SemaExpr.cpp revision 4e7f00c74487bca84993a1f35d0a26a84ed2b1a0
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TreeTransform.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/AnalysisBasedWarnings.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Sema/Designator.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44using namespace clang;
45using namespace sema;
46
47/// \brief Determine whether the use of this declaration is valid, without
48/// emitting diagnostics.
49bool Sema::CanUseDecl(NamedDecl *D) {
50  // See if this is an auto-typed variable whose initializer we are parsing.
51  if (ParsingInitForAutoVars.count(D))
52    return false;
53
54  // See if this is a deleted function.
55  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
56    if (FD->isDeleted())
57      return false;
58
59    // If the function has a deduced return type, and we can't deduce it,
60    // then we can't use it either.
61    if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
62        DeduceReturnType(FD, SourceLocation(), /*Diagnose*/false))
63      return false;
64  }
65
66  // See if this function is unavailable.
67  if (D->getAvailability() == AR_Unavailable &&
68      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
69    return false;
70
71  return true;
72}
73
74static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
75  // Warn if this is used but marked unused.
76  if (D->hasAttr<UnusedAttr>()) {
77    const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
78    if (!DC->hasAttr<UnusedAttr>())
79      S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
80  }
81}
82
83static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
84                              NamedDecl *D, SourceLocation Loc,
85                              const ObjCInterfaceDecl *UnknownObjCClass) {
86  // See if this declaration is unavailable or deprecated.
87  std::string Message;
88  AvailabilityResult Result = D->getAvailability(&Message);
89  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
90    if (Result == AR_Available) {
91      const DeclContext *DC = ECD->getDeclContext();
92      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
93        Result = TheEnumDecl->getAvailability(&Message);
94    }
95
96  const ObjCPropertyDecl *ObjCPDecl = 0;
97  if (Result == AR_Deprecated || Result == AR_Unavailable) {
98    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
99      if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
100        AvailabilityResult PDeclResult = PD->getAvailability(0);
101        if (PDeclResult == Result)
102          ObjCPDecl = PD;
103      }
104    }
105  }
106
107  switch (Result) {
108    case AR_Available:
109    case AR_NotYetIntroduced:
110      break;
111
112    case AR_Deprecated:
113      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
114      break;
115
116    case AR_Unavailable:
117      if (S.getCurContextAvailability() != AR_Unavailable) {
118        if (Message.empty()) {
119          if (!UnknownObjCClass) {
120            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
121            if (ObjCPDecl)
122              S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
123                << ObjCPDecl->getDeclName() << 1;
124          }
125          else
126            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
127              << D->getDeclName();
128        }
129        else
130          S.Diag(Loc, diag::err_unavailable_message)
131            << D->getDeclName() << Message;
132        S.Diag(D->getLocation(), diag::note_unavailable_here)
133                  << isa<FunctionDecl>(D) << false;
134        if (ObjCPDecl)
135          S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
136          << ObjCPDecl->getDeclName() << 1;
137      }
138      break;
139    }
140    return Result;
141}
142
143/// \brief Emit a note explaining that this function is deleted.
144void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
145  assert(Decl->isDeleted());
146
147  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
148
149  if (Method && Method->isDeleted() && Method->isDefaulted()) {
150    // If the method was explicitly defaulted, point at that declaration.
151    if (!Method->isImplicit())
152      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
153
154    // Try to diagnose why this special member function was implicitly
155    // deleted. This might fail, if that reason no longer applies.
156    CXXSpecialMember CSM = getSpecialMember(Method);
157    if (CSM != CXXInvalid)
158      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
159
160    return;
161  }
162
163  if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
164    if (CXXConstructorDecl *BaseCD =
165            const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
166      Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
167      if (BaseCD->isDeleted()) {
168        NoteDeletedFunction(BaseCD);
169      } else {
170        // FIXME: An explanation of why exactly it can't be inherited
171        // would be nice.
172        Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
173      }
174      return;
175    }
176  }
177
178  Diag(Decl->getLocation(), diag::note_unavailable_here)
179    << 1 << true;
180}
181
182/// \brief Determine whether a FunctionDecl was ever declared with an
183/// explicit storage class.
184static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
185  for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
186                                     E = D->redecls_end();
187       I != E; ++I) {
188    if (I->getStorageClass() != SC_None)
189      return true;
190  }
191  return false;
192}
193
194/// \brief Check whether we're in an extern inline function and referring to a
195/// variable or function with internal linkage (C11 6.7.4p3).
196///
197/// This is only a warning because we used to silently accept this code, but
198/// in many cases it will not behave correctly. This is not enabled in C++ mode
199/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
200/// and so while there may still be user mistakes, most of the time we can't
201/// prove that there are errors.
202static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
203                                                      const NamedDecl *D,
204                                                      SourceLocation Loc) {
205  // This is disabled under C++; there are too many ways for this to fire in
206  // contexts where the warning is a false positive, or where it is technically
207  // correct but benign.
208  if (S.getLangOpts().CPlusPlus)
209    return;
210
211  // Check if this is an inlined function or method.
212  FunctionDecl *Current = S.getCurFunctionDecl();
213  if (!Current)
214    return;
215  if (!Current->isInlined())
216    return;
217  if (!Current->isExternallyVisible())
218    return;
219
220  // Check if the decl has internal linkage.
221  if (D->getFormalLinkage() != InternalLinkage)
222    return;
223
224  // Downgrade from ExtWarn to Extension if
225  //  (1) the supposedly external inline function is in the main file,
226  //      and probably won't be included anywhere else.
227  //  (2) the thing we're referencing is a pure function.
228  //  (3) the thing we're referencing is another inline function.
229  // This last can give us false negatives, but it's better than warning on
230  // wrappers for simple C library functions.
231  const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
232  bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
233  if (!DowngradeWarning && UsedFn)
234    DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
235
236  S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
237                               : diag::warn_internal_in_extern_inline)
238    << /*IsVar=*/!UsedFn << D;
239
240  S.MaybeSuggestAddingStaticToDecl(Current);
241
242  S.Diag(D->getCanonicalDecl()->getLocation(),
243         diag::note_internal_decl_declared_here)
244    << D;
245}
246
247void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
248  const FunctionDecl *First = Cur->getFirstDecl();
249
250  // Suggest "static" on the function, if possible.
251  if (!hasAnyExplicitStorageClass(First)) {
252    SourceLocation DeclBegin = First->getSourceRange().getBegin();
253    Diag(DeclBegin, diag::note_convert_inline_to_static)
254      << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
255  }
256}
257
258/// \brief Determine whether the use of this declaration is valid, and
259/// emit any corresponding diagnostics.
260///
261/// This routine diagnoses various problems with referencing
262/// declarations that can occur when using a declaration. For example,
263/// it might warn if a deprecated or unavailable declaration is being
264/// used, or produce an error (and return true) if a C++0x deleted
265/// function is being used.
266///
267/// \returns true if there was an error (this declaration cannot be
268/// referenced), false otherwise.
269///
270bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
271                             const ObjCInterfaceDecl *UnknownObjCClass) {
272  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
273    // If there were any diagnostics suppressed by template argument deduction,
274    // emit them now.
275    SuppressedDiagnosticsMap::iterator
276      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
277    if (Pos != SuppressedDiagnostics.end()) {
278      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
279      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
280        Diag(Suppressed[I].first, Suppressed[I].second);
281
282      // Clear out the list of suppressed diagnostics, so that we don't emit
283      // them again for this specialization. However, we don't obsolete this
284      // entry from the table, because we want to avoid ever emitting these
285      // diagnostics again.
286      Suppressed.clear();
287    }
288  }
289
290  // See if this is an auto-typed variable whose initializer we are parsing.
291  if (ParsingInitForAutoVars.count(D)) {
292    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
293      << D->getDeclName();
294    return true;
295  }
296
297  // See if this is a deleted function.
298  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
299    if (FD->isDeleted()) {
300      Diag(Loc, diag::err_deleted_function_use);
301      NoteDeletedFunction(FD);
302      return true;
303    }
304
305    // If the function has a deduced return type, and we can't deduce it,
306    // then we can't use it either.
307    if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
308        DeduceReturnType(FD, Loc))
309      return true;
310  }
311  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
312
313  DiagnoseUnusedOfDecl(*this, D, Loc);
314
315  diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
316
317  return false;
318}
319
320/// \brief Retrieve the message suffix that should be added to a
321/// diagnostic complaining about the given function being deleted or
322/// unavailable.
323std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
324  std::string Message;
325  if (FD->getAvailability(&Message))
326    return ": " + Message;
327
328  return std::string();
329}
330
331/// DiagnoseSentinelCalls - This routine checks whether a call or
332/// message-send is to a declaration with the sentinel attribute, and
333/// if so, it checks that the requirements of the sentinel are
334/// satisfied.
335void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
336                                 ArrayRef<Expr *> Args) {
337  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
338  if (!attr)
339    return;
340
341  // The number of formal parameters of the declaration.
342  unsigned numFormalParams;
343
344  // The kind of declaration.  This is also an index into a %select in
345  // the diagnostic.
346  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
347
348  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
349    numFormalParams = MD->param_size();
350    calleeType = CT_Method;
351  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
352    numFormalParams = FD->param_size();
353    calleeType = CT_Function;
354  } else if (isa<VarDecl>(D)) {
355    QualType type = cast<ValueDecl>(D)->getType();
356    const FunctionType *fn = 0;
357    if (const PointerType *ptr = type->getAs<PointerType>()) {
358      fn = ptr->getPointeeType()->getAs<FunctionType>();
359      if (!fn) return;
360      calleeType = CT_Function;
361    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
362      fn = ptr->getPointeeType()->castAs<FunctionType>();
363      calleeType = CT_Block;
364    } else {
365      return;
366    }
367
368    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
369      numFormalParams = proto->getNumArgs();
370    } else {
371      numFormalParams = 0;
372    }
373  } else {
374    return;
375  }
376
377  // "nullPos" is the number of formal parameters at the end which
378  // effectively count as part of the variadic arguments.  This is
379  // useful if you would prefer to not have *any* formal parameters,
380  // but the language forces you to have at least one.
381  unsigned nullPos = attr->getNullPos();
382  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
383  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
384
385  // The number of arguments which should follow the sentinel.
386  unsigned numArgsAfterSentinel = attr->getSentinel();
387
388  // If there aren't enough arguments for all the formal parameters,
389  // the sentinel, and the args after the sentinel, complain.
390  if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
391    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
392    Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
393    return;
394  }
395
396  // Otherwise, find the sentinel expression.
397  Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
398  if (!sentinelExpr) return;
399  if (sentinelExpr->isValueDependent()) return;
400  if (Context.isSentinelNullExpr(sentinelExpr)) return;
401
402  // Pick a reasonable string to insert.  Optimistically use 'nil' or
403  // 'NULL' if those are actually defined in the context.  Only use
404  // 'nil' for ObjC methods, where it's much more likely that the
405  // variadic arguments form a list of object pointers.
406  SourceLocation MissingNilLoc
407    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
408  std::string NullValue;
409  if (calleeType == CT_Method &&
410      PP.getIdentifierInfo("nil")->hasMacroDefinition())
411    NullValue = "nil";
412  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
413    NullValue = "NULL";
414  else
415    NullValue = "(void*) 0";
416
417  if (MissingNilLoc.isInvalid())
418    Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
419  else
420    Diag(MissingNilLoc, diag::warn_missing_sentinel)
421      << int(calleeType)
422      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
423  Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
424}
425
426SourceRange Sema::getExprRange(Expr *E) const {
427  return E ? E->getSourceRange() : SourceRange();
428}
429
430//===----------------------------------------------------------------------===//
431//  Standard Promotions and Conversions
432//===----------------------------------------------------------------------===//
433
434/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
435ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
436  // Handle any placeholder expressions which made it here.
437  if (E->getType()->isPlaceholderType()) {
438    ExprResult result = CheckPlaceholderExpr(E);
439    if (result.isInvalid()) return ExprError();
440    E = result.take();
441  }
442
443  QualType Ty = E->getType();
444  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
445
446  if (Ty->isFunctionType())
447    E = ImpCastExprToType(E, Context.getPointerType(Ty),
448                          CK_FunctionToPointerDecay).take();
449  else if (Ty->isArrayType()) {
450    // In C90 mode, arrays only promote to pointers if the array expression is
451    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
452    // type 'array of type' is converted to an expression that has type 'pointer
453    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
454    // that has type 'array of type' ...".  The relevant change is "an lvalue"
455    // (C90) to "an expression" (C99).
456    //
457    // C++ 4.2p1:
458    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
459    // T" can be converted to an rvalue of type "pointer to T".
460    //
461    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
462      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
463                            CK_ArrayToPointerDecay).take();
464  }
465  return Owned(E);
466}
467
468static void CheckForNullPointerDereference(Sema &S, Expr *E) {
469  // Check to see if we are dereferencing a null pointer.  If so,
470  // and if not volatile-qualified, this is undefined behavior that the
471  // optimizer will delete, so warn about it.  People sometimes try to use this
472  // to get a deterministic trap and are surprised by clang's behavior.  This
473  // only handles the pattern "*null", which is a very syntactic check.
474  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
475    if (UO->getOpcode() == UO_Deref &&
476        UO->getSubExpr()->IgnoreParenCasts()->
477          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
478        !UO->getType().isVolatileQualified()) {
479    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
480                          S.PDiag(diag::warn_indirection_through_null)
481                            << UO->getSubExpr()->getSourceRange());
482    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
483                        S.PDiag(diag::note_indirection_through_null));
484  }
485}
486
487static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
488                                    SourceLocation AssignLoc,
489                                    const Expr* RHS) {
490  const ObjCIvarDecl *IV = OIRE->getDecl();
491  if (!IV)
492    return;
493
494  DeclarationName MemberName = IV->getDeclName();
495  IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
496  if (!Member || !Member->isStr("isa"))
497    return;
498
499  const Expr *Base = OIRE->getBase();
500  QualType BaseType = Base->getType();
501  if (OIRE->isArrow())
502    BaseType = BaseType->getPointeeType();
503  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
504    if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
505      ObjCInterfaceDecl *ClassDeclared = 0;
506      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
507      if (!ClassDeclared->getSuperClass()
508          && (*ClassDeclared->ivar_begin()) == IV) {
509        if (RHS) {
510          NamedDecl *ObjectSetClass =
511            S.LookupSingleName(S.TUScope,
512                               &S.Context.Idents.get("object_setClass"),
513                               SourceLocation(), S.LookupOrdinaryName);
514          if (ObjectSetClass) {
515            SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
516            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
517            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
518            FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
519                                                     AssignLoc), ",") <<
520            FixItHint::CreateInsertion(RHSLocEnd, ")");
521          }
522          else
523            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
524        } else {
525          NamedDecl *ObjectGetClass =
526            S.LookupSingleName(S.TUScope,
527                               &S.Context.Idents.get("object_getClass"),
528                               SourceLocation(), S.LookupOrdinaryName);
529          if (ObjectGetClass)
530            S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
531            FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
532            FixItHint::CreateReplacement(
533                                         SourceRange(OIRE->getOpLoc(),
534                                                     OIRE->getLocEnd()), ")");
535          else
536            S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
537        }
538        S.Diag(IV->getLocation(), diag::note_ivar_decl);
539      }
540    }
541}
542
543ExprResult Sema::DefaultLvalueConversion(Expr *E) {
544  // Handle any placeholder expressions which made it here.
545  if (E->getType()->isPlaceholderType()) {
546    ExprResult result = CheckPlaceholderExpr(E);
547    if (result.isInvalid()) return ExprError();
548    E = result.take();
549  }
550
551  // C++ [conv.lval]p1:
552  //   A glvalue of a non-function, non-array type T can be
553  //   converted to a prvalue.
554  if (!E->isGLValue()) return Owned(E);
555
556  QualType T = E->getType();
557  assert(!T.isNull() && "r-value conversion on typeless expression?");
558
559  // We don't want to throw lvalue-to-rvalue casts on top of
560  // expressions of certain types in C++.
561  if (getLangOpts().CPlusPlus &&
562      (E->getType() == Context.OverloadTy ||
563       T->isDependentType() ||
564       T->isRecordType()))
565    return Owned(E);
566
567  // The C standard is actually really unclear on this point, and
568  // DR106 tells us what the result should be but not why.  It's
569  // generally best to say that void types just doesn't undergo
570  // lvalue-to-rvalue at all.  Note that expressions of unqualified
571  // 'void' type are never l-values, but qualified void can be.
572  if (T->isVoidType())
573    return Owned(E);
574
575  // OpenCL usually rejects direct accesses to values of 'half' type.
576  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
577      T->isHalfType()) {
578    Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
579      << 0 << T;
580    return ExprError();
581  }
582
583  CheckForNullPointerDereference(*this, E);
584  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
585    NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
586                                     &Context.Idents.get("object_getClass"),
587                                     SourceLocation(), LookupOrdinaryName);
588    if (ObjectGetClass)
589      Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
590        FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
591        FixItHint::CreateReplacement(
592                    SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
593    else
594      Diag(E->getExprLoc(), diag::warn_objc_isa_use);
595  }
596  else if (const ObjCIvarRefExpr *OIRE =
597            dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
598    DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/0);
599
600  // C++ [conv.lval]p1:
601  //   [...] If T is a non-class type, the type of the prvalue is the
602  //   cv-unqualified version of T. Otherwise, the type of the
603  //   rvalue is T.
604  //
605  // C99 6.3.2.1p2:
606  //   If the lvalue has qualified type, the value has the unqualified
607  //   version of the type of the lvalue; otherwise, the value has the
608  //   type of the lvalue.
609  if (T.hasQualifiers())
610    T = T.getUnqualifiedType();
611
612  UpdateMarkingForLValueToRValue(E);
613
614  // Loading a __weak object implicitly retains the value, so we need a cleanup to
615  // balance that.
616  if (getLangOpts().ObjCAutoRefCount &&
617      E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
618    ExprNeedsCleanups = true;
619
620  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
621                                                  E, 0, VK_RValue));
622
623  // C11 6.3.2.1p2:
624  //   ... if the lvalue has atomic type, the value has the non-atomic version
625  //   of the type of the lvalue ...
626  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
627    T = Atomic->getValueType().getUnqualifiedType();
628    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
629                                         Res.get(), 0, VK_RValue));
630  }
631
632  return Res;
633}
634
635ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
636  ExprResult Res = DefaultFunctionArrayConversion(E);
637  if (Res.isInvalid())
638    return ExprError();
639  Res = DefaultLvalueConversion(Res.take());
640  if (Res.isInvalid())
641    return ExprError();
642  return Res;
643}
644
645
646/// UsualUnaryConversions - Performs various conversions that are common to most
647/// operators (C99 6.3). The conversions of array and function types are
648/// sometimes suppressed. For example, the array->pointer conversion doesn't
649/// apply if the array is an argument to the sizeof or address (&) operators.
650/// In these instances, this routine should *not* be called.
651ExprResult Sema::UsualUnaryConversions(Expr *E) {
652  // First, convert to an r-value.
653  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
654  if (Res.isInvalid())
655    return ExprError();
656  E = Res.take();
657
658  QualType Ty = E->getType();
659  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
660
661  // Half FP have to be promoted to float unless it is natively supported
662  if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
663    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
664
665  // Try to perform integral promotions if the object has a theoretically
666  // promotable type.
667  if (Ty->isIntegralOrUnscopedEnumerationType()) {
668    // C99 6.3.1.1p2:
669    //
670    //   The following may be used in an expression wherever an int or
671    //   unsigned int may be used:
672    //     - an object or expression with an integer type whose integer
673    //       conversion rank is less than or equal to the rank of int
674    //       and unsigned int.
675    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
676    //
677    //   If an int can represent all values of the original type, the
678    //   value is converted to an int; otherwise, it is converted to an
679    //   unsigned int. These are called the integer promotions. All
680    //   other types are unchanged by the integer promotions.
681
682    QualType PTy = Context.isPromotableBitField(E);
683    if (!PTy.isNull()) {
684      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
685      return Owned(E);
686    }
687    if (Ty->isPromotableIntegerType()) {
688      QualType PT = Context.getPromotedIntegerType(Ty);
689      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
690      return Owned(E);
691    }
692  }
693  return Owned(E);
694}
695
696/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
697/// do not have a prototype. Arguments that have type float or __fp16
698/// are promoted to double. All other argument types are converted by
699/// UsualUnaryConversions().
700ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
701  QualType Ty = E->getType();
702  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
703
704  ExprResult Res = UsualUnaryConversions(E);
705  if (Res.isInvalid())
706    return ExprError();
707  E = Res.take();
708
709  // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
710  // double.
711  const BuiltinType *BTy = Ty->getAs<BuiltinType>();
712  if (BTy && (BTy->getKind() == BuiltinType::Half ||
713              BTy->getKind() == BuiltinType::Float))
714    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
715
716  // C++ performs lvalue-to-rvalue conversion as a default argument
717  // promotion, even on class types, but note:
718  //   C++11 [conv.lval]p2:
719  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
720  //     operand or a subexpression thereof the value contained in the
721  //     referenced object is not accessed. Otherwise, if the glvalue
722  //     has a class type, the conversion copy-initializes a temporary
723  //     of type T from the glvalue and the result of the conversion
724  //     is a prvalue for the temporary.
725  // FIXME: add some way to gate this entire thing for correctness in
726  // potentially potentially evaluated contexts.
727  if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
728    ExprResult Temp = PerformCopyInitialization(
729                       InitializedEntity::InitializeTemporary(E->getType()),
730                                                E->getExprLoc(),
731                                                Owned(E));
732    if (Temp.isInvalid())
733      return ExprError();
734    E = Temp.get();
735  }
736
737  return Owned(E);
738}
739
740/// Determine the degree of POD-ness for an expression.
741/// Incomplete types are considered POD, since this check can be performed
742/// when we're in an unevaluated context.
743Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
744  if (Ty->isIncompleteType()) {
745    // C++11 [expr.call]p7:
746    //   After these conversions, if the argument does not have arithmetic,
747    //   enumeration, pointer, pointer to member, or class type, the program
748    //   is ill-formed.
749    //
750    // Since we've already performed array-to-pointer and function-to-pointer
751    // decay, the only such type in C++ is cv void. This also handles
752    // initializer lists as variadic arguments.
753    if (Ty->isVoidType())
754      return VAK_Invalid;
755
756    if (Ty->isObjCObjectType())
757      return VAK_Invalid;
758    return VAK_Valid;
759  }
760
761  if (Ty.isCXX98PODType(Context))
762    return VAK_Valid;
763
764  // C++11 [expr.call]p7:
765  //   Passing a potentially-evaluated argument of class type (Clause 9)
766  //   having a non-trivial copy constructor, a non-trivial move constructor,
767  //   or a non-trivial destructor, with no corresponding parameter,
768  //   is conditionally-supported with implementation-defined semantics.
769  if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
770    if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
771      if (!Record->hasNonTrivialCopyConstructor() &&
772          !Record->hasNonTrivialMoveConstructor() &&
773          !Record->hasNonTrivialDestructor())
774        return VAK_ValidInCXX11;
775
776  if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
777    return VAK_Valid;
778
779  if (Ty->isObjCObjectType())
780    return VAK_Invalid;
781
782  // FIXME: In C++11, these cases are conditionally-supported, meaning we're
783  // permitted to reject them. We should consider doing so.
784  return VAK_Undefined;
785}
786
787void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
788  // Don't allow one to pass an Objective-C interface to a vararg.
789  const QualType &Ty = E->getType();
790  VarArgKind VAK = isValidVarArgType(Ty);
791
792  // Complain about passing non-POD types through varargs.
793  switch (VAK) {
794  case VAK_Valid:
795    break;
796
797  case VAK_ValidInCXX11:
798    DiagRuntimeBehavior(
799        E->getLocStart(), 0,
800        PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
801          << E->getType() << CT);
802    break;
803
804  case VAK_Undefined:
805    DiagRuntimeBehavior(
806        E->getLocStart(), 0,
807        PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
808          << getLangOpts().CPlusPlus11 << Ty << CT);
809    break;
810
811  case VAK_Invalid:
812    if (Ty->isObjCObjectType())
813      DiagRuntimeBehavior(
814          E->getLocStart(), 0,
815          PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
816            << Ty << CT);
817    else
818      Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
819        << isa<InitListExpr>(E) << Ty << CT;
820    break;
821  }
822}
823
824/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
825/// will create a trap if the resulting type is not a POD type.
826ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
827                                                  FunctionDecl *FDecl) {
828  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
829    // Strip the unbridged-cast placeholder expression off, if applicable.
830    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
831        (CT == VariadicMethod ||
832         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
833      E = stripARCUnbridgedCast(E);
834
835    // Otherwise, do normal placeholder checking.
836    } else {
837      ExprResult ExprRes = CheckPlaceholderExpr(E);
838      if (ExprRes.isInvalid())
839        return ExprError();
840      E = ExprRes.take();
841    }
842  }
843
844  ExprResult ExprRes = DefaultArgumentPromotion(E);
845  if (ExprRes.isInvalid())
846    return ExprError();
847  E = ExprRes.take();
848
849  // Diagnostics regarding non-POD argument types are
850  // emitted along with format string checking in Sema::CheckFunctionCall().
851  if (isValidVarArgType(E->getType()) == VAK_Undefined) {
852    // Turn this into a trap.
853    CXXScopeSpec SS;
854    SourceLocation TemplateKWLoc;
855    UnqualifiedId Name;
856    Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
857                       E->getLocStart());
858    ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
859                                          Name, true, false);
860    if (TrapFn.isInvalid())
861      return ExprError();
862
863    ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
864                                    E->getLocStart(), None,
865                                    E->getLocEnd());
866    if (Call.isInvalid())
867      return ExprError();
868
869    ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
870                                  Call.get(), E);
871    if (Comma.isInvalid())
872      return ExprError();
873    return Comma.get();
874  }
875
876  if (!getLangOpts().CPlusPlus &&
877      RequireCompleteType(E->getExprLoc(), E->getType(),
878                          diag::err_call_incomplete_argument))
879    return ExprError();
880
881  return Owned(E);
882}
883
884/// \brief Converts an integer to complex float type.  Helper function of
885/// UsualArithmeticConversions()
886///
887/// \return false if the integer expression is an integer type and is
888/// successfully converted to the complex type.
889static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
890                                                  ExprResult &ComplexExpr,
891                                                  QualType IntTy,
892                                                  QualType ComplexTy,
893                                                  bool SkipCast) {
894  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
895  if (SkipCast) return false;
896  if (IntTy->isIntegerType()) {
897    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
898    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
899    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
900                                  CK_FloatingRealToComplex);
901  } else {
902    assert(IntTy->isComplexIntegerType());
903    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
904                                  CK_IntegralComplexToFloatingComplex);
905  }
906  return false;
907}
908
909/// \brief Takes two complex float types and converts them to the same type.
910/// Helper function of UsualArithmeticConversions()
911static QualType
912handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
913                                            ExprResult &RHS, QualType LHSType,
914                                            QualType RHSType,
915                                            bool IsCompAssign) {
916  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
917
918  if (order < 0) {
919    // _Complex float -> _Complex double
920    if (!IsCompAssign)
921      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
922    return RHSType;
923  }
924  if (order > 0)
925    // _Complex float -> _Complex double
926    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
927  return LHSType;
928}
929
930/// \brief Converts otherExpr to complex float and promotes complexExpr if
931/// necessary.  Helper function of UsualArithmeticConversions()
932static QualType handleOtherComplexFloatConversion(Sema &S,
933                                                  ExprResult &ComplexExpr,
934                                                  ExprResult &OtherExpr,
935                                                  QualType ComplexTy,
936                                                  QualType OtherTy,
937                                                  bool ConvertComplexExpr,
938                                                  bool ConvertOtherExpr) {
939  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
940
941  // If just the complexExpr is complex, the otherExpr needs to be converted,
942  // and the complexExpr might need to be promoted.
943  if (order > 0) { // complexExpr is wider
944    // float -> _Complex double
945    if (ConvertOtherExpr) {
946      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
947      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
948      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
949                                      CK_FloatingRealToComplex);
950    }
951    return ComplexTy;
952  }
953
954  // otherTy is at least as wide.  Find its corresponding complex type.
955  QualType result = (order == 0 ? ComplexTy :
956                                  S.Context.getComplexType(OtherTy));
957
958  // double -> _Complex double
959  if (ConvertOtherExpr)
960    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
961                                    CK_FloatingRealToComplex);
962
963  // _Complex float -> _Complex double
964  if (ConvertComplexExpr && order < 0)
965    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
966                                      CK_FloatingComplexCast);
967
968  return result;
969}
970
971/// \brief Handle arithmetic conversion with complex types.  Helper function of
972/// UsualArithmeticConversions()
973static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
974                                             ExprResult &RHS, QualType LHSType,
975                                             QualType RHSType,
976                                             bool IsCompAssign) {
977  // if we have an integer operand, the result is the complex type.
978  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
979                                             /*skipCast*/false))
980    return LHSType;
981  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
982                                             /*skipCast*/IsCompAssign))
983    return RHSType;
984
985  // This handles complex/complex, complex/float, or float/complex.
986  // When both operands are complex, the shorter operand is converted to the
987  // type of the longer, and that is the type of the result. This corresponds
988  // to what is done when combining two real floating-point operands.
989  // The fun begins when size promotion occur across type domains.
990  // From H&S 6.3.4: When one operand is complex and the other is a real
991  // floating-point type, the less precise type is converted, within it's
992  // real or complex domain, to the precision of the other type. For example,
993  // when combining a "long double" with a "double _Complex", the
994  // "double _Complex" is promoted to "long double _Complex".
995
996  bool LHSComplexFloat = LHSType->isComplexType();
997  bool RHSComplexFloat = RHSType->isComplexType();
998
999  // If both are complex, just cast to the more precise type.
1000  if (LHSComplexFloat && RHSComplexFloat)
1001    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
1002                                                       LHSType, RHSType,
1003                                                       IsCompAssign);
1004
1005  // If only one operand is complex, promote it if necessary and convert the
1006  // other operand to complex.
1007  if (LHSComplexFloat)
1008    return handleOtherComplexFloatConversion(
1009        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
1010        /*convertOtherExpr*/ true);
1011
1012  assert(RHSComplexFloat);
1013  return handleOtherComplexFloatConversion(
1014      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
1015      /*convertOtherExpr*/ !IsCompAssign);
1016}
1017
1018/// \brief Hande arithmetic conversion from integer to float.  Helper function
1019/// of UsualArithmeticConversions()
1020static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1021                                           ExprResult &IntExpr,
1022                                           QualType FloatTy, QualType IntTy,
1023                                           bool ConvertFloat, bool ConvertInt) {
1024  if (IntTy->isIntegerType()) {
1025    if (ConvertInt)
1026      // Convert intExpr to the lhs floating point type.
1027      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
1028                                    CK_IntegralToFloating);
1029    return FloatTy;
1030  }
1031
1032  // Convert both sides to the appropriate complex float.
1033  assert(IntTy->isComplexIntegerType());
1034  QualType result = S.Context.getComplexType(FloatTy);
1035
1036  // _Complex int -> _Complex float
1037  if (ConvertInt)
1038    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
1039                                  CK_IntegralComplexToFloatingComplex);
1040
1041  // float -> _Complex float
1042  if (ConvertFloat)
1043    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
1044                                    CK_FloatingRealToComplex);
1045
1046  return result;
1047}
1048
1049/// \brief Handle arithmethic conversion with floating point types.  Helper
1050/// function of UsualArithmeticConversions()
1051static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1052                                      ExprResult &RHS, QualType LHSType,
1053                                      QualType RHSType, bool IsCompAssign) {
1054  bool LHSFloat = LHSType->isRealFloatingType();
1055  bool RHSFloat = RHSType->isRealFloatingType();
1056
1057  // If we have two real floating types, convert the smaller operand
1058  // to the bigger result.
1059  if (LHSFloat && RHSFloat) {
1060    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1061    if (order > 0) {
1062      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
1063      return LHSType;
1064    }
1065
1066    assert(order < 0 && "illegal float comparison");
1067    if (!IsCompAssign)
1068      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
1069    return RHSType;
1070  }
1071
1072  if (LHSFloat)
1073    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1074                                      /*convertFloat=*/!IsCompAssign,
1075                                      /*convertInt=*/ true);
1076  assert(RHSFloat);
1077  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1078                                    /*convertInt=*/ true,
1079                                    /*convertFloat=*/!IsCompAssign);
1080}
1081
1082typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1083
1084namespace {
1085/// These helper callbacks are placed in an anonymous namespace to
1086/// permit their use as function template parameters.
1087ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1088  return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1089}
1090
1091ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1092  return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1093                             CK_IntegralComplexCast);
1094}
1095}
1096
1097/// \brief Handle integer arithmetic conversions.  Helper function of
1098/// UsualArithmeticConversions()
1099template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1100static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1101                                        ExprResult &RHS, QualType LHSType,
1102                                        QualType RHSType, bool IsCompAssign) {
1103  // The rules for this case are in C99 6.3.1.8
1104  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1105  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1106  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1107  if (LHSSigned == RHSSigned) {
1108    // Same signedness; use the higher-ranked type
1109    if (order >= 0) {
1110      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1111      return LHSType;
1112    } else if (!IsCompAssign)
1113      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1114    return RHSType;
1115  } else if (order != (LHSSigned ? 1 : -1)) {
1116    // The unsigned type has greater than or equal rank to the
1117    // signed type, so use the unsigned type
1118    if (RHSSigned) {
1119      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1120      return LHSType;
1121    } else if (!IsCompAssign)
1122      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1123    return RHSType;
1124  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1125    // The two types are different widths; if we are here, that
1126    // means the signed type is larger than the unsigned type, so
1127    // use the signed type.
1128    if (LHSSigned) {
1129      RHS = (*doRHSCast)(S, RHS.take(), LHSType);
1130      return LHSType;
1131    } else if (!IsCompAssign)
1132      LHS = (*doLHSCast)(S, LHS.take(), RHSType);
1133    return RHSType;
1134  } else {
1135    // The signed type is higher-ranked than the unsigned type,
1136    // but isn't actually any bigger (like unsigned int and long
1137    // on most 32-bit systems).  Use the unsigned type corresponding
1138    // to the signed type.
1139    QualType result =
1140      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1141    RHS = (*doRHSCast)(S, RHS.take(), result);
1142    if (!IsCompAssign)
1143      LHS = (*doLHSCast)(S, LHS.take(), result);
1144    return result;
1145  }
1146}
1147
1148/// \brief Handle conversions with GCC complex int extension.  Helper function
1149/// of UsualArithmeticConversions()
1150static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1151                                           ExprResult &RHS, QualType LHSType,
1152                                           QualType RHSType,
1153                                           bool IsCompAssign) {
1154  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1155  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1156
1157  if (LHSComplexInt && RHSComplexInt) {
1158    QualType LHSEltType = LHSComplexInt->getElementType();
1159    QualType RHSEltType = RHSComplexInt->getElementType();
1160    QualType ScalarType =
1161      handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1162        (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1163
1164    return S.Context.getComplexType(ScalarType);
1165  }
1166
1167  if (LHSComplexInt) {
1168    QualType LHSEltType = LHSComplexInt->getElementType();
1169    QualType ScalarType =
1170      handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1171        (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1172    QualType ComplexType = S.Context.getComplexType(ScalarType);
1173    RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
1174                              CK_IntegralRealToComplex);
1175
1176    return ComplexType;
1177  }
1178
1179  assert(RHSComplexInt);
1180
1181  QualType RHSEltType = RHSComplexInt->getElementType();
1182  QualType ScalarType =
1183    handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1184      (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1185  QualType ComplexType = S.Context.getComplexType(ScalarType);
1186
1187  if (!IsCompAssign)
1188    LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
1189                              CK_IntegralRealToComplex);
1190  return ComplexType;
1191}
1192
1193/// UsualArithmeticConversions - Performs various conversions that are common to
1194/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1195/// routine returns the first non-arithmetic type found. The client is
1196/// responsible for emitting appropriate error diagnostics.
1197QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1198                                          bool IsCompAssign) {
1199  if (!IsCompAssign) {
1200    LHS = UsualUnaryConversions(LHS.take());
1201    if (LHS.isInvalid())
1202      return QualType();
1203  }
1204
1205  RHS = UsualUnaryConversions(RHS.take());
1206  if (RHS.isInvalid())
1207    return QualType();
1208
1209  // For conversion purposes, we ignore any qualifiers.
1210  // For example, "const float" and "float" are equivalent.
1211  QualType LHSType =
1212    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1213  QualType RHSType =
1214    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1215
1216  // For conversion purposes, we ignore any atomic qualifier on the LHS.
1217  if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1218    LHSType = AtomicLHS->getValueType();
1219
1220  // If both types are identical, no conversion is needed.
1221  if (LHSType == RHSType)
1222    return LHSType;
1223
1224  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1225  // The caller can deal with this (e.g. pointer + int).
1226  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1227    return QualType();
1228
1229  // Apply unary and bitfield promotions to the LHS's type.
1230  QualType LHSUnpromotedType = LHSType;
1231  if (LHSType->isPromotableIntegerType())
1232    LHSType = Context.getPromotedIntegerType(LHSType);
1233  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1234  if (!LHSBitfieldPromoteTy.isNull())
1235    LHSType = LHSBitfieldPromoteTy;
1236  if (LHSType != LHSUnpromotedType && !IsCompAssign)
1237    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
1238
1239  // If both types are identical, no conversion is needed.
1240  if (LHSType == RHSType)
1241    return LHSType;
1242
1243  // At this point, we have two different arithmetic types.
1244
1245  // Handle complex types first (C99 6.3.1.8p1).
1246  if (LHSType->isComplexType() || RHSType->isComplexType())
1247    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1248                                        IsCompAssign);
1249
1250  // Now handle "real" floating types (i.e. float, double, long double).
1251  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1252    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1253                                 IsCompAssign);
1254
1255  // Handle GCC complex int extension.
1256  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1257    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1258                                      IsCompAssign);
1259
1260  // Finally, we have two differing integer types.
1261  return handleIntegerConversion<doIntegralCast, doIntegralCast>
1262           (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1263}
1264
1265
1266//===----------------------------------------------------------------------===//
1267//  Semantic Analysis for various Expression Types
1268//===----------------------------------------------------------------------===//
1269
1270
1271ExprResult
1272Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1273                                SourceLocation DefaultLoc,
1274                                SourceLocation RParenLoc,
1275                                Expr *ControllingExpr,
1276                                ArrayRef<ParsedType> ArgTypes,
1277                                ArrayRef<Expr *> ArgExprs) {
1278  unsigned NumAssocs = ArgTypes.size();
1279  assert(NumAssocs == ArgExprs.size());
1280
1281  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1282  for (unsigned i = 0; i < NumAssocs; ++i) {
1283    if (ArgTypes[i])
1284      (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1285    else
1286      Types[i] = 0;
1287  }
1288
1289  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1290                                             ControllingExpr,
1291                                             llvm::makeArrayRef(Types, NumAssocs),
1292                                             ArgExprs);
1293  delete [] Types;
1294  return ER;
1295}
1296
1297ExprResult
1298Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1299                                 SourceLocation DefaultLoc,
1300                                 SourceLocation RParenLoc,
1301                                 Expr *ControllingExpr,
1302                                 ArrayRef<TypeSourceInfo *> Types,
1303                                 ArrayRef<Expr *> Exprs) {
1304  unsigned NumAssocs = Types.size();
1305  assert(NumAssocs == Exprs.size());
1306  if (ControllingExpr->getType()->isPlaceholderType()) {
1307    ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1308    if (result.isInvalid()) return ExprError();
1309    ControllingExpr = result.take();
1310  }
1311
1312  bool TypeErrorFound = false,
1313       IsResultDependent = ControllingExpr->isTypeDependent(),
1314       ContainsUnexpandedParameterPack
1315         = ControllingExpr->containsUnexpandedParameterPack();
1316
1317  for (unsigned i = 0; i < NumAssocs; ++i) {
1318    if (Exprs[i]->containsUnexpandedParameterPack())
1319      ContainsUnexpandedParameterPack = true;
1320
1321    if (Types[i]) {
1322      if (Types[i]->getType()->containsUnexpandedParameterPack())
1323        ContainsUnexpandedParameterPack = true;
1324
1325      if (Types[i]->getType()->isDependentType()) {
1326        IsResultDependent = true;
1327      } else {
1328        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1329        // complete object type other than a variably modified type."
1330        unsigned D = 0;
1331        if (Types[i]->getType()->isIncompleteType())
1332          D = diag::err_assoc_type_incomplete;
1333        else if (!Types[i]->getType()->isObjectType())
1334          D = diag::err_assoc_type_nonobject;
1335        else if (Types[i]->getType()->isVariablyModifiedType())
1336          D = diag::err_assoc_type_variably_modified;
1337
1338        if (D != 0) {
1339          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1340            << Types[i]->getTypeLoc().getSourceRange()
1341            << Types[i]->getType();
1342          TypeErrorFound = true;
1343        }
1344
1345        // C11 6.5.1.1p2 "No two generic associations in the same generic
1346        // selection shall specify compatible types."
