SemaExpr.cpp revision 0d755ad7d8650dc52eeff25cc3f5bb1a2c93483d
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaUtil.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Expr.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Lex/LiteralSupport.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/StringExtras.h"
26using namespace clang;
27
28/// ActOnStringLiteral - The specified tokens were lexed as pasted string
29/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
30/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
31/// multiple tokens.  However, the common case is that StringToks points to one
32/// string.
33///
34Action::ExprResult
35Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
36  assert(NumStringToks && "Must have at least one string!");
37
38  StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
39  if (Literal.hadError)
40    return ExprResult(true);
41
42  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
43  for (unsigned i = 0; i != NumStringToks; ++i)
44    StringTokLocs.push_back(StringToks[i].getLocation());
45
46  // Verify that pascal strings aren't too large.
47  if (Literal.Pascal && Literal.GetStringLength() > 256)
48    return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long,
49                SourceRange(StringToks[0].getLocation(),
50                            StringToks[NumStringToks-1].getLocation()));
51
52  QualType StrTy = Context.CharTy;
53  // FIXME: handle wchar_t
54  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
55
56  // Get an array type for the string, according to C99 6.4.5.  This includes
57  // the nul terminator character as well as the string length for pascal
58  // strings.
59  StrTy = Context.getConstantArrayType(StrTy,
60                                   llvm::APInt(32, Literal.GetStringLength()+1),
61                                       ArrayType::Normal, 0);
62
63  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
64  return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
65                           Literal.AnyWide, StrTy,
66                           StringToks[0].getLocation(),
67                           StringToks[NumStringToks-1].getLocation());
68}
69
70
71/// ActOnIdentifierExpr - The parser read an identifier in expression context,
72/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
73/// identifier is used in a function call context.
74Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
75                                           IdentifierInfo &II,
76                                           bool HasTrailingLParen) {
77  // Could be enum-constant or decl.
78  ScopedDecl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
79  if (D == 0) {
80    // Otherwise, this could be an implicitly declared function reference (legal
81    // in C90, extension in C99).
82    if (HasTrailingLParen &&
83        // Not in C++.
84        !getLangOptions().CPlusPlus)
85      D = ImplicitlyDefineFunction(Loc, II, S);
86    else {
87      if (CurMethodDecl) {
88        ObjCInterfaceDecl *IFace = CurMethodDecl->getClassInterface();
89        ObjCInterfaceDecl *clsDeclared;
90        if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II, clsDeclared)) {
91          IdentifierInfo &II = Context.Idents.get("self");
92          ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
93          return new ObjCIvarRefExpr(IV, IV->getType(), Loc,
94                       static_cast<Expr*>(SelfExpr.Val), true, true);
95        }
96      }
97      // If this name wasn't predeclared and if this is not a function call,
98      // diagnose the problem.
99      return Diag(Loc, diag::err_undeclared_var_use, II.getName());
100    }
101  }
102  if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
103    // check if referencing an identifier with __attribute__((deprecated)).
104    if (VD->getAttr<DeprecatedAttr>())
105      Diag(Loc, diag::warn_deprecated, VD->getName());
106
107    // Only create DeclRefExpr's for valid Decl's.
108    if (VD->isInvalidDecl())
109      return true;
110    return new DeclRefExpr(VD, VD->getType(), Loc);
111  }
112  if (isa<TypedefDecl>(D))
113    return Diag(Loc, diag::err_unexpected_typedef, II.getName());
114  if (isa<ObjCInterfaceDecl>(D))
115    return Diag(Loc, diag::err_unexpected_interface, II.getName());
116
117  assert(0 && "Invalid decl");
118  abort();
119}
120
121Sema::ExprResult Sema::ActOnPreDefinedExpr(SourceLocation Loc,
122                                           tok::TokenKind Kind) {
123  PreDefinedExpr::IdentType IT;
124
125  switch (Kind) {
126  default: assert(0 && "Unknown simple primary expr!");
127  case tok::kw___func__: IT = PreDefinedExpr::Func; break; // [C99 6.4.2.2]
128  case tok::kw___FUNCTION__: IT = PreDefinedExpr::Function; break;
129  case tok::kw___PRETTY_FUNCTION__: IT = PreDefinedExpr::PrettyFunction; break;
130  }
131
132  // Verify that this is in a function context.
133  if (CurFunctionDecl == 0 && CurMethodDecl == 0)
134    return Diag(Loc, diag::err_predef_outside_function);
135
136  // Pre-defined identifiers are of type char[x], where x is the length of the
137  // string.
138  unsigned Length;
139  if (CurFunctionDecl)
140    Length = CurFunctionDecl->getIdentifier()->getLength();
141  else
142    Length = CurMethodDecl->getSynthesizedMethodSize();
143
144  llvm::APInt LengthI(32, Length + 1);
145  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
146  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
147  return new PreDefinedExpr(Loc, ResTy, IT);
148}
149
150Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
151  llvm::SmallString<16> CharBuffer;
152  CharBuffer.resize(Tok.getLength());
153  const char *ThisTokBegin = &CharBuffer[0];
154  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
155
156  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
157                            Tok.getLocation(), PP);
158  if (Literal.hadError())
159    return ExprResult(true);
160
161  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
162
163  return new CharacterLiteral(Literal.getValue(), type, Tok.getLocation());
164}
165
166Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
167  // fast path for a single digit (which is quite common). A single digit
168  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
169  if (Tok.getLength() == 1) {
170    const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
171
172    unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
173    return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
174                                         Context.IntTy,
175                                         Tok.getLocation()));
176  }
177  llvm::SmallString<512> IntegerBuffer;
178  IntegerBuffer.resize(Tok.getLength());
179  const char *ThisTokBegin = &IntegerBuffer[0];
180
181  // Get the spelling of the token, which eliminates trigraphs, etc.
182  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
183  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
184                               Tok.getLocation(), PP);
185  if (Literal.hadError)
186    return ExprResult(true);
187
188  Expr *Res;
189
190  if (Literal.isFloatingLiteral()) {
191    QualType Ty;
192    const llvm::fltSemantics *Format;
193
194    if (Literal.isFloat) {
195      Ty = Context.FloatTy;
196      Format = Context.Target.getFloatFormat();
197    } else if (!Literal.isLong) {
198      Ty = Context.DoubleTy;
199      Format = Context.Target.getDoubleFormat();
200    } else {
201      Ty = Context.LongDoubleTy;
202      Format = Context.Target.getLongDoubleFormat();
203    }
204
205    // isExact will be set by GetFloatValue().
206    bool isExact = false;
207
208    Res = new FloatingLiteral(Literal.GetFloatValue(*Format,&isExact), &isExact,
209                              Ty, Tok.getLocation());
210
211  } else if (!Literal.isIntegerLiteral()) {
212    return ExprResult(true);
213  } else {
214    QualType t;
215
216    // long long is a C99 feature.
217    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
218        Literal.isLongLong)
219      Diag(Tok.getLocation(), diag::ext_longlong);
220
221    // Get the value in the widest-possible width.
222    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
223
224    if (Literal.GetIntegerValue(ResultVal)) {
225      // If this value didn't fit into uintmax_t, warn and force to ull.
226      Diag(Tok.getLocation(), diag::warn_integer_too_large);
227      t = Context.UnsignedLongLongTy;
228      assert(Context.getTypeSize(t) == ResultVal.getBitWidth() &&
229             "long long is not intmax_t?");
230    } else {
231      // If this value fits into a ULL, try to figure out what else it fits into
232      // according to the rules of C99 6.4.4.1p5.
233
234      // Octal, Hexadecimal, and integers with a U suffix are allowed to
235      // be an unsigned int.
236      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
237
238      // Check from smallest to largest, picking the smallest type we can.
239      if (!Literal.isLong && !Literal.isLongLong) {
240        // Are int/unsigned possibilities?
241        unsigned IntSize =
242          static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
243        // Does it fit in a unsigned int?
244        if (ResultVal.isIntN(IntSize)) {
245          // Does it fit in a signed int?
246          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
247            t = Context.IntTy;
248          else if (AllowUnsigned)
249            t = Context.UnsignedIntTy;
250        }
251
252        if (!t.isNull())
253          ResultVal.trunc(IntSize);
254      }
255
256      // Are long/unsigned long possibilities?
257      if (t.isNull() && !Literal.isLongLong) {
258        unsigned LongSize =
259          static_cast<unsigned>(Context.getTypeSize(Context.LongTy));
260
261        // Does it fit in a unsigned long?
262        if (ResultVal.isIntN(LongSize)) {
263          // Does it fit in a signed long?
264          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
265            t = Context.LongTy;
266          else if (AllowUnsigned)
267            t = Context.UnsignedLongTy;
268        }
269        if (!t.isNull())
270          ResultVal.trunc(LongSize);
271      }
272
273      // Finally, check long long if needed.
274      if (t.isNull()) {
275        unsigned LongLongSize =
276          static_cast<unsigned>(Context.getTypeSize(Context.LongLongTy));
277
278        // Does it fit in a unsigned long long?
279        if (ResultVal.isIntN(LongLongSize)) {
280          // Does it fit in a signed long long?
281          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
282            t = Context.LongLongTy;
283          else if (AllowUnsigned)
284            t = Context.UnsignedLongLongTy;
285        }
286      }
287
288      // If we still couldn't decide a type, we probably have something that
289      // does not fit in a signed long long, but has no U suffix.
290      if (t.isNull()) {
291        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
292        t = Context.UnsignedLongLongTy;
293      }
294    }
295
296    Res = new IntegerLiteral(ResultVal, t, Tok.getLocation());
297  }
298
299  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
300  if (Literal.isImaginary)
301    Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
302
303  return Res;
304}
305
306Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
307                                        ExprTy *Val) {
308  Expr *e = (Expr *)Val;
309  assert((e != 0) && "ActOnParenExpr() missing expr");
310  return new ParenExpr(L, R, e);
311}
312
313/// The UsualUnaryConversions() function is *not* called by this routine.
