specifier[opt] type-name
1818///
1819///       id-expression: [C++ 5.1]
1820///         unqualified-id
1821///         qualified-id            [TODO]
1822///
1823///       unqualified-id: [C++ 5.1]
1824///         identifier
1825///         operator-function-id
1826///         conversion-function-id  [TODO]
1827///          '~' class-name
1828///         template-id
1829///
1830void Parser::ParseDirectDeclarator(Declarator &D) {
1831  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1832
1833  if (getLang().CPlusPlus) {
1834    if (D.mayHaveIdentifier()) {
1835      // ParseDeclaratorInternal might already have parsed the scope.
1836      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1837        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1838      if (afterCXXScope) {
1839        // Change the declaration context for name lookup, until this function
1840        // is exited (and the declarator has been parsed).
1841        DeclScopeObj.EnterDeclaratorScope();
1842      }
1843
1844      if (Tok.is(tok::identifier)) {
1845        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1846
1847        // If this identifier is the name of the current class, it's a
1848        // constructor name.
1849        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1850          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1851                                               Tok.getLocation(), CurScope),
1852                           Tok.getLocation());
1853        // This is a normal identifier.
1854        } else
1855          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1856        ConsumeToken();
1857        goto PastIdentifier;
1858      } else if (Tok.is(tok::annot_template_id)) {
1859        TemplateIdAnnotation *TemplateId
1860          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1861
1862        // FIXME: Could this template-id name a constructor?
1863
1864        // FIXME: This is an egregious hack, where we silently ignore
1865        // the specialization (which should be a function template
1866        // specialization name) and use the name instead. This hack
1867        // will go away when we have support for function
1868        // specializations.
1869        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1870        TemplateId->Destroy();
1871        ConsumeToken();
1872        goto PastIdentifier;
1873      } else if (Tok.is(tok::kw_operator)) {
1874        SourceLocation OperatorLoc = Tok.getLocation();
1875        SourceLocation EndLoc;
1876
1877        // First try the name of an overloaded operator
1878        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1879          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1880        } else {
1881          // This must be a conversion function (C++ [class.conv.fct]).
1882          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1883            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1884          else {
1885            D.SetIdentifier(0, Tok.getLocation());
1886          }
1887        }
1888        goto PastIdentifier;
1889      } else if (Tok.is(tok::tilde)) {
1890        // This should be a C++ destructor.
1891        SourceLocation TildeLoc = ConsumeToken();
1892        if (Tok.is(tok::identifier)) {
1893          // FIXME: Inaccurate.
1894          SourceLocation NameLoc = Tok.getLocation();
1895          SourceLocation EndLoc;
1896          if (TypeTy *Type = ParseClassName(EndLoc)) {
1897            D.setDestructor(Type, TildeLoc, NameLoc);
1898          } else {
1899            D.SetIdentifier(0, TildeLoc);
1900          }
1901        } else {
1902          Diag(Tok, diag::err_expected_class_name);
1903          D.SetIdentifier(0, TildeLoc);
1904        }
1905        goto PastIdentifier;
1906      }
1907
1908      // If we reached this point, token is not identifier and not '~'.
1909
1910      if (afterCXXScope) {
1911        Diag(Tok, diag::err_expected_unqualified_id);
1912        D.SetIdentifier(0, Tok.getLocation());
1913        D.setInvalidType(true);
1914        goto PastIdentifier;
1915      }
1916    }
1917  }
1918
1919  // If we reached this point, we are either in C/ObjC or the token didn't
1920  // satisfy any of the C++-specific checks.
1921  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1922    assert(!getLang().CPlusPlus &&
1923           "There's a C++-specific check for tok::identifier above");
1924    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1925    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1926    ConsumeToken();
1927  } else if (Tok.is(tok::l_paren)) {
1928    // direct-declarator: '(' declarator ')'
1929    // direct-declarator: '(' attributes declarator ')'
1930    // Example: 'char (*X)'   or 'int (*XX)(void)'
1931    ParseParenDeclarator(D);
1932  } else if (D.mayOmitIdentifier()) {
1933    // This could be something simple like "int" (in which case the declarator
1934    // portion is empty), if an abstract-declarator is allowed.
