SemaExpr.cpp revision 27bec77f5eb0920b401497be32713cb42339edef
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/AnalysisBasedWarnings.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Lex/LiteralSupport.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Scope.h"
40#include "clang/Sema/ScopeInfo.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44#include "TreeTransform.h"
45using namespace clang;
46using namespace sema;
47
48/// \brief Determine whether the use of this declaration is valid, without
49/// emitting diagnostics.
50bool Sema::CanUseDecl(NamedDecl *D) {
51  // See if this is an auto-typed variable whose initializer we are parsing.
52  if (ParsingInitForAutoVars.count(D))
53    return false;
54
55  // See if this is a deleted function.
56  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57    if (FD->isDeleted())
58      return false;
59  }
60
61  // See if this function is unavailable.
62  if (D->getAvailability() == AR_Unavailable &&
63      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64    return false;
65
66  return true;
67}
68
69static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
70                              NamedDecl *D, SourceLocation Loc,
71                              const ObjCInterfaceDecl *UnknownObjCClass) {
72  // See if this declaration is unavailable or deprecated.
73  std::string Message;
74  AvailabilityResult Result = D->getAvailability(&Message);
75  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
76    if (Result == AR_Available) {
77      const DeclContext *DC = ECD->getDeclContext();
78      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
79        Result = TheEnumDecl->getAvailability(&Message);
80    }
81
82  switch (Result) {
83    case AR_Available:
84    case AR_NotYetIntroduced:
85      break;
86
87    case AR_Deprecated:
88      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
89      break;
90
91    case AR_Unavailable:
92      if (S.getCurContextAvailability() != AR_Unavailable) {
93        if (Message.empty()) {
94          if (!UnknownObjCClass)
95            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
96          else
97            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
98              << D->getDeclName();
99        }
100        else
101          S.Diag(Loc, diag::err_unavailable_message)
102            << D->getDeclName() << Message;
103          S.Diag(D->getLocation(), diag::note_unavailable_here)
104          << isa<FunctionDecl>(D) << false;
105      }
106      break;
107    }
108    return Result;
109}
110
111/// \brief Emit a note explaining that this function is deleted or unavailable.
112void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
113  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
114
115  if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
116    // If the method was explicitly defaulted, point at that declaration.
117    if (!Method->isImplicit())
118      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
119
120    // Try to diagnose why this special member function was implicitly
121    // deleted. This might fail, if that reason no longer applies.
122    CXXSpecialMember CSM = getSpecialMember(Method);
123    if (CSM != CXXInvalid)
124      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
125
126    return;
127  }
128
129  Diag(Decl->getLocation(), diag::note_unavailable_here)
130    << 1 << Decl->isDeleted();
131}
132
133/// \brief Determine whether a FunctionDecl was ever declared with an
134/// explicit storage class.
135static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
136  for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
137                                     E = D->redecls_end();
138       I != E; ++I) {
139    if (I->getStorageClassAsWritten() != SC_None)
140      return true;
141  }
142  return false;
143}
144
145/// \brief Check whether we're in an extern inline function and referring to a
146/// variable or function with internal linkage (C11 6.7.4p3).
147///
148/// This is only a warning because we used to silently accept this code, but
149/// in many cases it will not behave correctly. This is not enabled in C++ mode
150/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
151/// and so while there may still be user mistakes, most of the time we can't
152/// prove that there are errors.
153static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
154                                                      const NamedDecl *D,
155                                                      SourceLocation Loc) {
156  // This is disabled under C++; there are too many ways for this to fire in
157  // contexts where the warning is a false positive, or where it is technically
158  // correct but benign.
159  if (S.getLangOpts().CPlusPlus)
160    return;
161
162  // Check if this is an inlined function or method.
163  FunctionDecl *Current = S.getCurFunctionDecl();
164  if (!Current)
165    return;
166  if (!Current->isInlined())
167    return;
168  if (Current->getLinkage() != ExternalLinkage)
169    return;
170
171  // Check if the decl has internal linkage.
172  if (D->getLinkage() != InternalLinkage)
173    return;
174
175  // Downgrade from ExtWarn to Extension if
176  //  (1) the supposedly external inline function is in the main file,
177  //      and probably won't be included anywhere else.
178  //  (2) the thing we're referencing is a pure function.
179  //  (3) the thing we're referencing is another inline function.
180  // This last can give us false negatives, but it's better than warning on
181  // wrappers for simple C library functions.
182  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
183  bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
184  if (!DowngradeWarning && UsedFn)
185    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
186
187  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
188                               : diag::warn_internal_in_extern_inline)
189    << /*IsVar=*/!UsedFn << D;
190
191  // Suggest "static" on the inline function, if possible.
192  if (!hasAnyExplicitStorageClass(Current)) {
193    const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
194    SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
195    S.Diag(DeclBegin, diag::note_convert_inline_to_static)
196      << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
197  }
198
199  S.Diag(D->getCanonicalDecl()->getLocation(),
200         diag::note_internal_decl_declared_here)
201    << D;
202}
203
204/// \brief Determine whether the use of this declaration is valid, and
205/// emit any corresponding diagnostics.
206///
207/// This routine diagnoses various problems with referencing
208/// declarations that can occur when using a declaration. For example,
209/// it might warn if a deprecated or unavailable declaration is being
210/// used, or produce an error (and return true) if a C++0x deleted
211/// function is being used.
212///
213/// \returns true if there was an error (this declaration cannot be
214/// referenced), false otherwise.
215///
216bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
217                             const ObjCInterfaceDecl *UnknownObjCClass) {
218  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
219    // If there were any diagnostics suppressed by template argument deduction,
220    // emit them now.
221    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
222      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
223    if (Pos != SuppressedDiagnostics.end()) {
224      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
225      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
226        Diag(Suppressed[I].first, Suppressed[I].second);
227
228      // Clear out the list of suppressed diagnostics, so that we don't emit
229      // them again for this specialization. However, we don't obsolete this
230      // entry from the table, because we want to avoid ever emitting these
231      // diagnostics again.
232      Suppressed.clear();
233    }
234  }
235
236  // See if this is an auto-typed variable whose initializer we are parsing.
237  if (ParsingInitForAutoVars.count(D)) {
238    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
239      << D->getDeclName();
240    return true;
241  }
242
243  // See if this is a deleted function.
244  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
245    if (FD->isDeleted()) {
246      Diag(Loc, diag::err_deleted_function_use);
247      NoteDeletedFunction(FD);
248      return true;
249    }
250  }
251  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
252
253  // Warn if this is used but marked unused.
254  if (D->hasAttr<UnusedAttr>())
255    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
256
257  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
258
259  return false;
260}
261
262/// \brief Retrieve the message suffix that should be added to a
263/// diagnostic complaining about the given function being deleted or
264/// unavailable.
265std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
266  // FIXME: C++0x implicitly-deleted special member functions could be
267  // detected here so that we could improve diagnostics to say, e.g.,
268  // "base class 'A' had a deleted copy constructor".
269  if (FD->isDeleted())
270    return std::string();
271
272  std::string Message;
273  if (FD->getAvailability(&Message))
274    return ": " + Message;
275
276  return std::string();
277}
278
279/// DiagnoseSentinelCalls - This routine checks whether a call or
280/// message-send is to a declaration with the sentinel attribute, and
281/// if so, it checks that the requirements of the sentinel are
282/// satisfied.
283void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
284                                 Expr **args, unsigned numArgs) {
285  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
286  if (!attr)
287    return;
288
289  // The number of formal parameters of the declaration.
290  unsigned numFormalParams;
291
292  // The kind of declaration.  This is also an index into a %select in
293  // the diagnostic.
294  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
295
296  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
297    numFormalParams = MD->param_size();
298    calleeType = CT_Method;
299  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
300    numFormalParams = FD->param_size();
301    calleeType = CT_Function;
302  } else if (isa<VarDecl>(D)) {
303    QualType type = cast<ValueDecl>(D)->getType();
304    const FunctionType *fn = 0;
305    if (const PointerType *ptr = type->getAs<PointerType>()) {
306      fn = ptr->getPointeeType()->getAs<FunctionType>();
307      if (!fn) return;
308      calleeType = CT_Function;
309    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
310      fn = ptr->getPointeeType()->castAs<FunctionType>();
311      calleeType = CT_Block;
312    } else {
313      return;
314    }
315
316    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
317      numFormalParams = proto->getNumArgs();
318    } else {
319      numFormalParams = 0;
320    }
321  } else {
322    return;
323  }
324
325  // "nullPos" is the number of formal parameters at the end which
326  // effectively count as part of the variadic arguments.  This is
327  // useful if you would prefer to not have *any* formal parameters,
328  // but the language forces you to have at least one.
329  unsigned nullPos = attr->getNullPos();
330  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
331  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
332
333  // The number of arguments which should follow the sentinel.
334  unsigned numArgsAfterSentinel = attr->getSentinel();
335
336  // If there aren't enough arguments for all the formal parameters,
337  // the sentinel, and the args after the sentinel, complain.
338  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
339    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
340    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
341    return;
342  }
343
344  // Otherwise, find the sentinel expression.
345  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
346  if (!sentinelExpr) return;
347  if (sentinelExpr->isValueDependent()) return;
348  if (Context.isSentinelNullExpr(sentinelExpr)) return;
349
350  // Pick a reasonable string to insert.  Optimistically use 'nil' or
351  // 'NULL' if those are actually defined in the context.  Only use
352  // 'nil' for ObjC methods, where it's much more likely that the
353  // variadic arguments form a list of object pointers.
354  SourceLocation MissingNilLoc
355    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
356  std::string NullValue;
357  if (calleeType == CT_Method &&
358      PP.getIdentifierInfo("nil")->hasMacroDefinition())
359    NullValue = "nil";
360  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
361    NullValue = "NULL";
362  else
363    NullValue = "(void*) 0";
364
365  if (MissingNilLoc.isInvalid())
366    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
367  else
368    Diag(MissingNilLoc, diag::warn_missing_sentinel)
369      << calleeType
370      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
371  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
372}
373
374SourceRange Sema::getExprRange(Expr *E) const {
375  return E ? E->getSourceRange() : SourceRange();
376}
377
378//===----------------------------------------------------------------------===//
379//  Standard Promotions and Conversions
380//===----------------------------------------------------------------------===//
381
382/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
383ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
384  // Handle any placeholder expressions which made it here.
385  if (E->getType()->isPlaceholderType()) {
386    ExprResult result = CheckPlaceholderExpr(E);
387    if (result.isInvalid()) return ExprError();
388    E = result.take();
389  }
390
391  QualType Ty = E->getType();
392  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
393
394  if (Ty->isFunctionType())
395    E = ImpCastExprToType(E, Context.getPointerType(Ty),
396                          CK_FunctionToPointerDecay).take();
397  else if (Ty->isArrayType()) {
398    // In C90 mode, arrays only promote to pointers if the array expression is
399    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
400    // type 'array of type' is converted to an expression that has type 'pointer
401    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
402    // that has type 'array of type' ...".  The relevant change is "an lvalue"
403    // (C90) to "an expression" (C99).
404    //
405    // C++ 4.2p1:
406    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
407    // T" can be converted to an rvalue of type "pointer to T".
408    //
409    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
410      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
411                            CK_ArrayToPointerDecay).take();
412  }
413  return Owned(E);
414}
415
416static void CheckForNullPointerDereference(Sema &S, Expr *E) {
417  // Check to see if we are dereferencing a null pointer.  If so,
418  // and if not volatile-qualified, this is undefined behavior that the
419  // optimizer will delete, so warn about it.  People sometimes try to use this
420  // to get a deterministic trap and are surprised by clang's behavior.  This
421  // only handles the pattern "*null", which is a very syntactic check.
422  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
423    if (UO->getOpcode() == UO_Deref &&
424        UO->getSubExpr()->IgnoreParenCasts()->
425          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
426        !UO->getType().isVolatileQualified()) {
427    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
428                          S.PDiag(diag::warn_indirection_through_null)
429                            << UO->getSubExpr()->getSourceRange());
430    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
431                        S.PDiag(diag::note_indirection_through_null));
432  }
433}
434
435ExprResult Sema::DefaultLvalueConversion(Expr *E) {
436  // Handle any placeholder expressions which made it here.
437  if (E->getType()->isPlaceholderType()) {
438    ExprResult result = CheckPlaceholderExpr(E);
439    if (result.isInvalid()) return ExprError();
440    E = result.take();
441  }
442
443  // C++ [conv.lval]p1:
444  //   A glvalue of a non-function, non-array type T can be
445  //   converted to a prvalue.
446  if (!E->isGLValue()) return Owned(E);
447
448  QualType T = E->getType();
449  assert(!T.isNull() && "r-value conversion on typeless expression?");
450
451  // We don't want to throw lvalue-to-rvalue casts on top of
452  // expressions of certain types in C++.
453  if (getLangOpts().CPlusPlus &&
454      (E->getType() == Context.OverloadTy ||
455       T->isDependentType() ||
456       T->isRecordType()))
457    return Owned(E);
458
459  // The C standard is actually really unclear on this point, and
460  // DR106 tells us what the result should be but not why.  It's
461  // generally best to say that void types just doesn't undergo
462  // lvalue-to-rvalue at all.  Note that expressions of unqualified
463  // 'void' type are never l-values, but qualified void can be.
464  if (T->isVoidType())
465    return Owned(E);
466
467  CheckForNullPointerDereference(*this, E);
468
469  // C++ [conv.lval]p1:
470  //   [...] If T is a non-class type, the type of the prvalue is the
471  //   cv-unqualified version of T. Otherwise, the type of the
472  //   rvalue is T.
473  //
474  // C99 6.3.2.1p2:
475  //   If the lvalue has qualified type, the value has the unqualified
476  //   version of the type of the lvalue; otherwise, the value has the
477  //   type of the lvalue.
478  if (T.hasQualifiers())
479    T = T.getUnqualifiedType();
480
481  UpdateMarkingForLValueToRValue(E);
482
483  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
484                                                  E, 0, VK_RValue));
485
486  // C11 6.3.2.1p2:
487  //   ... if the lvalue has atomic type, the value has the non-atomic version
488  //   of the type of the lvalue ...
489  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
490    T = Atomic->getValueType().getUnqualifiedType();
491    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
492                                         Res.get(), 0, VK_RValue));
493  }
494
495  return Res;
496}
497
498ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
499  ExprResult Res = DefaultFunctionArrayConversion(E);
500  if (Res.isInvalid())
501    return ExprError();
502  Res = DefaultLvalueConversion(Res.take());
503  if (Res.isInvalid())
504    return ExprError();
505  return move(Res);
506}
507
508
509/// UsualUnaryConversions - Performs various conversions that are common to most
510/// operators (C99 6.3). The conversions of array and function types are
511/// sometimes suppressed. For example, the array->pointer conversion doesn't
512/// apply if the array is an argument to the sizeof or address (&) operators.
513/// In these instances, this routine should *not* be called.
514ExprResult Sema::UsualUnaryConversions(Expr *E) {
515  // First, convert to an r-value.
516  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
517  if (Res.isInvalid())
518    return Owned(E);
519  E = Res.take();
520
521  QualType Ty = E->getType();
522  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
523
524  // Half FP is a bit different: it's a storage-only type, meaning that any
525  // "use" of it should be promoted to float.
526  if (Ty->isHalfType())
527    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
528
529  // Try to perform integral promotions if the object has a theoretically
530  // promotable type.
531  if (Ty->isIntegralOrUnscopedEnumerationType()) {
532    // C99 6.3.1.1p2:
533    //
534    //   The following may be used in an expression wherever an int or
535    //   unsigned int may be used:
536    //     - an object or expression with an integer type whose integer
537    //       conversion rank is less than or equal to the rank of int
538    //       and unsigned int.
539    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
540    //
541    //   If an int can represent all values of the original type, the
542    //   value is converted to an int; otherwise, it is converted to an
543    //   unsigned int. These are called the integer promotions. All
544    //   other types are unchanged by the integer promotions.
545
546    QualType PTy = Context.isPromotableBitField(E);
547    if (!PTy.isNull()) {
548      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
549      return Owned(E);
550    }
551    if (Ty->isPromotableIntegerType()) {
552      QualType PT = Context.getPromotedIntegerType(Ty);
553      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
554      return Owned(E);
555    }
556  }
557  return Owned(E);
558}
559
560/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
561/// do not have a prototype. Arguments that have type float are promoted to
562/// double. All other argument types are converted by UsualUnaryConversions().
563ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
564  QualType Ty = E->getType();
565  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
566
567  ExprResult Res = UsualUnaryConversions(E);
568  if (Res.isInvalid())
569    return Owned(E);
570  E = Res.take();
571
572  // If this is a 'float' (CVR qualified or typedef) promote to double.
573  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
574    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
575
576  // C++ performs lvalue-to-rvalue conversion as a default argument
577  // promotion, even on class types, but note:
578  //   C++11 [conv.lval]p2:
579  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
580  //     operand or a subexpression thereof the value contained in the
581  //     referenced object is not accessed. Otherwise, if the glvalue
582  //     has a class type, the conversion copy-initializes a temporary
583  //     of type T from the glvalue and the result of the conversion
584  //     is a prvalue for the temporary.
585  // FIXME: add some way to gate this entire thing for correctness in
586  // potentially potentially evaluated contexts.
587  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
588    ExprResult Temp = PerformCopyInitialization(
589                       InitializedEntity::InitializeTemporary(E->getType()),
590                                                E->getExprLoc(),
591                                                Owned(E));
592    if (Temp.isInvalid())
593      return ExprError();
594    E = Temp.get();
595  }
596
597  return Owned(E);
598}
599
600/// Determine the degree of POD-ness for an expression.
601/// Incomplete types are considered POD, since this check can be performed
602/// when we're in an unevaluated context.
603Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
604  if (Ty->isIncompleteType()) {
605    if (Ty->isObjCObjectType())
606      return VAK_Invalid;
607    return VAK_Valid;
608  }
609
610  if (Ty.isCXX98PODType(Context))
611    return VAK_Valid;
612
613  // C++0x [expr.call]p7:
614  //   Passing a potentially-evaluated argument of class type (Clause 9)
615  //   having a non-trivial copy constructor, a non-trivial move constructor,
616  //   or a non-trivial destructor, with no corresponding parameter,
617  //   is conditionally-supported with implementation-defined semantics.
618  if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
619    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
620      if (Record->hasTrivialCopyConstructor() &&
621          Record->hasTrivialMoveConstructor() &&
622          Record->hasTrivialDestructor())
623        return VAK_ValidInCXX11;
624
625  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
626    return VAK_Valid;
627  return VAK_Invalid;
628}
629
630bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
631  // Don't allow one to pass an Objective-C interface to a vararg.
632  const QualType & Ty = E->getType();
633
634  // Complain about passing non-POD types through varargs.
635  switch (isValidVarArgType(Ty)) {
636  case VAK_Valid:
637    break;
638  case VAK_ValidInCXX11:
639    DiagRuntimeBehavior(E->getLocStart(), 0,
640        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
641        << E->getType() << CT);
642    break;
643  case VAK_Invalid: {
644    if (Ty->isObjCObjectType())
645      return DiagRuntimeBehavior(E->getLocStart(), 0,
646                          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
647                            << Ty << CT);
648
649    return DiagRuntimeBehavior(E->getLocStart(), 0,
650                   PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
651                   << getLangOpts().CPlusPlus0x << Ty << CT);
652  }
653  }
654  // c++ rules are enforced elsewhere.
655  return false;
656}
657
658/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
659/// will create a trap if the resulting type is not a POD type.
660ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
661                                                  FunctionDecl *FDecl) {
662  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
663    // Strip the unbridged-cast placeholder expression off, if applicable.
664    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
665        (CT == VariadicMethod ||
666         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
667      E = stripARCUnbridgedCast(E);
668
669    // Otherwise, do normal placeholder checking.
670    } else {
671      ExprResult ExprRes = CheckPlaceholderExpr(E);
672      if (ExprRes.isInvalid())
673        return ExprError();
674      E = ExprRes.take();
675    }
676  }
677
678  ExprResult ExprRes = DefaultArgumentPromotion(E);
679  if (ExprRes.isInvalid())
680    return ExprError();
681  E = ExprRes.take();
682
683  // Diagnostics regarding non-POD argument types are
684  // emitted along with format string checking in Sema::CheckFunctionCall().
685  if (isValidVarArgType(E->getType()) == VAK_Invalid) {
686    // Turn this into a trap.
687    CXXScopeSpec SS;
688    SourceLocation TemplateKWLoc;
689    UnqualifiedId Name;
690    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
691                       E->getLocStart());
692    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
693                                          Name, true, false);
694    if (TrapFn.isInvalid())
695      return ExprError();
696
697    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
698                                    E->getLocStart(), MultiExprArg(),
699                                    E->getLocEnd());
700    if (Call.isInvalid())
701      return ExprError();
702
703    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
704                                  Call.get(), E);
705    if (Comma.isInvalid())
706      return ExprError();
707    return Comma.get();
708  }
709
710  if (!getLangOpts().CPlusPlus &&
711      RequireCompleteType(E->getExprLoc(), E->getType(),
712                          diag::err_call_incomplete_argument))
713    return ExprError();
714
715  return Owned(E);
716}
717
718/// \brief Converts an integer to complex float type.  Helper function of
719/// UsualArithmeticConversions()
720///
721/// \return false if the integer expression is an integer type and is
722/// successfully converted to the complex type.
723static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
724                                                  ExprResult &ComplexExpr,
725                                                  QualType IntTy,
726                                                  QualType ComplexTy,
727                                                  bool SkipCast) {
728  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
729  if (SkipCast) return false;
730  if (IntTy->isIntegerType()) {
731    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
732    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
733    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
734                                  CK_FloatingRealToComplex);
735  } else {
736    assert(IntTy->isComplexIntegerType());
737    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
738                                  CK_IntegralComplexToFloatingComplex);
739  }
740  return false;
741}
742
743/// \brief Takes two complex float types and converts them to the same type.
744/// Helper function of UsualArithmeticConversions()
745static QualType
746handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
747                                            ExprResult &RHS, QualType LHSType,
748                                            QualType RHSType,
749                                            bool IsCompAssign) {
750  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
751
752  if (order < 0) {
753    // _Complex float -> _Complex double
754    if (!IsCompAssign)
755      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
756    return RHSType;
757  }
758  if (order > 0)
759    // _Complex float -> _Complex double
760    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
761  return LHSType;
762}
763
764/// \brief Converts otherExpr to complex float and promotes complexExpr if
765/// necessary.  Helper function of UsualArithmeticConversions()
766static QualType handleOtherComplexFloatConversion(Sema &S,
767                                                  ExprResult &ComplexExpr,
768                                                  ExprResult &OtherExpr,
769                                                  QualType ComplexTy,
770                                                  QualType OtherTy,
771                                                  bool ConvertComplexExpr,
772                                                  bool ConvertOtherExpr) {
773  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
774
775  // If just the complexExpr is complex, the otherExpr needs to be converted,
776  // and the complexExpr might need to be promoted.
777  if (order > 0) { // complexExpr is wider
778    // float -> _Complex double
779    if (ConvertOtherExpr) {
780      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
781      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
782      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
783                                      CK_FloatingRealToComplex);
784    }
785    return ComplexTy;
786  }
787
788  // otherTy is at least as wide.  Find its corresponding complex type.
789  QualType result = (order == 0 ? ComplexTy :
790                                  S.Context.getComplexType(OtherTy));
791
792  // double -> _Complex double
793  if (ConvertOtherExpr)
794    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
795                                    CK_FloatingRealToComplex);
796
797  // _Complex float -> _Complex double
798  if (ConvertComplexExpr && order < 0)
799    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
800                                      CK_FloatingComplexCast);
801
802  return result;
803}
804
805/// \brief Handle arithmetic conversion with complex types.  Helper function of
806/// UsualArithmeticConversions()
807static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
808                                             ExprResult &RHS, QualType LHSType,
809                                             QualType RHSType,
810                                             bool IsCompAssign) {
811  // if we have an integer operand, the result is the complex type.
812  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
813                                             /*skipCast*/false))
814    return LHSType;
815  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
816                                             /*skipCast*/IsCompAssign))
817    return RHSType;
818
819  // This handles complex/complex, complex/float, or float/complex.
820  // When both operands are complex, the shorter operand is converted to the
821  // type of the longer, and that is the type of the result. This corresponds
822  // to what is done when combining two real floating-point operands.
823  // The fun begins when size promotion occur across type domains.
824  // From H&S 6.3.4: When one operand is complex and the other is a real
825  // floating-point type, the less precise type is converted, within it's
826  // real or complex domain, to the precision of the other type. For example,
827  // when combining a "long double" with a "double _Complex", the
828  // "double _Complex" is promoted to "long double _Complex".
829
830  bool LHSComplexFloat = LHSType->isComplexType();
831  bool RHSComplexFloat = RHSType->isComplexType();
832
833  // If both are complex, just cast to the more precise type.
834  if (LHSComplexFloat && RHSComplexFloat)
835    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
836                                                       LHSType, RHSType,
837                                                       IsCompAssign);
838
839  // If only one operand is complex, promote it if necessary and convert the
840  // other operand to complex.
841  if (LHSComplexFloat)
842    return handleOtherComplexFloatConversion(
843        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
844        /*convertOtherExpr*/ true);
845
846  assert(RHSComplexFloat);
847  return handleOtherComplexFloatConversion(
848      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
849      /*convertOtherExpr*/ !IsCompAssign);
850}
851
852/// \brief Hande arithmetic conversion from integer to float.  Helper function
853/// of UsualArithmeticConversions()
854static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
855                                           ExprResult &IntExpr,
856                                           QualType FloatTy, QualType IntTy,
857                                           bool ConvertFloat, bool ConvertInt) {
858  if (IntTy->isIntegerType()) {
859    if (ConvertInt)
860      // Convert intExpr to the lhs floating point type.
861      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
862                                    CK_IntegralToFloating);
863    return FloatTy;
864  }
865
866  // Convert both sides to the appropriate complex float.
867  assert(IntTy->isComplexIntegerType());
868  QualType result = S.Context.getComplexType(FloatTy);
869
870  // _Complex int -> _Complex float
871  if (ConvertInt)
872    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
873                                  CK_IntegralComplexToFloatingComplex);
874
875  // float -> _Complex float
876  if (ConvertFloat)
877    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
878                                    CK_FloatingRealToComplex);
879
880  return result;
881}
882
883/// \brief Handle arithmethic conversion with floating point types.  Helper
884/// function of UsualArithmeticConversions()
885static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
886                                      ExprResult &RHS, QualType LHSType,
887                                      QualType RHSType, bool IsCompAssign) {
888  bool LHSFloat = LHSType->isRealFloatingType();
889  bool RHSFloat = RHSType->isRealFloatingType();
890
891  // If we have two real floating types, convert the smaller operand
892  // to the bigger result.
893  if (LHSFloat && RHSFloat) {
894    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
895    if (order > 0) {
896      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
897      return LHSType;
898    }
899
900    assert(order < 0 && "illegal float comparison");
901    if (!IsCompAssign)
902      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
903    return RHSType;
904  }
905
906  if (LHSFloat)
907    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
908                                      /*convertFloat=*/!IsCompAssign,
909                                      /*convertInt=*/ true);
910  assert(RHSFloat);
911  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
912                                    /*convertInt=*/ true,
913                                    /*convertFloat=*/!IsCompAssign);
914}
915
916/// \brief Handle conversions with GCC complex int extension.  Helper function
917/// of UsualArithmeticConversions()
918// FIXME: if the operands are (int, _Complex long), we currently
919// don't promote the complex.  Also, signedness?
920static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
921                                           ExprResult &RHS, QualType LHSType,
922                                           QualType RHSType,
923                                           bool IsCompAssign) {
924  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
925  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
926
927  if (LHSComplexInt && RHSComplexInt) {
928    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
929                                              RHSComplexInt->getElementType());
930    assert(order && "inequal types with equal element ordering");
931    if (order > 0) {
932      // _Complex int -> _Complex long
933      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
934      return LHSType;
935    }
936
937    if (!IsCompAssign)
938      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
939    return RHSType;
940  }
941
942  if (LHSComplexInt) {
943    // int -> _Complex int
944    // FIXME: This needs to take integer ranks into account
945    RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
946                              CK_IntegralCast);
947    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
948    return LHSType;
949  }
950
951  assert(RHSComplexInt);
952  // int -> _Complex int
953  // FIXME: This needs to take integer ranks into account
954  if (!IsCompAssign) {
955    LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
956                              CK_IntegralCast);
957    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
958  }
959  return RHSType;
960}
961
962/// \brief Handle integer arithmetic conversions.  Helper function of
963/// UsualArithmeticConversions()
964static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
965                                        ExprResult &RHS, QualType LHSType,
966                                        QualType RHSType, bool IsCompAssign) {
967  // The rules for this case are in C99 6.3.1.8
968  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
969  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
970  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
971  if (LHSSigned == RHSSigned) {
972    // Same signedness; use the higher-ranked type
973    if (order >= 0) {
974      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
975      return LHSType;
976    } else if (!IsCompAssign)
977      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
978    return RHSType;
979  } else if (order != (LHSSigned ? 1 : -1)) {
980    // The unsigned type has greater than or equal rank to the
981    // signed type, so use the unsigned type
982    if (RHSSigned) {
983      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
984      return LHSType;
985    } else if (!IsCompAssign)
986      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
987    return RHSType;
988  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
989    // The two types are different widths; if we are here, that
990    // means the signed type is larger than the unsigned type, so
991    // use the signed type.
992    if (LHSSigned) {
993      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
994      return LHSType;
995    } else if (!IsCompAssign)
996      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
997    return RHSType;
998  } else {
999    // The signed type is higher-ranked than the unsigned type,
1000    // but isn't actually any bigger (like unsigned int and long
1001    // on most 32-bit systems).  Use the unsigned type corresponding
1002    // to the signed type.
1003    QualType result =
1004      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1005    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
1006    if (!IsCompAssign)
1007      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
1008    return result;
1009  }
1010}
1011
1012/// UsualArithmeticConversions - Performs various conversions that are common to
1013/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1014/// routine returns the first non-arithmetic type found. The client is
1015/// responsible for emitting appropriate error diagnostics.
1016/// FIXME: verify the conversion rules for "complex int" are consistent with
1017/// GCC.
1018QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1019                                          bool IsCompAssign) {
1020  if (!IsCompAssign) {
1021    LHS = UsualUnaryConversions(LHS.take());
1022    if (LHS.isInvalid())
1023      return QualType();
1024  }
1025
1026  RHS = UsualUnaryConversions(RHS.take());
1027  if (RHS.isInvalid())
1028    return QualType();
1029
1030  // For conversion purposes, we ignore any qualifiers.
1031  // For example, "const float" and "float" are equivalent.
1032  QualType LHSType =
1033    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1034  QualType RHSType =
1035    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1036
1037  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1038  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1039    LHSType = AtomicLHS->getValueType();
1040
1041  // If both types are identical, no conversion is needed.
1042  if (LHSType == RHSType)
1043    return LHSType;
1044
1045  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1046  // The caller can deal with this (e.g. pointer + int).
1047  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1048    return QualType();
1049
1050  // Apply unary and bitfield promotions to the LHS's type.
1051  QualType LHSUnpromotedType = LHSType;
1052  if (LHSType->isPromotableIntegerType())
1053    LHSType = Context.getPromotedIntegerType(LHSType);
1054  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1055  if (!LHSBitfieldPromoteTy.isNull())
1056    LHSType = LHSBitfieldPromoteTy;
1057  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1058    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1059
1060  // If both types are identical, no conversion is needed.
1061  if (LHSType == RHSType)
1062    return LHSType;
1063
1064  // At this point, we have two different arithmetic types.
1065
1066  // Handle complex types first (C99 6.3.1.8p1).
1067  if (LHSType->isComplexType() || RHSType->isComplexType())
1068    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1069                                        IsCompAssign);
1070
1071  // Now handle "real" floating types (i.e. float, double, long double).
1072  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1073    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1074                                 IsCompAssign);
1075
1076  // Handle GCC complex int extension.
1077  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1078    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1079                                      IsCompAssign);
1080
1081  // Finally, we have two differing integer types.
1082  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
1083                                 IsCompAssign);
1084}
1085
1086//===----------------------------------------------------------------------===//
1087//  Semantic Analysis for various Expression Types
1088//===----------------------------------------------------------------------===//
1089
1090
1091ExprResult
1092Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1093                                SourceLocation DefaultLoc,
1094                                SourceLocation RParenLoc,
1095                                Expr *ControllingExpr,
1096                                MultiTypeArg ArgTypes,
1097                                MultiExprArg ArgExprs) {
1098  unsigned NumAssocs = ArgTypes.size();
1099  assert(NumAssocs == ArgExprs.size());
1100
1101  ParsedType *ParsedTypes = ArgTypes.release();
1102  Expr **Exprs = ArgExprs.release();
1103
1104  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1105  for (unsigned i = 0; i < NumAssocs; ++i) {
1106    if (ParsedTypes[i])
1107      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1108    else
1109      Types[i] = 0;
1110  }
1111
1112  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1113                                             ControllingExpr, Types, Exprs,
1114                                             NumAssocs);
1115  delete [] Types;
1116  return ER;
1117}
1118
1119ExprResult
1120Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1121                                 SourceLocation DefaultLoc,
1122                                 SourceLocation RParenLoc,
1123                                 Expr *ControllingExpr,
1124                                 TypeSourceInfo **Types,
1125                                 Expr **Exprs,
1126                                 unsigned NumAssocs) {
1127  bool TypeErrorFound = false,
1128       IsResultDependent = ControllingExpr->isTypeDependent(),
1129       ContainsUnexpandedParameterPack
1130         = ControllingExpr->containsUnexpandedParameterPack();
1131
1132  for (unsigned i = 0; i < NumAssocs; ++i) {
1133    if (Exprs[i]->containsUnexpandedParameterPack())
1134      ContainsUnexpandedParameterPack = true;
1135
1136    if (Types[i]) {
1137      if (Types[i]->getType()->containsUnexpandedParameterPack())
1138        ContainsUnexpandedParameterPack = true;
1139
1140      if (Types[i]->getType()->isDependentType()) {
1141        IsResultDependent = true;
1142      } else {
1143        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1144        // complete object type other than a variably modified type."
1145        unsigned D = 0;
1146        if (Types[i]->getType()->isIncompleteType())
1147          D = diag::err_assoc_type_incomplete;
1148        else if (!Types[i]->getType()->isObjectType())
1149          D = diag::err_assoc_type_nonobject;
1150        else if (Types[i]->getType()->isVariablyModifiedType())
1151          D = diag::err_assoc_type_variably_modified;
1152
1153        if (D != 0) {
1154          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1155            << Types[i]->getTypeLoc().getSourceRange()
1156            << Types[i]->getType();
1157          TypeErrorFound = true;
1158        }
1159
1160        // C11 6.5.1.1p2 "No two generic associations in the same generic
1161        // selection shall specify compatible types."
1162        for (unsigned j = i+1; j < NumAssocs; ++j)
1163          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1164              Context.typesAreCompatible(Types[i]->getType(),
1165                                         Types[j]->getType())) {
1166            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1167                 diag::err_assoc_compatible_types)
1168              << Types[j]->getTypeLoc().getSourceRange()
1169              << Types[j]->getType()
1170              << Types[i]->getType();
1171            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1172                 diag::note_compat_assoc)
1173              << Types[i]->getTypeLoc().getSourceRange()
1174              << Types[i]->getType();
1175            TypeErrorFound = true;
1176          }
1177      }
1178    }
1179  }
1180  if (TypeErrorFound)
1181    return ExprError();
1182
1183  // If we determined that the generic selection is result-dependent, don't
1184  // try to compute the result expression.
1185  if (IsResultDependent)
1186    return Owned(new (Context) GenericSelectionExpr(
1187                   Context, KeyLoc, ControllingExpr,
1188                   Types, Exprs, NumAssocs, DefaultLoc,
1189                   RParenLoc, ContainsUnexpandedParameterPack));
1190
1191  SmallVector<unsigned, 1> CompatIndices;
1192  unsigned DefaultIndex = -1U;
1193  for (unsigned i = 0; i < NumAssocs; ++i) {
1194    if (!Types[i])
1195      DefaultIndex = i;
1196    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1197                                        Types[i]->getType()))
1198      CompatIndices.push_back(i);
1199  }
1200
1201  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1202  // type compatible with at most one of the types named in its generic
1203  // association list."
1204  if (CompatIndices.size() > 1) {
1205    // We strip parens here because the controlling expression is typically
1206    // parenthesized in macro definitions.
1207    ControllingExpr = ControllingExpr->IgnoreParens();
1208    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1209      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1210      << (unsigned) CompatIndices.size();
1211    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1212         E = CompatIndices.end(); I != E; ++I) {
1213      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1214           diag::note_compat_assoc)
1215        << Types[*I]->getTypeLoc().getSourceRange()
1216        << Types[*I]->getType();
1217    }
1218    return ExprError();
1219  }
1220
1221  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1222  // its controlling expression shall have type compatible with exactly one of
1223  // the types named in its generic association list."
1224  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1225    // We strip parens here because the controlling expression is typically
1226    // parenthesized in macro definitions.
1227    ControllingExpr = ControllingExpr->IgnoreParens();
1228    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1229      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1230    return ExprError();
1231  }
1232
1233  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1234  // type name that is compatible with the type of the controlling expression,
1235  // then the result expression of the generic selection is the expression
1236  // in that generic association. Otherwise, the result expression of the
1237  // generic selection is the expression in the default generic association."
1238  unsigned ResultIndex =
1239    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1240
1241  return Owned(new (Context) GenericSelectionExpr(
1242                 Context, KeyLoc, ControllingExpr,
1243                 Types, Exprs, NumAssocs, DefaultLoc,
1244                 RParenLoc, ContainsUnexpandedParameterPack,
1245                 ResultIndex));
1246}
1247
1248/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1249/// location of the token and the offset of the ud-suffix within it.
1250static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1251                                     unsigned Offset) {
1252  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1253                                        S.getLangOpts());
1254}
1255
1256/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1257/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1258static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1259                                                 IdentifierInfo *UDSuffix,
1260                                                 SourceLocation UDSuffixLoc,
1261                                                 ArrayRef<Expr*> Args,
1262                                                 SourceLocation LitEndLoc) {
1263  assert(Args.size() <= 2 && "too many arguments for literal operator");
1264
1265  QualType ArgTy[2];
1266  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1267    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1268    if (ArgTy[ArgIdx]->isArrayType())
1269      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1270  }
1271
1272  DeclarationName OpName =
1273    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1274  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1275  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1276
1277  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1278  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1279                              /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1280    return ExprError();
1281
1282  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1283}
1284
1285/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1286/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1287/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1288/// multiple tokens.  However, the common case is that StringToks points to one
1289/// string.
1290///
1291ExprResult
1292Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1293                         Scope *UDLScope) {
1294  assert(NumStringToks && "Must have at least one string!");
1295
1296  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1297  if (Literal.hadError)
1298    return ExprError();
1299
1300  SmallVector<SourceLocation, 4> StringTokLocs;
1301  for (unsigned i = 0; i != NumStringToks; ++i)
1302    StringTokLocs.push_back(StringToks[i].getLocation());
1303
1304  QualType StrTy = Context.CharTy;
1305  if (Literal.isWide())
1306    StrTy = Context.getWCharType();
1307  else if (Literal.isUTF16())
1308    StrTy = Context.Char16Ty;
1309  else if (Literal.isUTF32())
1310    StrTy = Context.Char32Ty;
1311  else if (Literal.isPascal())
1312    StrTy = Context.UnsignedCharTy;
1313
1314  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1315  if (Literal.isWide())
1316    Kind = StringLiteral::Wide;
1317  else if (Literal.isUTF8())
1318    Kind = StringLiteral::UTF8;
1319  else if (Literal.isUTF16())
1320    Kind = StringLiteral::UTF16;
1321  else if (Literal.isUTF32())
1322    Kind = StringLiteral::UTF32;
1323
1324  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1325  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1326    StrTy.addConst();
1327
1328  // Get an array type for the string, according to C99 6.4.5.  This includes
1329  // the nul terminator character as well as the string length for pascal
1330  // strings.
1331  StrTy = Context.getConstantArrayType(StrTy,
1332                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1333                                       ArrayType::Normal, 0);
1334
1335  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1336  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1337                                             Kind, Literal.Pascal, StrTy,
1338                                             &StringTokLocs[0],
1339                                             StringTokLocs.size());
1340  if (Literal.getUDSuffix().empty())
1341    return Owned(Lit);
1342
1343  // We're building a user-defined literal.
1344  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1345  SourceLocation UDSuffixLoc =
1346    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1347                   Literal.getUDSuffixOffset());
1348
1349  // Make sure we're allowed user-defined literals here.
1350  if (!UDLScope)
1351    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1352
1353  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1354  //   operator "" X (str, len)
1355  QualType SizeType = Context.getSizeType();
1356  llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1357  IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1358                                                  StringTokLocs[0]);
1359  Expr *Args[] = { Lit, LenArg };
1360  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1361                                        Args, StringTokLocs.back());
1362}
1363
1364ExprResult
1365Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1366                       SourceLocation Loc,
1367                       const CXXScopeSpec *SS) {
1368  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1369  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1370}
1371
1372/// BuildDeclRefExpr - Build an expression that references a
1373/// declaration that does not require a closure capture.
1374ExprResult
1375Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1376                       const DeclarationNameInfo &NameInfo,
1377                       const CXXScopeSpec *SS) {
1378  if (getLangOpts().CUDA)
1379    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1380      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1381        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1382                           CalleeTarget = IdentifyCUDATarget(Callee);
1383        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1384          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1385            << CalleeTarget << D->getIdentifier() << CallerTarget;
1386          Diag(D->getLocation(), diag::note_previous_decl)
1387            << D->getIdentifier();
1388          return ExprError();
1389        }
1390      }
1391
1392  bool refersToEnclosingScope =
1393    (CurContext != D->getDeclContext() &&
1394     D->getDeclContext()->isFunctionOrMethod());
1395
1396  DeclRefExpr *E = DeclRefExpr::Create(Context,
1397                                       SS ? SS->getWithLocInContext(Context)
1398                                              : NestedNameSpecifierLoc(),
1399                                       SourceLocation(),
1400                                       D, refersToEnclosingScope,
1401                                       NameInfo, Ty, VK);
1402
1403  MarkDeclRefReferenced(E);
1404
1405  // Just in case we're building an illegal pointer-to-member.
1406  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1407  if (FD && FD->isBitField())
1408    E->setObjectKind(OK_BitField);
1409
1410  return Owned(E);
1411}
1412
1413/// Decomposes the given name into a DeclarationNameInfo, its location, and
1414/// possibly a list of template arguments.
1415///
1416/// If this produces template arguments, it is permitted to call
1417/// DecomposeTemplateName.
1418///
1419/// This actually loses a lot of source location information for
1420/// non-standard name kinds; we should consider preserving that in
1421/// some way.
1422void
1423Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1424                             TemplateArgumentListInfo &Buffer,
1425                             DeclarationNameInfo &NameInfo,
1426                             const TemplateArgumentListInfo *&TemplateArgs) {
1427  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1428    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1429    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1430
1431    ASTTemplateArgsPtr TemplateArgsPtr(*this,
1432                                       Id.TemplateId->getTemplateArgs(),
1433                                       Id.TemplateId->NumArgs);
1434    translateTemplateArguments(TemplateArgsPtr, Buffer);
1435    TemplateArgsPtr.release();
1436
1437    TemplateName TName = Id.TemplateId->Template.get();
1438    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1439    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1440    TemplateArgs = &Buffer;
1441  } else {
1442    NameInfo = GetNameFromUnqualifiedId(Id);
1443    TemplateArgs = 0;
1444  }
1445}
1446
1447/// Diagnose an empty lookup.
1448///
1449/// \return false if new lookup candidates were found
1450bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1451                               CorrectionCandidateCallback &CCC,
1452                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1453                               llvm::ArrayRef<Expr *> Args) {
1454  DeclarationName Name = R.getLookupName();
1455
1456  unsigned diagnostic = diag::err_undeclared_var_use;
1457  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1458  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1459      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1460      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1461    diagnostic = diag::err_undeclared_use;
1462    diagnostic_suggest = diag::err_undeclared_use_suggest;
1463  }
1464
1465  // If the original lookup was an unqualified lookup, fake an
1466  // unqualified lookup.  This is useful when (for example) the
1467  // original lookup would not have found something because it was a
1468  // dependent name.
1469  DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1470    ? CurContext : 0;
1471  while (DC) {
1472    if (isa<CXXRecordDecl>(DC)) {
1473      LookupQualifiedName(R, DC);
1474
1475      if (!R.empty()) {
1476        // Don't give errors about ambiguities in this lookup.
1477        R.suppressDiagnostics();
1478
1479        // During a default argument instantiation the CurContext points
1480        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1481        // function parameter list, hence add an explicit check.
1482        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1483                              ActiveTemplateInstantiations.back().Kind ==
1484            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1485        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1486        bool isInstance = CurMethod &&
1487                          CurMethod->isInstance() &&
1488                          DC == CurMethod->getParent() && !isDefaultArgument;
1489
1490
1491        // Give a code modification hint to insert 'this->'.
1492        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1493        // Actually quite difficult!
1494        if (getLangOpts().MicrosoftMode)
1495          diagnostic = diag::warn_found_via_dependent_bases_lookup;
1496        if (isInstance) {
1497          Diag(R.getNameLoc(), diagnostic) << Name
1498            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1499          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1500              CallsUndergoingInstantiation.back()->getCallee());
1501
1502
1503          CXXMethodDecl *DepMethod;
1504          if (CurMethod->getTemplatedKind() ==
1505              FunctionDecl::TK_FunctionTemplateSpecialization)
1506            DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1507                getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1508          else
1509            DepMethod = cast<CXXMethodDecl>(
1510                CurMethod->getInstantiatedFromMemberFunction());
1511          assert(DepMethod && "No template pattern found");
1512
1513          QualType DepThisType = DepMethod->getThisType(Context);
1514          CheckCXXThisCapture(R.getNameLoc());
1515          CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1516                                     R.getNameLoc(), DepThisType, false);
1517          TemplateArgumentListInfo TList;
1518          if (ULE->hasExplicitTemplateArgs())
1519            ULE->copyTemplateArgumentsInto(TList);
1520
1521          CXXScopeSpec SS;
1522          SS.Adopt(ULE->getQualifierLoc());
1523          CXXDependentScopeMemberExpr *DepExpr =
1524              CXXDependentScopeMemberExpr::Create(
1525                  Context, DepThis, DepThisType, true, SourceLocation(),
1526                  SS.getWithLocInContext(Context),
1527                  ULE->getTemplateKeywordLoc(), 0,
1528                  R.getLookupNameInfo(),
1529                  ULE->hasExplicitTemplateArgs() ? &TList : 0);
1530          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1531        } else {
1532          Diag(R.getNameLoc(), diagnostic) << Name;
1533        }
1534
1535        // Do we really want to note all of these?