314/// See C99 6.3.2.1p[2-4] for more details.
315QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
316                                         SourceLocation OpLoc, bool isSizeof) {
317  // C99 6.5.3.4p1:
318  if (isa<FunctionType>(exprType) && isSizeof)
319    // alignof(function) is allowed.
320    Diag(OpLoc, diag::ext_sizeof_function_type);
321  else if (exprType->isVoidType())
322    Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
323  else if (exprType->isIncompleteType()) {
324    Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
325                           diag::err_alignof_incomplete_type,
326         exprType.getAsString());
327    return QualType(); // error
328  }
329  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
330  return Context.getSizeType();
331}
332
333Action::ExprResult Sema::
334ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
335                           SourceLocation LPLoc, TypeTy *Ty,
336                           SourceLocation RPLoc) {
337  // If error parsing type, ignore.
338  if (Ty == 0) return true;
339
340  // Verify that this is a valid expression.
341  QualType ArgTy = QualType::getFromOpaquePtr(Ty);
342
343  QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
344
345  if (resultType.isNull())
346    return true;
347  return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
348}
349
350QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
351  DefaultFunctionArrayConversion(V);
352
353  // These operators return the element type of a complex type.
354  if (const ComplexType *CT = V->getType()->getAsComplexType())
355    return CT->getElementType();
356
357  // Otherwise they pass through real integer and floating point types here.
358  if (V->getType()->isArithmeticType())
359    return V->getType();
360
361  // Reject anything else.
362  Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString());
363  return QualType();
364}
365
366
367
368Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc,
369                                             tok::TokenKind Kind,
370                                             ExprTy *Input) {
371  UnaryOperator::Opcode Opc;
372  switch (Kind) {
373  default: assert(0 && "Unknown unary op!");
374  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
375  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
376  }
377  QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
378  if (result.isNull())
379    return true;
380  return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
381}
382
383Action::ExprResult Sema::
384ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
385                        ExprTy *Idx, SourceLocation RLoc) {
386  Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
387
388  // Perform default conversions.
389  DefaultFunctionArrayConversion(LHSExp);
390  DefaultFunctionArrayConversion(RHSExp);
391
392  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
393
394  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
395  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
396  // in the subscript position. As a result, we need to derive the array base
397  // and index from the expression types.
398  Expr *BaseExpr, *IndexExpr;
399  QualType ResultType;
400  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
401    BaseExpr = LHSExp;
402    IndexExpr = RHSExp;
403    // FIXME: need to deal with const...
404    ResultType = PTy->getPointeeType();
405  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
406     // Handle the uncommon case of "123[Ptr]".
407    BaseExpr = RHSExp;
408    IndexExpr = LHSExp;
409    // FIXME: need to deal with const...
410    ResultType = PTy->getPointeeType();
411  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
412    BaseExpr = LHSExp;    // vectors: V[123]
413    IndexExpr = RHSExp;
414
415    // Component access limited to variables (reject vec4.rg[1]).
416    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr))
417      return Diag(LLoc, diag::err_ocuvector_component_access,
418                  SourceRange(LLoc, RLoc));
419    // FIXME: need to deal with const...
420    ResultType = VTy->getElementType();
421  } else {
422    return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
423                RHSExp->getSourceRange());
424  }
425  // C99 6.5.2.1p1
426  if (!IndexExpr->getType()->isIntegerType())
427    return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
428                IndexExpr->getSourceRange());
429
430  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
431  // the following check catches trying to index a pointer to a function (e.g.
432  // void (*)(int)). Functions are not objects in C99.
433  if (!ResultType->isObjectType())
434    return Diag(BaseExpr->getLocStart(),
435                diag::err_typecheck_subscript_not_object,
436                BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
437
438  return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
439}
440
441QualType Sema::
442CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
443                        IdentifierInfo &CompName, SourceLocation CompLoc) {
444  const OCUVectorType *vecType = baseType->getAsOCUVectorType();
445
446  // The vector accessor can't exceed the number of elements.
447  const char *compStr = CompName.getName();
448  if (strlen(compStr) > vecType->getNumElements()) {
449    Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
450                baseType.getAsString(), SourceRange(CompLoc));
451    return QualType();
452  }
453  // The component names must come from the same set.
454  if (vecType->getPointAccessorIdx(*compStr) != -1) {
455    do
456      compStr++;
457    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
458  } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
459    do
460      compStr++;
461    while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
462  } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
463    do
464      compStr++;
465    while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
466  }
467
468  if (*compStr) {
469    // We didn't get to the end of the string. This means the component names
470    // didn't come from the same set *or* we encountered an illegal name.
471    Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
472         std::string(compStr,compStr+1), SourceRange(CompLoc));
473    return QualType();
474  }
475  // Each component accessor can't exceed the vector type.
476  compStr = CompName.getName();
477  while (*compStr) {
478    if (vecType->isAccessorWithinNumElements(*compStr))
479      compStr++;
480    else
481      break;
482  }
483  if (*compStr) {
484    // We didn't get to the end of the string. This means a component accessor
485    // exceeds the number of elements in the vector.
486    Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
487                baseType.getAsString(), SourceRange(CompLoc));
488    return QualType();
489  }
490  // The component accessor looks fine - now we need to compute the actual type.
491  // The vector type is implied by the component accessor. For example,
492  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
493  unsigned CompSize = strlen(CompName.getName());
494  if (CompSize == 1)
495    return vecType->getElementType();
496
497  QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
498  // Now look up the TypeDefDecl from the vector type. Without this,
499  // diagostics look bad. We want OCU vector types to appear built-in.
500  for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
501    if (OCUVectorDecls[i]->getUnderlyingType() == VT)
502      return Context.getTypedefType(OCUVectorDecls[i]);
503  }
504  return VT; // should never get here (a typedef type should always be found).
505}
506
507Action::ExprResult Sema::
508ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
509                         tok::TokenKind OpKind, SourceLocation MemberLoc,
510                         IdentifierInfo &Member) {
511  Expr *BaseExpr = static_cast<Expr *>(Base);
512  assert(BaseExpr && "no record expression");
513
514  // Perform default conversions.
515  DefaultFunctionArrayConversion(BaseExpr);
516
517  QualType BaseType = BaseExpr->getType();
518  assert(!BaseType.isNull() && "no type for member expression");
519
520  if (OpKind == tok::arrow) {
521    if (const PointerType *PT = BaseType->getAsPointerType())
522      BaseType = PT->getPointeeType();
523    else
524      return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
525                  SourceRange(MemberLoc));
526  }
527  // The base type is either a record or an OCUVectorType.
528  if (const RecordType *RTy = BaseType->getAsRecordType()) {
529    RecordDecl *RDecl = RTy->getDecl();
530    if (RTy->isIncompleteType())
531      return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
532                  BaseExpr->getSourceRange());
533    // The record definition is complete, now make sure the member is valid.
534    FieldDecl *MemberDecl = RDecl->getMember(&Member);
535    if (!MemberDecl)
536      return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
537                  SourceRange(MemberLoc));
538
539    // Figure out the type of the member; see C99 6.5.2.3p3
540    // FIXME: Handle address space modifiers
541    QualType MemberType = MemberDecl->getType();
542    unsigned combinedQualifiers =
543        MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
544    MemberType = MemberType.getQualifiedType(combinedQualifiers);
545
546    return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl,
547                          MemberLoc, MemberType);
548  } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
549    // Component access limited to variables (reject vec4.rg.g).
550    if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr))
551      return Diag(OpLoc, diag::err_ocuvector_component_access,
552                  SourceRange(MemberLoc));
553    QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
554    if (ret.isNull())
555      return true;
556    return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
557  } else if (BaseType->isObjCInterfaceType()) {
558    ObjCInterfaceDecl *IFace;
559    if (isa<ObjCInterfaceType>(BaseType.getCanonicalType()))
560      IFace = dyn_cast<ObjCInterfaceType>(BaseType)->getDecl();
561    else
562      IFace = dyn_cast<ObjCQualifiedInterfaceType>(BaseType)->getDecl();
563    ObjCInterfaceDecl *clsDeclared;
564    if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&Member, clsDeclared))
565      return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr,
566                                 OpKind==tok::arrow);
567  }
568  return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
569              SourceRange(MemberLoc));
570}
571
572/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
573/// This provides the location of the left/right parens and a list of comma
574/// locations.
575Action::ExprResult Sema::
576ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc,
577              ExprTy **args, unsigned NumArgs,
578              SourceLocation *CommaLocs, SourceLocation RParenLoc) {
579  Expr *Fn = static_cast<Expr *>(fn);
580  Expr **Args = reinterpret_cast<Expr**>(args);
581  assert(Fn && "no function call expression");
582
583  // Make the call expr early, before semantic checks.  This guarantees cleanup
584  // of arguments and function on error.
585  llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
586                                                 Context.BoolTy, RParenLoc));
587
588  // Promote the function operand.
589  TheCall->setCallee(UsualUnaryConversions(Fn));
590
591  // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
592  // type pointer to function".
593  const PointerType *PT = Fn->getType()->getAsPointerType();
594  if (PT == 0)
595    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
596                SourceRange(Fn->getLocStart(), RParenLoc));
597  const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType();
598  if (FuncT == 0)
599    return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
600                SourceRange(Fn->getLocStart(), RParenLoc));
601
602  // We know the result type of the call, set it.
603  TheCall->setType(FuncT->getResultType());
604
605  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
606    // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
607    // assignment, to the types of the corresponding parameter, ...
608    unsigned NumArgsInProto = Proto->getNumArgs();
609    unsigned NumArgsToCheck = NumArgs;
610
611    // If too few arguments are available, don't make the call.