1935    D.SetIdentifier(0, Tok.getLocation());
1936  } else {
1937    if (D.getContext() == Declarator::MemberContext)
1938      Diag(Tok, diag::err_expected_member_name_or_semi)
1939        << D.getDeclSpec().getSourceRange();
1940    else if (getLang().CPlusPlus)
1941      Diag(Tok, diag::err_expected_unqualified_id);
1942    else
1943      Diag(Tok, diag::err_expected_ident_lparen);
1944    D.SetIdentifier(0, Tok.getLocation());
1945    D.setInvalidType(true);
1946  }
1947
1948 PastIdentifier:
1949  assert(D.isPastIdentifier() &&
1950         "Haven't past the location of the identifier yet?");
1951
1952  while (1) {
1953    if (Tok.is(tok::l_paren)) {
1954      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1955      // In such a case, check if we actually have a function declarator; if it
1956      // is not, the declarator has been fully parsed.
1957      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1958        // When not in file scope, warn for ambiguous function declarators, just
1959        // in case the author intended it as a variable definition.
1960        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1961        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1962          break;
1963      }
1964      ParseFunctionDeclarator(ConsumeParen(), D);
1965    } else if (Tok.is(tok::l_square)) {
1966      ParseBracketDeclarator(D);
1967    } else {
1968      break;
1969    }
1970  }
1971}
1972
1973/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1974/// only called before the identifier, so these are most likely just grouping
1975/// parens for precedence.  If we find that these are actually function
1976/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1977///
1978///       direct-declarator:
1979///         '(' declarator ')'
1980/// [GNU]   '(' attributes declarator ')'
1981///         direct-declarator '(' parameter-type-list ')'
1982///         direct-declarator '(' identifier-list[opt] ')'
1983/// [GNU]   direct-declarator '(' parameter-forward-declarations
1984///                    parameter-type-list[opt] ')'
1985///
1986void Parser::ParseParenDeclarator(Declarator &D) {
1987  SourceLocation StartLoc = ConsumeParen();
1988  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1989
1990  // Eat any attributes before we look at whether this is a grouping or function
1991  // declarator paren.  If this is a grouping paren, the attribute applies to
1992  // the type being built up, for example:
1993  //     int (__attribute__(()) *x)(long y)
1994  // If this ends up not being a grouping paren, the attribute applies to the
1995  // first argument, for example:
1996  //     int (__attribute__(()) int x)
1997  // In either case, we need to eat any attributes to be able to determine what
1998  // sort of paren this is.
1999  //
2000  AttributeList *AttrList = 0;
2001  bool RequiresArg = false;
2002  if (Tok.is(tok::kw___attribute)) {
2003    AttrList = ParseAttributes();
2004
2005    // We require that the argument list (if this is a non-grouping paren) be
2006    // present even if the attribute list was empty.
2007    RequiresArg = true;
2008  }
2009  // Eat any Microsoft extensions.
2010  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2011          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2012    ConsumeToken();
2013
2014  // If we haven't past the identifier yet (or where the identifier would be
2015  // stored, if this is an abstract declarator), then this is probably just
2016  // grouping parens. However, if this could be an abstract-declarator, then
2017  // this could also be the start of function arguments (consider 'void()').
2018  bool isGrouping;
2019
2020  if (!D.mayOmitIdentifier()) {
2021    // If this can't be an abstract-declarator, this *must* be a grouping
2022    // paren, because we haven't seen the identifier yet.
2023    isGrouping = true;
2024  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2025             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2026             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2027    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2028    // considered to be a type, not a K&R identifier-list.
2029    isGrouping = false;
2030  } else {
2031    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2032    isGrouping = true;
2033  }
2034
2035  // If this is a grouping paren, handle:
2036  // direct-declarator: '(' declarator ')'
2037  // direct-declarator: '(' attributes declarator ')'
2038  if (isGrouping) {
2039    bool hadGroupingParens = D.hasGroupingParens();
2040    D.setGroupingParens(true);
2041    if (AttrList)
2042      D.AddAttributes(AttrList, SourceLocation());
2043
2044    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2045    // Match the ')'.