1536        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1537          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1538
1539        // Return true if we are inside a default argument instantiation
1540        // and the found name refers to an instance member function, otherwise
1541        // the function calling DiagnoseEmptyLookup will try to create an
1542        // implicit member call and this is wrong for default argument.
1543        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1544          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1545          return true;
1546        }
1547
1548        // Tell the callee to try to recover.
1549        return false;
1550      }
1551
1552      R.clear();
1553    }
1554
1555    // In Microsoft mode, if we are performing lookup from within a friend
1556    // function definition declared at class scope then we must set
1557    // DC to the lexical parent to be able to search into the parent
1558    // class.
1559    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1560        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1561        DC->getLexicalParent()->isRecord())
1562      DC = DC->getLexicalParent();
1563    else
1564      DC = DC->getParent();
1565  }
1566
1567  // We didn't find anything, so try to correct for a typo.
1568  TypoCorrection Corrected;
1569  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1570                                    S, &SS, CCC))) {
1571    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1572    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1573    R.setLookupName(Corrected.getCorrection());
1574
1575    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1576      if (Corrected.isOverloaded()) {
1577        OverloadCandidateSet OCS(R.getNameLoc());
1578        OverloadCandidateSet::iterator Best;
1579        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1580                                        CDEnd = Corrected.end();
1581             CD != CDEnd; ++CD) {
1582          if (FunctionTemplateDecl *FTD =
1583                   dyn_cast<FunctionTemplateDecl>(*CD))
1584            AddTemplateOverloadCandidate(
1585                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1586                Args, OCS);
1587          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1588            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1589              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1590                                   Args, OCS);
1591        }
1592        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1593          case OR_Success:
1594            ND = Best->Function;
1595            break;
1596          default:
1597            break;
1598        }
1599      }
1600      R.addDecl(ND);
1601      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1602        if (SS.isEmpty())
1603          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1604            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1605        else
1606          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1607            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1608            << SS.getRange()
1609            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1610        if (ND)
1611          Diag(ND->getLocation(), diag::note_previous_decl)
1612            << CorrectedQuotedStr;
1613
1614        // Tell the callee to try to recover.
1615        return false;
1616      }
1617
1618      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1619        // FIXME: If we ended up with a typo for a type name or
1620        // Objective-C class name, we're in trouble because the parser
1621        // is in the wrong place to recover. Suggest the typo
1622        // correction, but don't make it a fix-it since we're not going
1623        // to recover well anyway.
1624        if (SS.isEmpty())
1625          Diag(R.getNameLoc(), diagnostic_suggest)
1626            << Name << CorrectedQuotedStr;
1627        else
1628          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1629            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1630            << SS.getRange();
1631
1632        // Don't try to recover; it won't work.
1633        return true;
1634      }
1635    } else {
1636      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1637      // because we aren't able to recover.
1638      if (SS.isEmpty())
1639        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1640      else
1641        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1642        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1643        << SS.getRange();
1644      return true;
1645    }
1646  }
1647  R.clear();
1648
1649  // Emit a special diagnostic for failed member lookups.
1650  // FIXME: computing the declaration context might fail here (?)
1651  if (!SS.isEmpty()) {
1652    Diag(R.getNameLoc(), diag::err_no_member)
1653      << Name << computeDeclContext(SS, false)
1654      << SS.getRange();
1655    return true;
1656  }
1657
1658  // Give up, we can't recover.
1659  Diag(R.getNameLoc(), diagnostic) << Name;
1660  return true;
1661}
1662
1663ExprResult Sema::ActOnIdExpression(Scope *S,
1664                                   CXXScopeSpec &SS,
1665                                   SourceLocation TemplateKWLoc,
1666                                   UnqualifiedId &Id,
1667                                   bool HasTrailingLParen,
1668                                   bool IsAddressOfOperand,
1669                                   CorrectionCandidateCallback *CCC) {
1670  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1671         "cannot be direct & operand and have a trailing lparen");
1672
1673  if (SS.isInvalid())
1674    return ExprError();
1675
1676  TemplateArgumentListInfo TemplateArgsBuffer;
1677
1678  // Decompose the UnqualifiedId into the following data.
1679  DeclarationNameInfo NameInfo;
1680  const TemplateArgumentListInfo *TemplateArgs;
1681  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1682
1683  DeclarationName Name = NameInfo.getName();
1684  IdentifierInfo *II = Name.getAsIdentifierInfo();
1685  SourceLocation NameLoc = NameInfo.getLoc();
1686
1687  // C++ [temp.dep.expr]p3:
1688  //   An id-expression is type-dependent if it contains:
1689  //     -- an identifier that was declared with a dependent type,
1690  //        (note: handled after lookup)
1691  //     -- a template-id that is dependent,
1692  //        (note: handled in BuildTemplateIdExpr)
1693  //     -- a conversion-function-id that specifies a dependent type,
1694  //     -- a nested-name-specifier that contains a class-name that
1695  //        names a dependent type.
1696  // Determine whether this is a member of an unknown specialization;
1697  // we need to handle these differently.
1698  bool DependentID = false;
1699  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1700      Name.getCXXNameType()->isDependentType()) {
1701    DependentID = true;
1702  } else if (SS.isSet()) {
1703    if (DeclContext *DC = computeDeclContext(SS, false)) {
1704      if (RequireCompleteDeclContext(SS, DC))
1705        return ExprError();
1706    } else {
1707      DependentID = true;
1708    }
1709  }
1710
1711  if (DependentID)
1712    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1713                                      IsAddressOfOperand, TemplateArgs);
1714
1715  // Perform the required lookup.
1716  LookupResult R(*this, NameInfo,
1717                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1718                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1719  if (TemplateArgs) {
1720    // Lookup the template name again to correctly establish the context in
1721    // which it was found. This is really unfortunate as we already did the
1722    // lookup to determine that it was a template name in the first place. If
1723    // this becomes a performance hit, we can work harder to preserve those
1724    // results until we get here but it's likely not worth it.
1725    bool MemberOfUnknownSpecialization;
1726    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1727                       MemberOfUnknownSpecialization);
1728
1729    if (MemberOfUnknownSpecialization ||
1730        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1731      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1732                                        IsAddressOfOperand, TemplateArgs);
1733  } else {
1734    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1735    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1736
1737    // If the result might be in a dependent base class, this is a dependent
1738    // id-expression.
1739    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1740      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1741                                        IsAddressOfOperand, TemplateArgs);
1742
1743    // If this reference is in an Objective-C method, then we need to do
1744    // some special Objective-C lookup, too.
1745    if (IvarLookupFollowUp) {
1746      ExprResult E(LookupInObjCMethod(R, S, II, true));
1747      if (E.isInvalid())
1748        return ExprError();
1749
1750      if (Expr *Ex = E.takeAs<Expr>())
1751        return Owned(Ex);
1752    }
1753  }
1754
1755  if (R.isAmbiguous())
1756    return ExprError();
1757
1758  // Determine whether this name might be a candidate for
1759  // argument-dependent lookup.
1760  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1761
1762  if (R.empty() && !ADL) {
1763    // Otherwise, this could be an implicitly declared function reference (legal
1764    // in C90, extension in C99, forbidden in C++).
1765    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1766      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1767      if (D) R.addDecl(D);
1768    }
1769
1770    // If this name wasn't predeclared and if this is not a function
1771    // call, diagnose the problem.
1772    if (R.empty()) {
1773
1774      // In Microsoft mode, if we are inside a template class member function
1775      // and we can't resolve an identifier then assume the identifier is type
1776      // dependent. The goal is to postpone name lookup to instantiation time
1777      // to be able to search into type dependent base classes.
1778      if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1779          isa<CXXMethodDecl>(CurContext))
1780        return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1781                                          IsAddressOfOperand, TemplateArgs);
1782
1783      CorrectionCandidateCallback DefaultValidator;
1784      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1785        return ExprError();
1786
1787      assert(!R.empty() &&
1788             "DiagnoseEmptyLookup returned false but added no results");
1789
1790      // If we found an Objective-C instance variable, let
1791      // LookupInObjCMethod build the appropriate expression to
1792      // reference the ivar.
1793      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1794        R.clear();
1795        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1796        // In a hopelessly buggy code, Objective-C instance variable
1797        // lookup fails and no expression will be built to reference it.
1798        if (!E.isInvalid() && !E.get())
1799          return ExprError();
1800        return move(E);
1801      }
1802    }
1803  }
1804
1805  // This is guaranteed from this point on.
1806  assert(!R.empty() || ADL);
1807
1808  // Check whether this might be a C++ implicit instance member access.
1809  // C++ [class.mfct.non-static]p3:
1810  //   When an id-expression that is not part of a class member access
1811  //   syntax and not used to form a pointer to member is used in the
1812  //   body of a non-static member function of class X, if name lookup
1813  //   resolves the name in the id-expression to a non-static non-type
1814  //   member of some class C, the id-expression is transformed into a
1815  //   class member access expression using (*this) as the
1816  //   postfix-expression to the left of the . operator.
1817  //
1818  // But we don't actually need to do this for '&' operands if R
1819  // resolved to a function or overloaded function set, because the
1820  // expression is ill-formed if it actually works out to be a
1821  // non-static member function:
1822  //
1823  // C++ [expr.ref]p4:
1824  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1825  //   [t]he expression can be used only as the left-hand operand of a
1826  //   member function call.
1827  //
1828  // There are other safeguards against such uses, but it's important
1829  // to get this right here so that we don't end up making a
1830  // spuriously dependent expression if we're inside a dependent
1831  // instance method.
1832  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1833    bool MightBeImplicitMember;
1834    if (!IsAddressOfOperand)
1835      MightBeImplicitMember = true;
1836    else if (!SS.isEmpty())
1837      MightBeImplicitMember = false;
1838    else if (R.isOverloadedResult())
1839      MightBeImplicitMember = false;
1840    else if (R.isUnresolvableResult())
1841      MightBeImplicitMember = true;
1842    else
1843      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1844                              isa<IndirectFieldDecl>(R.getFoundDecl());
1845
1846    if (MightBeImplicitMember)
1847      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1848                                             R, TemplateArgs);
1849  }
1850
1851  if (TemplateArgs || TemplateKWLoc.isValid())
1852    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1853
1854  return BuildDeclarationNameExpr(SS, R, ADL);
1855}
1856
1857/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1858/// declaration name, generally during template instantiation.
1859/// There's a large number of things which don't need to be done along
1860/// this path.
1861ExprResult
1862Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1863                                        const DeclarationNameInfo &NameInfo) {
1864  DeclContext *DC;
1865  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1866    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1867                                     NameInfo, /*TemplateArgs=*/0);
1868
1869  if (RequireCompleteDeclContext(SS, DC))
1870    return ExprError();
1871
1872  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1873  LookupQualifiedName(R, DC);
1874
1875  if (R.isAmbiguous())
1876    return ExprError();
1877
1878  if (R.empty()) {
1879    Diag(NameInfo.getLoc(), diag::err_no_member)
1880      << NameInfo.getName() << DC << SS.getRange();
1881    return ExprError();
1882  }
1883
1884  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1885}
1886
1887/// LookupInObjCMethod - The parser has read a name in, and Sema has
1888/// detected that we're currently inside an ObjC method.  Perform some
1889/// additional lookup.
1890///
1891/// Ideally, most of this would be done by lookup, but there's
1892/// actually quite a lot of extra work involved.
1893///
1894/// Returns a null sentinel to indicate trivial success.
1895ExprResult
1896Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1897                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1898  SourceLocation Loc = Lookup.getNameLoc();
1899  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1900
1901  // There are two cases to handle here.  1) scoped lookup could have failed,
1902  // in which case we should look for an ivar.  2) scoped lookup could have
1903  // found a decl, but that decl is outside the current instance method (i.e.
1904  // a global variable).  In these two cases, we do a lookup for an ivar with
1905  // this name, if the lookup sucedes, we replace it our current decl.
1906
1907  // If we're in a class method, we don't normally want to look for
1908  // ivars.  But if we don't find anything else, and there's an
1909  // ivar, that's an error.
1910  bool IsClassMethod = CurMethod->isClassMethod();
1911
1912  bool LookForIvars;
1913  if (Lookup.empty())
1914    LookForIvars = true;
1915  else if (IsClassMethod)
1916    LookForIvars = false;
1917  else
1918    LookForIvars = (Lookup.isSingleResult() &&
1919                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1920  ObjCInterfaceDecl *IFace = 0;
1921  if (LookForIvars) {
1922    IFace = CurMethod->getClassInterface();
1923    ObjCInterfaceDecl *ClassDeclared;
1924    ObjCIvarDecl *IV = 0;
1925    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1926      // Diagnose using an ivar in a class method.
1927      if (IsClassMethod)
1928        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1929                         << IV->getDeclName());
1930
1931      // If we're referencing an invalid decl, just return this as a silent
1932      // error node.  The error diagnostic was already emitted on the decl.
1933      if (IV->isInvalidDecl())
1934        return ExprError();
1935
1936      // Check if referencing a field with __attribute__((deprecated)).
1937      if (DiagnoseUseOfDecl(IV, Loc))
1938        return ExprError();
1939
1940      // Diagnose the use of an ivar outside of the declaring class.
1941      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1942          !declaresSameEntity(ClassDeclared, IFace) &&
1943          !getLangOpts().DebuggerSupport)
1944        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1945
1946      // FIXME: This should use a new expr for a direct reference, don't
1947      // turn this into Self->ivar, just return a BareIVarExpr or something.
1948      IdentifierInfo &II = Context.Idents.get("self");
1949      UnqualifiedId SelfName;
1950      SelfName.setIdentifier(&II, SourceLocation());
1951      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1952      CXXScopeSpec SelfScopeSpec;
1953      SourceLocation TemplateKWLoc;
1954      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1955                                              SelfName, false, false);
1956      if (SelfExpr.isInvalid())
1957        return ExprError();
1958
1959      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1960      if (SelfExpr.isInvalid())
1961        return ExprError();
1962
1963      MarkAnyDeclReferenced(Loc, IV);
1964
1965      ObjCMethodFamily MF = CurMethod->getMethodFamily();
1966      if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize)
1967        Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
1968      return Owned(new (Context)
1969                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1970                                   SelfExpr.take(), true, true));
1971    }
1972  } else if (CurMethod->isInstanceMethod()) {
1973    // We should warn if a local variable hides an ivar.
1974    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1975      ObjCInterfaceDecl *ClassDeclared;
1976      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1977        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1978            declaresSameEntity(IFace, ClassDeclared))
1979          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1980      }
1981    }
1982  } else if (Lookup.isSingleResult() &&
1983             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1984    // If accessing a stand-alone ivar in a class method, this is an error.
1985    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1986      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1987                       << IV->getDeclName());
1988  }
1989
1990  if (Lookup.empty() && II && AllowBuiltinCreation) {
1991    // FIXME. Consolidate this with similar code in LookupName.
1992    if (unsigned BuiltinID = II->getBuiltinID()) {
1993      if (!(getLangOpts().CPlusPlus &&
1994            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1995        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1996                                           S, Lookup.isForRedeclaration(),
1997                                           Lookup.getNameLoc());
1998        if (D) Lookup.addDecl(D);
1999      }
2000    }
2001  }
2002  // Sentinel value saying that we didn't do anything special.
2003  return Owned((Expr*) 0);
2004}
2005
2006/// \brief Cast a base object to a member's actual type.
2007///
2008/// Logically this happens in three phases:
2009///
2010/// * First we cast from the base type to the naming class.
2011///   The naming class is the class into which we were looking
2012///   when we found the member;  it's the qualifier type if a
2013///   qualifier was provided, and otherwise it's the base type.
2014///
2015/// * Next we cast from the naming class to the declaring class.
2016///   If the member we found was brought into a class's scope by
2017///   a using declaration, this is that class;  otherwise it's
2018///   the class declaring the member.
2019///
2020/// * Finally we cast from the declaring class to the "true"
2021///   declaring class of the member.  This conversion does not
2022///   obey access control.
2023ExprResult
2024Sema::PerformObjectMemberConversion(Expr *From,
2025                                    NestedNameSpecifier *Qualifier,
2026                                    NamedDecl *FoundDecl,
2027                                    NamedDecl *Member) {
2028  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2029  if (!RD)
2030    return Owned(From);
2031
2032  QualType DestRecordType;
2033  QualType DestType;
2034  QualType FromRecordType;
2035  QualType FromType = From->getType();
2036  bool PointerConversions = false;
2037  if (isa<FieldDecl>(Member)) {
2038    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2039
2040    if (FromType->getAs<PointerType>()) {
2041      DestType = Context.getPointerType(DestRecordType);
2042      FromRecordType = FromType->getPointeeType();
2043      PointerConversions = true;
2044    } else {
2045      DestType = DestRecordType;
2046      FromRecordType = FromType;
2047    }
2048  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2049    if (Method->isStatic())
2050      return Owned(From);
2051
2052    DestType = Method->getThisType(Context);
2053    DestRecordType = DestType->getPointeeType();
2054
2055    if (FromType->getAs<PointerType>()) {
2056      FromRecordType = FromType->getPointeeType();
2057      PointerConversions = true;
2058    } else {
2059      FromRecordType = FromType;
2060      DestType = DestRecordType;
2061    }
2062  } else {
2063    // No conversion necessary.
2064    return Owned(From);
2065  }
2066
2067  if (DestType->isDependentType() || FromType->isDependentType())
2068    return Owned(From);
2069
2070  // If the unqualified types are the same, no conversion is necessary.
2071  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2072    return Owned(From);
2073
2074  SourceRange FromRange = From->getSourceRange();
2075  SourceLocation FromLoc = FromRange.getBegin();
2076
2077  ExprValueKind VK = From->getValueKind();
2078
2079  // C++ [class.member.lookup]p8:
2080  //   [...] Ambiguities can often be resolved by qualifying a name with its
2081  //   class name.
2082  //
2083  // If the member was a qualified name and the qualified referred to a
2084  // specific base subobject type, we'll cast to that intermediate type
2085  // first and then to the object in which the member is declared. That allows
2086  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2087  //
2088  //   class Base { public: int x; };
2089  //   class Derived1 : public Base { };
2090  //   class Derived2 : public Base { };
2091  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2092  //
2093  //   void VeryDerived::f() {
2094  //     x = 17; // error: ambiguous base subobjects
2095  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2096  //   }
2097  if (Qualifier) {
2098    QualType QType = QualType(Qualifier->getAsType(), 0);
2099    assert(!QType.isNull() && "lookup done with dependent qualifier?");
2100    assert(QType->isRecordType() && "lookup done with non-record type");
2101
2102    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2103
2104    // In C++98, the qualifier type doesn't actually have to be a base
2105    // type of the object type, in which case we just ignore it.
2106    // Otherwise build the appropriate casts.
2107    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2108      CXXCastPath BasePath;
2109      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2110                                       FromLoc, FromRange, &BasePath))
2111        return ExprError();
2112
2113      if (PointerConversions)
2114        QType = Context.getPointerType(QType);
2115      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2116                               VK, &BasePath).take();
2117
2118      FromType = QType;
2119      FromRecordType = QRecordType;
2120
2121      // If the qualifier type was the same as the destination type,
2122      // we're done.
2123      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2124        return Owned(From);
2125    }
2126  }
2127
2128  bool IgnoreAccess = false;
2129
2130  // If we actually found the member through a using declaration, cast
2131  // down to the using declaration's type.
2132  //
2133  // Pointer equality is fine here because only one declaration of a
2134  // class ever has member declarations.
2135  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2136    assert(isa<UsingShadowDecl>(FoundDecl));
2137    QualType URecordType = Context.getTypeDeclType(
2138                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2139
2140    // We only need to do this if the naming-class to declaring-class
2141    // conversion is non-trivial.
2142    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2143      assert(IsDerivedFrom(FromRecordType, URecordType));
2144      CXXCastPath BasePath;
2145      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2146                                       FromLoc, FromRange, &BasePath))
2147        return ExprError();
2148
2149      QualType UType = URecordType;
2150      if (PointerConversions)
2151        UType = Context.getPointerType(UType);
2152      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2153                               VK, &BasePath).take();
2154      FromType = UType;
2155      FromRecordType = URecordType;
2156    }
2157
2158    // We don't do access control for the conversion from the
2159    // declaring class to the true declaring class.
2160    IgnoreAccess = true;
2161  }
2162
2163  CXXCastPath BasePath;
2164  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2165                                   FromLoc, FromRange, &BasePath,
2166                                   IgnoreAccess))
2167    return ExprError();
2168
2169  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2170                           VK, &BasePath);
2171}
2172
2173bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2174                                      const LookupResult &R,
2175                                      bool HasTrailingLParen) {
2176  // Only when used directly as the postfix-expression of a call.
2177  if (!HasTrailingLParen)
2178    return false;
2179
2180  // Never if a scope specifier was provided.
2181  if (SS.isSet())
2182    return false;
2183
2184  // Only in C++ or ObjC++.
2185  if (!getLangOpts().CPlusPlus)
2186    return false;
2187
2188  // Turn off ADL when we find certain kinds of declarations during
2189  // normal lookup:
2190  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2191    NamedDecl *D = *I;
2192
2193    // C++0x [basic.lookup.argdep]p3:
2194    //     -- a declaration of a class member
2195    // Since using decls preserve this property, we check this on the
2196    // original decl.
2197    if (D->isCXXClassMember())
2198      return false;
2199
2200    // C++0x [basic.lookup.argdep]p3:
2201    //     -- a block-scope function declaration that is not a
2202    //        using-declaration
2203    // NOTE: we also trigger this for function templates (in fact, we
2204    // don't check the decl type at all, since all other decl types
2205    // turn off ADL anyway).
2206    if (isa<UsingShadowDecl>(D))
2207      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2208    else if (D->getDeclContext()->isFunctionOrMethod())
2209      return false;
2210
2211    // C++0x [basic.lookup.argdep]p3:
2212    //     -- a declaration that is neither a function or a function
2213    //        template
2214    // And also for builtin functions.
2215    if (isa<FunctionDecl>(D)) {
2216      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2217
2218      // But also builtin functions.
2219      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2220        return false;
2221    } else if (!isa<FunctionTemplateDecl>(D))
2222      return false;
2223  }
2224
2225  return true;
2226}
2227
2228
2229/// Diagnoses obvious problems with the use of the given declaration
2230/// as an expression.  This is only actually called for lookups that
2231/// were not overloaded, and it doesn't promise that the declaration
2232/// will in fact be used.
2233static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2234  if (isa<TypedefNameDecl>(D)) {
2235    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2236    return true;
2237  }
2238
2239  if (isa<ObjCInterfaceDecl>(D)) {
2240    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2241    return true;
2242  }
2243
2244  if (isa<NamespaceDecl>(D)) {
2245    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2246    return true;
2247  }
2248
2249  return false;
2250}
2251
2252ExprResult
2253Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2254                               LookupResult &R,
2255                               bool NeedsADL) {
2256  // If this is a single, fully-resolved result and we don't need ADL,
2257  // just build an ordinary singleton decl ref.
2258  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2259    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2260                                    R.getFoundDecl());
2261
2262  // We only need to check the declaration if there's exactly one
2263  // result, because in the overloaded case the results can only be
2264  // functions and function templates.
2265  if (R.isSingleResult() &&
2266      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2267    return ExprError();
2268
2269  // Otherwise, just build an unresolved lookup expression.  Suppress
2270  // any lookup-related diagnostics; we'll hash these out later, when
2271  // we've picked a target.
2272  R.suppressDiagnostics();
2273
2274  UnresolvedLookupExpr *ULE
2275    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2276                                   SS.getWithLocInContext(Context),
2277                                   R.getLookupNameInfo(),
2278                                   NeedsADL, R.isOverloadedResult(),
2279                                   R.begin(), R.end());
2280
2281  return Owned(ULE);
2282}
2283
2284/// \brief Complete semantic analysis for a reference to the given declaration.
2285ExprResult
2286Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2287                               const DeclarationNameInfo &NameInfo,
2288                               NamedDecl *D) {
2289  assert(D && "Cannot refer to a NULL declaration");
2290  assert(!isa<FunctionTemplateDecl>(D) &&
2291         "Cannot refer unambiguously to a function template");
2292
2293  SourceLocation Loc = NameInfo.getLoc();
2294  if (CheckDeclInExpr(*this, Loc, D))
2295    return ExprError();
2296
2297  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2298    // Specifically diagnose references to class templates that are missing
2299    // a template argument list.
2300    Diag(Loc, diag::err_template_decl_ref)
2301      << Template << SS.getRange();
2302    Diag(Template->getLocation(), diag::note_template_decl_here);
2303    return ExprError();
2304  }
2305
2306  // Make sure that we're referring to a value.
2307  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2308  if (!VD) {
2309    Diag(Loc, diag::err_ref_non_value)
2310      << D << SS.getRange();
2311    Diag(D->getLocation(), diag::note_declared_at);
2312    return ExprError();
2313  }
2314
2315  // Check whether this declaration can be used. Note that we suppress
2316  // this check when we're going to perform argument-dependent lookup
2317  // on this function name, because this might not be the function
2318  // that overload resolution actually selects.
2319  if (DiagnoseUseOfDecl(VD, Loc))
2320    return ExprError();
2321
2322  // Only create DeclRefExpr's for valid Decl's.
2323  if (VD->isInvalidDecl())
2324    return ExprError();
2325
2326  // Handle members of anonymous structs and unions.  If we got here,
2327  // and the reference is to a class member indirect field, then this
2328  // must be the subject of a pointer-to-member expression.
2329  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2330    if (!indirectField->isCXXClassMember())
2331      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2332                                                      indirectField);
2333
2334  {
2335    QualType type = VD->getType();
2336    ExprValueKind valueKind = VK_RValue;
2337
2338    switch (D->getKind()) {
2339    // Ignore all the non-ValueDecl kinds.
2340#define ABSTRACT_DECL(kind)
2341#define VALUE(type, base)
2342#define DECL(type, base) \
2343    case Decl::type:
2344#include "clang/AST/DeclNodes.inc"
2345      llvm_unreachable("invalid value decl kind");
2346
2347    // These shouldn't make it here.
2348    case Decl::ObjCAtDefsField:
2349    case Decl::ObjCIvar:
2350      llvm_unreachable("forming non-member reference to ivar?");
2351
2352    // Enum constants are always r-values and never references.
2353    // Unresolved using declarations are dependent.
2354    case Decl::EnumConstant:
2355    case Decl::UnresolvedUsingValue:
2356      valueKind = VK_RValue;
2357      break;
2358
2359    // Fields and indirect fields that got here must be for
2360    // pointer-to-member expressions; we just call them l-values for
2361    // internal consistency, because this subexpression doesn't really
2362    // exist in the high-level semantics.
2363    case Decl::Field:
2364    case Decl::IndirectField:
2365      assert(getLangOpts().CPlusPlus &&
2366             "building reference to field in C?");
2367
2368      // These can't have reference type in well-formed programs, but
2369      // for internal consistency we do this anyway.
2370      type = type.getNonReferenceType();
2371      valueKind = VK_LValue;
2372      break;
2373
2374    // Non-type template parameters are either l-values or r-values
2375    // depending on the type.
2376    case Decl::NonTypeTemplateParm: {
2377      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2378        type = reftype->getPointeeType();
2379        valueKind = VK_LValue; // even if the parameter is an r-value reference
2380        break;
2381      }
2382
2383      // For non-references, we need to strip qualifiers just in case
2384      // the template parameter was declared as 'const int' or whatever.
2385      valueKind = VK_RValue;
2386      type = type.getUnqualifiedType();
2387      break;
2388    }
2389
2390    case Decl::Var:
2391      // In C, "extern void blah;" is valid and is an r-value.
2392      if (!getLangOpts().CPlusPlus &&
2393          !type.hasQualifiers() &&
2394          type->isVoidType()) {
2395        valueKind = VK_RValue;
2396        break;
2397      }
2398      // fallthrough
2399
2400    case Decl::ImplicitParam:
2401    case Decl::ParmVar: {
2402      // These are always l-values.
2403      valueKind = VK_LValue;
2404      type = type.getNonReferenceType();
2405
2406      // FIXME: Does the addition of const really only apply in
2407      // potentially-evaluated contexts? Since the variable isn't actually
2408      // captured in an unevaluated context, it seems that the answer is no.
2409      if (!isUnevaluatedContext()) {
2410        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2411        if (!CapturedType.isNull())
2412          type = CapturedType;
2413      }
2414
2415      break;
2416    }
2417
2418    case Decl::Function: {
2419      const FunctionType *fty = type->castAs<FunctionType>();
2420
2421      // If we're referring to a function with an __unknown_anytype
2422      // result type, make the entire expression __unknown_anytype.
2423      if (fty->getResultType() == Context.UnknownAnyTy) {
2424        type = Context.UnknownAnyTy;
2425        valueKind = VK_RValue;
2426        break;
2427      }
2428
2429      // Functions are l-values in C++.
2430      if (getLangOpts().CPlusPlus) {
2431        valueKind = VK_LValue;
2432        break;
2433      }
2434
2435      // C99 DR 316 says that, if a function type comes from a
2436      // function definition (without a prototype), that type is only
2437      // used for checking compatibility. Therefore, when referencing
2438      // the function, we pretend that we don't have the full function
2439      // type.
2440      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2441          isa<FunctionProtoType>(fty))
2442        type = Context.getFunctionNoProtoType(fty->getResultType(),
2443                                              fty->getExtInfo());
2444
2445      // Functions are r-values in C.
2446      valueKind = VK_RValue;
2447      break;
2448    }
2449
2450    case Decl::CXXMethod:
2451      // If we're referring to a method with an __unknown_anytype
2452      // result type, make the entire expression __unknown_anytype.
2453      // This should only be possible with a type written directly.
2454      if (const FunctionProtoType *proto
2455            = dyn_cast<FunctionProtoType>(VD->getType()))
2456        if (proto->getResultType() == Context.UnknownAnyTy) {
2457          type = Context.UnknownAnyTy;
2458          valueKind = VK_RValue;
2459          break;
2460        }
2461
2462      // C++ methods are l-values if static, r-values if non-static.
2463      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2464        valueKind = VK_LValue;
2465        break;
2466      }
2467      // fallthrough
2468
2469    case Decl::CXXConversion:
2470    case Decl::CXXDestructor:
2471    case Decl::CXXConstructor:
2472      valueKind = VK_RValue;
2473      break;
2474    }
2475
2476    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2477  }
2478}
2479
2480ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2481  PredefinedExpr::IdentType IT;
2482
2483  switch (Kind) {
2484  default: llvm_unreachable("Unknown simple primary expr!");
2485  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2486  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2487  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2488  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2489  }
2490
2491  // Pre-defined identifiers are of type char[x], where x is the length of the
2492  // string.
2493
2494  Decl *currentDecl = getCurFunctionOrMethodDecl();
2495  if (!currentDecl && getCurBlock())
2496    currentDecl = getCurBlock()->TheDecl;
2497  if (!currentDecl) {
2498    Diag(Loc, diag::ext_predef_outside_function);
2499    currentDecl = Context.getTranslationUnitDecl();
2500  }
2501
2502  QualType ResTy;
2503  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2504    ResTy = Context.DependentTy;
2505  } else {
2506    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2507
2508    llvm::APInt LengthI(32, Length + 1);
2509    if (IT == PredefinedExpr::LFunction)
2510      ResTy = Context.WCharTy.withConst();
2511    else
2512      ResTy = Context.CharTy.withConst();
2513    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2514  }
2515  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2516}
2517
2518ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2519  SmallString<16> CharBuffer;
2520  bool Invalid = false;
2521  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2522  if (Invalid)
2523    return ExprError();
2524
2525  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2526                            PP, Tok.getKind());
2527  if (Literal.hadError())
2528    return ExprError();
2529
2530  QualType Ty;
2531  if (Literal.isWide())
2532    Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2533  else if (Literal.isUTF16())
2534    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2535  else if (Literal.isUTF32())
2536    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2537  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2538    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2539  else
2540    Ty = Context.CharTy;  // 'x' -> char in C++
2541
2542  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2543  if (Literal.isWide())
2544    Kind = CharacterLiteral::Wide;
2545  else if (Literal.isUTF16())
2546    Kind = CharacterLiteral::UTF16;
2547  else if (Literal.isUTF32())
2548    Kind = CharacterLiteral::UTF32;
2549
2550  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2551                                             Tok.getLocation());
2552
2553  if (Literal.getUDSuffix().empty())
2554    return Owned(Lit);
2555
2556  // We're building a user-defined literal.
2557  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2558  SourceLocation UDSuffixLoc =
2559    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2560
2561  // Make sure we're allowed user-defined literals here.
2562  if (!UDLScope)
2563    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2564
2565  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2566  //   operator "" X (ch)
2567  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2568                                        llvm::makeArrayRef(&Lit, 1),
2569                                        Tok.getLocation());
2570}
2571
2572ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2573  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2574  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2575                                      Context.IntTy, Loc));
2576}
2577
2578static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2579                                  QualType Ty, SourceLocation Loc) {
2580  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2581
2582  using llvm::APFloat;
2583  APFloat Val(Format);
2584
2585  APFloat::opStatus result = Literal.GetFloatValue(Val);
2586
2587  // Overflow is always an error, but underflow is only an error if
2588  // we underflowed to zero (APFloat reports denormals as underflow).
2589  if ((result & APFloat::opOverflow) ||
2590      ((result & APFloat::opUnderflow) && Val.isZero())) {
2591    unsigned diagnostic;
2592    SmallString<20> buffer;
2593    if (result & APFloat::opOverflow) {
2594      diagnostic = diag::warn_float_overflow;
2595      APFloat::getLargest(Format).toString(buffer);
2596    } else {
2597      diagnostic = diag::warn_float_underflow;
2598      APFloat::getSmallest(Format).toString(buffer);
2599    }
2600
2601    S.Diag(Loc, diagnostic)
2602      << Ty
2603      << StringRef(buffer.data(), buffer.size());
2604  }
2605
2606  bool isExact = (result == APFloat::opOK);
2607  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2608}
2609
2610ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2611  // Fast path for a single digit (which is quite common).  A single digit
2612  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2613  if (Tok.getLength() == 1) {
2614    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2615    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2616  }
2617
2618  SmallString<512> IntegerBuffer;
2619  // Add padding so that NumericLiteralParser can overread by one character.
2620  IntegerBuffer.resize(Tok.getLength()+1);
2621  const char *ThisTokBegin = &IntegerBuffer[0];
2622
2623  // Get the spelling of the token, which eliminates trigraphs, etc.
2624  bool Invalid = false;
2625  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2626  if (Invalid)
2627    return ExprError();
2628
2629  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2630                               Tok.getLocation(), PP);
2631  if (Literal.hadError)
2632    return ExprError();
2633
2634  if (Literal.hasUDSuffix()) {
2635    // We're building a user-defined literal.
2636    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2637    SourceLocation UDSuffixLoc =
2638      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2639
2640    // Make sure we're allowed user-defined literals here.
2641    if (!UDLScope)
2642      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2643
2644    QualType CookedTy;
2645    if (Literal.isFloatingLiteral()) {
2646      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2647      // long double, the literal is treated as a call of the form
2648      //   operator "" X (f L)
2649      CookedTy = Context.LongDoubleTy;
2650    } else {
2651      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2652      // unsigned long long, the literal is treated as a call of the form
2653      //   operator "" X (n ULL)
2654      CookedTy = Context.UnsignedLongLongTy;
2655    }
2656
2657    DeclarationName OpName =
2658      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2659    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2660    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2661
2662    // Perform literal operator lookup to determine if we're building a raw
2663    // literal or a cooked one.
2664    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2665    switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2666                                  /*AllowRawAndTemplate*/true)) {
2667    case LOLR_Error:
2668      return ExprError();
2669
2670    case LOLR_Cooked: {
2671      Expr *Lit;
2672      if (Literal.isFloatingLiteral()) {
2673        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2674      } else {
2675        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2676        if (Literal.GetIntegerValue(ResultVal))
2677          Diag(Tok.getLocation(), diag::warn_integer_too_large);
2678        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2679                                     Tok.getLocation());
2680      }
2681      return BuildLiteralOperatorCall(R, OpNameInfo,
2682                                      llvm::makeArrayRef(&Lit, 1),
2683                                      Tok.getLocation());
2684    }
2685
2686    case LOLR_Raw: {
2687      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2688      // literal is treated as a call of the form
2689      //   operator "" X ("n")
2690      SourceLocation TokLoc = Tok.getLocation();
2691      unsigned Length = Literal.getUDSuffixOffset();
2692      QualType StrTy = Context.getConstantArrayType(
2693          Context.CharTy, llvm::APInt(32, Length + 1),
2694          ArrayType::Normal, 0);
2695      Expr *Lit = StringLiteral::Create(
2696          Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2697          /*Pascal*/false, StrTy, &TokLoc, 1);
2698      return BuildLiteralOperatorCall(R, OpNameInfo,
2699                                      llvm::makeArrayRef(&Lit, 1), TokLoc);
2700    }
2701
2702    case LOLR_Template:
2703      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2704      // template), L is treated as a call fo the form
2705      //   operator "" X <'c1', 'c2', ... 'ck'>()
2706      // where n is the source character sequence c1 c2 ... ck.
2707      TemplateArgumentListInfo ExplicitArgs;
2708      unsigned CharBits = Context.getIntWidth(Context.CharTy);
2709      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2710      llvm::APSInt Value(CharBits, CharIsUnsigned);
2711      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2712        Value = ThisTokBegin[I];
2713        TemplateArgument Arg(Context, Value, Context.CharTy);
2714        TemplateArgumentLocInfo ArgInfo;
2715        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2716      }
2717      return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2718                                      Tok.getLocation(), &ExplicitArgs);
2719    }
2720
2721    llvm_unreachable("unexpected literal operator lookup result");
2722  }
2723
2724  Expr *Res;
2725
2726  if (Literal.isFloatingLiteral()) {
2727    QualType Ty;
2728    if (Literal.isFloat)
2729      Ty = Context.FloatTy;
2730    else if (!Literal.isLong)
2731      Ty = Context.DoubleTy;
2732    else
2733      Ty = Context.LongDoubleTy;
2734
2735    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2736
2737    if (Ty == Context.DoubleTy) {
2738      if (getLangOpts().SinglePrecisionConstants) {
2739        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2740      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2741        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2742        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2743      }
2744    }
2745  } else if (!Literal.isIntegerLiteral()) {
2746    return ExprError();
2747  } else {
2748    QualType Ty;
2749
2750    // long long is a C99 feature.
2751    if (!getLangOpts().C99 && Literal.isLongLong)
2752      Diag(Tok.getLocation(),
2753           getLangOpts().CPlusPlus0x ?
2754             diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2755
2756    // Get the value in the widest-possible width.
2757    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2758    // The microsoft literal suffix extensions support 128-bit literals, which
2759    // may be wider than [u]intmax_t.
2760    if (Literal.isMicrosoftInteger && MaxWidth < 128)
2761      MaxWidth = 128;
2762    llvm::APInt ResultVal(MaxWidth, 0);
2763
2764    if (Literal.GetIntegerValue(ResultVal)) {
2765      // If this value didn't fit into uintmax_t, warn and force to ull.
2766      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2767      Ty = Context.UnsignedLongLongTy;
2768      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2769             "long long is not intmax_t?");
2770    } else {
2771      // If this value fits into a ULL, try to figure out what else it fits into
2772      // according to the rules of C99 6.4.4.1p5.
2773
2774      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2775      // be an unsigned int.
2776      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2777
2778      // Check from smallest to largest, picking the smallest type we can.
2779      unsigned Width = 0;
2780      if (!Literal.isLong && !Literal.isLongLong) {
2781        // Are int/unsigned possibilities?
2782        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2783
2784        // Does it fit in a unsigned int?
2785        if (ResultVal.isIntN(IntSize)) {
2786          // Does it fit in a signed int?
2787          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2788            Ty = Context.IntTy;
2789          else if (AllowUnsigned)
2790            Ty = Context.UnsignedIntTy;
2791          Width = IntSize;
2792        }
2793      }
2794
2795      // Are long/unsigned long possibilities?
2796      if (Ty.isNull() && !Literal.isLongLong) {
2797        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2798
2799        // Does it fit in a unsigned long?
2800        if (ResultVal.isIntN(LongSize)) {
2801          // Does it fit in a signed long?
2802          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2803            Ty = Context.LongTy;
2804          else if (AllowUnsigned)
2805            Ty = Context.UnsignedLongTy;
2806          Width = LongSize;
2807        }
2808      }
2809
2810      // Check long long if needed.
2811      if (Ty.isNull()) {
2812        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2813
2814        // Does it fit in a unsigned long long?
2815        if (ResultVal.isIntN(LongLongSize)) {
2816          // Does it fit in a signed long long?
2817          // To be compatible with MSVC, hex integer literals ending with the
2818          // LL or i64 suffix are always signed in Microsoft mode.
2819          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2820              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2821            Ty = Context.LongLongTy;
2822          else if (AllowUnsigned)
2823            Ty = Context.UnsignedLongLongTy;
2824          Width = LongLongSize;
2825        }
2826      }
2827
2828      // If it doesn't fit in unsigned long long, and we're using Microsoft
2829      // extensions, then its a 128-bit integer literal.
2830      if (Ty.isNull() && Literal.isMicrosoftInteger) {
2831        if (Literal.isUnsigned)
2832          Ty = Context.UnsignedInt128Ty;
2833        else
2834          Ty = Context.Int128Ty;
2835        Width = 128;
2836      }
2837
2838      // If we still couldn't decide a type, we probably have something that
2839      // does not fit in a signed long long, but has no U suffix.
2840      if (Ty.isNull()) {
2841        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2842        Ty = Context.UnsignedLongLongTy;
2843        Width = Context.getTargetInfo().getLongLongWidth();
2844      }
2845
2846      if (ResultVal.getBitWidth() != Width)
2847        ResultVal = ResultVal.trunc(Width);
2848    }
2849    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2850  }
2851
2852  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2853  if (Literal.isImaginary)
2854    Res = new (Context) ImaginaryLiteral(Res,
2855                                        Context.getComplexType(Res->getType()));
2856
2857  return Owned(Res);
2858}
2859
2860ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2861  assert((E != 0) && "ActOnParenExpr() missing expr");
2862  return Owned(new (Context) ParenExpr(L, R, E));
2863}
2864
2865static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2866                                         SourceLocation Loc,
2867                                         SourceRange ArgRange) {
2868  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2869  // scalar or vector data type argument..."
2870  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2871  // type (C99 6.2.5p18) or void.
2872  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2873    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2874      << T << ArgRange;
2875    return true;
2876  }
2877
2878  assert((T->isVoidType() || !T->isIncompleteType()) &&
2879         "Scalar types should always be complete");
2880  return false;
2881}
2882
2883static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2884                                           SourceLocation Loc,
2885                                           SourceRange ArgRange,
2886                                           UnaryExprOrTypeTrait TraitKind) {
2887  // C99 6.5.3.4p1:
2888  if (T->isFunctionType()) {
2889    // alignof(function) is allowed as an extension.
2890    if (TraitKind == UETT_SizeOf)
2891      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2892    return false;
2893  }
2894
2895  // Allow sizeof(void)/alignof(void) as an extension.
2896  if (T->isVoidType()) {
2897    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2898    return false;
2899  }
2900
2901  return true;
2902}
2903
2904static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2905                                             SourceLocation Loc,
2906                                             SourceRange ArgRange,
2907                                             UnaryExprOrTypeTrait TraitKind) {
2908  // Reject sizeof(interface) and sizeof(interface<proto>) if the
2909  // runtime doesn't allow it.
2910  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
2911    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2912      << T << (TraitKind == UETT_SizeOf)
2913      << ArgRange;
2914    return true;
2915  }
2916
2917  return false;
2918}
2919
2920/// \brief Check the constrains on expression operands to unary type expression
2921/// and type traits.
2922///
2923/// Completes any types necessary and validates the constraints on the operand
2924/// expression. The logic mostly mirrors the type-based overload, but may modify
2925/// the expression as it completes the type for that expression through template
2926/// instantiation, etc.
2927bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2928                                            UnaryExprOrTypeTrait ExprKind) {
2929  QualType ExprTy = E->getType();
2930
2931  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2932  //   the result is the size of the referenced type."
2933  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2934  //   result shall be the alignment of the referenced type."
2935  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2936    ExprTy = Ref->getPointeeType();
2937
2938  if (ExprKind == UETT_VecStep)
2939    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2940                                        E->getSourceRange());
2941
2942  // Whitelist some types as extensions
2943  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2944                                      E->getSourceRange(), ExprKind))
2945    return false;
2946
2947  if (RequireCompleteExprType(E,
2948                              diag::err_sizeof_alignof_incomplete_type,
2949                              ExprKind, E->getSourceRange()))
2950    return true;
2951
2952  // Completeing the expression's type may have changed it.
2953  ExprTy = E->getType();
2954  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2955    ExprTy = Ref->getPointeeType();
2956
2957  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2958                                       E->getSourceRange(), ExprKind))
2959    return true;
2960
2961  if (ExprKind == UETT_SizeOf) {
2962    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2963      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2964        QualType OType = PVD->getOriginalType();
2965        QualType Type = PVD->getType();
2966        if (Type->isPointerType() && OType->isArrayType()) {
2967          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2968            << Type << OType;
2969          Diag(PVD->getLocation(), diag::note_declared_at);
2970        }
2971      }
2972    }
2973  }
2974
2975  return false;
2976}
2977
2978/// \brief Check the constraints on operands to unary expression and type
2979/// traits.
2980///
2981/// This will complete any types necessary, and validate the various constraints
2982/// on those operands.
2983///
2984/// The UsualUnaryConversions() function is *not* called by this routine.
2985/// C99 6.3.2.1p[2-4] all state:
2986///   Except when it is the operand of the sizeof operator ...
2987///
2988/// C++ [expr.sizeof]p4
2989///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2990///   standard conversions are not applied to the operand of sizeof.
2991///
2992/// This policy is followed for all of the unary trait expressions.
2993bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
2994                                            SourceLocation OpLoc,
2995                                            SourceRange ExprRange,
2996                                            UnaryExprOrTypeTrait ExprKind) {
2997  if (ExprType->isDependentType())
2998    return false;
2999
3000  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3001  //   the result is the size of the referenced type."
3002  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3003  //   result shall be the alignment of the referenced type."