612    if (NumArgs < NumArgsInProto)
613      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
614                  Fn->getSourceRange());
615
616    // If too many are passed and not variadic, error on the extras and drop
617    // them.
618    if (NumArgs > NumArgsInProto) {
619      if (!Proto->isVariadic()) {
620        Diag(Args[NumArgsInProto]->getLocStart(),
621             diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
622             SourceRange(Args[NumArgsInProto]->getLocStart(),
623                         Args[NumArgs-1]->getLocEnd()));
624        // This deletes the extra arguments.
625        TheCall->setNumArgs(NumArgsInProto);
626      }
627      NumArgsToCheck = NumArgsInProto;
628    }
629
630    // Continue to check argument types (even if we have too few/many args).
631    for (unsigned i = 0; i != NumArgsToCheck; i++) {
632      Expr *Arg = Args[i];
633      QualType ProtoArgType = Proto->getArgType(i);
634      QualType ArgType = Arg->getType();
635
636      // Compute implicit casts from the operand to the formal argument type.
637      AssignConvertType ConvTy =
638        CheckSingleAssignmentConstraints(ProtoArgType, Arg);
639      TheCall->setArg(i, Arg);
640
641      if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType,
642                                   ArgType, Arg, "passing"))
643        return true;
644    }
645
646    // If this is a variadic call, handle args passed through "...".
647    if (Proto->isVariadic()) {
648      // Promote the arguments (C99 6.5.2.2p7).
649      for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
650        Expr *Arg = Args[i];
651        DefaultArgumentPromotion(Arg);
652        TheCall->setArg(i, Arg);
653      }
654    }
655  } else {
656    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
657
658    // Promote the arguments (C99 6.5.2.2p6).
659    for (unsigned i = 0; i != NumArgs; i++) {
660      Expr *Arg = Args[i];
661      DefaultArgumentPromotion(Arg);
662      TheCall->setArg(i, Arg);
663    }
664  }
665
666  // Do special checking on direct calls to functions.
667  if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
668    if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
669      if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
670        if (CheckFunctionCall(FDecl, TheCall.get()))
671          return true;
672
673  return TheCall.take();
674}
675
676Action::ExprResult Sema::
677ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
678                     SourceLocation RParenLoc, ExprTy *InitExpr) {
679  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
680  QualType literalType = QualType::getFromOpaquePtr(Ty);
681  // FIXME: put back this assert when initializers are worked out.
682  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
683  Expr *literalExpr = static_cast<Expr*>(InitExpr);
684
685  // FIXME: add more semantic analysis (C99 6.5.2.5).
686  if (CheckInitializerTypes(literalExpr, literalType))
687    return true;
688
689  bool isFileScope = !CurFunctionDecl && !CurMethodDecl;
690  if (isFileScope) { // 6.5.2.5p3
691    if (CheckForConstantInitializer(literalExpr, literalType))
692      return true;
693  }
694  return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope);
695}
696
697Action::ExprResult Sema::
698ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
699              SourceLocation RBraceLoc) {
700  Expr **InitList = reinterpret_cast<Expr**>(initlist);
701
702  // Semantic analysis for initializers is done by ActOnDeclarator() and
703  // CheckInitializer() - it requires knowledge of the object being intialized.
704
705  InitListExpr *e = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc);
706  e->setType(Context.VoidTy); // FIXME: just a place holder for now.
707  return e;
708}
709
710bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
711  assert(VectorTy->isVectorType() && "Not a vector type!");
712
713  if (Ty->isVectorType() || Ty->isIntegerType()) {
714    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
715      return Diag(R.getBegin(),
716                  Ty->isVectorType() ?
717                  diag::err_invalid_conversion_between_vectors :
718                  diag::err_invalid_conversion_between_vector_and_integer,
719                  VectorTy.getAsString().c_str(),
720                  Ty.getAsString().c_str(), R);
721  } else
722    return Diag(R.getBegin(),
723                diag::err_invalid_conversion_between_vector_and_scalar,
724                VectorTy.getAsString().c_str(),
725                Ty.getAsString().c_str(), R);
726
727  return false;
728}
729
730Action::ExprResult Sema::
731ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
732              SourceLocation RParenLoc, ExprTy *Op) {
733  assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
734
735  Expr *castExpr = static_cast<Expr*>(Op);
736  QualType castType = QualType::getFromOpaquePtr(Ty);
737
738  UsualUnaryConversions(castExpr);
739
740  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
741  // type needs to be scalar.
742  if (!castType->isVoidType()) {  // Cast to void allows any expr type.
743    if (!castType->isScalarType() && !castType->isVectorType())
744      return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
745                  castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
746    if (!castExpr->getType()->isScalarType() &&
747        !castExpr->getType()->isVectorType())
748      return Diag(castExpr->getLocStart(),
749                  diag::err_typecheck_expect_scalar_operand,
750                  castExpr->getType().getAsString(),castExpr->getSourceRange());
751
752    if (castExpr->getType()->isVectorType()) {
753      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
754                          castExpr->getType(), castType))
755        return true;
756    } else if (castType->isVectorType()) {
757      if (CheckVectorCast(SourceRange(LParenLoc, RParenLoc),
758                          castType, castExpr->getType()))
759        return true;
760    }
761  }
762  return new CastExpr(castType, castExpr, LParenLoc);
763}
764
765/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
766/// In that case, lex = cond.
767inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
768  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
769  UsualUnaryConversions(cond);
770  UsualUnaryConversions(lex);
771  UsualUnaryConversions(rex);
772  QualType condT = cond->getType();
773  QualType lexT = lex->getType();
774  QualType rexT = rex->getType();
775
776  // first, check the condition.
777  if (!condT->isScalarType()) { // C99 6.5.15p2
778    Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
779         condT.getAsString());
780    return QualType();
781  }
782
783  // Now check the two expressions.
784
785  // If both operands have arithmetic type, do the usual arithmetic conversions
786  // to find a common type: C99 6.5.15p3,5.
787  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
788    UsualArithmeticConversions(lex, rex);
789    return lex->getType();
790  }
791
792  // If both operands are the same structure or union type, the result is that
793  // type.
794  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
795    if (const RecordType *RHSRT = rexT->getAsRecordType())
796      if (LHSRT->getDecl() == RHSRT->getDecl())
797        // "If both the operands have structure or union type, the result has
798        // that type."  This implies that CV qualifiers are dropped.
799        return lexT.getUnqualifiedType();
800  }
801
802  // C99 6.5.15p5: "If both operands have void type, the result has void type."
803  if (lexT->isVoidType() && rexT->isVoidType())
804    return lexT.getUnqualifiedType();
805
806  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
807  // the type of the other operand."
808  if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) {
809    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
810    return lexT;
811  }
812  if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) {
813    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
814    return rexT;
815  }
816  // Handle the case where both operands are pointers before we handle null
817  // pointer constants in case both operands are null pointer constants.
818  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
819    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
820      // get the "pointed to" types
821      QualType lhptee = LHSPT->getPointeeType();
822      QualType rhptee = RHSPT->getPointeeType();
823
824      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
825      if (lhptee->isVoidType() &&
826          (rhptee->isObjectType() || rhptee->isIncompleteType())) {
827        // Figure out necessary qualifiers (C99 6.5.15p6)
828        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
829        QualType destType = Context.getPointerType(destPointee);
830        ImpCastExprToType(lex, destType); // add qualifiers if necessary
831        ImpCastExprToType(rex, destType); // promote to void*
832        return destType;
833      }
834      if (rhptee->isVoidType() &&
835          (lhptee->isObjectType() || lhptee->isIncompleteType())) {
836        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
837        QualType destType = Context.getPointerType(destPointee);
838        ImpCastExprToType(lex, destType); // add qualifiers if necessary
839        ImpCastExprToType(rex, destType); // promote to void*
840        return destType;
841      }
842
843      if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
844                                      rhptee.getUnqualifiedType())) {
845        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers,
846             lexT.getAsString(), rexT.getAsString(),
847             lex->getSourceRange(), rex->getSourceRange());
848        // In this situation, we assume void* type. No especially good
849        // reason, but this is what gcc does, and we do have to pick
850        // to get a consistent AST.
851        QualType voidPtrTy = Context.getPointerType(Context.VoidTy);
852        ImpCastExprToType(lex, voidPtrTy);
853        ImpCastExprToType(rex, voidPtrTy);
854        return voidPtrTy;
855      }
856      // The pointer types are compatible.
857      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
858      // differently qualified versions of compatible types, the result type is
859      // a pointer to an appropriately qualified version of the *composite*
860      // type.
861      // FIXME: Need to return the composite type.
862      // FIXME: Need to add qualifiers
863      return lexT;
864    }
865  }
866
867  // Otherwise, the operands are not compatible.
868  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
869       lexT.getAsString(), rexT.getAsString(),
870       lex->getSourceRange(), rex->getSourceRange());
871  return QualType();
872}
873
874/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
875/// in the case of a the GNU conditional expr extension.
876Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
877                                            SourceLocation ColonLoc,
878                                            ExprTy *Cond, ExprTy *LHS,
879                                            ExprTy *RHS) {
880  Expr *CondExpr = (Expr *) Cond;
881  Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
882
883  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
884  // was the condition.
885  bool isLHSNull = LHSExpr == 0;
886  if (isLHSNull)
887    LHSExpr = CondExpr;
888
889  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
890                                             RHSExpr, QuestionLoc);
891  if (result.isNull())
892    return true;
893  return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
894                                 RHSExpr, result);
895}
896
897/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
898/// do not have a prototype. Arguments that have type float are promoted to
899/// double. All other argument types are converted by UsualUnaryConversions().