2046    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2047
2048    D.setGroupingParens(hadGroupingParens);
2049    D.SetRangeEnd(Loc);
2050    return;
2051  }
2052
2053  // Okay, if this wasn't a grouping paren, it must be the start of a function
2054  // argument list.  Recognize that this declarator will never have an
2055  // identifier (and remember where it would have been), then call into
2056  // ParseFunctionDeclarator to handle of argument list.
2057  D.SetIdentifier(0, Tok.getLocation());
2058
2059  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2060}
2061
2062/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2063/// declarator D up to a paren, which indicates that we are parsing function
2064/// arguments.
2065///
2066/// If AttrList is non-null, then the caller parsed those arguments immediately
2067/// after the open paren - they should be considered to be the first argument of
2068/// a parameter.  If RequiresArg is true, then the first argument of the
2069/// function is required to be present and required to not be an identifier
2070/// list.
2071///
2072/// This method also handles this portion of the grammar:
2073///       parameter-type-list: [C99 6.7.5]
2074///         parameter-list
2075///         parameter-list ',' '...'
2076///
2077///       parameter-list: [C99 6.7.5]
2078///         parameter-declaration
2079///         parameter-list ',' parameter-declaration
2080///
2081///       parameter-declaration: [C99 6.7.5]
2082///         declaration-specifiers declarator
2083/// [C++]   declaration-specifiers declarator '=' assignment-expression
2084/// [GNU]   declaration-specifiers declarator attributes
2085///         declaration-specifiers abstract-declarator[opt]
2086/// [C++]   declaration-specifiers abstract-declarator[opt]
2087///           '=' assignment-expression
2088/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2089///
2090/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2091/// and "exception-specification[opt]".
2092///
2093void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2094                                     AttributeList *AttrList,
2095                                     bool RequiresArg) {
2096  // lparen is already consumed!
2097  assert(D.isPastIdentifier() && "Should not call before identifier!");
2098
2099  // This parameter list may be empty.
2100  if (Tok.is(tok::r_paren)) {
2101    if (RequiresArg) {
2102      Diag(Tok, diag::err_argument_required_after_attribute);
2103      delete AttrList;
2104    }
2105
2106    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2107
2108    // cv-qualifier-seq[opt].
2109    DeclSpec DS;
2110    if (getLang().CPlusPlus) {
2111      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2112      if (!DS.getSourceRange().getEnd().isInvalid())
2113        Loc = DS.getSourceRange().getEnd();
2114
2115      // Parse exception-specification[opt].
2116      if (Tok.is(tok::kw_throw))
2117        ParseExceptionSpecification(Loc);
2118    }
2119
2120    // Remember that we parsed a function type, and remember the attributes.
2121    // int() -> no prototype, no '...'.
2122    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2123                                               /*variadic*/ false,
2124                                               SourceLocation(),
2125                                               /*arglist*/ 0, 0,
2126                                               DS.getTypeQualifiers(),
2127                                               LParenLoc, D),
2128                  Loc);
2129    return;
2130  }
2131
2132  // Alternatively, this parameter list may be an identifier list form for a
2133  // K&R-style function:  void foo(a,b,c)
2134  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2135    if (!TryAnnotateTypeOrScopeToken()) {
2136      // K&R identifier lists can't have typedefs as identifiers, per
2137      // C99 6.7.5.3p11.
2138      if (RequiresArg) {
2139        Diag(Tok, diag::err_argument_required_after_attribute);
2140        delete AttrList;
2141      }
2142      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2143      // normal declarators, not for abstract-declarators.
2144      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2145    }
2146  }
2147
2148  // Finally, a normal, non-empty parameter type list.
2149
2150  // Build up an array of information about the parsed arguments.
2151  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2152
2153  // Enter function-declaration scope, limiting any declarators to the
2154  // function prototype scope, including parameter declarators.