3004  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3005    ExprType = Ref->getPointeeType();
3006
3007  if (ExprKind == UETT_VecStep)
3008    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3009
3010  // Whitelist some types as extensions
3011  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3012                                      ExprKind))
3013    return false;
3014
3015  if (RequireCompleteType(OpLoc, ExprType,
3016                          diag::err_sizeof_alignof_incomplete_type,
3017                          ExprKind, ExprRange))
3018    return true;
3019
3020  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3021                                       ExprKind))
3022    return true;
3023
3024  return false;
3025}
3026
3027static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3028  E = E->IgnoreParens();
3029
3030  // alignof decl is always ok.
3031  if (isa<DeclRefExpr>(E))
3032    return false;
3033
3034  // Cannot know anything else if the expression is dependent.
3035  if (E->isTypeDependent())
3036    return false;
3037
3038  if (E->getBitField()) {
3039    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3040       << 1 << E->getSourceRange();
3041    return true;
3042  }
3043
3044  // Alignment of a field access is always okay, so long as it isn't a
3045  // bit-field.
3046  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
3047    if (isa<FieldDecl>(ME->getMemberDecl()))
3048      return false;
3049
3050  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3051}
3052
3053bool Sema::CheckVecStepExpr(Expr *E) {
3054  E = E->IgnoreParens();
3055
3056  // Cannot know anything else if the expression is dependent.
3057  if (E->isTypeDependent())
3058    return false;
3059
3060  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3061}
3062
3063/// \brief Build a sizeof or alignof expression given a type operand.
3064ExprResult
3065Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3066                                     SourceLocation OpLoc,
3067                                     UnaryExprOrTypeTrait ExprKind,
3068                                     SourceRange R) {
3069  if (!TInfo)
3070    return ExprError();
3071
3072  QualType T = TInfo->getType();
3073
3074  if (!T->isDependentType() &&
3075      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3076    return ExprError();
3077
3078  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3079  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3080                                                      Context.getSizeType(),
3081                                                      OpLoc, R.getEnd()));
3082}
3083
3084/// \brief Build a sizeof or alignof expression given an expression
3085/// operand.
3086ExprResult
3087Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3088                                     UnaryExprOrTypeTrait ExprKind) {
3089  ExprResult PE = CheckPlaceholderExpr(E);
3090  if (PE.isInvalid())
3091    return ExprError();
3092
3093  E = PE.get();
3094
3095  // Verify that the operand is valid.
3096  bool isInvalid = false;
3097  if (E->isTypeDependent()) {
3098    // Delay type-checking for type-dependent expressions.
3099  } else if (ExprKind == UETT_AlignOf) {
3100    isInvalid = CheckAlignOfExpr(*this, E);
3101  } else if (ExprKind == UETT_VecStep) {
3102    isInvalid = CheckVecStepExpr(E);
3103  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
3104    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3105    isInvalid = true;
3106  } else {
3107    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3108  }
3109
3110  if (isInvalid)
3111    return ExprError();
3112
3113  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3114    PE = TranformToPotentiallyEvaluated(E);
3115    if (PE.isInvalid()) return ExprError();
3116    E = PE.take();
3117  }
3118
3119  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3120  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3121      ExprKind, E, Context.getSizeType(), OpLoc,
3122      E->getSourceRange().getEnd()));
3123}
3124
3125/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3126/// expr and the same for @c alignof and @c __alignof
3127/// Note that the ArgRange is invalid if isType is false.
3128ExprResult
3129Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3130                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3131                                    void *TyOrEx, const SourceRange &ArgRange) {
3132  // If error parsing type, ignore.
3133  if (TyOrEx == 0) return ExprError();
3134
3135  if (IsType) {
3136    TypeSourceInfo *TInfo;
3137    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3138    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3139  }
3140
3141  Expr *ArgEx = (Expr *)TyOrEx;
3142  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3143  return move(Result);
3144}
3145
3146static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3147                                     bool IsReal) {
3148  if (V.get()->isTypeDependent())
3149    return S.Context.DependentTy;
3150
3151  // _Real and _Imag are only l-values for normal l-values.
3152  if (V.get()->getObjectKind() != OK_Ordinary) {
3153    V = S.DefaultLvalueConversion(V.take());
3154    if (V.isInvalid())
3155      return QualType();
3156  }
3157
3158  // These operators return the element type of a complex type.
3159  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3160    return CT->getElementType();
3161
3162  // Otherwise they pass through real integer and floating point types here.
3163  if (V.get()->getType()->isArithmeticType())
3164    return V.get()->getType();
3165
3166  // Test for placeholders.
3167  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3168  if (PR.isInvalid()) return QualType();
3169  if (PR.get() != V.get()) {
3170    V = move(PR);
3171    return CheckRealImagOperand(S, V, Loc, IsReal);
3172  }
3173
3174  // Reject anything else.
3175  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3176    << (IsReal ? "__real" : "__imag");
3177  return QualType();
3178}
3179
3180
3181
3182ExprResult
3183Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3184                          tok::TokenKind Kind, Expr *Input) {
3185  UnaryOperatorKind Opc;
3186  switch (Kind) {
3187  default: llvm_unreachable("Unknown unary op!");
3188  case tok::plusplus:   Opc = UO_PostInc; break;
3189  case tok::minusminus: Opc = UO_PostDec; break;
3190  }
3191
3192  // Since this might is a postfix expression, get rid of ParenListExprs.
3193  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3194  if (Result.isInvalid()) return ExprError();
3195  Input = Result.take();
3196
3197  return BuildUnaryOp(S, OpLoc, Opc, Input);
3198}
3199
3200/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3201///
3202/// \return true on error
3203static bool checkArithmeticOnObjCPointer(Sema &S,
3204                                         SourceLocation opLoc,
3205                                         Expr *op) {
3206  assert(op->getType()->isObjCObjectPointerType());
3207  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3208    return false;
3209
3210  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3211    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3212    << op->getSourceRange();
3213  return true;
3214}
3215
3216ExprResult
3217Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3218                              Expr *Idx, SourceLocation RLoc) {
3219  // Since this might be a postfix expression, get rid of ParenListExprs.
3220  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3221  if (Result.isInvalid()) return ExprError();
3222  Base = Result.take();
3223
3224  Expr *LHSExp = Base, *RHSExp = Idx;
3225
3226  if (getLangOpts().CPlusPlus &&
3227      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3228    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3229                                                  Context.DependentTy,
3230                                                  VK_LValue, OK_Ordinary,
3231                                                  RLoc));
3232  }
3233
3234  if (getLangOpts().CPlusPlus &&
3235      (LHSExp->getType()->isRecordType() ||
3236       LHSExp->getType()->isEnumeralType() ||
3237       RHSExp->getType()->isRecordType() ||
3238       RHSExp->getType()->isEnumeralType()) &&
3239      !LHSExp->getType()->isObjCObjectPointerType()) {
3240    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3241  }
3242
3243  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3244}
3245
3246ExprResult
3247Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3248                                      Expr *Idx, SourceLocation RLoc) {
3249  Expr *LHSExp = Base;
3250  Expr *RHSExp = Idx;
3251
3252  // Perform default conversions.
3253  if (!LHSExp->getType()->getAs<VectorType>()) {
3254    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3255    if (Result.isInvalid())
3256      return ExprError();
3257    LHSExp = Result.take();
3258  }
3259  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3260  if (Result.isInvalid())
3261    return ExprError();
3262  RHSExp = Result.take();
3263
3264  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3265  ExprValueKind VK = VK_LValue;
3266  ExprObjectKind OK = OK_Ordinary;
3267
3268  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3269  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3270  // in the subscript position. As a result, we need to derive the array base
3271  // and index from the expression types.
3272  Expr *BaseExpr, *IndexExpr;
3273  QualType ResultType;
3274  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3275    BaseExpr = LHSExp;
3276    IndexExpr = RHSExp;
3277    ResultType = Context.DependentTy;
3278  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3279    BaseExpr = LHSExp;
3280    IndexExpr = RHSExp;
3281    ResultType = PTy->getPointeeType();
3282  } else if (const ObjCObjectPointerType *PTy =
3283               LHSTy->getAs<ObjCObjectPointerType>()) {
3284    BaseExpr = LHSExp;
3285    IndexExpr = RHSExp;
3286
3287    // Use custom logic if this should be the pseudo-object subscript
3288    // expression.
3289    if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3290      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3291
3292    ResultType = PTy->getPointeeType();
3293    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3294      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3295        << ResultType << BaseExpr->getSourceRange();
3296      return ExprError();
3297    }
3298  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3299     // Handle the uncommon case of "123[Ptr]".
3300    BaseExpr = RHSExp;
3301    IndexExpr = LHSExp;
3302    ResultType = PTy->getPointeeType();
3303  } else if (const ObjCObjectPointerType *PTy =
3304               RHSTy->getAs<ObjCObjectPointerType>()) {
3305     // Handle the uncommon case of "123[Ptr]".
3306    BaseExpr = RHSExp;
3307    IndexExpr = LHSExp;
3308    ResultType = PTy->getPointeeType();
3309    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3310      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3311        << ResultType << BaseExpr->getSourceRange();
3312      return ExprError();
3313    }
3314  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3315    BaseExpr = LHSExp;    // vectors: V[123]
3316    IndexExpr = RHSExp;
3317    VK = LHSExp->getValueKind();
3318    if (VK != VK_RValue)
3319      OK = OK_VectorComponent;
3320
3321    // FIXME: need to deal with const...
3322    ResultType = VTy->getElementType();
3323  } else if (LHSTy->isArrayType()) {
3324    // If we see an array that wasn't promoted by
3325    // DefaultFunctionArrayLvalueConversion, it must be an array that
3326    // wasn't promoted because of the C90 rule that doesn't
3327    // allow promoting non-lvalue arrays.  Warn, then
3328    // force the promotion here.
3329    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3330        LHSExp->getSourceRange();
3331    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3332                               CK_ArrayToPointerDecay).take();
3333    LHSTy = LHSExp->getType();
3334
3335    BaseExpr = LHSExp;
3336    IndexExpr = RHSExp;
3337    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3338  } else if (RHSTy->isArrayType()) {
3339    // Same as previous, except for 123[f().a] case
3340    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3341        RHSExp->getSourceRange();
3342    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3343                               CK_ArrayToPointerDecay).take();
3344    RHSTy = RHSExp->getType();
3345
3346    BaseExpr = RHSExp;
3347    IndexExpr = LHSExp;
3348    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3349  } else {
3350    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3351       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3352  }
3353  // C99 6.5.2.1p1
3354  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3355    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3356                     << IndexExpr->getSourceRange());
3357
3358  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3359       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3360         && !IndexExpr->isTypeDependent())
3361    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3362
3363  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3364  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3365  // type. Note that Functions are not objects, and that (in C99 parlance)
3366  // incomplete types are not object types.
3367  if (ResultType->isFunctionType()) {
3368    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3369      << ResultType << BaseExpr->getSourceRange();
3370    return ExprError();
3371  }
3372
3373  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3374    // GNU extension: subscripting on pointer to void
3375    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3376      << BaseExpr->getSourceRange();
3377
3378    // C forbids expressions of unqualified void type from being l-values.
3379    // See IsCForbiddenLValueType.
3380    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3381  } else if (!ResultType->isDependentType() &&
3382      RequireCompleteType(LLoc, ResultType,
3383                          diag::err_subscript_incomplete_type, BaseExpr))
3384    return ExprError();
3385
3386  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3387         !ResultType.isCForbiddenLValueType());
3388
3389  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3390                                                ResultType, VK, OK, RLoc));
3391}
3392
3393ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3394                                        FunctionDecl *FD,
3395                                        ParmVarDecl *Param) {
3396  if (Param->hasUnparsedDefaultArg()) {
3397    Diag(CallLoc,
3398         diag::err_use_of_default_argument_to_function_declared_later) <<
3399      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3400    Diag(UnparsedDefaultArgLocs[Param],
3401         diag::note_default_argument_declared_here);
3402    return ExprError();
3403  }
3404
3405  if (Param->hasUninstantiatedDefaultArg()) {
3406    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3407
3408    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3409                                                 Param);
3410
3411    // Instantiate the expression.
3412    MultiLevelTemplateArgumentList ArgList
3413      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3414
3415    std::pair<const TemplateArgument *, unsigned> Innermost
3416      = ArgList.getInnermost();
3417    InstantiatingTemplate Inst(*this, CallLoc, Param,
3418                               ArrayRef<TemplateArgument>(Innermost.first,
3419                                                          Innermost.second));
3420    if (Inst)
3421      return ExprError();
3422
3423    ExprResult Result;
3424    {
3425      // C++ [dcl.fct.default]p5:
3426      //   The names in the [default argument] expression are bound, and
3427      //   the semantic constraints are checked, at the point where the
3428      //   default argument expression appears.
3429      ContextRAII SavedContext(*this, FD);
3430      LocalInstantiationScope Local(*this);
3431      Result = SubstExpr(UninstExpr, ArgList);
3432    }
3433    if (Result.isInvalid())
3434      return ExprError();
3435
3436    // Check the expression as an initializer for the parameter.
3437    InitializedEntity Entity
3438      = InitializedEntity::InitializeParameter(Context, Param);
3439    InitializationKind Kind
3440      = InitializationKind::CreateCopy(Param->getLocation(),
3441             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3442    Expr *ResultE = Result.takeAs<Expr>();
3443
3444    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3445    Result = InitSeq.Perform(*this, Entity, Kind,
3446                             MultiExprArg(*this, &ResultE, 1));
3447    if (Result.isInvalid())
3448      return ExprError();
3449
3450    Expr *Arg = Result.takeAs<Expr>();
3451    CheckImplicitConversions(Arg, Param->getOuterLocStart());
3452    // Build the default argument expression.
3453    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3454  }
3455
3456  // If the default expression creates temporaries, we need to
3457  // push them to the current stack of expression temporaries so they'll
3458  // be properly destroyed.
3459  // FIXME: We should really be rebuilding the default argument with new
3460  // bound temporaries; see the comment in PR5810.
3461  // We don't need to do that with block decls, though, because
3462  // blocks in default argument expression can never capture anything.
3463  if (isa<ExprWithCleanups>(Param->getInit())) {
3464    // Set the "needs cleanups" bit regardless of whether there are
3465    // any explicit objects.
3466    ExprNeedsCleanups = true;
3467
3468    // Append all the objects to the cleanup list.  Right now, this
3469    // should always be a no-op, because blocks in default argument
3470    // expressions should never be able to capture anything.
3471    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3472           "default argument expression has capturing blocks?");
3473  }
3474
3475  // We already type-checked the argument, so we know it works.
3476  // Just mark all of the declarations in this potentially-evaluated expression
3477  // as being "referenced".
3478  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3479                                   /*SkipLocalVariables=*/true);
3480  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3481}
3482
3483
3484Sema::VariadicCallType
3485Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3486                          Expr *Fn) {
3487  if (Proto && Proto->isVariadic()) {
3488    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3489      return VariadicConstructor;
3490    else if (Fn && Fn->getType()->isBlockPointerType())
3491      return VariadicBlock;
3492    else if (FDecl) {
3493      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3494        if (Method->isInstance())
3495          return VariadicMethod;
3496    }
3497    return VariadicFunction;
3498  }
3499  return VariadicDoesNotApply;
3500}
3501
3502/// ConvertArgumentsForCall - Converts the arguments specified in
3503/// Args/NumArgs to the parameter types of the function FDecl with
3504/// function prototype Proto. Call is the call expression itself, and
3505/// Fn is the function expression. For a C++ member function, this
3506/// routine does not attempt to convert the object argument. Returns
3507/// true if the call is ill-formed.
3508bool
3509Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3510                              FunctionDecl *FDecl,
3511                              const FunctionProtoType *Proto,
3512                              Expr **Args, unsigned NumArgs,
3513                              SourceLocation RParenLoc,
3514                              bool IsExecConfig) {
3515  // Bail out early if calling a builtin with custom typechecking.
3516  // We don't need to do this in the
3517  if (FDecl)
3518    if (unsigned ID = FDecl->getBuiltinID())
3519      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3520        return false;
3521
3522  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3523  // assignment, to the types of the corresponding parameter, ...
3524  unsigned NumArgsInProto = Proto->getNumArgs();
3525  bool Invalid = false;
3526  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3527  unsigned FnKind = Fn->getType()->isBlockPointerType()
3528                       ? 1 /* block */
3529                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3530                                       : 0 /* function */);
3531
3532  // If too few arguments are available (and we don't have default
3533  // arguments for the remaining parameters), don't make the call.
3534  if (NumArgs < NumArgsInProto) {
3535    if (NumArgs < MinArgs) {
3536      if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3537        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3538                          ? diag::err_typecheck_call_too_few_args_one
3539                          : diag::err_typecheck_call_too_few_args_at_least_one)
3540          << FnKind
3541          << FDecl->getParamDecl(0) << Fn->getSourceRange();
3542      else
3543        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
3544                          ? diag::err_typecheck_call_too_few_args
3545                          : diag::err_typecheck_call_too_few_args_at_least)
3546          << FnKind
3547          << MinArgs << NumArgs << Fn->getSourceRange();
3548
3549      // Emit the location of the prototype.
3550      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3551        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3552          << FDecl;
3553
3554      return true;
3555    }
3556    Call->setNumArgs(Context, NumArgsInProto);
3557  }
3558
3559  // If too many are passed and not variadic, error on the extras and drop
3560  // them.
3561  if (NumArgs > NumArgsInProto) {
3562    if (!Proto->isVariadic()) {
3563      if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
3564        Diag(Args[NumArgsInProto]->getLocStart(),
3565             MinArgs == NumArgsInProto
3566               ? diag::err_typecheck_call_too_many_args_one
3567               : diag::err_typecheck_call_too_many_args_at_most_one)
3568          << FnKind
3569          << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
3570          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3571                         Args[NumArgs-1]->getLocEnd());
3572      else
3573        Diag(Args[NumArgsInProto]->getLocStart(),
3574             MinArgs == NumArgsInProto
3575               ? diag::err_typecheck_call_too_many_args
3576               : diag::err_typecheck_call_too_many_args_at_most)
3577          << FnKind
3578          << NumArgsInProto << NumArgs << Fn->getSourceRange()
3579          << SourceRange(Args[NumArgsInProto]->getLocStart(),
3580                         Args[NumArgs-1]->getLocEnd());
3581
3582      // Emit the location of the prototype.
3583      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3584        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3585          << FDecl;
3586
3587      // This deletes the extra arguments.
3588      Call->setNumArgs(Context, NumArgsInProto);
3589      return true;
3590    }
3591  }
3592  SmallVector<Expr *, 8> AllArgs;
3593  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
3594
3595  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3596                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3597  if (Invalid)
3598    return true;
3599  unsigned TotalNumArgs = AllArgs.size();
3600  for (unsigned i = 0; i < TotalNumArgs; ++i)
3601    Call->setArg(i, AllArgs[i]);
3602
3603  return false;
3604}
3605
3606bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3607                                  FunctionDecl *FDecl,
3608                                  const FunctionProtoType *Proto,
3609                                  unsigned FirstProtoArg,
3610                                  Expr **Args, unsigned NumArgs,
3611                                  SmallVector<Expr *, 8> &AllArgs,
3612                                  VariadicCallType CallType,
3613                                  bool AllowExplicit) {
3614  unsigned NumArgsInProto = Proto->getNumArgs();
3615  unsigned NumArgsToCheck = NumArgs;
3616  bool Invalid = false;
3617  if (NumArgs != NumArgsInProto)
3618    // Use default arguments for missing arguments
3619    NumArgsToCheck = NumArgsInProto;
3620  unsigned ArgIx = 0;
3621  // Continue to check argument types (even if we have too few/many args).
3622  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3623    QualType ProtoArgType = Proto->getArgType(i);
3624
3625    Expr *Arg;
3626    ParmVarDecl *Param;
3627    if (ArgIx < NumArgs) {
3628      Arg = Args[ArgIx++];
3629
3630      if (RequireCompleteType(Arg->getLocStart(),
3631                              ProtoArgType,
3632                              diag::err_call_incomplete_argument, Arg))
3633        return true;
3634
3635      // Pass the argument
3636      Param = 0;
3637      if (FDecl && i < FDecl->getNumParams())
3638        Param = FDecl->getParamDecl(i);
3639
3640      // Strip the unbridged-cast placeholder expression off, if applicable.
3641      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3642          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3643          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3644        Arg = stripARCUnbridgedCast(Arg);
3645
3646      InitializedEntity Entity =
3647        Param? InitializedEntity::InitializeParameter(Context, Param)
3648             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3649                                                      Proto->isArgConsumed(i));
3650      ExprResult ArgE = PerformCopyInitialization(Entity,
3651                                                  SourceLocation(),
3652                                                  Owned(Arg),
3653                                                  /*TopLevelOfInitList=*/false,
3654                                                  AllowExplicit);
3655      if (ArgE.isInvalid())
3656        return true;
3657
3658      Arg = ArgE.takeAs<Expr>();
3659    } else {
3660      Param = FDecl->getParamDecl(i);
3661
3662      ExprResult ArgExpr =
3663        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3664      if (ArgExpr.isInvalid())
3665        return true;
3666
3667      Arg = ArgExpr.takeAs<Expr>();
3668    }
3669
3670    // Check for array bounds violations for each argument to the call. This
3671    // check only triggers warnings when the argument isn't a more complex Expr
3672    // with its own checking, such as a BinaryOperator.
3673    CheckArrayAccess(Arg);
3674
3675    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3676    CheckStaticArrayArgument(CallLoc, Param, Arg);
3677
3678    AllArgs.push_back(Arg);
3679  }
3680
3681  // If this is a variadic call, handle args passed through "...".
3682  if (CallType != VariadicDoesNotApply) {
3683    // Assume that extern "C" functions with variadic arguments that
3684    // return __unknown_anytype aren't *really* variadic.
3685    if (Proto->getResultType() == Context.UnknownAnyTy &&
3686        FDecl && FDecl->isExternC()) {
3687      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3688        ExprResult arg;
3689        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3690          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3691        else
3692          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3693        Invalid |= arg.isInvalid();
3694        AllArgs.push_back(arg.take());
3695      }
3696
3697    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3698    } else {
3699      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3700        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3701                                                          FDecl);
3702        Invalid |= Arg.isInvalid();
3703        AllArgs.push_back(Arg.take());
3704      }
3705    }
3706
3707    // Check for array bounds violations.
3708    for (unsigned i = ArgIx; i != NumArgs; ++i)
3709      CheckArrayAccess(Args[i]);
3710  }
3711  return Invalid;
3712}
3713
3714static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3715  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3716  if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3717    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3718      << ATL->getLocalSourceRange();
3719}
3720
3721/// CheckStaticArrayArgument - If the given argument corresponds to a static
3722/// array parameter, check that it is non-null, and that if it is formed by
3723/// array-to-pointer decay, the underlying array is sufficiently large.
3724///
3725/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3726/// array type derivation, then for each call to the function, the value of the
3727/// corresponding actual argument shall provide access to the first element of
3728/// an array with at least as many elements as specified by the size expression.
3729void
3730Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3731                               ParmVarDecl *Param,
3732                               const Expr *ArgExpr) {
3733  // Static array parameters are not supported in C++.
3734  if (!Param || getLangOpts().CPlusPlus)
3735    return;
3736
3737  QualType OrigTy = Param->getOriginalType();
3738
3739  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3740  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3741    return;
3742
3743  if (ArgExpr->isNullPointerConstant(Context,
3744                                     Expr::NPC_NeverValueDependent)) {
3745    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3746    DiagnoseCalleeStaticArrayParam(*this, Param);
3747    return;
3748  }
3749
3750  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3751  if (!CAT)
3752    return;
3753
3754  const ConstantArrayType *ArgCAT =
3755    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3756  if (!ArgCAT)
3757    return;
3758
3759  if (ArgCAT->getSize().ult(CAT->getSize())) {
3760    Diag(CallLoc, diag::warn_static_array_too_small)
3761      << ArgExpr->getSourceRange()
3762      << (unsigned) ArgCAT->getSize().getZExtValue()
3763      << (unsigned) CAT->getSize().getZExtValue();
3764    DiagnoseCalleeStaticArrayParam(*this, Param);
3765  }
3766}
3767
3768/// Given a function expression of unknown-any type, try to rebuild it
3769/// to have a function type.
3770static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3771
3772/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3773/// This provides the location of the left/right parens and a list of comma
3774/// locations.
3775ExprResult
3776Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3777                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
3778                    Expr *ExecConfig, bool IsExecConfig) {
3779  unsigned NumArgs = ArgExprs.size();
3780
3781  // Since this might be a postfix expression, get rid of ParenListExprs.
3782  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3783  if (Result.isInvalid()) return ExprError();
3784  Fn = Result.take();
3785
3786  Expr **Args = ArgExprs.release();
3787
3788  if (getLangOpts().CPlusPlus) {
3789    // If this is a pseudo-destructor expression, build the call immediately.
3790    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3791      if (NumArgs > 0) {
3792        // Pseudo-destructor calls should not have any arguments.
3793        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3794          << FixItHint::CreateRemoval(
3795                                    SourceRange(Args[0]->getLocStart(),
3796                                                Args[NumArgs-1]->getLocEnd()));
3797      }
3798
3799      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3800                                          VK_RValue, RParenLoc));
3801    }
3802
3803    // Determine whether this is a dependent call inside a C++ template,
3804    // in which case we won't do any semantic analysis now.
3805    // FIXME: Will need to cache the results of name lookup (including ADL) in
3806    // Fn.
3807    bool Dependent = false;
3808    if (Fn->isTypeDependent())
3809      Dependent = true;
3810    else if (Expr::hasAnyTypeDependentArguments(
3811        llvm::makeArrayRef(Args, NumArgs)))
3812      Dependent = true;
3813
3814    if (Dependent) {
3815      if (ExecConfig) {
3816        return Owned(new (Context) CUDAKernelCallExpr(
3817            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3818            Context.DependentTy, VK_RValue, RParenLoc));
3819      } else {
3820        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3821                                            Context.DependentTy, VK_RValue,
3822                                            RParenLoc));
3823      }
3824    }
3825
3826    // Determine whether this is a call to an object (C++ [over.call.object]).
3827    if (Fn->getType()->isRecordType())
3828      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3829                                                RParenLoc));
3830
3831    if (Fn->getType() == Context.UnknownAnyTy) {
3832      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3833      if (result.isInvalid()) return ExprError();
3834      Fn = result.take();
3835    }
3836
3837    if (Fn->getType() == Context.BoundMemberTy) {
3838      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3839                                       RParenLoc);
3840    }
3841  }
3842
3843  // Check for overloaded calls.  This can happen even in C due to extensions.
3844  if (Fn->getType() == Context.OverloadTy) {
3845    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3846
3847    // We aren't supposed to apply this logic for if there's an '&' involved.
3848    if (!find.HasFormOfMemberPointer) {
3849      OverloadExpr *ovl = find.Expression;
3850      if (isa<UnresolvedLookupExpr>(ovl)) {
3851        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3852        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3853                                       RParenLoc, ExecConfig);
3854      } else {
3855        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3856                                         RParenLoc);
3857      }
3858    }
3859  }
3860
3861  // If we're directly calling a function, get the appropriate declaration.
3862  if (Fn->getType() == Context.UnknownAnyTy) {
3863    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3864    if (result.isInvalid()) return ExprError();
3865    Fn = result.take();
3866  }
3867
3868  Expr *NakedFn = Fn->IgnoreParens();
3869
3870  NamedDecl *NDecl = 0;
3871  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3872    if (UnOp->getOpcode() == UO_AddrOf)
3873      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3874
3875  if (isa<DeclRefExpr>(NakedFn))
3876    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3877  else if (isa<MemberExpr>(NakedFn))
3878    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3879
3880  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3881                               ExecConfig, IsExecConfig);
3882}
3883
3884ExprResult
3885Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3886                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3887  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3888  if (!ConfigDecl)
3889    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3890                          << "cudaConfigureCall");
3891  QualType ConfigQTy = ConfigDecl->getType();
3892
3893  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3894      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3895  MarkFunctionReferenced(LLLLoc, ConfigDecl);
3896
3897  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3898                       /*IsExecConfig=*/true);
3899}
3900
3901/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3902///
3903/// __builtin_astype( value, dst type )
3904///
3905ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3906                                 SourceLocation BuiltinLoc,
3907                                 SourceLocation RParenLoc) {
3908  ExprValueKind VK = VK_RValue;
3909  ExprObjectKind OK = OK_Ordinary;
3910  QualType DstTy = GetTypeFromParser(ParsedDestTy);
3911  QualType SrcTy = E->getType();
3912  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3913    return ExprError(Diag(BuiltinLoc,
3914                          diag::err_invalid_astype_of_different_size)
3915                     << DstTy
3916                     << SrcTy
3917                     << E->getSourceRange());
3918  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3919               RParenLoc));
3920}
3921
3922/// BuildResolvedCallExpr - Build a call to a resolved expression,
3923/// i.e. an expression not of \p OverloadTy.  The expression should
3924/// unary-convert to an expression of function-pointer or
3925/// block-pointer type.
3926///
3927/// \param NDecl the declaration being called, if available
3928ExprResult
3929Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3930                            SourceLocation LParenLoc,
3931                            Expr **Args, unsigned NumArgs,
3932                            SourceLocation RParenLoc,
3933                            Expr *Config, bool IsExecConfig) {
3934  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3935
3936  // Promote the function operand.
3937  ExprResult Result = UsualUnaryConversions(Fn);
3938  if (Result.isInvalid())
3939    return ExprError();
3940  Fn = Result.take();
3941
3942  // Make the call expr early, before semantic checks.  This guarantees cleanup
3943  // of arguments and function on error.
3944  CallExpr *TheCall;
3945  if (Config)
3946    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3947                                               cast<CallExpr>(Config),
3948                                               Args, NumArgs,
3949                                               Context.BoolTy,
3950                                               VK_RValue,
3951                                               RParenLoc);
3952  else
3953    TheCall = new (Context) CallExpr(Context, Fn,
3954                                     Args, NumArgs,
3955                                     Context.BoolTy,
3956                                     VK_RValue,
3957                                     RParenLoc);
3958
3959  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3960
3961  // Bail out early if calling a builtin with custom typechecking.
3962  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3963    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3964
3965 retry:
3966  const FunctionType *FuncT;
3967  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3968    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3969    // have type pointer to function".
3970    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3971    if (FuncT == 0)
3972      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3973                         << Fn->getType() << Fn->getSourceRange());
3974  } else if (const BlockPointerType *BPT =
3975               Fn->getType()->getAs<BlockPointerType>()) {
3976    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3977  } else {
3978    // Handle calls to expressions of unknown-any type.
3979    if (Fn->getType() == Context.UnknownAnyTy) {
3980      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3981      if (rewrite.isInvalid()) return ExprError();
3982      Fn = rewrite.take();
3983      TheCall->setCallee(Fn);
3984      goto retry;
3985    }
3986
3987    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3988      << Fn->getType() << Fn->getSourceRange());
3989  }
3990
3991  if (getLangOpts().CUDA) {
3992    if (Config) {
3993      // CUDA: Kernel calls must be to global functions
3994      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3995        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3996            << FDecl->getName() << Fn->getSourceRange());
3997
3998      // CUDA: Kernel function must have 'void' return type
3999      if (!FuncT->getResultType()->isVoidType())
4000        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4001            << Fn->getType() << Fn->getSourceRange());
4002    } else {
4003      // CUDA: Calls to global functions must be configured
4004      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4005        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4006            << FDecl->getName() << Fn->getSourceRange());
4007    }
4008  }
4009
4010  // Check for a valid return type
4011  if (CheckCallReturnType(FuncT->getResultType(),
4012                          Fn->getLocStart(), TheCall,
4013                          FDecl))
4014    return ExprError();
4015
4016  // We know the result type of the call, set it.
4017  TheCall->setType(FuncT->getCallResultType(Context));
4018  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4019
4020  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4021  if (Proto) {
4022    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
4023                                RParenLoc, IsExecConfig))
4024      return ExprError();
4025  } else {
4026    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4027
4028    if (FDecl) {
4029      // Check if we have too few/too many template arguments, based
4030      // on our knowledge of the function definition.
4031      const FunctionDecl *Def = 0;
4032      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
4033        Proto = Def->getType()->getAs<FunctionProtoType>();
4034        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
4035          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4036            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
4037      }
4038
4039      // If the function we're calling isn't a function prototype, but we have
4040      // a function prototype from a prior declaratiom, use that prototype.
4041      if (!FDecl->hasPrototype())
4042        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4043    }
4044
4045    // Promote the arguments (C99 6.5.2.2p6).
4046    for (unsigned i = 0; i != NumArgs; i++) {
4047      Expr *Arg = Args[i];
4048
4049      if (Proto && i < Proto->getNumArgs()) {
4050        InitializedEntity Entity
4051          = InitializedEntity::InitializeParameter(Context,
4052                                                   Proto->getArgType(i),
4053                                                   Proto->isArgConsumed(i));
4054        ExprResult ArgE = PerformCopyInitialization(Entity,
4055                                                    SourceLocation(),
4056                                                    Owned(Arg));
4057        if (ArgE.isInvalid())
4058          return true;
4059
4060        Arg = ArgE.takeAs<Expr>();
4061
4062      } else {
4063        ExprResult ArgE = DefaultArgumentPromotion(Arg);
4064
4065        if (ArgE.isInvalid())
4066          return true;
4067
4068        Arg = ArgE.takeAs<Expr>();
4069      }
4070
4071      if (RequireCompleteType(Arg->getLocStart(),
4072                              Arg->getType(),
4073                              diag::err_call_incomplete_argument, Arg))
4074        return ExprError();
4075
4076      TheCall->setArg(i, Arg);
4077    }
4078  }
4079
4080  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4081    if (!Method->isStatic())
4082      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4083        << Fn->getSourceRange());
4084
4085  // Check for sentinels
4086  if (NDecl)
4087    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
4088
4089  // Do special checking on direct calls to functions.
4090  if (FDecl) {
4091    if (CheckFunctionCall(FDecl, TheCall, Proto))
4092      return ExprError();
4093
4094    if (BuiltinID)
4095      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4096  } else if (NDecl) {
4097    if (CheckBlockCall(NDecl, TheCall, Proto))
4098      return ExprError();
4099  }
4100
4101  return MaybeBindToTemporary(TheCall);
4102}
4103
4104ExprResult
4105Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4106                           SourceLocation RParenLoc, Expr *InitExpr) {
4107  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
4108  // FIXME: put back this assert when initializers are worked out.
4109  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4110
4111  TypeSourceInfo *TInfo;
4112  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4113  if (!TInfo)
4114    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4115
4116  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4117}
4118
4119ExprResult
4120Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4121                               SourceLocation RParenLoc, Expr *LiteralExpr) {
4122  QualType literalType = TInfo->getType();
4123
4124  if (literalType->isArrayType()) {
4125    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4126          diag::err_illegal_decl_array_incomplete_type,
4127          SourceRange(LParenLoc,
4128                      LiteralExpr->getSourceRange().getEnd())))
4129      return ExprError();
4130    if (literalType->isVariableArrayType())
4131      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4132        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4133  } else if (!literalType->isDependentType() &&
4134             RequireCompleteType(LParenLoc, literalType,
4135               diag::err_typecheck_decl_incomplete_type,
4136               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4137    return ExprError();
4138
4139  InitializedEntity Entity
4140    = InitializedEntity::InitializeTemporary(literalType);
4141  InitializationKind Kind
4142    = InitializationKind::CreateCStyleCast(LParenLoc,
4143                                           SourceRange(LParenLoc, RParenLoc),
4144                                           /*InitList=*/true);
4145  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
4146  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4147                                       MultiExprArg(*this, &LiteralExpr, 1),
4148                                            &literalType);
4149  if (Result.isInvalid())
4150    return ExprError();
4151  LiteralExpr = Result.get();
4152
4153  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4154  if (isFileScope) { // 6.5.2.5p3
4155    if (CheckForConstantInitializer(LiteralExpr, literalType))
4156      return ExprError();
4157  }
4158
4159  // In C, compound literals are l-values for some reason.
4160  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4161
4162  return MaybeBindToTemporary(
4163           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4164                                             VK, LiteralExpr, isFileScope));
4165}
4166
4167ExprResult
4168Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4169                    SourceLocation RBraceLoc) {
4170  unsigned NumInit = InitArgList.size();
4171  Expr **InitList = InitArgList.release();
4172
4173  // Immediately handle non-overload placeholders.  Overloads can be
4174  // resolved contextually, but everything else here can't.
4175  for (unsigned I = 0; I != NumInit; ++I) {
4176    if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
4177      ExprResult result = CheckPlaceholderExpr(InitList[I]);
4178
4179      // Ignore failures; dropping the entire initializer list because
4180      // of one failure would be terrible for indexing/etc.
4181      if (result.isInvalid()) continue;
4182
4183      InitList[I] = result.take();
4184    }
4185  }
4186
4187  // Semantic analysis for initializers is done by ActOnDeclarator() and
4188  // CheckInitializer() - it requires knowledge of the object being intialized.
4189
4190  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4191                                               NumInit, RBraceLoc);
4192  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4193  return Owned(E);
4194}
4195
4196/// Do an explicit extend of the given block pointer if we're in ARC.
4197static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4198  assert(E.get()->getType()->isBlockPointerType());
4199  assert(E.get()->isRValue());
4200
4201  // Only do this in an r-value context.
4202  if (!S.getLangOpts().ObjCAutoRefCount) return;
4203
4204  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4205                               CK_ARCExtendBlockObject, E.get(),
4206                               /*base path*/ 0, VK_RValue);
4207  S.ExprNeedsCleanups = true;
4208}
4209
4210/// Prepare a conversion of the given expression to an ObjC object
4211/// pointer type.
4212CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4213  QualType type = E.get()->getType();
4214  if (type->isObjCObjectPointerType()) {
4215    return CK_BitCast;
4216  } else if (type->isBlockPointerType()) {
4217    maybeExtendBlockObject(*this, E);
4218    return CK_BlockPointerToObjCPointerCast;
4219  } else {
4220    assert(type->isPointerType());
4221    return CK_CPointerToObjCPointerCast;
4222  }
4223}
4224
4225/// Prepares for a scalar cast, performing all the necessary stages
4226/// except the final cast and returning the kind required.
4227CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4228  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4229  // Also, callers should have filtered out the invalid cases with
4230  // pointers.  Everything else should be possible.
4231
4232  QualType SrcTy = Src.get()->getType();
4233  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4234    return CK_NoOp;
4235
4236  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4237  case Type::STK_MemberPointer:
4238    llvm_unreachable("member pointer type in C");
4239
4240  case Type::STK_CPointer:
4241  case Type::STK_BlockPointer:
4242  case Type::STK_ObjCObjectPointer:
4243    switch (DestTy->getScalarTypeKind()) {
4244    case Type::STK_CPointer:
4245      return CK_BitCast;
4246    case Type::STK_BlockPointer:
4247      return (SrcKind == Type::STK_BlockPointer
4248                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4249    case Type::STK_ObjCObjectPointer:
4250      if (SrcKind == Type::STK_ObjCObjectPointer)
4251        return CK_BitCast;
4252      if (SrcKind == Type::STK_CPointer)
4253        return CK_CPointerToObjCPointerCast;
4254      maybeExtendBlockObject(*this, Src);
4255      return CK_BlockPointerToObjCPointerCast;
4256    case Type::STK_Bool:
4257      return CK_PointerToBoolean;
4258    case Type::STK_Integral:
4259      return CK_PointerToIntegral;
4260    case Type::STK_Floating:
4261    case Type::STK_FloatingComplex:
4262    case Type::STK_IntegralComplex:
4263    case Type::STK_MemberPointer:
4264      llvm_unreachable("illegal cast from pointer");
4265    }
4266    llvm_unreachable("Should have returned before this");
4267
4268  case Type::STK_Bool: // casting from bool is like casting from an integer
4269  case Type::STK_Integral:
4270    switch (DestTy->getScalarTypeKind()) {
4271    case Type::STK_CPointer:
4272    case Type::STK_ObjCObjectPointer:
4273    case Type::STK_BlockPointer:
4274      if (Src.get()->isNullPointerConstant(Context,
4275                                           Expr::NPC_ValueDependentIsNull))
4276        return CK_NullToPointer;
4277      return CK_IntegralToPointer;
4278    case Type::STK_Bool:
4279      return CK_IntegralToBoolean;
4280    case Type::STK_Integral:
4281      return CK_IntegralCast;
4282    case Type::STK_Floating:
4283      return CK_IntegralToFloating;
4284    case Type::STK_IntegralComplex:
4285      Src = ImpCastExprToType(Src.take(),
4286                              DestTy->castAs<ComplexType>()->getElementType(),
4287                              CK_IntegralCast);
4288      return CK_IntegralRealToComplex;
4289    case Type::STK_FloatingComplex:
4290      Src = ImpCastExprToType(Src.take(),
4291                              DestTy->castAs<ComplexType>()->getElementType(),
4292                              CK_IntegralToFloating);
4293      return CK_FloatingRealToComplex;
4294    case Type::STK_MemberPointer:
4295      llvm_unreachable("member pointer type in C");
4296    }
4297    llvm_unreachable("Should have returned before this");
4298
4299  case Type::STK_Floating:
4300    switch (DestTy->getScalarTypeKind()) {
4301    case Type::STK_Floating:
4302      return CK_FloatingCast;
4303    case Type::STK_Bool:
4304      return CK_FloatingToBoolean;
4305    case Type::STK_Integral:
4306      return CK_FloatingToIntegral;
4307    case Type::STK_FloatingComplex:
4308      Src = ImpCastExprToType(Src.take(),
4309                              DestTy->castAs<ComplexType>()->getElementType(),
4310                              CK_FloatingCast);
4311      return CK_FloatingRealToComplex;
4312    case Type::STK_IntegralComplex:
4313      Src = ImpCastExprToType(Src.take(),
4314                              DestTy->castAs<ComplexType>()->getElementType(),
4315                              CK_FloatingToIntegral);
4316      return CK_IntegralRealToComplex;
4317    case Type::STK_CPointer:
4318    case Type::STK_ObjCObjectPointer:
4319    case Type::STK_BlockPointer:
4320      llvm_unreachable("valid float->pointer cast?");
4321    case Type::STK_MemberPointer:
4322      llvm_unreachable("member pointer type in C");
4323    }
4324    llvm_unreachable("Should have returned before this");
4325
4326  case Type::STK_FloatingComplex:
4327    switch (DestTy->getScalarTypeKind()) {
4328    case Type::STK_FloatingComplex:
4329      return CK_FloatingComplexCast;
4330    case Type::STK_IntegralComplex:
4331      return CK_FloatingComplexToIntegralComplex;
4332    case Type::STK_Floating: {
4333      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4334      if (Context.hasSameType(ET, DestTy))
4335        return CK_FloatingComplexToReal;
4336      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4337      return CK_FloatingCast;
4338    }
4339    case Type::STK_Bool:
4340      return CK_FloatingComplexToBoolean;
4341    case Type::STK_Integral:
4342      Src = ImpCastExprToType(Src.take(),
4343                              SrcTy->castAs<ComplexType>()->getElementType(),
4344                              CK_FloatingComplexToReal);
4345      return CK_FloatingToIntegral;
4346    case Type::STK_CPointer:
4347    case Type::STK_ObjCObjectPointer:
4348    case Type::STK_BlockPointer:
4349      llvm_unreachable("valid complex float->pointer cast?");
4350    case Type::STK_MemberPointer:
4351      llvm_unreachable("member pointer type in C");
4352    }
4353    llvm_unreachable("Should have returned before this");
4354
4355  case Type::STK_IntegralComplex:
4356    switch (DestTy->getScalarTypeKind()) {
4357    case Type::STK_FloatingComplex:
4358      return CK_IntegralComplexToFloatingComplex;
4359    case Type::STK_IntegralComplex:
4360      return CK_IntegralComplexCast;
4361    case Type::STK_Integral: {
4362      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4363      if (Context.hasSameType(ET, DestTy))
4364        return CK_IntegralComplexToReal;
4365      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4366      return CK_IntegralCast;
4367    }
4368    case Type::STK_Bool:
4369      return CK_IntegralComplexToBoolean;
4370    case Type::STK_Floating:
4371      Src = ImpCastExprToType(Src.take(),
4372                              SrcTy->castAs<ComplexType>()->getElementType(),
4373                              CK_IntegralComplexToReal);
4374      return CK_IntegralToFloating;
4375    case Type::STK_CPointer:
4376    case Type::STK_ObjCObjectPointer:
4377    case Type::STK_BlockPointer:
4378      llvm_unreachable("valid complex int->pointer cast?");
4379    case Type::STK_MemberPointer:
4380      llvm_unreachable("member pointer type in C");
4381    }
4382    llvm_unreachable("Should have returned before this");
4383  }
4384
4385  llvm_unreachable("Unhandled scalar cast");
4386}
4387
4388bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4389                           CastKind &Kind) {
4390  assert(VectorTy->isVectorType() && "Not a vector type!");
4391
4392  if (Ty->isVectorType() || Ty->isIntegerType()) {
4393    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4394      return Diag(R.getBegin(),
4395                  Ty->isVectorType() ?
4396                  diag::err_invalid_conversion_between_vectors :
4397                  diag::err_invalid_conversion_between_vector_and_integer)
4398        << VectorTy << Ty << R;
4399  } else
4400    return Diag(R.getBegin(),
4401                diag::err_invalid_conversion_between_vector_and_scalar)
4402      << VectorTy << Ty << R;
4403
4404  Kind = CK_BitCast;
4405  return false;
4406}
4407
4408ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4409                                    Expr *CastExpr, CastKind &Kind) {
4410  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4411
4412  QualType SrcTy = CastExpr->getType();
4413
4414  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4415  // an ExtVectorType.
4416  // In OpenCL, casts between vectors of different types are not allowed.
4417  // (See OpenCL 6.2).
4418  if (SrcTy->isVectorType()) {
4419    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4420        || (getLangOpts().OpenCL &&
4421            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4422      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4423        << DestTy << SrcTy << R;
4424      return ExprError();
4425    }
4426    Kind = CK_BitCast;
4427    return Owned(CastExpr);
4428  }
4429
4430  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4431  // conversion will take place first from scalar to elt type, and then
4432  // splat from elt type to vector.