1347        for (unsigned j = i+1; j < NumAssocs; ++j)
1348          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1349              Context.typesAreCompatible(Types[i]->getType(),
1350                                         Types[j]->getType())) {
1351            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1352                 diag::err_assoc_compatible_types)
1353              << Types[j]->getTypeLoc().getSourceRange()
1354              << Types[j]->getType()
1355              << Types[i]->getType();
1356            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1357                 diag::note_compat_assoc)
1358              << Types[i]->getTypeLoc().getSourceRange()
1359              << Types[i]->getType();
1360            TypeErrorFound = true;
1361          }
1362      }
1363    }
1364  }
1365  if (TypeErrorFound)
1366    return ExprError();
1367
1368  // If we determined that the generic selection is result-dependent, don't
1369  // try to compute the result expression.
1370  if (IsResultDependent)
1371    return Owned(new (Context) GenericSelectionExpr(
1372                   Context, KeyLoc, ControllingExpr,
1373                   Types, Exprs,
1374                   DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
1375
1376  SmallVector<unsigned, 1> CompatIndices;
1377  unsigned DefaultIndex = -1U;
1378  for (unsigned i = 0; i < NumAssocs; ++i) {
1379    if (!Types[i])
1380      DefaultIndex = i;
1381    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1382                                        Types[i]->getType()))
1383      CompatIndices.push_back(i);
1384  }
1385
1386  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1387  // type compatible with at most one of the types named in its generic
1388  // association list."
1389  if (CompatIndices.size() > 1) {
1390    // We strip parens here because the controlling expression is typically
1391    // parenthesized in macro definitions.
1392    ControllingExpr = ControllingExpr->IgnoreParens();
1393    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1394      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1395      << (unsigned) CompatIndices.size();
1396    for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
1397         E = CompatIndices.end(); I != E; ++I) {
1398      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1399           diag::note_compat_assoc)
1400        << Types[*I]->getTypeLoc().getSourceRange()
1401        << Types[*I]->getType();
1402    }
1403    return ExprError();
1404  }
1405
1406  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1407  // its controlling expression shall have type compatible with exactly one of
1408  // the types named in its generic association list."
1409  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1410    // We strip parens here because the controlling expression is typically
1411    // parenthesized in macro definitions.
1412    ControllingExpr = ControllingExpr->IgnoreParens();
1413    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1414      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1415    return ExprError();
1416  }
1417
1418  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1419  // type name that is compatible with the type of the controlling expression,
1420  // then the result expression of the generic selection is the expression
1421  // in that generic association. Otherwise, the result expression of the
1422  // generic selection is the expression in the default generic association."
1423  unsigned ResultIndex =
1424    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1425
1426  return Owned(new (Context) GenericSelectionExpr(
1427                 Context, KeyLoc, ControllingExpr,
1428                 Types, Exprs,
1429                 DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
1430                 ResultIndex));
1431}
1432
1433/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1434/// location of the token and the offset of the ud-suffix within it.
1435static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1436                                     unsigned Offset) {
1437  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1438                                        S.getLangOpts());
1439}
1440
1441/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1442/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1443static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1444                                                 IdentifierInfo *UDSuffix,
1445                                                 SourceLocation UDSuffixLoc,
1446                                                 ArrayRef<Expr*> Args,
1447                                                 SourceLocation LitEndLoc) {
1448  assert(Args.size() <= 2 && "too many arguments for literal operator");
1449
1450  QualType ArgTy[2];
1451  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1452    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1453    if (ArgTy[ArgIdx]->isArrayType())
1454      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1455  }
1456
1457  DeclarationName OpName =
1458    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1459  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1460  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1461
1462  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1463  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1464                              /*AllowRaw*/false, /*AllowTemplate*/false,
1465                              /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1466    return ExprError();
1467
1468  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1469}
1470
1471/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1472/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1473/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1474/// multiple tokens.  However, the common case is that StringToks points to one
1475/// string.
1476///
1477ExprResult
1478Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1479                         Scope *UDLScope) {
1480  assert(NumStringToks && "Must have at least one string!");
1481
1482  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1483  if (Literal.hadError)
1484    return ExprError();
1485
1486  SmallVector<SourceLocation, 4> StringTokLocs;
1487  for (unsigned i = 0; i != NumStringToks; ++i)
1488    StringTokLocs.push_back(StringToks[i].getLocation());
1489
1490  QualType CharTy = Context.CharTy;
1491  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1492  if (Literal.isWide()) {
1493    CharTy = Context.getWideCharType();
1494    Kind = StringLiteral::Wide;
1495  } else if (Literal.isUTF8()) {
1496    Kind = StringLiteral::UTF8;
1497  } else if (Literal.isUTF16()) {
1498    CharTy = Context.Char16Ty;
1499    Kind = StringLiteral::UTF16;
1500  } else if (Literal.isUTF32()) {
1501    CharTy = Context.Char32Ty;
1502    Kind = StringLiteral::UTF32;
1503  } else if (Literal.isPascal()) {
1504    CharTy = Context.UnsignedCharTy;
1505  }
1506
1507  QualType CharTyConst = CharTy;
1508  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1509  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1510    CharTyConst.addConst();
1511
1512  // Get an array type for the string, according to C99 6.4.5.  This includes
1513  // the nul terminator character as well as the string length for pascal
1514  // strings.
1515  QualType StrTy = Context.getConstantArrayType(CharTyConst,
1516                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1517                                 ArrayType::Normal, 0);
1518
1519  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1520  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1521                                             Kind, Literal.Pascal, StrTy,
1522                                             &StringTokLocs[0],
1523                                             StringTokLocs.size());
1524  if (Literal.getUDSuffix().empty())
1525    return Owned(Lit);
1526
1527  // We're building a user-defined literal.
1528  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1529  SourceLocation UDSuffixLoc =
1530    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1531                   Literal.getUDSuffixOffset());
1532
1533  // Make sure we're allowed user-defined literals here.
1534  if (!UDLScope)
1535    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1536
1537  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1538  //   operator "" X (str, len)
1539  QualType SizeType = Context.getSizeType();
1540
1541  DeclarationName OpName =
1542    Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1543  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1544  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1545
1546  QualType ArgTy[] = {
1547    Context.getArrayDecayedType(StrTy), SizeType
1548  };
1549
1550  LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1551  switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1552                                /*AllowRaw*/false, /*AllowTemplate*/false,
1553                                /*AllowStringTemplate*/true)) {
1554
1555  case LOLR_Cooked: {
1556    llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1557    IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1558                                                    StringTokLocs[0]);
1559    Expr *Args[] = { Lit, LenArg };
1560
1561    return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1562  }
1563
1564  case LOLR_StringTemplate: {
1565    TemplateArgumentListInfo ExplicitArgs;
1566
1567    unsigned CharBits = Context.getIntWidth(CharTy);
1568    bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1569    llvm::APSInt Value(CharBits, CharIsUnsigned);
1570
1571    TemplateArgument TypeArg(CharTy);
1572    TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1573    ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1574
1575    for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1576      Value = Lit->getCodeUnit(I);
1577      TemplateArgument Arg(Context, Value, CharTy);
1578      TemplateArgumentLocInfo ArgInfo;
1579      ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1580    }
1581    return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1582                                    &ExplicitArgs);
1583  }
1584  case LOLR_Raw:
1585  case LOLR_Template:
1586    llvm_unreachable("unexpected literal operator lookup result");
1587  case LOLR_Error:
1588    return ExprError();
1589  }
1590  llvm_unreachable("unexpected literal operator lookup result");
1591}
1592
1593ExprResult
1594Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1595                       SourceLocation Loc,
1596                       const CXXScopeSpec *SS) {
1597  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1598  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1599}
1600
1601/// BuildDeclRefExpr - Build an expression that references a
1602/// declaration that does not require a closure capture.
1603ExprResult
1604Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1605                       const DeclarationNameInfo &NameInfo,
1606                       const CXXScopeSpec *SS, NamedDecl *FoundD,
1607                       const TemplateArgumentListInfo *TemplateArgs) {
1608  if (getLangOpts().CUDA)
1609    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1610      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1611        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1612                           CalleeTarget = IdentifyCUDATarget(Callee);
1613        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1614          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1615            << CalleeTarget << D->getIdentifier() << CallerTarget;
1616          Diag(D->getLocation(), diag::note_previous_decl)
1617            << D->getIdentifier();
1618          return ExprError();
1619        }
1620      }
1621
1622  bool refersToEnclosingScope =
1623    (CurContext != D->getDeclContext() &&
1624     D->getDeclContext()->isFunctionOrMethod()) ||
1625    (isa<VarDecl>(D) &&
1626     cast<VarDecl>(D)->isInitCapture());
1627
1628  DeclRefExpr *E;
1629  if (isa<VarTemplateSpecializationDecl>(D)) {
1630    VarTemplateSpecializationDecl *VarSpec =
1631        cast<VarTemplateSpecializationDecl>(D);
1632
1633    E = DeclRefExpr::Create(
1634        Context,
1635        SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1636        VarSpec->getTemplateKeywordLoc(), D, refersToEnclosingScope,
1637        NameInfo.getLoc(), Ty, VK, FoundD, TemplateArgs);
1638  } else {
1639    assert(!TemplateArgs && "No template arguments for non-variable"
1640                            " template specialization referrences");
1641    E = DeclRefExpr::Create(
1642        Context,
1643        SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1644        SourceLocation(), D, refersToEnclosingScope, NameInfo, Ty, VK, FoundD);
1645  }
1646
1647  MarkDeclRefReferenced(E);
1648
1649  if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1650      Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
1651    DiagnosticsEngine::Level Level =
1652      Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1653                               E->getLocStart());
1654    if (Level != DiagnosticsEngine::Ignored)
1655      recordUseOfEvaluatedWeak(E);
1656  }
1657
1658  // Just in case we're building an illegal pointer-to-member.
1659  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1660  if (FD && FD->isBitField())
1661    E->setObjectKind(OK_BitField);
1662
1663  return Owned(E);
1664}
1665
1666/// Decomposes the given name into a DeclarationNameInfo, its location, and
1667/// possibly a list of template arguments.
1668///
1669/// If this produces template arguments, it is permitted to call
1670/// DecomposeTemplateName.
1671///
1672/// This actually loses a lot of source location information for
1673/// non-standard name kinds; we should consider preserving that in
1674/// some way.
1675void
1676Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1677                             TemplateArgumentListInfo &Buffer,
1678                             DeclarationNameInfo &NameInfo,
1679                             const TemplateArgumentListInfo *&TemplateArgs) {
1680  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1681    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1682    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1683
1684    ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1685                                       Id.TemplateId->NumArgs);
1686    translateTemplateArguments(TemplateArgsPtr, Buffer);
1687
1688    TemplateName TName = Id.TemplateId->Template.get();
1689    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1690    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1691    TemplateArgs = &Buffer;
1692  } else {
1693    NameInfo = GetNameFromUnqualifiedId(Id);
1694    TemplateArgs = 0;
1695  }
1696}
1697
1698/// Diagnose an empty lookup.
1699///
1700/// \return false if new lookup candidates were found
1701bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1702                               CorrectionCandidateCallback &CCC,
1703                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1704                               ArrayRef<Expr *> Args) {
1705  DeclarationName Name = R.getLookupName();
1706
1707  unsigned diagnostic = diag::err_undeclared_var_use;
1708  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1709  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1710      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1711      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1712    diagnostic = diag::err_undeclared_use;
1713    diagnostic_suggest = diag::err_undeclared_use_suggest;
1714  }
1715
1716  // If the original lookup was an unqualified lookup, fake an
1717  // unqualified lookup.  This is useful when (for example) the
1718  // original lookup would not have found something because it was a
1719  // dependent name.
1720  DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1721    ? CurContext : 0;
1722  while (DC) {
1723    if (isa<CXXRecordDecl>(DC)) {
1724      LookupQualifiedName(R, DC);
1725
1726      if (!R.empty()) {
1727        // Don't give errors about ambiguities in this lookup.
1728        R.suppressDiagnostics();
1729
1730        // During a default argument instantiation the CurContext points
1731        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1732        // function parameter list, hence add an explicit check.
1733        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1734                              ActiveTemplateInstantiations.back().Kind ==
1735            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1736        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1737        bool isInstance = CurMethod &&
1738                          CurMethod->isInstance() &&
1739                          DC == CurMethod->getParent() && !isDefaultArgument;
1740
1741
1742        // Give a code modification hint to insert 'this->'.
1743        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1744        // Actually quite difficult!
1745        if (getLangOpts().MicrosoftMode)
1746          diagnostic = diag::warn_found_via_dependent_bases_lookup;
1747        if (isInstance) {
1748          Diag(R.getNameLoc(), diagnostic) << Name
1749            << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1750          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1751              CallsUndergoingInstantiation.back()->getCallee());
1752
1753          CXXMethodDecl *DepMethod;
1754          if (CurMethod->isDependentContext())
1755            DepMethod = CurMethod;
1756          else if (CurMethod->getTemplatedKind() ==
1757              FunctionDecl::TK_FunctionTemplateSpecialization)
1758            DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1759                getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1760          else
1761            DepMethod = cast<CXXMethodDecl>(
1762                CurMethod->getInstantiatedFromMemberFunction());
1763          assert(DepMethod && "No template pattern found");
1764
1765          QualType DepThisType = DepMethod->getThisType(Context);
1766          CheckCXXThisCapture(R.getNameLoc());
1767          CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1768                                     R.getNameLoc(), DepThisType, false);
1769          TemplateArgumentListInfo TList;
1770          if (ULE->hasExplicitTemplateArgs())
1771            ULE->copyTemplateArgumentsInto(TList);
1772
1773          CXXScopeSpec SS;
1774          SS.Adopt(ULE->getQualifierLoc());
1775          CXXDependentScopeMemberExpr *DepExpr =
1776              CXXDependentScopeMemberExpr::Create(
1777                  Context, DepThis, DepThisType, true, SourceLocation(),
1778                  SS.getWithLocInContext(Context),
1779                  ULE->getTemplateKeywordLoc(), 0,
1780                  R.getLookupNameInfo(),
1781                  ULE->hasExplicitTemplateArgs() ? &TList : 0);
1782          CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1783        } else {
1784          Diag(R.getNameLoc(), diagnostic) << Name;
1785        }
1786
1787        // Do we really want to note all of these?
1788        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1789          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1790
1791        // Return true if we are inside a default argument instantiation
1792        // and the found name refers to an instance member function, otherwise
1793        // the function calling DiagnoseEmptyLookup will try to create an
1794        // implicit member call and this is wrong for default argument.
1795        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1796          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1797          return true;
1798        }
1799
1800        // Tell the callee to try to recover.
1801        return false;
1802      }
1803
1804      R.clear();
1805    }
1806
1807    // In Microsoft mode, if we are performing lookup from within a friend
1808    // function definition declared at class scope then we must set
1809    // DC to the lexical parent to be able to search into the parent
1810    // class.
1811    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1812        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1813        DC->getLexicalParent()->isRecord())
1814      DC = DC->getLexicalParent();
1815    else
1816      DC = DC->getParent();
1817  }
1818
1819  // We didn't find anything, so try to correct for a typo.
1820  TypoCorrection Corrected;
1821  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1822                                    S, &SS, CCC))) {
1823    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1824    bool DroppedSpecifier =
1825        Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1826    R.setLookupName(Corrected.getCorrection());
1827
1828    bool AcceptableWithRecovery = false;
1829    bool AcceptableWithoutRecovery = false;
1830    NamedDecl *ND = Corrected.getCorrectionDecl();
1831    if (ND) {
1832      if (Corrected.isOverloaded()) {
1833        OverloadCandidateSet OCS(R.getNameLoc());
1834        OverloadCandidateSet::iterator Best;
1835        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1836                                        CDEnd = Corrected.end();
1837             CD != CDEnd; ++CD) {
1838          if (FunctionTemplateDecl *FTD =
1839                   dyn_cast<FunctionTemplateDecl>(*CD))
1840            AddTemplateOverloadCandidate(
1841                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1842                Args, OCS);
1843          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1844            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1845              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1846                                   Args, OCS);
1847        }
1848        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1849        case OR_Success:
1850          ND = Best->Function;
1851          Corrected.setCorrectionDecl(ND);
1852          break;
1853        default:
1854          // FIXME: Arbitrarily pick the first declaration for the note.
1855          Corrected.setCorrectionDecl(ND);
1856          break;
1857        }
1858      }
1859      R.addDecl(ND);
1860
1861      AcceptableWithRecovery =
1862          isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
1863      // FIXME: If we ended up with a typo for a type name or
1864      // Objective-C class name, we're in trouble because the parser
1865      // is in the wrong place to recover. Suggest the typo
1866      // correction, but don't make it a fix-it since we're not going
1867      // to recover well anyway.
1868      AcceptableWithoutRecovery =
1869          isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
1870    } else {
1871      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1872      // because we aren't able to recover.
1873      AcceptableWithoutRecovery = true;
1874    }
1875
1876    if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
1877      unsigned NoteID = (Corrected.getCorrectionDecl() &&
1878                         isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
1879                            ? diag::note_implicit_param_decl
1880                            : diag::note_previous_decl;
1881      if (SS.isEmpty())
1882        diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
1883                     PDiag(NoteID), AcceptableWithRecovery);
1884      else
1885        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
1886                                  << Name << computeDeclContext(SS, false)
1887                                  << DroppedSpecifier << SS.getRange(),
1888                     PDiag(NoteID), AcceptableWithRecovery);
1889
1890      // Tell the callee whether to try to recover.
1891      return !AcceptableWithRecovery;
1892    }
1893  }
1894  R.clear();
1895
1896  // Emit a special diagnostic for failed member lookups.
1897  // FIXME: computing the declaration context might fail here (?)
1898  if (!SS.isEmpty()) {
1899    Diag(R.getNameLoc(), diag::err_no_member)
1900      << Name << computeDeclContext(SS, false)
1901      << SS.getRange();
1902    return true;
1903  }
1904
1905  // Give up, we can't recover.
1906  Diag(R.getNameLoc(), diagnostic) << Name;
1907  return true;
1908}
1909
1910ExprResult Sema::ActOnIdExpression(Scope *S,
1911                                   CXXScopeSpec &SS,
1912                                   SourceLocation TemplateKWLoc,
1913                                   UnqualifiedId &Id,
1914                                   bool HasTrailingLParen,
1915                                   bool IsAddressOfOperand,
1916                                   CorrectionCandidateCallback *CCC,
1917                                   bool IsInlineAsmIdentifier) {
1918  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1919         "cannot be direct & operand and have a trailing lparen");
1920  if (SS.isInvalid())
1921    return ExprError();
1922
1923  TemplateArgumentListInfo TemplateArgsBuffer;
1924
1925  // Decompose the UnqualifiedId into the following data.
1926  DeclarationNameInfo NameInfo;
1927  const TemplateArgumentListInfo *TemplateArgs;
1928  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1929
1930  DeclarationName Name = NameInfo.getName();
1931  IdentifierInfo *II = Name.getAsIdentifierInfo();
1932  SourceLocation NameLoc = NameInfo.getLoc();
1933
1934  // C++ [temp.dep.expr]p3:
1935  //   An id-expression is type-dependent if it contains:
1936  //     -- an identifier that was declared with a dependent type,
1937  //        (note: handled after lookup)
1938  //     -- a template-id that is dependent,
1939  //        (note: handled in BuildTemplateIdExpr)
1940  //     -- a conversion-function-id that specifies a dependent type,
1941  //     -- a nested-name-specifier that contains a class-name that
1942  //        names a dependent type.
1943  // Determine whether this is a member of an unknown specialization;
1944  // we need to handle these differently.
1945  bool DependentID = false;
1946  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1947      Name.getCXXNameType()->isDependentType()) {
1948    DependentID = true;
1949  } else if (SS.isSet()) {
1950    if (DeclContext *DC = computeDeclContext(SS, false)) {
1951      if (RequireCompleteDeclContext(SS, DC))
1952        return ExprError();
1953    } else {
1954      DependentID = true;
1955    }
1956  }
1957
1958  if (DependentID)
1959    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1960                                      IsAddressOfOperand, TemplateArgs);
1961
1962  // Perform the required lookup.
1963  LookupResult R(*this, NameInfo,
1964                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1965                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1966  if (TemplateArgs) {
1967    // Lookup the template name again to correctly establish the context in
1968    // which it was found. This is really unfortunate as we already did the
1969    // lookup to determine that it was a template name in the first place. If
1970    // this becomes a performance hit, we can work harder to preserve those
1971    // results until we get here but it's likely not worth it.
1972    bool MemberOfUnknownSpecialization;
1973    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1974                       MemberOfUnknownSpecialization);
1975
1976    if (MemberOfUnknownSpecialization ||
1977        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1978      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1979                                        IsAddressOfOperand, TemplateArgs);
1980  } else {
1981    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1982    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1983
1984    // If the result might be in a dependent base class, this is a dependent
1985    // id-expression.
1986    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1987      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1988                                        IsAddressOfOperand, TemplateArgs);
1989
1990    // If this reference is in an Objective-C method, then we need to do
1991    // some special Objective-C lookup, too.
1992    if (IvarLookupFollowUp) {
1993      ExprResult E(LookupInObjCMethod(R, S, II, true));
1994      if (E.isInvalid())
1995        return ExprError();
1996
1997      if (Expr *Ex = E.takeAs<Expr>())
1998        return Owned(Ex);
1999    }
2000  }
2001
2002  if (R.isAmbiguous())
2003    return ExprError();
2004
2005  // Determine whether this name might be a candidate for
2006  // argument-dependent lookup.
2007  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2008
2009  if (R.empty() && !ADL) {
2010
2011    // Otherwise, this could be an implicitly declared function reference (legal
2012    // in C90, extension in C99, forbidden in C++).
2013    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2014      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2015      if (D) R.addDecl(D);
2016    }
2017
2018    // If this name wasn't predeclared and if this is not a function
2019    // call, diagnose the problem.
2020    if (R.empty()) {
2021      // In Microsoft mode, if we are inside a template class member function
2022      // whose parent class has dependent base classes, and we can't resolve
2023      // an identifier, then assume the identifier is a member of a dependent
2024      // base class.  The goal is to postpone name lookup to instantiation time
2025      // to be able to search into the type dependent base classes.
2026      // FIXME: If we want 100% compatibility with MSVC, we will have delay all
2027      // unqualified name lookup.  Any name lookup during template parsing means
2028      // clang might find something that MSVC doesn't.  For now, we only handle
2029      // the common case of members of a dependent base class.
2030      if (getLangOpts().MicrosoftMode) {
2031        CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext);
2032        if (MD && MD->isInstance() && MD->getParent()->hasAnyDependentBases()) {
2033          assert(SS.isEmpty() && "qualifiers should be already handled");
2034          QualType ThisType = MD->getThisType(Context);
2035          // Since the 'this' expression is synthesized, we don't need to
2036          // perform the double-lookup check.
2037          NamedDecl *FirstQualifierInScope = 0;
2038          return Owned(CXXDependentScopeMemberExpr::Create(
2039              Context, /*This=*/0, ThisType, /*IsArrow=*/true,
2040              /*Op=*/SourceLocation(), SS.getWithLocInContext(Context),
2041              TemplateKWLoc, FirstQualifierInScope, NameInfo, TemplateArgs));
2042        }
2043      }
2044
2045      // Don't diagnose an empty lookup for inline assmebly.
2046      if (IsInlineAsmIdentifier)
2047        return ExprError();
2048
2049      CorrectionCandidateCallback DefaultValidator;
2050      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
2051        return ExprError();
2052
2053      assert(!R.empty() &&
2054             "DiagnoseEmptyLookup returned false but added no results");
2055
2056      // If we found an Objective-C instance variable, let
2057      // LookupInObjCMethod build the appropriate expression to
2058      // reference the ivar.
2059      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2060        R.clear();
2061        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2062        // In a hopelessly buggy code, Objective-C instance variable
2063        // lookup fails and no expression will be built to reference it.
2064        if (!E.isInvalid() && !E.get())
2065          return ExprError();
2066        return E;
2067      }
2068    }
2069  }
2070
2071  // This is guaranteed from this point on.
2072  assert(!R.empty() || ADL);
2073
2074  // Check whether this might be a C++ implicit instance member access.
2075  // C++ [class.mfct.non-static]p3:
2076  //   When an id-expression that is not part of a class member access
2077  //   syntax and not used to form a pointer to member is used in the
2078  //   body of a non-static member function of class X, if name lookup
2079  //   resolves the name in the id-expression to a non-static non-type
2080  //   member of some class C, the id-expression is transformed into a
2081  //   class member access expression using (*this) as the
2082  //   postfix-expression to the left of the . operator.
2083  //
2084  // But we don't actually need to do this for '&' operands if R
2085  // resolved to a function or overloaded function set, because the
2086  // expression is ill-formed if it actually works out to be a
2087  // non-static member function:
2088  //
2089  // C++ [expr.ref]p4:
2090  //   Otherwise, if E1.E2 refers to a non-static member function. . .
2091  //   [t]he expression can be used only as the left-hand operand of a
2092  //   member function call.
2093  //
2094  // There are other safeguards against such uses, but it's important
2095  // to get this right here so that we don't end up making a
2096  // spuriously dependent expression if we're inside a dependent
2097  // instance method.
2098  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2099    bool MightBeImplicitMember;
2100    if (!IsAddressOfOperand)
2101      MightBeImplicitMember = true;
2102    else if (!SS.isEmpty())
2103      MightBeImplicitMember = false;
2104    else if (R.isOverloadedResult())
2105      MightBeImplicitMember = false;
2106    else if (R.isUnresolvableResult())
2107      MightBeImplicitMember = true;
2108    else
2109      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2110                              isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2111                              isa<MSPropertyDecl>(R.getFoundDecl());
2112
2113    if (MightBeImplicitMember)
2114      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2115                                             R, TemplateArgs);
2116  }
2117
2118  if (TemplateArgs || TemplateKWLoc.isValid()) {
2119
2120    // In C++1y, if this is a variable template id, then check it
2121    // in BuildTemplateIdExpr().
2122    // The single lookup result must be a variable template declaration.
2123    if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2124        Id.TemplateId->Kind == TNK_Var_template) {
2125      assert(R.getAsSingle<VarTemplateDecl>() &&
2126             "There should only be one declaration found.");
2127    }
2128
2129    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2130  }
2131
2132  return BuildDeclarationNameExpr(SS, R, ADL);
2133}
2134
2135/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2136/// declaration name, generally during template instantiation.
2137/// There's a large number of things which don't need to be done along
2138/// this path.
2139ExprResult
2140Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
2141                                        const DeclarationNameInfo &NameInfo,
2142                                        bool IsAddressOfOperand) {
2143  DeclContext *DC = computeDeclContext(SS, false);
2144  if (!DC)
2145    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2146                                     NameInfo, /*TemplateArgs=*/0);
2147
2148  if (RequireCompleteDeclContext(SS, DC))
2149    return ExprError();
2150
2151  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2152  LookupQualifiedName(R, DC);
2153
2154  if (R.isAmbiguous())
2155    return ExprError();
2156
2157  if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2158    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2159                                     NameInfo, /*TemplateArgs=*/0);
2160
2161  if (R.empty()) {
2162    Diag(NameInfo.getLoc(), diag::err_no_member)
2163      << NameInfo.getName() << DC << SS.getRange();
2164    return ExprError();
2165  }
2166
2167  // Defend against this resolving to an implicit member access. We usually
2168  // won't get here if this might be a legitimate a class member (we end up in
2169  // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2170  // a pointer-to-member or in an unevaluated context in C++11.
2171  if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2172    return BuildPossibleImplicitMemberExpr(SS,
2173                                           /*TemplateKWLoc=*/SourceLocation(),
2174                                           R, /*TemplateArgs=*/0);
2175
2176  return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2177}
2178
2179/// LookupInObjCMethod - The parser has read a name in, and Sema has
2180/// detected that we're currently inside an ObjC method.  Perform some
2181/// additional lookup.
2182///
2183/// Ideally, most of this would be done by lookup, but there's
2184/// actually quite a lot of extra work involved.
2185///
2186/// Returns a null sentinel to indicate trivial success.
2187ExprResult
2188Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2189                         IdentifierInfo *II, bool AllowBuiltinCreation) {
2190  SourceLocation Loc = Lookup.getNameLoc();
2191  ObjCMethodDecl *CurMethod = getCurMethodDecl();
2192
2193  // Check for error condition which is already reported.
2194  if (!CurMethod)
2195    return ExprError();
2196
2197  // There are two cases to handle here.  1) scoped lookup could have failed,
2198  // in which case we should look for an ivar.  2) scoped lookup could have
2199  // found a decl, but that decl is outside the current instance method (i.e.
2200  // a global variable).  In these two cases, we do a lookup for an ivar with
2201  // this name, if the lookup sucedes, we replace it our current decl.
2202
2203  // If we're in a class method, we don't normally want to look for
2204  // ivars.  But if we don't find anything else, and there's an
2205  // ivar, that's an error.
2206  bool IsClassMethod = CurMethod->isClassMethod();
2207
2208  bool LookForIvars;
2209  if (Lookup.empty())
2210    LookForIvars = true;
2211  else if (IsClassMethod)
2212    LookForIvars = false;
2213  else
2214    LookForIvars = (Lookup.isSingleResult() &&
2215                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2216  ObjCInterfaceDecl *IFace = 0;
2217  if (LookForIvars) {
2218    IFace = CurMethod->getClassInterface();
2219    ObjCInterfaceDecl *ClassDeclared;
2220    ObjCIvarDecl *IV = 0;
2221    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2222      // Diagnose using an ivar in a class method.
2223      if (IsClassMethod)
2224        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2225                         << IV->getDeclName());
2226
2227      // If we're referencing an invalid decl, just return this as a silent
2228      // error node.  The error diagnostic was already emitted on the decl.
2229      if (IV->isInvalidDecl())
2230        return ExprError();
2231
2232      // Check if referencing a field with __attribute__((deprecated)).
2233      if (DiagnoseUseOfDecl(IV, Loc))
2234        return ExprError();
2235
2236      // Diagnose the use of an ivar outside of the declaring class.
2237      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2238          !declaresSameEntity(ClassDeclared, IFace) &&
2239          !getLangOpts().DebuggerSupport)
2240        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2241
2242      // FIXME: This should use a new expr for a direct reference, don't
2243      // turn this into Self->ivar, just return a BareIVarExpr or something.
2244      IdentifierInfo &II = Context.Idents.get("self");
2245      UnqualifiedId SelfName;
2246      SelfName.setIdentifier(&II, SourceLocation());
2247      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2248      CXXScopeSpec SelfScopeSpec;
2249      SourceLocation TemplateKWLoc;
2250      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2251                                              SelfName, false, false);
2252      if (SelfExpr.isInvalid())
2253        return ExprError();
2254
2255      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
2256      if (SelfExpr.isInvalid())
2257        return ExprError();
2258
2259      MarkAnyDeclReferenced(Loc, IV, true);
2260      // Mark this ivar 'referenced' in this method, if it is a backing ivar
2261      // of a property and current method is one of its property accessor.
2262      const ObjCPropertyDecl *PDecl;
2263      const ObjCIvarDecl *BIV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
2264      if (BIV && BIV == IV)
2265        IV->setBackingIvarReferencedInAccessor(true);
2266
2267      ObjCMethodFamily MF = CurMethod->getMethodFamily();
2268      if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2269          !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2270        Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2271
2272      ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2273                                                              Loc, IV->getLocation(),
2274                                                              SelfExpr.take(),
2275                                                              true, true);
2276
2277      if (getLangOpts().ObjCAutoRefCount) {
2278        if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2279          DiagnosticsEngine::Level Level =
2280            Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
2281          if (Level != DiagnosticsEngine::Ignored)
2282            recordUseOfEvaluatedWeak(Result);
2283        }
2284        if (CurContext->isClosure())
2285          Diag(Loc, diag::warn_implicitly_retains_self)
2286            << FixItHint::CreateInsertion(Loc, "self->");
2287      }
2288
2289      return Owned(Result);
2290    }
2291  } else if (CurMethod->isInstanceMethod()) {
2292    // We should warn if a local variable hides an ivar.
2293    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2294      ObjCInterfaceDecl *ClassDeclared;
2295      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2296        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2297            declaresSameEntity(IFace, ClassDeclared))
2298          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2299      }
2300    }
2301  } else if (Lookup.isSingleResult() &&
2302             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2303    // If accessing a stand-alone ivar in a class method, this is an error.
2304    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2305      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2306                       << IV->getDeclName());
2307  }
2308
2309  if (Lookup.empty() && II && AllowBuiltinCreation) {
2310    // FIXME. Consolidate this with similar code in LookupName.
2311    if (unsigned BuiltinID = II->getBuiltinID()) {
2312      if (!(getLangOpts().CPlusPlus &&
2313            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2314        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2315                                           S, Lookup.isForRedeclaration(),
2316                                           Lookup.getNameLoc());
2317        if (D) Lookup.addDecl(D);
2318      }
2319    }
2320  }
2321  // Sentinel value saying that we didn't do anything special.
2322  return Owned((Expr*) 0);
2323}
2324
2325/// \brief Cast a base object to a member's actual type.
2326///
2327/// Logically this happens in three phases:
2328///
2329/// * First we cast from the base type to the naming class.
2330///   The naming class is the class into which we were looking
2331///   when we found the member;  it's the qualifier type if a
2332///   qualifier was provided, and otherwise it's the base type.
2333///
2334/// * Next we cast from the naming class to the declaring class.
2335///   If the member we found was brought into a class's scope by
2336///   a using declaration, this is that class;  otherwise it's
2337///   the class declaring the member.
2338///
2339/// * Finally we cast from the declaring class to the "true"
2340///   declaring class of the member.  This conversion does not
2341///   obey access control.
2342ExprResult
2343Sema::PerformObjectMemberConversion(Expr *From,
2344                                    NestedNameSpecifier *Qualifier,
2345                                    NamedDecl *FoundDecl,
2346                                    NamedDecl *Member) {
2347  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2348  if (!RD)
2349    return Owned(From);
2350
2351  QualType DestRecordType;
2352  QualType DestType;
2353  QualType FromRecordType;
2354  QualType FromType = From->getType();
2355  bool PointerConversions = false;
2356  if (isa<FieldDecl>(Member)) {
2357    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2358
2359    if (FromType->getAs<PointerType>()) {
2360      DestType = Context.getPointerType(DestRecordType);
2361      FromRecordType = FromType->getPointeeType();
2362      PointerConversions = true;
2363    } else {
2364      DestType = DestRecordType;
2365      FromRecordType = FromType;
2366    }
2367  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2368    if (Method->isStatic())
2369      return Owned(From);
2370
2371    DestType = Method->getThisType(Context);
2372    DestRecordType = DestType->getPointeeType();
2373
2374    if (FromType->getAs<PointerType>()) {
2375      FromRecordType = FromType->getPointeeType();
2376      PointerConversions = true;
2377    } else {
2378      FromRecordType = FromType;
2379      DestType = DestRecordType;
2380    }
2381  } else {
2382    // No conversion necessary.
2383    return Owned(From);
2384  }
2385
2386  if (DestType->isDependentType() || FromType->isDependentType())
2387    return Owned(From);
2388
2389  // If the unqualified types are the same, no conversion is necessary.
2390  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2391    return Owned(From);
2392
2393  SourceRange FromRange = From->getSourceRange();
2394  SourceLocation FromLoc = FromRange.getBegin();
2395
2396  ExprValueKind VK = From->getValueKind();
2397
2398  // C++ [class.member.lookup]p8:
2399  //   [...] Ambiguities can often be resolved by qualifying a name with its
2400  //   class name.
2401  //
2402  // If the member was a qualified name and the qualified referred to a
2403  // specific base subobject type, we'll cast to that intermediate type
2404  // first and then to the object in which the member is declared. That allows
2405  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2406  //
2407  //   class Base { public: int x; };
2408  //   class Derived1 : public Base { };
2409  //   class Derived2 : public Base { };
2410  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2411  //
2412  //   void VeryDerived::f() {
2413  //     x = 17; // error: ambiguous base subobjects
2414  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2415  //   }
2416  if (Qualifier && Qualifier->getAsType()) {
2417    QualType QType = QualType(Qualifier->getAsType(), 0);
2418    assert(QType->isRecordType() && "lookup done with non-record type");
2419
2420    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2421
2422    // In C++98, the qualifier type doesn't actually have to be a base
2423    // type of the object type, in which case we just ignore it.
2424    // Otherwise build the appropriate casts.
2425    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2426      CXXCastPath BasePath;
2427      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2428                                       FromLoc, FromRange, &BasePath))
2429        return ExprError();
2430
2431      if (PointerConversions)
2432        QType = Context.getPointerType(QType);
2433      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2434                               VK, &BasePath).take();
2435
2436      FromType = QType;
2437      FromRecordType = QRecordType;
2438
2439      // If the qualifier type was the same as the destination type,
2440      // we're done.
2441      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2442        return Owned(From);
2443    }
2444  }
2445
2446  bool IgnoreAccess = false;
2447
2448  // If we actually found the member through a using declaration, cast
2449  // down to the using declaration's type.
2450  //
2451  // Pointer equality is fine here because only one declaration of a
2452  // class ever has member declarations.
2453  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2454    assert(isa<UsingShadowDecl>(FoundDecl));
2455    QualType URecordType = Context.getTypeDeclType(
2456                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2457
2458    // We only need to do this if the naming-class to declaring-class
2459    // conversion is non-trivial.
2460    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2461      assert(IsDerivedFrom(FromRecordType, URecordType));
2462      CXXCastPath BasePath;
2463      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2464                                       FromLoc, FromRange, &BasePath))
2465        return ExprError();
2466
2467      QualType UType = URecordType;
2468      if (PointerConversions)
2469        UType = Context.getPointerType(UType);
2470      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2471                               VK, &BasePath).take();
2472      FromType = UType;
2473      FromRecordType = URecordType;
2474    }
2475
2476    // We don't do access control for the conversion from the
2477    // declaring class to the true declaring class.
2478    IgnoreAccess = true;
2479  }
2480
2481  CXXCastPath BasePath;
2482  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2483                                   FromLoc, FromRange, &BasePath,
2484                                   IgnoreAccess))
2485    return ExprError();
2486
2487  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2488                           VK, &BasePath);
2489}
2490
2491bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2492                                      const LookupResult &R,
2493                                      bool HasTrailingLParen) {
2494  // Only when used directly as the postfix-expression of a call.
2495  if (!HasTrailingLParen)
2496    return false;
2497
2498  // Never if a scope specifier was provided.
2499  if (SS.isSet())
2500    return false;
2501
2502  // Only in C++ or ObjC++.
2503  if (!getLangOpts().CPlusPlus)
2504    return false;
2505
2506  // Turn off ADL when we find certain kinds of declarations during
2507  // normal lookup:
2508  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2509    NamedDecl *D = *I;
2510
2511    // C++0x [basic.lookup.argdep]p3:
2512    //     -- a declaration of a class member
2513    // Since using decls preserve this property, we check this on the
2514    // original decl.
2515    if (D->isCXXClassMember())
2516      return false;
2517
2518    // C++0x [basic.lookup.argdep]p3:
2519    //     -- a block-scope function declaration that is not a
2520    //        using-declaration
2521    // NOTE: we also trigger this for function templates (in fact, we
2522    // don't check the decl type at all, since all other decl types
2523    // turn off ADL anyway).
2524    if (isa<UsingShadowDecl>(D))
2525      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2526    else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2527      return false;
2528
2529    // C++0x [basic.lookup.argdep]p3:
2530    //     -- a declaration that is neither a function or a function
2531    //        template
2532    // And also for builtin functions.
2533    if (isa<FunctionDecl>(D)) {
2534      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2535
2536      // But also builtin functions.
2537      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2538        return false;
2539    } else if (!isa<FunctionTemplateDecl>(D))
2540      return false;
2541  }
2542
2543  return true;
2544}
2545
2546
2547/// Diagnoses obvious problems with the use of the given declaration
2548/// as an expression.  This is only actually called for lookups that
2549/// were not overloaded, and it doesn't promise that the declaration
2550/// will in fact be used.
2551static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2552  if (isa<TypedefNameDecl>(D)) {
2553    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2554    return true;
2555  }
2556
2557  if (isa<ObjCInterfaceDecl>(D)) {
2558    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2559    return true;
2560  }
2561
2562  if (isa<NamespaceDecl>(D)) {
2563    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2564    return true;
2565  }
2566
2567  return false;
2568}
2569
2570ExprResult
2571Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2572                               LookupResult &R,
2573                               bool NeedsADL) {
2574  // If this is a single, fully-resolved result and we don't need ADL,
2575  // just build an ordinary singleton decl ref.