900void Sema::DefaultArgumentPromotion(Expr *&Expr) {
901  QualType Ty = Expr->getType();
902  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
903
904  if (Ty == Context.FloatTy)
905    ImpCastExprToType(Expr, Context.DoubleTy);
906  else
907    UsualUnaryConversions(Expr);
908}
909
910/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
911void Sema::DefaultFunctionArrayConversion(Expr *&e) {
912  QualType t = e->getType();
913  assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
914
915  if (const ReferenceType *ref = t->getAsReferenceType()) {
916    ImpCastExprToType(e, ref->getReferenceeType()); // C++ [expr]
917    t = e->getType();
918  }
919  if (t->isFunctionType())
920    ImpCastExprToType(e, Context.getPointerType(t));
921  else if (const ArrayType *ary = t->getAsArrayType()) {
922    // Make sure we don't lose qualifiers when dealing with typedefs. Example:
923    //   typedef int arr[10];
924    //   void test2() {
925    //     const arr b;
926    //     b[4] = 1;
927    //   }
928    QualType ELT = ary->getElementType();
929    // FIXME: Handle ASQualType
930    ELT = ELT.getQualifiedType(t.getCVRQualifiers()|ELT.getCVRQualifiers());
931    ImpCastExprToType(e, Context.getPointerType(ELT));
932  }
933}
934
935/// UsualUnaryConversions - Performs various conversions that are common to most
936/// operators (C99 6.3). The conversions of array and function types are
937/// sometimes surpressed. For example, the array->pointer conversion doesn't
938/// apply if the array is an argument to the sizeof or address (&) operators.
939/// In these instances, this routine should *not* be called.
940Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
941  QualType Ty = Expr->getType();
942  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
943
944  if (const ReferenceType *Ref = Ty->getAsReferenceType()) {
945    ImpCastExprToType(Expr, Ref->getReferenceeType()); // C++ [expr]
946    Ty = Expr->getType();
947  }
948  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
949    ImpCastExprToType(Expr, Context.IntTy);
950  else
951    DefaultFunctionArrayConversion(Expr);
952
953  return Expr;
954}
955
956/// UsualArithmeticConversions - Performs various conversions that are common to
957/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
958/// routine returns the first non-arithmetic type found. The client is
959/// responsible for emitting appropriate error diagnostics.
960/// FIXME: verify the conversion rules for "complex int" are consistent with GCC.
961QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
962                                          bool isCompAssign) {
963  if (!isCompAssign) {
964    UsualUnaryConversions(lhsExpr);
965    UsualUnaryConversions(rhsExpr);
966  }
967  // For conversion purposes, we ignore any qualifiers.
968  // For example, "const float" and "float" are equivalent.
969  QualType lhs = lhsExpr->getType().getCanonicalType().getUnqualifiedType();
970  QualType rhs = rhsExpr->getType().getCanonicalType().getUnqualifiedType();
971
972  // If both types are identical, no conversion is needed.
973  if (lhs == rhs)
974    return lhs;
975
976  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
977  // The caller can deal with this (e.g. pointer + int).
978  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
979    return lhs;
980
981  // At this point, we have two different arithmetic types.
982
983  // Handle complex types first (C99 6.3.1.8p1).
984  if (lhs->isComplexType() || rhs->isComplexType()) {
985    // if we have an integer operand, the result is the complex type.
986    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
987      // convert the rhs to the lhs complex type.
988      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
989      return lhs;
990    }
991    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
992      // convert the lhs to the rhs complex type.
993      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
994      return rhs;
995    }
996    // This handles complex/complex, complex/float, or float/complex.
997    // When both operands are complex, the shorter operand is converted to the
998    // type of the longer, and that is the type of the result. This corresponds
999    // to what is done when combining two real floating-point operands.
1000    // The fun begins when size promotion occur across type domains.
1001    // From H&S 6.3.4: When one operand is complex and the other is a real
1002    // floating-point type, the less precise type is converted, within it's
1003    // real or complex domain, to the precision of the other type. For example,
1004    // when combining a "long double" with a "double _Complex", the
1005    // "double _Complex" is promoted to "long double _Complex".
1006    int result = Context.compareFloatingType(lhs, rhs);
1007
1008    if (result > 0) { // The left side is bigger, convert rhs.
1009      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
1010      if (!isCompAssign)
1011        ImpCastExprToType(rhsExpr, rhs);
1012    } else if (result < 0) { // The right side is bigger, convert lhs.
1013      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
1014      if (!isCompAssign)
1015        ImpCastExprToType(lhsExpr, lhs);
1016    }
1017    // At this point, lhs and rhs have the same rank/size. Now, make sure the
1018    // domains match. This is a requirement for our implementation, C99
1019    // does not require this promotion.
1020    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
1021      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
1022        if (!isCompAssign)
1023          ImpCastExprToType(lhsExpr, rhs);
1024        return rhs;
1025      } else { // handle "_Complex double, double".
1026        if (!isCompAssign)
1027          ImpCastExprToType(rhsExpr, lhs);
1028        return lhs;
1029      }
1030    }
1031    return lhs; // The domain/size match exactly.
1032  }
1033  // Now handle "real" floating types (i.e. float, double, long double).
1034  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
1035    // if we have an integer operand, the result is the real floating type.
1036    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
1037      // convert rhs to the lhs floating point type.
1038      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1039      return lhs;
1040    }
1041    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
1042      // convert lhs to the rhs floating point type.
1043      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
1044      return rhs;
1045    }
1046    // We have two real floating types, float/complex combos were handled above.
1047    // Convert the smaller operand to the bigger result.
1048    int result = Context.compareFloatingType(lhs, rhs);
1049
1050    if (result > 0) { // convert the rhs
1051      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1052      return lhs;
1053    }
1054    if (result < 0) { // convert the lhs
1055      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1056      return rhs;
1057    }
1058    assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison");
1059  }
1060  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
1061    // Handle GCC complex int extension.
1062    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
1063    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
1064
1065    if (lhsComplexInt && rhsComplexInt) {
1066      if (Context.maxIntegerType(lhsComplexInt->getElementType(),
1067                                 rhsComplexInt->getElementType()) == lhs) {
1068        // convert the rhs
1069        if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1070        return lhs;
1071      }
1072      if (!isCompAssign)
1073        ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1074      return rhs;
1075    } else if (lhsComplexInt && rhs->isIntegerType()) {
1076      // convert the rhs to the lhs complex type.
1077      if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1078      return lhs;
1079    } else if (rhsComplexInt && lhs->isIntegerType()) {
1080      // convert the lhs to the rhs complex type.
1081      if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs);
1082      return rhs;
1083    }
1084  }
1085  // Finally, we have two differing integer types.
1086  if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
1087    if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs);
1088    return lhs;
1089  }
1090  if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs
1091  return rhs;
1092}
1093
1094// CheckPointerTypesForAssignment - This is a very tricky routine (despite
1095// being closely modeled after the C99 spec:-). The odd characteristic of this
1096// routine is it effectively iqnores the qualifiers on the top level pointee.
1097// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
1098// FIXME: add a couple examples in this comment.
1099Sema::AssignConvertType
1100Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
1101  QualType lhptee, rhptee;
1102
1103  // get the "pointed to" type (ignoring qualifiers at the top level)
1104  lhptee = lhsType->getAsPointerType()->getPointeeType();
1105  rhptee = rhsType->getAsPointerType()->getPointeeType();
1106
1107  // make sure we operate on the canonical type
1108  lhptee = lhptee.getCanonicalType();
1109  rhptee = rhptee.getCanonicalType();
1110
1111  AssignConvertType ConvTy = Compatible;
1112
1113  // C99 6.5.16.1p1: This following citation is common to constraints
1114  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
1115  // qualifiers of the type *pointed to* by the right;
1116  // FIXME: Handle ASQualType
1117  if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) !=
1118       rhptee.getCVRQualifiers())
1119    ConvTy = CompatiblePointerDiscardsQualifiers;
1120
1121  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
1122  // incomplete type and the other is a pointer to a qualified or unqualified
1123  // version of void...
1124  if (lhptee->isVoidType()) {
1125    if (rhptee->isObjectType() || rhptee->isIncompleteType())
1126      return ConvTy;
1127
1128    // As an extension, we allow cast to/from void* to function pointer.
1129    if (rhptee->isFunctionType())
1130      return FunctionVoidPointer;
1131  }
1132
1133  if (rhptee->isVoidType()) {
1134    if (lhptee->isObjectType() || lhptee->isIncompleteType())
1135      return ConvTy;
1136
1137    // As an extension, we allow cast to/from void* to function pointer.
1138    if (lhptee->isFunctionType())
1139      return FunctionVoidPointer;
1140  }
1141
1142  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
1143  // unqualified versions of compatible types, ...
1144  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
1145                                  rhptee.getUnqualifiedType()))
1146    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
1147  return ConvTy;
1148}
1149
1150/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
1151/// has code to accommodate several GCC extensions when type checking
1152/// pointers. Here are some objectionable examples that GCC considers warnings:
1153///
1154///  int a, *pint;
1155///  short *pshort;
1156///  struct foo *pfoo;
1157///
1158///  pint = pshort; // warning: assignment from incompatible pointer type
1159///  a = pint; // warning: assignment makes integer from pointer without a cast
1160///  pint = a; // warning: assignment makes pointer from integer without a cast
1161///  pint = pfoo; // warning: assignment from incompatible pointer type
1162///
1163/// As a result, the code for dealing with pointers is more complex than the
1164/// C99 spec dictates.
1165/// Note: the warning above turn into errors when -pedantic-errors is enabled.
1166///
1167Sema::AssignConvertType
1168Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
1169  // Get canonical types.  We're not formatting these types, just comparing
1170  // them.