4433  if (SrcTy->isPointerType())
4434    return Diag(R.getBegin(),
4435                diag::err_invalid_conversion_between_vector_and_scalar)
4436      << DestTy << SrcTy << R;
4437
4438  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4439  ExprResult CastExprRes = Owned(CastExpr);
4440  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4441  if (CastExprRes.isInvalid())
4442    return ExprError();
4443  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4444
4445  Kind = CK_VectorSplat;
4446  return Owned(CastExpr);
4447}
4448
4449ExprResult
4450Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4451                    Declarator &D, ParsedType &Ty,
4452                    SourceLocation RParenLoc, Expr *CastExpr) {
4453  assert(!D.isInvalidType() && (CastExpr != 0) &&
4454         "ActOnCastExpr(): missing type or expr");
4455
4456  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4457  if (D.isInvalidType())
4458    return ExprError();
4459
4460  if (getLangOpts().CPlusPlus) {
4461    // Check that there are no default arguments (C++ only).
4462    CheckExtraCXXDefaultArguments(D);
4463  }
4464
4465  checkUnusedDeclAttributes(D);
4466
4467  QualType castType = castTInfo->getType();
4468  Ty = CreateParsedType(castType, castTInfo);
4469
4470  bool isVectorLiteral = false;
4471
4472  // Check for an altivec or OpenCL literal,
4473  // i.e. all the elements are integer constants.
4474  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4475  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4476  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4477       && castType->isVectorType() && (PE || PLE)) {
4478    if (PLE && PLE->getNumExprs() == 0) {
4479      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4480      return ExprError();
4481    }
4482    if (PE || PLE->getNumExprs() == 1) {
4483      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4484      if (!E->getType()->isVectorType())
4485        isVectorLiteral = true;
4486    }
4487    else
4488      isVectorLiteral = true;
4489  }
4490
4491  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4492  // then handle it as such.
4493  if (isVectorLiteral)
4494    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4495
4496  // If the Expr being casted is a ParenListExpr, handle it specially.
4497  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4498  // sequence of BinOp comma operators.
4499  if (isa<ParenListExpr>(CastExpr)) {
4500    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4501    if (Result.isInvalid()) return ExprError();
4502    CastExpr = Result.take();
4503  }
4504
4505  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4506}
4507
4508ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4509                                    SourceLocation RParenLoc, Expr *E,
4510                                    TypeSourceInfo *TInfo) {
4511  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4512         "Expected paren or paren list expression");
4513
4514  Expr **exprs;
4515  unsigned numExprs;
4516  Expr *subExpr;
4517  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4518    exprs = PE->getExprs();
4519    numExprs = PE->getNumExprs();
4520  } else {
4521    subExpr = cast<ParenExpr>(E)->getSubExpr();
4522    exprs = &subExpr;
4523    numExprs = 1;
4524  }
4525
4526  QualType Ty = TInfo->getType();
4527  assert(Ty->isVectorType() && "Expected vector type");
4528
4529  SmallVector<Expr *, 8> initExprs;
4530  const VectorType *VTy = Ty->getAs<VectorType>();
4531  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4532
4533  // '(...)' form of vector initialization in AltiVec: the number of
4534  // initializers must be one or must match the size of the vector.
4535  // If a single value is specified in the initializer then it will be
4536  // replicated to all the components of the vector
4537  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4538    // The number of initializers must be one or must match the size of the
4539    // vector. If a single value is specified in the initializer then it will
4540    // be replicated to all the components of the vector
4541    if (numExprs == 1) {
4542      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4543      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4544      if (Literal.isInvalid())
4545        return ExprError();
4546      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4547                                  PrepareScalarCast(Literal, ElemTy));
4548      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4549    }
4550    else if (numExprs < numElems) {
4551      Diag(E->getExprLoc(),
4552           diag::err_incorrect_number_of_vector_initializers);
4553      return ExprError();
4554    }
4555    else
4556      initExprs.append(exprs, exprs + numExprs);
4557  }
4558  else {
4559    // For OpenCL, when the number of initializers is a single value,
4560    // it will be replicated to all components of the vector.
4561    if (getLangOpts().OpenCL &&
4562        VTy->getVectorKind() == VectorType::GenericVector &&
4563        numExprs == 1) {
4564        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4565        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4566        if (Literal.isInvalid())
4567          return ExprError();
4568        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4569                                    PrepareScalarCast(Literal, ElemTy));
4570        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4571    }
4572
4573    initExprs.append(exprs, exprs + numExprs);
4574  }
4575  // FIXME: This means that pretty-printing the final AST will produce curly
4576  // braces instead of the original commas.
4577  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4578                                                   &initExprs[0],
4579                                                   initExprs.size(), RParenLoc);
4580  initE->setType(Ty);
4581  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4582}
4583
4584/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4585/// the ParenListExpr into a sequence of comma binary operators.
4586ExprResult
4587Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4588  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4589  if (!E)
4590    return Owned(OrigExpr);
4591
4592  ExprResult Result(E->getExpr(0));
4593
4594  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4595    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4596                        E->getExpr(i));
4597
4598  if (Result.isInvalid()) return ExprError();
4599
4600  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4601}
4602
4603ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4604                                    SourceLocation R,
4605                                    MultiExprArg Val) {
4606  unsigned nexprs = Val.size();
4607  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4608  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4609  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4610  return Owned(expr);
4611}
4612
4613/// \brief Emit a specialized diagnostic when one expression is a null pointer
4614/// constant and the other is not a pointer.  Returns true if a diagnostic is
4615/// emitted.
4616bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4617                                      SourceLocation QuestionLoc) {
4618  Expr *NullExpr = LHSExpr;
4619  Expr *NonPointerExpr = RHSExpr;
4620  Expr::NullPointerConstantKind NullKind =
4621      NullExpr->isNullPointerConstant(Context,
4622                                      Expr::NPC_ValueDependentIsNotNull);
4623
4624  if (NullKind == Expr::NPCK_NotNull) {
4625    NullExpr = RHSExpr;
4626    NonPointerExpr = LHSExpr;
4627    NullKind =
4628        NullExpr->isNullPointerConstant(Context,
4629                                        Expr::NPC_ValueDependentIsNotNull);
4630  }
4631
4632  if (NullKind == Expr::NPCK_NotNull)
4633    return false;
4634
4635  if (NullKind == Expr::NPCK_ZeroExpression)
4636    return false;
4637
4638  if (NullKind == Expr::NPCK_ZeroLiteral) {
4639    // In this case, check to make sure that we got here from a "NULL"
4640    // string in the source code.
4641    NullExpr = NullExpr->IgnoreParenImpCasts();
4642    SourceLocation loc = NullExpr->getExprLoc();
4643    if (!findMacroSpelling(loc, "NULL"))
4644      return false;
4645  }
4646
4647  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4648  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4649      << NonPointerExpr->getType() << DiagType
4650      << NonPointerExpr->getSourceRange();
4651  return true;
4652}
4653
4654/// \brief Return false if the condition expression is valid, true otherwise.
4655static bool checkCondition(Sema &S, Expr *Cond) {
4656  QualType CondTy = Cond->getType();
4657
4658  // C99 6.5.15p2
4659  if (CondTy->isScalarType()) return false;
4660
4661  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4662  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4663    return false;
4664
4665  // Emit the proper error message.
4666  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4667                              diag::err_typecheck_cond_expect_scalar :
4668                              diag::err_typecheck_cond_expect_scalar_or_vector)
4669    << CondTy;
4670  return true;
4671}
4672
4673/// \brief Return false if the two expressions can be converted to a vector,
4674/// true otherwise
4675static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4676                                                    ExprResult &RHS,
4677                                                    QualType CondTy) {
4678  // Both operands should be of scalar type.
4679  if (!LHS.get()->getType()->isScalarType()) {
4680    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4681      << CondTy;
4682    return true;
4683  }
4684  if (!RHS.get()->getType()->isScalarType()) {
4685    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4686      << CondTy;
4687    return true;
4688  }
4689
4690  // Implicity convert these scalars to the type of the condition.
4691  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4692  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4693  return false;
4694}
4695
4696/// \brief Handle when one or both operands are void type.
4697static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4698                                         ExprResult &RHS) {
4699    Expr *LHSExpr = LHS.get();
4700    Expr *RHSExpr = RHS.get();
4701
4702    if (!LHSExpr->getType()->isVoidType())
4703      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4704        << RHSExpr->getSourceRange();
4705    if (!RHSExpr->getType()->isVoidType())
4706      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4707        << LHSExpr->getSourceRange();
4708    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4709    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4710    return S.Context.VoidTy;
4711}
4712
4713/// \brief Return false if the NullExpr can be promoted to PointerTy,
4714/// true otherwise.
4715static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4716                                        QualType PointerTy) {
4717  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4718      !NullExpr.get()->isNullPointerConstant(S.Context,
4719                                            Expr::NPC_ValueDependentIsNull))
4720    return true;
4721
4722  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4723  return false;
4724}
4725
4726/// \brief Checks compatibility between two pointers and return the resulting
4727/// type.
4728static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4729                                                     ExprResult &RHS,
4730                                                     SourceLocation Loc) {
4731  QualType LHSTy = LHS.get()->getType();
4732  QualType RHSTy = RHS.get()->getType();
4733
4734  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4735    // Two identical pointers types are always compatible.
4736    return LHSTy;
4737  }
4738
4739  QualType lhptee, rhptee;
4740
4741  // Get the pointee types.
4742  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4743    lhptee = LHSBTy->getPointeeType();
4744    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4745  } else {
4746    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4747    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4748  }
4749
4750  // C99 6.5.15p6: If both operands are pointers to compatible types or to
4751  // differently qualified versions of compatible types, the result type is
4752  // a pointer to an appropriately qualified version of the composite
4753  // type.
4754
4755  // Only CVR-qualifiers exist in the standard, and the differently-qualified
4756  // clause doesn't make sense for our extensions. E.g. address space 2 should
4757  // be incompatible with address space 3: they may live on different devices or
4758  // anything.
4759  Qualifiers lhQual = lhptee.getQualifiers();
4760  Qualifiers rhQual = rhptee.getQualifiers();
4761
4762  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4763  lhQual.removeCVRQualifiers();
4764  rhQual.removeCVRQualifiers();
4765
4766  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4767  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4768
4769  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4770
4771  if (CompositeTy.isNull()) {
4772    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4773      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4774      << RHS.get()->getSourceRange();
4775    // In this situation, we assume void* type. No especially good
4776    // reason, but this is what gcc does, and we do have to pick
4777    // to get a consistent AST.
4778    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4779    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4780    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4781    return incompatTy;
4782  }
4783
4784  // The pointer types are compatible.
4785  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4786  ResultTy = S.Context.getPointerType(ResultTy);
4787
4788  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4789  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4790  return ResultTy;
4791}
4792
4793/// \brief Return the resulting type when the operands are both block pointers.
4794static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4795                                                          ExprResult &LHS,
4796                                                          ExprResult &RHS,
4797                                                          SourceLocation Loc) {
4798  QualType LHSTy = LHS.get()->getType();
4799  QualType RHSTy = RHS.get()->getType();
4800
4801  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4802    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4803      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4804      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4805      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4806      return destType;
4807    }
4808    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4809      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4810      << RHS.get()->getSourceRange();
4811    return QualType();
4812  }
4813
4814  // We have 2 block pointer types.
4815  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4816}
4817
4818/// \brief Return the resulting type when the operands are both pointers.
4819static QualType
4820checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4821                                            ExprResult &RHS,
4822                                            SourceLocation Loc) {
4823  // get the pointer types
4824  QualType LHSTy = LHS.get()->getType();
4825  QualType RHSTy = RHS.get()->getType();
4826
4827  // get the "pointed to" types
4828  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4829  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4830
4831  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4832  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4833    // Figure out necessary qualifiers (C99 6.5.15p6)
4834    QualType destPointee
4835      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4836    QualType destType = S.Context.getPointerType(destPointee);
4837    // Add qualifiers if necessary.
4838    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4839    // Promote to void*.
4840    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4841    return destType;
4842  }
4843  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4844    QualType destPointee
4845      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4846    QualType destType = S.Context.getPointerType(destPointee);
4847    // Add qualifiers if necessary.
4848    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4849    // Promote to void*.
4850    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4851    return destType;
4852  }
4853
4854  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4855}
4856
4857/// \brief Return false if the first expression is not an integer and the second
4858/// expression is not a pointer, true otherwise.
4859static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4860                                        Expr* PointerExpr, SourceLocation Loc,
4861                                        bool IsIntFirstExpr) {
4862  if (!PointerExpr->getType()->isPointerType() ||
4863      !Int.get()->getType()->isIntegerType())
4864    return false;
4865
4866  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4867  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4868
4869  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4870    << Expr1->getType() << Expr2->getType()
4871    << Expr1->getSourceRange() << Expr2->getSourceRange();
4872  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4873                            CK_IntegralToPointer);
4874  return true;
4875}
4876
4877/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4878/// In that case, LHS = cond.
4879/// C99 6.5.15
4880QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4881                                        ExprResult &RHS, ExprValueKind &VK,
4882                                        ExprObjectKind &OK,
4883                                        SourceLocation QuestionLoc) {
4884
4885  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4886  if (!LHSResult.isUsable()) return QualType();
4887  LHS = move(LHSResult);
4888
4889  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4890  if (!RHSResult.isUsable()) return QualType();
4891  RHS = move(RHSResult);
4892
4893  // C++ is sufficiently different to merit its own checker.
4894  if (getLangOpts().CPlusPlus)
4895    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4896
4897  VK = VK_RValue;
4898  OK = OK_Ordinary;
4899
4900  Cond = UsualUnaryConversions(Cond.take());
4901  if (Cond.isInvalid())
4902    return QualType();
4903  LHS = UsualUnaryConversions(LHS.take());
4904  if (LHS.isInvalid())
4905    return QualType();
4906  RHS = UsualUnaryConversions(RHS.take());
4907  if (RHS.isInvalid())
4908    return QualType();
4909
4910  QualType CondTy = Cond.get()->getType();
4911  QualType LHSTy = LHS.get()->getType();
4912  QualType RHSTy = RHS.get()->getType();
4913
4914  // first, check the condition.
4915  if (checkCondition(*this, Cond.get()))
4916    return QualType();
4917
4918  // Now check the two expressions.
4919  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4920    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4921
4922  // OpenCL: If the condition is a vector, and both operands are scalar,
4923  // attempt to implicity convert them to the vector type to act like the
4924  // built in select.
4925  if (getLangOpts().OpenCL && CondTy->isVectorType())
4926    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4927      return QualType();
4928
4929  // If both operands have arithmetic type, do the usual arithmetic conversions
4930  // to find a common type: C99 6.5.15p3,5.
4931  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4932    UsualArithmeticConversions(LHS, RHS);
4933    if (LHS.isInvalid() || RHS.isInvalid())
4934      return QualType();
4935    return LHS.get()->getType();
4936  }
4937
4938  // If both operands are the same structure or union type, the result is that
4939  // type.
4940  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4941    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4942      if (LHSRT->getDecl() == RHSRT->getDecl())
4943        // "If both the operands have structure or union type, the result has
4944        // that type."  This implies that CV qualifiers are dropped.
4945        return LHSTy.getUnqualifiedType();
4946    // FIXME: Type of conditional expression must be complete in C mode.
4947  }
4948
4949  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4950  // The following || allows only one side to be void (a GCC-ism).
4951  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4952    return checkConditionalVoidType(*this, LHS, RHS);
4953  }
4954
4955  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4956  // the type of the other operand."
4957  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4958  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4959
4960  // All objective-c pointer type analysis is done here.
4961  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4962                                                        QuestionLoc);
4963  if (LHS.isInvalid() || RHS.isInvalid())
4964    return QualType();
4965  if (!compositeType.isNull())
4966    return compositeType;
4967
4968
4969  // Handle block pointer types.
4970  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4971    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4972                                                     QuestionLoc);
4973
4974  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4975  if (LHSTy->isPointerType() && RHSTy->isPointerType())
4976    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4977                                                       QuestionLoc);
4978
4979  // GCC compatibility: soften pointer/integer mismatch.  Note that
4980  // null pointers have been filtered out by this point.
4981  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4982      /*isIntFirstExpr=*/true))
4983    return RHSTy;
4984  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4985      /*isIntFirstExpr=*/false))
4986    return LHSTy;
4987
4988  // Emit a better diagnostic if one of the expressions is a null pointer
4989  // constant and the other is not a pointer type. In this case, the user most
4990  // likely forgot to take the address of the other expression.
4991  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4992    return QualType();
4993
4994  // Otherwise, the operands are not compatible.
4995  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4996    << LHSTy << RHSTy << LHS.get()->getSourceRange()
4997    << RHS.get()->getSourceRange();
4998  return QualType();
4999}
5000
5001/// FindCompositeObjCPointerType - Helper method to find composite type of
5002/// two objective-c pointer types of the two input expressions.
5003QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5004                                            SourceLocation QuestionLoc) {
5005  QualType LHSTy = LHS.get()->getType();
5006  QualType RHSTy = RHS.get()->getType();
5007
5008  // Handle things like Class and struct objc_class*.  Here we case the result
5009  // to the pseudo-builtin, because that will be implicitly cast back to the
5010  // redefinition type if an attempt is made to access its fields.
5011  if (LHSTy->isObjCClassType() &&
5012      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5013    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5014    return LHSTy;
5015  }
5016  if (RHSTy->isObjCClassType() &&
5017      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5018    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5019    return RHSTy;
5020  }
5021  // And the same for struct objc_object* / id
5022  if (LHSTy->isObjCIdType() &&
5023      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5024    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5025    return LHSTy;
5026  }
5027  if (RHSTy->isObjCIdType() &&
5028      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5029    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5030    return RHSTy;
5031  }
5032  // And the same for struct objc_selector* / SEL
5033  if (Context.isObjCSelType(LHSTy) &&
5034      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5035    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5036    return LHSTy;
5037  }
5038  if (Context.isObjCSelType(RHSTy) &&
5039      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5040    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5041    return RHSTy;
5042  }
5043  // Check constraints for Objective-C object pointers types.
5044  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5045
5046    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5047      // Two identical object pointer types are always compatible.
5048      return LHSTy;
5049    }
5050    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5051    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5052    QualType compositeType = LHSTy;
5053
5054    // If both operands are interfaces and either operand can be
5055    // assigned to the other, use that type as the composite
5056    // type. This allows
5057    //   xxx ? (A*) a : (B*) b
5058    // where B is a subclass of A.
5059    //
5060    // Additionally, as for assignment, if either type is 'id'
5061    // allow silent coercion. Finally, if the types are
5062    // incompatible then make sure to use 'id' as the composite
5063    // type so the result is acceptable for sending messages to.
5064
5065    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5066    // It could return the composite type.
5067    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5068      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5069    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5070      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5071    } else if ((LHSTy->isObjCQualifiedIdType() ||
5072                RHSTy->isObjCQualifiedIdType()) &&
5073               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5074      // Need to handle "id<xx>" explicitly.
5075      // GCC allows qualified id and any Objective-C type to devolve to
5076      // id. Currently localizing to here until clear this should be
5077      // part of ObjCQualifiedIdTypesAreCompatible.
5078      compositeType = Context.getObjCIdType();
5079    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5080      compositeType = Context.getObjCIdType();
5081    } else if (!(compositeType =
5082                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5083      ;
5084    else {
5085      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5086      << LHSTy << RHSTy
5087      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5088      QualType incompatTy = Context.getObjCIdType();
5089      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5090      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5091      return incompatTy;
5092    }
5093    // The object pointer types are compatible.
5094    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5095    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5096    return compositeType;
5097  }
5098  // Check Objective-C object pointer types and 'void *'
5099  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5100    if (getLangOpts().ObjCAutoRefCount) {
5101      // ARC forbids the implicit conversion of object pointers to 'void *',
5102      // so these types are not compatible.
5103      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5104          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5105      LHS = RHS = true;
5106      return QualType();
5107    }
5108    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5109    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5110    QualType destPointee
5111    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5112    QualType destType = Context.getPointerType(destPointee);
5113    // Add qualifiers if necessary.
5114    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5115    // Promote to void*.
5116    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5117    return destType;
5118  }
5119  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5120    if (getLangOpts().ObjCAutoRefCount) {
5121      // ARC forbids the implicit conversion of object pointers to 'void *',
5122      // so these types are not compatible.
5123      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5124          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5125      LHS = RHS = true;
5126      return QualType();
5127    }
5128    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5129    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5130    QualType destPointee
5131    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5132    QualType destType = Context.getPointerType(destPointee);
5133    // Add qualifiers if necessary.
5134    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5135    // Promote to void*.
5136    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5137    return destType;
5138  }
5139  return QualType();
5140}
5141
5142/// SuggestParentheses - Emit a note with a fixit hint that wraps
5143/// ParenRange in parentheses.
5144static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5145                               const PartialDiagnostic &Note,
5146                               SourceRange ParenRange) {
5147  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5148  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5149      EndLoc.isValid()) {
5150    Self.Diag(Loc, Note)
5151      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5152      << FixItHint::CreateInsertion(EndLoc, ")");
5153  } else {
5154    // We can't display the parentheses, so just show the bare note.
5155    Self.Diag(Loc, Note) << ParenRange;
5156  }
5157}
5158
5159static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5160  return Opc >= BO_Mul && Opc <= BO_Shr;
5161}
5162
5163/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5164/// expression, either using a built-in or overloaded operator,
5165/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5166/// expression.
5167static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5168                                   Expr **RHSExprs) {
5169  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5170  E = E->IgnoreImpCasts();
5171  E = E->IgnoreConversionOperator();
5172  E = E->IgnoreImpCasts();
5173
5174  // Built-in binary operator.
5175  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5176    if (IsArithmeticOp(OP->getOpcode())) {
5177      *Opcode = OP->getOpcode();
5178      *RHSExprs = OP->getRHS();
5179      return true;
5180    }
5181  }
5182
5183  // Overloaded operator.
5184  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5185    if (Call->getNumArgs() != 2)
5186      return false;
5187
5188    // Make sure this is really a binary operator that is safe to pass into
5189    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5190    OverloadedOperatorKind OO = Call->getOperator();
5191    if (OO < OO_Plus || OO > OO_Arrow)
5192      return false;
5193
5194    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5195    if (IsArithmeticOp(OpKind)) {
5196      *Opcode = OpKind;
5197      *RHSExprs = Call->getArg(1);
5198      return true;
5199    }
5200  }
5201
5202  return false;
5203}
5204
5205static bool IsLogicOp(BinaryOperatorKind Opc) {
5206  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5207}
5208
5209/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5210/// or is a logical expression such as (x==y) which has int type, but is
5211/// commonly interpreted as boolean.
5212static bool ExprLooksBoolean(Expr *E) {
5213  E = E->IgnoreParenImpCasts();
5214
5215  if (E->getType()->isBooleanType())
5216    return true;
5217  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5218    return IsLogicOp(OP->getOpcode());
5219  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5220    return OP->getOpcode() == UO_LNot;
5221
5222  return false;
5223}
5224
5225/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5226/// and binary operator are mixed in a way that suggests the programmer assumed
5227/// the conditional operator has higher precedence, for example:
5228/// "int x = a + someBinaryCondition ? 1 : 2".
5229static void DiagnoseConditionalPrecedence(Sema &Self,
5230                                          SourceLocation OpLoc,
5231                                          Expr *Condition,
5232                                          Expr *LHSExpr,
5233                                          Expr *RHSExpr) {
5234  BinaryOperatorKind CondOpcode;
5235  Expr *CondRHS;
5236
5237  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5238    return;
5239  if (!ExprLooksBoolean(CondRHS))
5240    return;
5241
5242  // The condition is an arithmetic binary expression, with a right-
5243  // hand side that looks boolean, so warn.
5244
5245  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5246      << Condition->getSourceRange()
5247      << BinaryOperator::getOpcodeStr(CondOpcode);
5248
5249  SuggestParentheses(Self, OpLoc,
5250    Self.PDiag(diag::note_precedence_conditional_silence)
5251      << BinaryOperator::getOpcodeStr(CondOpcode),
5252    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5253
5254  SuggestParentheses(Self, OpLoc,
5255    Self.PDiag(diag::note_precedence_conditional_first),
5256    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5257}
5258
5259/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5260/// in the case of a the GNU conditional expr extension.
5261ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5262                                    SourceLocation ColonLoc,
5263                                    Expr *CondExpr, Expr *LHSExpr,
5264                                    Expr *RHSExpr) {
5265  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5266  // was the condition.
5267  OpaqueValueExpr *opaqueValue = 0;
5268  Expr *commonExpr = 0;
5269  if (LHSExpr == 0) {
5270    commonExpr = CondExpr;
5271
5272    // We usually want to apply unary conversions *before* saving, except
5273    // in the special case of a C++ l-value conditional.
5274    if (!(getLangOpts().CPlusPlus
5275          && !commonExpr->isTypeDependent()
5276          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5277          && commonExpr->isGLValue()
5278          && commonExpr->isOrdinaryOrBitFieldObject()
5279          && RHSExpr->isOrdinaryOrBitFieldObject()
5280          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5281      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5282      if (commonRes.isInvalid())
5283        return ExprError();
5284      commonExpr = commonRes.take();
5285    }
5286
5287    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5288                                                commonExpr->getType(),
5289                                                commonExpr->getValueKind(),
5290                                                commonExpr->getObjectKind(),
5291                                                commonExpr);
5292    LHSExpr = CondExpr = opaqueValue;
5293  }
5294
5295  ExprValueKind VK = VK_RValue;
5296  ExprObjectKind OK = OK_Ordinary;
5297  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5298  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5299                                             VK, OK, QuestionLoc);
5300  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5301      RHS.isInvalid())
5302    return ExprError();
5303
5304  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5305                                RHS.get());
5306
5307  if (!commonExpr)
5308    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5309                                                   LHS.take(), ColonLoc,
5310                                                   RHS.take(), result, VK, OK));
5311
5312  return Owned(new (Context)
5313    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5314                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5315                              OK));
5316}
5317
5318// checkPointerTypesForAssignment - This is a very tricky routine (despite
5319// being closely modeled after the C99 spec:-). The odd characteristic of this
5320// routine is it effectively iqnores the qualifiers on the top level pointee.
5321// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5322// FIXME: add a couple examples in this comment.
5323static Sema::AssignConvertType
5324checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5325  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5326  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5327
5328  // get the "pointed to" type (ignoring qualifiers at the top level)
5329  const Type *lhptee, *rhptee;
5330  Qualifiers lhq, rhq;
5331  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5332  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5333
5334  Sema::AssignConvertType ConvTy = Sema::Compatible;
5335
5336  // C99 6.5.16.1p1: This following citation is common to constraints
5337  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5338  // qualifiers of the type *pointed to* by the right;
5339  Qualifiers lq;
5340
5341  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5342  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5343      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5344    // Ignore lifetime for further calculation.
5345    lhq.removeObjCLifetime();
5346    rhq.removeObjCLifetime();
5347  }
5348
5349  if (!lhq.compatiblyIncludes(rhq)) {
5350    // Treat address-space mismatches as fatal.  TODO: address subspaces
5351    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5352      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5353
5354    // It's okay to add or remove GC or lifetime qualifiers when converting to
5355    // and from void*.
5356    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5357                        .compatiblyIncludes(
5358                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5359             && (lhptee->isVoidType() || rhptee->isVoidType()))
5360      ; // keep old
5361
5362    // Treat lifetime mismatches as fatal.
5363    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5364      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5365
5366    // For GCC compatibility, other qualifier mismatches are treated
5367    // as still compatible in C.
5368    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5369  }
5370
5371  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5372  // incomplete type and the other is a pointer to a qualified or unqualified
5373  // version of void...
5374  if (lhptee->isVoidType()) {
5375    if (rhptee->isIncompleteOrObjectType())
5376      return ConvTy;
5377
5378    // As an extension, we allow cast to/from void* to function pointer.
5379    assert(rhptee->isFunctionType());
5380    return Sema::FunctionVoidPointer;
5381  }
5382
5383  if (rhptee->isVoidType()) {
5384    if (lhptee->isIncompleteOrObjectType())
5385      return ConvTy;
5386
5387    // As an extension, we allow cast to/from void* to function pointer.
5388    assert(lhptee->isFunctionType());
5389    return Sema::FunctionVoidPointer;
5390  }
5391
5392  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5393  // unqualified versions of compatible types, ...
5394  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5395  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5396    // Check if the pointee types are compatible ignoring the sign.
5397    // We explicitly check for char so that we catch "char" vs
5398    // "unsigned char" on systems where "char" is unsigned.
5399    if (lhptee->isCharType())
5400      ltrans = S.Context.UnsignedCharTy;
5401    else if (lhptee->hasSignedIntegerRepresentation())
5402      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5403
5404    if (rhptee->isCharType())
5405      rtrans = S.Context.UnsignedCharTy;
5406    else if (rhptee->hasSignedIntegerRepresentation())
5407      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5408
5409    if (ltrans == rtrans) {
5410      // Types are compatible ignoring the sign. Qualifier incompatibility
5411      // takes priority over sign incompatibility because the sign
5412      // warning can be disabled.
5413      if (ConvTy != Sema::Compatible)
5414        return ConvTy;
5415
5416      return Sema::IncompatiblePointerSign;
5417    }
5418
5419    // If we are a multi-level pointer, it's possible that our issue is simply
5420    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5421    // the eventual target type is the same and the pointers have the same
5422    // level of indirection, this must be the issue.
5423    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5424      do {
5425        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5426        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5427      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5428
5429      if (lhptee == rhptee)
5430        return Sema::IncompatibleNestedPointerQualifiers;
5431    }
5432
5433    // General pointer incompatibility takes priority over qualifiers.
5434    return Sema::IncompatiblePointer;
5435  }
5436  if (!S.getLangOpts().CPlusPlus &&
5437      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5438    return Sema::IncompatiblePointer;
5439  return ConvTy;
5440}
5441
5442/// checkBlockPointerTypesForAssignment - This routine determines whether two
5443/// block pointer types are compatible or whether a block and normal pointer
5444/// are compatible. It is more restrict than comparing two function pointer
5445// types.
5446static Sema::AssignConvertType
5447checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5448                                    QualType RHSType) {
5449  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5450  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5451
5452  QualType lhptee, rhptee;
5453
5454  // get the "pointed to" type (ignoring qualifiers at the top level)
5455  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5456  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5457
5458  // In C++, the types have to match exactly.
5459  if (S.getLangOpts().CPlusPlus)
5460    return Sema::IncompatibleBlockPointer;
5461
5462  Sema::AssignConvertType ConvTy = Sema::Compatible;
5463
5464  // For blocks we enforce that qualifiers are identical.
5465  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5466    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5467
5468  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5469    return Sema::IncompatibleBlockPointer;
5470
5471  return ConvTy;
5472}
5473
5474/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5475/// for assignment compatibility.
5476static Sema::AssignConvertType
5477checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5478                                   QualType RHSType) {
5479  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5480  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5481
5482  if (LHSType->isObjCBuiltinType()) {
5483    // Class is not compatible with ObjC object pointers.
5484    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5485        !RHSType->isObjCQualifiedClassType())
5486      return Sema::IncompatiblePointer;
5487    return Sema::Compatible;
5488  }
5489  if (RHSType->isObjCBuiltinType()) {
5490    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5491        !LHSType->isObjCQualifiedClassType())
5492      return Sema::IncompatiblePointer;
5493    return Sema::Compatible;
5494  }
5495  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5496  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5497
5498  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5499      // make an exception for id<P>
5500      !LHSType->isObjCQualifiedIdType())
5501    return Sema::CompatiblePointerDiscardsQualifiers;
5502
5503  if (S.Context.typesAreCompatible(LHSType, RHSType))
5504    return Sema::Compatible;
5505  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5506    return Sema::IncompatibleObjCQualifiedId;
5507  return Sema::IncompatiblePointer;
5508}
5509
5510Sema::AssignConvertType
5511Sema::CheckAssignmentConstraints(SourceLocation Loc,
5512                                 QualType LHSType, QualType RHSType) {
5513  // Fake up an opaque expression.  We don't actually care about what
5514  // cast operations are required, so if CheckAssignmentConstraints
5515  // adds casts to this they'll be wasted, but fortunately that doesn't
5516  // usually happen on valid code.
5517  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5518  ExprResult RHSPtr = &RHSExpr;
5519  CastKind K = CK_Invalid;
5520
5521  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5522}
5523
5524/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5525/// has code to accommodate several GCC extensions when type checking
5526/// pointers. Here are some objectionable examples that GCC considers warnings:
5527///
5528///  int a, *pint;
5529///  short *pshort;
5530///  struct foo *pfoo;
5531///
5532///  pint = pshort; // warning: assignment from incompatible pointer type
5533///  a = pint; // warning: assignment makes integer from pointer without a cast
5534///  pint = a; // warning: assignment makes pointer from integer without a cast
5535///  pint = pfoo; // warning: assignment from incompatible pointer type
5536///
5537/// As a result, the code for dealing with pointers is more complex than the
5538/// C99 spec dictates.
5539///
5540/// Sets 'Kind' for any result kind except Incompatible.
5541Sema::AssignConvertType
5542Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5543                                 CastKind &Kind) {
5544  QualType RHSType = RHS.get()->getType();
5545  QualType OrigLHSType = LHSType;
5546
5547  // Get canonical types.  We're not formatting these types, just comparing
5548  // them.
5549  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5550  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5551
5552
5553  // Common case: no conversion required.
5554  if (LHSType == RHSType) {
5555    Kind = CK_NoOp;
5556    return Compatible;
5557  }
5558
5559  // If we have an atomic type, try a non-atomic assignment, then just add an
5560  // atomic qualification step.
5561  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5562    Sema::AssignConvertType result =
5563      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
5564    if (result != Compatible)
5565      return result;
5566    if (Kind != CK_NoOp)
5567      RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
5568    Kind = CK_NonAtomicToAtomic;
5569    return Compatible;
5570  }
5571
5572  // If the left-hand side is a reference type, then we are in a
5573  // (rare!) case where we've allowed the use of references in C,
5574  // e.g., as a parameter type in a built-in function. In this case,
5575  // just make sure that the type referenced is compatible with the
5576  // right-hand side type. The caller is responsible for adjusting
5577  // LHSType so that the resulting expression does not have reference
5578  // type.
5579  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5580    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5581      Kind = CK_LValueBitCast;
5582      return Compatible;
5583    }
5584    return Incompatible;
5585  }
5586
5587  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5588  // to the same ExtVector type.
5589  if (LHSType->isExtVectorType()) {
5590    if (RHSType->isExtVectorType())
5591      return Incompatible;
5592    if (RHSType->isArithmeticType()) {
5593      // CK_VectorSplat does T -> vector T, so first cast to the
5594      // element type.
5595      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5596      if (elType != RHSType) {
5597        Kind = PrepareScalarCast(RHS, elType);
5598        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5599      }
5600      Kind = CK_VectorSplat;
5601      return Compatible;
5602    }
5603  }
5604
5605  // Conversions to or from vector type.
5606  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5607    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5608      // Allow assignments of an AltiVec vector type to an equivalent GCC
5609      // vector type and vice versa
5610      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5611        Kind = CK_BitCast;
5612        return Compatible;
5613      }
5614
5615      // If we are allowing lax vector conversions, and LHS and RHS are both
5616      // vectors, the total size only needs to be the same. This is a bitcast;
5617      // no bits are changed but the result type is different.
5618      if (getLangOpts().LaxVectorConversions &&
5619          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5620        Kind = CK_BitCast;
5621        return IncompatibleVectors;
5622      }
5623    }
5624    return Incompatible;
5625  }
5626
5627  // Arithmetic conversions.
5628  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5629      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5630    Kind = PrepareScalarCast(RHS, LHSType);
5631    return Compatible;
5632  }
5633
5634  // Conversions to normal pointers.
5635  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5636    // U* -> T*
5637    if (isa<PointerType>(RHSType)) {
5638      Kind = CK_BitCast;
5639      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5640    }
5641
5642    // int -> T*
5643    if (RHSType->isIntegerType()) {
5644      Kind = CK_IntegralToPointer; // FIXME: null?
5645      return IntToPointer;
5646    }
5647
5648    // C pointers are not compatible with ObjC object pointers,
5649    // with two exceptions:
5650    if (isa<ObjCObjectPointerType>(RHSType)) {
5651      //  - conversions to void*
5652      if (LHSPointer->getPointeeType()->isVoidType()) {
5653        Kind = CK_BitCast;
5654        return Compatible;
5655      }
5656
5657      //  - conversions from 'Class' to the redefinition type
5658      if (RHSType->isObjCClassType() &&
5659          Context.hasSameType(LHSType,
5660                              Context.getObjCClassRedefinitionType())) {
5661        Kind = CK_BitCast;
5662        return Compatible;
5663      }
5664
5665      Kind = CK_BitCast;
5666      return IncompatiblePointer;
5667    }
5668
5669    // U^ -> void*
5670    if (RHSType->getAs<BlockPointerType>()) {
5671      if (LHSPointer->getPointeeType()->isVoidType()) {
5672        Kind = CK_BitCast;
5673        return Compatible;
5674      }
5675    }
5676
5677    return Incompatible;
5678  }
5679
5680  // Conversions to block pointers.
5681  if (isa<BlockPointerType>(LHSType)) {
5682    // U^ -> T^
5683    if (RHSType->isBlockPointerType()) {
5684      Kind = CK_BitCast;
5685      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5686    }
5687
5688    // int or null -> T^
5689    if (RHSType->isIntegerType()) {
5690      Kind = CK_IntegralToPointer; // FIXME: null
5691      return IntToBlockPointer;
5692    }
5693
5694    // id -> T^
5695    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5696      Kind = CK_AnyPointerToBlockPointerCast;
5697      return Compatible;
5698    }
5699
5700    // void* -> T^
5701    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5702      if (RHSPT->getPointeeType()->isVoidType()) {
5703        Kind = CK_AnyPointerToBlockPointerCast;
5704        return Compatible;
5705      }
5706
5707    return Incompatible;
5708  }
5709
5710  // Conversions to Objective-C pointers.
5711  if (isa<ObjCObjectPointerType>(LHSType)) {
5712    // A* -> B*
5713    if (RHSType->isObjCObjectPointerType()) {
5714      Kind = CK_BitCast;
5715      Sema::AssignConvertType result =
5716        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5717      if (getLangOpts().ObjCAutoRefCount &&
5718          result == Compatible &&
5719          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5720        result = IncompatibleObjCWeakRef;
5721      return result;
5722    }
5723
5724    // int or null -> A*
5725    if (RHSType->isIntegerType()) {
5726      Kind = CK_IntegralToPointer; // FIXME: null
5727      return IntToPointer;
5728    }
5729
5730    // In general, C pointers are not compatible with ObjC object pointers,
5731    // with two exceptions:
5732    if (isa<PointerType>(RHSType)) {
5733      Kind = CK_CPointerToObjCPointerCast;
5734
5735      //  - conversions from 'void*'
5736      if (RHSType->isVoidPointerType()) {
5737        return Compatible;
5738      }
5739
5740      //  - conversions to 'Class' from its redefinition type
5741      if (LHSType->isObjCClassType() &&
5742          Context.hasSameType(RHSType,
5743                              Context.getObjCClassRedefinitionType())) {
5744        return Compatible;
5745      }
5746
5747      return IncompatiblePointer;
5748    }
5749
5750    // T^ -> A*
5751    if (RHSType->isBlockPointerType()) {
5752      maybeExtendBlockObject(*this, RHS);
5753      Kind = CK_BlockPointerToObjCPointerCast;
5754      return Compatible;
5755    }
5756
5757    return Incompatible;
5758  }
5759
5760  // Conversions from pointers that are not covered by the above.
5761  if (isa<PointerType>(RHSType)) {
5762    // T* -> _Bool
5763    if (LHSType == Context.BoolTy) {
5764      Kind = CK_PointerToBoolean;
5765      return Compatible;
5766    }
5767
5768    // T* -> int
5769    if (LHSType->isIntegerType()) {
5770      Kind = CK_PointerToIntegral;
5771      return PointerToInt;
5772    }
5773
5774    return Incompatible;
5775  }
5776
5777  // Conversions from Objective-C pointers that are not covered by the above.
5778  if (isa<ObjCObjectPointerType>(RHSType)) {
5779    // T* -> _Bool
5780    if (LHSType == Context.BoolTy) {
5781      Kind = CK_PointerToBoolean;
5782      return Compatible;
5783    }
5784
5785    // T* -> int
5786    if (LHSType->isIntegerType()) {
5787      Kind = CK_PointerToIntegral;
5788      return PointerToInt;
5789    }
5790
5791    return Incompatible;
5792  }
5793
5794  // struct A -> struct B
5795  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5796    if (Context.typesAreCompatible(LHSType, RHSType)) {
5797      Kind = CK_NoOp;
5798      return Compatible;
5799    }
5800  }
5801
5802  return Incompatible;
5803}
5804
5805/// \brief Constructs a transparent union from an expression that is
5806/// used to initialize the transparent union.
5807static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5808                                      ExprResult &EResult, QualType UnionType,
5809                                      FieldDecl *Field) {
5810  // Build an initializer list that designates the appropriate member
5811  // of the transparent union.
5812  Expr *E = EResult.take();
5813  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5814                                                   &E, 1,
5815                                                   SourceLocation());
5816  Initializer->setType(UnionType);
5817  Initializer->setInitializedFieldInUnion(Field);
5818
5819  // Build a compound literal constructing a value of the transparent
5820  // union type from this initializer list.
5821  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5822  EResult = S.Owned(
5823    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5824                                VK_RValue, Initializer, false));
5825}
5826
5827Sema::AssignConvertType
5828Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5829                                               ExprResult &RHS) {
5830  QualType RHSType = RHS.get()->getType();
5831
5832  // If the ArgType is a Union type, we want to handle a potential
5833  // transparent_union GCC extension.
5834  const RecordType *UT = ArgType->getAsUnionType();
5835  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5836    return Incompatible;
5837
5838  // The field to initialize within the transparent union.
5839  RecordDecl *UD = UT->getDecl();
5840  FieldDecl *InitField = 0;
5841  // It's compatible if the expression matches any of the fields.
5842  for (RecordDecl::field_iterator it = UD->field_begin(),
5843         itend = UD->field_end();
5844       it != itend; ++it) {
5845    if (it->getType()->isPointerType()) {
5846      // If the transparent union contains a pointer type, we allow:
5847      // 1) void pointer
5848      // 2) null pointer constant
5849      if (RHSType->isPointerType())
5850        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5851          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5852          InitField = *it;
5853          break;
5854        }
5855
5856      if (RHS.get()->isNullPointerConstant(Context,
5857                                           Expr::NPC_ValueDependentIsNull)) {
5858        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5859                                CK_NullToPointer);
5860        InitField = *it;
5861        break;
5862      }
5863    }
5864
5865    CastKind Kind = CK_Invalid;
5866    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5867          == Compatible) {
5868      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5869      InitField = *it;
5870      break;
5871    }
5872  }
5873
5874  if (!InitField)
5875    return Incompatible;
5876
5877  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5878  return Compatible;
5879}
5880
5881Sema::AssignConvertType
5882Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5883                                       bool Diagnose) {
5884  if (getLangOpts().CPlusPlus) {
5885    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5886      // C++ 5.17p3: If the left operand is not of class type, the
5887      // expression is implicitly converted (C++ 4) to the
5888      // cv-unqualified type of the left operand.
5889      ExprResult Res;
5890      if (Diagnose) {
5891        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5892                                        AA_Assigning);
5893      } else {
5894        ImplicitConversionSequence ICS =
5895            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5896                                  /*SuppressUserConversions=*/false,
5897                                  /*AllowExplicit=*/false,
5898                                  /*InOverloadResolution=*/false,
5899                                  /*CStyle=*/false,
5900                                  /*AllowObjCWritebackConversion=*/false);
5901        if (ICS.isFailure())
5902          return Incompatible;
5903        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5904                                        ICS, AA_Assigning);
5905      }
5906      if (Res.isInvalid())
5907        return Incompatible;
5908      Sema::AssignConvertType result = Compatible;
5909      if (getLangOpts().ObjCAutoRefCount &&
5910          !CheckObjCARCUnavailableWeakConversion(LHSType,
5911                                                 RHS.get()->getType()))
5912        result = IncompatibleObjCWeakRef;
5913      RHS = move(Res);
5914      return result;
5915    }
5916
5917    // FIXME: Currently, we fall through and treat C++ classes like C
5918    // structures.
5919    // FIXME: We also fall through for atomics; not sure what should
5920    // happen there, though.
5921  }
5922
5923  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5924  // a null pointer constant.
5925  if ((LHSType->isPointerType() ||
5926       LHSType->isObjCObjectPointerType() ||
5927       LHSType->isBlockPointerType())
5928      && RHS.get()->isNullPointerConstant(Context,
5929                                          Expr::NPC_ValueDependentIsNull)) {
5930    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5931    return Compatible;
5932  }
5933
5934  // This check seems unnatural, however it is necessary to ensure the proper
5935  // conversion of functions/arrays. If the conversion were done for all
5936  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5937  // expressions that suppress this implicit conversion (&, sizeof).
5938  //
5939  // Suppress this for references: C++ 8.5.3p5.
5940  if (!LHSType->isReferenceType()) {
5941    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5942    if (RHS.isInvalid())
5943      return Incompatible;
5944  }
5945
5946  CastKind Kind = CK_Invalid;
5947  Sema::AssignConvertType result =
5948    CheckAssignmentConstraints(LHSType, RHS, Kind);
5949
5950  // C99 6.5.16.1p2: The value of the right operand is converted to the
5951  // type of the assignment expression.
5952  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5953  // so that we can use references in built-in functions even in C.
5954  // The getNonReferenceType() call makes sure that the resulting expression
5955  // does not have reference type.
5956  if (result != Incompatible && RHS.get()->getType() != LHSType)
5957    RHS = ImpCastExprToType(RHS.take(),
5958                            LHSType.getNonLValueExprType(Context), Kind);
5959  return result;
5960}
5961
5962QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5963                               ExprResult &RHS) {
5964  Diag(Loc, diag::err_typecheck_invalid_operands)
5965    << LHS.get()->getType() << RHS.get()->getType()
5966    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5967  return QualType();
5968}
5969
5970QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5971                                   SourceLocation Loc, bool IsCompAssign) {
5972  if (!IsCompAssign) {
5973    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5974    if (LHS.isInvalid())
5975      return QualType();
5976  }
5977  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5978  if (RHS.isInvalid())
5979    return QualType();
5980
5981  // For conversion purposes, we ignore any qualifiers.
5982  // For example, "const float" and "float" are equivalent.
5983  QualType LHSType =
5984    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5985  QualType RHSType =
5986    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5987
5988  // If the vector types are identical, return.