2576  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2577    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2578                                    R.getRepresentativeDecl());
2579
2580  // We only need to check the declaration if there's exactly one
2581  // result, because in the overloaded case the results can only be
2582  // functions and function templates.
2583  if (R.isSingleResult() &&
2584      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2585    return ExprError();
2586
2587  // Otherwise, just build an unresolved lookup expression.  Suppress
2588  // any lookup-related diagnostics; we'll hash these out later, when
2589  // we've picked a target.
2590  R.suppressDiagnostics();
2591
2592  UnresolvedLookupExpr *ULE
2593    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2594                                   SS.getWithLocInContext(Context),
2595                                   R.getLookupNameInfo(),
2596                                   NeedsADL, R.isOverloadedResult(),
2597                                   R.begin(), R.end());
2598
2599  return Owned(ULE);
2600}
2601
2602/// \brief Complete semantic analysis for a reference to the given declaration.
2603ExprResult Sema::BuildDeclarationNameExpr(
2604    const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2605    NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) {
2606  assert(D && "Cannot refer to a NULL declaration");
2607  assert(!isa<FunctionTemplateDecl>(D) &&
2608         "Cannot refer unambiguously to a function template");
2609
2610  SourceLocation Loc = NameInfo.getLoc();
2611  if (CheckDeclInExpr(*this, Loc, D))
2612    return ExprError();
2613
2614  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2615    // Specifically diagnose references to class templates that are missing
2616    // a template argument list.
2617    Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2618                                           << Template << SS.getRange();
2619    Diag(Template->getLocation(), diag::note_template_decl_here);
2620    return ExprError();
2621  }
2622
2623  // Make sure that we're referring to a value.
2624  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2625  if (!VD) {
2626    Diag(Loc, diag::err_ref_non_value)
2627      << D << SS.getRange();
2628    Diag(D->getLocation(), diag::note_declared_at);
2629    return ExprError();
2630  }
2631
2632  // Check whether this declaration can be used. Note that we suppress
2633  // this check when we're going to perform argument-dependent lookup
2634  // on this function name, because this might not be the function
2635  // that overload resolution actually selects.
2636  if (DiagnoseUseOfDecl(VD, Loc))
2637    return ExprError();
2638
2639  // Only create DeclRefExpr's for valid Decl's.
2640  if (VD->isInvalidDecl())
2641    return ExprError();
2642
2643  // Handle members of anonymous structs and unions.  If we got here,
2644  // and the reference is to a class member indirect field, then this
2645  // must be the subject of a pointer-to-member expression.
2646  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2647    if (!indirectField->isCXXClassMember())
2648      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2649                                                      indirectField);
2650
2651  {
2652    QualType type = VD->getType();
2653    ExprValueKind valueKind = VK_RValue;
2654
2655    switch (D->getKind()) {
2656    // Ignore all the non-ValueDecl kinds.
2657#define ABSTRACT_DECL(kind)
2658#define VALUE(type, base)
2659#define DECL(type, base) \
2660    case Decl::type:
2661#include "clang/AST/DeclNodes.inc"
2662      llvm_unreachable("invalid value decl kind");
2663
2664    // These shouldn't make it here.
2665    case Decl::ObjCAtDefsField:
2666    case Decl::ObjCIvar:
2667      llvm_unreachable("forming non-member reference to ivar?");
2668
2669    // Enum constants are always r-values and never references.
2670    // Unresolved using declarations are dependent.
2671    case Decl::EnumConstant:
2672    case Decl::UnresolvedUsingValue:
2673      valueKind = VK_RValue;
2674      break;
2675
2676    // Fields and indirect fields that got here must be for
2677    // pointer-to-member expressions; we just call them l-values for
2678    // internal consistency, because this subexpression doesn't really
2679    // exist in the high-level semantics.
2680    case Decl::Field:
2681    case Decl::IndirectField:
2682      assert(getLangOpts().CPlusPlus &&
2683             "building reference to field in C?");
2684
2685      // These can't have reference type in well-formed programs, but
2686      // for internal consistency we do this anyway.
2687      type = type.getNonReferenceType();
2688      valueKind = VK_LValue;
2689      break;
2690
2691    // Non-type template parameters are either l-values or r-values
2692    // depending on the type.
2693    case Decl::NonTypeTemplateParm: {
2694      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2695        type = reftype->getPointeeType();
2696        valueKind = VK_LValue; // even if the parameter is an r-value reference
2697        break;
2698      }
2699
2700      // For non-references, we need to strip qualifiers just in case
2701      // the template parameter was declared as 'const int' or whatever.
2702      valueKind = VK_RValue;
2703      type = type.getUnqualifiedType();
2704      break;
2705    }
2706
2707    case Decl::Var:
2708    case Decl::VarTemplateSpecialization:
2709    case Decl::VarTemplatePartialSpecialization:
2710      // In C, "extern void blah;" is valid and is an r-value.
2711      if (!getLangOpts().CPlusPlus &&
2712          !type.hasQualifiers() &&
2713          type->isVoidType()) {
2714        valueKind = VK_RValue;
2715        break;
2716      }
2717      // fallthrough
2718
2719    case Decl::ImplicitParam:
2720    case Decl::ParmVar: {
2721      // These are always l-values.
2722      valueKind = VK_LValue;
2723      type = type.getNonReferenceType();
2724
2725      // FIXME: Does the addition of const really only apply in
2726      // potentially-evaluated contexts? Since the variable isn't actually
2727      // captured in an unevaluated context, it seems that the answer is no.
2728      if (!isUnevaluatedContext()) {
2729        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2730        if (!CapturedType.isNull())
2731          type = CapturedType;
2732      }
2733
2734      break;
2735    }
2736
2737    case Decl::Function: {
2738      if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2739        if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2740          type = Context.BuiltinFnTy;
2741          valueKind = VK_RValue;
2742          break;
2743        }
2744      }
2745
2746      const FunctionType *fty = type->castAs<FunctionType>();
2747
2748      // If we're referring to a function with an __unknown_anytype
2749      // result type, make the entire expression __unknown_anytype.
2750      if (fty->getResultType() == Context.UnknownAnyTy) {
2751        type = Context.UnknownAnyTy;
2752        valueKind = VK_RValue;
2753        break;
2754      }
2755
2756      // Functions are l-values in C++.
2757      if (getLangOpts().CPlusPlus) {
2758        valueKind = VK_LValue;
2759        break;
2760      }
2761
2762      // C99 DR 316 says that, if a function type comes from a
2763      // function definition (without a prototype), that type is only
2764      // used for checking compatibility. Therefore, when referencing
2765      // the function, we pretend that we don't have the full function
2766      // type.
2767      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2768          isa<FunctionProtoType>(fty))
2769        type = Context.getFunctionNoProtoType(fty->getResultType(),
2770                                              fty->getExtInfo());
2771
2772      // Functions are r-values in C.
2773      valueKind = VK_RValue;
2774      break;
2775    }
2776
2777    case Decl::MSProperty:
2778      valueKind = VK_LValue;
2779      break;
2780
2781    case Decl::CXXMethod:
2782      // If we're referring to a method with an __unknown_anytype
2783      // result type, make the entire expression __unknown_anytype.
2784      // This should only be possible with a type written directly.
2785      if (const FunctionProtoType *proto
2786            = dyn_cast<FunctionProtoType>(VD->getType()))
2787        if (proto->getResultType() == Context.UnknownAnyTy) {
2788          type = Context.UnknownAnyTy;
2789          valueKind = VK_RValue;
2790          break;
2791        }
2792
2793      // C++ methods are l-values if static, r-values if non-static.
2794      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2795        valueKind = VK_LValue;
2796        break;
2797      }
2798      // fallthrough
2799
2800    case Decl::CXXConversion:
2801    case Decl::CXXDestructor:
2802    case Decl::CXXConstructor:
2803      valueKind = VK_RValue;
2804      break;
2805    }
2806
2807    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
2808                            TemplateArgs);
2809  }
2810}
2811
2812ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
2813                                     PredefinedExpr::IdentType IT) {
2814  // Pick the current block, lambda, captured statement or function.
2815  Decl *currentDecl = 0;
2816  if (const BlockScopeInfo *BSI = getCurBlock())
2817    currentDecl = BSI->TheDecl;
2818  else if (const LambdaScopeInfo *LSI = getCurLambda())
2819    currentDecl = LSI->CallOperator;
2820  else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
2821    currentDecl = CSI->TheCapturedDecl;
2822  else
2823    currentDecl = getCurFunctionOrMethodDecl();
2824
2825  if (!currentDecl) {
2826    Diag(Loc, diag::ext_predef_outside_function);
2827    currentDecl = Context.getTranslationUnitDecl();
2828  }
2829
2830  QualType ResTy;
2831  if (cast<DeclContext>(currentDecl)->isDependentContext())
2832    ResTy = Context.DependentTy;
2833  else {
2834    // Pre-defined identifiers are of type char[x], where x is the length of
2835    // the string.
2836    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2837
2838    llvm::APInt LengthI(32, Length + 1);
2839    if (IT == PredefinedExpr::LFunction)
2840      ResTy = Context.WideCharTy.withConst();
2841    else
2842      ResTy = Context.CharTy.withConst();
2843    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2844  }
2845
2846  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2847}
2848
2849ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2850  PredefinedExpr::IdentType IT;
2851
2852  switch (Kind) {
2853  default: llvm_unreachable("Unknown simple primary expr!");
2854  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2855  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2856  case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
2857  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2858  }
2859
2860  return BuildPredefinedExpr(Loc, IT);
2861}
2862
2863ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2864  SmallString<16> CharBuffer;
2865  bool Invalid = false;
2866  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2867  if (Invalid)
2868    return ExprError();
2869
2870  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2871                            PP, Tok.getKind());
2872  if (Literal.hadError())
2873    return ExprError();
2874
2875  QualType Ty;
2876  if (Literal.isWide())
2877    Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
2878  else if (Literal.isUTF16())
2879    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2880  else if (Literal.isUTF32())
2881    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2882  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2883    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2884  else
2885    Ty = Context.CharTy;  // 'x' -> char in C++
2886
2887  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2888  if (Literal.isWide())
2889    Kind = CharacterLiteral::Wide;
2890  else if (Literal.isUTF16())
2891    Kind = CharacterLiteral::UTF16;
2892  else if (Literal.isUTF32())
2893    Kind = CharacterLiteral::UTF32;
2894
2895  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2896                                             Tok.getLocation());
2897
2898  if (Literal.getUDSuffix().empty())
2899    return Owned(Lit);
2900
2901  // We're building a user-defined literal.
2902  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2903  SourceLocation UDSuffixLoc =
2904    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2905
2906  // Make sure we're allowed user-defined literals here.
2907  if (!UDLScope)
2908    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2909
2910  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2911  //   operator "" X (ch)
2912  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2913                                        Lit, Tok.getLocation());
2914}
2915
2916ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2917  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2918  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2919                                      Context.IntTy, Loc));
2920}
2921
2922static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2923                                  QualType Ty, SourceLocation Loc) {
2924  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2925
2926  using llvm::APFloat;
2927  APFloat Val(Format);
2928
2929  APFloat::opStatus result = Literal.GetFloatValue(Val);
2930
2931  // Overflow is always an error, but underflow is only an error if
2932  // we underflowed to zero (APFloat reports denormals as underflow).
2933  if ((result & APFloat::opOverflow) ||
2934      ((result & APFloat::opUnderflow) && Val.isZero())) {
2935    unsigned diagnostic;
2936    SmallString<20> buffer;
2937    if (result & APFloat::opOverflow) {
2938      diagnostic = diag::warn_float_overflow;
2939      APFloat::getLargest(Format).toString(buffer);
2940    } else {
2941      diagnostic = diag::warn_float_underflow;
2942      APFloat::getSmallest(Format).toString(buffer);
2943    }
2944
2945    S.Diag(Loc, diagnostic)
2946      << Ty
2947      << StringRef(buffer.data(), buffer.size());
2948  }
2949
2950  bool isExact = (result == APFloat::opOK);
2951  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2952}
2953
2954ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2955  // Fast path for a single digit (which is quite common).  A single digit
2956  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2957  if (Tok.getLength() == 1) {
2958    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2959    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2960  }
2961
2962  SmallString<128> SpellingBuffer;
2963  // NumericLiteralParser wants to overread by one character.  Add padding to
2964  // the buffer in case the token is copied to the buffer.  If getSpelling()
2965  // returns a StringRef to the memory buffer, it should have a null char at
2966  // the EOF, so it is also safe.
2967  SpellingBuffer.resize(Tok.getLength() + 1);
2968
2969  // Get the spelling of the token, which eliminates trigraphs, etc.
2970  bool Invalid = false;
2971  StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
2972  if (Invalid)
2973    return ExprError();
2974
2975  NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
2976  if (Literal.hadError)
2977    return ExprError();
2978
2979  if (Literal.hasUDSuffix()) {
2980    // We're building a user-defined literal.
2981    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2982    SourceLocation UDSuffixLoc =
2983      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2984
2985    // Make sure we're allowed user-defined literals here.
2986    if (!UDLScope)
2987      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2988
2989    QualType CookedTy;
2990    if (Literal.isFloatingLiteral()) {
2991      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2992      // long double, the literal is treated as a call of the form
2993      //   operator "" X (f L)
2994      CookedTy = Context.LongDoubleTy;
2995    } else {
2996      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2997      // unsigned long long, the literal is treated as a call of the form
2998      //   operator "" X (n ULL)
2999      CookedTy = Context.UnsignedLongLongTy;
3000    }
3001
3002    DeclarationName OpName =
3003      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3004    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3005    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3006
3007    SourceLocation TokLoc = Tok.getLocation();
3008
3009    // Perform literal operator lookup to determine if we're building a raw
3010    // literal or a cooked one.
3011    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3012    switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3013                                  /*AllowRaw*/true, /*AllowTemplate*/true,
3014                                  /*AllowStringTemplate*/false)) {
3015    case LOLR_Error:
3016      return ExprError();
3017
3018    case LOLR_Cooked: {
3019      Expr *Lit;
3020      if (Literal.isFloatingLiteral()) {
3021        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3022      } else {
3023        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3024        if (Literal.GetIntegerValue(ResultVal))
3025          Diag(Tok.getLocation(), diag::err_integer_too_large);
3026        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3027                                     Tok.getLocation());
3028      }
3029      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3030    }
3031
3032    case LOLR_Raw: {
3033      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3034      // literal is treated as a call of the form
3035      //   operator "" X ("n")
3036      unsigned Length = Literal.getUDSuffixOffset();
3037      QualType StrTy = Context.getConstantArrayType(
3038          Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3039          ArrayType::Normal, 0);
3040      Expr *Lit = StringLiteral::Create(
3041          Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3042          /*Pascal*/false, StrTy, &TokLoc, 1);
3043      return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3044    }
3045
3046    case LOLR_Template: {
3047      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3048      // template), L is treated as a call fo the form
3049      //   operator "" X <'c1', 'c2', ... 'ck'>()
3050      // where n is the source character sequence c1 c2 ... ck.
3051      TemplateArgumentListInfo ExplicitArgs;
3052      unsigned CharBits = Context.getIntWidth(Context.CharTy);
3053      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3054      llvm::APSInt Value(CharBits, CharIsUnsigned);
3055      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3056        Value = TokSpelling[I];
3057        TemplateArgument Arg(Context, Value, Context.CharTy);
3058        TemplateArgumentLocInfo ArgInfo;
3059        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3060      }
3061      return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3062                                      &ExplicitArgs);
3063    }
3064    case LOLR_StringTemplate:
3065      llvm_unreachable("unexpected literal operator lookup result");
3066    }
3067  }
3068
3069  Expr *Res;
3070
3071  if (Literal.isFloatingLiteral()) {
3072    QualType Ty;
3073    if (Literal.isFloat)
3074      Ty = Context.FloatTy;
3075    else if (!Literal.isLong)
3076      Ty = Context.DoubleTy;
3077    else
3078      Ty = Context.LongDoubleTy;
3079
3080    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3081
3082    if (Ty == Context.DoubleTy) {
3083      if (getLangOpts().SinglePrecisionConstants) {
3084        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
3085      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
3086        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3087        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
3088      }
3089    }
3090  } else if (!Literal.isIntegerLiteral()) {
3091    return ExprError();
3092  } else {
3093    QualType Ty;
3094
3095    // 'long long' is a C99 or C++11 feature.
3096    if (!getLangOpts().C99 && Literal.isLongLong) {
3097      if (getLangOpts().CPlusPlus)
3098        Diag(Tok.getLocation(),
3099             getLangOpts().CPlusPlus11 ?
3100             diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3101      else
3102        Diag(Tok.getLocation(), diag::ext_c99_longlong);
3103    }
3104
3105    // Get the value in the widest-possible width.
3106    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3107    // The microsoft literal suffix extensions support 128-bit literals, which
3108    // may be wider than [u]intmax_t.
3109    // FIXME: Actually, they don't. We seem to have accidentally invented the
3110    //        i128 suffix.
3111    if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
3112        PP.getTargetInfo().hasInt128Type())
3113      MaxWidth = 128;
3114    llvm::APInt ResultVal(MaxWidth, 0);
3115
3116    if (Literal.GetIntegerValue(ResultVal)) {
3117      // If this value didn't fit into uintmax_t, error and force to ull.
3118      Diag(Tok.getLocation(), diag::err_integer_too_large);
3119      Ty = Context.UnsignedLongLongTy;
3120      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3121             "long long is not intmax_t?");
3122    } else {
3123      // If this value fits into a ULL, try to figure out what else it fits into
3124      // according to the rules of C99 6.4.4.1p5.
3125
3126      // Octal, Hexadecimal, and integers with a U suffix are allowed to
3127      // be an unsigned int.
3128      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3129
3130      // Check from smallest to largest, picking the smallest type we can.
3131      unsigned Width = 0;
3132      if (!Literal.isLong && !Literal.isLongLong) {
3133        // Are int/unsigned possibilities?
3134        unsigned IntSize = Context.getTargetInfo().getIntWidth();
3135
3136        // Does it fit in a unsigned int?
3137        if (ResultVal.isIntN(IntSize)) {
3138          // Does it fit in a signed int?
3139          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3140            Ty = Context.IntTy;
3141          else if (AllowUnsigned)
3142            Ty = Context.UnsignedIntTy;
3143          Width = IntSize;
3144        }
3145      }
3146
3147      // Are long/unsigned long possibilities?
3148      if (Ty.isNull() && !Literal.isLongLong) {
3149        unsigned LongSize = Context.getTargetInfo().getLongWidth();
3150
3151        // Does it fit in a unsigned long?
3152        if (ResultVal.isIntN(LongSize)) {
3153          // Does it fit in a signed long?
3154          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3155            Ty = Context.LongTy;
3156          else if (AllowUnsigned)
3157            Ty = Context.UnsignedLongTy;
3158          Width = LongSize;
3159        }
3160      }
3161
3162      // Check long long if needed.
3163      if (Ty.isNull()) {
3164        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3165
3166        // Does it fit in a unsigned long long?
3167        if (ResultVal.isIntN(LongLongSize)) {
3168          // Does it fit in a signed long long?
3169          // To be compatible with MSVC, hex integer literals ending with the
3170          // LL or i64 suffix are always signed in Microsoft mode.
3171          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3172              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3173            Ty = Context.LongLongTy;
3174          else if (AllowUnsigned)
3175            Ty = Context.UnsignedLongLongTy;
3176          Width = LongLongSize;
3177        }
3178      }
3179
3180      // If it doesn't fit in unsigned long long, and we're using Microsoft
3181      // extensions, then its a 128-bit integer literal.
3182      if (Ty.isNull() && Literal.isMicrosoftInteger &&
3183          PP.getTargetInfo().hasInt128Type()) {
3184        if (Literal.isUnsigned)
3185          Ty = Context.UnsignedInt128Ty;
3186        else
3187          Ty = Context.Int128Ty;
3188        Width = 128;
3189      }
3190
3191      // If we still couldn't decide a type, we probably have something that
3192      // does not fit in a signed long long, but has no U suffix.
3193      if (Ty.isNull()) {
3194        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
3195        Ty = Context.UnsignedLongLongTy;
3196        Width = Context.getTargetInfo().getLongLongWidth();
3197      }
3198
3199      if (ResultVal.getBitWidth() != Width)
3200        ResultVal = ResultVal.trunc(Width);
3201    }
3202    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3203  }
3204
3205  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3206  if (Literal.isImaginary)
3207    Res = new (Context) ImaginaryLiteral(Res,
3208                                        Context.getComplexType(Res->getType()));
3209
3210  return Owned(Res);
3211}
3212
3213ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3214  assert((E != 0) && "ActOnParenExpr() missing expr");
3215  return Owned(new (Context) ParenExpr(L, R, E));
3216}
3217
3218static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3219                                         SourceLocation Loc,
3220                                         SourceRange ArgRange) {
3221  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3222  // scalar or vector data type argument..."
3223  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3224  // type (C99 6.2.5p18) or void.
3225  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3226    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3227      << T << ArgRange;
3228    return true;
3229  }
3230
3231  assert((T->isVoidType() || !T->isIncompleteType()) &&
3232         "Scalar types should always be complete");
3233  return false;
3234}
3235
3236static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3237                                           SourceLocation Loc,
3238                                           SourceRange ArgRange,
3239                                           UnaryExprOrTypeTrait TraitKind) {
3240  // Invalid types must be hard errors for SFINAE in C++.
3241  if (S.LangOpts.CPlusPlus)
3242    return true;
3243
3244  // C99 6.5.3.4p1:
3245  if (T->isFunctionType() &&
3246      (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3247    // sizeof(function)/alignof(function) is allowed as an extension.
3248    S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3249      << TraitKind << ArgRange;
3250    return false;
3251  }
3252
3253  // Allow sizeof(void)/alignof(void) as an extension.
3254  if (T->isVoidType()) {
3255    S.Diag(Loc, diag::ext_sizeof_alignof_void_type) << TraitKind << ArgRange;
3256    return false;
3257  }
3258
3259  return true;
3260}
3261
3262static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3263                                             SourceLocation Loc,
3264                                             SourceRange ArgRange,
3265                                             UnaryExprOrTypeTrait TraitKind) {
3266  // Reject sizeof(interface) and sizeof(interface<proto>) if the
3267  // runtime doesn't allow it.
3268  if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3269    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3270      << T << (TraitKind == UETT_SizeOf)
3271      << ArgRange;
3272    return true;
3273  }
3274
3275  return false;
3276}
3277
3278/// \brief Check whether E is a pointer from a decayed array type (the decayed
3279/// pointer type is equal to T) and emit a warning if it is.
3280static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3281                                     Expr *E) {
3282  // Don't warn if the operation changed the type.
3283  if (T != E->getType())
3284    return;
3285
3286  // Now look for array decays.
3287  ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3288  if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3289    return;
3290
3291  S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3292                                             << ICE->getType()
3293                                             << ICE->getSubExpr()->getType();
3294}
3295
3296/// \brief Check the constrains on expression operands to unary type expression
3297/// and type traits.
3298///
3299/// Completes any types necessary and validates the constraints on the operand
3300/// expression. The logic mostly mirrors the type-based overload, but may modify
3301/// the expression as it completes the type for that expression through template
3302/// instantiation, etc.
3303bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3304                                            UnaryExprOrTypeTrait ExprKind) {
3305  QualType ExprTy = E->getType();
3306  assert(!ExprTy->isReferenceType());
3307
3308  if (ExprKind == UETT_VecStep)
3309    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3310                                        E->getSourceRange());
3311
3312  // Whitelist some types as extensions
3313  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3314                                      E->getSourceRange(), ExprKind))
3315    return false;
3316
3317  if (RequireCompleteExprType(E,
3318                              diag::err_sizeof_alignof_incomplete_type,
3319                              ExprKind, E->getSourceRange()))
3320    return true;
3321
3322  // Completing the expression's type may have changed it.
3323  ExprTy = E->getType();
3324  assert(!ExprTy->isReferenceType());
3325
3326  if (ExprTy->isFunctionType()) {
3327    Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3328      << ExprKind << E->getSourceRange();
3329    return true;
3330  }
3331
3332  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3333                                       E->getSourceRange(), ExprKind))
3334    return true;
3335
3336  if (ExprKind == UETT_SizeOf) {
3337    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3338      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3339        QualType OType = PVD->getOriginalType();
3340        QualType Type = PVD->getType();
3341        if (Type->isPointerType() && OType->isArrayType()) {
3342          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3343            << Type << OType;
3344          Diag(PVD->getLocation(), diag::note_declared_at);
3345        }
3346      }
3347    }
3348
3349    // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3350    // decays into a pointer and returns an unintended result. This is most
3351    // likely a typo for "sizeof(array) op x".
3352    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3353      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3354                               BO->getLHS());
3355      warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3356                               BO->getRHS());
3357    }
3358  }
3359
3360  return false;
3361}
3362
3363/// \brief Check the constraints on operands to unary expression and type
3364/// traits.
3365///
3366/// This will complete any types necessary, and validate the various constraints
3367/// on those operands.
3368///
3369/// The UsualUnaryConversions() function is *not* called by this routine.
3370/// C99 6.3.2.1p[2-4] all state:
3371///   Except when it is the operand of the sizeof operator ...
3372///
3373/// C++ [expr.sizeof]p4
3374///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3375///   standard conversions are not applied to the operand of sizeof.
3376///
3377/// This policy is followed for all of the unary trait expressions.
3378bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3379                                            SourceLocation OpLoc,
3380                                            SourceRange ExprRange,
3381                                            UnaryExprOrTypeTrait ExprKind) {
3382  if (ExprType->isDependentType())
3383    return false;
3384
3385  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
3386  //   the result is the size of the referenced type."
3387  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
3388  //   result shall be the alignment of the referenced type."
3389  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3390    ExprType = Ref->getPointeeType();
3391
3392  if (ExprKind == UETT_VecStep)
3393    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3394
3395  // Whitelist some types as extensions
3396  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3397                                      ExprKind))
3398    return false;
3399
3400  if (RequireCompleteType(OpLoc, ExprType,
3401                          diag::err_sizeof_alignof_incomplete_type,
3402                          ExprKind, ExprRange))
3403    return true;
3404
3405  if (ExprType->isFunctionType()) {
3406    Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3407      << ExprKind << ExprRange;
3408    return true;
3409  }
3410
3411  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3412                                       ExprKind))
3413    return true;
3414
3415  return false;
3416}
3417
3418static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3419  E = E->IgnoreParens();
3420
3421  // Cannot know anything else if the expression is dependent.
3422  if (E->isTypeDependent())
3423    return false;
3424
3425  if (E->getObjectKind() == OK_BitField) {
3426    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3427       << 1 << E->getSourceRange();
3428    return true;
3429  }
3430
3431  ValueDecl *D = 0;
3432  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3433    D = DRE->getDecl();
3434  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3435    D = ME->getMemberDecl();
3436  }
3437
3438  // If it's a field, require the containing struct to have a
3439  // complete definition so that we can compute the layout.
3440  //
3441  // This requires a very particular set of circumstances.  For a
3442  // field to be contained within an incomplete type, we must in the
3443  // process of parsing that type.  To have an expression refer to a
3444  // field, it must be an id-expression or a member-expression, but
3445  // the latter are always ill-formed when the base type is
3446  // incomplete, including only being partially complete.  An
3447  // id-expression can never refer to a field in C because fields
3448  // are not in the ordinary namespace.  In C++, an id-expression
3449  // can implicitly be a member access, but only if there's an
3450  // implicit 'this' value, and all such contexts are subject to
3451  // delayed parsing --- except for trailing return types in C++11.
3452  // And if an id-expression referring to a field occurs in a
3453  // context that lacks a 'this' value, it's ill-formed --- except,
3454  // agian, in C++11, where such references are allowed in an
3455  // unevaluated context.  So C++11 introduces some new complexity.
3456  //
3457  // For the record, since __alignof__ on expressions is a GCC
3458  // extension, GCC seems to permit this but always gives the
3459  // nonsensical answer 0.
3460  //
3461  // We don't really need the layout here --- we could instead just
3462  // directly check for all the appropriate alignment-lowing
3463  // attributes --- but that would require duplicating a lot of
3464  // logic that just isn't worth duplicating for such a marginal
3465  // use-case.
3466  if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3467    // Fast path this check, since we at least know the record has a
3468    // definition if we can find a member of it.
3469    if (!FD->getParent()->isCompleteDefinition()) {
3470      S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3471        << E->getSourceRange();
3472      return true;
3473    }
3474
3475    // Otherwise, if it's a field, and the field doesn't have
3476    // reference type, then it must have a complete type (or be a
3477    // flexible array member, which we explicitly want to
3478    // white-list anyway), which makes the following checks trivial.
3479    if (!FD->getType()->isReferenceType())
3480      return false;
3481  }
3482
3483  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3484}
3485
3486bool Sema::CheckVecStepExpr(Expr *E) {
3487  E = E->IgnoreParens();
3488
3489  // Cannot know anything else if the expression is dependent.
3490  if (E->isTypeDependent())
3491    return false;
3492
3493  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3494}
3495
3496/// \brief Build a sizeof or alignof expression given a type operand.
3497ExprResult
3498Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3499                                     SourceLocation OpLoc,
3500                                     UnaryExprOrTypeTrait ExprKind,
3501                                     SourceRange R) {
3502  if (!TInfo)
3503    return ExprError();
3504
3505  QualType T = TInfo->getType();
3506
3507  if (!T->isDependentType() &&
3508      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3509    return ExprError();
3510
3511  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3512  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
3513                                                      Context.getSizeType(),
3514                                                      OpLoc, R.getEnd()));
3515}
3516
3517/// \brief Build a sizeof or alignof expression given an expression
3518/// operand.
3519ExprResult
3520Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3521                                     UnaryExprOrTypeTrait ExprKind) {
3522  ExprResult PE = CheckPlaceholderExpr(E);
3523  if (PE.isInvalid())
3524    return ExprError();
3525
3526  E = PE.get();
3527
3528  // Verify that the operand is valid.
3529  bool isInvalid = false;
3530  if (E->isTypeDependent()) {
3531    // Delay type-checking for type-dependent expressions.
3532  } else if (ExprKind == UETT_AlignOf) {
3533    isInvalid = CheckAlignOfExpr(*this, E);
3534  } else if (ExprKind == UETT_VecStep) {
3535    isInvalid = CheckVecStepExpr(E);
3536  } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
3537    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3538    isInvalid = true;
3539  } else {
3540    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3541  }
3542
3543  if (isInvalid)
3544    return ExprError();
3545
3546  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3547    PE = TransformToPotentiallyEvaluated(E);
3548    if (PE.isInvalid()) return ExprError();
3549    E = PE.take();
3550  }
3551
3552  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3553  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3554      ExprKind, E, Context.getSizeType(), OpLoc,
3555      E->getSourceRange().getEnd()));
3556}
3557
3558/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3559/// expr and the same for @c alignof and @c __alignof
3560/// Note that the ArgRange is invalid if isType is false.
3561ExprResult
3562Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3563                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3564                                    void *TyOrEx, const SourceRange &ArgRange) {
3565  // If error parsing type, ignore.
3566  if (TyOrEx == 0) return ExprError();
3567
3568  if (IsType) {
3569    TypeSourceInfo *TInfo;
3570    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3571    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3572  }
3573
3574  Expr *ArgEx = (Expr *)TyOrEx;
3575  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3576  return Result;
3577}
3578
3579static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3580                                     bool IsReal) {
3581  if (V.get()->isTypeDependent())
3582    return S.Context.DependentTy;
3583
3584  // _Real and _Imag are only l-values for normal l-values.
3585  if (V.get()->getObjectKind() != OK_Ordinary) {
3586    V = S.DefaultLvalueConversion(V.take());
3587    if (V.isInvalid())
3588      return QualType();
3589  }
3590
3591  // These operators return the element type of a complex type.
3592  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3593    return CT->getElementType();
3594
3595  // Otherwise they pass through real integer and floating point types here.
3596  if (V.get()->getType()->isArithmeticType())
3597    return V.get()->getType();
3598
3599  // Test for placeholders.
3600  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3601  if (PR.isInvalid()) return QualType();
3602  if (PR.get() != V.get()) {
3603    V = PR;
3604    return CheckRealImagOperand(S, V, Loc, IsReal);
3605  }
3606
3607  // Reject anything else.
3608  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3609    << (IsReal ? "__real" : "__imag");
3610  return QualType();
3611}
3612
3613
3614
3615ExprResult
3616Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3617                          tok::TokenKind Kind, Expr *Input) {
3618  UnaryOperatorKind Opc;
3619  switch (Kind) {
3620  default: llvm_unreachable("Unknown unary op!");
3621  case tok::plusplus:   Opc = UO_PostInc; break;
3622  case tok::minusminus: Opc = UO_PostDec; break;
3623  }
3624
3625  // Since this might is a postfix expression, get rid of ParenListExprs.
3626  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3627  if (Result.isInvalid()) return ExprError();
3628  Input = Result.take();
3629
3630  return BuildUnaryOp(S, OpLoc, Opc, Input);
3631}
3632
3633/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3634///
3635/// \return true on error
3636static bool checkArithmeticOnObjCPointer(Sema &S,
3637                                         SourceLocation opLoc,
3638                                         Expr *op) {
3639  assert(op->getType()->isObjCObjectPointerType());
3640  if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
3641    return false;
3642
3643  S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3644    << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3645    << op->getSourceRange();
3646  return true;
3647}
3648
3649ExprResult
3650Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3651                              Expr *idx, SourceLocation rbLoc) {
3652  // Since this might be a postfix expression, get rid of ParenListExprs.
3653  if (isa<ParenListExpr>(base)) {
3654    ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3655    if (result.isInvalid()) return ExprError();
3656    base = result.take();
3657  }
3658
3659  // Handle any non-overload placeholder types in the base and index
3660  // expressions.  We can't handle overloads here because the other
3661  // operand might be an overloadable type, in which case the overload
3662  // resolution for the operator overload should get the first crack
3663  // at the overload.
3664  if (base->getType()->isNonOverloadPlaceholderType()) {
3665    ExprResult result = CheckPlaceholderExpr(base);
3666    if (result.isInvalid()) return ExprError();
3667    base = result.take();
3668  }
3669  if (idx->getType()->isNonOverloadPlaceholderType()) {
3670    ExprResult result = CheckPlaceholderExpr(idx);
3671    if (result.isInvalid()) return ExprError();
3672    idx = result.take();
3673  }
3674
3675  // Build an unanalyzed expression if either operand is type-dependent.
3676  if (getLangOpts().CPlusPlus &&
3677      (base->isTypeDependent() || idx->isTypeDependent())) {
3678    return Owned(new (Context) ArraySubscriptExpr(base, idx,
3679                                                  Context.DependentTy,
3680                                                  VK_LValue, OK_Ordinary,
3681                                                  rbLoc));
3682  }
3683
3684  // Use C++ overloaded-operator rules if either operand has record
3685  // type.  The spec says to do this if either type is *overloadable*,
3686  // but enum types can't declare subscript operators or conversion
3687  // operators, so there's nothing interesting for overload resolution
3688  // to do if there aren't any record types involved.
3689  //
3690  // ObjC pointers have their own subscripting logic that is not tied
3691  // to overload resolution and so should not take this path.
3692  if (getLangOpts().CPlusPlus &&
3693      (base->getType()->isRecordType() ||
3694       (!base->getType()->isObjCObjectPointerType() &&
3695        idx->getType()->isRecordType()))) {
3696    return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3697  }
3698
3699  return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3700}
3701
3702ExprResult
3703Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3704                                      Expr *Idx, SourceLocation RLoc) {
3705  Expr *LHSExp = Base;
3706  Expr *RHSExp = Idx;
3707
3708  // Perform default conversions.
3709  if (!LHSExp->getType()->getAs<VectorType>()) {
3710    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3711    if (Result.isInvalid())
3712      return ExprError();
3713    LHSExp = Result.take();
3714  }
3715  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3716  if (Result.isInvalid())
3717    return ExprError();
3718  RHSExp = Result.take();
3719
3720  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3721  ExprValueKind VK = VK_LValue;
3722  ExprObjectKind OK = OK_Ordinary;
3723
3724  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3725  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3726  // in the subscript position. As a result, we need to derive the array base
3727  // and index from the expression types.
3728  Expr *BaseExpr, *IndexExpr;
3729  QualType ResultType;
3730  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3731    BaseExpr = LHSExp;
3732    IndexExpr = RHSExp;
3733    ResultType = Context.DependentTy;
3734  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3735    BaseExpr = LHSExp;
3736    IndexExpr = RHSExp;
3737    ResultType = PTy->getPointeeType();
3738  } else if (const ObjCObjectPointerType *PTy =
3739               LHSTy->getAs<ObjCObjectPointerType>()) {
3740    BaseExpr = LHSExp;
3741    IndexExpr = RHSExp;
3742
3743    // Use custom logic if this should be the pseudo-object subscript
3744    // expression.
3745    if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
3746      return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3747
3748    ResultType = PTy->getPointeeType();
3749    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3750      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3751        << ResultType << BaseExpr->getSourceRange();
3752      return ExprError();
3753    }
3754  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3755     // Handle the uncommon case of "123[Ptr]".
3756    BaseExpr = RHSExp;
3757    IndexExpr = LHSExp;
3758    ResultType = PTy->getPointeeType();
3759  } else if (const ObjCObjectPointerType *PTy =
3760               RHSTy->getAs<ObjCObjectPointerType>()) {
3761     // Handle the uncommon case of "123[Ptr]".
3762    BaseExpr = RHSExp;
3763    IndexExpr = LHSExp;
3764    ResultType = PTy->getPointeeType();
3765    if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
3766      Diag(LLoc, diag::err_subscript_nonfragile_interface)
3767        << ResultType << BaseExpr->getSourceRange();
3768      return ExprError();
3769    }
3770  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3771    BaseExpr = LHSExp;    // vectors: V[123]
3772    IndexExpr = RHSExp;
3773    VK = LHSExp->getValueKind();
3774    if (VK != VK_RValue)
3775      OK = OK_VectorComponent;
3776
3777    // FIXME: need to deal with const...
3778    ResultType = VTy->getElementType();
3779  } else if (LHSTy->isArrayType()) {
3780    // If we see an array that wasn't promoted by
3781    // DefaultFunctionArrayLvalueConversion, it must be an array that
3782    // wasn't promoted because of the C90 rule that doesn't
3783    // allow promoting non-lvalue arrays.  Warn, then
3784    // force the promotion here.
3785    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3786        LHSExp->getSourceRange();
3787    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3788                               CK_ArrayToPointerDecay).take();
3789    LHSTy = LHSExp->getType();
3790
3791    BaseExpr = LHSExp;
3792    IndexExpr = RHSExp;
3793    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3794  } else if (RHSTy->isArrayType()) {
3795    // Same as previous, except for 123[f().a] case
3796    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3797        RHSExp->getSourceRange();
3798    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3799                               CK_ArrayToPointerDecay).take();
3800    RHSTy = RHSExp->getType();
3801
3802    BaseExpr = RHSExp;
3803    IndexExpr = LHSExp;
3804    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3805  } else {
3806    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3807       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3808  }
3809  // C99 6.5.2.1p1
3810  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3811    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3812                     << IndexExpr->getSourceRange());
3813
3814  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3815       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3816         && !IndexExpr->isTypeDependent())
3817    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3818
3819  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3820  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3821  // type. Note that Functions are not objects, and that (in C99 parlance)
3822  // incomplete types are not object types.
3823  if (ResultType->isFunctionType()) {
3824    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3825      << ResultType << BaseExpr->getSourceRange();
3826    return ExprError();
3827  }
3828
3829  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3830    // GNU extension: subscripting on pointer to void
3831    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3832      << BaseExpr->getSourceRange();
3833
3834    // C forbids expressions of unqualified void type from being l-values.
3835    // See IsCForbiddenLValueType.
3836    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3837  } else if (!ResultType->isDependentType() &&
3838      RequireCompleteType(LLoc, ResultType,
3839                          diag::err_subscript_incomplete_type, BaseExpr))
3840    return ExprError();
3841
3842  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3843         !ResultType.isCForbiddenLValueType());
3844
3845  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3846                                                ResultType, VK, OK, RLoc));
3847}
3848
3849ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3850                                        FunctionDecl *FD,
3851                                        ParmVarDecl *Param) {
3852  if (Param->hasUnparsedDefaultArg()) {
3853    Diag(CallLoc,
3854         diag::err_use_of_default_argument_to_function_declared_later) <<
3855      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3856    Diag(UnparsedDefaultArgLocs[Param],
3857         diag::note_default_argument_declared_here);
3858    return ExprError();
3859  }
3860
3861  if (Param->hasUninstantiatedDefaultArg()) {
3862    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3863
3864    EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
3865                                                 Param);
3866
3867    // Instantiate the expression.