1171  lhsType = lhsType.getCanonicalType();
1172  rhsType = rhsType.getCanonicalType();
1173
1174  if (lhsType.getUnqualifiedType() == rhsType.getUnqualifiedType())
1175    return Compatible; // Common case: fast path an exact match.
1176
1177  if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
1178    if (Context.referenceTypesAreCompatible(lhsType, rhsType))
1179      return Compatible;
1180    return Incompatible;
1181  }
1182
1183  if (lhsType->isObjCQualifiedIdType()
1184           || rhsType->isObjCQualifiedIdType()) {
1185    if (Context.ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType))
1186      return Compatible;
1187    return Incompatible;
1188  }
1189
1190  if (lhsType->isVectorType() || rhsType->isVectorType()) {
1191    // For OCUVector, allow vector splats; float -> <n x float>
1192    if (const OCUVectorType *LV = lhsType->getAsOCUVectorType()) {
1193      if (LV->getElementType().getTypePtr() == rhsType.getTypePtr())
1194        return Compatible;
1195    }
1196
1197    // If LHS and RHS are both vectors of integer or both vectors of floating
1198    // point types, and the total vector length is the same, allow the
1199    // conversion.  This is a bitcast; no bits are changed but the result type
1200    // is different.
1201    if (getLangOptions().LaxVectorConversions &&
1202        lhsType->isVectorType() && rhsType->isVectorType()) {
1203      if ((lhsType->isIntegerType() && rhsType->isIntegerType()) ||
1204          (lhsType->isRealFloatingType() && rhsType->isRealFloatingType())) {
1205        if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
1206          return Compatible;
1207      }
1208    }
1209    return Incompatible;
1210  }
1211
1212  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
1213    return Compatible;
1214
1215  if (lhsType->isPointerType()) {
1216    if (rhsType->isIntegerType())
1217      return IntToPointer;
1218
1219    if (rhsType->isPointerType())
1220      return CheckPointerTypesForAssignment(lhsType, rhsType);
1221    return Incompatible;
1222  }
1223
1224  if (rhsType->isPointerType()) {
1225    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
1226    if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
1227      return PointerToInt;
1228
1229    if (lhsType->isPointerType())
1230      return CheckPointerTypesForAssignment(lhsType, rhsType);
1231    return Incompatible;
1232  }
1233
1234  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
1235    if (Context.tagTypesAreCompatible(lhsType, rhsType))
1236      return Compatible;
1237  }
1238  return Incompatible;
1239}
1240
1241Sema::AssignConvertType
1242Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
1243  // C99 6.5.16.1p1: the left operand is a pointer and the right is
1244  // a null pointer constant.
1245  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType())
1246      && rExpr->isNullPointerConstant(Context)) {
1247    ImpCastExprToType(rExpr, lhsType);
1248    return Compatible;
1249  }
1250  // This check seems unnatural, however it is necessary to ensure the proper
1251  // conversion of functions/arrays. If the conversion were done for all
1252  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
1253  // expressions that surpress this implicit conversion (&, sizeof).
1254  //
1255  // Suppress this for references: C99 8.5.3p5.  FIXME: revisit when references
1256  // are better understood.
1257  if (!lhsType->isReferenceType())
1258    DefaultFunctionArrayConversion(rExpr);
1259
1260  Sema::AssignConvertType result =
1261    CheckAssignmentConstraints(lhsType, rExpr->getType());
1262
1263  // C99 6.5.16.1p2: The value of the right operand is converted to the
1264  // type of the assignment expression.
1265  if (rExpr->getType() != lhsType)
1266    ImpCastExprToType(rExpr, lhsType);
1267  return result;
1268}
1269
1270Sema::AssignConvertType
1271Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
1272  return CheckAssignmentConstraints(lhsType, rhsType);
1273}
1274
1275QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
1276  Diag(loc, diag::err_typecheck_invalid_operands,
1277       lex->getType().getAsString(), rex->getType().getAsString(),
1278       lex->getSourceRange(), rex->getSourceRange());
1279  return QualType();
1280}
1281
1282inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
1283                                                              Expr *&rex) {
1284  QualType lhsType = lex->getType(), rhsType = rex->getType();
1285
1286  // make sure the vector types are identical.
1287  if (lhsType.getCanonicalType() == rhsType.getCanonicalType())
1288    return lhsType;
1289
1290  // if the lhs is an ocu vector and the rhs is a scalar of the same type,
1291  // promote the rhs to the vector type.
1292  if (const OCUVectorType *V = lhsType->getAsOCUVectorType()) {
1293    if (V->getElementType().getCanonicalType().getTypePtr()
1294        == rhsType.getCanonicalType().getTypePtr()) {
1295      ImpCastExprToType(rex, lhsType);
1296      return lhsType;
1297    }
1298  }
1299
1300  // if the rhs is an ocu vector and the lhs is a scalar of the same type,
1301  // promote the lhs to the vector type.
1302  if (const OCUVectorType *V = rhsType->getAsOCUVectorType()) {
1303    if (V->getElementType().getCanonicalType().getTypePtr()
1304        == lhsType.getCanonicalType().getTypePtr()) {
1305      ImpCastExprToType(lex, rhsType);
1306      return rhsType;
1307    }
1308  }
1309
1310  // You cannot convert between vector values of different size.
1311  Diag(loc, diag::err_typecheck_vector_not_convertable,
1312       lex->getType().getAsString(), rex->getType().getAsString(),
1313       lex->getSourceRange(), rex->getSourceRange());
1314  return QualType();
1315}
1316
1317inline QualType Sema::CheckMultiplyDivideOperands(
1318  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1319{
1320  QualType lhsType = lex->getType(), rhsType = rex->getType();
1321
1322  if (lhsType->isVectorType() || rhsType->isVectorType())
1323    return CheckVectorOperands(loc, lex, rex);
1324
1325  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1326
1327  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1328    return compType;
1329  return InvalidOperands(loc, lex, rex);
1330}
1331
1332inline QualType Sema::CheckRemainderOperands(
1333  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1334{
1335  QualType lhsType = lex->getType(), rhsType = rex->getType();
1336
1337  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1338
1339  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1340    return compType;
1341  return InvalidOperands(loc, lex, rex);
1342}
1343
1344inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
1345  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1346{
1347  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1348    return CheckVectorOperands(loc, lex, rex);
1349
1350  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1351
1352  // handle the common case first (both operands are arithmetic).
1353  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1354    return compType;
1355
1356  if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
1357    return lex->getType();
1358  if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
1359    return rex->getType();
1360  return InvalidOperands(loc, lex, rex);
1361}
1362
1363inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
1364  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1365{
1366  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1367    return CheckVectorOperands(loc, lex, rex);
1368
1369  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1370
1371  // Enforce type constraints: C99 6.5.6p3.
1372
1373  // Handle the common case first (both operands are arithmetic).
1374  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1375    return compType;
1376
1377  // Either ptr - int   or   ptr - ptr.
1378  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
1379    QualType lpointee = LHSPTy->getPointeeType();
1380
1381    // The LHS must be an object type, not incomplete, function, etc.
1382    if (!lpointee->isObjectType()) {
1383      // Handle the GNU void* extension.
1384      if (lpointee->isVoidType()) {
1385        Diag(loc, diag::ext_gnu_void_ptr,
1386             lex->getSourceRange(), rex->getSourceRange());
1387      } else {
1388        Diag(loc, diag::err_typecheck_sub_ptr_object,
1389             lex->getType().getAsString(), lex->getSourceRange());
1390        return QualType();
1391      }
1392    }
1393
1394    // The result type of a pointer-int computation is the pointer type.
1395    if (rex->getType()->isIntegerType())
1396      return lex->getType();
1397
1398    // Handle pointer-pointer subtractions.
1399    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
1400      QualType rpointee = RHSPTy->getPointeeType();
1401
1402      // RHS must be an object type, unless void (GNU).
1403      if (!rpointee->isObjectType()) {
1404        // Handle the GNU void* extension.
1405        if (rpointee->isVoidType()) {
1406          if (!lpointee->isVoidType())
1407            Diag(loc, diag::ext_gnu_void_ptr,
1408                 lex->getSourceRange(), rex->getSourceRange());
1409        } else {
1410          Diag(loc, diag::err_typecheck_sub_ptr_object,
1411               rex->getType().getAsString(), rex->getSourceRange());
1412          return QualType();
1413        }
1414      }
1415
1416      // Pointee types must be compatible.
1417      if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(),
1418                                      rpointee.getUnqualifiedType())) {
1419        Diag(loc, diag::err_typecheck_sub_ptr_compatible,
1420             lex->getType().getAsString(), rex->getType().getAsString(),
1421             lex->getSourceRange(), rex->getSourceRange());
1422        return QualType();
1423      }
1424
1425      return Context.getPointerDiffType();
1426    }
1427  }
1428
1429  return InvalidOperands(loc, lex, rex);
1430}
1431
1432inline QualType Sema::CheckShiftOperands( // C99 6.5.7
1433  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) {
1434  // C99 6.5.7p2: Each of the operands shall have integer type.
1435  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
1436    return InvalidOperands(loc, lex, rex);
1437
1438  // Shifts don't perform usual arithmetic conversions, they just do integer
1439  // promotions on each operand. C99 6.5.7p3
1440  if (!isCompAssign)
1441    UsualUnaryConversions(lex);
1442  UsualUnaryConversions(rex);
1443
1444  // "The type of the result is that of the promoted left operand."
1445  return lex->getType();
1446}
1447
1448inline QualType Sema::CheckCompareOperands( // C99 6.5.8
1449  Expr *&lex, Expr *&rex, SourceLocation loc, bool isRelational)
1450{
1451  // C99 6.5.8p3 / C99 6.5.9p4
1452  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1453    UsualArithmeticConversions(lex, rex);
1454  else {
1455    UsualUnaryConversions(lex);
1456    UsualUnaryConversions(rex);
1457  }
1458  QualType lType = lex->getType();
1459  QualType rType = rex->getType();
1460
1461  // For non-floating point types, check for self-comparisons of the form
1462  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
1463  // often indicate logic errors in the program.