5989  if (LHSType == RHSType)
5990    return LHSType;
5991
5992  // Handle the case of equivalent AltiVec and GCC vector types
5993  if (LHSType->isVectorType() && RHSType->isVectorType() &&
5994      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5995    if (LHSType->isExtVectorType()) {
5996      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5997      return LHSType;
5998    }
5999
6000    if (!IsCompAssign)
6001      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6002    return RHSType;
6003  }
6004
6005  if (getLangOpts().LaxVectorConversions &&
6006      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6007    // If we are allowing lax vector conversions, and LHS and RHS are both
6008    // vectors, the total size only needs to be the same. This is a
6009    // bitcast; no bits are changed but the result type is different.
6010    // FIXME: Should we really be allowing this?
6011    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6012    return LHSType;
6013  }
6014
6015  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6016  // swap back (so that we don't reverse the inputs to a subtract, for instance.
6017  bool swapped = false;
6018  if (RHSType->isExtVectorType() && !IsCompAssign) {
6019    swapped = true;
6020    std::swap(RHS, LHS);
6021    std::swap(RHSType, LHSType);
6022  }
6023
6024  // Handle the case of an ext vector and scalar.
6025  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6026    QualType EltTy = LV->getElementType();
6027    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6028      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6029      if (order > 0)
6030        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6031      if (order >= 0) {
6032        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6033        if (swapped) std::swap(RHS, LHS);
6034        return LHSType;
6035      }
6036    }
6037    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
6038        RHSType->isRealFloatingType()) {
6039      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6040      if (order > 0)
6041        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6042      if (order >= 0) {
6043        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6044        if (swapped) std::swap(RHS, LHS);
6045        return LHSType;
6046      }
6047    }
6048  }
6049
6050  // Vectors of different size or scalar and non-ext-vector are errors.
6051  if (swapped) std::swap(RHS, LHS);
6052  Diag(Loc, diag::err_typecheck_vector_not_convertable)
6053    << LHS.get()->getType() << RHS.get()->getType()
6054    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6055  return QualType();
6056}
6057
6058// checkArithmeticNull - Detect when a NULL constant is used improperly in an
6059// expression.  These are mainly cases where the null pointer is used as an
6060// integer instead of a pointer.
6061static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6062                                SourceLocation Loc, bool IsCompare) {
6063  // The canonical way to check for a GNU null is with isNullPointerConstant,
6064  // but we use a bit of a hack here for speed; this is a relatively
6065  // hot path, and isNullPointerConstant is slow.
6066  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6067  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6068
6069  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6070
6071  // Avoid analyzing cases where the result will either be invalid (and
6072  // diagnosed as such) or entirely valid and not something to warn about.
6073  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6074      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6075    return;
6076
6077  // Comparison operations would not make sense with a null pointer no matter
6078  // what the other expression is.
6079  if (!IsCompare) {
6080    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6081        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6082        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6083    return;
6084  }
6085
6086  // The rest of the operations only make sense with a null pointer
6087  // if the other expression is a pointer.
6088  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6089      NonNullType->canDecayToPointerType())
6090    return;
6091
6092  S.Diag(Loc, diag::warn_null_in_comparison_operation)
6093      << LHSNull /* LHS is NULL */ << NonNullType
6094      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6095}
6096
6097QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6098                                           SourceLocation Loc,
6099                                           bool IsCompAssign, bool IsDiv) {
6100  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6101
6102  if (LHS.get()->getType()->isVectorType() ||
6103      RHS.get()->getType()->isVectorType())
6104    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6105
6106  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6107  if (LHS.isInvalid() || RHS.isInvalid())
6108    return QualType();
6109
6110
6111  if (compType.isNull() || !compType->isArithmeticType())
6112    return InvalidOperands(Loc, LHS, RHS);
6113
6114  // Check for division by zero.
6115  if (IsDiv &&
6116      RHS.get()->isNullPointerConstant(Context,
6117                                       Expr::NPC_ValueDependentIsNotNull))
6118    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
6119                                          << RHS.get()->getSourceRange());
6120
6121  return compType;
6122}
6123
6124QualType Sema::CheckRemainderOperands(
6125  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6126  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6127
6128  if (LHS.get()->getType()->isVectorType() ||
6129      RHS.get()->getType()->isVectorType()) {
6130    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6131        RHS.get()->getType()->hasIntegerRepresentation())
6132      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6133    return InvalidOperands(Loc, LHS, RHS);
6134  }
6135
6136  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6137  if (LHS.isInvalid() || RHS.isInvalid())
6138    return QualType();
6139
6140  if (compType.isNull() || !compType->isIntegerType())
6141    return InvalidOperands(Loc, LHS, RHS);
6142
6143  // Check for remainder by zero.
6144  if (RHS.get()->isNullPointerConstant(Context,
6145                                       Expr::NPC_ValueDependentIsNotNull))
6146    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
6147                                 << RHS.get()->getSourceRange());
6148
6149  return compType;
6150}
6151
6152/// \brief Diagnose invalid arithmetic on two void pointers.
6153static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6154                                                Expr *LHSExpr, Expr *RHSExpr) {
6155  S.Diag(Loc, S.getLangOpts().CPlusPlus
6156                ? diag::err_typecheck_pointer_arith_void_type
6157                : diag::ext_gnu_void_ptr)
6158    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6159                            << RHSExpr->getSourceRange();
6160}
6161
6162/// \brief Diagnose invalid arithmetic on a void pointer.
6163static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6164                                            Expr *Pointer) {
6165  S.Diag(Loc, S.getLangOpts().CPlusPlus
6166                ? diag::err_typecheck_pointer_arith_void_type
6167                : diag::ext_gnu_void_ptr)
6168    << 0 /* one pointer */ << Pointer->getSourceRange();
6169}
6170
6171/// \brief Diagnose invalid arithmetic on two function pointers.
6172static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6173                                                    Expr *LHS, Expr *RHS) {
6174  assert(LHS->getType()->isAnyPointerType());
6175  assert(RHS->getType()->isAnyPointerType());
6176  S.Diag(Loc, S.getLangOpts().CPlusPlus
6177                ? diag::err_typecheck_pointer_arith_function_type
6178                : diag::ext_gnu_ptr_func_arith)
6179    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6180    // We only show the second type if it differs from the first.
6181    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6182                                                   RHS->getType())
6183    << RHS->getType()->getPointeeType()
6184    << LHS->getSourceRange() << RHS->getSourceRange();
6185}
6186
6187/// \brief Diagnose invalid arithmetic on a function pointer.
6188static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6189                                                Expr *Pointer) {
6190  assert(Pointer->getType()->isAnyPointerType());
6191  S.Diag(Loc, S.getLangOpts().CPlusPlus
6192                ? diag::err_typecheck_pointer_arith_function_type
6193                : diag::ext_gnu_ptr_func_arith)
6194    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6195    << 0 /* one pointer, so only one type */
6196    << Pointer->getSourceRange();
6197}
6198
6199/// \brief Emit error if Operand is incomplete pointer type
6200///
6201/// \returns True if pointer has incomplete type
6202static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6203                                                 Expr *Operand) {
6204  assert(Operand->getType()->isAnyPointerType() &&
6205         !Operand->getType()->isDependentType());
6206  QualType PointeeTy = Operand->getType()->getPointeeType();
6207  return S.RequireCompleteType(Loc, PointeeTy,
6208                               diag::err_typecheck_arithmetic_incomplete_type,
6209                               PointeeTy, Operand->getSourceRange());
6210}
6211
6212/// \brief Check the validity of an arithmetic pointer operand.
6213///
6214/// If the operand has pointer type, this code will check for pointer types
6215/// which are invalid in arithmetic operations. These will be diagnosed
6216/// appropriately, including whether or not the use is supported as an
6217/// extension.
6218///
6219/// \returns True when the operand is valid to use (even if as an extension).
6220static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6221                                            Expr *Operand) {
6222  if (!Operand->getType()->isAnyPointerType()) return true;
6223
6224  QualType PointeeTy = Operand->getType()->getPointeeType();
6225  if (PointeeTy->isVoidType()) {
6226    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6227    return !S.getLangOpts().CPlusPlus;
6228  }
6229  if (PointeeTy->isFunctionType()) {
6230    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6231    return !S.getLangOpts().CPlusPlus;
6232  }
6233
6234  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6235
6236  return true;
6237}
6238
6239/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6240/// operands.
6241///
6242/// This routine will diagnose any invalid arithmetic on pointer operands much
6243/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6244/// for emitting a single diagnostic even for operations where both LHS and RHS
6245/// are (potentially problematic) pointers.
6246///
6247/// \returns True when the operand is valid to use (even if as an extension).
6248static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6249                                                Expr *LHSExpr, Expr *RHSExpr) {
6250  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6251  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6252  if (!isLHSPointer && !isRHSPointer) return true;
6253
6254  QualType LHSPointeeTy, RHSPointeeTy;
6255  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6256  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6257
6258  // Check for arithmetic on pointers to incomplete types.
6259  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6260  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6261  if (isLHSVoidPtr || isRHSVoidPtr) {
6262    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6263    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6264    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6265
6266    return !S.getLangOpts().CPlusPlus;
6267  }
6268
6269  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6270  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6271  if (isLHSFuncPtr || isRHSFuncPtr) {
6272    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6273    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6274                                                                RHSExpr);
6275    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6276
6277    return !S.getLangOpts().CPlusPlus;
6278  }
6279
6280  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6281    return false;
6282  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6283    return false;
6284
6285  return true;
6286}
6287
6288/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6289/// literal.
6290static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6291                                  Expr *LHSExpr, Expr *RHSExpr) {
6292  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6293  Expr* IndexExpr = RHSExpr;
6294  if (!StrExpr) {
6295    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6296    IndexExpr = LHSExpr;
6297  }
6298
6299  bool IsStringPlusInt = StrExpr &&
6300      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6301  if (!IsStringPlusInt)
6302    return;
6303
6304  llvm::APSInt index;
6305  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6306    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6307    if (index.isNonNegative() &&
6308        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6309                              index.isUnsigned()))
6310      return;
6311  }
6312
6313  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6314  Self.Diag(OpLoc, diag::warn_string_plus_int)
6315      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6316
6317  // Only print a fixit for "str" + int, not for int + "str".
6318  if (IndexExpr == RHSExpr) {
6319    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6320    Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6321        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6322        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6323        << FixItHint::CreateInsertion(EndLoc, "]");
6324  } else
6325    Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6326}
6327
6328/// \brief Emit error when two pointers are incompatible.
6329static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6330                                           Expr *LHSExpr, Expr *RHSExpr) {
6331  assert(LHSExpr->getType()->isAnyPointerType());
6332  assert(RHSExpr->getType()->isAnyPointerType());
6333  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6334    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6335    << RHSExpr->getSourceRange();
6336}
6337
6338QualType Sema::CheckAdditionOperands( // C99 6.5.6
6339    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6340    QualType* CompLHSTy) {
6341  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6342
6343  if (LHS.get()->getType()->isVectorType() ||
6344      RHS.get()->getType()->isVectorType()) {
6345    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6346    if (CompLHSTy) *CompLHSTy = compType;
6347    return compType;
6348  }
6349
6350  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6351  if (LHS.isInvalid() || RHS.isInvalid())
6352    return QualType();
6353
6354  // Diagnose "string literal" '+' int.
6355  if (Opc == BO_Add)
6356    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6357
6358  // handle the common case first (both operands are arithmetic).
6359  if (!compType.isNull() && compType->isArithmeticType()) {
6360    if (CompLHSTy) *CompLHSTy = compType;
6361    return compType;
6362  }
6363
6364  // Type-checking.  Ultimately the pointer's going to be in PExp;
6365  // note that we bias towards the LHS being the pointer.
6366  Expr *PExp = LHS.get(), *IExp = RHS.get();
6367
6368  bool isObjCPointer;
6369  if (PExp->getType()->isPointerType()) {
6370    isObjCPointer = false;
6371  } else if (PExp->getType()->isObjCObjectPointerType()) {
6372    isObjCPointer = true;
6373  } else {
6374    std::swap(PExp, IExp);
6375    if (PExp->getType()->isPointerType()) {
6376      isObjCPointer = false;
6377    } else if (PExp->getType()->isObjCObjectPointerType()) {
6378      isObjCPointer = true;
6379    } else {
6380      return InvalidOperands(Loc, LHS, RHS);
6381    }
6382  }
6383  assert(PExp->getType()->isAnyPointerType());
6384
6385  if (!IExp->getType()->isIntegerType())
6386    return InvalidOperands(Loc, LHS, RHS);
6387
6388  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6389    return QualType();
6390
6391  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
6392    return QualType();
6393
6394  // Check array bounds for pointer arithemtic
6395  CheckArrayAccess(PExp, IExp);
6396
6397  if (CompLHSTy) {
6398    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6399    if (LHSTy.isNull()) {
6400      LHSTy = LHS.get()->getType();
6401      if (LHSTy->isPromotableIntegerType())
6402        LHSTy = Context.getPromotedIntegerType(LHSTy);
6403    }
6404    *CompLHSTy = LHSTy;
6405  }
6406
6407  return PExp->getType();
6408}
6409
6410// C99 6.5.6
6411QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6412                                        SourceLocation Loc,
6413                                        QualType* CompLHSTy) {
6414  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6415
6416  if (LHS.get()->getType()->isVectorType() ||
6417      RHS.get()->getType()->isVectorType()) {
6418    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6419    if (CompLHSTy) *CompLHSTy = compType;
6420    return compType;
6421  }
6422
6423  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6424  if (LHS.isInvalid() || RHS.isInvalid())
6425    return QualType();
6426
6427  // Enforce type constraints: C99 6.5.6p3.
6428
6429  // Handle the common case first (both operands are arithmetic).
6430  if (!compType.isNull() && compType->isArithmeticType()) {
6431    if (CompLHSTy) *CompLHSTy = compType;
6432    return compType;
6433  }
6434
6435  // Either ptr - int   or   ptr - ptr.
6436  if (LHS.get()->getType()->isAnyPointerType()) {
6437    QualType lpointee = LHS.get()->getType()->getPointeeType();
6438
6439    // Diagnose bad cases where we step over interface counts.
6440    if (LHS.get()->getType()->isObjCObjectPointerType() &&
6441        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
6442      return QualType();
6443
6444    // The result type of a pointer-int computation is the pointer type.
6445    if (RHS.get()->getType()->isIntegerType()) {
6446      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6447        return QualType();
6448
6449      // Check array bounds for pointer arithemtic
6450      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6451                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6452
6453      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6454      return LHS.get()->getType();
6455    }
6456
6457    // Handle pointer-pointer subtractions.
6458    if (const PointerType *RHSPTy
6459          = RHS.get()->getType()->getAs<PointerType>()) {
6460      QualType rpointee = RHSPTy->getPointeeType();
6461
6462      if (getLangOpts().CPlusPlus) {
6463        // Pointee types must be the same: C++ [expr.add]
6464        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6465          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6466        }
6467      } else {
6468        // Pointee types must be compatible C99 6.5.6p3
6469        if (!Context.typesAreCompatible(
6470                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6471                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6472          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6473          return QualType();
6474        }
6475      }
6476
6477      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6478                                               LHS.get(), RHS.get()))
6479        return QualType();
6480
6481      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6482      return Context.getPointerDiffType();
6483    }
6484  }
6485
6486  return InvalidOperands(Loc, LHS, RHS);
6487}
6488
6489static bool isScopedEnumerationType(QualType T) {
6490  if (const EnumType *ET = dyn_cast<EnumType>(T))
6491    return ET->getDecl()->isScoped();
6492  return false;
6493}
6494
6495static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6496                                   SourceLocation Loc, unsigned Opc,
6497                                   QualType LHSType) {
6498  llvm::APSInt Right;
6499  // Check right/shifter operand
6500  if (RHS.get()->isValueDependent() ||
6501      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6502    return;
6503
6504  if (Right.isNegative()) {
6505    S.DiagRuntimeBehavior(Loc, RHS.get(),
6506                          S.PDiag(diag::warn_shift_negative)
6507                            << RHS.get()->getSourceRange());
6508    return;
6509  }
6510  llvm::APInt LeftBits(Right.getBitWidth(),
6511                       S.Context.getTypeSize(LHS.get()->getType()));
6512  if (Right.uge(LeftBits)) {
6513    S.DiagRuntimeBehavior(Loc, RHS.get(),
6514                          S.PDiag(diag::warn_shift_gt_typewidth)
6515                            << RHS.get()->getSourceRange());
6516    return;
6517  }
6518  if (Opc != BO_Shl)
6519    return;
6520
6521  // When left shifting an ICE which is signed, we can check for overflow which
6522  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6523  // integers have defined behavior modulo one more than the maximum value
6524  // representable in the result type, so never warn for those.
6525  llvm::APSInt Left;
6526  if (LHS.get()->isValueDependent() ||
6527      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6528      LHSType->hasUnsignedIntegerRepresentation())
6529    return;
6530  llvm::APInt ResultBits =
6531      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6532  if (LeftBits.uge(ResultBits))
6533    return;
6534  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6535  Result = Result.shl(Right);
6536
6537  // Print the bit representation of the signed integer as an unsigned
6538  // hexadecimal number.
6539  SmallString<40> HexResult;
6540  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6541
6542  // If we are only missing a sign bit, this is less likely to result in actual
6543  // bugs -- if the result is cast back to an unsigned type, it will have the
6544  // expected value. Thus we place this behind a different warning that can be
6545  // turned off separately if needed.
6546  if (LeftBits == ResultBits - 1) {
6547    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6548        << HexResult.str() << LHSType
6549        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6550    return;
6551  }
6552
6553  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6554    << HexResult.str() << Result.getMinSignedBits() << LHSType
6555    << Left.getBitWidth() << LHS.get()->getSourceRange()
6556    << RHS.get()->getSourceRange();
6557}
6558
6559// C99 6.5.7
6560QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6561                                  SourceLocation Loc, unsigned Opc,
6562                                  bool IsCompAssign) {
6563  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6564
6565  // C99 6.5.7p2: Each of the operands shall have integer type.
6566  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6567      !RHS.get()->getType()->hasIntegerRepresentation())
6568    return InvalidOperands(Loc, LHS, RHS);
6569
6570  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6571  // hasIntegerRepresentation() above instead of this.
6572  if (isScopedEnumerationType(LHS.get()->getType()) ||
6573      isScopedEnumerationType(RHS.get()->getType())) {
6574    return InvalidOperands(Loc, LHS, RHS);
6575  }
6576
6577  // Vector shifts promote their scalar inputs to vector type.
6578  if (LHS.get()->getType()->isVectorType() ||
6579      RHS.get()->getType()->isVectorType())
6580    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6581
6582  // Shifts don't perform usual arithmetic conversions, they just do integer
6583  // promotions on each operand. C99 6.5.7p3
6584
6585  // For the LHS, do usual unary conversions, but then reset them away
6586  // if this is a compound assignment.
6587  ExprResult OldLHS = LHS;
6588  LHS = UsualUnaryConversions(LHS.take());
6589  if (LHS.isInvalid())
6590    return QualType();
6591  QualType LHSType = LHS.get()->getType();
6592  if (IsCompAssign) LHS = OldLHS;
6593
6594  // The RHS is simpler.
6595  RHS = UsualUnaryConversions(RHS.take());
6596  if (RHS.isInvalid())
6597    return QualType();
6598
6599  // Sanity-check shift operands
6600  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6601
6602  // "The type of the result is that of the promoted left operand."
6603  return LHSType;
6604}
6605
6606static bool IsWithinTemplateSpecialization(Decl *D) {
6607  if (DeclContext *DC = D->getDeclContext()) {
6608    if (isa<ClassTemplateSpecializationDecl>(DC))
6609      return true;
6610    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6611      return FD->isFunctionTemplateSpecialization();
6612  }
6613  return false;
6614}
6615
6616/// If two different enums are compared, raise a warning.
6617static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6618                                ExprResult &RHS) {
6619  QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6620  QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6621
6622  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6623  if (!LHSEnumType)
6624    return;
6625  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6626  if (!RHSEnumType)
6627    return;
6628
6629  // Ignore anonymous enums.
6630  if (!LHSEnumType->getDecl()->getIdentifier())
6631    return;
6632  if (!RHSEnumType->getDecl()->getIdentifier())
6633    return;
6634
6635  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6636    return;
6637
6638  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6639      << LHSStrippedType << RHSStrippedType
6640      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6641}
6642
6643/// \brief Diagnose bad pointer comparisons.
6644static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6645                                              ExprResult &LHS, ExprResult &RHS,
6646                                              bool IsError) {
6647  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6648                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6649    << LHS.get()->getType() << RHS.get()->getType()
6650    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6651}
6652
6653/// \brief Returns false if the pointers are converted to a composite type,
6654/// true otherwise.
6655static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6656                                           ExprResult &LHS, ExprResult &RHS) {
6657  // C++ [expr.rel]p2:
6658  //   [...] Pointer conversions (4.10) and qualification
6659  //   conversions (4.4) are performed on pointer operands (or on
6660  //   a pointer operand and a null pointer constant) to bring
6661  //   them to their composite pointer type. [...]
6662  //
6663  // C++ [expr.eq]p1 uses the same notion for (in)equality
6664  // comparisons of pointers.
6665
6666  // C++ [expr.eq]p2:
6667  //   In addition, pointers to members can be compared, or a pointer to
6668  //   member and a null pointer constant. Pointer to member conversions
6669  //   (4.11) and qualification conversions (4.4) are performed to bring
6670  //   them to a common type. If one operand is a null pointer constant,
6671  //   the common type is the type of the other operand. Otherwise, the
6672  //   common type is a pointer to member type similar (4.4) to the type
6673  //   of one of the operands, with a cv-qualification signature (4.4)
6674  //   that is the union of the cv-qualification signatures of the operand
6675  //   types.
6676
6677  QualType LHSType = LHS.get()->getType();
6678  QualType RHSType = RHS.get()->getType();
6679  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6680         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6681
6682  bool NonStandardCompositeType = false;
6683  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6684  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6685  if (T.isNull()) {
6686    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6687    return true;
6688  }
6689
6690  if (NonStandardCompositeType)
6691    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6692      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6693      << RHS.get()->getSourceRange();
6694
6695  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6696  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6697  return false;
6698}
6699
6700static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6701                                                    ExprResult &LHS,
6702                                                    ExprResult &RHS,
6703                                                    bool IsError) {
6704  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6705                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6706    << LHS.get()->getType() << RHS.get()->getType()
6707    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6708}
6709
6710static bool isObjCObjectLiteral(ExprResult &E) {
6711  switch (E.get()->getStmtClass()) {
6712  case Stmt::ObjCArrayLiteralClass:
6713  case Stmt::ObjCDictionaryLiteralClass:
6714  case Stmt::ObjCStringLiteralClass:
6715  case Stmt::ObjCBoxedExprClass:
6716    return true;
6717  default:
6718    // Note that ObjCBoolLiteral is NOT an object literal!
6719    return false;
6720  }
6721}
6722
6723static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
6724  // Get the LHS object's interface type.
6725  QualType Type = LHS->getType();
6726  QualType InterfaceType;
6727  if (const ObjCObjectPointerType *PTy = Type->getAs<ObjCObjectPointerType>()) {
6728    InterfaceType = PTy->getPointeeType();
6729    if (const ObjCObjectType *iQFaceTy =
6730        InterfaceType->getAsObjCQualifiedInterfaceType())
6731      InterfaceType = iQFaceTy->getBaseType();
6732  } else {
6733    // If this is not actually an Objective-C object, bail out.
6734    return false;
6735  }
6736
6737  // If the RHS isn't an Objective-C object, bail out.
6738  if (!RHS->getType()->isObjCObjectPointerType())
6739    return false;
6740
6741  // Try to find the -isEqual: method.
6742  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
6743  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
6744                                                      InterfaceType,
6745                                                      /*instance=*/true);
6746  if (!Method) {
6747    if (Type->isObjCIdType()) {
6748      // For 'id', just check the global pool.
6749      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
6750                                                  /*receiverId=*/true,
6751                                                  /*warn=*/false);
6752    } else {
6753      // Check protocols.
6754      Method = S.LookupMethodInQualifiedType(IsEqualSel,
6755                                             cast<ObjCObjectPointerType>(Type),
6756                                             /*instance=*/true);
6757    }
6758  }
6759
6760  if (!Method)
6761    return false;
6762
6763  QualType T = Method->param_begin()[0]->getType();
6764  if (!T->isObjCObjectPointerType())
6765    return false;
6766
6767  QualType R = Method->getResultType();
6768  if (!R->isScalarType())
6769    return false;
6770
6771  return true;
6772}
6773
6774static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
6775                                          ExprResult &LHS, ExprResult &RHS,
6776                                          BinaryOperator::Opcode Opc){
6777  Expr *Literal;
6778  Expr *Other;
6779  if (isObjCObjectLiteral(LHS)) {
6780    Literal = LHS.get();
6781    Other = RHS.get();
6782  } else {
6783    Literal = RHS.get();
6784    Other = LHS.get();
6785  }
6786
6787  // Don't warn on comparisons against nil.
6788  Other = Other->IgnoreParenCasts();
6789  if (Other->isNullPointerConstant(S.getASTContext(),
6790                                   Expr::NPC_ValueDependentIsNotNull))
6791    return;
6792
6793  // This should be kept in sync with warn_objc_literal_comparison.
6794  // LK_String should always be last, since it has its own warning flag.
6795  enum {
6796    LK_Array,
6797    LK_Dictionary,
6798    LK_Numeric,
6799    LK_Boxed,
6800    LK_String
6801  } LiteralKind;
6802
6803  switch (Literal->getStmtClass()) {
6804  case Stmt::ObjCStringLiteralClass:
6805    // "string literal"
6806    LiteralKind = LK_String;
6807    break;
6808  case Stmt::ObjCArrayLiteralClass:
6809    // "array literal"
6810    LiteralKind = LK_Array;
6811    break;
6812  case Stmt::ObjCDictionaryLiteralClass:
6813    // "dictionary literal"
6814    LiteralKind = LK_Dictionary;
6815    break;
6816  case Stmt::ObjCBoxedExprClass: {
6817    Expr *Inner = cast<ObjCBoxedExpr>(Literal)->getSubExpr();
6818    switch (Inner->getStmtClass()) {
6819    case Stmt::IntegerLiteralClass:
6820    case Stmt::FloatingLiteralClass:
6821    case Stmt::CharacterLiteralClass:
6822    case Stmt::ObjCBoolLiteralExprClass:
6823    case Stmt::CXXBoolLiteralExprClass:
6824      // "numeric literal"
6825      LiteralKind = LK_Numeric;
6826      break;
6827    case Stmt::ImplicitCastExprClass: {
6828      CastKind CK = cast<CastExpr>(Inner)->getCastKind();
6829      // Boolean literals can be represented by implicit casts.
6830      if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) {
6831        LiteralKind = LK_Numeric;
6832        break;
6833      }
6834      // FALLTHROUGH
6835    }
6836    default:
6837      // "boxed expression"
6838      LiteralKind = LK_Boxed;
6839      break;
6840    }
6841    break;
6842  }
6843  default:
6844    llvm_unreachable("Unknown Objective-C object literal kind");
6845  }
6846
6847  if (LiteralKind == LK_String)
6848    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
6849      << Literal->getSourceRange();
6850  else
6851    S.Diag(Loc, diag::warn_objc_literal_comparison)
6852      << LiteralKind << Literal->getSourceRange();
6853
6854  if (BinaryOperator::isEqualityOp(Opc) &&
6855      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
6856    SourceLocation Start = LHS.get()->getLocStart();
6857    SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
6858    SourceRange OpRange(Loc, S.PP.getLocForEndOfToken(Loc));
6859
6860    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
6861      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
6862      << FixItHint::CreateReplacement(OpRange, "isEqual:")
6863      << FixItHint::CreateInsertion(End, "]");
6864  }
6865}
6866
6867// C99 6.5.8, C++ [expr.rel]
6868QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6869                                    SourceLocation Loc, unsigned OpaqueOpc,
6870                                    bool IsRelational) {
6871  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6872
6873  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6874
6875  // Handle vector comparisons separately.
6876  if (LHS.get()->getType()->isVectorType() ||
6877      RHS.get()->getType()->isVectorType())
6878    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6879
6880  QualType LHSType = LHS.get()->getType();
6881  QualType RHSType = RHS.get()->getType();
6882
6883  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6884  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6885
6886  checkEnumComparison(*this, Loc, LHS, RHS);
6887
6888  if (!LHSType->hasFloatingRepresentation() &&
6889      !(LHSType->isBlockPointerType() && IsRelational) &&
6890      !LHS.get()->getLocStart().isMacroID() &&
6891      !RHS.get()->getLocStart().isMacroID()) {
6892    // For non-floating point types, check for self-comparisons of the form
6893    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6894    // often indicate logic errors in the program.
6895    //
6896    // NOTE: Don't warn about comparison expressions resulting from macro
6897    // expansion. Also don't warn about comparisons which are only self
6898    // comparisons within a template specialization. The warnings should catch
6899    // obvious cases in the definition of the template anyways. The idea is to
6900    // warn when the typed comparison operator will always evaluate to the same
6901    // result.
6902    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6903      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6904        if (DRL->getDecl() == DRR->getDecl() &&
6905            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6906          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6907                              << 0 // self-
6908                              << (Opc == BO_EQ
6909                                  || Opc == BO_LE
6910                                  || Opc == BO_GE));
6911        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6912                   !DRL->getDecl()->getType()->isReferenceType() &&
6913                   !DRR->getDecl()->getType()->isReferenceType()) {
6914            // what is it always going to eval to?
6915            char always_evals_to;
6916            switch(Opc) {
6917            case BO_EQ: // e.g. array1 == array2
6918              always_evals_to = 0; // false
6919              break;
6920            case BO_NE: // e.g. array1 != array2
6921              always_evals_to = 1; // true
6922              break;
6923            default:
6924              // best we can say is 'a constant'
6925              always_evals_to = 2; // e.g. array1 <= array2
6926              break;
6927            }
6928            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6929                                << 1 // array
6930                                << always_evals_to);
6931        }
6932      }
6933    }
6934
6935    if (isa<CastExpr>(LHSStripped))
6936      LHSStripped = LHSStripped->IgnoreParenCasts();
6937    if (isa<CastExpr>(RHSStripped))
6938      RHSStripped = RHSStripped->IgnoreParenCasts();
6939
6940    // Warn about comparisons against a string constant (unless the other
6941    // operand is null), the user probably wants strcmp.
6942    Expr *literalString = 0;
6943    Expr *literalStringStripped = 0;
6944    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6945        !RHSStripped->isNullPointerConstant(Context,
6946                                            Expr::NPC_ValueDependentIsNull)) {
6947      literalString = LHS.get();
6948      literalStringStripped = LHSStripped;
6949    } else if ((isa<StringLiteral>(RHSStripped) ||
6950                isa<ObjCEncodeExpr>(RHSStripped)) &&
6951               !LHSStripped->isNullPointerConstant(Context,
6952                                            Expr::NPC_ValueDependentIsNull)) {
6953      literalString = RHS.get();
6954      literalStringStripped = RHSStripped;
6955    }
6956
6957    if (literalString) {
6958      std::string resultComparison;
6959      switch (Opc) {
6960      case BO_LT: resultComparison = ") < 0"; break;
6961      case BO_GT: resultComparison = ") > 0"; break;
6962      case BO_LE: resultComparison = ") <= 0"; break;
6963      case BO_GE: resultComparison = ") >= 0"; break;
6964      case BO_EQ: resultComparison = ") == 0"; break;
6965      case BO_NE: resultComparison = ") != 0"; break;
6966      default: llvm_unreachable("Invalid comparison operator");
6967      }
6968
6969      DiagRuntimeBehavior(Loc, 0,
6970        PDiag(diag::warn_stringcompare)
6971          << isa<ObjCEncodeExpr>(literalStringStripped)
6972          << literalString->getSourceRange());
6973    }
6974  }
6975
6976  // C99 6.5.8p3 / C99 6.5.9p4
6977  if (LHS.get()->getType()->isArithmeticType() &&
6978      RHS.get()->getType()->isArithmeticType()) {
6979    UsualArithmeticConversions(LHS, RHS);
6980    if (LHS.isInvalid() || RHS.isInvalid())
6981      return QualType();
6982  }
6983  else {
6984    LHS = UsualUnaryConversions(LHS.take());
6985    if (LHS.isInvalid())
6986      return QualType();
6987
6988    RHS = UsualUnaryConversions(RHS.take());
6989    if (RHS.isInvalid())
6990      return QualType();
6991  }
6992
6993  LHSType = LHS.get()->getType();
6994  RHSType = RHS.get()->getType();
6995
6996  // The result of comparisons is 'bool' in C++, 'int' in C.
6997  QualType ResultTy = Context.getLogicalOperationType();
6998
6999  if (IsRelational) {
7000    if (LHSType->isRealType() && RHSType->isRealType())
7001      return ResultTy;
7002  } else {
7003    // Check for comparisons of floating point operands using != and ==.
7004    if (LHSType->hasFloatingRepresentation())
7005      CheckFloatComparison(Loc, LHS.get(), RHS.get());
7006
7007    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7008      return ResultTy;
7009  }
7010
7011  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7012                                              Expr::NPC_ValueDependentIsNull);
7013  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7014                                              Expr::NPC_ValueDependentIsNull);
7015
7016  // All of the following pointer-related warnings are GCC extensions, except
7017  // when handling null pointer constants.
7018  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7019    QualType LCanPointeeTy =
7020      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7021    QualType RCanPointeeTy =
7022      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7023
7024    if (getLangOpts().CPlusPlus) {
7025      if (LCanPointeeTy == RCanPointeeTy)
7026        return ResultTy;
7027      if (!IsRelational &&
7028          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7029        // Valid unless comparison between non-null pointer and function pointer
7030        // This is a gcc extension compatibility comparison.
7031        // In a SFINAE context, we treat this as a hard error to maintain
7032        // conformance with the C++ standard.
7033        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7034            && !LHSIsNull && !RHSIsNull) {
7035          diagnoseFunctionPointerToVoidComparison(
7036              *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
7037
7038          if (isSFINAEContext())
7039            return QualType();
7040
7041          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7042          return ResultTy;
7043        }
7044      }
7045
7046      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7047        return QualType();
7048      else
7049        return ResultTy;
7050    }
7051    // C99 6.5.9p2 and C99 6.5.8p2
7052    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7053                                   RCanPointeeTy.getUnqualifiedType())) {
7054      // Valid unless a relational comparison of function pointers
7055      if (IsRelational && LCanPointeeTy->isFunctionType()) {
7056        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7057          << LHSType << RHSType << LHS.get()->getSourceRange()
7058          << RHS.get()->getSourceRange();
7059      }
7060    } else if (!IsRelational &&
7061               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7062      // Valid unless comparison between non-null pointer and function pointer
7063      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7064          && !LHSIsNull && !RHSIsNull)
7065        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7066                                                /*isError*/false);
7067    } else {
7068      // Invalid
7069      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7070    }
7071    if (LCanPointeeTy != RCanPointeeTy) {
7072      if (LHSIsNull && !RHSIsNull)
7073        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7074      else
7075        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7076    }
7077    return ResultTy;
7078  }
7079
7080  if (getLangOpts().CPlusPlus) {
7081    // Comparison of nullptr_t with itself.
7082    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7083      return ResultTy;
7084
7085    // Comparison of pointers with null pointer constants and equality
7086    // comparisons of member pointers to null pointer constants.
7087    if (RHSIsNull &&
7088        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7089         (!IsRelational &&
7090          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7091      RHS = ImpCastExprToType(RHS.take(), LHSType,
7092                        LHSType->isMemberPointerType()
7093                          ? CK_NullToMemberPointer
7094                          : CK_NullToPointer);
7095      return ResultTy;
7096    }
7097    if (LHSIsNull &&
7098        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7099         (!IsRelational &&
7100          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7101      LHS = ImpCastExprToType(LHS.take(), RHSType,
7102                        RHSType->isMemberPointerType()
7103                          ? CK_NullToMemberPointer
7104                          : CK_NullToPointer);
7105      return ResultTy;
7106    }
7107
7108    // Comparison of member pointers.
7109    if (!IsRelational &&
7110        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7111      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7112        return QualType();
7113      else
7114        return ResultTy;
7115    }
7116
7117    // Handle scoped enumeration types specifically, since they don't promote
7118    // to integers.
7119    if (LHS.get()->getType()->isEnumeralType() &&
7120        Context.hasSameUnqualifiedType(LHS.get()->getType(),
7121                                       RHS.get()->getType()))
7122      return ResultTy;
7123  }
7124
7125  // Handle block pointer types.
7126  if (!IsRelational && LHSType->isBlockPointerType() &&
7127      RHSType->isBlockPointerType()) {
7128    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7129    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7130
7131    if (!LHSIsNull && !RHSIsNull &&
7132        !Context.typesAreCompatible(lpointee, rpointee)) {
7133      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7134        << LHSType << RHSType << LHS.get()->getSourceRange()
7135        << RHS.get()->getSourceRange();
7136    }
7137    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7138    return ResultTy;
7139  }
7140
7141  // Allow block pointers to be compared with null pointer constants.
7142  if (!IsRelational
7143      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7144          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7145    if (!LHSIsNull && !RHSIsNull) {
7146      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7147             ->getPointeeType()->isVoidType())
7148            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7149                ->getPointeeType()->isVoidType())))
7150        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7151          << LHSType << RHSType << LHS.get()->getSourceRange()
7152          << RHS.get()->getSourceRange();
7153    }
7154    if (LHSIsNull && !RHSIsNull)
7155      LHS = ImpCastExprToType(LHS.take(), RHSType,
7156                              RHSType->isPointerType() ? CK_BitCast
7157                                : CK_AnyPointerToBlockPointerCast);
7158    else
7159      RHS = ImpCastExprToType(RHS.take(), LHSType,
7160                              LHSType->isPointerType() ? CK_BitCast
7161                                : CK_AnyPointerToBlockPointerCast);
7162    return ResultTy;
7163  }
7164
7165  if (LHSType->isObjCObjectPointerType() ||
7166      RHSType->isObjCObjectPointerType()) {
7167    const PointerType *LPT = LHSType->getAs<PointerType>();
7168    const PointerType *RPT = RHSType->getAs<PointerType>();
7169    if (LPT || RPT) {
7170      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7171      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7172
7173      if (!LPtrToVoid && !RPtrToVoid &&
7174          !Context.typesAreCompatible(LHSType, RHSType)) {
7175        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7176                                          /*isError*/false);
7177      }
7178      if (LHSIsNull && !RHSIsNull)
7179        LHS = ImpCastExprToType(LHS.take(), RHSType,
7180                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7181      else
7182        RHS = ImpCastExprToType(RHS.take(), LHSType,
7183                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7184      return ResultTy;
7185    }
7186    if (LHSType->isObjCObjectPointerType() &&
7187        RHSType->isObjCObjectPointerType()) {
7188      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7189        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7190                                          /*isError*/false);
7191      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7192        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7193
7194      if (LHSIsNull && !RHSIsNull)
7195        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7196      else
7197        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7198      return ResultTy;
7199    }
7200  }
7201  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7202      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7203    unsigned DiagID = 0;
7204    bool isError = false;
7205    if ((LHSIsNull && LHSType->isIntegerType()) ||
7206        (RHSIsNull && RHSType->isIntegerType())) {
7207      if (IsRelational && !getLangOpts().CPlusPlus)
7208        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7209    } else if (IsRelational && !getLangOpts().CPlusPlus)
7210      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7211    else if (getLangOpts().CPlusPlus) {
7212      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7213      isError = true;
7214    } else
7215      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7216
7217    if (DiagID) {
7218      Diag(Loc, DiagID)
7219        << LHSType << RHSType << LHS.get()->getSourceRange()
7220        << RHS.get()->getSourceRange();
7221      if (isError)
7222        return QualType();
7223    }
7224
7225    if (LHSType->isIntegerType())
7226      LHS = ImpCastExprToType(LHS.take(), RHSType,
7227                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7228    else
7229      RHS = ImpCastExprToType(RHS.take(), LHSType,
7230                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7231    return ResultTy;
7232  }
7233
7234  // Handle block pointers.
7235  if (!IsRelational && RHSIsNull
7236      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
7237    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
7238    return ResultTy;
7239  }
7240  if (!IsRelational && LHSIsNull
7241      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
7242    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
7243    return ResultTy;
7244  }
7245
7246  return InvalidOperands(Loc, LHS, RHS);
7247}
7248
7249
7250// Return a signed type that is of identical size and number of elements.
7251// For floating point vectors, return an integer type of identical size
7252// and number of elements.
7253QualType Sema::GetSignedVectorType(QualType V) {
7254  const VectorType *VTy = V->getAs<VectorType>();
7255  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
7256  if (TypeSize == Context.getTypeSize(Context.CharTy))
7257    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
7258  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
7259    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
7260  else if (TypeSize == Context.getTypeSize(Context.IntTy))
7261    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
7262  else if (TypeSize == Context.getTypeSize(Context.LongTy))
7263    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
7264  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
7265         "Unhandled vector element size in vector compare");
7266  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
7267}
7268
7269/// CheckVectorCompareOperands - vector comparisons are a clang extension that
7270/// operates on extended vector types.  Instead of producing an IntTy result,
7271/// like a scalar comparison, a vector comparison produces a vector of integer
7272/// types.
7273QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
7274                                          SourceLocation Loc,
7275                                          bool IsRelational) {
7276  // Check to make sure we're operating on vectors of the same type and width,
7277  // Allowing one side to be a scalar of element type.
7278  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
7279  if (vType.isNull())
7280    return vType;
7281
7282  QualType LHSType = LHS.get()->getType();
7283
7284  // If AltiVec, the comparison results in a numeric type, i.e.
7285  // bool for C++, int for C
7286  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
7287    return Context.getLogicalOperationType();
7288
7289  // For non-floating point types, check for self-comparisons of the form
7290  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7291  // often indicate logic errors in the program.
7292  if (!LHSType->hasFloatingRepresentation()) {
7293    if (DeclRefExpr* DRL
7294          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7295      if (DeclRefExpr* DRR
7296            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7297        if (DRL->getDecl() == DRR->getDecl())
7298          DiagRuntimeBehavior(Loc, 0,
7299                              PDiag(diag::warn_comparison_always)
7300                                << 0 // self-
7301                                << 2 // "a constant"
7302                              );
7303  }
7304
7305  // Check for comparisons of floating point operands using != and ==.
7306  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7307    assert (RHS.get()->getType()->hasFloatingRepresentation());
7308    CheckFloatComparison(Loc, LHS.get(), RHS.get());
7309  }
7310
7311  // Return a signed type for the vector.
7312  return GetSignedVectorType(LHSType);
7313}
7314
7315QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7316                                          SourceLocation Loc) {
7317  // Ensure that either both operands are of the same vector type, or
7318  // one operand is of a vector type and the other is of its element type.
7319  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7320  if (vType.isNull() || vType->isFloatingType())
7321    return InvalidOperands(Loc, LHS, RHS);
7322
7323  return GetSignedVectorType(LHS.get()->getType());
7324}
7325
7326inline QualType Sema::CheckBitwiseOperands(
7327  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7328  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7329
7330  if (LHS.get()->getType()->isVectorType() ||
7331      RHS.get()->getType()->isVectorType()) {
7332    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7333        RHS.get()->getType()->hasIntegerRepresentation())
7334      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7335
7336    return InvalidOperands(Loc, LHS, RHS);
7337  }
7338
7339  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7340  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7341                                                 IsCompAssign);
7342  if (LHSResult.isInvalid() || RHSResult.isInvalid())
7343    return QualType();
7344  LHS = LHSResult.take();
7345  RHS = RHSResult.take();
7346
7347  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
7348    return compType;
7349  return InvalidOperands(Loc, LHS, RHS);
7350}
7351
7352inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7353  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7354
7355  // Check vector operands differently.
7356  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7357    return CheckVectorLogicalOperands(LHS, RHS, Loc);
7358
7359  // Diagnose cases where the user write a logical and/or but probably meant a
7360  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7361  // is a constant.
7362  if (LHS.get()->getType()->isIntegerType() &&
7363      !LHS.get()->getType()->isBooleanType() &&
7364      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7365      // Don't warn in macros or template instantiations.
7366      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7367    // If the RHS can be constant folded, and if it constant folds to something
7368    // that isn't 0 or 1 (which indicate a potential logical operation that
7369    // happened to fold to true/false) then warn.
7370    // Parens on the RHS are ignored.
7371    llvm::APSInt Result;
7372    if (RHS.get()->EvaluateAsInt(Result, Context))
7373      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7374          (Result != 0 && Result != 1)) {
7375        Diag(Loc, diag::warn_logical_instead_of_bitwise)
7376          << RHS.get()->getSourceRange()
7377          << (Opc == BO_LAnd ? "&&" : "||");
7378        // Suggest replacing the logical operator with the bitwise version
7379        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7380            << (Opc == BO_LAnd ? "&" : "|")
7381            << FixItHint::CreateReplacement(SourceRange(
7382                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7383                                                getLangOpts())),
7384                                            Opc == BO_LAnd ? "&" : "|");
7385        if (Opc == BO_LAnd)
7386          // Suggest replacing "Foo() && kNonZero" with "Foo()"
7387          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7388              << FixItHint::CreateRemoval(
7389                  SourceRange(
7390                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7391                                                 0, getSourceManager(),
7392                                                 getLangOpts()),
7393                      RHS.get()->getLocEnd()));
7394      }
7395  }
7396
7397  if (!Context.getLangOpts().CPlusPlus) {
7398    LHS = UsualUnaryConversions(LHS.take());
7399    if (LHS.isInvalid())
7400      return QualType();
7401
7402    RHS = UsualUnaryConversions(RHS.take());
7403    if (RHS.isInvalid())
7404      return QualType();
7405
7406    if (!LHS.get()->getType()->isScalarType() ||
7407        !RHS.get()->getType()->isScalarType())
7408      return InvalidOperands(Loc, LHS, RHS);
7409
7410    return Context.IntTy;
7411  }
7412
7413  // The following is safe because we only use this method for
7414  // non-overloadable operands.
7415
7416  // C++ [expr.log.and]p1
7417  // C++ [expr.log.or]p1
7418  // The operands are both contextually converted to type bool.
7419  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7420  if (LHSRes.isInvalid())
7421    return InvalidOperands(Loc, LHS, RHS);
7422  LHS = move(LHSRes);
7423
7424  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7425  if (RHSRes.isInvalid())
7426    return InvalidOperands(Loc, LHS, RHS);
7427  RHS = move(RHSRes);
7428
7429  // C++ [expr.log.and]p2
7430  // C++ [expr.log.or]p2
7431  // The result is a bool.