3868    MultiLevelTemplateArgumentList MutiLevelArgList
3869      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3870
3871    InstantiatingTemplate Inst(*this, CallLoc, Param,
3872                               MutiLevelArgList.getInnermost());
3873    if (Inst.isInvalid())
3874      return ExprError();
3875
3876    ExprResult Result;
3877    {
3878      // C++ [dcl.fct.default]p5:
3879      //   The names in the [default argument] expression are bound, and
3880      //   the semantic constraints are checked, at the point where the
3881      //   default argument expression appears.
3882      ContextRAII SavedContext(*this, FD);
3883      LocalInstantiationScope Local(*this);
3884      Result = SubstExpr(UninstExpr, MutiLevelArgList);
3885    }
3886    if (Result.isInvalid())
3887      return ExprError();
3888
3889    // Check the expression as an initializer for the parameter.
3890    InitializedEntity Entity
3891      = InitializedEntity::InitializeParameter(Context, Param);
3892    InitializationKind Kind
3893      = InitializationKind::CreateCopy(Param->getLocation(),
3894             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3895    Expr *ResultE = Result.takeAs<Expr>();
3896
3897    InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
3898    Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
3899    if (Result.isInvalid())
3900      return ExprError();
3901
3902    Expr *Arg = Result.takeAs<Expr>();
3903    CheckCompletedExpr(Arg, Param->getOuterLocStart());
3904    // Build the default argument expression.
3905    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3906  }
3907
3908  // If the default expression creates temporaries, we need to
3909  // push them to the current stack of expression temporaries so they'll
3910  // be properly destroyed.
3911  // FIXME: We should really be rebuilding the default argument with new
3912  // bound temporaries; see the comment in PR5810.
3913  // We don't need to do that with block decls, though, because
3914  // blocks in default argument expression can never capture anything.
3915  if (isa<ExprWithCleanups>(Param->getInit())) {
3916    // Set the "needs cleanups" bit regardless of whether there are
3917    // any explicit objects.
3918    ExprNeedsCleanups = true;
3919
3920    // Append all the objects to the cleanup list.  Right now, this
3921    // should always be a no-op, because blocks in default argument
3922    // expressions should never be able to capture anything.
3923    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3924           "default argument expression has capturing blocks?");
3925  }
3926
3927  // We already type-checked the argument, so we know it works.
3928  // Just mark all of the declarations in this potentially-evaluated expression
3929  // as being "referenced".
3930  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3931                                   /*SkipLocalVariables=*/true);
3932  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3933}
3934
3935
3936Sema::VariadicCallType
3937Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
3938                          Expr *Fn) {
3939  if (Proto && Proto->isVariadic()) {
3940    if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
3941      return VariadicConstructor;
3942    else if (Fn && Fn->getType()->isBlockPointerType())
3943      return VariadicBlock;
3944    else if (FDecl) {
3945      if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3946        if (Method->isInstance())
3947          return VariadicMethod;
3948    } else if (Fn && Fn->getType() == Context.BoundMemberTy)
3949      return VariadicMethod;
3950    return VariadicFunction;
3951  }
3952  return VariadicDoesNotApply;
3953}
3954
3955namespace {
3956class FunctionCallCCC : public FunctionCallFilterCCC {
3957public:
3958  FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
3959                  unsigned NumArgs, bool HasExplicitTemplateArgs)
3960      : FunctionCallFilterCCC(SemaRef, NumArgs, HasExplicitTemplateArgs),
3961        FunctionName(FuncName) {}
3962
3963  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
3964    if (!candidate.getCorrectionSpecifier() ||
3965        candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
3966      return false;
3967    }
3968
3969    return FunctionCallFilterCCC::ValidateCandidate(candidate);
3970  }
3971
3972private:
3973  const IdentifierInfo *const FunctionName;
3974};
3975}
3976
3977static TypoCorrection TryTypoCorrectionForCall(Sema &S,
3978                                               DeclarationNameInfo FuncName,
3979                                               ArrayRef<Expr *> Args) {
3980  FunctionCallCCC CCC(S, FuncName.getName().getAsIdentifierInfo(),
3981                      Args.size(), false);
3982  if (TypoCorrection Corrected =
3983          S.CorrectTypo(FuncName, Sema::LookupOrdinaryName,
3984                        S.getScopeForContext(S.CurContext), NULL, CCC)) {
3985    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
3986      if (Corrected.isOverloaded()) {
3987        OverloadCandidateSet OCS(FuncName.getLoc());
3988        OverloadCandidateSet::iterator Best;
3989        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
3990                                           CDEnd = Corrected.end();
3991             CD != CDEnd; ++CD) {
3992          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
3993            S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
3994                                   OCS);
3995        }
3996        switch (OCS.BestViableFunction(S, FuncName.getLoc(), Best)) {
3997        case OR_Success:
3998          ND = Best->Function;
3999          Corrected.setCorrectionDecl(ND);
4000          break;
4001        default:
4002          break;
4003        }
4004      }
4005      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
4006        return Corrected;
4007      }
4008    }
4009  }
4010  return TypoCorrection();
4011}
4012
4013/// ConvertArgumentsForCall - Converts the arguments specified in
4014/// Args/NumArgs to the parameter types of the function FDecl with
4015/// function prototype Proto. Call is the call expression itself, and
4016/// Fn is the function expression. For a C++ member function, this
4017/// routine does not attempt to convert the object argument. Returns
4018/// true if the call is ill-formed.
4019bool
4020Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4021                              FunctionDecl *FDecl,
4022                              const FunctionProtoType *Proto,
4023                              ArrayRef<Expr *> Args,
4024                              SourceLocation RParenLoc,
4025                              bool IsExecConfig) {
4026  // Bail out early if calling a builtin with custom typechecking.
4027  // We don't need to do this in the
4028  if (FDecl)
4029    if (unsigned ID = FDecl->getBuiltinID())
4030      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4031        return false;
4032
4033  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4034  // assignment, to the types of the corresponding parameter, ...
4035  unsigned NumArgsInProto = Proto->getNumArgs();
4036  bool Invalid = false;
4037  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
4038  unsigned FnKind = Fn->getType()->isBlockPointerType()
4039                       ? 1 /* block */
4040                       : (IsExecConfig ? 3 /* kernel function (exec config) */
4041                                       : 0 /* function */);
4042
4043  // If too few arguments are available (and we don't have default
4044  // arguments for the remaining parameters), don't make the call.
4045  if (Args.size() < NumArgsInProto) {
4046    if (Args.size() < MinArgs) {
4047      MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4048      TypoCorrection TC;
4049      if (FDecl && (TC = TryTypoCorrectionForCall(
4050                        *this, DeclarationNameInfo(FDecl->getDeclName(),
4051                                                   (ME ? ME->getMemberLoc()
4052                                                       : Fn->getLocStart())),
4053                        Args))) {
4054        unsigned diag_id =
4055            MinArgs == NumArgsInProto && !Proto->isVariadic()
4056                ? diag::err_typecheck_call_too_few_args_suggest
4057                : diag::err_typecheck_call_too_few_args_at_least_suggest;
4058        diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4059                                        << static_cast<unsigned>(Args.size())
4060                                        << Fn->getSourceRange());
4061      } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4062        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
4063                          ? diag::err_typecheck_call_too_few_args_one
4064                          : diag::err_typecheck_call_too_few_args_at_least_one)
4065          << FnKind
4066          << FDecl->getParamDecl(0) << Fn->getSourceRange();
4067      else
4068        Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
4069                          ? diag::err_typecheck_call_too_few_args
4070                          : diag::err_typecheck_call_too_few_args_at_least)
4071          << FnKind
4072          << MinArgs << static_cast<unsigned>(Args.size())
4073          << Fn->getSourceRange();
4074
4075      // Emit the location of the prototype.
4076      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4077        Diag(FDecl->getLocStart(), diag::note_callee_decl)
4078          << FDecl;
4079
4080      return true;
4081    }
4082    Call->setNumArgs(Context, NumArgsInProto);
4083  }
4084
4085  // If too many are passed and not variadic, error on the extras and drop
4086  // them.
4087  if (Args.size() > NumArgsInProto) {
4088    if (!Proto->isVariadic()) {
4089      TypoCorrection TC;
4090      if (FDecl && (TC = TryTypoCorrectionForCall(
4091                        *this, DeclarationNameInfo(FDecl->getDeclName(),
4092                                                   Fn->getLocStart()),
4093                        Args))) {
4094        unsigned diag_id =
4095            MinArgs == NumArgsInProto && !Proto->isVariadic()
4096                ? diag::err_typecheck_call_too_many_args_suggest
4097                : diag::err_typecheck_call_too_many_args_at_most_suggest;
4098        diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumArgsInProto
4099                                        << static_cast<unsigned>(Args.size())
4100                                        << Fn->getSourceRange());
4101      } else if (NumArgsInProto == 1 && FDecl &&
4102                 FDecl->getParamDecl(0)->getDeclName())
4103        Diag(Args[NumArgsInProto]->getLocStart(),
4104             MinArgs == NumArgsInProto
4105               ? diag::err_typecheck_call_too_many_args_one
4106               : diag::err_typecheck_call_too_many_args_at_most_one)
4107          << FnKind
4108          << FDecl->getParamDecl(0) << static_cast<unsigned>(Args.size())
4109          << Fn->getSourceRange()
4110          << SourceRange(Args[NumArgsInProto]->getLocStart(),
4111                         Args.back()->getLocEnd());
4112      else
4113        Diag(Args[NumArgsInProto]->getLocStart(),
4114             MinArgs == NumArgsInProto
4115               ? diag::err_typecheck_call_too_many_args
4116               : diag::err_typecheck_call_too_many_args_at_most)
4117          << FnKind
4118          << NumArgsInProto << static_cast<unsigned>(Args.size())
4119          << Fn->getSourceRange()
4120          << SourceRange(Args[NumArgsInProto]->getLocStart(),
4121                         Args.back()->getLocEnd());
4122
4123      // Emit the location of the prototype.
4124      if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4125        Diag(FDecl->getLocStart(), diag::note_callee_decl)
4126          << FDecl;
4127
4128      // This deletes the extra arguments.
4129      Call->setNumArgs(Context, NumArgsInProto);
4130      return true;
4131    }
4132  }
4133  SmallVector<Expr *, 8> AllArgs;
4134  VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4135
4136  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4137                                   Proto, 0, Args, AllArgs, CallType);
4138  if (Invalid)
4139    return true;
4140  unsigned TotalNumArgs = AllArgs.size();
4141  for (unsigned i = 0; i < TotalNumArgs; ++i)
4142    Call->setArg(i, AllArgs[i]);
4143
4144  return false;
4145}
4146
4147bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
4148                                  FunctionDecl *FDecl,
4149                                  const FunctionProtoType *Proto,
4150                                  unsigned FirstProtoArg,
4151                                  ArrayRef<Expr *> Args,
4152                                  SmallVectorImpl<Expr *> &AllArgs,
4153                                  VariadicCallType CallType,
4154                                  bool AllowExplicit,
4155                                  bool IsListInitialization) {
4156  unsigned NumArgsInProto = Proto->getNumArgs();
4157  unsigned NumArgsToCheck = Args.size();
4158  bool Invalid = false;
4159  if (Args.size() != NumArgsInProto)
4160    // Use default arguments for missing arguments
4161    NumArgsToCheck = NumArgsInProto;
4162  unsigned ArgIx = 0;
4163  // Continue to check argument types (even if we have too few/many args).
4164  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
4165    QualType ProtoArgType = Proto->getArgType(i);
4166
4167    Expr *Arg;
4168    ParmVarDecl *Param;
4169    if (ArgIx < Args.size()) {
4170      Arg = Args[ArgIx++];
4171
4172      if (RequireCompleteType(Arg->getLocStart(),
4173                              ProtoArgType,
4174                              diag::err_call_incomplete_argument, Arg))
4175        return true;
4176
4177      // Pass the argument
4178      Param = 0;
4179      if (FDecl && i < FDecl->getNumParams())
4180        Param = FDecl->getParamDecl(i);
4181
4182      // Strip the unbridged-cast placeholder expression off, if applicable.
4183      bool CFAudited = false;
4184      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4185          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4186          (!Param || !Param->hasAttr<CFConsumedAttr>()))
4187        Arg = stripARCUnbridgedCast(Arg);
4188      else if (getLangOpts().ObjCAutoRefCount &&
4189               FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4190               (!Param || !Param->hasAttr<CFConsumedAttr>()))
4191        CFAudited = true;
4192
4193      InitializedEntity Entity = Param ?
4194          InitializedEntity::InitializeParameter(Context, Param, ProtoArgType)
4195        : InitializedEntity::InitializeParameter(Context, ProtoArgType,
4196                                                 Proto->isArgConsumed(i));
4197
4198      // Remember that parameter belongs to a CF audited API.
4199      if (CFAudited)
4200        Entity.setParameterCFAudited();
4201
4202      ExprResult ArgE = PerformCopyInitialization(Entity,
4203                                                  SourceLocation(),
4204                                                  Owned(Arg),
4205                                                  IsListInitialization,
4206                                                  AllowExplicit);
4207      if (ArgE.isInvalid())
4208        return true;
4209
4210      Arg = ArgE.takeAs<Expr>();
4211    } else {
4212      assert(FDecl && "can't use default arguments without a known callee");
4213      Param = FDecl->getParamDecl(i);
4214
4215      ExprResult ArgExpr =
4216        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4217      if (ArgExpr.isInvalid())
4218        return true;
4219
4220      Arg = ArgExpr.takeAs<Expr>();
4221    }
4222
4223    // Check for array bounds violations for each argument to the call. This
4224    // check only triggers warnings when the argument isn't a more complex Expr
4225    // with its own checking, such as a BinaryOperator.
4226    CheckArrayAccess(Arg);
4227
4228    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4229    CheckStaticArrayArgument(CallLoc, Param, Arg);
4230
4231    AllArgs.push_back(Arg);
4232  }
4233
4234  // If this is a variadic call, handle args passed through "...".
4235  if (CallType != VariadicDoesNotApply) {
4236    // Assume that extern "C" functions with variadic arguments that
4237    // return __unknown_anytype aren't *really* variadic.
4238    if (Proto->getResultType() == Context.UnknownAnyTy &&
4239        FDecl && FDecl->isExternC()) {
4240      for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4241        QualType paramType; // ignored
4242        ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
4243        Invalid |= arg.isInvalid();
4244        AllArgs.push_back(arg.take());
4245      }
4246
4247    // Otherwise do argument promotion, (C99 6.5.2.2p7).
4248    } else {
4249      for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4250        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
4251                                                          FDecl);
4252        Invalid |= Arg.isInvalid();
4253        AllArgs.push_back(Arg.take());
4254      }
4255    }
4256
4257    // Check for array bounds violations.
4258    for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
4259      CheckArrayAccess(Args[i]);
4260  }
4261  return Invalid;
4262}
4263
4264static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4265  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4266  if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4267    TL = DTL.getOriginalLoc();
4268  if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4269    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4270      << ATL.getLocalSourceRange();
4271}
4272
4273/// CheckStaticArrayArgument - If the given argument corresponds to a static
4274/// array parameter, check that it is non-null, and that if it is formed by
4275/// array-to-pointer decay, the underlying array is sufficiently large.
4276///
4277/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4278/// array type derivation, then for each call to the function, the value of the
4279/// corresponding actual argument shall provide access to the first element of
4280/// an array with at least as many elements as specified by the size expression.
4281void
4282Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4283                               ParmVarDecl *Param,
4284                               const Expr *ArgExpr) {
4285  // Static array parameters are not supported in C++.
4286  if (!Param || getLangOpts().CPlusPlus)
4287    return;
4288
4289  QualType OrigTy = Param->getOriginalType();
4290
4291  const ArrayType *AT = Context.getAsArrayType(OrigTy);
4292  if (!AT || AT->getSizeModifier() != ArrayType::Static)
4293    return;
4294
4295  if (ArgExpr->isNullPointerConstant(Context,
4296                                     Expr::NPC_NeverValueDependent)) {
4297    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4298    DiagnoseCalleeStaticArrayParam(*this, Param);
4299    return;
4300  }
4301
4302  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4303  if (!CAT)
4304    return;
4305
4306  const ConstantArrayType *ArgCAT =
4307    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4308  if (!ArgCAT)
4309    return;
4310
4311  if (ArgCAT->getSize().ult(CAT->getSize())) {
4312    Diag(CallLoc, diag::warn_static_array_too_small)
4313      << ArgExpr->getSourceRange()
4314      << (unsigned) ArgCAT->getSize().getZExtValue()
4315      << (unsigned) CAT->getSize().getZExtValue();
4316    DiagnoseCalleeStaticArrayParam(*this, Param);
4317  }
4318}
4319
4320/// Given a function expression of unknown-any type, try to rebuild it
4321/// to have a function type.
4322static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4323
4324/// Is the given type a placeholder that we need to lower out
4325/// immediately during argument processing?
4326static bool isPlaceholderToRemoveAsArg(QualType type) {
4327  // Placeholders are never sugared.
4328  const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4329  if (!placeholder) return false;
4330
4331  switch (placeholder->getKind()) {
4332  // Ignore all the non-placeholder types.
4333#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
4334#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
4335#include "clang/AST/BuiltinTypes.def"
4336    return false;
4337
4338  // We cannot lower out overload sets; they might validly be resolved
4339  // by the call machinery.
4340  case BuiltinType::Overload:
4341    return false;
4342
4343  // Unbridged casts in ARC can be handled in some call positions and
4344  // should be left in place.
4345  case BuiltinType::ARCUnbridgedCast:
4346    return false;
4347
4348  // Pseudo-objects should be converted as soon as possible.
4349  case BuiltinType::PseudoObject:
4350    return true;
4351
4352  // The debugger mode could theoretically but currently does not try
4353  // to resolve unknown-typed arguments based on known parameter types.
4354  case BuiltinType::UnknownAny:
4355    return true;
4356
4357  // These are always invalid as call arguments and should be reported.
4358  case BuiltinType::BoundMember:
4359  case BuiltinType::BuiltinFn:
4360    return true;
4361  }
4362  llvm_unreachable("bad builtin type kind");
4363}
4364
4365/// Check an argument list for placeholders that we won't try to
4366/// handle later.
4367static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
4368  // Apply this processing to all the arguments at once instead of
4369  // dying at the first failure.
4370  bool hasInvalid = false;
4371  for (size_t i = 0, e = args.size(); i != e; i++) {
4372    if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
4373      ExprResult result = S.CheckPlaceholderExpr(args[i]);
4374      if (result.isInvalid()) hasInvalid = true;
4375      else args[i] = result.take();
4376    }
4377  }
4378  return hasInvalid;
4379}
4380
4381/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4382/// This provides the location of the left/right parens and a list of comma
4383/// locations.
4384ExprResult
4385Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4386                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
4387                    Expr *ExecConfig, bool IsExecConfig) {
4388  // Since this might be a postfix expression, get rid of ParenListExprs.
4389  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4390  if (Result.isInvalid()) return ExprError();
4391  Fn = Result.take();
4392
4393  if (checkArgsForPlaceholders(*this, ArgExprs))
4394    return ExprError();
4395
4396  if (getLangOpts().CPlusPlus) {
4397    // If this is a pseudo-destructor expression, build the call immediately.
4398    if (isa<CXXPseudoDestructorExpr>(Fn)) {
4399      if (!ArgExprs.empty()) {
4400        // Pseudo-destructor calls should not have any arguments.
4401        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4402          << FixItHint::CreateRemoval(
4403                                    SourceRange(ArgExprs[0]->getLocStart(),
4404                                                ArgExprs.back()->getLocEnd()));
4405      }
4406
4407      return Owned(new (Context) CallExpr(Context, Fn, None,
4408                                          Context.VoidTy, VK_RValue,
4409                                          RParenLoc));
4410    }
4411    if (Fn->getType() == Context.PseudoObjectTy) {
4412      ExprResult result = CheckPlaceholderExpr(Fn);
4413      if (result.isInvalid()) return ExprError();
4414      Fn = result.take();
4415    }
4416
4417    // Determine whether this is a dependent call inside a C++ template,
4418    // in which case we won't do any semantic analysis now.
4419    // FIXME: Will need to cache the results of name lookup (including ADL) in
4420    // Fn.
4421    bool Dependent = false;
4422    if (Fn->isTypeDependent())
4423      Dependent = true;
4424    else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4425      Dependent = true;
4426
4427    if (Dependent) {
4428      if (ExecConfig) {
4429        return Owned(new (Context) CUDAKernelCallExpr(
4430            Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4431            Context.DependentTy, VK_RValue, RParenLoc));
4432      } else {
4433        return Owned(new (Context) CallExpr(Context, Fn, ArgExprs,
4434                                            Context.DependentTy, VK_RValue,
4435                                            RParenLoc));
4436      }
4437    }
4438
4439    // Determine whether this is a call to an object (C++ [over.call.object]).
4440    if (Fn->getType()->isRecordType())
4441      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc,
4442                                                ArgExprs, RParenLoc));
4443
4444    if (Fn->getType() == Context.UnknownAnyTy) {
4445      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4446      if (result.isInvalid()) return ExprError();
4447      Fn = result.take();
4448    }
4449
4450    if (Fn->getType() == Context.BoundMemberTy) {
4451      return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
4452    }
4453  }
4454
4455  // Check for overloaded calls.  This can happen even in C due to extensions.
4456  if (Fn->getType() == Context.OverloadTy) {
4457    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4458
4459    // We aren't supposed to apply this logic for if there's an '&' involved.
4460    if (!find.HasFormOfMemberPointer) {
4461      OverloadExpr *ovl = find.Expression;
4462      if (isa<UnresolvedLookupExpr>(ovl)) {
4463        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4464        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
4465                                       RParenLoc, ExecConfig);
4466      } else {
4467        return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
4468                                         RParenLoc);
4469      }
4470    }
4471  }
4472
4473  // If we're directly calling a function, get the appropriate declaration.
4474  if (Fn->getType() == Context.UnknownAnyTy) {
4475    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4476    if (result.isInvalid()) return ExprError();
4477    Fn = result.take();
4478  }
4479
4480  Expr *NakedFn = Fn->IgnoreParens();
4481
4482  NamedDecl *NDecl = 0;
4483  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4484    if (UnOp->getOpcode() == UO_AddrOf)
4485      NakedFn = UnOp->getSubExpr()->IgnoreParens();
4486
4487  if (isa<DeclRefExpr>(NakedFn))
4488    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4489  else if (isa<MemberExpr>(NakedFn))
4490    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4491
4492  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
4493                               ExecConfig, IsExecConfig);
4494}
4495
4496ExprResult
4497Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
4498                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
4499  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
4500  if (!ConfigDecl)
4501    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
4502                          << "cudaConfigureCall");
4503  QualType ConfigQTy = ConfigDecl->getType();
4504
4505  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
4506      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
4507  MarkFunctionReferenced(LLLLoc, ConfigDecl);
4508
4509  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
4510                       /*IsExecConfig=*/true);
4511}
4512
4513/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4514///
4515/// __builtin_astype( value, dst type )
4516///
4517ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4518                                 SourceLocation BuiltinLoc,
4519                                 SourceLocation RParenLoc) {
4520  ExprValueKind VK = VK_RValue;
4521  ExprObjectKind OK = OK_Ordinary;
4522  QualType DstTy = GetTypeFromParser(ParsedDestTy);
4523  QualType SrcTy = E->getType();
4524  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4525    return ExprError(Diag(BuiltinLoc,
4526                          diag::err_invalid_astype_of_different_size)
4527                     << DstTy
4528                     << SrcTy
4529                     << E->getSourceRange());
4530  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
4531               RParenLoc));
4532}
4533
4534/// ActOnConvertVectorExpr - create a new convert-vector expression from the
4535/// provided arguments.
4536///
4537/// __builtin_convertvector( value, dst type )
4538///
4539ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
4540                                        SourceLocation BuiltinLoc,
4541                                        SourceLocation RParenLoc) {
4542  TypeSourceInfo *TInfo;
4543  GetTypeFromParser(ParsedDestTy, &TInfo);
4544  return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
4545}
4546
4547/// BuildResolvedCallExpr - Build a call to a resolved expression,
4548/// i.e. an expression not of \p OverloadTy.  The expression should
4549/// unary-convert to an expression of function-pointer or
4550/// block-pointer type.
4551///
4552/// \param NDecl the declaration being called, if available
4553ExprResult
4554Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4555                            SourceLocation LParenLoc,
4556                            ArrayRef<Expr *> Args,
4557                            SourceLocation RParenLoc,
4558                            Expr *Config, bool IsExecConfig) {
4559  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4560  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4561
4562  // Promote the function operand.
4563  // We special-case function promotion here because we only allow promoting
4564  // builtin functions to function pointers in the callee of a call.
4565  ExprResult Result;
4566  if (BuiltinID &&
4567      Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4568    Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4569                               CK_BuiltinFnToFnPtr).take();
4570  } else {
4571    Result = UsualUnaryConversions(Fn);
4572  }
4573  if (Result.isInvalid())
4574    return ExprError();
4575  Fn = Result.take();
4576
4577  // Make the call expr early, before semantic checks.  This guarantees cleanup
4578  // of arguments and function on error.
4579  CallExpr *TheCall;
4580  if (Config)
4581    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4582                                               cast<CallExpr>(Config), Args,
4583                                               Context.BoolTy, VK_RValue,
4584                                               RParenLoc);
4585  else
4586    TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
4587                                     VK_RValue, RParenLoc);
4588
4589  // Bail out early if calling a builtin with custom typechecking.
4590  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4591    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4592
4593 retry:
4594  const FunctionType *FuncT;
4595  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4596    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4597    // have type pointer to function".
4598    FuncT = PT->getPointeeType()->getAs<FunctionType>();
4599    if (FuncT == 0)
4600      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4601                         << Fn->getType() << Fn->getSourceRange());
4602  } else if (const BlockPointerType *BPT =
4603               Fn->getType()->getAs<BlockPointerType>()) {
4604    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4605  } else {
4606    // Handle calls to expressions of unknown-any type.
4607    if (Fn->getType() == Context.UnknownAnyTy) {
4608      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4609      if (rewrite.isInvalid()) return ExprError();
4610      Fn = rewrite.take();
4611      TheCall->setCallee(Fn);
4612      goto retry;
4613    }
4614
4615    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4616      << Fn->getType() << Fn->getSourceRange());
4617  }
4618
4619  if (getLangOpts().CUDA) {
4620    if (Config) {
4621      // CUDA: Kernel calls must be to global functions
4622      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4623        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4624            << FDecl->getName() << Fn->getSourceRange());
4625
4626      // CUDA: Kernel function must have 'void' return type
4627      if (!FuncT->getResultType()->isVoidType())
4628        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4629            << Fn->getType() << Fn->getSourceRange());
4630    } else {
4631      // CUDA: Calls to global functions must be configured
4632      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4633        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4634            << FDecl->getName() << Fn->getSourceRange());
4635    }
4636  }
4637
4638  // Check for a valid return type
4639  if (CheckCallReturnType(FuncT->getResultType(),
4640                          Fn->getLocStart(), TheCall,
4641                          FDecl))
4642    return ExprError();
4643
4644  // We know the result type of the call, set it.
4645  TheCall->setType(FuncT->getCallResultType(Context));
4646  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
4647
4648  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4649  if (Proto) {
4650    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
4651                                IsExecConfig))
4652      return ExprError();
4653  } else {
4654    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4655
4656    if (FDecl) {
4657      // Check if we have too few/too many template arguments, based
4658      // on our knowledge of the function definition.
4659      const FunctionDecl *Def = 0;
4660      if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
4661        Proto = Def->getType()->getAs<FunctionProtoType>();
4662       if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
4663          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4664          << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
4665      }
4666
4667      // If the function we're calling isn't a function prototype, but we have
4668      // a function prototype from a prior declaratiom, use that prototype.
4669      if (!FDecl->hasPrototype())
4670        Proto = FDecl->getType()->getAs<FunctionProtoType>();
4671    }
4672
4673    // Promote the arguments (C99 6.5.2.2p6).
4674    for (unsigned i = 0, e = Args.size(); i != e; i++) {
4675      Expr *Arg = Args[i];
4676
4677      if (Proto && i < Proto->getNumArgs()) {
4678        InitializedEntity Entity
4679          = InitializedEntity::InitializeParameter(Context,
4680                                                   Proto->getArgType(i),
4681                                                   Proto->isArgConsumed(i));
4682        ExprResult ArgE = PerformCopyInitialization(Entity,
4683                                                    SourceLocation(),
4684                                                    Owned(Arg));
4685        if (ArgE.isInvalid())
4686          return true;
4687
4688        Arg = ArgE.takeAs<Expr>();
4689
4690      } else {
4691        ExprResult ArgE = DefaultArgumentPromotion(Arg);
4692
4693        if (ArgE.isInvalid())
4694          return true;
4695
4696        Arg = ArgE.takeAs<Expr>();
4697      }
4698
4699      if (RequireCompleteType(Arg->getLocStart(),
4700                              Arg->getType(),
4701                              diag::err_call_incomplete_argument, Arg))
4702        return ExprError();
4703
4704      TheCall->setArg(i, Arg);
4705    }
4706  }
4707
4708  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4709    if (!Method->isStatic())
4710      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4711        << Fn->getSourceRange());
4712
4713  // Check for sentinels
4714  if (NDecl)
4715    DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
4716
4717  // Do special checking on direct calls to functions.
4718  if (FDecl) {
4719    if (CheckFunctionCall(FDecl, TheCall, Proto))
4720      return ExprError();
4721
4722    if (BuiltinID)
4723      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
4724  } else if (NDecl) {
4725    if (CheckPointerCall(NDecl, TheCall, Proto))
4726      return ExprError();
4727  } else {
4728    if (CheckOtherCall(TheCall, Proto))
4729      return ExprError();
4730  }
4731
4732  return MaybeBindToTemporary(TheCall);
4733}
4734
4735ExprResult
4736Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4737                           SourceLocation RParenLoc, Expr *InitExpr) {
4738  assert(Ty && "ActOnCompoundLiteral(): missing type");
4739  // FIXME: put back this assert when initializers are worked out.
4740  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4741
4742  TypeSourceInfo *TInfo;
4743  QualType literalType = GetTypeFromParser(Ty, &TInfo);
4744  if (!TInfo)
4745    TInfo = Context.getTrivialTypeSourceInfo(literalType);
4746
4747  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4748}
4749
4750ExprResult
4751Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4752                               SourceLocation RParenLoc, Expr *LiteralExpr) {
4753  QualType literalType = TInfo->getType();
4754
4755  if (literalType->isArrayType()) {
4756    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4757          diag::err_illegal_decl_array_incomplete_type,
4758          SourceRange(LParenLoc,
4759                      LiteralExpr->getSourceRange().getEnd())))
4760      return ExprError();
4761    if (literalType->isVariableArrayType())
4762      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4763        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4764  } else if (!literalType->isDependentType() &&
4765             RequireCompleteType(LParenLoc, literalType,
4766               diag::err_typecheck_decl_incomplete_type,
4767               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4768    return ExprError();
4769
4770  InitializedEntity Entity
4771    = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
4772  InitializationKind Kind
4773    = InitializationKind::CreateCStyleCast(LParenLoc,
4774                                           SourceRange(LParenLoc, RParenLoc),
4775                                           /*InitList=*/true);
4776  InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
4777  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4778                                      &literalType);
4779  if (Result.isInvalid())
4780    return ExprError();
4781  LiteralExpr = Result.get();
4782
4783  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4784  if (isFileScope &&
4785      !LiteralExpr->isTypeDependent() &&
4786      !LiteralExpr->isValueDependent() &&
4787      !literalType->isDependentType()) { // 6.5.2.5p3
4788    if (CheckForConstantInitializer(LiteralExpr, literalType))
4789      return ExprError();
4790  }
4791
4792  // In C, compound literals are l-values for some reason.
4793  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4794
4795  return MaybeBindToTemporary(
4796           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4797                                             VK, LiteralExpr, isFileScope));
4798}
4799
4800ExprResult
4801Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4802                    SourceLocation RBraceLoc) {
4803  // Immediately handle non-overload placeholders.  Overloads can be
4804  // resolved contextually, but everything else here can't.
4805  for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4806    if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4807      ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4808
4809      // Ignore failures; dropping the entire initializer list because
4810      // of one failure would be terrible for indexing/etc.
4811      if (result.isInvalid()) continue;
4812
4813      InitArgList[I] = result.take();
4814    }
4815  }
4816
4817  // Semantic analysis for initializers is done by ActOnDeclarator() and
4818  // CheckInitializer() - it requires knowledge of the object being intialized.
4819
4820  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4821                                               RBraceLoc);
4822  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4823  return Owned(E);
4824}
4825
4826/// Do an explicit extend of the given block pointer if we're in ARC.
4827static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4828  assert(E.get()->getType()->isBlockPointerType());
4829  assert(E.get()->isRValue());
4830
4831  // Only do this in an r-value context.
4832  if (!S.getLangOpts().ObjCAutoRefCount) return;
4833
4834  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4835                               CK_ARCExtendBlockObject, E.get(),
4836                               /*base path*/ 0, VK_RValue);
4837  S.ExprNeedsCleanups = true;
4838}
4839
4840/// Prepare a conversion of the given expression to an ObjC object
4841/// pointer type.
4842CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4843  QualType type = E.get()->getType();
4844  if (type->isObjCObjectPointerType()) {
4845    return CK_BitCast;
4846  } else if (type->isBlockPointerType()) {
4847    maybeExtendBlockObject(*this, E);
4848    return CK_BlockPointerToObjCPointerCast;
4849  } else {
4850    assert(type->isPointerType());
4851    return CK_CPointerToObjCPointerCast;
4852  }
4853}
4854
4855/// Prepares for a scalar cast, performing all the necessary stages
4856/// except the final cast and returning the kind required.
4857CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4858  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4859  // Also, callers should have filtered out the invalid cases with
4860  // pointers.  Everything else should be possible.
4861
4862  QualType SrcTy = Src.get()->getType();
4863  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4864    return CK_NoOp;
4865
4866  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4867  case Type::STK_MemberPointer:
4868    llvm_unreachable("member pointer type in C");
4869
4870  case Type::STK_CPointer:
4871  case Type::STK_BlockPointer:
4872  case Type::STK_ObjCObjectPointer:
4873    switch (DestTy->getScalarTypeKind()) {
4874    case Type::STK_CPointer:
4875      return CK_BitCast;
4876    case Type::STK_BlockPointer:
4877      return (SrcKind == Type::STK_BlockPointer
4878                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4879    case Type::STK_ObjCObjectPointer:
4880      if (SrcKind == Type::STK_ObjCObjectPointer)
4881        return CK_BitCast;
4882      if (SrcKind == Type::STK_CPointer)
4883        return CK_CPointerToObjCPointerCast;
4884      maybeExtendBlockObject(*this, Src);
4885      return CK_BlockPointerToObjCPointerCast;
4886    case Type::STK_Bool:
4887      return CK_PointerToBoolean;
4888    case Type::STK_Integral:
4889      return CK_PointerToIntegral;
4890    case Type::STK_Floating:
4891    case Type::STK_FloatingComplex:
4892    case Type::STK_IntegralComplex:
4893    case Type::STK_MemberPointer:
4894      llvm_unreachable("illegal cast from pointer");
4895    }
4896    llvm_unreachable("Should have returned before this");
4897
4898  case Type::STK_Bool: // casting from bool is like casting from an integer
4899  case Type::STK_Integral:
4900    switch (DestTy->getScalarTypeKind()) {
4901    case Type::STK_CPointer:
4902    case Type::STK_ObjCObjectPointer:
4903    case Type::STK_BlockPointer:
4904      if (Src.get()->isNullPointerConstant(Context,
4905                                           Expr::NPC_ValueDependentIsNull))
4906        return CK_NullToPointer;
4907      return CK_IntegralToPointer;
4908    case Type::STK_Bool:
4909      return CK_IntegralToBoolean;
4910    case Type::STK_Integral:
4911      return CK_IntegralCast;
4912    case Type::STK_Floating:
4913      return CK_IntegralToFloating;
4914    case Type::STK_IntegralComplex:
4915      Src = ImpCastExprToType(Src.take(),
4916                              DestTy->castAs<ComplexType>()->getElementType(),
4917                              CK_IntegralCast);
4918      return CK_IntegralRealToComplex;
4919    case Type::STK_FloatingComplex:
4920      Src = ImpCastExprToType(Src.take(),
4921                              DestTy->castAs<ComplexType>()->getElementType(),
4922                              CK_IntegralToFloating);
4923      return CK_FloatingRealToComplex;
4924    case Type::STK_MemberPointer:
4925      llvm_unreachable("member pointer type in C");
4926    }
4927    llvm_unreachable("Should have returned before this");
4928
4929  case Type::STK_Floating:
4930    switch (DestTy->getScalarTypeKind()) {
4931    case Type::STK_Floating:
4932      return CK_FloatingCast;
4933    case Type::STK_Bool:
4934      return CK_FloatingToBoolean;
4935    case Type::STK_Integral:
4936      return CK_FloatingToIntegral;
4937    case Type::STK_FloatingComplex:
4938      Src = ImpCastExprToType(Src.take(),
4939                              DestTy->castAs<ComplexType>()->getElementType(),
4940                              CK_FloatingCast);
4941      return CK_FloatingRealToComplex;
4942    case Type::STK_IntegralComplex:
4943      Src = ImpCastExprToType(Src.take(),
4944                              DestTy->castAs<ComplexType>()->getElementType(),
4945                              CK_FloatingToIntegral);
4946      return CK_IntegralRealToComplex;
4947    case Type::STK_CPointer:
4948    case Type::STK_ObjCObjectPointer:
4949    case Type::STK_BlockPointer:
4950      llvm_unreachable("valid float->pointer cast?");
4951    case Type::STK_MemberPointer:
4952      llvm_unreachable("member pointer type in C");
4953    }
4954    llvm_unreachable("Should have returned before this");
4955
4956  case Type::STK_FloatingComplex:
4957    switch (DestTy->getScalarTypeKind()) {
4958    case Type::STK_FloatingComplex:
4959      return CK_FloatingComplexCast;
4960    case Type::STK_IntegralComplex:
4961      return CK_FloatingComplexToIntegralComplex;
4962    case Type::STK_Floating: {
4963      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4964      if (Context.hasSameType(ET, DestTy))
4965        return CK_FloatingComplexToReal;
4966      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4967      return CK_FloatingCast;
4968    }
4969    case Type::STK_Bool:
4970      return CK_FloatingComplexToBoolean;
4971    case Type::STK_Integral:
4972      Src = ImpCastExprToType(Src.take(),
4973                              SrcTy->castAs<ComplexType>()->getElementType(),
4974                              CK_FloatingComplexToReal);
4975      return CK_FloatingToIntegral;
4976    case Type::STK_CPointer:
4977    case Type::STK_ObjCObjectPointer:
4978    case Type::STK_BlockPointer:
4979      llvm_unreachable("valid complex float->pointer cast?");
4980    case Type::STK_MemberPointer:
4981      llvm_unreachable("member pointer type in C");
4982    }
4983    llvm_unreachable("Should have returned before this");
4984
4985  case Type::STK_IntegralComplex:
4986    switch (DestTy->getScalarTypeKind()) {
4987    case Type::STK_FloatingComplex:
4988      return CK_IntegralComplexToFloatingComplex;
4989    case Type::STK_IntegralComplex:
4990      return CK_IntegralComplexCast;
4991    case Type::STK_Integral: {
4992      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4993      if (Context.hasSameType(ET, DestTy))
4994        return CK_IntegralComplexToReal;
4995      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4996      return CK_IntegralCast;
4997    }
4998    case Type::STK_Bool:
4999      return CK_IntegralComplexToBoolean;
5000    case Type::STK_Floating:
5001      Src = ImpCastExprToType(Src.take(),
5002                              SrcTy->castAs<ComplexType>()->getElementType(),
5003                              CK_IntegralComplexToReal);
5004      return CK_IntegralToFloating;
5005    case Type::STK_CPointer:
5006    case Type::STK_ObjCObjectPointer:
5007    case Type::STK_BlockPointer:
5008      llvm_unreachable("valid complex int->pointer cast?");
5009    case Type::STK_MemberPointer:
5010      llvm_unreachable("member pointer type in C");
5011    }
5012    llvm_unreachable("Should have returned before this");
5013  }
5014
5015  llvm_unreachable("Unhandled scalar cast");
5016}
5017
5018bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5019                           CastKind &Kind) {
5020  assert(VectorTy->isVectorType() && "Not a vector type!");
5021
5022  if (Ty->isVectorType() || Ty->isIntegerType()) {
5023    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
5024      return Diag(R.getBegin(),
5025                  Ty->isVectorType() ?
5026                  diag::err_invalid_conversion_between_vectors :
5027                  diag::err_invalid_conversion_between_vector_and_integer)
5028        << VectorTy << Ty << R;
5029  } else
5030    return Diag(R.getBegin(),
5031                diag::err_invalid_conversion_between_vector_and_scalar)
5032      << VectorTy << Ty << R;
5033
5034  Kind = CK_BitCast;
5035  return false;
5036}
5037
5038ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5039                                    Expr *CastExpr, CastKind &Kind) {
5040  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5041
5042  QualType SrcTy = CastExpr->getType();
5043
5044  // If SrcTy is a VectorType, the total size must match to explicitly cast to
5045  // an ExtVectorType.