2155  ParseScope PrototypeScope(this,
2156                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2157
2158  bool IsVariadic = false;
2159  SourceLocation EllipsisLoc;
2160  while (1) {
2161    if (Tok.is(tok::ellipsis)) {
2162      IsVariadic = true;
2163      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2164      break;
2165    }
2166
2167    SourceLocation DSStart = Tok.getLocation();
2168
2169    // Parse the declaration-specifiers.
2170    DeclSpec DS;
2171
2172    // If the caller parsed attributes for the first argument, add them now.
2173    if (AttrList) {
2174      DS.AddAttributes(AttrList);
2175      AttrList = 0;  // Only apply the attributes to the first parameter.
2176    }
2177    ParseDeclarationSpecifiers(DS);
2178
2179    // Parse the declarator.  This is "PrototypeContext", because we must
2180    // accept either 'declarator' or 'abstract-declarator' here.
2181    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2182    ParseDeclarator(ParmDecl);
2183
2184    // Parse GNU attributes, if present.
2185    if (Tok.is(tok::kw___attribute)) {
2186      SourceLocation Loc;
2187      AttributeList *AttrList = ParseAttributes(&Loc);
2188      ParmDecl.AddAttributes(AttrList, Loc);
2189    }
2190
2191    // Remember this parsed parameter in ParamInfo.
2192    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2193
2194    // DefArgToks is used when the parsing of default arguments needs
2195    // to be delayed.
2196    CachedTokens *DefArgToks = 0;
2197
2198    // If no parameter was specified, verify that *something* was specified,
2199    // otherwise we have a missing type and identifier.
2200    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2201        ParmDecl.getNumTypeObjects() == 0) {
2202      // Completely missing, emit error.
2203      Diag(DSStart, diag::err_missing_param);
2204    } else {
2205      // Otherwise, we have something.  Add it and let semantic analysis try
2206      // to grok it and add the result to the ParamInfo we are building.
2207
2208      // Inform the actions module about the parameter declarator, so it gets
2209      // added to the current scope.
2210      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2211
2212      // Parse the default argument, if any. We parse the default
2213      // arguments in all dialects; the semantic analysis in
2214      // ActOnParamDefaultArgument will reject the default argument in
2215      // C.
2216      if (Tok.is(tok::equal)) {
2217        SourceLocation EqualLoc = Tok.getLocation();
2218
2219        // Parse the default argument
2220        if (D.getContext() == Declarator::MemberContext) {
2221          // If we're inside a class definition, cache the tokens
2222          // corresponding to the default argument. We'll actually parse
2223          // them when we see the end of the class definition.
2224          // FIXME: Templates will require something similar.
2225          // FIXME: Can we use a smart pointer for Toks?
2226          DefArgToks = new CachedTokens;
2227
2228          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2229                                    tok::semi, false)) {
2230            delete DefArgToks;
2231            DefArgToks = 0;
2232            Actions.ActOnParamDefaultArgumentError(Param);
2233          } else
2234            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2235        } else {
2236          // Consume the '='.
2237          ConsumeToken();
2238
2239          OwningExprResult DefArgResult(ParseAssignmentExpression());
2240          if (DefArgResult.isInvalid()) {
2241            Actions.ActOnParamDefaultArgumentError(Param);
2242            SkipUntil(tok::comma, tok::r_paren, true, true);
2243          } else {
2244            // Inform the actions module about the default argument
2245            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2246                                              move(DefArgResult));
2247          }
2248        }
2249      }
2250
2251      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2252                                          ParmDecl.getIdentifierLoc(), Param,
2253                                          DefArgToks));
2254    }
2255
2256    // If the next token is a comma, consume it and keep reading arguments.
2257    if (Tok.isNot(tok::comma)) break;
2258
2259    // Consume the comma.
2260    ConsumeToken();
2261  }
2262
2263  // Leave prototype scope.
2264  PrototypeScope.Exit();
2265
2266  // If we have the closing ')', eat it.
2267  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2268
2269  DeclSpec DS;
2270  if (getLang().CPlusPlus) {
2271    // Parse cv-qualifier-seq[opt].