7432  return Context.BoolTy;
7433}
7434
7435/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7436/// is a read-only property; return true if so. A readonly property expression
7437/// depends on various declarations and thus must be treated specially.
7438///
7439static bool IsReadonlyProperty(Expr *E, Sema &S) {
7440  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7441  if (!PropExpr) return false;
7442  if (PropExpr->isImplicitProperty()) return false;
7443
7444  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7445  QualType BaseType = PropExpr->isSuperReceiver() ?
7446                            PropExpr->getSuperReceiverType() :
7447                            PropExpr->getBase()->getType();
7448
7449  if (const ObjCObjectPointerType *OPT =
7450      BaseType->getAsObjCInterfacePointerType())
7451    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7452      if (S.isPropertyReadonly(PDecl, IFace))
7453        return true;
7454  return false;
7455}
7456
7457static bool IsReadonlyMessage(Expr *E, Sema &S) {
7458  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7459  if (!ME) return false;
7460  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7461  ObjCMessageExpr *Base =
7462    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7463  if (!Base) return false;
7464  return Base->getMethodDecl() != 0;
7465}
7466
7467/// Is the given expression (which must be 'const') a reference to a
7468/// variable which was originally non-const, but which has become
7469/// 'const' due to being captured within a block?
7470enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
7471static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7472  assert(E->isLValue() && E->getType().isConstQualified());
7473  E = E->IgnoreParens();
7474
7475  // Must be a reference to a declaration from an enclosing scope.
7476  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7477  if (!DRE) return NCCK_None;
7478  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7479
7480  // The declaration must be a variable which is not declared 'const'.
7481  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7482  if (!var) return NCCK_None;
7483  if (var->getType().isConstQualified()) return NCCK_None;
7484  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7485
7486  // Decide whether the first capture was for a block or a lambda.
7487  DeclContext *DC = S.CurContext;
7488  while (DC->getParent() != var->getDeclContext())
7489    DC = DC->getParent();
7490  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7491}
7492
7493/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7494/// emit an error and return true.  If so, return false.
7495static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7496  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7497  SourceLocation OrigLoc = Loc;
7498  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7499                                                              &Loc);
7500  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7501    IsLV = Expr::MLV_ReadonlyProperty;
7502  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7503    IsLV = Expr::MLV_InvalidMessageExpression;
7504  if (IsLV == Expr::MLV_Valid)
7505    return false;
7506
7507  unsigned Diag = 0;
7508  bool NeedType = false;
7509  switch (IsLV) { // C99 6.5.16p2
7510  case Expr::MLV_ConstQualified:
7511    Diag = diag::err_typecheck_assign_const;
7512
7513    // Use a specialized diagnostic when we're assigning to an object
7514    // from an enclosing function or block.
7515    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7516      if (NCCK == NCCK_Block)
7517        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7518      else
7519        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7520      break;
7521    }
7522
7523    // In ARC, use some specialized diagnostics for occasions where we
7524    // infer 'const'.  These are always pseudo-strong variables.
7525    if (S.getLangOpts().ObjCAutoRefCount) {
7526      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7527      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7528        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7529
7530        // Use the normal diagnostic if it's pseudo-__strong but the
7531        // user actually wrote 'const'.
7532        if (var->isARCPseudoStrong() &&
7533            (!var->getTypeSourceInfo() ||
7534             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7535          // There are two pseudo-strong cases:
7536          //  - self
7537          ObjCMethodDecl *method = S.getCurMethodDecl();
7538          if (method && var == method->getSelfDecl())
7539            Diag = method->isClassMethod()
7540              ? diag::err_typecheck_arc_assign_self_class_method
7541              : diag::err_typecheck_arc_assign_self;
7542
7543          //  - fast enumeration variables
7544          else
7545            Diag = diag::err_typecheck_arr_assign_enumeration;
7546
7547          SourceRange Assign;
7548          if (Loc != OrigLoc)
7549            Assign = SourceRange(OrigLoc, OrigLoc);
7550          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7551          // We need to preserve the AST regardless, so migration tool
7552          // can do its job.
7553          return false;
7554        }
7555      }
7556    }
7557
7558    break;
7559  case Expr::MLV_ArrayType:
7560  case Expr::MLV_ArrayTemporary:
7561    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7562    NeedType = true;
7563    break;
7564  case Expr::MLV_NotObjectType:
7565    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7566    NeedType = true;
7567    break;
7568  case Expr::MLV_LValueCast:
7569    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7570    break;
7571  case Expr::MLV_Valid:
7572    llvm_unreachable("did not take early return for MLV_Valid");
7573  case Expr::MLV_InvalidExpression:
7574  case Expr::MLV_MemberFunction:
7575  case Expr::MLV_ClassTemporary:
7576    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7577    break;
7578  case Expr::MLV_IncompleteType:
7579  case Expr::MLV_IncompleteVoidType:
7580    return S.RequireCompleteType(Loc, E->getType(),
7581             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7582  case Expr::MLV_DuplicateVectorComponents:
7583    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7584    break;
7585  case Expr::MLV_ReadonlyProperty:
7586  case Expr::MLV_NoSetterProperty:
7587    llvm_unreachable("readonly properties should be processed differently");
7588  case Expr::MLV_InvalidMessageExpression:
7589    Diag = diag::error_readonly_message_assignment;
7590    break;
7591  case Expr::MLV_SubObjCPropertySetting:
7592    Diag = diag::error_no_subobject_property_setting;
7593    break;
7594  }
7595
7596  SourceRange Assign;
7597  if (Loc != OrigLoc)
7598    Assign = SourceRange(OrigLoc, OrigLoc);
7599  if (NeedType)
7600    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7601  else
7602    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7603  return true;
7604}
7605
7606static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
7607                                         SourceLocation Loc,
7608                                         Sema &Sema) {
7609  // C / C++ fields
7610  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
7611  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
7612  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
7613    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
7614      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
7615  }
7616
7617  // Objective-C instance variables
7618  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
7619  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
7620  if (OL && OR && OL->getDecl() == OR->getDecl()) {
7621    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
7622    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
7623    if (RL && RR && RL->getDecl() == RR->getDecl())
7624      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
7625  }
7626}
7627
7628// C99 6.5.16.1
7629QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7630                                       SourceLocation Loc,
7631                                       QualType CompoundType) {
7632  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7633
7634  // Verify that LHS is a modifiable lvalue, and emit error if not.
7635  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7636    return QualType();
7637
7638  QualType LHSType = LHSExpr->getType();
7639  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7640                                             CompoundType;
7641  AssignConvertType ConvTy;
7642  if (CompoundType.isNull()) {
7643    Expr *RHSCheck = RHS.get();
7644
7645    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
7646
7647    QualType LHSTy(LHSType);
7648    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7649    if (RHS.isInvalid())
7650      return QualType();
7651    // Special case of NSObject attributes on c-style pointer types.
7652    if (ConvTy == IncompatiblePointer &&
7653        ((Context.isObjCNSObjectType(LHSType) &&
7654          RHSType->isObjCObjectPointerType()) ||
7655         (Context.isObjCNSObjectType(RHSType) &&
7656          LHSType->isObjCObjectPointerType())))
7657      ConvTy = Compatible;
7658
7659    if (ConvTy == Compatible &&
7660        LHSType->isObjCObjectType())
7661        Diag(Loc, diag::err_objc_object_assignment)
7662          << LHSType;
7663
7664    // If the RHS is a unary plus or minus, check to see if they = and + are
7665    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7666    // instead of "x += 4".
7667    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7668      RHSCheck = ICE->getSubExpr();
7669    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7670      if ((UO->getOpcode() == UO_Plus ||
7671           UO->getOpcode() == UO_Minus) &&
7672          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7673          // Only if the two operators are exactly adjacent.
7674          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7675          // And there is a space or other character before the subexpr of the
7676          // unary +/-.  We don't want to warn on "x=-1".
7677          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7678          UO->getSubExpr()->getLocStart().isFileID()) {
7679        Diag(Loc, diag::warn_not_compound_assign)
7680          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7681          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7682      }
7683    }
7684
7685    if (ConvTy == Compatible) {
7686      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7687        checkRetainCycles(LHSExpr, RHS.get());
7688      else if (getLangOpts().ObjCAutoRefCount)
7689        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7690    }
7691  } else {
7692    // Compound assignment "x += y"
7693    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7694  }
7695
7696  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7697                               RHS.get(), AA_Assigning))
7698    return QualType();
7699
7700  CheckForNullPointerDereference(*this, LHSExpr);
7701
7702  // C99 6.5.16p3: The type of an assignment expression is the type of the
7703  // left operand unless the left operand has qualified type, in which case
7704  // it is the unqualified version of the type of the left operand.
7705  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7706  // is converted to the type of the assignment expression (above).
7707  // C++ 5.17p1: the type of the assignment expression is that of its left
7708  // operand.
7709  return (getLangOpts().CPlusPlus
7710          ? LHSType : LHSType.getUnqualifiedType());
7711}
7712
7713// C99 6.5.17
7714static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7715                                   SourceLocation Loc) {
7716  LHS = S.CheckPlaceholderExpr(LHS.take());
7717  RHS = S.CheckPlaceholderExpr(RHS.take());
7718  if (LHS.isInvalid() || RHS.isInvalid())
7719    return QualType();
7720
7721  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7722  // operands, but not unary promotions.
7723  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7724
7725  // So we treat the LHS as a ignored value, and in C++ we allow the
7726  // containing site to determine what should be done with the RHS.
7727  LHS = S.IgnoredValueConversions(LHS.take());
7728  if (LHS.isInvalid())
7729    return QualType();
7730
7731  S.DiagnoseUnusedExprResult(LHS.get());
7732
7733  if (!S.getLangOpts().CPlusPlus) {
7734    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7735    if (RHS.isInvalid())
7736      return QualType();
7737    if (!RHS.get()->getType()->isVoidType())
7738      S.RequireCompleteType(Loc, RHS.get()->getType(),
7739                            diag::err_incomplete_type);
7740  }
7741
7742  return RHS.get()->getType();
7743}
7744
7745/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7746/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7747static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7748                                               ExprValueKind &VK,
7749                                               SourceLocation OpLoc,
7750                                               bool IsInc, bool IsPrefix) {
7751  if (Op->isTypeDependent())
7752    return S.Context.DependentTy;
7753
7754  QualType ResType = Op->getType();
7755  // Atomic types can be used for increment / decrement where the non-atomic
7756  // versions can, so ignore the _Atomic() specifier for the purpose of
7757  // checking.
7758  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7759    ResType = ResAtomicType->getValueType();
7760
7761  assert(!ResType.isNull() && "no type for increment/decrement expression");
7762
7763  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7764    // Decrement of bool is not allowed.
7765    if (!IsInc) {
7766      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7767      return QualType();
7768    }
7769    // Increment of bool sets it to true, but is deprecated.
7770    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7771  } else if (ResType->isRealType()) {
7772    // OK!
7773  } else if (ResType->isPointerType()) {
7774    // C99 6.5.2.4p2, 6.5.6p2
7775    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7776      return QualType();
7777  } else if (ResType->isObjCObjectPointerType()) {
7778    // On modern runtimes, ObjC pointer arithmetic is forbidden.
7779    // Otherwise, we just need a complete type.
7780    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
7781        checkArithmeticOnObjCPointer(S, OpLoc, Op))
7782      return QualType();
7783  } else if (ResType->isAnyComplexType()) {
7784    // C99 does not support ++/-- on complex types, we allow as an extension.
7785    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7786      << ResType << Op->getSourceRange();
7787  } else if (ResType->isPlaceholderType()) {
7788    ExprResult PR = S.CheckPlaceholderExpr(Op);
7789    if (PR.isInvalid()) return QualType();
7790    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7791                                          IsInc, IsPrefix);
7792  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7793    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7794  } else {
7795    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7796      << ResType << int(IsInc) << Op->getSourceRange();
7797    return QualType();
7798  }
7799  // At this point, we know we have a real, complex or pointer type.
7800  // Now make sure the operand is a modifiable lvalue.
7801  if (CheckForModifiableLvalue(Op, OpLoc, S))
7802    return QualType();
7803  // In C++, a prefix increment is the same type as the operand. Otherwise
7804  // (in C or with postfix), the increment is the unqualified type of the
7805  // operand.
7806  if (IsPrefix && S.getLangOpts().CPlusPlus) {
7807    VK = VK_LValue;
7808    return ResType;
7809  } else {
7810    VK = VK_RValue;
7811    return ResType.getUnqualifiedType();
7812  }
7813}
7814
7815
7816/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7817/// This routine allows us to typecheck complex/recursive expressions
7818/// where the declaration is needed for type checking. We only need to
7819/// handle cases when the expression references a function designator
7820/// or is an lvalue. Here are some examples:
7821///  - &(x) => x
7822///  - &*****f => f for f a function designator.
7823///  - &s.xx => s
7824///  - &s.zz[1].yy -> s, if zz is an array
7825///  - *(x + 1) -> x, if x is an array
7826///  - &"123"[2] -> 0
7827///  - & __real__ x -> x
7828static ValueDecl *getPrimaryDecl(Expr *E) {
7829  switch (E->getStmtClass()) {
7830  case Stmt::DeclRefExprClass:
7831    return cast<DeclRefExpr>(E)->getDecl();
7832  case Stmt::MemberExprClass:
7833    // If this is an arrow operator, the address is an offset from
7834    // the base's value, so the object the base refers to is
7835    // irrelevant.
7836    if (cast<MemberExpr>(E)->isArrow())
7837      return 0;
7838    // Otherwise, the expression refers to a part of the base
7839    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7840  case Stmt::ArraySubscriptExprClass: {
7841    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7842    // promotion of register arrays earlier.
7843    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7844    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7845      if (ICE->getSubExpr()->getType()->isArrayType())
7846        return getPrimaryDecl(ICE->getSubExpr());
7847    }
7848    return 0;
7849  }
7850  case Stmt::UnaryOperatorClass: {
7851    UnaryOperator *UO = cast<UnaryOperator>(E);
7852
7853    switch(UO->getOpcode()) {
7854    case UO_Real:
7855    case UO_Imag:
7856    case UO_Extension:
7857      return getPrimaryDecl(UO->getSubExpr());
7858    default:
7859      return 0;
7860    }
7861  }
7862  case Stmt::ParenExprClass:
7863    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7864  case Stmt::ImplicitCastExprClass:
7865    // If the result of an implicit cast is an l-value, we care about
7866    // the sub-expression; otherwise, the result here doesn't matter.
7867    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7868  default:
7869    return 0;
7870  }
7871}
7872
7873namespace {
7874  enum {
7875    AO_Bit_Field = 0,
7876    AO_Vector_Element = 1,
7877    AO_Property_Expansion = 2,
7878    AO_Register_Variable = 3,
7879    AO_No_Error = 4
7880  };
7881}
7882/// \brief Diagnose invalid operand for address of operations.
7883///
7884/// \param Type The type of operand which cannot have its address taken.
7885static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7886                                         Expr *E, unsigned Type) {
7887  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7888}
7889
7890/// CheckAddressOfOperand - The operand of & must be either a function
7891/// designator or an lvalue designating an object. If it is an lvalue, the
7892/// object cannot be declared with storage class register or be a bit field.
7893/// Note: The usual conversions are *not* applied to the operand of the &
7894/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7895/// In C++, the operand might be an overloaded function name, in which case
7896/// we allow the '&' but retain the overloaded-function type.
7897static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7898                                      SourceLocation OpLoc) {
7899  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7900    if (PTy->getKind() == BuiltinType::Overload) {
7901      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7902        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7903          << OrigOp.get()->getSourceRange();
7904        return QualType();
7905      }
7906
7907      return S.Context.OverloadTy;
7908    }
7909
7910    if (PTy->getKind() == BuiltinType::UnknownAny)
7911      return S.Context.UnknownAnyTy;
7912
7913    if (PTy->getKind() == BuiltinType::BoundMember) {
7914      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7915        << OrigOp.get()->getSourceRange();
7916      return QualType();
7917    }
7918
7919    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7920    if (OrigOp.isInvalid()) return QualType();
7921  }
7922
7923  if (OrigOp.get()->isTypeDependent())
7924    return S.Context.DependentTy;
7925
7926  assert(!OrigOp.get()->getType()->isPlaceholderType());
7927
7928  // Make sure to ignore parentheses in subsequent checks
7929  Expr *op = OrigOp.get()->IgnoreParens();
7930
7931  if (S.getLangOpts().C99) {
7932    // Implement C99-only parts of addressof rules.
7933    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7934      if (uOp->getOpcode() == UO_Deref)
7935        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7936        // (assuming the deref expression is valid).
7937        return uOp->getSubExpr()->getType();
7938    }
7939    // Technically, there should be a check for array subscript
7940    // expressions here, but the result of one is always an lvalue anyway.
7941  }
7942  ValueDecl *dcl = getPrimaryDecl(op);
7943  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7944  unsigned AddressOfError = AO_No_Error;
7945
7946  if (lval == Expr::LV_ClassTemporary) {
7947    bool sfinae = S.isSFINAEContext();
7948    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7949                         : diag::ext_typecheck_addrof_class_temporary)
7950      << op->getType() << op->getSourceRange();
7951    if (sfinae)
7952      return QualType();
7953  } else if (isa<ObjCSelectorExpr>(op)) {
7954    return S.Context.getPointerType(op->getType());
7955  } else if (lval == Expr::LV_MemberFunction) {
7956    // If it's an instance method, make a member pointer.
7957    // The expression must have exactly the form &A::foo.
7958
7959    // If the underlying expression isn't a decl ref, give up.
7960    if (!isa<DeclRefExpr>(op)) {
7961      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7962        << OrigOp.get()->getSourceRange();
7963      return QualType();
7964    }
7965    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7966    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7967
7968    // The id-expression was parenthesized.
7969    if (OrigOp.get() != DRE) {
7970      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7971        << OrigOp.get()->getSourceRange();
7972
7973    // The method was named without a qualifier.
7974    } else if (!DRE->getQualifier()) {
7975      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7976        << op->getSourceRange();
7977    }
7978
7979    return S.Context.getMemberPointerType(op->getType(),
7980              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7981  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7982    // C99 6.5.3.2p1
7983    // The operand must be either an l-value or a function designator
7984    if (!op->getType()->isFunctionType()) {
7985      // Use a special diagnostic for loads from property references.
7986      if (isa<PseudoObjectExpr>(op)) {
7987        AddressOfError = AO_Property_Expansion;
7988      } else {
7989        // FIXME: emit more specific diag...
7990        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7991          << op->getSourceRange();
7992        return QualType();
7993      }
7994    }
7995  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7996    // The operand cannot be a bit-field
7997    AddressOfError = AO_Bit_Field;
7998  } else if (op->getObjectKind() == OK_VectorComponent) {
7999    // The operand cannot be an element of a vector
8000    AddressOfError = AO_Vector_Element;
8001  } else if (dcl) { // C99 6.5.3.2p1
8002    // We have an lvalue with a decl. Make sure the decl is not declared
8003    // with the register storage-class specifier.
8004    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8005      // in C++ it is not error to take address of a register
8006      // variable (c++03 7.1.1P3)
8007      if (vd->getStorageClass() == SC_Register &&
8008          !S.getLangOpts().CPlusPlus) {
8009        AddressOfError = AO_Register_Variable;
8010      }
8011    } else if (isa<FunctionTemplateDecl>(dcl)) {
8012      return S.Context.OverloadTy;
8013    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8014      // Okay: we can take the address of a field.
8015      // Could be a pointer to member, though, if there is an explicit
8016      // scope qualifier for the class.
8017      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8018        DeclContext *Ctx = dcl->getDeclContext();
8019        if (Ctx && Ctx->isRecord()) {
8020          if (dcl->getType()->isReferenceType()) {
8021            S.Diag(OpLoc,
8022                   diag::err_cannot_form_pointer_to_member_of_reference_type)
8023              << dcl->getDeclName() << dcl->getType();
8024            return QualType();
8025          }
8026
8027          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8028            Ctx = Ctx->getParent();
8029          return S.Context.getMemberPointerType(op->getType(),
8030                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8031        }
8032      }
8033    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8034      llvm_unreachable("Unknown/unexpected decl type");
8035  }
8036
8037  if (AddressOfError != AO_No_Error) {
8038    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
8039    return QualType();
8040  }
8041
8042  if (lval == Expr::LV_IncompleteVoidType) {
8043    // Taking the address of a void variable is technically illegal, but we
8044    // allow it in cases which are otherwise valid.
8045    // Example: "extern void x; void* y = &x;".
8046    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8047  }
8048
8049  // If the operand has type "type", the result has type "pointer to type".
8050  if (op->getType()->isObjCObjectType())
8051    return S.Context.getObjCObjectPointerType(op->getType());
8052  return S.Context.getPointerType(op->getType());
8053}
8054
8055/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8056static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8057                                        SourceLocation OpLoc) {
8058  if (Op->isTypeDependent())
8059    return S.Context.DependentTy;
8060
8061  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8062  if (ConvResult.isInvalid())
8063    return QualType();
8064  Op = ConvResult.take();
8065  QualType OpTy = Op->getType();
8066  QualType Result;
8067
8068  if (isa<CXXReinterpretCastExpr>(Op)) {
8069    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8070    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8071                                     Op->getSourceRange());
8072  }
8073
8074  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8075  // is an incomplete type or void.  It would be possible to warn about
8076  // dereferencing a void pointer, but it's completely well-defined, and such a
8077  // warning is unlikely to catch any mistakes.
8078  if (const PointerType *PT = OpTy->getAs<PointerType>())
8079    Result = PT->getPointeeType();
8080  else if (const ObjCObjectPointerType *OPT =
8081             OpTy->getAs<ObjCObjectPointerType>())
8082    Result = OPT->getPointeeType();
8083  else {
8084    ExprResult PR = S.CheckPlaceholderExpr(Op);
8085    if (PR.isInvalid()) return QualType();
8086    if (PR.take() != Op)
8087      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8088  }
8089
8090  if (Result.isNull()) {
8091    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8092      << OpTy << Op->getSourceRange();
8093    return QualType();
8094  }
8095
8096  // Dereferences are usually l-values...
8097  VK = VK_LValue;
8098
8099  // ...except that certain expressions are never l-values in C.
8100  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8101    VK = VK_RValue;
8102
8103  return Result;
8104}
8105
8106static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8107  tok::TokenKind Kind) {
8108  BinaryOperatorKind Opc;
8109  switch (Kind) {
8110  default: llvm_unreachable("Unknown binop!");
8111  case tok::periodstar:           Opc = BO_PtrMemD; break;
8112  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8113  case tok::star:                 Opc = BO_Mul; break;
8114  case tok::slash:                Opc = BO_Div; break;
8115  case tok::percent:              Opc = BO_Rem; break;
8116  case tok::plus:                 Opc = BO_Add; break;
8117  case tok::minus:                Opc = BO_Sub; break;
8118  case tok::lessless:             Opc = BO_Shl; break;
8119  case tok::greatergreater:       Opc = BO_Shr; break;
8120  case tok::lessequal:            Opc = BO_LE; break;
8121  case tok::less:                 Opc = BO_LT; break;
8122  case tok::greaterequal:         Opc = BO_GE; break;
8123  case tok::greater:              Opc = BO_GT; break;
8124  case tok::exclaimequal:         Opc = BO_NE; break;
8125  case tok::equalequal:           Opc = BO_EQ; break;
8126  case tok::amp:                  Opc = BO_And; break;
8127  case tok::caret:                Opc = BO_Xor; break;
8128  case tok::pipe:                 Opc = BO_Or; break;
8129  case tok::ampamp:               Opc = BO_LAnd; break;
8130  case tok::pipepipe:             Opc = BO_LOr; break;
8131  case tok::equal:                Opc = BO_Assign; break;
8132  case tok::starequal:            Opc = BO_MulAssign; break;
8133  case tok::slashequal:           Opc = BO_DivAssign; break;
8134  case tok::percentequal:         Opc = BO_RemAssign; break;
8135  case tok::plusequal:            Opc = BO_AddAssign; break;
8136  case tok::minusequal:           Opc = BO_SubAssign; break;
8137  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8138  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8139  case tok::ampequal:             Opc = BO_AndAssign; break;
8140  case tok::caretequal:           Opc = BO_XorAssign; break;
8141  case tok::pipeequal:            Opc = BO_OrAssign; break;
8142  case tok::comma:                Opc = BO_Comma; break;
8143  }
8144  return Opc;
8145}
8146
8147static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8148  tok::TokenKind Kind) {
8149  UnaryOperatorKind Opc;
8150  switch (Kind) {
8151  default: llvm_unreachable("Unknown unary op!");
8152  case tok::plusplus:     Opc = UO_PreInc; break;
8153  case tok::minusminus:   Opc = UO_PreDec; break;
8154  case tok::amp:          Opc = UO_AddrOf; break;
8155  case tok::star:         Opc = UO_Deref; break;
8156  case tok::plus:         Opc = UO_Plus; break;
8157  case tok::minus:        Opc = UO_Minus; break;
8158  case tok::tilde:        Opc = UO_Not; break;
8159  case tok::exclaim:      Opc = UO_LNot; break;
8160  case tok::kw___real:    Opc = UO_Real; break;
8161  case tok::kw___imag:    Opc = UO_Imag; break;
8162  case tok::kw___extension__: Opc = UO_Extension; break;
8163  }
8164  return Opc;
8165}
8166
8167/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8168/// This warning is only emitted for builtin assignment operations. It is also
8169/// suppressed in the event of macro expansions.
8170static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8171                                   SourceLocation OpLoc) {
8172  if (!S.ActiveTemplateInstantiations.empty())
8173    return;
8174  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8175    return;
8176  LHSExpr = LHSExpr->IgnoreParenImpCasts();
8177  RHSExpr = RHSExpr->IgnoreParenImpCasts();
8178  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8179  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8180  if (!LHSDeclRef || !RHSDeclRef ||
8181      LHSDeclRef->getLocation().isMacroID() ||
8182      RHSDeclRef->getLocation().isMacroID())
8183    return;
8184  const ValueDecl *LHSDecl =
8185    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8186  const ValueDecl *RHSDecl =
8187    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8188  if (LHSDecl != RHSDecl)
8189    return;
8190  if (LHSDecl->getType().isVolatileQualified())
8191    return;
8192  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
8193    if (RefTy->getPointeeType().isVolatileQualified())
8194      return;
8195
8196  S.Diag(OpLoc, diag::warn_self_assignment)
8197      << LHSDeclRef->getType()
8198      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
8199}
8200
8201/// CreateBuiltinBinOp - Creates a new built-in binary operation with
8202/// operator @p Opc at location @c TokLoc. This routine only supports
8203/// built-in operations; ActOnBinOp handles overloaded operators.
8204ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
8205                                    BinaryOperatorKind Opc,
8206                                    Expr *LHSExpr, Expr *RHSExpr) {
8207  if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
8208    // The syntax only allows initializer lists on the RHS of assignment,
8209    // so we don't need to worry about accepting invalid code for
8210    // non-assignment operators.
8211    // C++11 5.17p9:
8212    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
8213    //   of x = {} is x = T().
8214    InitializationKind Kind =
8215        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
8216    InitializedEntity Entity =
8217        InitializedEntity::InitializeTemporary(LHSExpr->getType());
8218    InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
8219    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
8220                                      MultiExprArg(&RHSExpr, 1));
8221    if (Init.isInvalid())
8222      return Init;
8223    RHSExpr = Init.take();
8224  }
8225
8226  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
8227  QualType ResultTy;     // Result type of the binary operator.
8228  // The following two variables are used for compound assignment operators
8229  QualType CompLHSTy;    // Type of LHS after promotions for computation
8230  QualType CompResultTy; // Type of computation result
8231  ExprValueKind VK = VK_RValue;
8232  ExprObjectKind OK = OK_Ordinary;
8233
8234  switch (Opc) {
8235  case BO_Assign:
8236    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
8237    if (getLangOpts().CPlusPlus &&
8238        LHS.get()->getObjectKind() != OK_ObjCProperty) {
8239      VK = LHS.get()->getValueKind();
8240      OK = LHS.get()->getObjectKind();
8241    }
8242    if (!ResultTy.isNull())
8243      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
8244    break;
8245  case BO_PtrMemD:
8246  case BO_PtrMemI:
8247    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
8248                                            Opc == BO_PtrMemI);
8249    break;
8250  case BO_Mul:
8251  case BO_Div:
8252    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
8253                                           Opc == BO_Div);
8254    break;
8255  case BO_Rem:
8256    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
8257    break;
8258  case BO_Add:
8259    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
8260    break;
8261  case BO_Sub:
8262    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
8263    break;
8264  case BO_Shl:
8265  case BO_Shr:
8266    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
8267    break;
8268  case BO_LE:
8269  case BO_LT:
8270  case BO_GE:
8271  case BO_GT:
8272    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
8273    break;
8274  case BO_EQ:
8275  case BO_NE:
8276    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
8277    break;
8278  case BO_And:
8279  case BO_Xor:
8280  case BO_Or:
8281    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
8282    break;
8283  case BO_LAnd:
8284  case BO_LOr:
8285    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
8286    break;
8287  case BO_MulAssign:
8288  case BO_DivAssign:
8289    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
8290                                               Opc == BO_DivAssign);
8291    CompLHSTy = CompResultTy;
8292    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8293      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8294    break;
8295  case BO_RemAssign:
8296    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
8297    CompLHSTy = CompResultTy;
8298    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8299      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8300    break;
8301  case BO_AddAssign:
8302    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
8303    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8304      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8305    break;
8306  case BO_SubAssign:
8307    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
8308    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8309      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8310    break;
8311  case BO_ShlAssign:
8312  case BO_ShrAssign:
8313    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
8314    CompLHSTy = CompResultTy;
8315    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8316      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8317    break;
8318  case BO_AndAssign:
8319  case BO_XorAssign:
8320  case BO_OrAssign:
8321    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8322    CompLHSTy = CompResultTy;
8323    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8324      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8325    break;
8326  case BO_Comma:
8327    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8328    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8329      VK = RHS.get()->getValueKind();
8330      OK = RHS.get()->getObjectKind();
8331    }
8332    break;
8333  }
8334  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8335    return ExprError();
8336
8337  // Check for array bounds violations for both sides of the BinaryOperator
8338  CheckArrayAccess(LHS.get());
8339  CheckArrayAccess(RHS.get());
8340
8341  if (CompResultTy.isNull())
8342    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8343                                              ResultTy, VK, OK, OpLoc));
8344  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8345      OK_ObjCProperty) {
8346    VK = VK_LValue;
8347    OK = LHS.get()->getObjectKind();
8348  }
8349  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8350                                                    ResultTy, VK, OK, CompLHSTy,
8351                                                    CompResultTy, OpLoc));
8352}
8353
8354/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8355/// operators are mixed in a way that suggests that the programmer forgot that
8356/// comparison operators have higher precedence. The most typical example of
8357/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8358static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8359                                      SourceLocation OpLoc, Expr *LHSExpr,
8360                                      Expr *RHSExpr) {
8361  typedef BinaryOperator BinOp;
8362  BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8363                RHSopc = static_cast<BinOp::Opcode>(-1);
8364  if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8365    LHSopc = BO->getOpcode();
8366  if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8367    RHSopc = BO->getOpcode();
8368
8369  // Subs are not binary operators.
8370  if (LHSopc == -1 && RHSopc == -1)
8371    return;
8372
8373  // Bitwise operations are sometimes used as eager logical ops.
8374  // Don't diagnose this.
8375  if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8376      (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8377    return;
8378
8379  bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8380  bool isRightComp = BinOp::isComparisonOp(RHSopc);
8381  if (!isLeftComp && !isRightComp) return;
8382
8383  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8384                                                   OpLoc)
8385                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
8386  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8387                                 : BinOp::getOpcodeStr(RHSopc);
8388  SourceRange ParensRange = isLeftComp ?
8389      SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8390                  RHSExpr->getLocEnd())
8391    : SourceRange(LHSExpr->getLocStart(),
8392                  cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8393
8394  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8395    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8396  SuggestParentheses(Self, OpLoc,
8397    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8398    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
8399  SuggestParentheses(Self, OpLoc,
8400    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8401    ParensRange);
8402}
8403
8404/// \brief It accepts a '&' expr that is inside a '|' one.
8405/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8406/// in parentheses.
8407static void
8408EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8409                                       BinaryOperator *Bop) {
8410  assert(Bop->getOpcode() == BO_And);
8411  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8412      << Bop->getSourceRange() << OpLoc;
8413  SuggestParentheses(Self, Bop->getOperatorLoc(),
8414    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8415    Bop->getSourceRange());
8416}
8417
8418/// \brief It accepts a '&&' expr that is inside a '||' one.
8419/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8420/// in parentheses.
8421static void
8422EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8423                                       BinaryOperator *Bop) {
8424  assert(Bop->getOpcode() == BO_LAnd);
8425  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8426      << Bop->getSourceRange() << OpLoc;
8427  SuggestParentheses(Self, Bop->getOperatorLoc(),
8428    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8429    Bop->getSourceRange());
8430}
8431
8432/// \brief Returns true if the given expression can be evaluated as a constant
8433/// 'true'.
8434static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8435  bool Res;
8436  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8437}
8438
8439/// \brief Returns true if the given expression can be evaluated as a constant
8440/// 'false'.
8441static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8442  bool Res;
8443  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8444}
8445
8446/// \brief Look for '&&' in the left hand of a '||' expr.
8447static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8448                                             Expr *LHSExpr, Expr *RHSExpr) {
8449  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8450    if (Bop->getOpcode() == BO_LAnd) {
8451      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8452      if (EvaluatesAsFalse(S, RHSExpr))
8453        return;
8454      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8455      if (!EvaluatesAsTrue(S, Bop->getLHS()))
8456        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8457    } else if (Bop->getOpcode() == BO_LOr) {
8458      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8459        // If it's "a || b && 1 || c" we didn't warn earlier for
8460        // "a || b && 1", but warn now.
8461        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8462          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8463      }
8464    }
8465  }
8466}
8467
8468/// \brief Look for '&&' in the right hand of a '||' expr.
8469static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8470                                             Expr *LHSExpr, Expr *RHSExpr) {
8471  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8472    if (Bop->getOpcode() == BO_LAnd) {
8473      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8474      if (EvaluatesAsFalse(S, LHSExpr))
8475        return;
8476      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8477      if (!EvaluatesAsTrue(S, Bop->getRHS()))
8478        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8479    }
8480  }
8481}
8482
8483/// \brief Look for '&' in the left or right hand of a '|' expr.
8484static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8485                                             Expr *OrArg) {
8486  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8487    if (Bop->getOpcode() == BO_And)
8488      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8489  }
8490}
8491
8492/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8493/// precedence.
8494static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8495                                    SourceLocation OpLoc, Expr *LHSExpr,
8496                                    Expr *RHSExpr){
8497  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8498  if (BinaryOperator::isBitwiseOp(Opc))
8499    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8500
8501  // Diagnose "arg1 & arg2 | arg3"
8502  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8503    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8504    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8505  }
8506
8507  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8508  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8509  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8510    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8511    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8512  }
8513}
8514
8515// Binary Operators.  'Tok' is the token for the operator.
8516ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8517                            tok::TokenKind Kind,
8518                            Expr *LHSExpr, Expr *RHSExpr) {
8519  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8520  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8521  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8522
8523  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8524  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8525
8526  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8527}
8528
8529/// Build an overloaded binary operator expression in the given scope.
8530static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8531                                       BinaryOperatorKind Opc,
8532                                       Expr *LHS, Expr *RHS) {
8533  // Find all of the overloaded operators visible from this
8534  // point. We perform both an operator-name lookup from the local
8535  // scope and an argument-dependent lookup based on the types of
8536  // the arguments.
8537  UnresolvedSet<16> Functions;
8538  OverloadedOperatorKind OverOp
8539    = BinaryOperator::getOverloadedOperator(Opc);
8540  if (Sc && OverOp != OO_None)
8541    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8542                                   RHS->getType(), Functions);
8543
8544  // Build the (potentially-overloaded, potentially-dependent)
8545  // binary operation.
8546  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8547}
8548
8549ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8550                            BinaryOperatorKind Opc,
8551                            Expr *LHSExpr, Expr *RHSExpr) {
8552  // We want to end up calling one of checkPseudoObjectAssignment
8553  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8554  // both expressions are overloadable or either is type-dependent),
8555  // or CreateBuiltinBinOp (in any other case).  We also want to get
8556  // any placeholder types out of the way.
8557
8558  // Handle pseudo-objects in the LHS.
8559  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8560    // Assignments with a pseudo-object l-value need special analysis.
8561    if (pty->getKind() == BuiltinType::PseudoObject &&
8562        BinaryOperator::isAssignmentOp(Opc))
8563      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8564
8565    // Don't resolve overloads if the other type is overloadable.
8566    if (pty->getKind() == BuiltinType::Overload) {
8567      // We can't actually test that if we still have a placeholder,
8568      // though.  Fortunately, none of the exceptions we see in that
8569      // code below are valid when the LHS is an overload set.  Note
8570      // that an overload set can be dependently-typed, but it never
8571      // instantiates to having an overloadable type.
8572      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8573      if (resolvedRHS.isInvalid()) return ExprError();
8574      RHSExpr = resolvedRHS.take();
8575
8576      if (RHSExpr->isTypeDependent() ||
8577          RHSExpr->getType()->isOverloadableType())
8578        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8579    }
8580
8581    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8582    if (LHS.isInvalid()) return ExprError();
8583    LHSExpr = LHS.take();
8584  }
8585
8586  // Handle pseudo-objects in the RHS.
8587  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8588    // An overload in the RHS can potentially be resolved by the type
8589    // being assigned to.
8590    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8591      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8592        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8593
8594      if (LHSExpr->getType()->isOverloadableType())
8595        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8596
8597      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8598    }
8599
8600    // Don't resolve overloads if the other type is overloadable.
8601    if (pty->getKind() == BuiltinType::Overload &&
8602        LHSExpr->getType()->isOverloadableType())
8603      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8604
8605    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8606    if (!resolvedRHS.isUsable()) return ExprError();
8607    RHSExpr = resolvedRHS.take();
8608  }
8609
8610  if (getLangOpts().CPlusPlus) {
8611    // If either expression is type-dependent, always build an
8612    // overloaded op.
8613    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8614      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8615
8616    // Otherwise, build an overloaded op if either expression has an
8617    // overloadable type.
8618    if (LHSExpr->getType()->isOverloadableType() ||
8619        RHSExpr->getType()->isOverloadableType())
8620      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8621  }
8622
8623  // Build a built-in binary operation.
8624  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8625}
8626
8627ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8628                                      UnaryOperatorKind Opc,
8629                                      Expr *InputExpr) {
8630  ExprResult Input = Owned(InputExpr);
8631  ExprValueKind VK = VK_RValue;
8632  ExprObjectKind OK = OK_Ordinary;
8633  QualType resultType;
8634  switch (Opc) {
8635  case UO_PreInc:
8636  case UO_PreDec:
8637  case UO_PostInc:
8638  case UO_PostDec:
8639    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8640                                                Opc == UO_PreInc ||
8641                                                Opc == UO_PostInc,
8642                                                Opc == UO_PreInc ||
8643                                                Opc == UO_PreDec);
8644    break;
8645  case UO_AddrOf:
8646    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8647    break;
8648  case UO_Deref: {
8649    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8650    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8651    break;
8652  }
8653  case UO_Plus:
8654  case UO_Minus:
8655    Input = UsualUnaryConversions(Input.take());
8656    if (Input.isInvalid()) return ExprError();
8657    resultType = Input.get()->getType();
8658    if (resultType->isDependentType())
8659      break;
8660    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8661        resultType->isVectorType())
8662      break;
8663    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8664             resultType->isEnumeralType())
8665      break;
8666    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8667             Opc == UO_Plus &&
8668             resultType->isPointerType())
8669      break;
8670
8671    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8672      << resultType << Input.get()->getSourceRange());
8673
8674  case UO_Not: // bitwise complement
8675    Input = UsualUnaryConversions(Input.take());
8676    if (Input.isInvalid()) return ExprError();
8677    resultType = Input.get()->getType();
8678    if (resultType->isDependentType())
8679      break;
8680    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8681    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8682      // C99 does not support '~' for complex conjugation.
8683      Diag(OpLoc, diag::ext_integer_complement_complex)
8684        << resultType << Input.get()->getSourceRange();
8685    else if (resultType->hasIntegerRepresentation())
8686      break;
8687    else {
8688      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8689        << resultType << Input.get()->getSourceRange());
8690    }
8691    break;
8692
8693  case UO_LNot: // logical negation
8694    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8695    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8696    if (Input.isInvalid()) return ExprError();
8697    resultType = Input.get()->getType();
8698
8699    // Though we still have to promote half FP to float...
8700    if (resultType->isHalfType()) {
8701      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8702      resultType = Context.FloatTy;
8703    }
8704
8705    if (resultType->isDependentType())
8706      break;
8707    if (resultType->isScalarType()) {
8708      // C99 6.5.3.3p1: ok, fallthrough;
8709      if (Context.getLangOpts().CPlusPlus) {
8710        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8711        // operand contextually converted to bool.
8712        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8713                                  ScalarTypeToBooleanCastKind(resultType));
8714      }
8715    } else if (resultType->isExtVectorType()) {
8716      // Vector logical not returns the signed variant of the operand type.
8717      resultType = GetSignedVectorType(resultType);
8718      break;
8719    } else {
8720      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8721        << resultType << Input.get()->getSourceRange());
8722    }
8723
8724    // LNot always has type int. C99 6.5.3.3p5.
8725    // In C++, it's bool. C++ 5.3.1p8
8726    resultType = Context.getLogicalOperationType();
8727    break;
8728  case UO_Real:
8729  case UO_Imag:
8730    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8731    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8732    // complex l-values to ordinary l-values and all other values to r-values.
8733    if (Input.isInvalid()) return ExprError();
8734    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8735      if (Input.get()->getValueKind() != VK_RValue &&
8736          Input.get()->getObjectKind() == OK_Ordinary)
8737        VK = Input.get()->getValueKind();
8738    } else if (!getLangOpts().CPlusPlus) {
8739      // In C, a volatile scalar is read by __imag. In C++, it is not.
8740      Input = DefaultLvalueConversion(Input.take());
8741    }
8742    break;
8743  case UO_Extension:
8744    resultType = Input.get()->getType();
8745    VK = Input.get()->getValueKind();
8746    OK = Input.get()->getObjectKind();
8747    break;
8748  }
8749  if (resultType.isNull() || Input.isInvalid())
8750    return ExprError();
8751
8752  // Check for array bounds violations in the operand of the UnaryOperator,
8753  // except for the '*' and '&' operators that have to be handled specially
8754  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8755  // that are explicitly defined as valid by the standard).
8756  if (Opc != UO_AddrOf && Opc != UO_Deref)
8757    CheckArrayAccess(Input.get());
8758
8759  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8760                                           VK, OK, OpLoc));
8761}
8762
8763/// \brief Determine whether the given expression is a qualified member
8764/// access expression, of a form that could be turned into a pointer to member
8765/// with the address-of operator.
8766static bool isQualifiedMemberAccess(Expr *E) {
8767  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8768    if (!DRE->getQualifier())
8769      return false;
8770
8771    ValueDecl *VD = DRE->getDecl();
8772    if (!VD->isCXXClassMember())
8773      return false;
8774
8775    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8776      return true;
8777    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8778      return Method->isInstance();
8779
8780    return false;
8781  }
8782
8783  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8784    if (!ULE->getQualifier())
8785      return false;
8786
8787    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8788                                           DEnd = ULE->decls_end();
8789         D != DEnd; ++D) {
8790      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8791        if (Method->isInstance())
8792          return true;
8793      } else {
8794        // Overload set does not contain methods.
8795        break;
8796      }
8797    }
8798
8799    return false;
8800  }
8801
8802  return false;
8803}
8804
8805ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8806                              UnaryOperatorKind Opc, Expr *Input) {
8807  // First things first: handle placeholders so that the
8808  // overloaded-operator check considers the right type.
8809  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8810    // Increment and decrement of pseudo-object references.
8811    if (pty->getKind() == BuiltinType::PseudoObject &&
8812        UnaryOperator::isIncrementDecrementOp(Opc))
8813      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8814
8815    // extension is always a builtin operator.
8816    if (Opc == UO_Extension)
8817      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8818
8819    // & gets special logic for several kinds of placeholder.
8820    // The builtin code knows what to do.
8821    if (Opc == UO_AddrOf &&
8822        (pty->getKind() == BuiltinType::Overload ||
8823         pty->getKind() == BuiltinType::UnknownAny ||
8824         pty->getKind() == BuiltinType::BoundMember))
8825      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8826
8827    // Anything else needs to be handled now.
8828    ExprResult Result = CheckPlaceholderExpr(Input);
8829    if (Result.isInvalid()) return ExprError();
8830    Input = Result.take();
8831  }
8832
8833  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8834      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8835      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8836    // Find all of the overloaded operators visible from this
8837    // point. We perform both an operator-name lookup from the local
8838    // scope and an argument-dependent lookup based on the types of
8839    // the arguments.
8840    UnresolvedSet<16> Functions;
8841    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8842    if (S && OverOp != OO_None)
8843      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8844                                   Functions);
8845
8846    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8847  }
8848
8849  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8850}
8851
8852// Unary Operators.  'Tok' is the token for the operator.
8853ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8854                              tok::TokenKind Op, Expr *Input) {
8855  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8856}
8857
8858/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8859ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8860                                LabelDecl *TheDecl) {
8861  TheDecl->setUsed();
8862  // Create the AST node.  The address of a label always has type 'void*'.
8863  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8864                                       Context.getPointerType(Context.VoidTy)));
8865}
8866
8867/// Given the last statement in a statement-expression, check whether
8868/// the result is a producing expression (like a call to an
8869/// ns_returns_retained function) and, if so, rebuild it to hoist the
8870/// release out of the full-expression.  Otherwise, return null.
8871/// Cannot fail.
8872static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8873  // Should always be wrapped with one of these.
8874  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8875  if (!cleanups) return 0;
8876
8877  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8878  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8879    return 0;
8880
8881  // Splice out the cast.  This shouldn't modify any interesting
8882  // features of the statement.
8883  Expr *producer = cast->getSubExpr();
8884  assert(producer->getType() == cast->getType());
8885  assert(producer->getValueKind() == cast->getValueKind());
8886  cleanups->setSubExpr(producer);
8887  return cleanups;
8888}
8889
8890void Sema::ActOnStartStmtExpr() {
8891  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8892}
8893
8894void Sema::ActOnStmtExprError() {
8895  // Note that function is also called by TreeTransform when leaving a
8896  // StmtExpr scope without rebuilding anything.