5046  // In OpenCL, casts between vectors of different types are not allowed.
5047  // (See OpenCL 6.2).
5048  if (SrcTy->isVectorType()) {
5049    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
5050        || (getLangOpts().OpenCL &&
5051            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5052      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5053        << DestTy << SrcTy << R;
5054      return ExprError();
5055    }
5056    Kind = CK_BitCast;
5057    return Owned(CastExpr);
5058  }
5059
5060  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
5061  // conversion will take place first from scalar to elt type, and then
5062  // splat from elt type to vector.
5063  if (SrcTy->isPointerType())
5064    return Diag(R.getBegin(),
5065                diag::err_invalid_conversion_between_vector_and_scalar)
5066      << DestTy << SrcTy << R;
5067
5068  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
5069  ExprResult CastExprRes = Owned(CastExpr);
5070  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
5071  if (CastExprRes.isInvalid())
5072    return ExprError();
5073  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
5074
5075  Kind = CK_VectorSplat;
5076  return Owned(CastExpr);
5077}
5078
5079ExprResult
5080Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5081                    Declarator &D, ParsedType &Ty,
5082                    SourceLocation RParenLoc, Expr *CastExpr) {
5083  assert(!D.isInvalidType() && (CastExpr != 0) &&
5084         "ActOnCastExpr(): missing type or expr");
5085
5086  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5087  if (D.isInvalidType())
5088    return ExprError();
5089
5090  if (getLangOpts().CPlusPlus) {
5091    // Check that there are no default arguments (C++ only).
5092    CheckExtraCXXDefaultArguments(D);
5093  }
5094
5095  checkUnusedDeclAttributes(D);
5096
5097  QualType castType = castTInfo->getType();
5098  Ty = CreateParsedType(castType, castTInfo);
5099
5100  bool isVectorLiteral = false;
5101
5102  // Check for an altivec or OpenCL literal,
5103  // i.e. all the elements are integer constants.
5104  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
5105  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
5106  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
5107       && castType->isVectorType() && (PE || PLE)) {
5108    if (PLE && PLE->getNumExprs() == 0) {
5109      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
5110      return ExprError();
5111    }
5112    if (PE || PLE->getNumExprs() == 1) {
5113      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
5114      if (!E->getType()->isVectorType())
5115        isVectorLiteral = true;
5116    }
5117    else
5118      isVectorLiteral = true;
5119  }
5120
5121  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5122  // then handle it as such.
5123  if (isVectorLiteral)
5124    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
5125
5126  // If the Expr being casted is a ParenListExpr, handle it specially.
5127  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5128  // sequence of BinOp comma operators.
5129  if (isa<ParenListExpr>(CastExpr)) {
5130    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
5131    if (Result.isInvalid()) return ExprError();
5132    CastExpr = Result.take();
5133  }
5134
5135  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
5136}
5137
5138ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
5139                                    SourceLocation RParenLoc, Expr *E,
5140                                    TypeSourceInfo *TInfo) {
5141  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
5142         "Expected paren or paren list expression");
5143
5144  Expr **exprs;
5145  unsigned numExprs;
5146  Expr *subExpr;
5147  SourceLocation LiteralLParenLoc, LiteralRParenLoc;
5148  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
5149    LiteralLParenLoc = PE->getLParenLoc();
5150    LiteralRParenLoc = PE->getRParenLoc();
5151    exprs = PE->getExprs();
5152    numExprs = PE->getNumExprs();
5153  } else { // isa<ParenExpr> by assertion at function entrance
5154    LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
5155    LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
5156    subExpr = cast<ParenExpr>(E)->getSubExpr();
5157    exprs = &subExpr;
5158    numExprs = 1;
5159  }
5160
5161  QualType Ty = TInfo->getType();
5162  assert(Ty->isVectorType() && "Expected vector type");
5163
5164  SmallVector<Expr *, 8> initExprs;
5165  const VectorType *VTy = Ty->getAs<VectorType>();
5166  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5167
5168  // '(...)' form of vector initialization in AltiVec: the number of
5169  // initializers must be one or must match the size of the vector.
5170  // If a single value is specified in the initializer then it will be
5171  // replicated to all the components of the vector
5172  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
5173    // The number of initializers must be one or must match the size of the
5174    // vector. If a single value is specified in the initializer then it will
5175    // be replicated to all the components of the vector
5176    if (numExprs == 1) {
5177      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5178      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5179      if (Literal.isInvalid())
5180        return ExprError();
5181      Literal = ImpCastExprToType(Literal.take(), ElemTy,
5182                                  PrepareScalarCast(Literal, ElemTy));
5183      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
5184    }
5185    else if (numExprs < numElems) {
5186      Diag(E->getExprLoc(),
5187           diag::err_incorrect_number_of_vector_initializers);
5188      return ExprError();
5189    }
5190    else
5191      initExprs.append(exprs, exprs + numExprs);
5192  }
5193  else {
5194    // For OpenCL, when the number of initializers is a single value,
5195    // it will be replicated to all components of the vector.
5196    if (getLangOpts().OpenCL &&
5197        VTy->getVectorKind() == VectorType::GenericVector &&
5198        numExprs == 1) {
5199        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5200        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5201        if (Literal.isInvalid())
5202          return ExprError();
5203        Literal = ImpCastExprToType(Literal.take(), ElemTy,
5204                                    PrepareScalarCast(Literal, ElemTy));
5205        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
5206    }
5207
5208    initExprs.append(exprs, exprs + numExprs);
5209  }
5210  // FIXME: This means that pretty-printing the final AST will produce curly
5211  // braces instead of the original commas.
5212  InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
5213                                                   initExprs, LiteralRParenLoc);
5214  initE->setType(Ty);
5215  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
5216}
5217
5218/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
5219/// the ParenListExpr into a sequence of comma binary operators.
5220ExprResult
5221Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
5222  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
5223  if (!E)
5224    return Owned(OrigExpr);
5225
5226  ExprResult Result(E->getExpr(0));
5227
5228  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5229    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5230                        E->getExpr(i));
5231
5232  if (Result.isInvalid()) return ExprError();
5233
5234  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5235}
5236
5237ExprResult Sema::ActOnParenListExpr(SourceLocation L,
5238                                    SourceLocation R,
5239                                    MultiExprArg Val) {
5240  Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
5241  return Owned(expr);
5242}
5243
5244/// \brief Emit a specialized diagnostic when one expression is a null pointer
5245/// constant and the other is not a pointer.  Returns true if a diagnostic is
5246/// emitted.
5247bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
5248                                      SourceLocation QuestionLoc) {
5249  Expr *NullExpr = LHSExpr;
5250  Expr *NonPointerExpr = RHSExpr;
5251  Expr::NullPointerConstantKind NullKind =
5252      NullExpr->isNullPointerConstant(Context,
5253                                      Expr::NPC_ValueDependentIsNotNull);
5254
5255  if (NullKind == Expr::NPCK_NotNull) {
5256    NullExpr = RHSExpr;
5257    NonPointerExpr = LHSExpr;
5258    NullKind =
5259        NullExpr->isNullPointerConstant(Context,
5260                                        Expr::NPC_ValueDependentIsNotNull);
5261  }
5262
5263  if (NullKind == Expr::NPCK_NotNull)
5264    return false;
5265
5266  if (NullKind == Expr::NPCK_ZeroExpression)
5267    return false;
5268
5269  if (NullKind == Expr::NPCK_ZeroLiteral) {
5270    // In this case, check to make sure that we got here from a "NULL"
5271    // string in the source code.
5272    NullExpr = NullExpr->IgnoreParenImpCasts();
5273    SourceLocation loc = NullExpr->getExprLoc();
5274    if (!findMacroSpelling(loc, "NULL"))
5275      return false;
5276  }
5277
5278  int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
5279  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5280      << NonPointerExpr->getType() << DiagType
5281      << NonPointerExpr->getSourceRange();
5282  return true;
5283}
5284
5285/// \brief Return false if the condition expression is valid, true otherwise.
5286static bool checkCondition(Sema &S, Expr *Cond) {
5287  QualType CondTy = Cond->getType();
5288
5289  // C99 6.5.15p2
5290  if (CondTy->isScalarType()) return false;
5291
5292  // OpenCL v1.1 s6.3.i says the condition is allowed to be a vector or scalar.
5293  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
5294    return false;
5295
5296  // Emit the proper error message.
5297  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
5298                              diag::err_typecheck_cond_expect_scalar :
5299                              diag::err_typecheck_cond_expect_scalar_or_vector)
5300    << CondTy;
5301  return true;
5302}
5303
5304/// \brief Return false if the two expressions can be converted to a vector,
5305/// true otherwise
5306static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
5307                                                    ExprResult &RHS,
5308                                                    QualType CondTy) {
5309  // Both operands should be of scalar type.
5310  if (!LHS.get()->getType()->isScalarType()) {
5311    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5312      << CondTy;
5313    return true;
5314  }
5315  if (!RHS.get()->getType()->isScalarType()) {
5316    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5317      << CondTy;
5318    return true;
5319  }
5320
5321  // Implicity convert these scalars to the type of the condition.
5322  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
5323  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
5324  return false;
5325}
5326
5327/// \brief Handle when one or both operands are void type.
5328static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
5329                                         ExprResult &RHS) {
5330    Expr *LHSExpr = LHS.get();
5331    Expr *RHSExpr = RHS.get();
5332
5333    if (!LHSExpr->getType()->isVoidType())
5334      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5335        << RHSExpr->getSourceRange();
5336    if (!RHSExpr->getType()->isVoidType())
5337      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5338        << LHSExpr->getSourceRange();
5339    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
5340    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
5341    return S.Context.VoidTy;
5342}
5343
5344/// \brief Return false if the NullExpr can be promoted to PointerTy,
5345/// true otherwise.
5346static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
5347                                        QualType PointerTy) {
5348  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
5349      !NullExpr.get()->isNullPointerConstant(S.Context,
5350                                            Expr::NPC_ValueDependentIsNull))
5351    return true;
5352
5353  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
5354  return false;
5355}
5356
5357/// \brief Checks compatibility between two pointers and return the resulting
5358/// type.
5359static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
5360                                                     ExprResult &RHS,
5361                                                     SourceLocation Loc) {
5362  QualType LHSTy = LHS.get()->getType();
5363  QualType RHSTy = RHS.get()->getType();
5364
5365  if (S.Context.hasSameType(LHSTy, RHSTy)) {
5366    // Two identical pointers types are always compatible.
5367    return LHSTy;
5368  }
5369
5370  QualType lhptee, rhptee;
5371
5372  // Get the pointee types.
5373  bool IsBlockPointer = false;
5374  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5375    lhptee = LHSBTy->getPointeeType();
5376    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5377    IsBlockPointer = true;
5378  } else {
5379    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5380    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5381  }
5382
5383  // C99 6.5.15p6: If both operands are pointers to compatible types or to
5384  // differently qualified versions of compatible types, the result type is
5385  // a pointer to an appropriately qualified version of the composite
5386  // type.
5387
5388  // Only CVR-qualifiers exist in the standard, and the differently-qualified
5389  // clause doesn't make sense for our extensions. E.g. address space 2 should
5390  // be incompatible with address space 3: they may live on different devices or
5391  // anything.
5392  Qualifiers lhQual = lhptee.getQualifiers();
5393  Qualifiers rhQual = rhptee.getQualifiers();
5394
5395  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5396  lhQual.removeCVRQualifiers();
5397  rhQual.removeCVRQualifiers();
5398
5399  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5400  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5401
5402  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5403
5404  if (CompositeTy.isNull()) {
5405    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
5406      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5407      << RHS.get()->getSourceRange();
5408    // In this situation, we assume void* type. No especially good
5409    // reason, but this is what gcc does, and we do have to pick
5410    // to get a consistent AST.
5411    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5412    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5413    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5414    return incompatTy;
5415  }
5416
5417  // The pointer types are compatible.
5418  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5419  if (IsBlockPointer)
5420    ResultTy = S.Context.getBlockPointerType(ResultTy);
5421  else
5422    ResultTy = S.Context.getPointerType(ResultTy);
5423
5424  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
5425  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
5426  return ResultTy;
5427}
5428
5429/// \brief Return the resulting type when the operands are both block pointers.
5430static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5431                                                          ExprResult &LHS,
5432                                                          ExprResult &RHS,
5433                                                          SourceLocation Loc) {
5434  QualType LHSTy = LHS.get()->getType();
5435  QualType RHSTy = RHS.get()->getType();
5436
5437  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5438    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5439      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5440      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5441      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5442      return destType;
5443    }
5444    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5445      << LHSTy << RHSTy << LHS.get()->getSourceRange()
5446      << RHS.get()->getSourceRange();
5447    return QualType();
5448  }
5449
5450  // We have 2 block pointer types.
5451  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5452}
5453
5454/// \brief Return the resulting type when the operands are both pointers.
5455static QualType
5456checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
5457                                            ExprResult &RHS,
5458                                            SourceLocation Loc) {
5459  // get the pointer types
5460  QualType LHSTy = LHS.get()->getType();
5461  QualType RHSTy = RHS.get()->getType();
5462
5463  // get the "pointed to" types
5464  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5465  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5466
5467  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5468  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
5469    // Figure out necessary qualifiers (C99 6.5.15p6)
5470    QualType destPointee
5471      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5472    QualType destType = S.Context.getPointerType(destPointee);
5473    // Add qualifiers if necessary.
5474    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5475    // Promote to void*.
5476    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5477    return destType;
5478  }
5479  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
5480    QualType destPointee
5481      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5482    QualType destType = S.Context.getPointerType(destPointee);
5483    // Add qualifiers if necessary.
5484    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5485    // Promote to void*.
5486    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5487    return destType;
5488  }
5489
5490  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5491}
5492
5493/// \brief Return false if the first expression is not an integer and the second
5494/// expression is not a pointer, true otherwise.
5495static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5496                                        Expr* PointerExpr, SourceLocation Loc,
5497                                        bool IsIntFirstExpr) {
5498  if (!PointerExpr->getType()->isPointerType() ||
5499      !Int.get()->getType()->isIntegerType())
5500    return false;
5501
5502  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5503  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5504
5505  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
5506    << Expr1->getType() << Expr2->getType()
5507    << Expr1->getSourceRange() << Expr2->getSourceRange();
5508  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
5509                            CK_IntegralToPointer);
5510  return true;
5511}
5512
5513/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5514/// In that case, LHS = cond.
5515/// C99 6.5.15
5516QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5517                                        ExprResult &RHS, ExprValueKind &VK,
5518                                        ExprObjectKind &OK,
5519                                        SourceLocation QuestionLoc) {
5520
5521  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5522  if (!LHSResult.isUsable()) return QualType();
5523  LHS = LHSResult;
5524
5525  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5526  if (!RHSResult.isUsable()) return QualType();
5527  RHS = RHSResult;
5528
5529  // C++ is sufficiently different to merit its own checker.
5530  if (getLangOpts().CPlusPlus)
5531    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5532
5533  VK = VK_RValue;
5534  OK = OK_Ordinary;
5535
5536  // First, check the condition.
5537  Cond = UsualUnaryConversions(Cond.take());
5538  if (Cond.isInvalid())
5539    return QualType();
5540  if (checkCondition(*this, Cond.get()))
5541    return QualType();
5542
5543  // Now check the two expressions.
5544  if (LHS.get()->getType()->isVectorType() ||
5545      RHS.get()->getType()->isVectorType())
5546    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5547
5548  UsualArithmeticConversions(LHS, RHS);
5549  if (LHS.isInvalid() || RHS.isInvalid())
5550    return QualType();
5551
5552  QualType CondTy = Cond.get()->getType();
5553  QualType LHSTy = LHS.get()->getType();
5554  QualType RHSTy = RHS.get()->getType();
5555
5556  // If the condition is a vector, and both operands are scalar,
5557  // attempt to implicity convert them to the vector type to act like the
5558  // built in select. (OpenCL v1.1 s6.3.i)
5559  if (getLangOpts().OpenCL && CondTy->isVectorType())
5560    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5561      return QualType();
5562
5563  // If both operands have arithmetic type, do the usual arithmetic conversions
5564  // to find a common type: C99 6.5.15p3,5.
5565  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType())
5566    return LHS.get()->getType();
5567
5568  // If both operands are the same structure or union type, the result is that
5569  // type.
5570  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
5571    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5572      if (LHSRT->getDecl() == RHSRT->getDecl())
5573        // "If both the operands have structure or union type, the result has
5574        // that type."  This implies that CV qualifiers are dropped.
5575        return LHSTy.getUnqualifiedType();
5576    // FIXME: Type of conditional expression must be complete in C mode.
5577  }
5578
5579  // C99 6.5.15p5: "If both operands have void type, the result has void type."
5580  // The following || allows only one side to be void (a GCC-ism).
5581  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5582    return checkConditionalVoidType(*this, LHS, RHS);
5583  }
5584
5585  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5586  // the type of the other operand."
5587  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5588  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5589
5590  // All objective-c pointer type analysis is done here.
5591  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5592                                                        QuestionLoc);
5593  if (LHS.isInvalid() || RHS.isInvalid())
5594    return QualType();
5595  if (!compositeType.isNull())
5596    return compositeType;
5597
5598
5599  // Handle block pointer types.
5600  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5601    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5602                                                     QuestionLoc);
5603
5604  // Check constraints for C object pointers types (C99 6.5.15p3,6).
5605  if (LHSTy->isPointerType() && RHSTy->isPointerType())
5606    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5607                                                       QuestionLoc);
5608
5609  // GCC compatibility: soften pointer/integer mismatch.  Note that
5610  // null pointers have been filtered out by this point.
5611  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5612      /*isIntFirstExpr=*/true))
5613    return RHSTy;
5614  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5615      /*isIntFirstExpr=*/false))
5616    return LHSTy;
5617
5618  // Emit a better diagnostic if one of the expressions is a null pointer
5619  // constant and the other is not a pointer type. In this case, the user most
5620  // likely forgot to take the address of the other expression.
5621  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5622    return QualType();
5623
5624  // Otherwise, the operands are not compatible.
5625  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5626    << LHSTy << RHSTy << LHS.get()->getSourceRange()
5627    << RHS.get()->getSourceRange();
5628  return QualType();
5629}
5630
5631/// FindCompositeObjCPointerType - Helper method to find composite type of
5632/// two objective-c pointer types of the two input expressions.
5633QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5634                                            SourceLocation QuestionLoc) {
5635  QualType LHSTy = LHS.get()->getType();
5636  QualType RHSTy = RHS.get()->getType();
5637
5638  // Handle things like Class and struct objc_class*.  Here we case the result
5639  // to the pseudo-builtin, because that will be implicitly cast back to the
5640  // redefinition type if an attempt is made to access its fields.
5641  if (LHSTy->isObjCClassType() &&
5642      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5643    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5644    return LHSTy;
5645  }
5646  if (RHSTy->isObjCClassType() &&
5647      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5648    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5649    return RHSTy;
5650  }
5651  // And the same for struct objc_object* / id
5652  if (LHSTy->isObjCIdType() &&
5653      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5654    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
5655    return LHSTy;
5656  }
5657  if (RHSTy->isObjCIdType() &&
5658      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5659    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
5660    return RHSTy;
5661  }
5662  // And the same for struct objc_selector* / SEL
5663  if (Context.isObjCSelType(LHSTy) &&
5664      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5665    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
5666    return LHSTy;
5667  }
5668  if (Context.isObjCSelType(RHSTy) &&
5669      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5670    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
5671    return RHSTy;
5672  }
5673  // Check constraints for Objective-C object pointers types.
5674  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5675
5676    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5677      // Two identical object pointer types are always compatible.
5678      return LHSTy;
5679    }
5680    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5681    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5682    QualType compositeType = LHSTy;
5683
5684    // If both operands are interfaces and either operand can be
5685    // assigned to the other, use that type as the composite
5686    // type. This allows
5687    //   xxx ? (A*) a : (B*) b
5688    // where B is a subclass of A.
5689    //
5690    // Additionally, as for assignment, if either type is 'id'
5691    // allow silent coercion. Finally, if the types are
5692    // incompatible then make sure to use 'id' as the composite
5693    // type so the result is acceptable for sending messages to.
5694
5695    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5696    // It could return the composite type.
5697    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5698      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5699    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5700      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5701    } else if ((LHSTy->isObjCQualifiedIdType() ||
5702                RHSTy->isObjCQualifiedIdType()) &&
5703               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5704      // Need to handle "id<xx>" explicitly.
5705      // GCC allows qualified id and any Objective-C type to devolve to
5706      // id. Currently localizing to here until clear this should be
5707      // part of ObjCQualifiedIdTypesAreCompatible.
5708      compositeType = Context.getObjCIdType();
5709    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5710      compositeType = Context.getObjCIdType();
5711    } else if (!(compositeType =
5712                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5713      ;
5714    else {
5715      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5716      << LHSTy << RHSTy
5717      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5718      QualType incompatTy = Context.getObjCIdType();
5719      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
5720      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
5721      return incompatTy;
5722    }
5723    // The object pointer types are compatible.
5724    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
5725    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
5726    return compositeType;
5727  }
5728  // Check Objective-C object pointer types and 'void *'
5729  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5730    if (getLangOpts().ObjCAutoRefCount) {
5731      // ARC forbids the implicit conversion of object pointers to 'void *',
5732      // so these types are not compatible.
5733      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5734          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5735      LHS = RHS = true;
5736      return QualType();
5737    }
5738    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5739    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5740    QualType destPointee
5741    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5742    QualType destType = Context.getPointerType(destPointee);
5743    // Add qualifiers if necessary.
5744    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
5745    // Promote to void*.
5746    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
5747    return destType;
5748  }
5749  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
5750    if (getLangOpts().ObjCAutoRefCount) {
5751      // ARC forbids the implicit conversion of object pointers to 'void *',
5752      // so these types are not compatible.
5753      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
5754          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5755      LHS = RHS = true;
5756      return QualType();
5757    }
5758    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
5759    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5760    QualType destPointee
5761    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5762    QualType destType = Context.getPointerType(destPointee);
5763    // Add qualifiers if necessary.
5764    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
5765    // Promote to void*.
5766    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
5767    return destType;
5768  }
5769  return QualType();
5770}
5771
5772/// SuggestParentheses - Emit a note with a fixit hint that wraps
5773/// ParenRange in parentheses.
5774static void SuggestParentheses(Sema &Self, SourceLocation Loc,
5775                               const PartialDiagnostic &Note,
5776                               SourceRange ParenRange) {
5777  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
5778  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
5779      EndLoc.isValid()) {
5780    Self.Diag(Loc, Note)
5781      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
5782      << FixItHint::CreateInsertion(EndLoc, ")");
5783  } else {
5784    // We can't display the parentheses, so just show the bare note.
5785    Self.Diag(Loc, Note) << ParenRange;
5786  }
5787}
5788
5789static bool IsArithmeticOp(BinaryOperatorKind Opc) {
5790  return Opc >= BO_Mul && Opc <= BO_Shr;
5791}
5792
5793/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5794/// expression, either using a built-in or overloaded operator,
5795/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5796/// expression.
5797static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5798                                   Expr **RHSExprs) {
5799  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5800  E = E->IgnoreImpCasts();
5801  E = E->IgnoreConversionOperator();
5802  E = E->IgnoreImpCasts();
5803
5804  // Built-in binary operator.
5805  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5806    if (IsArithmeticOp(OP->getOpcode())) {
5807      *Opcode = OP->getOpcode();
5808      *RHSExprs = OP->getRHS();
5809      return true;
5810    }
5811  }
5812
5813  // Overloaded operator.
5814  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5815    if (Call->getNumArgs() != 2)
5816      return false;
5817
5818    // Make sure this is really a binary operator that is safe to pass into
5819    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5820    OverloadedOperatorKind OO = Call->getOperator();
5821    if (OO < OO_Plus || OO > OO_Arrow ||
5822        OO == OO_PlusPlus || OO == OO_MinusMinus)
5823      return false;
5824
5825    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5826    if (IsArithmeticOp(OpKind)) {
5827      *Opcode = OpKind;
5828      *RHSExprs = Call->getArg(1);
5829      return true;
5830    }
5831  }
5832
5833  return false;
5834}
5835
5836static bool IsLogicOp(BinaryOperatorKind Opc) {
5837  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5838}
5839
5840/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5841/// or is a logical expression such as (x==y) which has int type, but is
5842/// commonly interpreted as boolean.
5843static bool ExprLooksBoolean(Expr *E) {
5844  E = E->IgnoreParenImpCasts();
5845
5846  if (E->getType()->isBooleanType())
5847    return true;
5848  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5849    return IsLogicOp(OP->getOpcode());
5850  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5851    return OP->getOpcode() == UO_LNot;
5852
5853  return false;
5854}
5855
5856/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5857/// and binary operator are mixed in a way that suggests the programmer assumed
5858/// the conditional operator has higher precedence, for example:
5859/// "int x = a + someBinaryCondition ? 1 : 2".
5860static void DiagnoseConditionalPrecedence(Sema &Self,
5861                                          SourceLocation OpLoc,
5862                                          Expr *Condition,
5863                                          Expr *LHSExpr,
5864                                          Expr *RHSExpr) {
5865  BinaryOperatorKind CondOpcode;
5866  Expr *CondRHS;
5867
5868  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5869    return;
5870  if (!ExprLooksBoolean(CondRHS))
5871    return;
5872
5873  // The condition is an arithmetic binary expression, with a right-
5874  // hand side that looks boolean, so warn.
5875
5876  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5877      << Condition->getSourceRange()
5878      << BinaryOperator::getOpcodeStr(CondOpcode);
5879
5880  SuggestParentheses(Self, OpLoc,
5881    Self.PDiag(diag::note_precedence_silence)
5882      << BinaryOperator::getOpcodeStr(CondOpcode),
5883    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5884
5885  SuggestParentheses(Self, OpLoc,
5886    Self.PDiag(diag::note_precedence_conditional_first),
5887    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5888}
5889
5890/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5891/// in the case of a the GNU conditional expr extension.
5892ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5893                                    SourceLocation ColonLoc,
5894                                    Expr *CondExpr, Expr *LHSExpr,
5895                                    Expr *RHSExpr) {
5896  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5897  // was the condition.
5898  OpaqueValueExpr *opaqueValue = 0;
5899  Expr *commonExpr = 0;
5900  if (LHSExpr == 0) {
5901    commonExpr = CondExpr;
5902    // Lower out placeholder types first.  This is important so that we don't
5903    // try to capture a placeholder. This happens in few cases in C++; such
5904    // as Objective-C++'s dictionary subscripting syntax.
5905    if (commonExpr->hasPlaceholderType()) {
5906      ExprResult result = CheckPlaceholderExpr(commonExpr);
5907      if (!result.isUsable()) return ExprError();
5908      commonExpr = result.take();
5909    }
5910    // We usually want to apply unary conversions *before* saving, except
5911    // in the special case of a C++ l-value conditional.
5912    if (!(getLangOpts().CPlusPlus
5913          && !commonExpr->isTypeDependent()
5914          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5915          && commonExpr->isGLValue()
5916          && commonExpr->isOrdinaryOrBitFieldObject()
5917          && RHSExpr->isOrdinaryOrBitFieldObject()
5918          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5919      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5920      if (commonRes.isInvalid())
5921        return ExprError();
5922      commonExpr = commonRes.take();
5923    }
5924
5925    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5926                                                commonExpr->getType(),
5927                                                commonExpr->getValueKind(),
5928                                                commonExpr->getObjectKind(),
5929                                                commonExpr);
5930    LHSExpr = CondExpr = opaqueValue;
5931  }
5932
5933  ExprValueKind VK = VK_RValue;
5934  ExprObjectKind OK = OK_Ordinary;
5935  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5936  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5937                                             VK, OK, QuestionLoc);
5938  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5939      RHS.isInvalid())
5940    return ExprError();
5941
5942  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5943                                RHS.get());
5944
5945  if (!commonExpr)
5946    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5947                                                   LHS.take(), ColonLoc,
5948                                                   RHS.take(), result, VK, OK));
5949
5950  return Owned(new (Context)
5951    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5952                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5953                              OK));
5954}
5955
5956// checkPointerTypesForAssignment - This is a very tricky routine (despite
5957// being closely modeled after the C99 spec:-). The odd characteristic of this
5958// routine is it effectively iqnores the qualifiers on the top level pointee.
5959// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5960// FIXME: add a couple examples in this comment.
5961static Sema::AssignConvertType
5962checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5963  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5964  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5965
5966  // get the "pointed to" type (ignoring qualifiers at the top level)
5967  const Type *lhptee, *rhptee;
5968  Qualifiers lhq, rhq;
5969  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5970  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5971
5972  Sema::AssignConvertType ConvTy = Sema::Compatible;
5973
5974  // C99 6.5.16.1p1: This following citation is common to constraints
5975  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5976  // qualifiers of the type *pointed to* by the right;
5977  Qualifiers lq;
5978
5979  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5980  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5981      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5982    // Ignore lifetime for further calculation.
5983    lhq.removeObjCLifetime();
5984    rhq.removeObjCLifetime();
5985  }
5986
5987  if (!lhq.compatiblyIncludes(rhq)) {
5988    // Treat address-space mismatches as fatal.  TODO: address subspaces
5989    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5990      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5991
5992    // It's okay to add or remove GC or lifetime qualifiers when converting to
5993    // and from void*.
5994    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5995                        .compatiblyIncludes(
5996                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5997             && (lhptee->isVoidType() || rhptee->isVoidType()))
5998      ; // keep old
5999
6000    // Treat lifetime mismatches as fatal.
6001    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
6002      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6003
6004    // For GCC compatibility, other qualifier mismatches are treated
6005    // as still compatible in C.
6006    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6007  }
6008
6009  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
6010  // incomplete type and the other is a pointer to a qualified or unqualified
6011  // version of void...
6012  if (lhptee->isVoidType()) {
6013    if (rhptee->isIncompleteOrObjectType())
6014      return ConvTy;
6015
6016    // As an extension, we allow cast to/from void* to function pointer.
6017    assert(rhptee->isFunctionType());
6018    return Sema::FunctionVoidPointer;
6019  }
6020
6021  if (rhptee->isVoidType()) {
6022    if (lhptee->isIncompleteOrObjectType())
6023      return ConvTy;
6024
6025    // As an extension, we allow cast to/from void* to function pointer.
6026    assert(lhptee->isFunctionType());
6027    return Sema::FunctionVoidPointer;
6028  }
6029
6030  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
6031  // unqualified versions of compatible types, ...
6032  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
6033  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
6034    // Check if the pointee types are compatible ignoring the sign.
6035    // We explicitly check for char so that we catch "char" vs
6036    // "unsigned char" on systems where "char" is unsigned.
6037    if (lhptee->isCharType())
6038      ltrans = S.Context.UnsignedCharTy;
6039    else if (lhptee->hasSignedIntegerRepresentation())
6040      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
6041
6042    if (rhptee->isCharType())
6043      rtrans = S.Context.UnsignedCharTy;
6044    else if (rhptee->hasSignedIntegerRepresentation())
6045      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
6046
6047    if (ltrans == rtrans) {
6048      // Types are compatible ignoring the sign. Qualifier incompatibility
6049      // takes priority over sign incompatibility because the sign
6050      // warning can be disabled.
6051      if (ConvTy != Sema::Compatible)
6052        return ConvTy;
6053
6054      return Sema::IncompatiblePointerSign;
6055    }
6056
6057    // If we are a multi-level pointer, it's possible that our issue is simply
6058    // one of qualification - e.g. char ** -> const char ** is not allowed. If
6059    // the eventual target type is the same and the pointers have the same
6060    // level of indirection, this must be the issue.
6061    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
6062      do {
6063        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
6064        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
6065      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
6066
6067      if (lhptee == rhptee)
6068        return Sema::IncompatibleNestedPointerQualifiers;
6069    }
6070
6071    // General pointer incompatibility takes priority over qualifiers.
6072    return Sema::IncompatiblePointer;
6073  }
6074  if (!S.getLangOpts().CPlusPlus &&
6075      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
6076    return Sema::IncompatiblePointer;
6077  return ConvTy;
6078}
6079
6080/// checkBlockPointerTypesForAssignment - This routine determines whether two
6081/// block pointer types are compatible or whether a block and normal pointer
6082/// are compatible. It is more restrict than comparing two function pointer
6083// types.
6084static Sema::AssignConvertType
6085checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
6086                                    QualType RHSType) {
6087  assert(LHSType.isCanonical() && "LHS not canonicalized!");
6088  assert(RHSType.isCanonical() && "RHS not canonicalized!");
6089
6090  QualType lhptee, rhptee;
6091
6092  // get the "pointed to" type (ignoring qualifiers at the top level)
6093  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
6094  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
6095
6096  // In C++, the types have to match exactly.
6097  if (S.getLangOpts().CPlusPlus)
6098    return Sema::IncompatibleBlockPointer;
6099
6100  Sema::AssignConvertType ConvTy = Sema::Compatible;
6101
6102  // For blocks we enforce that qualifiers are identical.
6103  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6104    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6105
6106  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
6107    return Sema::IncompatibleBlockPointer;
6108
6109  return ConvTy;
6110}
6111
6112/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6113/// for assignment compatibility.
6114static Sema::AssignConvertType
6115checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
6116                                   QualType RHSType) {
6117  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
6118  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
6119
6120  if (LHSType->isObjCBuiltinType()) {
6121    // Class is not compatible with ObjC object pointers.
6122    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
6123        !RHSType->isObjCQualifiedClassType())
6124      return Sema::IncompatiblePointer;
6125    return Sema::Compatible;
6126  }
6127  if (RHSType->isObjCBuiltinType()) {
6128    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
6129        !LHSType->isObjCQualifiedClassType())
6130      return Sema::IncompatiblePointer;
6131    return Sema::Compatible;
6132  }
6133  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6134  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6135
6136  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
6137      // make an exception for id<P>
6138      !LHSType->isObjCQualifiedIdType())
6139    return Sema::CompatiblePointerDiscardsQualifiers;
6140
6141  if (S.Context.typesAreCompatible(LHSType, RHSType))
6142    return Sema::Compatible;
6143  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
6144    return Sema::IncompatibleObjCQualifiedId;
6145  return Sema::IncompatiblePointer;
6146}
6147
6148Sema::AssignConvertType
6149Sema::CheckAssignmentConstraints(SourceLocation Loc,
6150                                 QualType LHSType, QualType RHSType) {
6151  // Fake up an opaque expression.  We don't actually care about what
6152  // cast operations are required, so if CheckAssignmentConstraints
6153  // adds casts to this they'll be wasted, but fortunately that doesn't
6154  // usually happen on valid code.
6155  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
6156  ExprResult RHSPtr = &RHSExpr;
6157  CastKind K = CK_Invalid;
6158
6159  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
6160}
6161
6162/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6163/// has code to accommodate several GCC extensions when type checking
6164/// pointers. Here are some objectionable examples that GCC considers warnings:
6165///
6166///  int a, *pint;
6167///  short *pshort;
6168///  struct foo *pfoo;
6169///
6170///  pint = pshort; // warning: assignment from incompatible pointer type
6171///  a = pint; // warning: assignment makes integer from pointer without a cast
6172///  pint = a; // warning: assignment makes pointer from integer without a cast
6173///  pint = pfoo; // warning: assignment from incompatible pointer type
6174///
6175/// As a result, the code for dealing with pointers is more complex than the
6176/// C99 spec dictates.
6177///
6178/// Sets 'Kind' for any result kind except Incompatible.
6179Sema::AssignConvertType
6180Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6181                                 CastKind &Kind) {
6182  QualType RHSType = RHS.get()->getType();
6183  QualType OrigLHSType = LHSType;
6184
6185  // Get canonical types.  We're not formatting these types, just comparing
6186  // them.
6187  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
6188  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
6189
6190  // Common case: no conversion required.
6191  if (LHSType == RHSType) {
6192    Kind = CK_NoOp;
6193    return Compatible;
6194  }
6195
6196  // If we have an atomic type, try a non-atomic assignment, then just add an
6197  // atomic qualification step.
6198  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
6199    Sema::AssignConvertType result =
6200      CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
6201    if (result != Compatible)
6202      return result;
6203    if (Kind != CK_NoOp)
6204      RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
6205    Kind = CK_NonAtomicToAtomic;
6206    return Compatible;
6207  }
6208
6209  // If the left-hand side is a reference type, then we are in a
6210  // (rare!) case where we've allowed the use of references in C,
6211  // e.g., as a parameter type in a built-in function. In this case,
6212  // just make sure that the type referenced is compatible with the
6213  // right-hand side type. The caller is responsible for adjusting
6214  // LHSType so that the resulting expression does not have reference
6215  // type.
6216  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
6217    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
6218      Kind = CK_LValueBitCast;
6219      return Compatible;
6220    }
6221    return Incompatible;
6222  }
6223
6224  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6225  // to the same ExtVector type.
6226  if (LHSType->isExtVectorType()) {
6227    if (RHSType->isExtVectorType())
6228      return Incompatible;
6229    if (RHSType->isArithmeticType()) {
6230      // CK_VectorSplat does T -> vector T, so first cast to the
6231      // element type.
6232      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
6233      if (elType != RHSType) {
6234        Kind = PrepareScalarCast(RHS, elType);
6235        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
6236      }
6237      Kind = CK_VectorSplat;
6238      return Compatible;
6239    }
6240  }
6241
6242  // Conversions to or from vector type.
6243  if (LHSType->isVectorType() || RHSType->isVectorType()) {
6244    if (LHSType->isVectorType() && RHSType->isVectorType()) {
6245      // Allow assignments of an AltiVec vector type to an equivalent GCC
6246      // vector type and vice versa
6247      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6248        Kind = CK_BitCast;
6249        return Compatible;
6250      }
6251
6252      // If we are allowing lax vector conversions, and LHS and RHS are both
6253      // vectors, the total size only needs to be the same. This is a bitcast;
6254      // no bits are changed but the result type is different.
6255      if (getLangOpts().LaxVectorConversions &&
6256          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
6257        Kind = CK_BitCast;
6258        return IncompatibleVectors;
6259      }
6260    }
6261    return Incompatible;
6262  }
6263
6264  // Arithmetic conversions.
6265  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
6266      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
6267    Kind = PrepareScalarCast(RHS, LHSType);
6268    return Compatible;
6269  }
6270
6271  // Conversions to normal pointers.
6272  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
6273    // U* -> T*
6274    if (isa<PointerType>(RHSType)) {
6275      Kind = CK_BitCast;
6276      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
6277    }
6278
6279    // int -> T*
6280    if (RHSType->isIntegerType()) {
6281      Kind = CK_IntegralToPointer; // FIXME: null?
6282      return IntToPointer;
6283    }
6284
6285    // C pointers are not compatible with ObjC object pointers,
6286    // with two exceptions:
6287    if (isa<ObjCObjectPointerType>(RHSType)) {
6288      //  - conversions to void*
6289      if (LHSPointer->getPointeeType()->isVoidType()) {
6290        Kind = CK_BitCast;
6291        return Compatible;
6292      }
6293
6294      //  - conversions from 'Class' to the redefinition type
6295      if (RHSType->isObjCClassType() &&
6296          Context.hasSameType(LHSType,
6297                              Context.getObjCClassRedefinitionType())) {
6298        Kind = CK_BitCast;
6299        return Compatible;
6300      }
6301
6302      Kind = CK_BitCast;
6303      return IncompatiblePointer;
6304    }
6305
6306    // U^ -> void*
6307    if (RHSType->getAs<BlockPointerType>()) {
6308      if (LHSPointer->getPointeeType()->isVoidType()) {
6309        Kind = CK_BitCast;
6310        return Compatible;
6311      }
6312    }
6313
6314    return Incompatible;
6315  }
6316
6317  // Conversions to block pointers.