2272    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2273      if (!DS.getSourceRange().getEnd().isInvalid())
2274        Loc = DS.getSourceRange().getEnd();
2275
2276    // Parse exception-specification[opt].
2277    if (Tok.is(tok::kw_throw))
2278      ParseExceptionSpecification(Loc);
2279  }
2280
2281  // Remember that we parsed a function type, and remember the attributes.
2282  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2283                                             EllipsisLoc,
2284                                             &ParamInfo[0], ParamInfo.size(),
2285                                             DS.getTypeQualifiers(),
2286                                             LParenLoc, D),
2287                Loc);
2288}
2289
2290/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2291/// we found a K&R-style identifier list instead of a type argument list.  The
2292/// current token is known to be the first identifier in the list.
2293///
2294///       identifier-list: [C99 6.7.5]
2295///         identifier
2296///         identifier-list ',' identifier
2297///
2298void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2299                                                   Declarator &D) {
2300  // Build up an array of information about the parsed arguments.
2301  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2302  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2303
2304  // If there was no identifier specified for the declarator, either we are in
2305  // an abstract-declarator, or we are in a parameter declarator which was found
2306  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2307  // diagnose this.
2308  if (!D.getIdentifier())
2309    Diag(Tok, diag::ext_ident_list_in_param);
2310
2311  // Tok is known to be the first identifier in the list.  Remember this
2312  // identifier in ParamInfo.
2313  ParamsSoFar.insert(Tok.getIdentifierInfo());
2314  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2315                                                 Tok.getLocation(),
2316                                                 DeclPtrTy()));
2317
2318  ConsumeToken();  // eat the first identifier.
2319
2320  while (Tok.is(tok::comma)) {
2321    // Eat the comma.
2322    ConsumeToken();
2323
2324    // If this isn't an identifier, report the error and skip until ')'.
2325    if (Tok.isNot(tok::identifier)) {
2326      Diag(Tok, diag::err_expected_ident);
2327      SkipUntil(tok::r_paren);
2328      return;
2329    }
2330
2331    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2332
2333    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2334    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2335      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2336
2337    // Verify that the argument identifier has not already been mentioned.
2338    if (!ParamsSoFar.insert(ParmII)) {
2339      Diag(Tok, diag::err_param_redefinition) << ParmII;
2340    } else {
2341      // Remember this identifier in ParamInfo.
2342      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2343                                                     Tok.getLocation(),
2344                                                     DeclPtrTy()));
2345    }
2346
2347    // Eat the identifier.
2348    ConsumeToken();
2349  }
2350
2351  // If we have the closing ')', eat it and we're done.
2352  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2353
2354  // Remember that we parsed a function type, and remember the attributes.  This
2355  // function type is always a K&R style function type, which is not varargs and
2356  // has no prototype.
2357  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2358                                             SourceLocation(),
2359                                             &ParamInfo[0], ParamInfo.size(),
2360                                             /*TypeQuals*/0, LParenLoc, D),
2361                RLoc);
2362}
2363
2364/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2365/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2366/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2367/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2368/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2369void Parser::ParseBracketDeclarator(Declarator &D) {
2370  SourceLocation StartLoc = ConsumeBracket();
2371
2372  // C array syntax has many features, but by-far the most common is [] and [4].
2373  // This code does a fast path to handle some of the most obvious cases.
2374  if (Tok.getKind() == tok::r_square) {
2375    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2376    // Remember that we parsed the empty array type.
2377    OwningExprResult NumElements(Actions);
2378    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2379                  EndLoc);
2380    return;
2381  } else if (Tok.getKind() == tok::numeric_constant &&
2382             GetLookAheadToken(1).is(tok::r_square)) {
2383    // [4] is very common.  Parse the numeric constant expression.
2384    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2385    ConsumeToken();
2386
2387    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2388
2389    // If there was an error parsing the assignment-expression, recover.
2390    if (ExprRes.isInvalid())
2391      ExprRes.release();  // Deallocate expr, just use [].
2392
2393    // Remember that we parsed a array type, and remember its features.