8897
8898  DiscardCleanupsInEvaluationContext();
8899  PopExpressionEvaluationContext();
8900}
8901
8902ExprResult
8903Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8904                    SourceLocation RPLoc) { // "({..})"
8905  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8906  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8907
8908  if (hasAnyUnrecoverableErrorsInThisFunction())
8909    DiscardCleanupsInEvaluationContext();
8910  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8911  PopExpressionEvaluationContext();
8912
8913  bool isFileScope
8914    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8915  if (isFileScope)
8916    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8917
8918  // FIXME: there are a variety of strange constraints to enforce here, for
8919  // example, it is not possible to goto into a stmt expression apparently.
8920  // More semantic analysis is needed.
8921
8922  // If there are sub stmts in the compound stmt, take the type of the last one
8923  // as the type of the stmtexpr.
8924  QualType Ty = Context.VoidTy;
8925  bool StmtExprMayBindToTemp = false;
8926  if (!Compound->body_empty()) {
8927    Stmt *LastStmt = Compound->body_back();
8928    LabelStmt *LastLabelStmt = 0;
8929    // If LastStmt is a label, skip down through into the body.
8930    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8931      LastLabelStmt = Label;
8932      LastStmt = Label->getSubStmt();
8933    }
8934
8935    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8936      // Do function/array conversion on the last expression, but not
8937      // lvalue-to-rvalue.  However, initialize an unqualified type.
8938      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8939      if (LastExpr.isInvalid())
8940        return ExprError();
8941      Ty = LastExpr.get()->getType().getUnqualifiedType();
8942
8943      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8944        // In ARC, if the final expression ends in a consume, splice
8945        // the consume out and bind it later.  In the alternate case
8946        // (when dealing with a retainable type), the result
8947        // initialization will create a produce.  In both cases the
8948        // result will be +1, and we'll need to balance that out with
8949        // a bind.
8950        if (Expr *rebuiltLastStmt
8951              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8952          LastExpr = rebuiltLastStmt;
8953        } else {
8954          LastExpr = PerformCopyInitialization(
8955                            InitializedEntity::InitializeResult(LPLoc,
8956                                                                Ty,
8957                                                                false),
8958                                                   SourceLocation(),
8959                                               LastExpr);
8960        }
8961
8962        if (LastExpr.isInvalid())
8963          return ExprError();
8964        if (LastExpr.get() != 0) {
8965          if (!LastLabelStmt)
8966            Compound->setLastStmt(LastExpr.take());
8967          else
8968            LastLabelStmt->setSubStmt(LastExpr.take());
8969          StmtExprMayBindToTemp = true;
8970        }
8971      }
8972    }
8973  }
8974
8975  // FIXME: Check that expression type is complete/non-abstract; statement
8976  // expressions are not lvalues.
8977  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8978  if (StmtExprMayBindToTemp)
8979    return MaybeBindToTemporary(ResStmtExpr);
8980  return Owned(ResStmtExpr);
8981}
8982
8983ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8984                                      TypeSourceInfo *TInfo,
8985                                      OffsetOfComponent *CompPtr,
8986                                      unsigned NumComponents,
8987                                      SourceLocation RParenLoc) {
8988  QualType ArgTy = TInfo->getType();
8989  bool Dependent = ArgTy->isDependentType();
8990  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8991
8992  // We must have at least one component that refers to the type, and the first
8993  // one is known to be a field designator.  Verify that the ArgTy represents
8994  // a struct/union/class.
8995  if (!Dependent && !ArgTy->isRecordType())
8996    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8997                       << ArgTy << TypeRange);
8998
8999  // Type must be complete per C99 7.17p3 because a declaring a variable
9000  // with an incomplete type would be ill-formed.
9001  if (!Dependent
9002      && RequireCompleteType(BuiltinLoc, ArgTy,
9003                             diag::err_offsetof_incomplete_type, TypeRange))
9004    return ExprError();
9005
9006  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9007  // GCC extension, diagnose them.
9008  // FIXME: This diagnostic isn't actually visible because the location is in
9009  // a system header!
9010  if (NumComponents != 1)
9011    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9012      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9013
9014  bool DidWarnAboutNonPOD = false;
9015  QualType CurrentType = ArgTy;
9016  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9017  SmallVector<OffsetOfNode, 4> Comps;
9018  SmallVector<Expr*, 4> Exprs;
9019  for (unsigned i = 0; i != NumComponents; ++i) {
9020    const OffsetOfComponent &OC = CompPtr[i];
9021    if (OC.isBrackets) {
9022      // Offset of an array sub-field.  TODO: Should we allow vector elements?
9023      if (!CurrentType->isDependentType()) {
9024        const ArrayType *AT = Context.getAsArrayType(CurrentType);
9025        if(!AT)
9026          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9027                           << CurrentType);
9028        CurrentType = AT->getElementType();
9029      } else
9030        CurrentType = Context.DependentTy;
9031
9032      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9033      if (IdxRval.isInvalid())
9034        return ExprError();
9035      Expr *Idx = IdxRval.take();
9036
9037      // The expression must be an integral expression.
9038      // FIXME: An integral constant expression?
9039      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9040          !Idx->getType()->isIntegerType())
9041        return ExprError(Diag(Idx->getLocStart(),
9042                              diag::err_typecheck_subscript_not_integer)
9043                         << Idx->getSourceRange());
9044
9045      // Record this array index.
9046      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9047      Exprs.push_back(Idx);
9048      continue;
9049    }
9050
9051    // Offset of a field.
9052    if (CurrentType->isDependentType()) {
9053      // We have the offset of a field, but we can't look into the dependent
9054      // type. Just record the identifier of the field.
9055      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
9056      CurrentType = Context.DependentTy;
9057      continue;
9058    }
9059
9060    // We need to have a complete type to look into.
9061    if (RequireCompleteType(OC.LocStart, CurrentType,
9062                            diag::err_offsetof_incomplete_type))
9063      return ExprError();
9064
9065    // Look for the designated field.
9066    const RecordType *RC = CurrentType->getAs<RecordType>();
9067    if (!RC)
9068      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
9069                       << CurrentType);
9070    RecordDecl *RD = RC->getDecl();
9071
9072    // C++ [lib.support.types]p5:
9073    //   The macro offsetof accepts a restricted set of type arguments in this
9074    //   International Standard. type shall be a POD structure or a POD union
9075    //   (clause 9).
9076    // C++11 [support.types]p4:
9077    //   If type is not a standard-layout class (Clause 9), the results are
9078    //   undefined.
9079    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9080      bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
9081      unsigned DiagID =
9082        LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
9083                            : diag::warn_offsetof_non_pod_type;
9084
9085      if (!IsSafe && !DidWarnAboutNonPOD &&
9086          DiagRuntimeBehavior(BuiltinLoc, 0,
9087                              PDiag(DiagID)
9088                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
9089                              << CurrentType))
9090        DidWarnAboutNonPOD = true;
9091    }
9092
9093    // Look for the field.
9094    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
9095    LookupQualifiedName(R, RD);
9096    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
9097    IndirectFieldDecl *IndirectMemberDecl = 0;
9098    if (!MemberDecl) {
9099      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
9100        MemberDecl = IndirectMemberDecl->getAnonField();
9101    }
9102
9103    if (!MemberDecl)
9104      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
9105                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
9106                                                              OC.LocEnd));
9107
9108    // C99 7.17p3:
9109    //   (If the specified member is a bit-field, the behavior is undefined.)
9110    //
9111    // We diagnose this as an error.
9112    if (MemberDecl->isBitField()) {
9113      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
9114        << MemberDecl->getDeclName()
9115        << SourceRange(BuiltinLoc, RParenLoc);
9116      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
9117      return ExprError();
9118    }
9119
9120    RecordDecl *Parent = MemberDecl->getParent();
9121    if (IndirectMemberDecl)
9122      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
9123
9124    // If the member was found in a base class, introduce OffsetOfNodes for
9125    // the base class indirections.
9126    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
9127                       /*DetectVirtual=*/false);
9128    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
9129      CXXBasePath &Path = Paths.front();
9130      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
9131           B != BEnd; ++B)
9132        Comps.push_back(OffsetOfNode(B->Base));
9133    }
9134
9135    if (IndirectMemberDecl) {
9136      for (IndirectFieldDecl::chain_iterator FI =
9137           IndirectMemberDecl->chain_begin(),
9138           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
9139        assert(isa<FieldDecl>(*FI));
9140        Comps.push_back(OffsetOfNode(OC.LocStart,
9141                                     cast<FieldDecl>(*FI), OC.LocEnd));
9142      }
9143    } else
9144      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
9145
9146    CurrentType = MemberDecl->getType().getNonReferenceType();
9147  }
9148
9149  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
9150                                    TInfo, Comps.data(), Comps.size(),
9151                                    Exprs.data(), Exprs.size(), RParenLoc));
9152}
9153
9154ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
9155                                      SourceLocation BuiltinLoc,
9156                                      SourceLocation TypeLoc,
9157                                      ParsedType ParsedArgTy,
9158                                      OffsetOfComponent *CompPtr,
9159                                      unsigned NumComponents,
9160                                      SourceLocation RParenLoc) {
9161
9162  TypeSourceInfo *ArgTInfo;
9163  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
9164  if (ArgTy.isNull())
9165    return ExprError();
9166
9167  if (!ArgTInfo)
9168    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
9169
9170  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
9171                              RParenLoc);
9172}
9173
9174
9175ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
9176                                 Expr *CondExpr,
9177                                 Expr *LHSExpr, Expr *RHSExpr,
9178                                 SourceLocation RPLoc) {
9179  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
9180
9181  ExprValueKind VK = VK_RValue;
9182  ExprObjectKind OK = OK_Ordinary;
9183  QualType resType;
9184  bool ValueDependent = false;
9185  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
9186    resType = Context.DependentTy;
9187    ValueDependent = true;
9188  } else {
9189    // The conditional expression is required to be a constant expression.
9190    llvm::APSInt condEval(32);
9191    ExprResult CondICE
9192      = VerifyIntegerConstantExpression(CondExpr, &condEval,
9193          diag::err_typecheck_choose_expr_requires_constant, false);
9194    if (CondICE.isInvalid())
9195      return ExprError();
9196    CondExpr = CondICE.take();
9197
9198    // If the condition is > zero, then the AST type is the same as the LSHExpr.
9199    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
9200
9201    resType = ActiveExpr->getType();
9202    ValueDependent = ActiveExpr->isValueDependent();
9203    VK = ActiveExpr->getValueKind();
9204    OK = ActiveExpr->getObjectKind();
9205  }
9206
9207  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
9208                                        resType, VK, OK, RPLoc,
9209                                        resType->isDependentType(),
9210                                        ValueDependent));
9211}
9212
9213//===----------------------------------------------------------------------===//
9214// Clang Extensions.
9215//===----------------------------------------------------------------------===//
9216
9217/// ActOnBlockStart - This callback is invoked when a block literal is started.
9218void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
9219  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
9220  PushBlockScope(CurScope, Block);
9221  CurContext->addDecl(Block);
9222  if (CurScope)
9223    PushDeclContext(CurScope, Block);
9224  else
9225    CurContext = Block;
9226
9227  getCurBlock()->HasImplicitReturnType = true;
9228
9229  // Enter a new evaluation context to insulate the block from any
9230  // cleanups from the enclosing full-expression.
9231  PushExpressionEvaluationContext(PotentiallyEvaluated);
9232}
9233
9234void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
9235                               Scope *CurScope) {
9236  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
9237  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
9238  BlockScopeInfo *CurBlock = getCurBlock();
9239
9240  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
9241  QualType T = Sig->getType();
9242
9243  // FIXME: We should allow unexpanded parameter packs here, but that would,
9244  // in turn, make the block expression contain unexpanded parameter packs.
9245  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
9246    // Drop the parameters.
9247    FunctionProtoType::ExtProtoInfo EPI;
9248    EPI.HasTrailingReturn = false;
9249    EPI.TypeQuals |= DeclSpec::TQ_const;
9250    T = Context.getFunctionType(Context.DependentTy, /*Args=*/0, /*NumArgs=*/0,
9251                                EPI);
9252    Sig = Context.getTrivialTypeSourceInfo(T);
9253  }
9254
9255  // GetTypeForDeclarator always produces a function type for a block
9256  // literal signature.  Furthermore, it is always a FunctionProtoType
9257  // unless the function was written with a typedef.
9258  assert(T->isFunctionType() &&
9259         "GetTypeForDeclarator made a non-function block signature");
9260
9261  // Look for an explicit signature in that function type.
9262  FunctionProtoTypeLoc ExplicitSignature;
9263
9264  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
9265  if (isa<FunctionProtoTypeLoc>(tmp)) {
9266    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
9267
9268    // Check whether that explicit signature was synthesized by
9269    // GetTypeForDeclarator.  If so, don't save that as part of the
9270    // written signature.
9271    if (ExplicitSignature.getLocalRangeBegin() ==
9272        ExplicitSignature.getLocalRangeEnd()) {
9273      // This would be much cheaper if we stored TypeLocs instead of
9274      // TypeSourceInfos.
9275      TypeLoc Result = ExplicitSignature.getResultLoc();
9276      unsigned Size = Result.getFullDataSize();
9277      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
9278      Sig->getTypeLoc().initializeFullCopy(Result, Size);
9279
9280      ExplicitSignature = FunctionProtoTypeLoc();
9281    }
9282  }
9283
9284  CurBlock->TheDecl->setSignatureAsWritten(Sig);
9285  CurBlock->FunctionType = T;
9286
9287  const FunctionType *Fn = T->getAs<FunctionType>();
9288  QualType RetTy = Fn->getResultType();
9289  bool isVariadic =
9290    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
9291
9292  CurBlock->TheDecl->setIsVariadic(isVariadic);
9293
9294  // Don't allow returning a objc interface by value.
9295  if (RetTy->isObjCObjectType()) {
9296    Diag(ParamInfo.getLocStart(),
9297         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
9298    return;
9299  }
9300
9301  // Context.DependentTy is used as a placeholder for a missing block
9302  // return type.  TODO:  what should we do with declarators like:
9303  //   ^ * { ... }
9304  // If the answer is "apply template argument deduction"....
9305  if (RetTy != Context.DependentTy) {
9306    CurBlock->ReturnType = RetTy;
9307    CurBlock->TheDecl->setBlockMissingReturnType(false);
9308    CurBlock->HasImplicitReturnType = false;
9309  }
9310
9311  // Push block parameters from the declarator if we had them.
9312  SmallVector<ParmVarDecl*, 8> Params;
9313  if (ExplicitSignature) {
9314    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
9315      ParmVarDecl *Param = ExplicitSignature.getArg(I);
9316      if (Param->getIdentifier() == 0 &&
9317          !Param->isImplicit() &&
9318          !Param->isInvalidDecl() &&
9319          !getLangOpts().CPlusPlus)
9320        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9321      Params.push_back(Param);
9322    }
9323
9324  // Fake up parameter variables if we have a typedef, like
9325  //   ^ fntype { ... }
9326  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
9327    for (FunctionProtoType::arg_type_iterator
9328           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
9329      ParmVarDecl *Param =
9330        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
9331                                   ParamInfo.getLocStart(),
9332                                   *I);
9333      Params.push_back(Param);
9334    }
9335  }
9336
9337  // Set the parameters on the block decl.
9338  if (!Params.empty()) {
9339    CurBlock->TheDecl->setParams(Params);
9340    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9341                             CurBlock->TheDecl->param_end(),
9342                             /*CheckParameterNames=*/false);
9343  }
9344
9345  // Finally we can process decl attributes.
9346  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9347
9348  // Put the parameter variables in scope.  We can bail out immediately
9349  // if we don't have any.
9350  if (Params.empty())
9351    return;
9352
9353  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9354         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9355    (*AI)->setOwningFunction(CurBlock->TheDecl);
9356
9357    // If this has an identifier, add it to the scope stack.
9358    if ((*AI)->getIdentifier()) {
9359      CheckShadow(CurBlock->TheScope, *AI);
9360
9361      PushOnScopeChains(*AI, CurBlock->TheScope);
9362    }
9363  }
9364}
9365
9366/// ActOnBlockError - If there is an error parsing a block, this callback
9367/// is invoked to pop the information about the block from the action impl.
9368void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9369  // Leave the expression-evaluation context.
9370  DiscardCleanupsInEvaluationContext();
9371  PopExpressionEvaluationContext();
9372
9373  // Pop off CurBlock, handle nested blocks.
9374  PopDeclContext();
9375  PopFunctionScopeInfo();
9376}
9377
9378/// ActOnBlockStmtExpr - This is called when the body of a block statement
9379/// literal was successfully completed.  ^(int x){...}
9380ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9381                                    Stmt *Body, Scope *CurScope) {
9382  // If blocks are disabled, emit an error.
9383  if (!LangOpts.Blocks)
9384    Diag(CaretLoc, diag::err_blocks_disable);
9385
9386  // Leave the expression-evaluation context.
9387  if (hasAnyUnrecoverableErrorsInThisFunction())
9388    DiscardCleanupsInEvaluationContext();
9389  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9390  PopExpressionEvaluationContext();
9391
9392  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9393
9394  if (BSI->HasImplicitReturnType)
9395    deduceClosureReturnType(*BSI);
9396
9397  PopDeclContext();
9398
9399  QualType RetTy = Context.VoidTy;
9400  if (!BSI->ReturnType.isNull())
9401    RetTy = BSI->ReturnType;
9402
9403  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9404  QualType BlockTy;
9405
9406  // Set the captured variables on the block.
9407  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9408  SmallVector<BlockDecl::Capture, 4> Captures;
9409  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9410    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9411    if (Cap.isThisCapture())
9412      continue;
9413    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9414                              Cap.isNested(), Cap.getCopyExpr());
9415    Captures.push_back(NewCap);
9416  }
9417  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9418                            BSI->CXXThisCaptureIndex != 0);
9419
9420  // If the user wrote a function type in some form, try to use that.
9421  if (!BSI->FunctionType.isNull()) {
9422    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9423
9424    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9425    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9426
9427    // Turn protoless block types into nullary block types.
9428    if (isa<FunctionNoProtoType>(FTy)) {
9429      FunctionProtoType::ExtProtoInfo EPI;
9430      EPI.ExtInfo = Ext;
9431      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9432
9433    // Otherwise, if we don't need to change anything about the function type,
9434    // preserve its sugar structure.
9435    } else if (FTy->getResultType() == RetTy &&
9436               (!NoReturn || FTy->getNoReturnAttr())) {
9437      BlockTy = BSI->FunctionType;
9438
9439    // Otherwise, make the minimal modifications to the function type.
9440    } else {
9441      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9442      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9443      EPI.TypeQuals = 0; // FIXME: silently?
9444      EPI.ExtInfo = Ext;
9445      BlockTy = Context.getFunctionType(RetTy,
9446                                        FPT->arg_type_begin(),
9447                                        FPT->getNumArgs(),
9448                                        EPI);
9449    }
9450
9451  // If we don't have a function type, just build one from nothing.
9452  } else {
9453    FunctionProtoType::ExtProtoInfo EPI;
9454    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9455    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9456  }
9457
9458  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9459                           BSI->TheDecl->param_end());
9460  BlockTy = Context.getBlockPointerType(BlockTy);
9461
9462  // If needed, diagnose invalid gotos and switches in the block.
9463  if (getCurFunction()->NeedsScopeChecking() &&
9464      !hasAnyUnrecoverableErrorsInThisFunction() &&
9465      !PP.isCodeCompletionEnabled())
9466    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9467
9468  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9469
9470  // Try to apply the named return value optimization. We have to check again
9471  // if we can do this, though, because blocks keep return statements around
9472  // to deduce an implicit return type.
9473  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
9474      !BSI->TheDecl->isDependentContext())
9475    computeNRVO(Body, getCurBlock());
9476
9477  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9478  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9479  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9480
9481  // If the block isn't obviously global, i.e. it captures anything at
9482  // all, then we need to do a few things in the surrounding context:
9483  if (Result->getBlockDecl()->hasCaptures()) {
9484    // First, this expression has a new cleanup object.
9485    ExprCleanupObjects.push_back(Result->getBlockDecl());
9486    ExprNeedsCleanups = true;
9487
9488    // It also gets a branch-protected scope if any of the captured
9489    // variables needs destruction.
9490    for (BlockDecl::capture_const_iterator
9491           ci = Result->getBlockDecl()->capture_begin(),
9492           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9493      const VarDecl *var = ci->getVariable();
9494      if (var->getType().isDestructedType() != QualType::DK_none) {
9495        getCurFunction()->setHasBranchProtectedScope();
9496        break;
9497      }
9498    }
9499  }
9500
9501  return Owned(Result);
9502}
9503
9504ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9505                                        Expr *E, ParsedType Ty,
9506                                        SourceLocation RPLoc) {
9507  TypeSourceInfo *TInfo;
9508  GetTypeFromParser(Ty, &TInfo);
9509  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9510}
9511
9512ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9513                                Expr *E, TypeSourceInfo *TInfo,
9514                                SourceLocation RPLoc) {
9515  Expr *OrigExpr = E;
9516
9517  // Get the va_list type
9518  QualType VaListType = Context.getBuiltinVaListType();
9519  if (VaListType->isArrayType()) {
9520    // Deal with implicit array decay; for example, on x86-64,
9521    // va_list is an array, but it's supposed to decay to
9522    // a pointer for va_arg.
9523    VaListType = Context.getArrayDecayedType(VaListType);
9524    // Make sure the input expression also decays appropriately.
9525    ExprResult Result = UsualUnaryConversions(E);
9526    if (Result.isInvalid())
9527      return ExprError();
9528    E = Result.take();
9529  } else {
9530    // Otherwise, the va_list argument must be an l-value because
9531    // it is modified by va_arg.
9532    if (!E->isTypeDependent() &&
9533        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9534      return ExprError();
9535  }
9536
9537  if (!E->isTypeDependent() &&
9538      !Context.hasSameType(VaListType, E->getType())) {
9539    return ExprError(Diag(E->getLocStart(),
9540                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9541      << OrigExpr->getType() << E->getSourceRange());
9542  }
9543
9544  if (!TInfo->getType()->isDependentType()) {
9545    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9546                            diag::err_second_parameter_to_va_arg_incomplete,
9547                            TInfo->getTypeLoc()))
9548      return ExprError();
9549
9550    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9551                               TInfo->getType(),
9552                               diag::err_second_parameter_to_va_arg_abstract,
9553                               TInfo->getTypeLoc()))
9554      return ExprError();
9555
9556    if (!TInfo->getType().isPODType(Context)) {
9557      Diag(TInfo->getTypeLoc().getBeginLoc(),
9558           TInfo->getType()->isObjCLifetimeType()
9559             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9560             : diag::warn_second_parameter_to_va_arg_not_pod)
9561        << TInfo->getType()
9562        << TInfo->getTypeLoc().getSourceRange();
9563    }
9564
9565    // Check for va_arg where arguments of the given type will be promoted
9566    // (i.e. this va_arg is guaranteed to have undefined behavior).
9567    QualType PromoteType;
9568    if (TInfo->getType()->isPromotableIntegerType()) {
9569      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9570      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9571        PromoteType = QualType();
9572    }
9573    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9574      PromoteType = Context.DoubleTy;
9575    if (!PromoteType.isNull())
9576      Diag(TInfo->getTypeLoc().getBeginLoc(),
9577          diag::warn_second_parameter_to_va_arg_never_compatible)
9578        << TInfo->getType()
9579        << PromoteType
9580        << TInfo->getTypeLoc().getSourceRange();
9581  }
9582
9583  QualType T = TInfo->getType().getNonLValueExprType(Context);
9584  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9585}
9586
9587ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9588  // The type of __null will be int or long, depending on the size of
9589  // pointers on the target.
9590  QualType Ty;
9591  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9592  if (pw == Context.getTargetInfo().getIntWidth())
9593    Ty = Context.IntTy;
9594  else if (pw == Context.getTargetInfo().getLongWidth())
9595    Ty = Context.LongTy;
9596  else if (pw == Context.getTargetInfo().getLongLongWidth())
9597    Ty = Context.LongLongTy;
9598  else {
9599    llvm_unreachable("I don't know size of pointer!");
9600  }
9601
9602  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9603}
9604
9605static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9606                                           Expr *SrcExpr, FixItHint &Hint) {
9607  if (!SemaRef.getLangOpts().ObjC1)
9608    return;
9609
9610  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9611  if (!PT)
9612    return;
9613
9614  // Check if the destination is of type 'id'.
9615  if (!PT->isObjCIdType()) {
9616    // Check if the destination is the 'NSString' interface.
9617    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9618    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9619      return;
9620  }
9621
9622  // Ignore any parens, implicit casts (should only be
9623  // array-to-pointer decays), and not-so-opaque values.  The last is
9624  // important for making this trigger for property assignments.
9625  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9626  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9627    if (OV->getSourceExpr())
9628      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9629
9630  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9631  if (!SL || !SL->isAscii())
9632    return;
9633
9634  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9635}
9636
9637bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9638                                    SourceLocation Loc,
9639                                    QualType DstType, QualType SrcType,
9640                                    Expr *SrcExpr, AssignmentAction Action,
9641                                    bool *Complained) {
9642  if (Complained)
9643    *Complained = false;
9644
9645  // Decode the result (notice that AST's are still created for extensions).
9646  bool CheckInferredResultType = false;
9647  bool isInvalid = false;
9648  unsigned DiagKind = 0;
9649  FixItHint Hint;
9650  ConversionFixItGenerator ConvHints;
9651  bool MayHaveConvFixit = false;
9652  bool MayHaveFunctionDiff = false;
9653
9654  switch (ConvTy) {
9655  case Compatible:
9656      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
9657      return false;
9658
9659  case PointerToInt:
9660    DiagKind = diag::ext_typecheck_convert_pointer_int;
9661    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9662    MayHaveConvFixit = true;
9663    break;
9664  case IntToPointer:
9665    DiagKind = diag::ext_typecheck_convert_int_pointer;
9666    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9667    MayHaveConvFixit = true;
9668    break;
9669  case IncompatiblePointer:
9670    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9671    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9672    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9673      SrcType->isObjCObjectPointerType();
9674    if (Hint.isNull() && !CheckInferredResultType) {
9675      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9676    }
9677    MayHaveConvFixit = true;
9678    break;
9679  case IncompatiblePointerSign:
9680    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9681    break;
9682  case FunctionVoidPointer:
9683    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9684    break;
9685  case IncompatiblePointerDiscardsQualifiers: {
9686    // Perform array-to-pointer decay if necessary.
9687    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9688
9689    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9690    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9691    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9692      DiagKind = diag::err_typecheck_incompatible_address_space;
9693      break;
9694
9695
9696    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9697      DiagKind = diag::err_typecheck_incompatible_ownership;
9698      break;
9699    }
9700
9701    llvm_unreachable("unknown error case for discarding qualifiers!");
9702    // fallthrough
9703  }
9704  case CompatiblePointerDiscardsQualifiers:
9705    // If the qualifiers lost were because we were applying the
9706    // (deprecated) C++ conversion from a string literal to a char*
9707    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9708    // Ideally, this check would be performed in
9709    // checkPointerTypesForAssignment. However, that would require a
9710    // bit of refactoring (so that the second argument is an
9711    // expression, rather than a type), which should be done as part
9712    // of a larger effort to fix checkPointerTypesForAssignment for
9713    // C++ semantics.
9714    if (getLangOpts().CPlusPlus &&
9715        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9716      return false;
9717    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9718    break;
9719  case IncompatibleNestedPointerQualifiers:
9720    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9721    break;
9722  case IntToBlockPointer:
9723    DiagKind = diag::err_int_to_block_pointer;
9724    break;
9725  case IncompatibleBlockPointer:
9726    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9727    break;
9728  case IncompatibleObjCQualifiedId:
9729    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9730    // it can give a more specific diagnostic.
9731    DiagKind = diag::warn_incompatible_qualified_id;
9732    break;
9733  case IncompatibleVectors:
9734    DiagKind = diag::warn_incompatible_vectors;
9735    break;
9736  case IncompatibleObjCWeakRef:
9737    DiagKind = diag::err_arc_weak_unavailable_assign;
9738    break;
9739  case Incompatible:
9740    DiagKind = diag::err_typecheck_convert_incompatible;
9741    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9742    MayHaveConvFixit = true;
9743    isInvalid = true;
9744    MayHaveFunctionDiff = true;
9745    break;
9746  }
9747
9748  QualType FirstType, SecondType;
9749  switch (Action) {
9750  case AA_Assigning:
9751  case AA_Initializing:
9752    // The destination type comes first.
9753    FirstType = DstType;
9754    SecondType = SrcType;
9755    break;
9756
9757  case AA_Returning:
9758  case AA_Passing:
9759  case AA_Converting:
9760  case AA_Sending:
9761  case AA_Casting:
9762    // The source type comes first.
9763    FirstType = SrcType;
9764    SecondType = DstType;
9765    break;
9766  }
9767
9768  PartialDiagnostic FDiag = PDiag(DiagKind);
9769  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9770
9771  // If we can fix the conversion, suggest the FixIts.
9772  assert(ConvHints.isNull() || Hint.isNull());
9773  if (!ConvHints.isNull()) {
9774    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9775         HE = ConvHints.Hints.end(); HI != HE; ++HI)
9776      FDiag << *HI;
9777  } else {
9778    FDiag << Hint;
9779  }
9780  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9781
9782  if (MayHaveFunctionDiff)
9783    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9784
9785  Diag(Loc, FDiag);
9786
9787  if (SecondType == Context.OverloadTy)
9788    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9789                              FirstType);
9790
9791  if (CheckInferredResultType)
9792    EmitRelatedResultTypeNote(SrcExpr);
9793
9794  if (Complained)
9795    *Complained = true;
9796  return isInvalid;
9797}
9798
9799ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9800                                                 llvm::APSInt *Result) {
9801  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
9802  public:
9803    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9804      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
9805    }
9806  } Diagnoser;
9807
9808  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
9809}
9810
9811ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9812                                                 llvm::APSInt *Result,
9813                                                 unsigned DiagID,
9814                                                 bool AllowFold) {
9815  class IDDiagnoser : public VerifyICEDiagnoser {
9816    unsigned DiagID;
9817
9818  public:
9819    IDDiagnoser(unsigned DiagID)
9820      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
9821
9822    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9823      S.Diag(Loc, DiagID) << SR;
9824    }
9825  } Diagnoser(DiagID);
9826
9827  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
9828}
9829
9830void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
9831                                            SourceRange SR) {
9832  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
9833}
9834
9835ExprResult
9836Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9837                                      VerifyICEDiagnoser &Diagnoser,
9838                                      bool AllowFold) {
9839  SourceLocation DiagLoc = E->getLocStart();
9840
9841  if (getLangOpts().CPlusPlus0x) {
9842    // C++11 [expr.const]p5:
9843    //   If an expression of literal class type is used in a context where an
9844    //   integral constant expression is required, then that class type shall
9845    //   have a single non-explicit conversion function to an integral or
9846    //   unscoped enumeration type
9847    ExprResult Converted;
9848    if (!Diagnoser.Suppress) {
9849      class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
9850      public:
9851        CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
9852
9853        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9854                                                 QualType T) {
9855          return S.Diag(Loc, diag::err_ice_not_integral) << T;
9856        }
9857
9858        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9859                                                     SourceLocation Loc,
9860                                                     QualType T) {
9861          return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
9862        }
9863
9864        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9865                                                       SourceLocation Loc,
9866                                                       QualType T,
9867                                                       QualType ConvTy) {
9868          return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
9869        }
9870
9871        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9872                                                   CXXConversionDecl *Conv,
9873                                                   QualType ConvTy) {
9874          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9875                   << ConvTy->isEnumeralType() << ConvTy;
9876        }
9877
9878        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9879                                                    QualType T) {
9880          return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
9881        }
9882
9883        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9884                                                CXXConversionDecl *Conv,
9885                                                QualType ConvTy) {
9886          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9887                   << ConvTy->isEnumeralType() << ConvTy;
9888        }
9889
9890        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9891                                                     SourceLocation Loc,
9892                                                     QualType T,
9893                                                     QualType ConvTy) {
9894          return DiagnosticBuilder::getEmpty();
9895        }
9896      } ConvertDiagnoser;
9897
9898      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9899                                                     ConvertDiagnoser,
9900                                             /*AllowScopedEnumerations*/ false);
9901    } else {
9902      // The caller wants to silently enquire whether this is an ICE. Don't
9903      // produce any diagnostics if it isn't.
9904      class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
9905      public:
9906        SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
9907
9908        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9909                                                 QualType T) {
9910          return DiagnosticBuilder::getEmpty();
9911        }
9912
9913        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9914                                                     SourceLocation Loc,
9915                                                     QualType T) {
9916          return DiagnosticBuilder::getEmpty();
9917        }
9918
9919        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9920                                                       SourceLocation Loc,
9921                                                       QualType T,
9922                                                       QualType ConvTy) {
9923          return DiagnosticBuilder::getEmpty();
9924        }
9925
9926        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9927                                                   CXXConversionDecl *Conv,
9928                                                   QualType ConvTy) {
9929          return DiagnosticBuilder::getEmpty();
9930        }
9931
9932        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9933                                                    QualType T) {
9934          return DiagnosticBuilder::getEmpty();
9935        }
9936
9937        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9938                                                CXXConversionDecl *Conv,
9939                                                QualType ConvTy) {
9940          return DiagnosticBuilder::getEmpty();
9941        }
9942
9943        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9944                                                     SourceLocation Loc,
9945                                                     QualType T,
9946                                                     QualType ConvTy) {
9947          return DiagnosticBuilder::getEmpty();
9948        }
9949      } ConvertDiagnoser;
9950
9951      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9952                                                     ConvertDiagnoser, false);
9953    }
9954    if (Converted.isInvalid())
9955      return Converted;
9956    E = Converted.take();
9957    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9958      return ExprError();
9959  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9960    // An ICE must be of integral or unscoped enumeration type.
9961    if (!Diagnoser.Suppress)
9962      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9963    return ExprError();
9964  }
9965
9966  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9967  // in the non-ICE case.
9968  if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9969    if (Result)
9970      *Result = E->EvaluateKnownConstInt(Context);
9971    return Owned(E);
9972  }
9973
9974  Expr::EvalResult EvalResult;
9975  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9976  EvalResult.Diag = &Notes;
9977
9978  // Try to evaluate the expression, and produce diagnostics explaining why it's
9979  // not a constant expression as a side-effect.
9980  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9981                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9982
9983  // In C++11, we can rely on diagnostics being produced for any expression
9984  // which is not a constant expression. If no diagnostics were produced, then
9985  // this is a constant expression.
9986  if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9987    if (Result)
9988      *Result = EvalResult.Val.getInt();
9989    return Owned(E);
9990  }
9991
9992  // If our only note is the usual "invalid subexpression" note, just point
9993  // the caret at its location rather than producing an essentially
9994  // redundant note.
9995  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9996        diag::note_invalid_subexpr_in_const_expr) {
9997    DiagLoc = Notes[0].first;
9998    Notes.clear();
9999  }
10000
10001  if (!Folded || !AllowFold) {
10002    if (!Diagnoser.Suppress) {
10003      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10004      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10005        Diag(Notes[I].first, Notes[I].second);
10006    }
10007
10008    return ExprError();
10009  }
10010
10011  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10012  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10013    Diag(Notes[I].first, Notes[I].second);
10014
10015  if (Result)
10016    *Result = EvalResult.Val.getInt();
10017  return Owned(E);
10018}
10019
10020namespace {
10021  // Handle the case where we conclude a expression which we speculatively
10022  // considered to be unevaluated is actually evaluated.
10023  class TransformToPE : public TreeTransform<TransformToPE> {
10024    typedef TreeTransform<TransformToPE> BaseTransform;
10025
10026  public:
10027    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10028
10029    // Make sure we redo semantic analysis
10030    bool AlwaysRebuild() { return true; }
10031
10032    // Make sure we handle LabelStmts correctly.
10033    // FIXME: This does the right thing, but maybe we need a more general
10034    // fix to TreeTransform?
10035    StmtResult TransformLabelStmt(LabelStmt *S) {
10036      S->getDecl()->setStmt(0);
10037      return BaseTransform::TransformLabelStmt(S);
10038    }
10039
10040    // We need to special-case DeclRefExprs referring to FieldDecls which
10041    // are not part of a member pointer formation; normal TreeTransforming
10042    // doesn't catch this case because of the way we represent them in the AST.
10043    // FIXME: This is a bit ugly; is it really the best way to handle this
10044    // case?
10045    //
10046    // Error on DeclRefExprs referring to FieldDecls.
10047    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10048      if (isa<FieldDecl>(E->getDecl()) &&
10049          !SemaRef.isUnevaluatedContext())
10050        return SemaRef.Diag(E->getLocation(),
10051                            diag::err_invalid_non_static_member_use)
10052            << E->getDecl() << E->getSourceRange();
10053
10054      return BaseTransform::TransformDeclRefExpr(E);
10055    }
10056
10057    // Exception: filter out member pointer formation
10058    ExprResult TransformUnaryOperator(UnaryOperator *E) {
10059      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10060        return E;
10061
10062      return BaseTransform::TransformUnaryOperator(E);
10063    }
10064
10065    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10066      // Lambdas never need to be transformed.
10067      return E;
10068    }
10069  };
10070}
10071
10072ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
10073  assert(ExprEvalContexts.back().Context == Unevaluated &&
10074         "Should only transform unevaluated expressions");
10075  ExprEvalContexts.back().Context =
10076      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10077  if (ExprEvalContexts.back().Context == Unevaluated)
10078    return E;
10079  return TransformToPE(*this).TransformExpr(E);
10080}
10081
10082void
10083Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10084                                      Decl *LambdaContextDecl,
10085                                      bool IsDecltype) {
10086  ExprEvalContexts.push_back(
10087             ExpressionEvaluationContextRecord(NewContext,
10088                                               ExprCleanupObjects.size(),
10089                                               ExprNeedsCleanups,
10090                                               LambdaContextDecl,
10091                                               IsDecltype));
10092  ExprNeedsCleanups = false;
10093  if (!MaybeODRUseExprs.empty())
10094    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
10095}
10096
10097void Sema::PopExpressionEvaluationContext() {
10098  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
10099
10100  if (!Rec.Lambdas.empty()) {
10101    if (Rec.Context == Unevaluated) {
10102      // C++11 [expr.prim.lambda]p2:
10103      //   A lambda-expression shall not appear in an unevaluated operand
10104      //   (Clause 5).
10105      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
10106        Diag(Rec.Lambdas[I]->getLocStart(),
10107             diag::err_lambda_unevaluated_operand);
10108    } else {
10109      // Mark the capture expressions odr-used. This was deferred
10110      // during lambda expression creation.
10111      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
10112        LambdaExpr *Lambda = Rec.Lambdas[I];
10113        for (LambdaExpr::capture_init_iterator
10114                  C = Lambda->capture_init_begin(),
10115               CEnd = Lambda->capture_init_end();
10116             C != CEnd; ++C) {
10117          MarkDeclarationsReferencedInExpr(*C);
10118        }
10119      }
10120    }
10121  }
10122
10123  // When are coming out of an unevaluated context, clear out any
10124  // temporaries that we may have created as part of the evaluation of
10125  // the expression in that context: they aren't relevant because they
10126  // will never be constructed.
10127  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
10128    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
10129                             ExprCleanupObjects.end());
10130    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
10131    CleanupVarDeclMarking();
10132    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
10133  // Otherwise, merge the contexts together.
10134  } else {
10135    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
10136    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
10137                            Rec.SavedMaybeODRUseExprs.end());
10138  }
10139
10140  // Pop the current expression evaluation context off the stack.
10141  ExprEvalContexts.pop_back();
10142}
10143
10144void Sema::DiscardCleanupsInEvaluationContext() {
10145  ExprCleanupObjects.erase(
10146         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
10147         ExprCleanupObjects.end());
10148  ExprNeedsCleanups = false;
10149  MaybeODRUseExprs.clear();
10150}
10151
10152ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
10153  if (!E->getType()->isVariablyModifiedType())
10154    return E;
10155  return TranformToPotentiallyEvaluated(E);
10156}
10157
10158static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
10159  // Do not mark anything as "used" within a dependent context; wait for
10160  // an instantiation.
10161  if (SemaRef.CurContext->isDependentContext())
10162    return false;
10163
10164  switch (SemaRef.ExprEvalContexts.back().Context) {
10165    case Sema::Unevaluated:
10166      // We are in an expression that is not potentially evaluated; do nothing.
10167      // (Depending on how you read the standard, we actually do need to do
10168      // something here for null pointer constants, but the standard's
10169      // definition of a null pointer constant is completely crazy.)
10170      return false;
10171
10172    case Sema::ConstantEvaluated:
10173    case Sema::PotentiallyEvaluated:
10174      // We are in a potentially evaluated expression (or a constant-expression
10175      // in C++03); we need to do implicit template instantiation, implicitly
10176      // define class members, and mark most declarations as used.
10177      return true;
10178
10179    case Sema::PotentiallyEvaluatedIfUsed:
10180      // Referenced declarations will only be used if the construct in the
10181      // containing expression is used.
10182      return false;
10183  }
10184  llvm_unreachable("Invalid context");
10185}
10186
10187/// \brief Mark a function referenced, and check whether it is odr-used
10188/// (C++ [basic.def.odr]p2, C99 6.9p3)
10189void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
10190  assert(Func && "No function?");
10191
10192  Func->setReferenced();
10193
10194  // Don't mark this function as used multiple times, unless it's a constexpr
10195  // function which we need to instantiate.
10196  if (Func->isUsed(false) &&
10197      !(Func->isConstexpr() && !Func->getBody() &&
10198        Func->isImplicitlyInstantiable()))
10199    return;
10200
10201  if (!IsPotentiallyEvaluatedContext(*this))
10202    return;
10203
10204  // Note that this declaration has been used.
10205  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
10206    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
10207      if (Constructor->isDefaultConstructor()) {
10208        if (Constructor->isTrivial())
10209          return;
10210        if (!Constructor->isUsed(false))
10211          DefineImplicitDefaultConstructor(Loc, Constructor);
10212      } else if (Constructor->isCopyConstructor()) {
10213        if (!Constructor->isUsed(false))
10214          DefineImplicitCopyConstructor(Loc, Constructor);
10215      } else if (Constructor->isMoveConstructor()) {
10216        if (!Constructor->isUsed(false))
10217          DefineImplicitMoveConstructor(Loc, Constructor);
10218      }
10219    }
10220
10221    MarkVTableUsed(Loc, Constructor->getParent());
10222  } else if (CXXDestructorDecl *Destructor =
10223                 dyn_cast<CXXDestructorDecl>(Func)) {
10224    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
10225        !Destructor->isUsed(false))
10226      DefineImplicitDestructor(Loc, Destructor);
10227    if (Destructor->isVirtual())
10228      MarkVTableUsed(Loc, Destructor->getParent());
10229  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
10230    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
10231        MethodDecl->isOverloadedOperator() &&
10232        MethodDecl->getOverloadedOperator() == OO_Equal) {
10233      if (!MethodDecl->isUsed(false)) {
10234        if (MethodDecl->isCopyAssignmentOperator())
10235          DefineImplicitCopyAssignment(Loc, MethodDecl);
10236        else
10237          DefineImplicitMoveAssignment(Loc, MethodDecl);
10238      }
10239    } else if (isa<CXXConversionDecl>(MethodDecl) &&
10240               MethodDecl->getParent()->isLambda()) {
10241      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
10242      if (Conversion->isLambdaToBlockPointerConversion())
10243        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
10244      else
10245        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
10246    } else if (MethodDecl->isVirtual())
10247      MarkVTableUsed(Loc, MethodDecl->getParent());
10248  }
10249
10250  // Recursive functions should be marked when used from another function.
10251  // FIXME: Is this really right?
10252  if (CurContext == Func) return;
10253
10254  // Resolve the exception specification for any function which is
10255  // used: CodeGen will need it.
10256  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
10257  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
10258    ResolveExceptionSpec(Loc, FPT);
10259
10260  // Implicit instantiation of function templates and member functions of
10261  // class templates.
10262  if (Func->isImplicitlyInstantiable()) {
10263    bool AlreadyInstantiated = false;
10264    SourceLocation PointOfInstantiation = Loc;
10265    if (FunctionTemplateSpecializationInfo *SpecInfo
10266                              = Func->getTemplateSpecializationInfo()) {
10267      if (SpecInfo->getPointOfInstantiation().isInvalid())
10268        SpecInfo->setPointOfInstantiation(Loc);
10269      else if (SpecInfo->getTemplateSpecializationKind()
10270                 == TSK_ImplicitInstantiation) {
10271        AlreadyInstantiated = true;
10272        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
10273      }
10274    } else if (MemberSpecializationInfo *MSInfo
10275                                = Func->getMemberSpecializationInfo()) {
10276      if (MSInfo->getPointOfInstantiation().isInvalid())
10277        MSInfo->setPointOfInstantiation(Loc);
10278      else if (MSInfo->getTemplateSpecializationKind()
10279                 == TSK_ImplicitInstantiation) {
10280        AlreadyInstantiated = true;
10281        PointOfInstantiation = MSInfo->getPointOfInstantiation();
10282      }
10283    }
10284
10285    if (!AlreadyInstantiated || Func->isConstexpr()) {
10286      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
10287          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
10288        PendingLocalImplicitInstantiations.push_back(
10289            std::make_pair(Func, PointOfInstantiation));
10290      else if (Func->isConstexpr())
10291        // Do not defer instantiations of constexpr functions, to avoid the
10292        // expression evaluator needing to call back into Sema if it sees a
10293        // call to such a function.
10294        InstantiateFunctionDefinition(PointOfInstantiation, Func);
10295      else {
10296        PendingInstantiations.push_back(std::make_pair(Func,
10297                                                       PointOfInstantiation));
10298        // Notify the consumer that a function was implicitly instantiated.
10299        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
10300      }
10301    }
10302  } else {
10303    // Walk redefinitions, as some of them may be instantiable.
10304    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
10305         e(Func->redecls_end()); i != e; ++i) {
10306      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
10307        MarkFunctionReferenced(Loc, *i);
10308    }
10309  }
10310
10311  // Keep track of used but undefined functions.
10312  if (!Func->isPure() && !Func->hasBody() &&
10313      Func->getLinkage() != ExternalLinkage) {
10314    SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
10315    if (old.isInvalid()) old = Loc;
10316  }
10317
10318  Func->setUsed(true);
10319}
10320
10321static void
10322diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
10323                                   VarDecl *var, DeclContext *DC) {
10324  DeclContext *VarDC = var->getDeclContext();
10325
10326  //  If the parameter still belongs to the translation unit, then
10327  //  we're actually just using one parameter in the declaration of
10328  //  the next.