1464  if (!lType->isFloatingType()) {
1465    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
1466      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
1467        if (DRL->getDecl() == DRR->getDecl())
1468          Diag(loc, diag::warn_selfcomparison);
1469  }
1470
1471  if (isRelational) {
1472    if (lType->isRealType() && rType->isRealType())
1473      return Context.IntTy;
1474  } else {
1475    // Check for comparisons of floating point operands using != and ==.
1476    if (lType->isFloatingType()) {
1477      assert (rType->isFloatingType());
1478      CheckFloatComparison(loc,lex,rex);
1479    }
1480
1481    if (lType->isArithmeticType() && rType->isArithmeticType())
1482      return Context.IntTy;
1483  }
1484
1485  bool LHSIsNull = lex->isNullPointerConstant(Context);
1486  bool RHSIsNull = rex->isNullPointerConstant(Context);
1487
1488  // All of the following pointer related warnings are GCC extensions, except
1489  // when handling null pointer constants. One day, we can consider making them
1490  // errors (when -pedantic-errors is enabled).
1491  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
1492    QualType lpointee = lType->getAsPointerType()->getPointeeType();
1493    QualType rpointee = rType->getAsPointerType()->getPointeeType();
1494
1495    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
1496        !lpointee->isVoidType() && !lpointee->isVoidType() &&
1497        !Context.typesAreCompatible(lpointee.getUnqualifiedType(),
1498                                    rpointee.getUnqualifiedType())) {
1499      Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1500           lType.getAsString(), rType.getAsString(),
1501           lex->getSourceRange(), rex->getSourceRange());
1502    }
1503    ImpCastExprToType(rex, lType); // promote the pointer to pointer
1504    return Context.IntTy;
1505  }
1506  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())
1507      && Context.ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
1508    ImpCastExprToType(rex, lType);
1509    return Context.IntTy;
1510  }
1511  if (lType->isPointerType() && rType->isIntegerType()) {
1512    if (!RHSIsNull)
1513      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1514           lType.getAsString(), rType.getAsString(),
1515           lex->getSourceRange(), rex->getSourceRange());
1516    ImpCastExprToType(rex, lType); // promote the integer to pointer
1517    return Context.IntTy;
1518  }
1519  if (lType->isIntegerType() && rType->isPointerType()) {
1520    if (!LHSIsNull)
1521      Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1522           lType.getAsString(), rType.getAsString(),
1523           lex->getSourceRange(), rex->getSourceRange());
1524    ImpCastExprToType(lex, rType); // promote the integer to pointer
1525    return Context.IntTy;
1526  }
1527  return InvalidOperands(loc, lex, rex);
1528}
1529
1530inline QualType Sema::CheckBitwiseOperands(
1531  Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign)
1532{
1533  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1534    return CheckVectorOperands(loc, lex, rex);
1535
1536  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
1537
1538  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1539    return compType;
1540  return InvalidOperands(loc, lex, rex);
1541}
1542
1543inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1544  Expr *&lex, Expr *&rex, SourceLocation loc)
1545{
1546  UsualUnaryConversions(lex);
1547  UsualUnaryConversions(rex);
1548
1549  if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
1550    return Context.IntTy;
1551  return InvalidOperands(loc, lex, rex);
1552}
1553
1554inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1555  Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType)
1556{
1557  QualType lhsType = lex->getType();
1558  QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1559  Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1560
1561  switch (mlval) { // C99 6.5.16p2
1562  case Expr::MLV_Valid:
1563    break;
1564  case Expr::MLV_ConstQualified:
1565    Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1566    return QualType();
1567  case Expr::MLV_ArrayType:
1568    Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1569         lhsType.getAsString(), lex->getSourceRange());
1570    return QualType();
1571  case Expr::MLV_NotObjectType:
1572    Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1573         lhsType.getAsString(), lex->getSourceRange());
1574    return QualType();
1575  case Expr::MLV_InvalidExpression:
1576    Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1577         lex->getSourceRange());
1578    return QualType();
1579  case Expr::MLV_IncompleteType:
1580  case Expr::MLV_IncompleteVoidType:
1581    Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1582         lhsType.getAsString(), lex->getSourceRange());
1583    return QualType();
1584  case Expr::MLV_DuplicateVectorComponents:
1585    Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1586         lex->getSourceRange());
1587    return QualType();
1588  }
1589
1590  AssignConvertType ConvTy;
1591  if (compoundType.isNull())
1592    ConvTy = CheckSingleAssignmentConstraints(lhsType, rex);
1593  else
1594    ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType);
1595
1596  if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType,
1597                               rex, "assigning"))
1598    return QualType();
1599
1600  // C99 6.5.16p3: The type of an assignment expression is the type of the
1601  // left operand unless the left operand has qualified type, in which case
1602  // it is the unqualified version of the type of the left operand.
1603  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1604  // is converted to the type of the assignment expression (above).
1605  // C++ 5.17p1: the type of the assignment expression is that of its left
1606  // oprdu.
1607  return lhsType.getUnqualifiedType();
1608}
1609
1610inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1611  Expr *&lex, Expr *&rex, SourceLocation loc) {
1612  UsualUnaryConversions(rex);
1613  return rex->getType();
1614}
1615
1616/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1617/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1618QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1619  QualType resType = op->getType();
1620  assert(!resType.isNull() && "no type for increment/decrement expression");
1621
1622  // C99 6.5.2.4p1: We allow complex as a GCC extension.
1623  if (const PointerType *pt = resType->getAsPointerType()) {
1624    if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
1625      Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1626           resType.getAsString(), op->getSourceRange());
1627      return QualType();
1628    }
1629  } else if (!resType->isRealType()) {
1630    if (resType->isComplexType())
1631      // C99 does not support ++/-- on complex types.
1632      Diag(OpLoc, diag::ext_integer_increment_complex,
1633           resType.getAsString(), op->getSourceRange());
1634    else {
1635      Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1636           resType.getAsString(), op->getSourceRange());
1637      return QualType();
1638    }
1639  }
1640  // At this point, we know we have a real, complex or pointer type.
1641  // Now make sure the operand is a modifiable lvalue.
1642  Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1643  if (mlval != Expr::MLV_Valid) {
1644    // FIXME: emit a more precise diagnostic...
1645    Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1646         op->getSourceRange());
1647    return QualType();
1648  }
1649  return resType;
1650}
1651
1652/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
1653/// This routine allows us to typecheck complex/recursive expressions
1654/// where the declaration is needed for type checking. Here are some
1655/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1656static ValueDecl *getPrimaryDecl(Expr *e) {
1657  switch (e->getStmtClass()) {
1658  case Stmt::DeclRefExprClass:
1659    return cast<DeclRefExpr>(e)->getDecl();
1660  case Stmt::MemberExprClass:
1661    // Fields cannot be declared with a 'register' storage class.
1662    // &X->f is always ok, even if X is declared register.
1663    if (cast<MemberExpr>(e)->isArrow())
1664      return 0;
1665    return getPrimaryDecl(cast<MemberExpr>(e)->getBase());
1666  case Stmt::ArraySubscriptExprClass: {
1667    // &X[4] and &4[X] is invalid if X is invalid and X is not a pointer.
1668
1669    ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(e)->getBase());
1670    if (!VD || VD->getType()->isPointerType())
1671      return 0;
1672    else
1673      return VD;
1674  }
1675  case Stmt::UnaryOperatorClass:
1676    return getPrimaryDecl(cast<UnaryOperator>(e)->getSubExpr());
1677  case Stmt::ParenExprClass:
1678    return getPrimaryDecl(cast<ParenExpr>(e)->getSubExpr());
1679  case Stmt::ImplicitCastExprClass:
1680    // &X[4] when X is an array, has an implicit cast from array to pointer.
1681    return getPrimaryDecl(cast<ImplicitCastExpr>(e)->getSubExpr());
1682  default:
1683    return 0;
1684  }
1685}
1686
1687/// CheckAddressOfOperand - The operand of & must be either a function
1688/// designator or an lvalue designating an object. If it is an lvalue, the
1689/// object cannot be declared with storage class register or be a bit field.
1690/// Note: The usual conversions are *not* applied to the operand of the &
1691/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1692QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1693  if (getLangOptions().C99) {
1694    // Implement C99-only parts of addressof rules.
1695    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
1696      if (uOp->getOpcode() == UnaryOperator::Deref)
1697        // Per C99 6.5.3.2, the address of a deref always returns a valid result
1698        // (assuming the deref expression is valid).
1699        return uOp->getSubExpr()->getType();
1700    }
1701    // Technically, there should be a check for array subscript
1702    // expressions here, but the result of one is always an lvalue anyway.
1703  }
1704  ValueDecl *dcl = getPrimaryDecl(op);
1705  Expr::isLvalueResult lval = op->isLvalue();
1706
1707  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1708    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
1709      // FIXME: emit more specific diag...
1710      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1711           op->getSourceRange());
1712      return QualType();
1713    }
1714  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
1715    if (MemExpr->getMemberDecl()->isBitField()) {
1716      Diag(OpLoc, diag::err_typecheck_address_of,
1717           std::string("bit-field"), op->getSourceRange());
1718      return QualType();
1719    }
1720  // Check for Apple extension for accessing vector components.
1721  } else if (isa<ArraySubscriptExpr>(op) &&
1722           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
1723    Diag(OpLoc, diag::err_typecheck_address_of,
1724         std::string("vector"), op->getSourceRange());
1725    return QualType();
1726  } else if (dcl) { // C99 6.5.3.2p1
1727    // We have an lvalue with a decl. Make sure the decl is not declared
1728    // with the register storage-class specifier.