2394    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2395                                            ExprRes.release(), StartLoc),
2396                  EndLoc);
2397    return;
2398  }
2399
2400  // If valid, this location is the position where we read the 'static' keyword.
2401  SourceLocation StaticLoc;
2402  if (Tok.is(tok::kw_static))
2403    StaticLoc = ConsumeToken();
2404
2405  // If there is a type-qualifier-list, read it now.
2406  // Type qualifiers in an array subscript are a C99 feature.
2407  DeclSpec DS;
2408  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2409
2410  // If we haven't already read 'static', check to see if there is one after the
2411  // type-qualifier-list.
2412  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2413    StaticLoc = ConsumeToken();
2414
2415  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2416  bool isStar = false;
2417  OwningExprResult NumElements(Actions);
2418
2419  // Handle the case where we have '[*]' as the array size.  However, a leading
2420  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2421  // the the token after the star is a ']'.  Since stars in arrays are
2422  // infrequent, use of lookahead is not costly here.
2423  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2424    ConsumeToken();  // Eat the '*'.
2425
2426    if (StaticLoc.isValid()) {
2427      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2428      StaticLoc = SourceLocation();  // Drop the static.
2429    }
2430    isStar = true;
2431  } else if (Tok.isNot(tok::r_square)) {
2432    // Note, in C89, this production uses the constant-expr production instead
2433    // of assignment-expr.  The only difference is that assignment-expr allows
2434    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2435    // are not i-c-e's, so we don't need to distinguish between the two here.
2436
2437    // Parse the assignment-expression now.
2438    NumElements = ParseAssignmentExpression();
2439  }
2440
2441  // If there was an error parsing the assignment-expression, recover.
2442  if (NumElements.isInvalid()) {
2443    // If the expression was invalid, skip it.
2444    SkipUntil(tok::r_square);
2445    return;
2446  }
2447
2448  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2449
2450  // Remember that we parsed a array type, and remember its features.
2451  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2452                                          StaticLoc.isValid(), isStar,
2453                                          NumElements.release(), StartLoc),
2454                EndLoc);
2455}
2456
2457/// [GNU]   typeof-specifier:
2458///           typeof ( expressions )
2459///           typeof ( type-name )
2460/// [GNU/C++] typeof unary-expression
2461///
2462void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2463  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2464  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2465  SourceLocation StartLoc = ConsumeToken();
2466
2467  if (Tok.isNot(tok::l_paren)) {
2468    if (!getLang().CPlusPlus) {
2469      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2470      return;
2471    }
2472
2473    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2474    if (Result.isInvalid()) {
2475      DS.SetTypeSpecError();
2476      return;
2477    }
2478
2479    const char *PrevSpec = 0;
2480    // Check for duplicate type specifiers.
2481    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2482                           Result.release()))
2483      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2484
2485    // FIXME: Not accurate, the range gets one token more than it should.
2486    DS.SetRangeEnd(Tok.getLocation());
2487    return;
2488  }
2489
2490  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2491
2492  if (isTypeIdInParens()) {
2493    Action::TypeResult Ty = ParseTypeName();
2494
2495    assert((Ty.isInvalid() || Ty.get()) &&
2496           "Parser::ParseTypeofSpecifier(): missing type");
2497
2498    if (Tok.isNot(tok::r_paren)) {
2499      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2500      return;
2501    }
2502    RParenLoc = ConsumeParen();
2503
2504    if (Ty.isInvalid())
2505      DS.SetTypeSpecError();
2506    else {
2507      const char *PrevSpec = 0;
2508      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2509      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2510                             Ty.get()))
2511        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2512    }
2513  } else { // we have an expression.
2514    OwningExprResult Result(ParseExpression());
2515
2516    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2517      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2518      DS.SetTypeSpecError();
2519      return;
2520    }
2521    RParenLoc = ConsumeParen();
2522    const char *PrevSpec = 0;
2523    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2524    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2525                           Result.release()))
2526      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2527  }
2528  DS.SetRangeEnd(RParenLoc);
2529}
2530
2531
2532