10329  if (isa<ParmVarDecl>(var) &&
10330      isa<TranslationUnitDecl>(VarDC))
10331    return;
10332
10333  // For C code, don't diagnose about capture if we're not actually in code
10334  // right now; it's impossible to write a non-constant expression outside of
10335  // function context, so we'll get other (more useful) diagnostics later.
10336  //
10337  // For C++, things get a bit more nasty... it would be nice to suppress this
10338  // diagnostic for certain cases like using a local variable in an array bound
10339  // for a member of a local class, but the correct predicate is not obvious.
10340  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
10341    return;
10342
10343  if (isa<CXXMethodDecl>(VarDC) &&
10344      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10345    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10346      << var->getIdentifier();
10347  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10348    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10349      << var->getIdentifier() << fn->getDeclName();
10350  } else if (isa<BlockDecl>(VarDC)) {
10351    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10352      << var->getIdentifier();
10353  } else {
10354    // FIXME: Is there any other context where a local variable can be
10355    // declared?
10356    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10357      << var->getIdentifier();
10358  }
10359
10360  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10361    << var->getIdentifier();
10362
10363  // FIXME: Add additional diagnostic info about class etc. which prevents
10364  // capture.
10365}
10366
10367/// \brief Capture the given variable in the given lambda expression.
10368static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10369                                  VarDecl *Var, QualType FieldType,
10370                                  QualType DeclRefType,
10371                                  SourceLocation Loc,
10372                                  bool RefersToEnclosingLocal) {
10373  CXXRecordDecl *Lambda = LSI->Lambda;
10374
10375  // Build the non-static data member.
10376  FieldDecl *Field
10377    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10378                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10379                        0, false, ICIS_NoInit);
10380  Field->setImplicit(true);
10381  Field->setAccess(AS_private);
10382  Lambda->addDecl(Field);
10383
10384  // C++11 [expr.prim.lambda]p21:
10385  //   When the lambda-expression is evaluated, the entities that
10386  //   are captured by copy are used to direct-initialize each
10387  //   corresponding non-static data member of the resulting closure
10388  //   object. (For array members, the array elements are
10389  //   direct-initialized in increasing subscript order.) These
10390  //   initializations are performed in the (unspecified) order in
10391  //   which the non-static data members are declared.
10392
10393  // Introduce a new evaluation context for the initialization, so
10394  // that temporaries introduced as part of the capture are retained
10395  // to be re-"exported" from the lambda expression itself.
10396  S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10397
10398  // C++ [expr.prim.labda]p12:
10399  //   An entity captured by a lambda-expression is odr-used (3.2) in
10400  //   the scope containing the lambda-expression.
10401  Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
10402                                          DeclRefType, VK_LValue, Loc);
10403  Var->setReferenced(true);
10404  Var->setUsed(true);
10405
10406  // When the field has array type, create index variables for each
10407  // dimension of the array. We use these index variables to subscript
10408  // the source array, and other clients (e.g., CodeGen) will perform
10409  // the necessary iteration with these index variables.
10410  SmallVector<VarDecl *, 4> IndexVariables;
10411  QualType BaseType = FieldType;
10412  QualType SizeType = S.Context.getSizeType();
10413  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10414  while (const ConstantArrayType *Array
10415                        = S.Context.getAsConstantArrayType(BaseType)) {
10416    // Create the iteration variable for this array index.
10417    IdentifierInfo *IterationVarName = 0;
10418    {
10419      SmallString<8> Str;
10420      llvm::raw_svector_ostream OS(Str);
10421      OS << "__i" << IndexVariables.size();
10422      IterationVarName = &S.Context.Idents.get(OS.str());
10423    }
10424    VarDecl *IterationVar
10425      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10426                        IterationVarName, SizeType,
10427                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10428                        SC_None, SC_None);
10429    IndexVariables.push_back(IterationVar);
10430    LSI->ArrayIndexVars.push_back(IterationVar);
10431
10432    // Create a reference to the iteration variable.
10433    ExprResult IterationVarRef
10434      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10435    assert(!IterationVarRef.isInvalid() &&
10436           "Reference to invented variable cannot fail!");
10437    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10438    assert(!IterationVarRef.isInvalid() &&
10439           "Conversion of invented variable cannot fail!");
10440
10441    // Subscript the array with this iteration variable.
10442    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10443                             Ref, Loc, IterationVarRef.take(), Loc);
10444    if (Subscript.isInvalid()) {
10445      S.CleanupVarDeclMarking();
10446      S.DiscardCleanupsInEvaluationContext();
10447      S.PopExpressionEvaluationContext();
10448      return ExprError();
10449    }
10450
10451    Ref = Subscript.take();
10452    BaseType = Array->getElementType();
10453  }
10454
10455  // Construct the entity that we will be initializing. For an array, this
10456  // will be first element in the array, which may require several levels
10457  // of array-subscript entities.
10458  SmallVector<InitializedEntity, 4> Entities;
10459  Entities.reserve(1 + IndexVariables.size());
10460  Entities.push_back(
10461    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10462  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10463    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10464                                                            0,
10465                                                            Entities.back()));
10466
10467  InitializationKind InitKind
10468    = InitializationKind::CreateDirect(Loc, Loc, Loc);
10469  InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10470  ExprResult Result(true);
10471  if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10472    Result = Init.Perform(S, Entities.back(), InitKind,
10473                          MultiExprArg(S, &Ref, 1));
10474
10475  // If this initialization requires any cleanups (e.g., due to a
10476  // default argument to a copy constructor), note that for the
10477  // lambda.
10478  if (S.ExprNeedsCleanups)
10479    LSI->ExprNeedsCleanups = true;
10480
10481  // Exit the expression evaluation context used for the capture.
10482  S.CleanupVarDeclMarking();
10483  S.DiscardCleanupsInEvaluationContext();
10484  S.PopExpressionEvaluationContext();
10485  return Result;
10486}
10487
10488bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10489                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
10490                              bool BuildAndDiagnose,
10491                              QualType &CaptureType,
10492                              QualType &DeclRefType) {
10493  bool Nested = false;
10494
10495  DeclContext *DC = CurContext;
10496  if (Var->getDeclContext() == DC) return true;
10497  if (!Var->hasLocalStorage()) return true;
10498
10499  bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10500
10501  // Walk up the stack to determine whether we can capture the variable,
10502  // performing the "simple" checks that don't depend on type. We stop when
10503  // we've either hit the declared scope of the variable or find an existing
10504  // capture of that variable.
10505  CaptureType = Var->getType();
10506  DeclRefType = CaptureType.getNonReferenceType();
10507  bool Explicit = (Kind != TryCapture_Implicit);
10508  unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10509  do {
10510    // Only block literals and lambda expressions can capture; other
10511    // scopes don't work.
10512    DeclContext *ParentDC;
10513    if (isa<BlockDecl>(DC))
10514      ParentDC = DC->getParent();
10515    else if (isa<CXXMethodDecl>(DC) &&
10516             cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10517             cast<CXXRecordDecl>(DC->getParent())->isLambda())
10518      ParentDC = DC->getParent()->getParent();
10519    else {
10520      if (BuildAndDiagnose)
10521        diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10522      return true;
10523    }
10524
10525    CapturingScopeInfo *CSI =
10526      cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10527
10528    // Check whether we've already captured it.
10529    if (CSI->CaptureMap.count(Var)) {
10530      // If we found a capture, any subcaptures are nested.
10531      Nested = true;
10532
10533      // Retrieve the capture type for this variable.
10534      CaptureType = CSI->getCapture(Var).getCaptureType();
10535
10536      // Compute the type of an expression that refers to this variable.
10537      DeclRefType = CaptureType.getNonReferenceType();
10538
10539      const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10540      if (Cap.isCopyCapture() &&
10541          !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10542        DeclRefType.addConst();
10543      break;
10544    }
10545
10546    bool IsBlock = isa<BlockScopeInfo>(CSI);
10547    bool IsLambda = !IsBlock;
10548
10549    // Lambdas are not allowed to capture unnamed variables
10550    // (e.g. anonymous unions).
10551    // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10552    // assuming that's the intent.
10553    if (IsLambda && !Var->getDeclName()) {
10554      if (BuildAndDiagnose) {
10555        Diag(Loc, diag::err_lambda_capture_anonymous_var);
10556        Diag(Var->getLocation(), diag::note_declared_at);
10557      }
10558      return true;
10559    }
10560
10561    // Prohibit variably-modified types; they're difficult to deal with.
10562    if (Var->getType()->isVariablyModifiedType()) {
10563      if (BuildAndDiagnose) {
10564        if (IsBlock)
10565          Diag(Loc, diag::err_ref_vm_type);
10566        else
10567          Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10568        Diag(Var->getLocation(), diag::note_previous_decl)
10569          << Var->getDeclName();
10570      }
10571      return true;
10572    }
10573
10574    // Lambdas are not allowed to capture __block variables; they don't
10575    // support the expected semantics.
10576    if (IsLambda && HasBlocksAttr) {
10577      if (BuildAndDiagnose) {
10578        Diag(Loc, diag::err_lambda_capture_block)
10579          << Var->getDeclName();
10580        Diag(Var->getLocation(), diag::note_previous_decl)
10581          << Var->getDeclName();
10582      }
10583      return true;
10584    }
10585
10586    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10587      // No capture-default
10588      if (BuildAndDiagnose) {
10589        Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10590        Diag(Var->getLocation(), diag::note_previous_decl)
10591          << Var->getDeclName();
10592        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10593             diag::note_lambda_decl);
10594      }
10595      return true;
10596    }
10597
10598    FunctionScopesIndex--;
10599    DC = ParentDC;
10600    Explicit = false;
10601  } while (!Var->getDeclContext()->Equals(DC));
10602
10603  // Walk back down the scope stack, computing the type of the capture at
10604  // each step, checking type-specific requirements, and adding captures if
10605  // requested.
10606  for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10607       ++I) {
10608    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10609
10610    // Compute the type of the capture and of a reference to the capture within
10611    // this scope.
10612    if (isa<BlockScopeInfo>(CSI)) {
10613      Expr *CopyExpr = 0;
10614      bool ByRef = false;
10615
10616      // Blocks are not allowed to capture arrays.
10617      if (CaptureType->isArrayType()) {
10618        if (BuildAndDiagnose) {
10619          Diag(Loc, diag::err_ref_array_type);
10620          Diag(Var->getLocation(), diag::note_previous_decl)
10621          << Var->getDeclName();
10622        }
10623        return true;
10624      }
10625
10626      // Forbid the block-capture of autoreleasing variables.
10627      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10628        if (BuildAndDiagnose) {
10629          Diag(Loc, diag::err_arc_autoreleasing_capture)
10630            << /*block*/ 0;
10631          Diag(Var->getLocation(), diag::note_previous_decl)
10632            << Var->getDeclName();
10633        }
10634        return true;
10635      }
10636
10637      if (HasBlocksAttr || CaptureType->isReferenceType()) {
10638        // Block capture by reference does not change the capture or
10639        // declaration reference types.
10640        ByRef = true;
10641      } else {
10642        // Block capture by copy introduces 'const'.
10643        CaptureType = CaptureType.getNonReferenceType().withConst();
10644        DeclRefType = CaptureType;
10645
10646        if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10647          if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10648            // The capture logic needs the destructor, so make sure we mark it.
10649            // Usually this is unnecessary because most local variables have
10650            // their destructors marked at declaration time, but parameters are
10651            // an exception because it's technically only the call site that
10652            // actually requires the destructor.
10653            if (isa<ParmVarDecl>(Var))
10654              FinalizeVarWithDestructor(Var, Record);
10655
10656            // According to the blocks spec, the capture of a variable from
10657            // the stack requires a const copy constructor.  This is not true
10658            // of the copy/move done to move a __block variable to the heap.
10659            Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10660                                                      DeclRefType.withConst(),
10661                                                      VK_LValue, Loc);
10662            ExprResult Result
10663              = PerformCopyInitialization(
10664                  InitializedEntity::InitializeBlock(Var->getLocation(),
10665                                                     CaptureType, false),
10666                  Loc, Owned(DeclRef));
10667
10668            // Build a full-expression copy expression if initialization
10669            // succeeded and used a non-trivial constructor.  Recover from
10670            // errors by pretending that the copy isn't necessary.
10671            if (!Result.isInvalid() &&
10672                !cast<CXXConstructExpr>(Result.get())->getConstructor()
10673                   ->isTrivial()) {
10674              Result = MaybeCreateExprWithCleanups(Result);
10675              CopyExpr = Result.take();
10676            }
10677          }
10678        }
10679      }
10680
10681      // Actually capture the variable.
10682      if (BuildAndDiagnose)
10683        CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10684                        SourceLocation(), CaptureType, CopyExpr);
10685      Nested = true;
10686      continue;
10687    }
10688
10689    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10690
10691    // Determine whether we are capturing by reference or by value.
10692    bool ByRef = false;
10693    if (I == N - 1 && Kind != TryCapture_Implicit) {
10694      ByRef = (Kind == TryCapture_ExplicitByRef);
10695    } else {
10696      ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10697    }
10698
10699    // Compute the type of the field that will capture this variable.
10700    if (ByRef) {
10701      // C++11 [expr.prim.lambda]p15:
10702      //   An entity is captured by reference if it is implicitly or
10703      //   explicitly captured but not captured by copy. It is
10704      //   unspecified whether additional unnamed non-static data
10705      //   members are declared in the closure type for entities
10706      //   captured by reference.
10707      //
10708      // FIXME: It is not clear whether we want to build an lvalue reference
10709      // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10710      // to do the former, while EDG does the latter. Core issue 1249 will
10711      // clarify, but for now we follow GCC because it's a more permissive and
10712      // easily defensible position.
10713      CaptureType = Context.getLValueReferenceType(DeclRefType);
10714    } else {
10715      // C++11 [expr.prim.lambda]p14:
10716      //   For each entity captured by copy, an unnamed non-static
10717      //   data member is declared in the closure type. The
10718      //   declaration order of these members is unspecified. The type
10719      //   of such a data member is the type of the corresponding
10720      //   captured entity if the entity is not a reference to an
10721      //   object, or the referenced type otherwise. [Note: If the
10722      //   captured entity is a reference to a function, the
10723      //   corresponding data member is also a reference to a
10724      //   function. - end note ]
10725      if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10726        if (!RefType->getPointeeType()->isFunctionType())
10727          CaptureType = RefType->getPointeeType();
10728      }
10729
10730      // Forbid the lambda copy-capture of autoreleasing variables.
10731      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10732        if (BuildAndDiagnose) {
10733          Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10734          Diag(Var->getLocation(), diag::note_previous_decl)
10735            << Var->getDeclName();
10736        }
10737        return true;
10738      }
10739    }
10740
10741    // Capture this variable in the lambda.
10742    Expr *CopyExpr = 0;
10743    if (BuildAndDiagnose) {
10744      ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10745                                          DeclRefType, Loc,
10746                                          I == N-1);
10747      if (!Result.isInvalid())
10748        CopyExpr = Result.take();
10749    }
10750
10751    // Compute the type of a reference to this captured variable.
10752    if (ByRef)
10753      DeclRefType = CaptureType.getNonReferenceType();
10754    else {
10755      // C++ [expr.prim.lambda]p5:
10756      //   The closure type for a lambda-expression has a public inline
10757      //   function call operator [...]. This function call operator is
10758      //   declared const (9.3.1) if and only if the lambda-expression’s
10759      //   parameter-declaration-clause is not followed by mutable.
10760      DeclRefType = CaptureType.getNonReferenceType();
10761      if (!LSI->Mutable && !CaptureType->isReferenceType())
10762        DeclRefType.addConst();
10763    }
10764
10765    // Add the capture.
10766    if (BuildAndDiagnose)
10767      CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10768                      EllipsisLoc, CaptureType, CopyExpr);
10769    Nested = true;
10770  }
10771
10772  return false;
10773}
10774
10775bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10776                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10777  QualType CaptureType;
10778  QualType DeclRefType;
10779  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10780                            /*BuildAndDiagnose=*/true, CaptureType,
10781                            DeclRefType);
10782}
10783
10784QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10785  QualType CaptureType;
10786  QualType DeclRefType;
10787
10788  // Determine whether we can capture this variable.
10789  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10790                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10791    return QualType();
10792
10793  return DeclRefType;
10794}
10795
10796static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10797                               SourceLocation Loc) {
10798  // Keep track of used but undefined variables.
10799  // FIXME: We shouldn't suppress this warning for static data members.
10800  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10801      Var->getLinkage() != ExternalLinkage &&
10802      !(Var->isStaticDataMember() && Var->hasInit())) {
10803    SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10804    if (old.isInvalid()) old = Loc;
10805  }
10806
10807  SemaRef.tryCaptureVariable(Var, Loc);
10808
10809  Var->setUsed(true);
10810}
10811
10812void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10813  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10814  // an object that satisfies the requirements for appearing in a
10815  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10816  // is immediately applied."  This function handles the lvalue-to-rvalue
10817  // conversion part.
10818  MaybeODRUseExprs.erase(E->IgnoreParens());
10819}
10820
10821ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10822  if (!Res.isUsable())
10823    return Res;
10824
10825  // If a constant-expression is a reference to a variable where we delay
10826  // deciding whether it is an odr-use, just assume we will apply the
10827  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
10828  // (a non-type template argument), we have special handling anyway.
10829  UpdateMarkingForLValueToRValue(Res.get());
10830  return Res;
10831}
10832
10833void Sema::CleanupVarDeclMarking() {
10834  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10835                                        e = MaybeODRUseExprs.end();
10836       i != e; ++i) {
10837    VarDecl *Var;
10838    SourceLocation Loc;
10839    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10840      Var = cast<VarDecl>(DRE->getDecl());
10841      Loc = DRE->getLocation();
10842    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10843      Var = cast<VarDecl>(ME->getMemberDecl());
10844      Loc = ME->getMemberLoc();
10845    } else {
10846      llvm_unreachable("Unexpcted expression");
10847    }
10848
10849    MarkVarDeclODRUsed(*this, Var, Loc);
10850  }
10851
10852  MaybeODRUseExprs.clear();
10853}
10854
10855// Mark a VarDecl referenced, and perform the necessary handling to compute
10856// odr-uses.
10857static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10858                                    VarDecl *Var, Expr *E) {
10859  Var->setReferenced();
10860
10861  if (!IsPotentiallyEvaluatedContext(SemaRef))
10862    return;
10863
10864  // Implicit instantiation of static data members of class templates.
10865  if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10866    MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10867    assert(MSInfo && "Missing member specialization information?");
10868    bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10869    if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10870        (!AlreadyInstantiated ||
10871         Var->isUsableInConstantExpressions(SemaRef.Context))) {
10872      if (!AlreadyInstantiated) {
10873        // This is a modification of an existing AST node. Notify listeners.
10874        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10875          L->StaticDataMemberInstantiated(Var);
10876        MSInfo->setPointOfInstantiation(Loc);
10877      }
10878      SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10879      if (Var->isUsableInConstantExpressions(SemaRef.Context))
10880        // Do not defer instantiations of variables which could be used in a
10881        // constant expression.
10882        SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10883      else
10884        SemaRef.PendingInstantiations.push_back(
10885            std::make_pair(Var, PointOfInstantiation));
10886    }
10887  }
10888
10889  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10890  // an object that satisfies the requirements for appearing in a
10891  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10892  // is immediately applied."  We check the first part here, and
10893  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10894  // Note that we use the C++11 definition everywhere because nothing in
10895  // C++03 depends on whether we get the C++03 version correct. This does not
10896  // apply to references, since they are not objects.
10897  const VarDecl *DefVD;
10898  if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10899      Var->isUsableInConstantExpressions(SemaRef.Context) &&
10900      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10901    SemaRef.MaybeODRUseExprs.insert(E);
10902  else
10903    MarkVarDeclODRUsed(SemaRef, Var, Loc);
10904}
10905
10906/// \brief Mark a variable referenced, and check whether it is odr-used
10907/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
10908/// used directly for normal expressions referring to VarDecl.
10909void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10910  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10911}
10912
10913static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10914                               Decl *D, Expr *E) {
10915  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10916    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10917    return;
10918  }
10919
10920  SemaRef.MarkAnyDeclReferenced(Loc, D);
10921
10922  // If this is a call to a method via a cast, also mark the method in the
10923  // derived class used in case codegen can devirtualize the call.
10924  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
10925  if (!ME)
10926    return;
10927  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
10928  if (!MD)
10929    return;
10930  const Expr *Base = ME->getBase();
10931  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
10932  if (!MostDerivedClassDecl)
10933    return;
10934  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
10935  if (!DM)
10936    return;
10937  SemaRef.MarkAnyDeclReferenced(Loc, DM);
10938}
10939
10940/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
10941void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10942  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10943}
10944
10945/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
10946void Sema::MarkMemberReferenced(MemberExpr *E) {
10947  MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10948}
10949
10950/// \brief Perform marking for a reference to an arbitrary declaration.  It
10951/// marks the declaration referenced, and performs odr-use checking for functions
10952/// and variables. This method should not be used when building an normal
10953/// expression which refers to a variable.
10954void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10955  if (VarDecl *VD = dyn_cast<VarDecl>(D))
10956    MarkVariableReferenced(Loc, VD);
10957  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10958    MarkFunctionReferenced(Loc, FD);
10959  else
10960    D->setReferenced();
10961}
10962
10963namespace {
10964  // Mark all of the declarations referenced
10965  // FIXME: Not fully implemented yet! We need to have a better understanding
10966  // of when we're entering
10967  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10968    Sema &S;
10969    SourceLocation Loc;
10970
10971  public:
10972    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10973
10974    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10975
10976    bool TraverseTemplateArgument(const TemplateArgument &Arg);
10977    bool TraverseRecordType(RecordType *T);
10978  };
10979}
10980
10981bool MarkReferencedDecls::TraverseTemplateArgument(
10982  const TemplateArgument &Arg) {
10983  if (Arg.getKind() == TemplateArgument::Declaration) {
10984    if (Decl *D = Arg.getAsDecl())
10985      S.MarkAnyDeclReferenced(Loc, D);
10986  }
10987
10988  return Inherited::TraverseTemplateArgument(Arg);
10989}
10990
10991bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
10992  if (ClassTemplateSpecializationDecl *Spec
10993                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
10994    const TemplateArgumentList &Args = Spec->getTemplateArgs();
10995    return TraverseTemplateArguments(Args.data(), Args.size());
10996  }
10997
10998  return true;
10999}
11000
11001void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
11002  MarkReferencedDecls Marker(*this, Loc);
11003  Marker.TraverseType(Context.getCanonicalType(T));
11004}
11005
11006namespace {
11007  /// \brief Helper class that marks all of the declarations referenced by
11008  /// potentially-evaluated subexpressions as "referenced".
11009  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
11010    Sema &S;
11011    bool SkipLocalVariables;
11012
11013  public:
11014    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
11015
11016    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
11017      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
11018
11019    void VisitDeclRefExpr(DeclRefExpr *E) {
11020      // If we were asked not to visit local variables, don't.
11021      if (SkipLocalVariables) {
11022        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
11023          if (VD->hasLocalStorage())
11024            return;
11025      }
11026
11027      S.MarkDeclRefReferenced(E);
11028    }
11029
11030    void VisitMemberExpr(MemberExpr *E) {
11031      S.MarkMemberReferenced(E);
11032      Inherited::VisitMemberExpr(E);
11033    }
11034
11035    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
11036      S.MarkFunctionReferenced(E->getLocStart(),
11037            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
11038      Visit(E->getSubExpr());
11039    }
11040
11041    void VisitCXXNewExpr(CXXNewExpr *E) {
11042      if (E->getOperatorNew())
11043        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
11044      if (E->getOperatorDelete())
11045        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11046      Inherited::VisitCXXNewExpr(E);
11047    }
11048
11049    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
11050      if (E->getOperatorDelete())
11051        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
11052      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
11053      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
11054        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
11055        S.MarkFunctionReferenced(E->getLocStart(),
11056                                    S.LookupDestructor(Record));
11057      }
11058
11059      Inherited::VisitCXXDeleteExpr(E);
11060    }
11061
11062    void VisitCXXConstructExpr(CXXConstructExpr *E) {
11063      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
11064      Inherited::VisitCXXConstructExpr(E);
11065    }
11066
11067    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
11068      Visit(E->getExpr());
11069    }
11070
11071    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11072      Inherited::VisitImplicitCastExpr(E);
11073
11074      if (E->getCastKind() == CK_LValueToRValue)
11075        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
11076    }
11077  };
11078}
11079
11080/// \brief Mark any declarations that appear within this expression or any
11081/// potentially-evaluated subexpressions as "referenced".
11082///
11083/// \param SkipLocalVariables If true, don't mark local variables as
11084/// 'referenced'.
11085void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
11086                                            bool SkipLocalVariables) {
11087  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
11088}
11089
11090/// \brief Emit a diagnostic that describes an effect on the run-time behavior
11091/// of the program being compiled.
11092///
11093/// This routine emits the given diagnostic when the code currently being
11094/// type-checked is "potentially evaluated", meaning that there is a
11095/// possibility that the code will actually be executable. Code in sizeof()
11096/// expressions, code used only during overload resolution, etc., are not
11097/// potentially evaluated. This routine will suppress such diagnostics or,
11098/// in the absolutely nutty case of potentially potentially evaluated
11099/// expressions (C++ typeid), queue the diagnostic to potentially emit it
11100/// later.
11101///
11102/// This routine should be used for all diagnostics that describe the run-time
11103/// behavior of a program, such as passing a non-POD value through an ellipsis.
11104/// Failure to do so will likely result in spurious diagnostics or failures
11105/// during overload resolution or within sizeof/alignof/typeof/typeid.
11106bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
11107                               const PartialDiagnostic &PD) {
11108  switch (ExprEvalContexts.back().Context) {
11109  case Unevaluated:
11110    // The argument will never be evaluated, so don't complain.
11111    break;
11112
11113  case ConstantEvaluated:
11114    // Relevant diagnostics should be produced by constant evaluation.
11115    break;
11116
11117  case PotentiallyEvaluated:
11118  case PotentiallyEvaluatedIfUsed:
11119    if (Statement && getCurFunctionOrMethodDecl()) {
11120      FunctionScopes.back()->PossiblyUnreachableDiags.
11121        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
11122    }
11123    else
11124      Diag(Loc, PD);
11125
11126    return true;
11127  }
11128
11129  return false;
11130}
11131
11132bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
11133                               CallExpr *CE, FunctionDecl *FD) {
11134  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
11135    return false;
11136
11137  // If we're inside a decltype's expression, don't check for a valid return
11138  // type or construct temporaries until we know whether this is the last call.
11139  if (ExprEvalContexts.back().IsDecltype) {
11140    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
11141    return false;
11142  }
11143
11144  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
11145    FunctionDecl *FD;
11146    CallExpr *CE;
11147
11148  public:
11149    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
11150      : FD(FD), CE(CE) { }
11151
11152    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
11153      if (!FD) {
11154        S.Diag(Loc, diag::err_call_incomplete_return)
11155          << T << CE->getSourceRange();
11156        return;
11157      }
11158
11159      S.Diag(Loc, diag::err_call_function_incomplete_return)
11160        << CE->getSourceRange() << FD->getDeclName() << T;
11161      S.Diag(FD->getLocation(),
11162             diag::note_function_with_incomplete_return_type_declared_here)
11163        << FD->getDeclName();
11164    }
11165  } Diagnoser(FD, CE);
11166
11167  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
11168    return true;
11169
11170  return false;
11171}
11172
11173// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
11174// will prevent this condition from triggering, which is what we want.
11175void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
11176  SourceLocation Loc;
11177
11178  unsigned diagnostic = diag::warn_condition_is_assignment;
11179  bool IsOrAssign = false;
11180
11181  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
11182    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
11183      return;
11184
11185    IsOrAssign = Op->getOpcode() == BO_OrAssign;
11186
11187    // Greylist some idioms by putting them into a warning subcategory.
11188    if (ObjCMessageExpr *ME
11189          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
11190      Selector Sel = ME->getSelector();
11191
11192      // self = [<foo> init...]
11193      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
11194        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11195
11196      // <foo> = [<bar> nextObject]
11197      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
11198        diagnostic = diag::warn_condition_is_idiomatic_assignment;
11199    }
11200
11201    Loc = Op->getOperatorLoc();
11202  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
11203    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
11204      return;
11205
11206    IsOrAssign = Op->getOperator() == OO_PipeEqual;
11207    Loc = Op->getOperatorLoc();
11208  } else {
11209    // Not an assignment.
11210    return;
11211  }
11212
11213  Diag(Loc, diagnostic) << E->getSourceRange();
11214
11215  SourceLocation Open = E->getLocStart();
11216  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
11217  Diag(Loc, diag::note_condition_assign_silence)
11218        << FixItHint::CreateInsertion(Open, "(")
11219        << FixItHint::CreateInsertion(Close, ")");
11220
11221  if (IsOrAssign)
11222    Diag(Loc, diag::note_condition_or_assign_to_comparison)
11223      << FixItHint::CreateReplacement(Loc, "!=");
11224  else
11225    Diag(Loc, diag::note_condition_assign_to_comparison)
11226      << FixItHint::CreateReplacement(Loc, "==");
11227}
11228
11229/// \brief Redundant parentheses over an equality comparison can indicate
11230/// that the user intended an assignment used as condition.
11231void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
11232  // Don't warn if the parens came from a macro.
11233  SourceLocation parenLoc = ParenE->getLocStart();
11234  if (parenLoc.isInvalid() || parenLoc.isMacroID())
11235    return;
11236  // Don't warn for dependent expressions.
11237  if (ParenE->isTypeDependent())
11238    return;
11239
11240  Expr *E = ParenE->IgnoreParens();
11241
11242  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
11243    if (opE->getOpcode() == BO_EQ &&
11244        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
11245                                                           == Expr::MLV_Valid) {
11246      SourceLocation Loc = opE->getOperatorLoc();
11247
11248      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
11249      SourceRange ParenERange = ParenE->getSourceRange();
11250      Diag(Loc, diag::note_equality_comparison_silence)
11251        << FixItHint::CreateRemoval(ParenERange.getBegin())
11252        << FixItHint::CreateRemoval(ParenERange.getEnd());
11253      Diag(Loc, diag::note_equality_comparison_to_assign)
11254        << FixItHint::CreateReplacement(Loc, "=");
11255    }
11256}
11257
11258ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
11259  DiagnoseAssignmentAsCondition(E);
11260  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
11261    DiagnoseEqualityWithExtraParens(parenE);
11262
11263  ExprResult result = CheckPlaceholderExpr(E);
11264  if (result.isInvalid()) return ExprError();
11265  E = result.take();
11266
11267  if (!E->isTypeDependent()) {
11268    if (getLangOpts().CPlusPlus)
11269      return CheckCXXBooleanCondition(E); // C++ 6.4p4
11270
11271    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
11272    if (ERes.isInvalid())
11273      return ExprError();
11274    E = ERes.take();
11275
11276    QualType T = E->getType();
11277    if (!T->isScalarType()) { // C99 6.8.4.1p1
11278      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
11279        << T << E->getSourceRange();
11280      return ExprError();
11281    }
11282  }
11283
11284  return Owned(E);
11285}
11286
11287ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
11288                                       Expr *SubExpr) {
11289  if (!SubExpr)
11290    return ExprError();
11291
11292  return CheckBooleanCondition(SubExpr, Loc);
11293}
11294
11295namespace {
11296  /// A visitor for rebuilding a call to an __unknown_any expression
11297  /// to have an appropriate type.
11298  struct RebuildUnknownAnyFunction
11299    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
11300
11301    Sema &S;
11302
11303    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
11304
11305    ExprResult VisitStmt(Stmt *S) {
11306      llvm_unreachable("unexpected statement!");
11307    }
11308
11309    ExprResult VisitExpr(Expr *E) {
11310      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
11311        << E->getSourceRange();
11312      return ExprError();
11313    }
11314
11315    /// Rebuild an expression which simply semantically wraps another
11316    /// expression which it shares the type and value kind of.
11317    template <class T> ExprResult rebuildSugarExpr(T *E) {
11318      ExprResult SubResult = Visit(E->getSubExpr());
11319      if (SubResult.isInvalid()) return ExprError();
11320
11321      Expr *SubExpr = SubResult.take();
11322      E->setSubExpr(SubExpr);
11323      E->setType(SubExpr->getType());
11324      E->setValueKind(SubExpr->getValueKind());
11325      assert(E->getObjectKind() == OK_Ordinary);
11326      return E;
11327    }
11328
11329    ExprResult VisitParenExpr(ParenExpr *E) {
11330      return rebuildSugarExpr(E);
11331    }
11332
11333    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11334      return rebuildSugarExpr(E);
11335    }
11336
11337    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11338      ExprResult SubResult = Visit(E->getSubExpr());
11339      if (SubResult.isInvalid()) return ExprError();
11340
11341      Expr *SubExpr = SubResult.take();
11342      E->setSubExpr(SubExpr);
11343      E->setType(S.Context.getPointerType(SubExpr->getType()));
11344      assert(E->getValueKind() == VK_RValue);
11345      assert(E->getObjectKind() == OK_Ordinary);
11346      return E;
11347    }
11348
11349    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
11350      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
11351
11352      E->setType(VD->getType());
11353
11354      assert(E->getValueKind() == VK_RValue);
11355      if (S.getLangOpts().CPlusPlus &&
11356          !(isa<CXXMethodDecl>(VD) &&
11357            cast<CXXMethodDecl>(VD)->isInstance()))
11358        E->setValueKind(VK_LValue);
11359
11360      return E;
11361    }
11362
11363    ExprResult VisitMemberExpr(MemberExpr *E) {
11364      return resolveDecl(E, E->getMemberDecl());
11365    }
11366
11367    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11368      return resolveDecl(E, E->getDecl());
11369    }
11370  };
11371}
11372
11373/// Given a function expression of unknown-any type, try to rebuild it
11374/// to have a function type.
11375static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11376  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11377  if (Result.isInvalid()) return ExprError();
11378  return S.DefaultFunctionArrayConversion(Result.take());
11379}
11380
11381namespace {
11382  /// A visitor for rebuilding an expression of type __unknown_anytype
11383  /// into one which resolves the type directly on the referring
11384  /// expression.  Strict preservation of the original source
11385  /// structure is not a goal.
11386  struct RebuildUnknownAnyExpr
11387    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11388
11389    Sema &S;
11390
11391    /// The current destination type.
11392    QualType DestType;
11393
11394    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11395      : S(S), DestType(CastType) {}
11396
11397    ExprResult VisitStmt(Stmt *S) {
11398      llvm_unreachable("unexpected statement!");
11399    }
11400
11401    ExprResult VisitExpr(Expr *E) {
11402      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11403        << E->getSourceRange();
11404      return ExprError();
11405    }
11406
11407    ExprResult VisitCallExpr(CallExpr *E);
11408    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11409
11410    /// Rebuild an expression which simply semantically wraps another
11411    /// expression which it shares the type and value kind of.
11412    template <class T> ExprResult rebuildSugarExpr(T *E) {
11413      ExprResult SubResult = Visit(E->getSubExpr());
11414      if (SubResult.isInvalid()) return ExprError();
11415      Expr *SubExpr = SubResult.take();
11416      E->setSubExpr(SubExpr);
11417      E->setType(SubExpr->getType());
11418      E->setValueKind(SubExpr->getValueKind());
11419      assert(E->getObjectKind() == OK_Ordinary);
11420      return E;
11421    }
11422
11423    ExprResult VisitParenExpr(ParenExpr *E) {
11424      return rebuildSugarExpr(E);
11425    }
11426
11427    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11428      return rebuildSugarExpr(E);
11429    }
11430
11431    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11432      const PointerType *Ptr = DestType->getAs<PointerType>();
11433      if (!Ptr) {
11434        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11435          << E->getSourceRange();
11436        return ExprError();
11437      }
11438      assert(E->getValueKind() == VK_RValue);
11439      assert(E->getObjectKind() == OK_Ordinary);
11440      E->setType(DestType);
11441
11442      // Build the sub-expression as if it were an object of the pointee type.
11443      DestType = Ptr->getPointeeType();
11444      ExprResult SubResult = Visit(E->getSubExpr());
11445      if (SubResult.isInvalid()) return ExprError();
11446      E->setSubExpr(SubResult.take());
11447      return E;
11448    }
11449
11450    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11451
11452    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11453
11454    ExprResult VisitMemberExpr(MemberExpr *E) {
11455      return resolveDecl(E, E->getMemberDecl());
11456    }
11457
11458    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11459      return resolveDecl(E, E->getDecl());
11460    }
11461  };
11462}
11463
11464/// Rebuilds a call expression which yielded __unknown_anytype.
11465ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11466  Expr *CalleeExpr = E->getCallee();
11467
11468  enum FnKind {
11469    FK_MemberFunction,
11470    FK_FunctionPointer,
11471    FK_BlockPointer
11472  };
11473
11474  FnKind Kind;
11475  QualType CalleeType = CalleeExpr->getType();
11476  if (CalleeType == S.Context.BoundMemberTy) {
11477    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11478    Kind = FK_MemberFunction;
11479    CalleeType = Expr::findBoundMemberType(CalleeExpr);
11480  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11481    CalleeType = Ptr->getPointeeType();
11482    Kind = FK_FunctionPointer;
11483  } else {
11484    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11485    Kind = FK_BlockPointer;
11486  }
11487  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11488
11489  // Verify that this is a legal result type of a function.
11490  if (DestType->isArrayType() || DestType->isFunctionType()) {
11491    unsigned diagID = diag::err_func_returning_array_function;
11492    if (Kind == FK_BlockPointer)
11493      diagID = diag::err_block_returning_array_function;
11494
11495    S.Diag(E->getExprLoc(), diagID)
11496      << DestType->isFunctionType() << DestType;
11497    return ExprError();
11498  }
11499
11500  // Otherwise, go ahead and set DestType as the call's result.
11501  E->setType(DestType.getNonLValueExprType(S.Context));
11502  E->setValueKind(Expr::getValueKindForType(DestType));
11503  assert(E->getObjectKind() == OK_Ordinary);
11504
11505  // Rebuild the function type, replacing the result type with DestType.
11506  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11507    DestType = S.Context.getFunctionType(DestType,
11508                                         Proto->arg_type_begin(),
11509                                         Proto->getNumArgs(),
11510                                         Proto->getExtProtoInfo());
11511  else
11512    DestType = S.Context.getFunctionNoProtoType(DestType,
11513                                                FnType->getExtInfo());
11514
11515  // Rebuild the appropriate pointer-to-function type.
11516  switch (Kind) {
11517  case FK_MemberFunction:
11518    // Nothing to do.
11519    break;
11520
11521  case FK_FunctionPointer:
11522    DestType = S.Context.getPointerType(DestType);
11523    break;
11524
11525  case FK_BlockPointer:
11526    DestType = S.Context.getBlockPointerType(DestType);
11527    break;
11528  }
11529
11530  // Finally, we can recurse.
11531  ExprResult CalleeResult = Visit(CalleeExpr);
11532  if (!CalleeResult.isUsable()) return ExprError();
11533  E->setCallee(CalleeResult.take());
11534
11535  // Bind a temporary if necessary.
11536  return S.MaybeBindToTemporary(E);
11537}
11538
11539ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11540  // Verify that this is a legal result type of a call.
11541  if (DestType->isArrayType() || DestType->isFunctionType()) {
11542    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11543      << DestType->isFunctionType() << DestType;
11544    return ExprError();
11545  }
11546
11547  // Rewrite the method result type if available.
11548  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11549    assert(Method->getResultType() == S.Context.UnknownAnyTy);
11550    Method->setResultType(DestType);
11551  }
11552
11553  // Change the type of the message.
11554  E->setType(DestType.getNonReferenceType());
11555  E->setValueKind(Expr::getValueKindForType(DestType));
11556
11557  return S.MaybeBindToTemporary(E);
11558}
11559
11560ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11561  // The only case we should ever see here is a function-to-pointer decay.
11562  if (E->getCastKind() == CK_FunctionToPointerDecay) {
11563    assert(E->getValueKind() == VK_RValue);
11564    assert(E->getObjectKind() == OK_Ordinary);
11565
11566    E->setType(DestType);
11567
11568    // Rebuild the sub-expression as the pointee (function) type.
11569    DestType = DestType->castAs<PointerType>()->getPointeeType();
11570
11571    ExprResult Result = Visit(E->getSubExpr());
11572    if (!Result.isUsable()) return ExprError();
11573
11574    E->setSubExpr(Result.take());
11575    return S.Owned(E);
11576  } else if (E->getCastKind() == CK_LValueToRValue) {
11577    assert(E->getValueKind() == VK_RValue);
11578    assert(E->getObjectKind() == OK_Ordinary);
11579
11580    assert(isa<BlockPointerType>(E->getType()));
11581
11582    E->setType(DestType);
11583
11584    // The sub-expression has to be a lvalue reference, so rebuild it as such.
11585    DestType = S.Context.getLValueReferenceType(DestType);
11586
11587    ExprResult Result = Visit(E->getSubExpr());
11588    if (!Result.isUsable()) return ExprError();
11589
11590    E->setSubExpr(Result.take());
11591    return S.Owned(E);
11592  } else {
11593    llvm_unreachable("Unhandled cast type!");
11594  }
11595}
11596
11597ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11598  ExprValueKind ValueKind = VK_LValue;
11599  QualType Type = DestType;
11600
11601  // We know how to make this work for certain kinds of decls:
11602
11603  //  - functions
11604  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11605    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11606      DestType = Ptr->getPointeeType();
11607      ExprResult Result = resolveDecl(E, VD);
11608      if (Result.isInvalid()) return ExprError();
11609      return S.ImpCastExprToType(Result.take(), Type,
11610                                 CK_FunctionToPointerDecay, VK_RValue);
11611    }
11612
11613    if (!Type->isFunctionType()) {
11614      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11615        << VD << E->getSourceRange();
11616      return ExprError();
11617    }
11618
11619    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11620      if (MD->isInstance()) {
11621        ValueKind = VK_RValue;
11622        Type = S.Context.BoundMemberTy;
11623      }
11624
11625    // Function references aren't l-values in C.
11626    if (!S.getLangOpts().CPlusPlus)
11627      ValueKind = VK_RValue;
11628
11629  //  - variables
11630  } else if (isa<VarDecl>(VD)) {
11631    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11632      Type = RefTy->getPointeeType();
11633    } else if (Type->isFunctionType()) {
11634      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11635        << VD << E->getSourceRange();
11636      return ExprError();
11637    }
11638
11639  //  - nothing else
11640  } else {
11641    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11642      << VD << E->getSourceRange();
11643    return ExprError();
11644  }
11645
11646  VD->setType(DestType);
11647  E->setType(Type);
11648  E->setValueKind(ValueKind);
11649  return S.Owned(E);
11650}
11651
11652/// Check a cast of an unknown-any type.  We intentionally only
11653/// trigger this for C-style casts.
11654ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11655                                     Expr *CastExpr, CastKind &CastKind,
11656                                     ExprValueKind &VK, CXXCastPath &Path) {
11657  // Rewrite the casted expression from scratch.
11658  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11659  if (!result.isUsable()) return ExprError();
11660
11661  CastExpr = result.take();
11662  VK = CastExpr->getValueKind();
11663  CastKind = CK_NoOp;
11664
11665  return CastExpr;
11666}
11667
11668ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11669  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11670}
11671
11672static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11673  Expr *orig = E;
11674  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11675  while (true) {
11676    E = E->IgnoreParenImpCasts();
11677    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11678      E = call->getCallee();
11679      diagID = diag::err_uncasted_call_of_unknown_any;
11680    } else {
11681      break;
11682    }
11683  }
11684
11685  SourceLocation loc;
11686  NamedDecl *d;
11687  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11688    loc = ref->getLocation();
11689    d = ref->getDecl();
11690  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11691    loc = mem->getMemberLoc();
11692    d = mem->getMemberDecl();
11693  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11694    diagID = diag::err_uncasted_call_of_unknown_any;
11695    loc = msg->getSelectorStartLoc();
11696    d = msg->getMethodDecl();
11697    if (!d) {
11698      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11699        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11700        << orig->getSourceRange();
11701      return ExprError();
11702    }
11703  } else {
11704    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11705      << E->getSourceRange();
11706    return ExprError();
11707  }
11708
11709  S.Diag(loc, diagID) << d << orig->getSourceRange();
11710
11711  // Never recoverable.
11712  return ExprError();
11713}
11714
11715/// Check for operands with placeholder types and complain if found.
11716/// Returns true if there was an error and no recovery was possible.
11717ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11718  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11719  if (!placeholderType) return Owned(E);
11720
11721  switch (placeholderType->getKind()) {
11722
11723  // Overloaded expressions.
11724  case BuiltinType::Overload: {
11725    // Try to resolve a single function template specialization.
11726    // This is obligatory.
11727    ExprResult result = Owned(E);
11728    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11729      return result;
11730
11731    // If that failed, try to recover with a call.
11732    } else {
11733      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11734                           /*complain*/ true);
11735      return result;
11736    }
11737  }
11738
11739  // Bound member functions.
11740  case BuiltinType::BoundMember: {
11741    ExprResult result = Owned(E);
11742    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11743                         /*complain*/ true);
11744    return result;
11745  }
11746
11747  // ARC unbridged casts.
11748  case BuiltinType::ARCUnbridgedCast: {
11749    Expr *realCast = stripARCUnbridgedCast(E);
11750    diagnoseARCUnbridgedCast(realCast);
11751    return Owned(realCast);
11752  }
11753
11754  // Expressions of unknown type.
11755  case BuiltinType::UnknownAny:
11756    return diagnoseUnknownAnyExpr(*this, E);
11757
11758  // Pseudo-objects.
11759  case BuiltinType::PseudoObject:
11760    return checkPseudoObjectRValue(E);
11761
11762  // Everything else should be impossible.
11763#define BUILTIN_TYPE(Id, SingletonId) \
11764  case BuiltinType::Id:
11765#define PLACEHOLDER_TYPE(Id, SingletonId)
11766#include "clang/AST/BuiltinTypes.def"
11767    break;
11768  }
11769
11770  llvm_unreachable("invalid placeholder type!");
11771}
11772
11773bool Sema::CheckCaseExpression(Expr *E) {
11774  if (E->isTypeDependent())
11775    return true;
11776  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11777    return E->getType()->isIntegralOrEnumerationType();
11778  return false;
11779}
11780
11781/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11782ExprResult
11783Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11784  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11785         "Unknown Objective-C Boolean value!");
11786  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11787                                        Context.ObjCBuiltinBoolTy, OpLoc));
11788}
11789