1729    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
1730      if (vd->getStorageClass() == VarDecl::Register) {
1731        Diag(OpLoc, diag::err_typecheck_address_of,
1732             std::string("register variable"), op->getSourceRange());
1733        return QualType();
1734      }
1735    } else
1736      assert(0 && "Unknown/unexpected decl type");
1737  }
1738  // If the operand has type "type", the result has type "pointer to type".
1739  return Context.getPointerType(op->getType());
1740}
1741
1742QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
1743  UsualUnaryConversions(op);
1744  QualType qType = op->getType();
1745
1746  if (const PointerType *PT = qType->getAsPointerType()) {
1747    // Note that per both C89 and C99, this is always legal, even
1748    // if ptype is an incomplete type or void.
1749    // It would be possible to warn about dereferencing a
1750    // void pointer, but it's completely well-defined,
1751    // and such a warning is unlikely to catch any mistakes.
1752    return PT->getPointeeType();
1753  }
1754  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
1755       qType.getAsString(), op->getSourceRange());
1756  return QualType();
1757}
1758
1759static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
1760  tok::TokenKind Kind) {
1761  BinaryOperator::Opcode Opc;
1762  switch (Kind) {
1763  default: assert(0 && "Unknown binop!");
1764  case tok::star:                 Opc = BinaryOperator::Mul; break;
1765  case tok::slash:                Opc = BinaryOperator::Div; break;
1766  case tok::percent:              Opc = BinaryOperator::Rem; break;
1767  case tok::plus:                 Opc = BinaryOperator::Add; break;
1768  case tok::minus:                Opc = BinaryOperator::Sub; break;
1769  case tok::lessless:             Opc = BinaryOperator::Shl; break;
1770  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
1771  case tok::lessequal:            Opc = BinaryOperator::LE; break;
1772  case tok::less:                 Opc = BinaryOperator::LT; break;
1773  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
1774  case tok::greater:              Opc = BinaryOperator::GT; break;
1775  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
1776  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
1777  case tok::amp:                  Opc = BinaryOperator::And; break;
1778  case tok::caret:                Opc = BinaryOperator::Xor; break;
1779  case tok::pipe:                 Opc = BinaryOperator::Or; break;
1780  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
1781  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
1782  case tok::equal:                Opc = BinaryOperator::Assign; break;
1783  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
1784  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
1785  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
1786  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
1787  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
1788  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
1789  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
1790  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
1791  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
1792  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
1793  case tok::comma:                Opc = BinaryOperator::Comma; break;
1794  }
1795  return Opc;
1796}
1797
1798static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
1799  tok::TokenKind Kind) {
1800  UnaryOperator::Opcode Opc;
1801  switch (Kind) {
1802  default: assert(0 && "Unknown unary op!");
1803  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
1804  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
1805  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
1806  case tok::star:         Opc = UnaryOperator::Deref; break;
1807  case tok::plus:         Opc = UnaryOperator::Plus; break;
1808  case tok::minus:        Opc = UnaryOperator::Minus; break;
1809  case tok::tilde:        Opc = UnaryOperator::Not; break;
1810  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
1811  case tok::kw_sizeof:    Opc = UnaryOperator::SizeOf; break;
1812  case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
1813  case tok::kw___real:    Opc = UnaryOperator::Real; break;
1814  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
1815  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
1816  }
1817  return Opc;
1818}
1819
1820// Binary Operators.  'Tok' is the token for the operator.
1821Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
1822                                    ExprTy *LHS, ExprTy *RHS) {
1823  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
1824  Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
1825
1826  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
1827  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
1828
1829  QualType ResultTy;  // Result type of the binary operator.
1830  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
1831
1832  switch (Opc) {
1833  default:
1834    assert(0 && "Unknown binary expr!");
1835  case BinaryOperator::Assign:
1836    ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
1837    break;
1838  case BinaryOperator::Mul:
1839  case BinaryOperator::Div:
1840    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1841    break;
1842  case BinaryOperator::Rem:
1843    ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1844    break;
1845  case BinaryOperator::Add:
1846    ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1847    break;
1848  case BinaryOperator::Sub:
1849    ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1850    break;
1851  case BinaryOperator::Shl:
1852  case BinaryOperator::Shr:
1853    ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
1854    break;
1855  case BinaryOperator::LE:
1856  case BinaryOperator::LT:
1857  case BinaryOperator::GE:
1858  case BinaryOperator::GT:
1859    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true);
1860    break;
1861  case BinaryOperator::EQ:
1862  case BinaryOperator::NE:
1863    ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false);
1864    break;
1865  case BinaryOperator::And:
1866  case BinaryOperator::Xor:
1867  case BinaryOperator::Or:
1868    ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1869    break;
1870  case BinaryOperator::LAnd:
1871  case BinaryOperator::LOr:
1872    ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
1873    break;
1874  case BinaryOperator::MulAssign:
1875  case BinaryOperator::DivAssign:
1876    CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true);
1877    if (!CompTy.isNull())
1878      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1879    break;
1880  case BinaryOperator::RemAssign:
1881    CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true);
1882    if (!CompTy.isNull())
1883      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1884    break;
1885  case BinaryOperator::AddAssign:
1886    CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true);
1887    if (!CompTy.isNull())
1888      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1889    break;
1890  case BinaryOperator::SubAssign:
1891    CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true);
1892    if (!CompTy.isNull())
1893      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1894    break;
1895  case BinaryOperator::ShlAssign:
1896  case BinaryOperator::ShrAssign:
1897    CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true);
1898    if (!CompTy.isNull())
1899      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1900    break;
1901  case BinaryOperator::AndAssign:
1902  case BinaryOperator::XorAssign:
1903  case BinaryOperator::OrAssign:
1904    CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true);
1905    if (!CompTy.isNull())
1906      ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1907    break;
1908  case BinaryOperator::Comma:
1909    ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
1910    break;
1911  }
1912  if (ResultTy.isNull())
1913    return true;
1914  if (CompTy.isNull())
1915    return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc);
1916  else
1917    return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc);
1918}
1919
1920// Unary Operators.  'Tok' is the token for the operator.
1921Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
1922                                      ExprTy *input) {
1923  Expr *Input = (Expr*)input;
1924  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
1925  QualType resultType;
1926  switch (Opc) {
1927  default:
1928    assert(0 && "Unimplemented unary expr!");
1929  case UnaryOperator::PreInc:
1930  case UnaryOperator::PreDec:
1931    resultType = CheckIncrementDecrementOperand(Input, OpLoc);
1932    break;
1933  case UnaryOperator::AddrOf:
1934    resultType = CheckAddressOfOperand(Input, OpLoc);
1935    break;
1936  case UnaryOperator::Deref:
1937    DefaultFunctionArrayConversion(Input);
1938    resultType = CheckIndirectionOperand(Input, OpLoc);
1939    break;
1940  case UnaryOperator::Plus:
1941  case UnaryOperator::Minus:
1942    UsualUnaryConversions(Input);
1943    resultType = Input->getType();
1944    if (!resultType->isArithmeticType())  // C99 6.5.3.3p1
1945      return Diag(OpLoc, diag::err_typecheck_unary_expr,
1946                  resultType.getAsString());
1947    break;
1948  case UnaryOperator::Not: // bitwise complement
1949    UsualUnaryConversions(Input);
1950    resultType = Input->getType();
1951    // C99 6.5.3.3p1. We allow complex as a GCC extension.
1952    if (!resultType->isIntegerType()) {
1953      if (resultType->isComplexType())
1954        // C99 does not support '~' for complex conjugation.
1955        Diag(OpLoc, diag::ext_integer_complement_complex,
1956                    resultType.getAsString());
1957      else
1958        return Diag(OpLoc, diag::err_typecheck_unary_expr,
1959                    resultType.getAsString());
1960    }
1961    break;
1962  case UnaryOperator::LNot: // logical negation
1963    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
1964    DefaultFunctionArrayConversion(Input);
1965    resultType = Input->getType();
1966    if (!resultType->isScalarType()) // C99 6.5.3.3p1
1967      return Diag(OpLoc, diag::err_typecheck_unary_expr,
1968                  resultType.getAsString());
1969    // LNot always has type int. C99 6.5.3.3p5.
1970    resultType = Context.IntTy;
1971    break;
1972  case UnaryOperator::SizeOf:
1973    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
1974    break;
1975  case UnaryOperator::AlignOf:
1976    resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
1977    break;
1978  case UnaryOperator::Real:
1979  case UnaryOperator::Imag:
1980    resultType = CheckRealImagOperand(Input, OpLoc);
1981    break;
1982  case UnaryOperator::Extension:
1983    resultType = Input->getType();
1984    break;
1985  }
1986  if (resultType.isNull())
1987    return true;
1988  return new UnaryOperator(Input, Opc, resultType, OpLoc);
1989}
1990
1991/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
1992Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
1993                                      SourceLocation LabLoc,
1994                                      IdentifierInfo *LabelII) {
1995  // Look up the record for this label identifier.
1996  LabelStmt *&LabelDecl = LabelMap[LabelII];
1997
1998  // If we haven't seen this label yet, create a forward reference.
1999  if (LabelDecl == 0)
2000    LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
2001
2002  // Create the AST node.  The address of a label always has type 'void*'.
2003  return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
2004                           Context.getPointerType(Context.VoidTy));
2005}
2006
2007Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
2008                                     SourceLocation RPLoc) { // "({..})"
2009  Stmt *SubStmt = static_cast<Stmt*>(substmt);
2010  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
2011  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
2012
2013  // FIXME: there are a variety of strange constraints to enforce here, for
2014  // example, it is not possible to goto into a stmt expression apparently.
2015  // More semantic analysis is needed.