6318  if (isa<BlockPointerType>(LHSType)) {
6319    // U^ -> T^
6320    if (RHSType->isBlockPointerType()) {
6321      Kind = CK_BitCast;
6322      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
6323    }
6324
6325    // int or null -> T^
6326    if (RHSType->isIntegerType()) {
6327      Kind = CK_IntegralToPointer; // FIXME: null
6328      return IntToBlockPointer;
6329    }
6330
6331    // id -> T^
6332    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
6333      Kind = CK_AnyPointerToBlockPointerCast;
6334      return Compatible;
6335    }
6336
6337    // void* -> T^
6338    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
6339      if (RHSPT->getPointeeType()->isVoidType()) {
6340        Kind = CK_AnyPointerToBlockPointerCast;
6341        return Compatible;
6342      }
6343
6344    return Incompatible;
6345  }
6346
6347  // Conversions to Objective-C pointers.
6348  if (isa<ObjCObjectPointerType>(LHSType)) {
6349    // A* -> B*
6350    if (RHSType->isObjCObjectPointerType()) {
6351      Kind = CK_BitCast;
6352      Sema::AssignConvertType result =
6353        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
6354      if (getLangOpts().ObjCAutoRefCount &&
6355          result == Compatible &&
6356          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
6357        result = IncompatibleObjCWeakRef;
6358      return result;
6359    }
6360
6361    // int or null -> A*
6362    if (RHSType->isIntegerType()) {
6363      Kind = CK_IntegralToPointer; // FIXME: null
6364      return IntToPointer;
6365    }
6366
6367    // In general, C pointers are not compatible with ObjC object pointers,
6368    // with two exceptions:
6369    if (isa<PointerType>(RHSType)) {
6370      Kind = CK_CPointerToObjCPointerCast;
6371
6372      //  - conversions from 'void*'
6373      if (RHSType->isVoidPointerType()) {
6374        return Compatible;
6375      }
6376
6377      //  - conversions to 'Class' from its redefinition type
6378      if (LHSType->isObjCClassType() &&
6379          Context.hasSameType(RHSType,
6380                              Context.getObjCClassRedefinitionType())) {
6381        return Compatible;
6382      }
6383
6384      return IncompatiblePointer;
6385    }
6386
6387    // T^ -> A*
6388    if (RHSType->isBlockPointerType()) {
6389      maybeExtendBlockObject(*this, RHS);
6390      Kind = CK_BlockPointerToObjCPointerCast;
6391      return Compatible;
6392    }
6393
6394    return Incompatible;
6395  }
6396
6397  // Conversions from pointers that are not covered by the above.
6398  if (isa<PointerType>(RHSType)) {
6399    // T* -> _Bool
6400    if (LHSType == Context.BoolTy) {
6401      Kind = CK_PointerToBoolean;
6402      return Compatible;
6403    }
6404
6405    // T* -> int
6406    if (LHSType->isIntegerType()) {
6407      Kind = CK_PointerToIntegral;
6408      return PointerToInt;
6409    }
6410
6411    return Incompatible;
6412  }
6413
6414  // Conversions from Objective-C pointers that are not covered by the above.
6415  if (isa<ObjCObjectPointerType>(RHSType)) {
6416    // T* -> _Bool
6417    if (LHSType == Context.BoolTy) {
6418      Kind = CK_PointerToBoolean;
6419      return Compatible;
6420    }
6421
6422    // T* -> int
6423    if (LHSType->isIntegerType()) {
6424      Kind = CK_PointerToIntegral;
6425      return PointerToInt;
6426    }
6427
6428    return Incompatible;
6429  }
6430
6431  // struct A -> struct B
6432  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
6433    if (Context.typesAreCompatible(LHSType, RHSType)) {
6434      Kind = CK_NoOp;
6435      return Compatible;
6436    }
6437  }
6438
6439  return Incompatible;
6440}
6441
6442/// \brief Constructs a transparent union from an expression that is
6443/// used to initialize the transparent union.
6444static void ConstructTransparentUnion(Sema &S, ASTContext &C,
6445                                      ExprResult &EResult, QualType UnionType,
6446                                      FieldDecl *Field) {
6447  // Build an initializer list that designates the appropriate member
6448  // of the transparent union.
6449  Expr *E = EResult.take();
6450  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
6451                                                   E, SourceLocation());
6452  Initializer->setType(UnionType);
6453  Initializer->setInitializedFieldInUnion(Field);
6454
6455  // Build a compound literal constructing a value of the transparent
6456  // union type from this initializer list.
6457  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
6458  EResult = S.Owned(
6459    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
6460                                VK_RValue, Initializer, false));
6461}
6462
6463Sema::AssignConvertType
6464Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
6465                                               ExprResult &RHS) {
6466  QualType RHSType = RHS.get()->getType();
6467
6468  // If the ArgType is a Union type, we want to handle a potential
6469  // transparent_union GCC extension.
6470  const RecordType *UT = ArgType->getAsUnionType();
6471  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
6472    return Incompatible;
6473
6474  // The field to initialize within the transparent union.
6475  RecordDecl *UD = UT->getDecl();
6476  FieldDecl *InitField = 0;
6477  // It's compatible if the expression matches any of the fields.
6478  for (RecordDecl::field_iterator it = UD->field_begin(),
6479         itend = UD->field_end();
6480       it != itend; ++it) {
6481    if (it->getType()->isPointerType()) {
6482      // If the transparent union contains a pointer type, we allow:
6483      // 1) void pointer
6484      // 2) null pointer constant
6485      if (RHSType->isPointerType())
6486        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6487          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
6488          InitField = *it;
6489          break;
6490        }
6491
6492      if (RHS.get()->isNullPointerConstant(Context,
6493                                           Expr::NPC_ValueDependentIsNull)) {
6494        RHS = ImpCastExprToType(RHS.take(), it->getType(),
6495                                CK_NullToPointer);
6496        InitField = *it;
6497        break;
6498      }
6499    }
6500
6501    CastKind Kind = CK_Invalid;
6502    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6503          == Compatible) {
6504      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
6505      InitField = *it;
6506      break;
6507    }
6508  }
6509
6510  if (!InitField)
6511    return Incompatible;
6512
6513  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6514  return Compatible;
6515}
6516
6517Sema::AssignConvertType
6518Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6519                                       bool Diagnose,
6520                                       bool DiagnoseCFAudited) {
6521  if (getLangOpts().CPlusPlus) {
6522    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6523      // C++ 5.17p3: If the left operand is not of class type, the
6524      // expression is implicitly converted (C++ 4) to the
6525      // cv-unqualified type of the left operand.
6526      ExprResult Res;
6527      if (Diagnose) {
6528        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6529                                        AA_Assigning);
6530      } else {
6531        ImplicitConversionSequence ICS =
6532            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6533                                  /*SuppressUserConversions=*/false,
6534                                  /*AllowExplicit=*/false,
6535                                  /*InOverloadResolution=*/false,
6536                                  /*CStyle=*/false,
6537                                  /*AllowObjCWritebackConversion=*/false);
6538        if (ICS.isFailure())
6539          return Incompatible;
6540        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6541                                        ICS, AA_Assigning);
6542      }
6543      if (Res.isInvalid())
6544        return Incompatible;
6545      Sema::AssignConvertType result = Compatible;
6546      if (getLangOpts().ObjCAutoRefCount &&
6547          !CheckObjCARCUnavailableWeakConversion(LHSType,
6548                                                 RHS.get()->getType()))
6549        result = IncompatibleObjCWeakRef;
6550      RHS = Res;
6551      return result;
6552    }
6553
6554    // FIXME: Currently, we fall through and treat C++ classes like C
6555    // structures.
6556    // FIXME: We also fall through for atomics; not sure what should
6557    // happen there, though.
6558  }
6559
6560  // C99 6.5.16.1p1: the left operand is a pointer and the right is
6561  // a null pointer constant.
6562  if ((LHSType->isPointerType() ||
6563       LHSType->isObjCObjectPointerType() ||
6564       LHSType->isBlockPointerType())
6565      && RHS.get()->isNullPointerConstant(Context,
6566                                          Expr::NPC_ValueDependentIsNull)) {
6567    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6568    return Compatible;
6569  }
6570
6571  // This check seems unnatural, however it is necessary to ensure the proper
6572  // conversion of functions/arrays. If the conversion were done for all
6573  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6574  // expressions that suppress this implicit conversion (&, sizeof).
6575  //
6576  // Suppress this for references: C++ 8.5.3p5.
6577  if (!LHSType->isReferenceType()) {
6578    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6579    if (RHS.isInvalid())
6580      return Incompatible;
6581  }
6582
6583  CastKind Kind = CK_Invalid;
6584  Sema::AssignConvertType result =
6585    CheckAssignmentConstraints(LHSType, RHS, Kind);
6586
6587  // C99 6.5.16.1p2: The value of the right operand is converted to the
6588  // type of the assignment expression.
6589  // CheckAssignmentConstraints allows the left-hand side to be a reference,
6590  // so that we can use references in built-in functions even in C.
6591  // The getNonReferenceType() call makes sure that the resulting expression
6592  // does not have reference type.
6593  if (result != Incompatible && RHS.get()->getType() != LHSType) {
6594    QualType Ty = LHSType.getNonLValueExprType(Context);
6595    Expr *E = RHS.take();
6596    if (getLangOpts().ObjCAutoRefCount)
6597      CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
6598                             DiagnoseCFAudited);
6599    RHS = ImpCastExprToType(E, Ty, Kind);
6600  }
6601  return result;
6602}
6603
6604QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6605                               ExprResult &RHS) {
6606  Diag(Loc, diag::err_typecheck_invalid_operands)
6607    << LHS.get()->getType() << RHS.get()->getType()
6608    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6609  return QualType();
6610}
6611
6612QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6613                                   SourceLocation Loc, bool IsCompAssign) {
6614  if (!IsCompAssign) {
6615    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
6616    if (LHS.isInvalid())
6617      return QualType();
6618  }
6619  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
6620  if (RHS.isInvalid())
6621    return QualType();
6622
6623  // For conversion purposes, we ignore any qualifiers.
6624  // For example, "const float" and "float" are equivalent.
6625  QualType LHSType =
6626    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
6627  QualType RHSType =
6628    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
6629
6630  // If the vector types are identical, return.
6631  if (LHSType == RHSType)
6632    return LHSType;
6633
6634  // Handle the case of equivalent AltiVec and GCC vector types
6635  if (LHSType->isVectorType() && RHSType->isVectorType() &&
6636      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6637    if (LHSType->isExtVectorType()) {
6638      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6639      return LHSType;
6640    }
6641
6642    if (!IsCompAssign)
6643      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6644    return RHSType;
6645  }
6646
6647  if (getLangOpts().LaxVectorConversions &&
6648      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
6649    // If we are allowing lax vector conversions, and LHS and RHS are both
6650    // vectors, the total size only needs to be the same. This is a
6651    // bitcast; no bits are changed but the result type is different.
6652    // FIXME: Should we really be allowing this?
6653    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6654    return LHSType;
6655  }
6656
6657  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
6658  // swap back (so that we don't reverse the inputs to a subtract, for instance.
6659  bool swapped = false;
6660  if (RHSType->isExtVectorType() && !IsCompAssign) {
6661    swapped = true;
6662    std::swap(RHS, LHS);
6663    std::swap(RHSType, LHSType);
6664  }
6665
6666  // Handle the case of an ext vector and scalar.
6667  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
6668    QualType EltTy = LV->getElementType();
6669    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
6670      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
6671      if (order > 0)
6672        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
6673      if (order >= 0) {
6674        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6675        if (swapped) std::swap(RHS, LHS);
6676        return LHSType;
6677      }
6678    }
6679    if (EltTy->isRealFloatingType() && RHSType->isScalarType()) {
6680      if (RHSType->isRealFloatingType()) {
6681        int order = Context.getFloatingTypeOrder(EltTy, RHSType);
6682        if (order > 0)
6683          RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
6684        if (order >= 0) {
6685          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6686          if (swapped) std::swap(RHS, LHS);
6687          return LHSType;
6688        }
6689      }
6690      if (RHSType->isIntegralType(Context)) {
6691        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralToFloating);
6692        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
6693        if (swapped) std::swap(RHS, LHS);
6694        return LHSType;
6695      }
6696    }
6697  }
6698
6699  // Vectors of different size or scalar and non-ext-vector are errors.
6700  if (swapped) std::swap(RHS, LHS);
6701  Diag(Loc, diag::err_typecheck_vector_not_convertable)
6702    << LHS.get()->getType() << RHS.get()->getType()
6703    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6704  return QualType();
6705}
6706
6707// checkArithmeticNull - Detect when a NULL constant is used improperly in an
6708// expression.  These are mainly cases where the null pointer is used as an
6709// integer instead of a pointer.
6710static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
6711                                SourceLocation Loc, bool IsCompare) {
6712  // The canonical way to check for a GNU null is with isNullPointerConstant,
6713  // but we use a bit of a hack here for speed; this is a relatively
6714  // hot path, and isNullPointerConstant is slow.
6715  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
6716  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
6717
6718  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
6719
6720  // Avoid analyzing cases where the result will either be invalid (and
6721  // diagnosed as such) or entirely valid and not something to warn about.
6722  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
6723      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
6724    return;
6725
6726  // Comparison operations would not make sense with a null pointer no matter
6727  // what the other expression is.
6728  if (!IsCompare) {
6729    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
6730        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
6731        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
6732    return;
6733  }
6734
6735  // The rest of the operations only make sense with a null pointer
6736  // if the other expression is a pointer.
6737  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
6738      NonNullType->canDecayToPointerType())
6739    return;
6740
6741  S.Diag(Loc, diag::warn_null_in_comparison_operation)
6742      << LHSNull /* LHS is NULL */ << NonNullType
6743      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6744}
6745
6746QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
6747                                           SourceLocation Loc,
6748                                           bool IsCompAssign, bool IsDiv) {
6749  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6750
6751  if (LHS.get()->getType()->isVectorType() ||
6752      RHS.get()->getType()->isVectorType())
6753    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6754
6755  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6756  if (LHS.isInvalid() || RHS.isInvalid())
6757    return QualType();
6758
6759
6760  if (compType.isNull() || !compType->isArithmeticType())
6761    return InvalidOperands(Loc, LHS, RHS);
6762
6763  // Check for division by zero.
6764  llvm::APSInt RHSValue;
6765  if (IsDiv && !RHS.get()->isValueDependent() &&
6766      RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
6767    DiagRuntimeBehavior(Loc, RHS.get(),
6768                        PDiag(diag::warn_division_by_zero)
6769                          << RHS.get()->getSourceRange());
6770
6771  return compType;
6772}
6773
6774QualType Sema::CheckRemainderOperands(
6775  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
6776  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6777
6778  if (LHS.get()->getType()->isVectorType() ||
6779      RHS.get()->getType()->isVectorType()) {
6780    if (LHS.get()->getType()->hasIntegerRepresentation() &&
6781        RHS.get()->getType()->hasIntegerRepresentation())
6782      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6783    return InvalidOperands(Loc, LHS, RHS);
6784  }
6785
6786  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
6787  if (LHS.isInvalid() || RHS.isInvalid())
6788    return QualType();
6789
6790  if (compType.isNull() || !compType->isIntegerType())
6791    return InvalidOperands(Loc, LHS, RHS);
6792
6793  // Check for remainder by zero.
6794  llvm::APSInt RHSValue;
6795  if (!RHS.get()->isValueDependent() &&
6796      RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
6797    DiagRuntimeBehavior(Loc, RHS.get(),
6798                        PDiag(diag::warn_remainder_by_zero)
6799                          << RHS.get()->getSourceRange());
6800
6801  return compType;
6802}
6803
6804/// \brief Diagnose invalid arithmetic on two void pointers.
6805static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6806                                                Expr *LHSExpr, Expr *RHSExpr) {
6807  S.Diag(Loc, S.getLangOpts().CPlusPlus
6808                ? diag::err_typecheck_pointer_arith_void_type
6809                : diag::ext_gnu_void_ptr)
6810    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6811                            << RHSExpr->getSourceRange();
6812}
6813
6814/// \brief Diagnose invalid arithmetic on a void pointer.
6815static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6816                                            Expr *Pointer) {
6817  S.Diag(Loc, S.getLangOpts().CPlusPlus
6818                ? diag::err_typecheck_pointer_arith_void_type
6819                : diag::ext_gnu_void_ptr)
6820    << 0 /* one pointer */ << Pointer->getSourceRange();
6821}
6822
6823/// \brief Diagnose invalid arithmetic on two function pointers.
6824static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6825                                                    Expr *LHS, Expr *RHS) {
6826  assert(LHS->getType()->isAnyPointerType());
6827  assert(RHS->getType()->isAnyPointerType());
6828  S.Diag(Loc, S.getLangOpts().CPlusPlus
6829                ? diag::err_typecheck_pointer_arith_function_type
6830                : diag::ext_gnu_ptr_func_arith)
6831    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6832    // We only show the second type if it differs from the first.
6833    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6834                                                   RHS->getType())
6835    << RHS->getType()->getPointeeType()
6836    << LHS->getSourceRange() << RHS->getSourceRange();
6837}
6838
6839/// \brief Diagnose invalid arithmetic on a function pointer.
6840static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6841                                                Expr *Pointer) {
6842  assert(Pointer->getType()->isAnyPointerType());
6843  S.Diag(Loc, S.getLangOpts().CPlusPlus
6844                ? diag::err_typecheck_pointer_arith_function_type
6845                : diag::ext_gnu_ptr_func_arith)
6846    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6847    << 0 /* one pointer, so only one type */
6848    << Pointer->getSourceRange();
6849}
6850
6851/// \brief Emit error if Operand is incomplete pointer type
6852///
6853/// \returns True if pointer has incomplete type
6854static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6855                                                 Expr *Operand) {
6856  assert(Operand->getType()->isAnyPointerType() &&
6857         !Operand->getType()->isDependentType());
6858  QualType PointeeTy = Operand->getType()->getPointeeType();
6859  return S.RequireCompleteType(Loc, PointeeTy,
6860                               diag::err_typecheck_arithmetic_incomplete_type,
6861                               PointeeTy, Operand->getSourceRange());
6862}
6863
6864/// \brief Check the validity of an arithmetic pointer operand.
6865///
6866/// If the operand has pointer type, this code will check for pointer types
6867/// which are invalid in arithmetic operations. These will be diagnosed
6868/// appropriately, including whether or not the use is supported as an
6869/// extension.
6870///
6871/// \returns True when the operand is valid to use (even if as an extension).
6872static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6873                                            Expr *Operand) {
6874  if (!Operand->getType()->isAnyPointerType()) return true;
6875
6876  QualType PointeeTy = Operand->getType()->getPointeeType();
6877  if (PointeeTy->isVoidType()) {
6878    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6879    return !S.getLangOpts().CPlusPlus;
6880  }
6881  if (PointeeTy->isFunctionType()) {
6882    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6883    return !S.getLangOpts().CPlusPlus;
6884  }
6885
6886  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6887
6888  return true;
6889}
6890
6891/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6892/// operands.
6893///
6894/// This routine will diagnose any invalid arithmetic on pointer operands much
6895/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6896/// for emitting a single diagnostic even for operations where both LHS and RHS
6897/// are (potentially problematic) pointers.
6898///
6899/// \returns True when the operand is valid to use (even if as an extension).
6900static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6901                                                Expr *LHSExpr, Expr *RHSExpr) {
6902  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6903  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6904  if (!isLHSPointer && !isRHSPointer) return true;
6905
6906  QualType LHSPointeeTy, RHSPointeeTy;
6907  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6908  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6909
6910  // Check for arithmetic on pointers to incomplete types.
6911  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6912  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6913  if (isLHSVoidPtr || isRHSVoidPtr) {
6914    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6915    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6916    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6917
6918    return !S.getLangOpts().CPlusPlus;
6919  }
6920
6921  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6922  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6923  if (isLHSFuncPtr || isRHSFuncPtr) {
6924    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6925    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6926                                                                RHSExpr);
6927    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6928
6929    return !S.getLangOpts().CPlusPlus;
6930  }
6931
6932  if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
6933    return false;
6934  if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
6935    return false;
6936
6937  return true;
6938}
6939
6940/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6941/// literal.
6942static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6943                                  Expr *LHSExpr, Expr *RHSExpr) {
6944  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6945  Expr* IndexExpr = RHSExpr;
6946  if (!StrExpr) {
6947    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6948    IndexExpr = LHSExpr;
6949  }
6950
6951  bool IsStringPlusInt = StrExpr &&
6952      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6953  if (!IsStringPlusInt)
6954    return;
6955
6956  llvm::APSInt index;
6957  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6958    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6959    if (index.isNonNegative() &&
6960        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6961                              index.isUnsigned()))
6962      return;
6963  }
6964
6965  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6966  Self.Diag(OpLoc, diag::warn_string_plus_int)
6967      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6968
6969  // Only print a fixit for "str" + int, not for int + "str".
6970  if (IndexExpr == RHSExpr) {
6971    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6972    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
6973        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6974        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6975        << FixItHint::CreateInsertion(EndLoc, "]");
6976  } else
6977    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
6978}
6979
6980/// \brief Emit a warning when adding a char literal to a string.
6981static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
6982                                   Expr *LHSExpr, Expr *RHSExpr) {
6983  const DeclRefExpr *StringRefExpr =
6984      dyn_cast<DeclRefExpr>(LHSExpr->IgnoreImpCasts());
6985  const CharacterLiteral *CharExpr =
6986      dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
6987  if (!StringRefExpr) {
6988    StringRefExpr = dyn_cast<DeclRefExpr>(RHSExpr->IgnoreImpCasts());
6989    CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
6990  }
6991
6992  if (!CharExpr || !StringRefExpr)
6993    return;
6994
6995  const QualType StringType = StringRefExpr->getType();
6996
6997  // Return if not a PointerType.
6998  if (!StringType->isAnyPointerType())
6999    return;
7000
7001  // Return if not a CharacterType.
7002  if (!StringType->getPointeeType()->isAnyCharacterType())
7003    return;
7004
7005  ASTContext &Ctx = Self.getASTContext();
7006  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7007
7008  const QualType CharType = CharExpr->getType();
7009  if (!CharType->isAnyCharacterType() &&
7010      CharType->isIntegerType() &&
7011      llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
7012    Self.Diag(OpLoc, diag::warn_string_plus_char)
7013        << DiagRange << Ctx.CharTy;
7014  } else {
7015    Self.Diag(OpLoc, diag::warn_string_plus_char)
7016        << DiagRange << CharExpr->getType();
7017  }
7018
7019  // Only print a fixit for str + char, not for char + str.
7020  if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
7021    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
7022    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7023        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7024        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7025        << FixItHint::CreateInsertion(EndLoc, "]");
7026  } else {
7027    Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7028  }
7029}
7030
7031/// \brief Emit error when two pointers are incompatible.
7032static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
7033                                           Expr *LHSExpr, Expr *RHSExpr) {
7034  assert(LHSExpr->getType()->isAnyPointerType());
7035  assert(RHSExpr->getType()->isAnyPointerType());
7036  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7037    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
7038    << RHSExpr->getSourceRange();
7039}
7040
7041QualType Sema::CheckAdditionOperands( // C99 6.5.6
7042    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
7043    QualType* CompLHSTy) {
7044  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7045
7046  if (LHS.get()->getType()->isVectorType() ||
7047      RHS.get()->getType()->isVectorType()) {
7048    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7049    if (CompLHSTy) *CompLHSTy = compType;
7050    return compType;
7051  }
7052
7053  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7054  if (LHS.isInvalid() || RHS.isInvalid())
7055    return QualType();
7056
7057  // Diagnose "string literal" '+' int and string '+' "char literal".
7058  if (Opc == BO_Add) {
7059    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
7060    diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
7061  }
7062
7063  // handle the common case first (both operands are arithmetic).
7064  if (!compType.isNull() && compType->isArithmeticType()) {
7065    if (CompLHSTy) *CompLHSTy = compType;
7066    return compType;
7067  }
7068
7069  // Type-checking.  Ultimately the pointer's going to be in PExp;
7070  // note that we bias towards the LHS being the pointer.
7071  Expr *PExp = LHS.get(), *IExp = RHS.get();
7072
7073  bool isObjCPointer;
7074  if (PExp->getType()->isPointerType()) {
7075    isObjCPointer = false;
7076  } else if (PExp->getType()->isObjCObjectPointerType()) {
7077    isObjCPointer = true;
7078  } else {
7079    std::swap(PExp, IExp);
7080    if (PExp->getType()->isPointerType()) {
7081      isObjCPointer = false;
7082    } else if (PExp->getType()->isObjCObjectPointerType()) {
7083      isObjCPointer = true;
7084    } else {
7085      return InvalidOperands(Loc, LHS, RHS);
7086    }
7087  }
7088  assert(PExp->getType()->isAnyPointerType());
7089
7090  if (!IExp->getType()->isIntegerType())
7091    return InvalidOperands(Loc, LHS, RHS);
7092
7093  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
7094    return QualType();
7095
7096  if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
7097    return QualType();
7098
7099  // Check array bounds for pointer arithemtic
7100  CheckArrayAccess(PExp, IExp);
7101
7102  if (CompLHSTy) {
7103    QualType LHSTy = Context.isPromotableBitField(LHS.get());
7104    if (LHSTy.isNull()) {
7105      LHSTy = LHS.get()->getType();
7106      if (LHSTy->isPromotableIntegerType())
7107        LHSTy = Context.getPromotedIntegerType(LHSTy);
7108    }
7109    *CompLHSTy = LHSTy;
7110  }
7111
7112  return PExp->getType();
7113}
7114
7115// C99 6.5.6
7116QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
7117                                        SourceLocation Loc,
7118                                        QualType* CompLHSTy) {
7119  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7120
7121  if (LHS.get()->getType()->isVectorType() ||
7122      RHS.get()->getType()->isVectorType()) {
7123    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7124    if (CompLHSTy) *CompLHSTy = compType;
7125    return compType;
7126  }
7127
7128  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7129  if (LHS.isInvalid() || RHS.isInvalid())
7130    return QualType();
7131
7132  // Enforce type constraints: C99 6.5.6p3.
7133
7134  // Handle the common case first (both operands are arithmetic).
7135  if (!compType.isNull() && compType->isArithmeticType()) {
7136    if (CompLHSTy) *CompLHSTy = compType;
7137    return compType;
7138  }
7139
7140  // Either ptr - int   or   ptr - ptr.
7141  if (LHS.get()->getType()->isAnyPointerType()) {
7142    QualType lpointee = LHS.get()->getType()->getPointeeType();
7143
7144    // Diagnose bad cases where we step over interface counts.
7145    if (LHS.get()->getType()->isObjCObjectPointerType() &&
7146        checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
7147      return QualType();
7148
7149    // The result type of a pointer-int computation is the pointer type.
7150    if (RHS.get()->getType()->isIntegerType()) {
7151      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
7152        return QualType();
7153
7154      // Check array bounds for pointer arithemtic
7155      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
7156                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
7157
7158      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7159      return LHS.get()->getType();
7160    }
7161
7162    // Handle pointer-pointer subtractions.
7163    if (const PointerType *RHSPTy
7164          = RHS.get()->getType()->getAs<PointerType>()) {
7165      QualType rpointee = RHSPTy->getPointeeType();
7166
7167      if (getLangOpts().CPlusPlus) {
7168        // Pointee types must be the same: C++ [expr.add]
7169        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
7170          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7171        }
7172      } else {
7173        // Pointee types must be compatible C99 6.5.6p3
7174        if (!Context.typesAreCompatible(
7175                Context.getCanonicalType(lpointee).getUnqualifiedType(),
7176                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
7177          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7178          return QualType();
7179        }
7180      }
7181
7182      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
7183                                               LHS.get(), RHS.get()))
7184        return QualType();
7185
7186      // The pointee type may have zero size.  As an extension, a structure or
7187      // union may have zero size or an array may have zero length.  In this
7188      // case subtraction does not make sense.
7189      if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
7190        CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
7191        if (ElementSize.isZero()) {
7192          Diag(Loc,diag::warn_sub_ptr_zero_size_types)
7193            << rpointee.getUnqualifiedType()
7194            << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7195        }
7196      }
7197
7198      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7199      return Context.getPointerDiffType();
7200    }
7201  }
7202
7203  return InvalidOperands(Loc, LHS, RHS);
7204}
7205
7206static bool isScopedEnumerationType(QualType T) {
7207  if (const EnumType *ET = dyn_cast<EnumType>(T))
7208    return ET->getDecl()->isScoped();
7209  return false;
7210}
7211
7212static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
7213                                   SourceLocation Loc, unsigned Opc,
7214                                   QualType LHSType) {
7215  // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
7216  // so skip remaining warnings as we don't want to modify values within Sema.
7217  if (S.getLangOpts().OpenCL)
7218    return;
7219
7220  llvm::APSInt Right;
7221  // Check right/shifter operand
7222  if (RHS.get()->isValueDependent() ||
7223      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
7224    return;
7225
7226  if (Right.isNegative()) {
7227    S.DiagRuntimeBehavior(Loc, RHS.get(),
7228                          S.PDiag(diag::warn_shift_negative)
7229                            << RHS.get()->getSourceRange());
7230    return;
7231  }
7232  llvm::APInt LeftBits(Right.getBitWidth(),
7233                       S.Context.getTypeSize(LHS.get()->getType()));
7234  if (Right.uge(LeftBits)) {
7235    S.DiagRuntimeBehavior(Loc, RHS.get(),
7236                          S.PDiag(diag::warn_shift_gt_typewidth)
7237                            << RHS.get()->getSourceRange());
7238    return;
7239  }
7240  if (Opc != BO_Shl)
7241    return;
7242
7243  // When left shifting an ICE which is signed, we can check for overflow which
7244  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
7245  // integers have defined behavior modulo one more than the maximum value
7246  // representable in the result type, so never warn for those.
7247  llvm::APSInt Left;
7248  if (LHS.get()->isValueDependent() ||
7249      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
7250      LHSType->hasUnsignedIntegerRepresentation())
7251    return;
7252  llvm::APInt ResultBits =
7253      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
7254  if (LeftBits.uge(ResultBits))
7255    return;
7256  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
7257  Result = Result.shl(Right);
7258
7259  // Print the bit representation of the signed integer as an unsigned
7260  // hexadecimal number.
7261  SmallString<40> HexResult;
7262  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
7263
7264  // If we are only missing a sign bit, this is less likely to result in actual
7265  // bugs -- if the result is cast back to an unsigned type, it will have the
7266  // expected value. Thus we place this behind a different warning that can be
7267  // turned off separately if needed.
7268  if (LeftBits == ResultBits - 1) {
7269    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
7270        << HexResult.str() << LHSType
7271        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7272    return;
7273  }
7274
7275  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
7276    << HexResult.str() << Result.getMinSignedBits() << LHSType
7277    << Left.getBitWidth() << LHS.get()->getSourceRange()
7278    << RHS.get()->getSourceRange();
7279}
7280
7281// C99 6.5.7
7282QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
7283                                  SourceLocation Loc, unsigned Opc,
7284                                  bool IsCompAssign) {
7285  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7286
7287  // Vector shifts promote their scalar inputs to vector type.
7288  if (LHS.get()->getType()->isVectorType() ||
7289      RHS.get()->getType()->isVectorType())
7290    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7291
7292  // Shifts don't perform usual arithmetic conversions, they just do integer
7293  // promotions on each operand. C99 6.5.7p3
7294
7295  // For the LHS, do usual unary conversions, but then reset them away
7296  // if this is a compound assignment.
7297  ExprResult OldLHS = LHS;
7298  LHS = UsualUnaryConversions(LHS.take());
7299  if (LHS.isInvalid())
7300    return QualType();
7301  QualType LHSType = LHS.get()->getType();
7302  if (IsCompAssign) LHS = OldLHS;
7303
7304  // The RHS is simpler.
7305  RHS = UsualUnaryConversions(RHS.take());
7306  if (RHS.isInvalid())
7307    return QualType();
7308  QualType RHSType = RHS.get()->getType();
7309
7310  // C99 6.5.7p2: Each of the operands shall have integer type.
7311  if (!LHSType->hasIntegerRepresentation() ||
7312      !RHSType->hasIntegerRepresentation())
7313    return InvalidOperands(Loc, LHS, RHS);
7314
7315  // C++0x: Don't allow scoped enums. FIXME: Use something better than
7316  // hasIntegerRepresentation() above instead of this.
7317  if (isScopedEnumerationType(LHSType) ||
7318      isScopedEnumerationType(RHSType)) {
7319    return InvalidOperands(Loc, LHS, RHS);
7320  }
7321  // Sanity-check shift operands
7322  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
7323
7324  // "The type of the result is that of the promoted left operand."
7325  return LHSType;
7326}
7327
7328static bool IsWithinTemplateSpecialization(Decl *D) {
7329  if (DeclContext *DC = D->getDeclContext()) {
7330    if (isa<ClassTemplateSpecializationDecl>(DC))
7331      return true;
7332    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
7333      return FD->isFunctionTemplateSpecialization();
7334  }
7335  return false;
7336}
7337
7338/// If two different enums are compared, raise a warning.
7339static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
7340                                Expr *RHS) {
7341  QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
7342  QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
7343
7344  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
7345  if (!LHSEnumType)
7346    return;
7347  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
7348  if (!RHSEnumType)
7349    return;
7350
7351  // Ignore anonymous enums.
7352  if (!LHSEnumType->getDecl()->getIdentifier())
7353    return;
7354  if (!RHSEnumType->getDecl()->getIdentifier())
7355    return;
7356
7357  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
7358    return;
7359
7360  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
7361      << LHSStrippedType << RHSStrippedType
7362      << LHS->getSourceRange() << RHS->getSourceRange();
7363}
7364
7365/// \brief Diagnose bad pointer comparisons.
7366static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
7367                                              ExprResult &LHS, ExprResult &RHS,
7368                                              bool IsError) {
7369  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
7370                      : diag::ext_typecheck_comparison_of_distinct_pointers)
7371    << LHS.get()->getType() << RHS.get()->getType()
7372    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7373}
7374
7375/// \brief Returns false if the pointers are converted to a composite type,
7376/// true otherwise.
7377static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
7378                                           ExprResult &LHS, ExprResult &RHS) {
7379  // C++ [expr.rel]p2:
7380  //   [...] Pointer conversions (4.10) and qualification
7381  //   conversions (4.4) are performed on pointer operands (or on
7382  //   a pointer operand and a null pointer constant) to bring
7383  //   them to their composite pointer type. [...]
7384  //
7385  // C++ [expr.eq]p1 uses the same notion for (in)equality
7386  // comparisons of pointers.
7387
7388  // C++ [expr.eq]p2:
7389  //   In addition, pointers to members can be compared, or a pointer to
7390  //   member and a null pointer constant. Pointer to member conversions
7391  //   (4.11) and qualification conversions (4.4) are performed to bring
7392  //   them to a common type. If one operand is a null pointer constant,
7393  //   the common type is the type of the other operand. Otherwise, the
7394  //   common type is a pointer to member type similar (4.4) to the type
7395  //   of one of the operands, with a cv-qualification signature (4.4)
7396  //   that is the union of the cv-qualification signatures of the operand
7397  //   types.
7398
7399  QualType LHSType = LHS.get()->getType();
7400  QualType RHSType = RHS.get()->getType();
7401  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
7402         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
7403
7404  bool NonStandardCompositeType = false;
7405  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
7406  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
7407  if (T.isNull()) {
7408    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
7409    return true;
7410  }
7411
7412  if (NonStandardCompositeType)
7413    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
7414      << LHSType << RHSType << T << LHS.get()->getSourceRange()
7415      << RHS.get()->getSourceRange();
7416
7417  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
7418  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
7419  return false;
7420}
7421
7422static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
7423                                                    ExprResult &LHS,
7424                                                    ExprResult &RHS,
7425                                                    bool IsError) {
7426  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
7427                      : diag::ext_typecheck_comparison_of_fptr_to_void)
7428    << LHS.get()->getType() << RHS.get()->getType()
7429    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7430}
7431
7432static bool isObjCObjectLiteral(ExprResult &E) {
7433  switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
7434  case Stmt::ObjCArrayLiteralClass:
7435  case Stmt::ObjCDictionaryLiteralClass:
7436  case Stmt::ObjCStringLiteralClass:
7437  case Stmt::ObjCBoxedExprClass:
7438    return true;
7439  default:
7440    // Note that ObjCBoolLiteral is NOT an object literal!
7441    return false;
7442  }
7443}
7444
7445static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
7446  const ObjCObjectPointerType *Type =
7447    LHS->getType()->getAs<ObjCObjectPointerType>();
7448
7449  // If this is not actually an Objective-C object, bail out.
7450  if (!Type)
7451    return false;
7452
7453  // Get the LHS object's interface type.
7454  QualType InterfaceType = Type->getPointeeType();
7455  if (const ObjCObjectType *iQFaceTy =
7456      InterfaceType->getAsObjCQualifiedInterfaceType())
7457    InterfaceType = iQFaceTy->getBaseType();
7458
7459  // If the RHS isn't an Objective-C object, bail out.
7460  if (!RHS->getType()->isObjCObjectPointerType())
7461    return false;
7462
7463  // Try to find the -isEqual: method.
7464  Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
7465  ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
7466                                                      InterfaceType,
7467                                                      /*instance=*/true);
7468  if (!Method) {
7469    if (Type->isObjCIdType()) {
7470      // For 'id', just check the global pool.
7471      Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
7472                                                  /*receiverId=*/true,
7473                                                  /*warn=*/false);
7474    } else {
7475      // Check protocols.
7476      Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
7477                                             /*instance=*/true);
7478    }
7479  }
7480
7481  if (!Method)
7482    return false;
7483
7484  QualType T = Method->param_begin()[0]->getType();
7485  if (!T->isObjCObjectPointerType())
7486    return false;
7487
7488  QualType R = Method->getResultType();
7489  if (!R->isScalarType())
7490    return false;
7491
7492  return true;
7493}
7494
7495Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
7496  FromE = FromE->IgnoreParenImpCasts();
7497  switch (FromE->getStmtClass()) {
7498    default:
7499      break;
7500    case Stmt::ObjCStringLiteralClass:
7501      // "string literal"
7502      return LK_String;
7503    case Stmt::ObjCArrayLiteralClass:
7504      // "array literal"
7505      return LK_Array;
7506    case Stmt::ObjCDictionaryLiteralClass:
7507      // "dictionary literal"
7508      return LK_Dictionary;
7509    case Stmt::BlockExprClass:
7510      return LK_Block;
7511    case Stmt::ObjCBoxedExprClass: {
7512      Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
7513      switch (Inner->getStmtClass()) {
7514        case Stmt::IntegerLiteralClass:
7515        case Stmt::FloatingLiteralClass:
7516        case Stmt::CharacterLiteralClass:
7517        case Stmt::ObjCBoolLiteralExprClass:
7518        case Stmt::CXXBoolLiteralExprClass:
7519          // "numeric literal"
7520          return LK_Numeric;
7521        case Stmt::ImplicitCastExprClass: {
7522          CastKind CK = cast<CastExpr>(Inner)->getCastKind();
7523          // Boolean literals can be represented by implicit casts.
7524          if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
7525            return LK_Numeric;
7526          break;
7527        }
7528        default:
7529          break;
7530      }
7531      return LK_Boxed;
7532    }
7533  }
7534  return LK_None;
7535}
7536
7537static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
7538                                          ExprResult &LHS, ExprResult &RHS,
7539                                          BinaryOperator::Opcode Opc){
7540  Expr *Literal;
7541  Expr *Other;
7542  if (isObjCObjectLiteral(LHS)) {
7543    Literal = LHS.get();
7544    Other = RHS.get();
7545  } else {
7546    Literal = RHS.get();
7547    Other = LHS.get();
7548  }
7549
7550  // Don't warn on comparisons against nil.
7551  Other = Other->IgnoreParenCasts();
7552  if (Other->isNullPointerConstant(S.getASTContext(),
7553                                   Expr::NPC_ValueDependentIsNotNull))
7554    return;
7555
7556  // This should be kept in sync with warn_objc_literal_comparison.
7557  // LK_String should always be after the other literals, since it has its own
7558  // warning flag.
7559  Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
7560  assert(LiteralKind != Sema::LK_Block);
7561  if (LiteralKind == Sema::LK_None) {
7562    llvm_unreachable("Unknown Objective-C object literal kind");
7563  }
7564
7565  if (LiteralKind == Sema::LK_String)
7566    S.Diag(Loc, diag::warn_objc_string_literal_comparison)
7567      << Literal->getSourceRange();
7568  else
7569    S.Diag(Loc, diag::warn_objc_literal_comparison)
7570      << LiteralKind << Literal->getSourceRange();
7571
7572  if (BinaryOperator::isEqualityOp(Opc) &&
7573      hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7574    SourceLocation Start = LHS.get()->getLocStart();
7575    SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7576    CharSourceRange OpRange =
7577      CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7578
7579    S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7580      << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7581      << FixItHint::CreateReplacement(OpRange, " isEqual:")
7582      << FixItHint::CreateInsertion(End, "]");
7583  }
7584}
7585
7586static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
7587                                                ExprResult &RHS,
7588                                                SourceLocation Loc,
7589                                                unsigned OpaqueOpc) {
7590  // This checking requires bools.
7591  if (!S.getLangOpts().Bool) return;
7592
7593  // Check that left hand side is !something.
7594  UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
7595  if (!UO || UO->getOpcode() != UO_LNot) return;
7596
7597  // Only check if the right hand side is non-bool arithmetic type.
7598  if (RHS.get()->getType()->isBooleanType()) return;
7599
7600  // Make sure that the something in !something is not bool.
7601  Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
7602  if (SubExpr->getType()->isBooleanType()) return;
7603
7604  // Emit warning.
7605  S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
7606      << Loc;
7607
7608  // First note suggest !(x < y)
7609  SourceLocation FirstOpen = SubExpr->getLocStart();
7610  SourceLocation FirstClose = RHS.get()->getLocEnd();
7611  FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
7612  if (FirstClose.isInvalid())
7613    FirstOpen = SourceLocation();
7614  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
7615      << FixItHint::CreateInsertion(FirstOpen, "(")
7616      << FixItHint::CreateInsertion(FirstClose, ")");
7617
7618  // Second note suggests (!x) < y
7619  SourceLocation SecondOpen = LHS.get()->getLocStart();
7620  SourceLocation SecondClose = LHS.get()->getLocEnd();
7621  SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
7622  if (SecondClose.isInvalid())
7623    SecondOpen = SourceLocation();
7624  S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
7625      << FixItHint::CreateInsertion(SecondOpen, "(")
7626      << FixItHint::CreateInsertion(SecondClose, ")");
7627}
7628
7629// Get the decl for a simple expression: a reference to a variable,
7630// an implicit C++ field reference, or an implicit ObjC ivar reference.
7631static ValueDecl *getCompareDecl(Expr *E) {
7632  if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
7633    return DR->getDecl();
7634  if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
7635    if (Ivar->isFreeIvar())
7636      return Ivar->getDecl();
7637  }
7638  if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
7639    if (Mem->isImplicitAccess())
7640      return Mem->getMemberDecl();
7641  }
7642  return 0;
7643}
7644
7645// C99 6.5.8, C++ [expr.rel]
7646QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7647                                    SourceLocation Loc, unsigned OpaqueOpc,
7648                                    bool IsRelational) {
7649  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7650
7651  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7652
7653  // Handle vector comparisons separately.
7654  if (LHS.get()->getType()->isVectorType() ||
7655      RHS.get()->getType()->isVectorType())
7656    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7657
7658  QualType LHSType = LHS.get()->getType();
7659  QualType RHSType = RHS.get()->getType();
7660
7661  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
7662  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
7663
7664  checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
7665  diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
7666
7667  if (!LHSType->hasFloatingRepresentation() &&
7668      !(LHSType->isBlockPointerType() && IsRelational) &&
7669      !LHS.get()->getLocStart().isMacroID() &&
7670      !RHS.get()->getLocStart().isMacroID()) {
7671    // For non-floating point types, check for self-comparisons of the form
7672    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
7673    // often indicate logic errors in the program.
7674    //
7675    // NOTE: Don't warn about comparison expressions resulting from macro
7676    // expansion. Also don't warn about comparisons which are only self
7677    // comparisons within a template specialization. The warnings should catch
7678    // obvious cases in the definition of the template anyways. The idea is to
7679    // warn when the typed comparison operator will always evaluate to the same
7680    // result.
7681    ValueDecl *DL = getCompareDecl(LHSStripped);
7682    ValueDecl *DR = getCompareDecl(RHSStripped);
7683    if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
7684      DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7685                          << 0 // self-
7686                          << (Opc == BO_EQ
7687                              || Opc == BO_LE
7688                              || Opc == BO_GE));
7689    } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
7690               !DL->getType()->isReferenceType() &&
7691               !DR->getType()->isReferenceType()) {
7692        // what is it always going to eval to?
7693        char always_evals_to;
7694        switch(Opc) {
7695        case BO_EQ: // e.g. array1 == array2
7696          always_evals_to = 0; // false
7697          break;
7698        case BO_NE: // e.g. array1 != array2
7699          always_evals_to = 1; // true
7700          break;
7701        default:
7702          // best we can say is 'a constant'
7703          always_evals_to = 2; // e.g. array1 <= array2
7704          break;
7705        }
7706        DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
7707                            << 1 // array
7708                            << always_evals_to);
7709    }
7710
7711    if (isa<CastExpr>(LHSStripped))
7712      LHSStripped = LHSStripped->IgnoreParenCasts();
7713    if (isa<CastExpr>(RHSStripped))
7714      RHSStripped = RHSStripped->IgnoreParenCasts();
7715
7716    // Warn about comparisons against a string constant (unless the other
7717    // operand is null), the user probably wants strcmp.
7718    Expr *literalString = 0;
7719    Expr *literalStringStripped = 0;
7720    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
7721        !RHSStripped->isNullPointerConstant(Context,
7722                                            Expr::NPC_ValueDependentIsNull)) {
7723      literalString = LHS.get();
7724      literalStringStripped = LHSStripped;
7725    } else if ((isa<StringLiteral>(RHSStripped) ||
7726                isa<ObjCEncodeExpr>(RHSStripped)) &&
7727               !LHSStripped->isNullPointerConstant(Context,
7728                                            Expr::NPC_ValueDependentIsNull)) {
7729      literalString = RHS.get();
7730      literalStringStripped = RHSStripped;
7731    }
7732
7733    if (literalString) {
7734      DiagRuntimeBehavior(Loc, 0,
7735        PDiag(diag::warn_stringcompare)
7736          << isa<ObjCEncodeExpr>(literalStringStripped)
7737          << literalString->getSourceRange());
7738    }
7739  }
7740
7741  // C99 6.5.8p3 / C99 6.5.9p4
7742  UsualArithmeticConversions(LHS, RHS);
7743  if (LHS.isInvalid() || RHS.isInvalid())
7744    return QualType();
7745
7746  LHSType = LHS.get()->getType();
7747  RHSType = RHS.get()->getType();
7748
7749  // The result of comparisons is 'bool' in C++, 'int' in C.
7750  QualType ResultTy = Context.getLogicalOperationType();
7751
7752  if (IsRelational) {
7753    if (LHSType->isRealType() && RHSType->isRealType())
7754      return ResultTy;
7755  } else {
7756    // Check for comparisons of floating point operands using != and ==.
7757    if (LHSType->hasFloatingRepresentation())
7758      CheckFloatComparison(Loc, LHS.get(), RHS.get());
7759
7760    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
7761      return ResultTy;
7762  }
7763
7764  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
7765                                              Expr::NPC_ValueDependentIsNull);
7766  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
7767                                              Expr::NPC_ValueDependentIsNull);
7768
7769  // All of the following pointer-related warnings are GCC extensions, except
7770  // when handling null pointer constants.
7771  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
7772    QualType LCanPointeeTy =
7773      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7774    QualType RCanPointeeTy =
7775      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
7776
7777    if (getLangOpts().CPlusPlus) {
7778      if (LCanPointeeTy == RCanPointeeTy)
7779        return ResultTy;
7780      if (!IsRelational &&
7781          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7782        // Valid unless comparison between non-null pointer and function pointer
7783        // This is a gcc extension compatibility comparison.
7784        // In a SFINAE context, we treat this as a hard error to maintain
7785        // conformance with the C++ standard.
7786        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7787            && !LHSIsNull && !RHSIsNull) {
7788          diagnoseFunctionPointerToVoidComparison(
7789              *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
7790
7791          if (isSFINAEContext())
7792            return QualType();
7793
7794          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7795          return ResultTy;
7796        }
7797      }
7798
7799      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7800        return QualType();
7801      else
7802        return ResultTy;
7803    }
7804    // C99 6.5.9p2 and C99 6.5.8p2
7805    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
7806                                   RCanPointeeTy.getUnqualifiedType())) {
7807      // Valid unless a relational comparison of function pointers
7808      if (IsRelational && LCanPointeeTy->isFunctionType()) {
7809        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
7810          << LHSType << RHSType << LHS.get()->getSourceRange()
7811          << RHS.get()->getSourceRange();
7812      }
7813    } else if (!IsRelational &&
7814               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
7815      // Valid unless comparison between non-null pointer and function pointer
7816      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
7817          && !LHSIsNull && !RHSIsNull)
7818        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
7819                                                /*isError*/false);
7820    } else {
7821      // Invalid
7822      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
7823    }
7824    if (LCanPointeeTy != RCanPointeeTy) {
7825      if (LHSIsNull && !RHSIsNull)
7826        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7827      else
7828        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7829    }
7830    return ResultTy;
7831  }
7832
7833  if (getLangOpts().CPlusPlus) {
7834    // Comparison of nullptr_t with itself.
7835    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
7836      return ResultTy;
7837
7838    // Comparison of pointers with null pointer constants and equality
7839    // comparisons of member pointers to null pointer constants.
7840    if (RHSIsNull &&
7841        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
7842         (!IsRelational &&
7843          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
7844      RHS = ImpCastExprToType(RHS.take(), LHSType,
7845                        LHSType->isMemberPointerType()
7846                          ? CK_NullToMemberPointer
7847                          : CK_NullToPointer);
7848      return ResultTy;
7849    }
7850    if (LHSIsNull &&
7851        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
7852         (!IsRelational &&
7853          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
7854      LHS = ImpCastExprToType(LHS.take(), RHSType,
7855                        RHSType->isMemberPointerType()
7856                          ? CK_NullToMemberPointer
7857                          : CK_NullToPointer);
7858      return ResultTy;
7859    }
7860
7861    // Comparison of member pointers.
7862    if (!IsRelational &&
7863        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
7864      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
7865        return QualType();
7866      else
7867        return ResultTy;
7868    }
7869
7870    // Handle scoped enumeration types specifically, since they don't promote
7871    // to integers.
7872    if (LHS.get()->getType()->isEnumeralType() &&
7873        Context.hasSameUnqualifiedType(LHS.get()->getType(),
7874                                       RHS.get()->getType()))
7875      return ResultTy;
7876  }
7877
7878  // Handle block pointer types.
7879  if (!IsRelational && LHSType->isBlockPointerType() &&
7880      RHSType->isBlockPointerType()) {
7881    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
7882    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
7883
7884    if (!LHSIsNull && !RHSIsNull &&
7885        !Context.typesAreCompatible(lpointee, rpointee)) {
7886      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7887        << LHSType << RHSType << LHS.get()->getSourceRange()
7888        << RHS.get()->getSourceRange();
7889    }
7890    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7891    return ResultTy;
7892  }
7893
7894  // Allow block pointers to be compared with null pointer constants.
7895  if (!IsRelational
7896      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
7897          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
7898    if (!LHSIsNull && !RHSIsNull) {
7899      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
7900             ->getPointeeType()->isVoidType())
7901            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
7902                ->getPointeeType()->isVoidType())))
7903        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
7904          << LHSType << RHSType << LHS.get()->getSourceRange()
7905          << RHS.get()->getSourceRange();
7906    }
7907    if (LHSIsNull && !RHSIsNull)
7908      LHS = ImpCastExprToType(LHS.take(), RHSType,
7909                              RHSType->isPointerType() ? CK_BitCast
7910                                : CK_AnyPointerToBlockPointerCast);
7911    else
7912      RHS = ImpCastExprToType(RHS.take(), LHSType,
7913                              LHSType->isPointerType() ? CK_BitCast
7914                                : CK_AnyPointerToBlockPointerCast);
7915    return ResultTy;
7916  }
7917
7918  if (LHSType->isObjCObjectPointerType() ||
7919      RHSType->isObjCObjectPointerType()) {
7920    const PointerType *LPT = LHSType->getAs<PointerType>();
7921    const PointerType *RPT = RHSType->getAs<PointerType>();
7922    if (LPT || RPT) {
7923      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
7924      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
7925
7926      if (!LPtrToVoid && !RPtrToVoid &&
7927          !Context.typesAreCompatible(LHSType, RHSType)) {
7928        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7929                                          /*isError*/false);
7930      }
7931      if (LHSIsNull && !RHSIsNull) {
7932        Expr *E = LHS.take();
7933        if (getLangOpts().ObjCAutoRefCount)
7934          CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
7935        LHS = ImpCastExprToType(E, RHSType,
7936                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7937      }
7938      else {
7939        Expr *E = RHS.take();
7940        if (getLangOpts().ObjCAutoRefCount)
7941          CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion);
7942        RHS = ImpCastExprToType(E, LHSType,
7943                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
7944      }
7945      return ResultTy;
7946    }
7947    if (LHSType->isObjCObjectPointerType() &&
7948        RHSType->isObjCObjectPointerType()) {
7949      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
7950        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
7951                                          /*isError*/false);
7952      if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
7953        diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
7954
7955      if (LHSIsNull && !RHSIsNull)
7956        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
7957      else
7958        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
7959      return ResultTy;
7960    }
7961  }
7962  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
7963      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
7964    unsigned DiagID = 0;
7965    bool isError = false;
7966    if (LangOpts.DebuggerSupport) {
7967      // Under a debugger, allow the comparison of pointers to integers,
7968      // since users tend to want to compare addresses.
7969    } else if ((LHSIsNull && LHSType->isIntegerType()) ||
7970        (RHSIsNull && RHSType->isIntegerType())) {
7971      if (IsRelational && !getLangOpts().CPlusPlus)
7972        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
7973    } else if (IsRelational && !getLangOpts().CPlusPlus)
7974      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
7975    else if (getLangOpts().CPlusPlus) {
7976      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
7977      isError = true;
7978    } else
7979      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
7980
7981    if (DiagID) {
7982      Diag(Loc, DiagID)
7983        << LHSType << RHSType << LHS.get()->getSourceRange()
7984        << RHS.get()->getSourceRange();
7985      if (isError)
7986        return QualType();
7987    }
7988
7989    if (LHSType->isIntegerType())
7990      LHS = ImpCastExprToType(LHS.take(), RHSType,
7991                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7992    else
7993      RHS = ImpCastExprToType(RHS.take(), LHSType,
7994                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
7995    return ResultTy;
7996  }
7997
7998  // Handle block pointers.
7999  if (!IsRelational && RHSIsNull
8000      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
8001    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
8002    return ResultTy;
8003  }
8004  if (!IsRelational && LHSIsNull
8005      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
8006    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
8007    return ResultTy;
8008  }
8009
8010  return InvalidOperands(Loc, LHS, RHS);
8011}
8012
8013
8014// Return a signed type that is of identical size and number of elements.
8015// For floating point vectors, return an integer type of identical size
8016// and number of elements.
8017QualType Sema::GetSignedVectorType(QualType V) {
8018  const VectorType *VTy = V->getAs<VectorType>();
8019  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
8020  if (TypeSize == Context.getTypeSize(Context.CharTy))
8021    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
8022  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
8023    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
8024  else if (TypeSize == Context.getTypeSize(Context.IntTy))
8025    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
8026  else if (TypeSize == Context.getTypeSize(Context.LongTy))
8027    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
8028  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
8029         "Unhandled vector element size in vector compare");
8030  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
8031}
8032
8033/// CheckVectorCompareOperands - vector comparisons are a clang extension that
8034/// operates on extended vector types.  Instead of producing an IntTy result,
8035/// like a scalar comparison, a vector comparison produces a vector of integer
8036/// types.
8037QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
8038                                          SourceLocation Loc,
8039                                          bool IsRelational) {
8040  // Check to make sure we're operating on vectors of the same type and width,
8041  // Allowing one side to be a scalar of element type.
8042  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
8043  if (vType.isNull())
8044    return vType;
8045
8046  QualType LHSType = LHS.get()->getType();
8047
8048  // If AltiVec, the comparison results in a numeric type, i.e.
8049  // bool for C++, int for C
8050  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
8051    return Context.getLogicalOperationType();
8052
8053  // For non-floating point types, check for self-comparisons of the form
8054  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
8055  // often indicate logic errors in the program.
8056  if (!LHSType->hasFloatingRepresentation()) {
8057    if (DeclRefExpr* DRL
8058          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
8059      if (DeclRefExpr* DRR
8060            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
8061        if (DRL->getDecl() == DRR->getDecl())
8062          DiagRuntimeBehavior(Loc, 0,
8063                              PDiag(diag::warn_comparison_always)
8064                                << 0 // self-
8065                                << 2 // "a constant"
8066                              );
8067  }
8068
8069  // Check for comparisons of floating point operands using != and ==.
8070  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
8071    assert (RHS.get()->getType()->hasFloatingRepresentation());
8072    CheckFloatComparison(Loc, LHS.get(), RHS.get());
8073  }
8074
8075  // Return a signed type for the vector.
8076  return GetSignedVectorType(LHSType);
8077}
8078
8079QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
8080                                          SourceLocation Loc) {
8081  // Ensure that either both operands are of the same vector type, or
8082  // one operand is of a vector type and the other is of its element type.
8083  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
8084  if (vType.isNull())
8085    return InvalidOperands(Loc, LHS, RHS);
8086  if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
8087      vType->hasFloatingRepresentation())
8088    return InvalidOperands(Loc, LHS, RHS);
8089
8090  return GetSignedVectorType(LHS.get()->getType());
8091}
8092
8093inline QualType Sema::CheckBitwiseOperands(
8094  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
8095  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8096
8097  if (LHS.get()->getType()->isVectorType() ||
8098      RHS.get()->getType()->isVectorType()) {
8099    if (LHS.get()->getType()->hasIntegerRepresentation() &&
8100        RHS.get()->getType()->hasIntegerRepresentation())
8101      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
8102
8103    return InvalidOperands(Loc, LHS, RHS);
8104  }
8105
8106  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
8107  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
8108                                                 IsCompAssign);
8109  if (LHSResult.isInvalid() || RHSResult.isInvalid())
8110    return QualType();
8111  LHS = LHSResult.take();
8112  RHS = RHSResult.take();
8113
8114  if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
8115    return compType;
8116  return InvalidOperands(Loc, LHS, RHS);
8117}
8118
8119inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
8120  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
8121
8122  // Check vector operands differently.
8123  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
8124    return CheckVectorLogicalOperands(LHS, RHS, Loc);
8125
8126  // Diagnose cases where the user write a logical and/or but probably meant a
8127  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
8128  // is a constant.
8129  if (LHS.get()->getType()->isIntegerType() &&
8130      !LHS.get()->getType()->isBooleanType() &&
8131      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
8132      // Don't warn in macros or template instantiations.
8133      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
8134    // If the RHS can be constant folded, and if it constant folds to something
8135    // that isn't 0 or 1 (which indicate a potential logical operation that
8136    // happened to fold to true/false) then warn.
8137    // Parens on the RHS are ignored.
8138    llvm::APSInt Result;
8139    if (RHS.get()->EvaluateAsInt(Result, Context))
8140      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
8141          (Result != 0 && Result != 1)) {
8142        Diag(Loc, diag::warn_logical_instead_of_bitwise)
8143          << RHS.get()->getSourceRange()
8144          << (Opc == BO_LAnd ? "&&" : "||");
8145        // Suggest replacing the logical operator with the bitwise version
8146        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
8147            << (Opc == BO_LAnd ? "&" : "|")
8148            << FixItHint::CreateReplacement(SourceRange(
8149                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
8150                                                getLangOpts())),
8151                                            Opc == BO_LAnd ? "&" : "|");
8152        if (Opc == BO_LAnd)
8153          // Suggest replacing "Foo() && kNonZero" with "Foo()"
8154          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
8155              << FixItHint::CreateRemoval(
8156                  SourceRange(
8157                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
8158                                                 0, getSourceManager(),
8159                                                 getLangOpts()),
8160                      RHS.get()->getLocEnd()));
8161      }
8162  }
8163
8164  if (!Context.getLangOpts().CPlusPlus) {
8165    // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
8166    // not operate on the built-in scalar and vector float types.
8167    if (Context.getLangOpts().OpenCL &&
8168        Context.getLangOpts().OpenCLVersion < 120) {
8169      if (LHS.get()->getType()->isFloatingType() ||
8170          RHS.get()->getType()->isFloatingType())
8171        return InvalidOperands(Loc, LHS, RHS);
8172    }
8173
8174    LHS = UsualUnaryConversions(LHS.take());
8175    if (LHS.isInvalid())
8176      return QualType();
8177
8178    RHS = UsualUnaryConversions(RHS.take());
8179    if (RHS.isInvalid())
8180      return QualType();
8181
8182    if (!LHS.get()->getType()->isScalarType() ||
8183        !RHS.get()->getType()->isScalarType())
8184      return InvalidOperands(Loc, LHS, RHS);
8185
8186    return Context.IntTy;
8187  }
8188
8189  // The following is safe because we only use this method for
8190  // non-overloadable operands.
8191
8192  // C++ [expr.log.and]p1
8193  // C++ [expr.log.or]p1
8194  // The operands are both contextually converted to type bool.
8195  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
8196  if (LHSRes.isInvalid())
8197    return InvalidOperands(Loc, LHS, RHS);
8198  LHS = LHSRes;
8199
8200  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
8201  if (RHSRes.isInvalid())
8202    return InvalidOperands(Loc, LHS, RHS);
8203  RHS = RHSRes;
8204
8205  // C++ [expr.log.and]p2
8206  // C++ [expr.log.or]p2
8207  // The result is a bool.
8208  return Context.BoolTy;
8209}
8210
8211static bool IsReadonlyMessage(Expr *E, Sema &S) {
8212  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
8213  if (!ME) return false;
8214  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
8215  ObjCMessageExpr *Base =
8216    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
8217  if (!Base) return false;
8218  return Base->getMethodDecl() != 0;
8219}
8220
8221/// Is the given expression (which must be 'const') a reference to a
8222/// variable which was originally non-const, but which has become
8223/// 'const' due to being captured within a block?
8224enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
8225static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
8226  assert(E->isLValue() && E->getType().isConstQualified());
8227  E = E->IgnoreParens();
8228
8229  // Must be a reference to a declaration from an enclosing scope.
8230  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
8231  if (!DRE) return NCCK_None;
8232  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
8233
8234  // The declaration must be a variable which is not declared 'const'.
8235  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
8236  if (!var) return NCCK_None;
8237  if (var->getType().isConstQualified()) return NCCK_None;
8238  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
8239
8240  // Decide whether the first capture was for a block or a lambda.
8241  DeclContext *DC = S.CurContext, *Prev = 0;
8242  while (DC != var->getDeclContext()) {
8243    Prev = DC;
8244    DC = DC->getParent();
8245  }
8246  // Unless we have an init-capture, we've gone one step too far.
8247  if (!var->isInitCapture())
8248    DC = Prev;
8249  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
8250}
8251
8252/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
8253/// emit an error and return true.  If so, return false.
8254static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
8255  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
8256  SourceLocation OrigLoc = Loc;
8257  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
8258                                                              &Loc);
8259  if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
8260    IsLV = Expr::MLV_InvalidMessageExpression;
8261  if (IsLV == Expr::MLV_Valid)
8262    return false;
8263
8264  unsigned Diag = 0;
8265  bool NeedType = false;
8266  switch (IsLV) { // C99 6.5.16p2
8267  case Expr::MLV_ConstQualified:
8268    Diag = diag::err_typecheck_assign_const;
8269
8270    // Use a specialized diagnostic when we're assigning to an object
8271    // from an enclosing function or block.
8272    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
8273      if (NCCK == NCCK_Block)
8274        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
8275      else
8276        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
8277      break;
8278    }
8279
8280    // In ARC, use some specialized diagnostics for occasions where we
8281    // infer 'const'.  These are always pseudo-strong variables.
8282    if (S.getLangOpts().ObjCAutoRefCount) {
8283      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
8284      if (declRef && isa<VarDecl>(declRef->getDecl())) {
8285        VarDecl *var = cast<VarDecl>(declRef->getDecl());
8286
8287        // Use the normal diagnostic if it's pseudo-__strong but the
8288        // user actually wrote 'const'.
8289        if (var->isARCPseudoStrong() &&
8290            (!var->getTypeSourceInfo() ||
8291             !var->getTypeSourceInfo()->getType().isConstQualified())) {
8292          // There are two pseudo-strong cases:
8293          //  - self
8294          ObjCMethodDecl *method = S.getCurMethodDecl();
8295          if (method && var == method->getSelfDecl())
8296            Diag = method->isClassMethod()
8297              ? diag::err_typecheck_arc_assign_self_class_method
8298              : diag::err_typecheck_arc_assign_self;
8299
8300          //  - fast enumeration variables
8301          else
8302            Diag = diag::err_typecheck_arr_assign_enumeration;
8303
8304          SourceRange Assign;
8305          if (Loc != OrigLoc)
8306            Assign = SourceRange(OrigLoc, OrigLoc);
8307          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
8308          // We need to preserve the AST regardless, so migration tool
8309          // can do its job.
8310          return false;
8311        }
8312      }
8313    }
8314
8315    break;
8316  case Expr::MLV_ArrayType:
8317  case Expr::MLV_ArrayTemporary:
8318    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
8319    NeedType = true;
8320    break;
8321  case Expr::MLV_NotObjectType:
8322    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
8323    NeedType = true;
8324    break;
8325  case Expr::MLV_LValueCast:
8326    Diag = diag::err_typecheck_lvalue_casts_not_supported;
8327    break;
8328  case Expr::MLV_Valid:
8329    llvm_unreachable("did not take early return for MLV_Valid");
8330  case Expr::MLV_InvalidExpression:
8331  case Expr::MLV_MemberFunction:
8332  case Expr::MLV_ClassTemporary:
8333    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
8334    break;
8335  case Expr::MLV_IncompleteType:
8336  case Expr::MLV_IncompleteVoidType:
8337    return S.RequireCompleteType(Loc, E->getType(),
8338             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
8339  case Expr::MLV_DuplicateVectorComponents:
8340    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
8341    break;
8342  case Expr::MLV_NoSetterProperty:
8343    llvm_unreachable("readonly properties should be processed differently");
8344  case Expr::MLV_InvalidMessageExpression:
8345    Diag = diag::error_readonly_message_assignment;
8346    break;
8347  case Expr::MLV_SubObjCPropertySetting:
8348    Diag = diag::error_no_subobject_property_setting;
8349    break;
8350  }
8351
8352  SourceRange Assign;
8353  if (Loc != OrigLoc)
8354    Assign = SourceRange(OrigLoc, OrigLoc);
8355  if (NeedType)
8356    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
8357  else
8358    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
8359  return true;
8360}
8361
8362static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
8363                                         SourceLocation Loc,
8364                                         Sema &Sema) {
8365  // C / C++ fields
8366  MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
8367  MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
8368  if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
8369    if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
8370      Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
8371  }
8372
8373  // Objective-C instance variables
8374  ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
8375  ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
8376  if (OL && OR && OL->getDecl() == OR->getDecl()) {
8377    DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
8378    DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
8379    if (RL && RR && RL->getDecl() == RR->getDecl())
8380      Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
8381  }
8382}
8383
8384// C99 6.5.16.1
8385QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
8386                                       SourceLocation Loc,
8387                                       QualType CompoundType) {
8388  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
8389
8390  // Verify that LHS is a modifiable lvalue, and emit error if not.
8391  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
8392    return QualType();
8393
8394  QualType LHSType = LHSExpr->getType();
8395  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
8396                                             CompoundType;
8397  AssignConvertType ConvTy;
8398  if (CompoundType.isNull()) {
8399    Expr *RHSCheck = RHS.get();
8400
8401    CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
8402
8403    QualType LHSTy(LHSType);
8404    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
8405    if (RHS.isInvalid())
8406      return QualType();
8407    // Special case of NSObject attributes on c-style pointer types.
8408    if (ConvTy == IncompatiblePointer &&
8409        ((Context.isObjCNSObjectType(LHSType) &&
8410          RHSType->isObjCObjectPointerType()) ||
8411         (Context.isObjCNSObjectType(RHSType) &&
8412          LHSType->isObjCObjectPointerType())))
8413      ConvTy = Compatible;
8414
8415    if (ConvTy == Compatible &&
8416        LHSType->isObjCObjectType())
8417        Diag(Loc, diag::err_objc_object_assignment)
8418          << LHSType;
8419
8420    // If the RHS is a unary plus or minus, check to see if they = and + are
8421    // right next to each other.  If so, the user may have typo'd "x =+ 4"
8422    // instead of "x += 4".
8423    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
8424      RHSCheck = ICE->getSubExpr();
8425    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
8426      if ((UO->getOpcode() == UO_Plus ||
8427           UO->getOpcode() == UO_Minus) &&
8428          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
8429          // Only if the two operators are exactly adjacent.
8430          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
8431          // And there is a space or other character before the subexpr of the
8432          // unary +/-.  We don't want to warn on "x=-1".
8433          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
8434          UO->getSubExpr()->getLocStart().isFileID()) {
8435        Diag(Loc, diag::warn_not_compound_assign)
8436          << (UO->getOpcode() == UO_Plus ? "+" : "-")
8437          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
8438      }
8439    }
8440
8441    if (ConvTy == Compatible) {
8442      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
8443        // Warn about retain cycles where a block captures the LHS, but
8444        // not if the LHS is a simple variable into which the block is
8445        // being stored...unless that variable can be captured by reference!
8446        const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
8447        const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
8448        if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
8449          checkRetainCycles(LHSExpr, RHS.get());
8450
8451        // It is safe to assign a weak reference into a strong variable.
8452        // Although this code can still have problems:
8453        //   id x = self.weakProp;
8454        //   id y = self.weakProp;
8455        // we do not warn to warn spuriously when 'x' and 'y' are on separate
8456        // paths through the function. This should be revisited if
8457        // -Wrepeated-use-of-weak is made flow-sensitive.
8458        DiagnosticsEngine::Level Level =
8459          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8460                                   RHS.get()->getLocStart());
8461        if (Level != DiagnosticsEngine::Ignored)
8462          getCurFunction()->markSafeWeakUse(RHS.get());
8463
8464      } else if (getLangOpts().ObjCAutoRefCount) {
8465        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
8466      }
8467    }
8468  } else {
8469    // Compound assignment "x += y"
8470    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
8471  }
8472
8473  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
8474                               RHS.get(), AA_Assigning))
8475    return QualType();
8476
8477  CheckForNullPointerDereference(*this, LHSExpr);
8478
8479  // C99 6.5.16p3: The type of an assignment expression is the type of the
8480  // left operand unless the left operand has qualified type, in which case
8481  // it is the unqualified version of the type of the left operand.
8482  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
8483  // is converted to the type of the assignment expression (above).
8484  // C++ 5.17p1: the type of the assignment expression is that of its left
8485  // operand.
8486  return (getLangOpts().CPlusPlus
8487          ? LHSType : LHSType.getUnqualifiedType());
8488}
8489
8490// C99 6.5.17
8491static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
8492                                   SourceLocation Loc) {
8493  LHS = S.CheckPlaceholderExpr(LHS.take());
8494  RHS = S.CheckPlaceholderExpr(RHS.take());
8495  if (LHS.isInvalid() || RHS.isInvalid())
8496    return QualType();
8497
8498  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
8499  // operands, but not unary promotions.
8500  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
8501
8502  // So we treat the LHS as a ignored value, and in C++ we allow the
8503  // containing site to determine what should be done with the RHS.
8504  LHS = S.IgnoredValueConversions(LHS.take());
8505  if (LHS.isInvalid())
8506    return QualType();
8507
8508  S.DiagnoseUnusedExprResult(LHS.get());
8509
8510  if (!S.getLangOpts().CPlusPlus) {
8511    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
8512    if (RHS.isInvalid())
8513      return QualType();
8514    if (!RHS.get()->getType()->isVoidType())
8515      S.RequireCompleteType(Loc, RHS.get()->getType(),
8516                            diag::err_incomplete_type);
8517  }
8518
8519  return RHS.get()->getType();
8520}
8521
8522/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
8523/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
8524static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
8525                                               ExprValueKind &VK,
8526                                               SourceLocation OpLoc,
8527                                               bool IsInc, bool IsPrefix) {
8528  if (Op->isTypeDependent())
8529    return S.Context.DependentTy;
8530
8531  QualType ResType = Op->getType();
8532  // Atomic types can be used for increment / decrement where the non-atomic
8533  // versions can, so ignore the _Atomic() specifier for the purpose of
8534  // checking.
8535  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8536    ResType = ResAtomicType->getValueType();
8537
8538  assert(!ResType.isNull() && "no type for increment/decrement expression");
8539
8540  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
8541    // Decrement of bool is not allowed.
8542    if (!IsInc) {
8543      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
8544      return QualType();
8545    }
8546    // Increment of bool sets it to true, but is deprecated.
8547    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
8548  } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
8549    // Error on enum increments and decrements in C++ mode
8550    S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
8551    return QualType();
8552  } else if (ResType->isRealType()) {
8553    // OK!
8554  } else if (ResType->isPointerType()) {
8555    // C99 6.5.2.4p2, 6.5.6p2
8556    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
8557      return QualType();
8558  } else if (ResType->isObjCObjectPointerType()) {
8559    // On modern runtimes, ObjC pointer arithmetic is forbidden.
8560    // Otherwise, we just need a complete type.
8561    if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
8562        checkArithmeticOnObjCPointer(S, OpLoc, Op))
8563      return QualType();
8564  } else if (ResType->isAnyComplexType()) {
8565    // C99 does not support ++/-- on complex types, we allow as an extension.
8566    S.Diag(OpLoc, diag::ext_integer_increment_complex)
8567      << ResType << Op->getSourceRange();
8568  } else if (ResType->isPlaceholderType()) {
8569    ExprResult PR = S.CheckPlaceholderExpr(Op);
8570    if (PR.isInvalid()) return QualType();
8571    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
8572                                          IsInc, IsPrefix);
8573  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
8574    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
8575  } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
8576            ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
8577    // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
8578  } else {
8579    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
8580      << ResType << int(IsInc) << Op->getSourceRange();
8581    return QualType();
8582  }
8583  // At this point, we know we have a real, complex or pointer type.
8584  // Now make sure the operand is a modifiable lvalue.
8585  if (CheckForModifiableLvalue(Op, OpLoc, S))
8586    return QualType();
8587  // In C++, a prefix increment is the same type as the operand. Otherwise
8588  // (in C or with postfix), the increment is the unqualified type of the
8589  // operand.
8590  if (IsPrefix && S.getLangOpts().CPlusPlus) {
8591    VK = VK_LValue;
8592    return ResType;
8593  } else {
8594    VK = VK_RValue;
8595    return ResType.getUnqualifiedType();
8596  }
8597}
8598
8599
8600/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8601/// This routine allows us to typecheck complex/recursive expressions
8602/// where the declaration is needed for type checking. We only need to
8603/// handle cases when the expression references a function designator
8604/// or is an lvalue. Here are some examples:
8605///  - &(x) => x
8606///  - &*****f => f for f a function designator.
8607///  - &s.xx => s
8608///  - &s.zz[1].yy -> s, if zz is an array
8609///  - *(x + 1) -> x, if x is an array
8610///  - &"123"[2] -> 0
8611///  - & __real__ x -> x
8612static ValueDecl *getPrimaryDecl(Expr *E) {
8613  switch (E->getStmtClass()) {
8614  case Stmt::DeclRefExprClass:
8615    return cast<DeclRefExpr>(E)->getDecl();
8616  case Stmt::MemberExprClass:
8617    // If this is an arrow operator, the address is an offset from
8618    // the base's value, so the object the base refers to is
8619    // irrelevant.
8620    if (cast<MemberExpr>(E)->isArrow())
8621      return 0;
8622    // Otherwise, the expression refers to a part of the base
8623    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8624  case Stmt::ArraySubscriptExprClass: {
8625    // FIXME: This code shouldn't be necessary!  We should catch the implicit
8626    // promotion of register arrays earlier.
8627    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8628    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8629      if (ICE->getSubExpr()->getType()->isArrayType())
8630        return getPrimaryDecl(ICE->getSubExpr());
8631    }
8632    return 0;
8633  }
8634  case Stmt::UnaryOperatorClass: {
8635    UnaryOperator *UO = cast<UnaryOperator>(E);
8636
8637    switch(UO->getOpcode()) {
8638    case UO_Real:
8639    case UO_Imag:
8640    case UO_Extension:
8641      return getPrimaryDecl(UO->getSubExpr());
8642    default:
8643      return 0;
8644    }
8645  }
8646  case Stmt::ParenExprClass:
8647    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
8648  case Stmt::ImplicitCastExprClass:
8649    // If the result of an implicit cast is an l-value, we care about
8650    // the sub-expression; otherwise, the result here doesn't matter.
8651    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
8652  default:
8653    return 0;
8654  }
8655}
8656
8657namespace {
8658  enum {
8659    AO_Bit_Field = 0,
8660    AO_Vector_Element = 1,
8661    AO_Property_Expansion = 2,
8662    AO_Register_Variable = 3,
8663    AO_No_Error = 4
8664  };
8665}
8666/// \brief Diagnose invalid operand for address of operations.
8667///
8668/// \param Type The type of operand which cannot have its address taken.
8669static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
8670                                         Expr *E, unsigned Type) {
8671  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
8672}
8673
8674/// CheckAddressOfOperand - The operand of & must be either a function
8675/// designator or an lvalue designating an object. If it is an lvalue, the
8676/// object cannot be declared with storage class register or be a bit field.
8677/// Note: The usual conversions are *not* applied to the operand of the &
8678/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
8679/// In C++, the operand might be an overloaded function name, in which case
8680/// we allow the '&' but retain the overloaded-function type.
8681QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
8682  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
8683    if (PTy->getKind() == BuiltinType::Overload) {
8684      Expr *E = OrigOp.get()->IgnoreParens();
8685      if (!isa<OverloadExpr>(E)) {
8686        assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
8687        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
8688          << OrigOp.get()->getSourceRange();
8689        return QualType();
8690      }
8691
8692      OverloadExpr *Ovl = cast<OverloadExpr>(E);
8693      if (isa<UnresolvedMemberExpr>(Ovl))
8694        if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
8695          Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8696            << OrigOp.get()->getSourceRange();
8697          return QualType();
8698        }
8699
8700      return Context.OverloadTy;
8701    }
8702
8703    if (PTy->getKind() == BuiltinType::UnknownAny)
8704      return Context.UnknownAnyTy;
8705
8706    if (PTy->getKind() == BuiltinType::BoundMember) {
8707      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8708        << OrigOp.get()->getSourceRange();
8709      return QualType();
8710    }
8711
8712    OrigOp = CheckPlaceholderExpr(OrigOp.take());
8713    if (OrigOp.isInvalid()) return QualType();
8714  }
8715
8716  if (OrigOp.get()->isTypeDependent())
8717    return Context.DependentTy;
8718
8719  assert(!OrigOp.get()->getType()->isPlaceholderType());
8720
8721  // Make sure to ignore parentheses in subsequent checks
8722  Expr *op = OrigOp.get()->IgnoreParens();
8723
8724  if (getLangOpts().C99) {
8725    // Implement C99-only parts of addressof rules.
8726    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
8727      if (uOp->getOpcode() == UO_Deref)
8728        // Per C99 6.5.3.2, the address of a deref always returns a valid result
8729        // (assuming the deref expression is valid).
8730        return uOp->getSubExpr()->getType();
8731    }
8732    // Technically, there should be a check for array subscript
8733    // expressions here, but the result of one is always an lvalue anyway.
8734  }
8735  ValueDecl *dcl = getPrimaryDecl(op);
8736  Expr::LValueClassification lval = op->ClassifyLValue(Context);
8737  unsigned AddressOfError = AO_No_Error;
8738
8739  if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
8740    bool sfinae = (bool)isSFINAEContext();
8741    Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
8742                                  : diag::ext_typecheck_addrof_temporary)
8743      << op->getType() << op->getSourceRange();
8744    if (sfinae)
8745      return QualType();
8746    // Materialize the temporary as an lvalue so that we can take its address.
8747    OrigOp = op = new (Context)
8748        MaterializeTemporaryExpr(op->getType(), OrigOp.take(), true, 0);
8749  } else if (isa<ObjCSelectorExpr>(op)) {
8750    return Context.getPointerType(op->getType());
8751  } else if (lval == Expr::LV_MemberFunction) {
8752    // If it's an instance method, make a member pointer.
8753    // The expression must have exactly the form &A::foo.
8754
8755    // If the underlying expression isn't a decl ref, give up.
8756    if (!isa<DeclRefExpr>(op)) {
8757      Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
8758        << OrigOp.get()->getSourceRange();
8759      return QualType();
8760    }
8761    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
8762    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
8763
8764    // The id-expression was parenthesized.
8765    if (OrigOp.get() != DRE) {
8766      Diag(OpLoc, diag::err_parens_pointer_member_function)
8767        << OrigOp.get()->getSourceRange();
8768
8769    // The method was named without a qualifier.