2016
2017  // FIXME: the last statement in the compount stmt has its value used.  We
2018  // should not warn about it being unused.
2019
2020  // If there are sub stmts in the compound stmt, take the type of the last one
2021  // as the type of the stmtexpr.
2022  QualType Ty = Context.VoidTy;
2023
2024  if (!Compound->body_empty())
2025    if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
2026      Ty = LastExpr->getType();
2027
2028  return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
2029}
2030
2031Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
2032                                            SourceLocation TypeLoc,
2033                                            TypeTy *argty,
2034                                            OffsetOfComponent *CompPtr,
2035                                            unsigned NumComponents,
2036                                            SourceLocation RPLoc) {
2037  QualType ArgTy = QualType::getFromOpaquePtr(argty);
2038  assert(!ArgTy.isNull() && "Missing type argument!");
2039
2040  // We must have at least one component that refers to the type, and the first
2041  // one is known to be a field designator.  Verify that the ArgTy represents
2042  // a struct/union/class.
2043  if (!ArgTy->isRecordType())
2044    return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString());
2045
2046  // Otherwise, create a compound literal expression as the base, and
2047  // iteratively process the offsetof designators.
2048  Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
2049
2050  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
2051  // GCC extension, diagnose them.
2052  if (NumComponents != 1)
2053    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator,
2054         SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd));
2055
2056  for (unsigned i = 0; i != NumComponents; ++i) {
2057    const OffsetOfComponent &OC = CompPtr[i];
2058    if (OC.isBrackets) {
2059      // Offset of an array sub-field.  TODO: Should we allow vector elements?
2060      const ArrayType *AT = Res->getType()->getAsArrayType();
2061      if (!AT) {
2062        delete Res;
2063        return Diag(OC.LocEnd, diag::err_offsetof_array_type,
2064                    Res->getType().getAsString());
2065      }
2066
2067      // FIXME: C++: Verify that operator[] isn't overloaded.
2068
2069      // C99 6.5.2.1p1
2070      Expr *Idx = static_cast<Expr*>(OC.U.E);
2071      if (!Idx->getType()->isIntegerType())
2072        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript,
2073                    Idx->getSourceRange());
2074
2075      Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
2076      continue;
2077    }
2078
2079    const RecordType *RC = Res->getType()->getAsRecordType();
2080    if (!RC) {
2081      delete Res;
2082      return Diag(OC.LocEnd, diag::err_offsetof_record_type,
2083                  Res->getType().getAsString());
2084    }
2085
2086    // Get the decl corresponding to this.
2087    RecordDecl *RD = RC->getDecl();
2088    FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo);
2089    if (!MemberDecl)
2090      return Diag(BuiltinLoc, diag::err_typecheck_no_member,
2091                  OC.U.IdentInfo->getName(),
2092                  SourceRange(OC.LocStart, OC.LocEnd));
2093
2094    // FIXME: C++: Verify that MemberDecl isn't a static field.
2095    // FIXME: Verify that MemberDecl isn't a bitfield.
2096    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
2097    // matter here.
2098    Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType());
2099  }
2100
2101  return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
2102                           BuiltinLoc);
2103}
2104
2105
2106Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
2107                                                TypeTy *arg1, TypeTy *arg2,
2108                                                SourceLocation RPLoc) {
2109  QualType argT1 = QualType::getFromOpaquePtr(arg1);
2110  QualType argT2 = QualType::getFromOpaquePtr(arg2);
2111
2112  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
2113
2114  return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
2115}
2116
2117Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
2118                                       ExprTy *expr1, ExprTy *expr2,
2119                                       SourceLocation RPLoc) {
2120  Expr *CondExpr = static_cast<Expr*>(cond);
2121  Expr *LHSExpr = static_cast<Expr*>(expr1);
2122  Expr *RHSExpr = static_cast<Expr*>(expr2);
2123
2124  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
2125
2126  // The conditional expression is required to be a constant expression.
2127  llvm::APSInt condEval(32);
2128  SourceLocation ExpLoc;
2129  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
2130    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
2131                 CondExpr->getSourceRange());
2132
2133  // If the condition is > zero, then the AST type is the same as the LSHExpr.
2134  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
2135                                               RHSExpr->getType();
2136  return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
2137}
2138
2139/// ExprsMatchFnType - return true if the Exprs in array Args have
2140/// QualTypes that match the QualTypes of the arguments of the FnType.
2141/// The number of arguments has already been validated to match the number of
2142/// arguments in FnType.
2143static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType) {
2144  unsigned NumParams = FnType->getNumArgs();
2145  for (unsigned i = 0; i != NumParams; ++i)
2146    if (Args[i]->getType().getCanonicalType() !=
2147        FnType->getArgType(i).getCanonicalType())
2148      return false;
2149  return true;
2150}
2151
2152Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
2153                                         SourceLocation *CommaLocs,
2154                                         SourceLocation BuiltinLoc,
2155                                         SourceLocation RParenLoc) {
2156  // __builtin_overload requires at least 2 arguments
2157  if (NumArgs < 2)
2158    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2159                SourceRange(BuiltinLoc, RParenLoc));
2160
2161  // The first argument is required to be a constant expression.  It tells us
2162  // the number of arguments to pass to each of the functions to be overloaded.
2163  Expr **Args = reinterpret_cast<Expr**>(args);
2164  Expr *NParamsExpr = Args[0];
2165  llvm::APSInt constEval(32);
2166  SourceLocation ExpLoc;
2167  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
2168    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2169                NParamsExpr->getSourceRange());
2170
2171  // Verify that the number of parameters is > 0
2172  unsigned NumParams = constEval.getZExtValue();
2173  if (NumParams == 0)
2174    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant,
2175                NParamsExpr->getSourceRange());
2176  // Verify that we have at least 1 + NumParams arguments to the builtin.
2177  if ((NumParams + 1) > NumArgs)
2178    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
2179                SourceRange(BuiltinLoc, RParenLoc));
2180
2181  // Figure out the return type, by matching the args to one of the functions
2182  // listed after the parameters.
2183  OverloadExpr *OE = 0;
2184  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
2185    // UsualUnaryConversions will convert the function DeclRefExpr into a
2186    // pointer to function.
2187    Expr *Fn = UsualUnaryConversions(Args[i]);
2188    FunctionTypeProto *FnType = 0;
2189    if (const PointerType *PT = Fn->getType()->getAsPointerType()) {
2190      QualType PointeeType = PT->getPointeeType().getCanonicalType();
2191      FnType = dyn_cast<FunctionTypeProto>(PointeeType);
2192    }
2193
2194    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
2195    // parameters, and the number of parameters must match the value passed to
2196    // the builtin.
2197    if (!FnType || (FnType->getNumArgs() != NumParams))
2198      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype,
2199                  Fn->getSourceRange());
2200
2201    // Scan the parameter list for the FunctionType, checking the QualType of
2202    // each parameter against the QualTypes of the arguments to the builtin.
2203    // If they match, return a new OverloadExpr.
2204    if (ExprsMatchFnType(Args+1, FnType)) {
2205      if (OE)
2206        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match,
2207                    OE->getFn()->getSourceRange());
2208      // Remember our match, and continue processing the remaining arguments
2209      // to catch any errors.
2210      OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(),
2211                            BuiltinLoc, RParenLoc);
2212    }
2213  }
2214  // Return the newly created OverloadExpr node, if we succeded in matching
2215  // exactly one of the candidate functions.
2216  if (OE)
2217    return OE;
2218
2219  // If we didn't find a matching function Expr in the __builtin_overload list
2220  // the return an error.
2221  std::string typeNames;
2222  for (unsigned i = 0; i != NumParams; ++i) {
2223    if (i != 0) typeNames += ", ";
2224    typeNames += Args[i+1]->getType().getAsString();
2225  }
2226
2227  return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames,
2228              SourceRange(BuiltinLoc, RParenLoc));
2229}
2230
2231Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
2232                                  ExprTy *expr, TypeTy *type,
2233                                  SourceLocation RPLoc) {
2234  Expr *E = static_cast<Expr*>(expr);
2235  QualType T = QualType::getFromOpaquePtr(type);
2236
2237  InitBuiltinVaListType();
2238
2239  if (CheckAssignmentConstraints(Context.getBuiltinVaListType(), E->getType())
2240      != Compatible)
2241    return Diag(E->getLocStart(),
2242                diag::err_first_argument_to_va_arg_not_of_type_va_list,
2243                E->getType().getAsString(),
2244                E->getSourceRange());
2245
2246  // FIXME: Warn if a non-POD type is passed in.
2247
2248  return new VAArgExpr(BuiltinLoc, E, T, RPLoc);
2249}
2250
2251bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
2252                                    SourceLocation Loc,
2253                                    QualType DstType, QualType SrcType,
2254                                    Expr *SrcExpr, const char *Flavor) {
2255  // Decode the result (notice that AST's are still created for extensions).
2256  bool isInvalid = false;
2257  unsigned DiagKind;
2258  switch (ConvTy) {
2259  default: assert(0 && "Unknown conversion type");
2260  case Compatible: return false;
2261  case PointerToInt:
2262    DiagKind = diag::ext_typecheck_convert_pointer_int;
2263    break;
2264  case IntToPointer:
2265    DiagKind = diag::ext_typecheck_convert_int_pointer;
2266    break;
2267  case IncompatiblePointer:
2268    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
2269    break;
2270  case FunctionVoidPointer:
2271    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
2272    break;
2273  case CompatiblePointerDiscardsQualifiers:
2274    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
2275    break;
2276  case Incompatible:
2277    DiagKind = diag::err_typecheck_convert_incompatible;
2278    isInvalid = true;
2279    break;
2280  }
2281
2282  Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor,
2283       SrcExpr->getSourceRange());
2284  return isInvalid;
2285}
2286
2287