8770    } else if (!DRE->getQualifier()) {
8771      if (MD->getParent()->getName().empty())
8772        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8773          << op->getSourceRange();
8774      else {
8775        SmallString<32> Str;
8776        StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
8777        Diag(OpLoc, diag::err_unqualified_pointer_member_function)
8778          << op->getSourceRange()
8779          << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
8780      }
8781    }
8782
8783    // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
8784    if (isa<CXXDestructorDecl>(MD))
8785      Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
8786
8787    return Context.getMemberPointerType(op->getType(),
8788              Context.getTypeDeclType(MD->getParent()).getTypePtr());
8789  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
8790    // C99 6.5.3.2p1
8791    // The operand must be either an l-value or a function designator
8792    if (!op->getType()->isFunctionType()) {
8793      // Use a special diagnostic for loads from property references.
8794      if (isa<PseudoObjectExpr>(op)) {
8795        AddressOfError = AO_Property_Expansion;
8796      } else {
8797        Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
8798          << op->getType() << op->getSourceRange();
8799        return QualType();
8800      }
8801    }
8802  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
8803    // The operand cannot be a bit-field
8804    AddressOfError = AO_Bit_Field;
8805  } else if (op->getObjectKind() == OK_VectorComponent) {
8806    // The operand cannot be an element of a vector
8807    AddressOfError = AO_Vector_Element;
8808  } else if (dcl) { // C99 6.5.3.2p1
8809    // We have an lvalue with a decl. Make sure the decl is not declared
8810    // with the register storage-class specifier.
8811    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
8812      // in C++ it is not error to take address of a register
8813      // variable (c++03 7.1.1P3)
8814      if (vd->getStorageClass() == SC_Register &&
8815          !getLangOpts().CPlusPlus) {
8816        AddressOfError = AO_Register_Variable;
8817      }
8818    } else if (isa<FunctionTemplateDecl>(dcl)) {
8819      return Context.OverloadTy;
8820    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
8821      // Okay: we can take the address of a field.
8822      // Could be a pointer to member, though, if there is an explicit
8823      // scope qualifier for the class.
8824      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
8825        DeclContext *Ctx = dcl->getDeclContext();
8826        if (Ctx && Ctx->isRecord()) {
8827          if (dcl->getType()->isReferenceType()) {
8828            Diag(OpLoc,
8829                 diag::err_cannot_form_pointer_to_member_of_reference_type)
8830              << dcl->getDeclName() << dcl->getType();
8831            return QualType();
8832          }
8833
8834          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
8835            Ctx = Ctx->getParent();
8836          return Context.getMemberPointerType(op->getType(),
8837                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
8838        }
8839      }
8840    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
8841      llvm_unreachable("Unknown/unexpected decl type");
8842  }
8843
8844  if (AddressOfError != AO_No_Error) {
8845    diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
8846    return QualType();
8847  }
8848
8849  if (lval == Expr::LV_IncompleteVoidType) {
8850    // Taking the address of a void variable is technically illegal, but we
8851    // allow it in cases which are otherwise valid.
8852    // Example: "extern void x; void* y = &x;".
8853    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
8854  }
8855
8856  // If the operand has type "type", the result has type "pointer to type".
8857  if (op->getType()->isObjCObjectType())
8858    return Context.getObjCObjectPointerType(op->getType());
8859  return Context.getPointerType(op->getType());
8860}
8861
8862/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
8863static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
8864                                        SourceLocation OpLoc) {
8865  if (Op->isTypeDependent())
8866    return S.Context.DependentTy;
8867
8868  ExprResult ConvResult = S.UsualUnaryConversions(Op);
8869  if (ConvResult.isInvalid())
8870    return QualType();
8871  Op = ConvResult.take();
8872  QualType OpTy = Op->getType();
8873  QualType Result;
8874
8875  if (isa<CXXReinterpretCastExpr>(Op)) {
8876    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
8877    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
8878                                     Op->getSourceRange());
8879  }
8880
8881  // Note that per both C89 and C99, indirection is always legal, even if OpTy
8882  // is an incomplete type or void.  It would be possible to warn about
8883  // dereferencing a void pointer, but it's completely well-defined, and such a
8884  // warning is unlikely to catch any mistakes.
8885  if (const PointerType *PT = OpTy->getAs<PointerType>())
8886    Result = PT->getPointeeType();
8887  else if (const ObjCObjectPointerType *OPT =
8888             OpTy->getAs<ObjCObjectPointerType>())
8889    Result = OPT->getPointeeType();
8890  else {
8891    ExprResult PR = S.CheckPlaceholderExpr(Op);
8892    if (PR.isInvalid()) return QualType();
8893    if (PR.take() != Op)
8894      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
8895  }
8896
8897  if (Result.isNull()) {
8898    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
8899      << OpTy << Op->getSourceRange();
8900    return QualType();
8901  }
8902
8903  // Dereferences are usually l-values...
8904  VK = VK_LValue;
8905
8906  // ...except that certain expressions are never l-values in C.
8907  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
8908    VK = VK_RValue;
8909
8910  return Result;
8911}
8912
8913static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
8914  tok::TokenKind Kind) {
8915  BinaryOperatorKind Opc;
8916  switch (Kind) {
8917  default: llvm_unreachable("Unknown binop!");
8918  case tok::periodstar:           Opc = BO_PtrMemD; break;
8919  case tok::arrowstar:            Opc = BO_PtrMemI; break;
8920  case tok::star:                 Opc = BO_Mul; break;
8921  case tok::slash:                Opc = BO_Div; break;
8922  case tok::percent:              Opc = BO_Rem; break;
8923  case tok::plus:                 Opc = BO_Add; break;
8924  case tok::minus:                Opc = BO_Sub; break;
8925  case tok::lessless:             Opc = BO_Shl; break;
8926  case tok::greatergreater:       Opc = BO_Shr; break;
8927  case tok::lessequal:            Opc = BO_LE; break;
8928  case tok::less:                 Opc = BO_LT; break;
8929  case tok::greaterequal:         Opc = BO_GE; break;
8930  case tok::greater:              Opc = BO_GT; break;
8931  case tok::exclaimequal:         Opc = BO_NE; break;
8932  case tok::equalequal:           Opc = BO_EQ; break;
8933  case tok::amp:                  Opc = BO_And; break;
8934  case tok::caret:                Opc = BO_Xor; break;
8935  case tok::pipe:                 Opc = BO_Or; break;
8936  case tok::ampamp:               Opc = BO_LAnd; break;
8937  case tok::pipepipe:             Opc = BO_LOr; break;
8938  case tok::equal:                Opc = BO_Assign; break;
8939  case tok::starequal:            Opc = BO_MulAssign; break;
8940  case tok::slashequal:           Opc = BO_DivAssign; break;
8941  case tok::percentequal:         Opc = BO_RemAssign; break;
8942  case tok::plusequal:            Opc = BO_AddAssign; break;
8943  case tok::minusequal:           Opc = BO_SubAssign; break;
8944  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
8945  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
8946  case tok::ampequal:             Opc = BO_AndAssign; break;
8947  case tok::caretequal:           Opc = BO_XorAssign; break;
8948  case tok::pipeequal:            Opc = BO_OrAssign; break;
8949  case tok::comma:                Opc = BO_Comma; break;
8950  }
8951  return Opc;
8952}
8953
8954static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
8955  tok::TokenKind Kind) {
8956  UnaryOperatorKind Opc;
8957  switch (Kind) {
8958  default: llvm_unreachable("Unknown unary op!");
8959  case tok::plusplus:     Opc = UO_PreInc; break;
8960  case tok::minusminus:   Opc = UO_PreDec; break;
8961  case tok::amp:          Opc = UO_AddrOf; break;
8962  case tok::star:         Opc = UO_Deref; break;
8963  case tok::plus:         Opc = UO_Plus; break;
8964  case tok::minus:        Opc = UO_Minus; break;
8965  case tok::tilde:        Opc = UO_Not; break;
8966  case tok::exclaim:      Opc = UO_LNot; break;
8967  case tok::kw___real:    Opc = UO_Real; break;
8968  case tok::kw___imag:    Opc = UO_Imag; break;
8969  case tok::kw___extension__: Opc = UO_Extension; break;
8970  }
8971  return Opc;
8972}
8973
8974/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
8975/// This warning is only emitted for builtin assignment operations. It is also
8976/// suppressed in the event of macro expansions.
8977static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
8978                                   SourceLocation OpLoc) {
8979  if (!S.ActiveTemplateInstantiations.empty())
8980    return;
8981  if (OpLoc.isInvalid() || OpLoc.isMacroID())
8982    return;
8983  LHSExpr = LHSExpr->IgnoreParenImpCasts();
8984  RHSExpr = RHSExpr->IgnoreParenImpCasts();
8985  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8986  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8987  if (!LHSDeclRef || !RHSDeclRef ||
8988      LHSDeclRef->getLocation().isMacroID() ||
8989      RHSDeclRef->getLocation().isMacroID())
8990    return;
8991  const ValueDecl *LHSDecl =
8992    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
8993  const ValueDecl *RHSDecl =
8994    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
8995  if (LHSDecl != RHSDecl)
8996    return;
8997  if (LHSDecl->getType().isVolatileQualified())
8998    return;
8999  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
9000    if (RefTy->getPointeeType().isVolatileQualified())
9001      return;
9002
9003  S.Diag(OpLoc, diag::warn_self_assignment)
9004      << LHSDeclRef->getType()
9005      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
9006}
9007
9008/// Check if a bitwise-& is performed on an Objective-C pointer.  This
9009/// is usually indicative of introspection within the Objective-C pointer.
9010static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
9011                                          SourceLocation OpLoc) {
9012  if (!S.getLangOpts().ObjC1)
9013    return;
9014
9015  const Expr *ObjCPointerExpr = 0, *OtherExpr = 0;
9016  const Expr *LHS = L.get();
9017  const Expr *RHS = R.get();
9018
9019  if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9020    ObjCPointerExpr = LHS;
9021    OtherExpr = RHS;
9022  }
9023  else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9024    ObjCPointerExpr = RHS;
9025    OtherExpr = LHS;
9026  }
9027
9028  // This warning is deliberately made very specific to reduce false
9029  // positives with logic that uses '&' for hashing.  This logic mainly
9030  // looks for code trying to introspect into tagged pointers, which
9031  // code should generally never do.
9032  if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
9033    unsigned Diag = diag::warn_objc_pointer_masking;
9034    // Determine if we are introspecting the result of performSelectorXXX.
9035    const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
9036    // Special case messages to -performSelector and friends, which
9037    // can return non-pointer values boxed in a pointer value.
9038    // Some clients may wish to silence warnings in this subcase.
9039    if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
9040      Selector S = ME->getSelector();
9041      StringRef SelArg0 = S.getNameForSlot(0);
9042      if (SelArg0.startswith("performSelector"))
9043        Diag = diag::warn_objc_pointer_masking_performSelector;
9044    }
9045
9046    S.Diag(OpLoc, Diag)
9047      << ObjCPointerExpr->getSourceRange();
9048  }
9049}
9050
9051/// CreateBuiltinBinOp - Creates a new built-in binary operation with
9052/// operator @p Opc at location @c TokLoc. This routine only supports
9053/// built-in operations; ActOnBinOp handles overloaded operators.
9054ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
9055                                    BinaryOperatorKind Opc,
9056                                    Expr *LHSExpr, Expr *RHSExpr) {
9057  if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
9058    // The syntax only allows initializer lists on the RHS of assignment,
9059    // so we don't need to worry about accepting invalid code for
9060    // non-assignment operators.
9061    // C++11 5.17p9:
9062    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
9063    //   of x = {} is x = T().
9064    InitializationKind Kind =
9065        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
9066    InitializedEntity Entity =
9067        InitializedEntity::InitializeTemporary(LHSExpr->getType());
9068    InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
9069    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
9070    if (Init.isInvalid())
9071      return Init;
9072    RHSExpr = Init.take();
9073  }
9074
9075  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
9076  QualType ResultTy;     // Result type of the binary operator.
9077  // The following two variables are used for compound assignment operators
9078  QualType CompLHSTy;    // Type of LHS after promotions for computation
9079  QualType CompResultTy; // Type of computation result
9080  ExprValueKind VK = VK_RValue;
9081  ExprObjectKind OK = OK_Ordinary;
9082
9083  switch (Opc) {
9084  case BO_Assign:
9085    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
9086    if (getLangOpts().CPlusPlus &&
9087        LHS.get()->getObjectKind() != OK_ObjCProperty) {
9088      VK = LHS.get()->getValueKind();
9089      OK = LHS.get()->getObjectKind();
9090    }
9091    if (!ResultTy.isNull())
9092      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
9093    break;
9094  case BO_PtrMemD:
9095  case BO_PtrMemI:
9096    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
9097                                            Opc == BO_PtrMemI);
9098    break;
9099  case BO_Mul:
9100  case BO_Div:
9101    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
9102                                           Opc == BO_Div);
9103    break;
9104  case BO_Rem:
9105    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
9106    break;
9107  case BO_Add:
9108    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
9109    break;
9110  case BO_Sub:
9111    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
9112    break;
9113  case BO_Shl:
9114  case BO_Shr:
9115    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
9116    break;
9117  case BO_LE:
9118  case BO_LT:
9119  case BO_GE:
9120  case BO_GT:
9121    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
9122    break;
9123  case BO_EQ:
9124  case BO_NE:
9125    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
9126    break;
9127  case BO_And:
9128    checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
9129  case BO_Xor:
9130  case BO_Or:
9131    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
9132    break;
9133  case BO_LAnd:
9134  case BO_LOr:
9135    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
9136    break;
9137  case BO_MulAssign:
9138  case BO_DivAssign:
9139    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
9140                                               Opc == BO_DivAssign);
9141    CompLHSTy = CompResultTy;
9142    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9143      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9144    break;
9145  case BO_RemAssign:
9146    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
9147    CompLHSTy = CompResultTy;
9148    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9149      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9150    break;
9151  case BO_AddAssign:
9152    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
9153    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9154      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9155    break;
9156  case BO_SubAssign:
9157    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
9158    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9159      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9160    break;
9161  case BO_ShlAssign:
9162  case BO_ShrAssign:
9163    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
9164    CompLHSTy = CompResultTy;
9165    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9166      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9167    break;
9168  case BO_AndAssign:
9169  case BO_XorAssign:
9170  case BO_OrAssign:
9171    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
9172    CompLHSTy = CompResultTy;
9173    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9174      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9175    break;
9176  case BO_Comma:
9177    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
9178    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
9179      VK = RHS.get()->getValueKind();
9180      OK = RHS.get()->getObjectKind();
9181    }
9182    break;
9183  }
9184  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
9185    return ExprError();
9186
9187  // Check for array bounds violations for both sides of the BinaryOperator
9188  CheckArrayAccess(LHS.get());
9189  CheckArrayAccess(RHS.get());
9190
9191  if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
9192    NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
9193                                                 &Context.Idents.get("object_setClass"),
9194                                                 SourceLocation(), LookupOrdinaryName);
9195    if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
9196      SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
9197      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
9198      FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
9199      FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
9200      FixItHint::CreateInsertion(RHSLocEnd, ")");
9201    }
9202    else
9203      Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
9204  }
9205  else if (const ObjCIvarRefExpr *OIRE =
9206           dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
9207    DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
9208
9209  if (CompResultTy.isNull())
9210    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
9211                                              ResultTy, VK, OK, OpLoc,
9212                                              FPFeatures.fp_contract));
9213  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
9214      OK_ObjCProperty) {
9215    VK = VK_LValue;
9216    OK = LHS.get()->getObjectKind();
9217  }
9218  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
9219                                                    ResultTy, VK, OK, CompLHSTy,
9220                                                    CompResultTy, OpLoc,
9221                                                    FPFeatures.fp_contract));
9222}
9223
9224/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
9225/// operators are mixed in a way that suggests that the programmer forgot that
9226/// comparison operators have higher precedence. The most typical example of
9227/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
9228static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
9229                                      SourceLocation OpLoc, Expr *LHSExpr,
9230                                      Expr *RHSExpr) {
9231  BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
9232  BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
9233
9234  // Check that one of the sides is a comparison operator.
9235  bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
9236  bool isRightComp = RHSBO && RHSBO->isComparisonOp();
9237  if (!isLeftComp && !isRightComp)
9238    return;
9239
9240  // Bitwise operations are sometimes used as eager logical ops.
9241  // Don't diagnose this.
9242  bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
9243  bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
9244  if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
9245    return;
9246
9247  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
9248                                                   OpLoc)
9249                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
9250  StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
9251  SourceRange ParensRange = isLeftComp ?
9252      SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
9253    : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocStart());
9254
9255  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
9256    << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
9257  SuggestParentheses(Self, OpLoc,
9258    Self.PDiag(diag::note_precedence_silence) << OpStr,
9259    (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
9260  SuggestParentheses(Self, OpLoc,
9261    Self.PDiag(diag::note_precedence_bitwise_first)
9262      << BinaryOperator::getOpcodeStr(Opc),
9263    ParensRange);
9264}
9265
9266/// \brief It accepts a '&' expr that is inside a '|' one.
9267/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
9268/// in parentheses.
9269static void
9270EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
9271                                       BinaryOperator *Bop) {
9272  assert(Bop->getOpcode() == BO_And);
9273  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
9274      << Bop->getSourceRange() << OpLoc;
9275  SuggestParentheses(Self, Bop->getOperatorLoc(),
9276    Self.PDiag(diag::note_precedence_silence)
9277      << Bop->getOpcodeStr(),
9278    Bop->getSourceRange());
9279}
9280
9281/// \brief It accepts a '&&' expr that is inside a '||' one.
9282/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
9283/// in parentheses.
9284static void
9285EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
9286                                       BinaryOperator *Bop) {
9287  assert(Bop->getOpcode() == BO_LAnd);
9288  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
9289      << Bop->getSourceRange() << OpLoc;
9290  SuggestParentheses(Self, Bop->getOperatorLoc(),
9291    Self.PDiag(diag::note_precedence_silence)
9292      << Bop->getOpcodeStr(),
9293    Bop->getSourceRange());
9294}
9295
9296/// \brief Returns true if the given expression can be evaluated as a constant
9297/// 'true'.
9298static bool EvaluatesAsTrue(Sema &S, Expr *E) {
9299  bool Res;
9300  return !E->isValueDependent() &&
9301         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
9302}
9303
9304/// \brief Returns true if the given expression can be evaluated as a constant
9305/// 'false'.
9306static bool EvaluatesAsFalse(Sema &S, Expr *E) {
9307  bool Res;
9308  return !E->isValueDependent() &&
9309         E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
9310}
9311
9312/// \brief Look for '&&' in the left hand of a '||' expr.
9313static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
9314                                             Expr *LHSExpr, Expr *RHSExpr) {
9315  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
9316    if (Bop->getOpcode() == BO_LAnd) {
9317      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
9318      if (EvaluatesAsFalse(S, RHSExpr))
9319        return;
9320      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
9321      if (!EvaluatesAsTrue(S, Bop->getLHS()))
9322        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9323    } else if (Bop->getOpcode() == BO_LOr) {
9324      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
9325        // If it's "a || b && 1 || c" we didn't warn earlier for
9326        // "a || b && 1", but warn now.
9327        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
9328          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
9329      }
9330    }
9331  }
9332}
9333
9334/// \brief Look for '&&' in the right hand of a '||' expr.
9335static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
9336                                             Expr *LHSExpr, Expr *RHSExpr) {
9337  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
9338    if (Bop->getOpcode() == BO_LAnd) {
9339      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
9340      if (EvaluatesAsFalse(S, LHSExpr))
9341        return;
9342      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
9343      if (!EvaluatesAsTrue(S, Bop->getRHS()))
9344        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9345    }
9346  }
9347}
9348
9349/// \brief Look for '&' in the left or right hand of a '|' expr.
9350static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
9351                                             Expr *OrArg) {
9352  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
9353    if (Bop->getOpcode() == BO_And)
9354      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
9355  }
9356}
9357
9358static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
9359                                    Expr *SubExpr, StringRef Shift) {
9360  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
9361    if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
9362      StringRef Op = Bop->getOpcodeStr();
9363      S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
9364          << Bop->getSourceRange() << OpLoc << Shift << Op;
9365      SuggestParentheses(S, Bop->getOperatorLoc(),
9366          S.PDiag(diag::note_precedence_silence) << Op,
9367          Bop->getSourceRange());
9368    }
9369  }
9370}
9371
9372static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
9373                                 Expr *LHSExpr, Expr *RHSExpr) {
9374  CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
9375  if (!OCE)
9376    return;
9377
9378  FunctionDecl *FD = OCE->getDirectCallee();
9379  if (!FD || !FD->isOverloadedOperator())
9380    return;
9381
9382  OverloadedOperatorKind Kind = FD->getOverloadedOperator();
9383  if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
9384    return;
9385
9386  S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
9387      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
9388      << (Kind == OO_LessLess);
9389  SuggestParentheses(S, OCE->getOperatorLoc(),
9390                     S.PDiag(diag::note_precedence_silence)
9391                         << (Kind == OO_LessLess ? "<<" : ">>"),
9392                     OCE->getSourceRange());
9393  SuggestParentheses(S, OpLoc,
9394                     S.PDiag(diag::note_evaluate_comparison_first),
9395                     SourceRange(OCE->getArg(1)->getLocStart(),
9396                                 RHSExpr->getLocEnd()));
9397}
9398
9399/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
9400/// precedence.
9401static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
9402                                    SourceLocation OpLoc, Expr *LHSExpr,
9403                                    Expr *RHSExpr){
9404  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
9405  if (BinaryOperator::isBitwiseOp(Opc))
9406    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
9407
9408  // Diagnose "arg1 & arg2 | arg3"
9409  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9410    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
9411    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
9412  }
9413
9414  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
9415  // We don't warn for 'assert(a || b && "bad")' since this is safe.
9416  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9417    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
9418    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
9419  }
9420
9421  if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
9422      || Opc == BO_Shr) {
9423    StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
9424    DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
9425    DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
9426  }
9427
9428  // Warn on overloaded shift operators and comparisons, such as:
9429  // cout << 5 == 4;
9430  if (BinaryOperator::isComparisonOp(Opc))
9431    DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
9432}
9433
9434// Binary Operators.  'Tok' is the token for the operator.
9435ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
9436                            tok::TokenKind Kind,
9437                            Expr *LHSExpr, Expr *RHSExpr) {
9438  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
9439  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
9440  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
9441
9442  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
9443  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
9444
9445  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
9446}
9447
9448/// Build an overloaded binary operator expression in the given scope.
9449static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
9450                                       BinaryOperatorKind Opc,
9451                                       Expr *LHS, Expr *RHS) {
9452  // Find all of the overloaded operators visible from this
9453  // point. We perform both an operator-name lookup from the local
9454  // scope and an argument-dependent lookup based on the types of
9455  // the arguments.
9456  UnresolvedSet<16> Functions;
9457  OverloadedOperatorKind OverOp
9458    = BinaryOperator::getOverloadedOperator(Opc);
9459  if (Sc && OverOp != OO_None)
9460    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
9461                                   RHS->getType(), Functions);
9462
9463  // Build the (potentially-overloaded, potentially-dependent)
9464  // binary operation.
9465  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
9466}
9467
9468ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
9469                            BinaryOperatorKind Opc,
9470                            Expr *LHSExpr, Expr *RHSExpr) {
9471  // We want to end up calling one of checkPseudoObjectAssignment
9472  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
9473  // both expressions are overloadable or either is type-dependent),
9474  // or CreateBuiltinBinOp (in any other case).  We also want to get
9475  // any placeholder types out of the way.
9476
9477  // Handle pseudo-objects in the LHS.
9478  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
9479    // Assignments with a pseudo-object l-value need special analysis.
9480    if (pty->getKind() == BuiltinType::PseudoObject &&
9481        BinaryOperator::isAssignmentOp(Opc))
9482      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
9483
9484    // Don't resolve overloads if the other type is overloadable.
9485    if (pty->getKind() == BuiltinType::Overload) {
9486      // We can't actually test that if we still have a placeholder,
9487      // though.  Fortunately, none of the exceptions we see in that
9488      // code below are valid when the LHS is an overload set.  Note
9489      // that an overload set can be dependently-typed, but it never
9490      // instantiates to having an overloadable type.
9491      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9492      if (resolvedRHS.isInvalid()) return ExprError();
9493      RHSExpr = resolvedRHS.take();
9494
9495      if (RHSExpr->isTypeDependent() ||
9496          RHSExpr->getType()->isOverloadableType())
9497        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9498    }
9499
9500    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
9501    if (LHS.isInvalid()) return ExprError();
9502    LHSExpr = LHS.take();
9503  }
9504
9505  // Handle pseudo-objects in the RHS.
9506  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
9507    // An overload in the RHS can potentially be resolved by the type
9508    // being assigned to.
9509    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
9510      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9511        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9512
9513      if (LHSExpr->getType()->isOverloadableType())
9514        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9515
9516      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9517    }
9518
9519    // Don't resolve overloads if the other type is overloadable.
9520    if (pty->getKind() == BuiltinType::Overload &&
9521        LHSExpr->getType()->isOverloadableType())
9522      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9523
9524    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9525    if (!resolvedRHS.isUsable()) return ExprError();
9526    RHSExpr = resolvedRHS.take();
9527  }
9528
9529  if (getLangOpts().CPlusPlus) {
9530    // If either expression is type-dependent, always build an
9531    // overloaded op.
9532    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9533      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9534
9535    // Otherwise, build an overloaded op if either expression has an
9536    // overloadable type.
9537    if (LHSExpr->getType()->isOverloadableType() ||
9538        RHSExpr->getType()->isOverloadableType())
9539      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9540  }
9541
9542  // Build a built-in binary operation.
9543  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9544}
9545
9546ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
9547                                      UnaryOperatorKind Opc,
9548                                      Expr *InputExpr) {
9549  ExprResult Input = Owned(InputExpr);
9550  ExprValueKind VK = VK_RValue;
9551  ExprObjectKind OK = OK_Ordinary;
9552  QualType resultType;
9553  switch (Opc) {
9554  case UO_PreInc:
9555  case UO_PreDec:
9556  case UO_PostInc:
9557  case UO_PostDec:
9558    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
9559                                                Opc == UO_PreInc ||
9560                                                Opc == UO_PostInc,
9561                                                Opc == UO_PreInc ||
9562                                                Opc == UO_PreDec);
9563    break;
9564  case UO_AddrOf:
9565    resultType = CheckAddressOfOperand(Input, OpLoc);
9566    break;
9567  case UO_Deref: {
9568    Input = DefaultFunctionArrayLvalueConversion(Input.take());
9569    if (Input.isInvalid()) return ExprError();
9570    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
9571    break;
9572  }
9573  case UO_Plus:
9574  case UO_Minus:
9575    Input = UsualUnaryConversions(Input.take());
9576    if (Input.isInvalid()) return ExprError();
9577    resultType = Input.get()->getType();
9578    if (resultType->isDependentType())
9579      break;
9580    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
9581        resultType->isVectorType())
9582      break;
9583    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
9584             Opc == UO_Plus &&
9585             resultType->isPointerType())
9586      break;
9587
9588    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9589      << resultType << Input.get()->getSourceRange());
9590
9591  case UO_Not: // bitwise complement
9592    Input = UsualUnaryConversions(Input.take());
9593    if (Input.isInvalid())
9594      return ExprError();
9595    resultType = Input.get()->getType();
9596    if (resultType->isDependentType())
9597      break;
9598    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
9599    if (resultType->isComplexType() || resultType->isComplexIntegerType())
9600      // C99 does not support '~' for complex conjugation.
9601      Diag(OpLoc, diag::ext_integer_complement_complex)
9602          << resultType << Input.get()->getSourceRange();
9603    else if (resultType->hasIntegerRepresentation())
9604      break;
9605    else if (resultType->isExtVectorType()) {
9606      if (Context.getLangOpts().OpenCL) {
9607        // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
9608        // on vector float types.
9609        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9610        if (!T->isIntegerType())
9611          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9612                           << resultType << Input.get()->getSourceRange());
9613      }
9614      break;
9615    } else {
9616      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9617                       << resultType << Input.get()->getSourceRange());
9618    }
9619    break;
9620
9621  case UO_LNot: // logical negation
9622    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
9623    Input = DefaultFunctionArrayLvalueConversion(Input.take());
9624    if (Input.isInvalid()) return ExprError();
9625    resultType = Input.get()->getType();
9626
9627    // Though we still have to promote half FP to float...
9628    if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
9629      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
9630      resultType = Context.FloatTy;
9631    }
9632
9633    if (resultType->isDependentType())
9634      break;
9635    if (resultType->isScalarType()) {
9636      // C99 6.5.3.3p1: ok, fallthrough;
9637      if (Context.getLangOpts().CPlusPlus) {
9638        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
9639        // operand contextually converted to bool.
9640        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
9641                                  ScalarTypeToBooleanCastKind(resultType));
9642      } else if (Context.getLangOpts().OpenCL &&
9643                 Context.getLangOpts().OpenCLVersion < 120) {
9644        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9645        // operate on scalar float types.
9646        if (!resultType->isIntegerType())
9647          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9648                           << resultType << Input.get()->getSourceRange());
9649      }
9650    } else if (resultType->isExtVectorType()) {
9651      if (Context.getLangOpts().OpenCL &&
9652          Context.getLangOpts().OpenCLVersion < 120) {
9653        // OpenCL v1.1 6.3.h: The logical operator not (!) does not
9654        // operate on vector float types.
9655        QualType T = resultType->getAs<ExtVectorType>()->getElementType();
9656        if (!T->isIntegerType())
9657          return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9658                           << resultType << Input.get()->getSourceRange());
9659      }
9660      // Vector logical not returns the signed variant of the operand type.
9661      resultType = GetSignedVectorType(resultType);
9662      break;
9663    } else {
9664      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
9665        << resultType << Input.get()->getSourceRange());
9666    }
9667
9668    // LNot always has type int. C99 6.5.3.3p5.
9669    // In C++, it's bool. C++ 5.3.1p8
9670    resultType = Context.getLogicalOperationType();
9671    break;
9672  case UO_Real:
9673  case UO_Imag:
9674    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
9675    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
9676    // complex l-values to ordinary l-values and all other values to r-values.
9677    if (Input.isInvalid()) return ExprError();
9678    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
9679      if (Input.get()->getValueKind() != VK_RValue &&
9680          Input.get()->getObjectKind() == OK_Ordinary)
9681        VK = Input.get()->getValueKind();
9682    } else if (!getLangOpts().CPlusPlus) {
9683      // In C, a volatile scalar is read by __imag. In C++, it is not.
9684      Input = DefaultLvalueConversion(Input.take());
9685    }
9686    break;
9687  case UO_Extension:
9688    resultType = Input.get()->getType();
9689    VK = Input.get()->getValueKind();
9690    OK = Input.get()->getObjectKind();
9691    break;
9692  }
9693  if (resultType.isNull() || Input.isInvalid())
9694    return ExprError();
9695
9696  // Check for array bounds violations in the operand of the UnaryOperator,
9697  // except for the '*' and '&' operators that have to be handled specially
9698  // by CheckArrayAccess (as there are special cases like &array[arraysize]
9699  // that are explicitly defined as valid by the standard).
9700  if (Opc != UO_AddrOf && Opc != UO_Deref)
9701    CheckArrayAccess(Input.get());
9702
9703  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
9704                                           VK, OK, OpLoc));
9705}
9706
9707/// \brief Determine whether the given expression is a qualified member
9708/// access expression, of a form that could be turned into a pointer to member
9709/// with the address-of operator.
9710static bool isQualifiedMemberAccess(Expr *E) {
9711  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
9712    if (!DRE->getQualifier())
9713      return false;
9714
9715    ValueDecl *VD = DRE->getDecl();
9716    if (!VD->isCXXClassMember())
9717      return false;
9718
9719    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
9720      return true;
9721    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
9722      return Method->isInstance();
9723
9724    return false;
9725  }
9726
9727  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
9728    if (!ULE->getQualifier())
9729      return false;
9730
9731    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
9732                                           DEnd = ULE->decls_end();
9733         D != DEnd; ++D) {
9734      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
9735        if (Method->isInstance())
9736          return true;
9737      } else {
9738        // Overload set does not contain methods.
9739        break;
9740      }
9741    }
9742
9743    return false;
9744  }
9745
9746  return false;
9747}
9748
9749ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
9750                              UnaryOperatorKind Opc, Expr *Input) {
9751  // First things first: handle placeholders so that the
9752  // overloaded-operator check considers the right type.
9753  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
9754    // Increment and decrement of pseudo-object references.
9755    if (pty->getKind() == BuiltinType::PseudoObject &&
9756        UnaryOperator::isIncrementDecrementOp(Opc))
9757      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
9758
9759    // extension is always a builtin operator.
9760    if (Opc == UO_Extension)
9761      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9762
9763    // & gets special logic for several kinds of placeholder.
9764    // The builtin code knows what to do.
9765    if (Opc == UO_AddrOf &&
9766        (pty->getKind() == BuiltinType::Overload ||
9767         pty->getKind() == BuiltinType::UnknownAny ||
9768         pty->getKind() == BuiltinType::BoundMember))
9769      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9770
9771    // Anything else needs to be handled now.
9772    ExprResult Result = CheckPlaceholderExpr(Input);
9773    if (Result.isInvalid()) return ExprError();
9774    Input = Result.take();
9775  }
9776
9777  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
9778      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
9779      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
9780    // Find all of the overloaded operators visible from this
9781    // point. We perform both an operator-name lookup from the local
9782    // scope and an argument-dependent lookup based on the types of
9783    // the arguments.
9784    UnresolvedSet<16> Functions;
9785    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
9786    if (S && OverOp != OO_None)
9787      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
9788                                   Functions);
9789
9790    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
9791  }
9792
9793  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
9794}
9795
9796// Unary Operators.  'Tok' is the token for the operator.
9797ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
9798                              tok::TokenKind Op, Expr *Input) {
9799  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
9800}
9801
9802/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
9803ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
9804                                LabelDecl *TheDecl) {
9805  TheDecl->markUsed(Context);
9806  // Create the AST node.  The address of a label always has type 'void*'.
9807  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
9808                                       Context.getPointerType(Context.VoidTy)));
9809}
9810
9811/// Given the last statement in a statement-expression, check whether
9812/// the result is a producing expression (like a call to an
9813/// ns_returns_retained function) and, if so, rebuild it to hoist the
9814/// release out of the full-expression.  Otherwise, return null.
9815/// Cannot fail.
9816static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
9817  // Should always be wrapped with one of these.
9818  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
9819  if (!cleanups) return 0;
9820
9821  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
9822  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
9823    return 0;
9824
9825  // Splice out the cast.  This shouldn't modify any interesting
9826  // features of the statement.
9827  Expr *producer = cast->getSubExpr();
9828  assert(producer->getType() == cast->getType());
9829  assert(producer->getValueKind() == cast->getValueKind());
9830  cleanups->setSubExpr(producer);
9831  return cleanups;
9832}
9833
9834void Sema::ActOnStartStmtExpr() {
9835  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
9836}
9837
9838void Sema::ActOnStmtExprError() {
9839  // Note that function is also called by TreeTransform when leaving a
9840  // StmtExpr scope without rebuilding anything.
9841
9842  DiscardCleanupsInEvaluationContext();
9843  PopExpressionEvaluationContext();
9844}
9845
9846ExprResult
9847Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
9848                    SourceLocation RPLoc) { // "({..})"
9849  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
9850  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
9851
9852  if (hasAnyUnrecoverableErrorsInThisFunction())
9853    DiscardCleanupsInEvaluationContext();
9854  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
9855  PopExpressionEvaluationContext();
9856
9857  bool isFileScope
9858    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
9859  if (isFileScope)
9860    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
9861
9862  // FIXME: there are a variety of strange constraints to enforce here, for
9863  // example, it is not possible to goto into a stmt expression apparently.
9864  // More semantic analysis is needed.
9865
9866  // If there are sub stmts in the compound stmt, take the type of the last one
9867  // as the type of the stmtexpr.
9868  QualType Ty = Context.VoidTy;
9869  bool StmtExprMayBindToTemp = false;
9870  if (!Compound->body_empty()) {
9871    Stmt *LastStmt = Compound->body_back();
9872    LabelStmt *LastLabelStmt = 0;
9873    // If LastStmt is a label, skip down through into the body.
9874    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
9875      LastLabelStmt = Label;
9876      LastStmt = Label->getSubStmt();
9877    }
9878
9879    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
9880      // Do function/array conversion on the last expression, but not
9881      // lvalue-to-rvalue.  However, initialize an unqualified type.
9882      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
9883      if (LastExpr.isInvalid())
9884        return ExprError();
9885      Ty = LastExpr.get()->getType().getUnqualifiedType();
9886
9887      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
9888        // In ARC, if the final expression ends in a consume, splice
9889        // the consume out and bind it later.  In the alternate case
9890        // (when dealing with a retainable type), the result
9891        // initialization will create a produce.  In both cases the
9892        // result will be +1, and we'll need to balance that out with
9893        // a bind.
9894        if (Expr *rebuiltLastStmt
9895              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
9896          LastExpr = rebuiltLastStmt;
9897        } else {
9898          LastExpr = PerformCopyInitialization(
9899                            InitializedEntity::InitializeResult(LPLoc,
9900                                                                Ty,
9901                                                                false),
9902                                                   SourceLocation(),
9903                                               LastExpr);
9904        }
9905
9906        if (LastExpr.isInvalid())
9907          return ExprError();
9908        if (LastExpr.get() != 0) {
9909          if (!LastLabelStmt)
9910            Compound->setLastStmt(LastExpr.take());
9911          else
9912            LastLabelStmt->setSubStmt(LastExpr.take());
9913          StmtExprMayBindToTemp = true;
9914        }
9915      }
9916    }
9917  }
9918
9919  // FIXME: Check that expression type is complete/non-abstract; statement
9920  // expressions are not lvalues.
9921  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
9922  if (StmtExprMayBindToTemp)
9923    return MaybeBindToTemporary(ResStmtExpr);
9924  return Owned(ResStmtExpr);
9925}
9926
9927ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
9928                                      TypeSourceInfo *TInfo,
9929                                      OffsetOfComponent *CompPtr,
9930                                      unsigned NumComponents,
9931                                      SourceLocation RParenLoc) {
9932  QualType ArgTy = TInfo->getType();
9933  bool Dependent = ArgTy->isDependentType();
9934  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
9935
9936  // We must have at least one component that refers to the type, and the first
9937  // one is known to be a field designator.  Verify that the ArgTy represents
9938  // a struct/union/class.
9939  if (!Dependent && !ArgTy->isRecordType())
9940    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
9941                       << ArgTy << TypeRange);
9942
9943  // Type must be complete per C99 7.17p3 because a declaring a variable
9944  // with an incomplete type would be ill-formed.
9945  if (!Dependent
9946      && RequireCompleteType(BuiltinLoc, ArgTy,
9947                             diag::err_offsetof_incomplete_type, TypeRange))
9948    return ExprError();
9949
9950  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
9951  // GCC extension, diagnose them.
9952  // FIXME: This diagnostic isn't actually visible because the location is in
9953  // a system header!
9954  if (NumComponents != 1)
9955    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
9956      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
9957
9958  bool DidWarnAboutNonPOD = false;
9959  QualType CurrentType = ArgTy;
9960  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
9961  SmallVector<OffsetOfNode, 4> Comps;
9962  SmallVector<Expr*, 4> Exprs;
9963  for (unsigned i = 0; i != NumComponents; ++i) {
9964    const OffsetOfComponent &OC = CompPtr[i];
9965    if (OC.isBrackets) {
9966      // Offset of an array sub-field.  TODO: Should we allow vector elements?
9967      if (!CurrentType->isDependentType()) {
9968        const ArrayType *AT = Context.getAsArrayType(CurrentType);
9969        if(!AT)
9970          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
9971                           << CurrentType);
9972        CurrentType = AT->getElementType();
9973      } else
9974        CurrentType = Context.DependentTy;
9975
9976      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
9977      if (IdxRval.isInvalid())
9978        return ExprError();
9979      Expr *Idx = IdxRval.take();
9980
9981      // The expression must be an integral expression.
9982      // FIXME: An integral constant expression?
9983      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
9984          !Idx->getType()->isIntegerType())
9985        return ExprError(Diag(Idx->getLocStart(),
9986                              diag::err_typecheck_subscript_not_integer)
9987                         << Idx->getSourceRange());
9988
9989      // Record this array index.
9990      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
9991      Exprs.push_back(Idx);
9992      continue;
9993    }
9994
9995    // Offset of a field.
9996    if (CurrentType->isDependentType()) {
9997      // We have the offset of a field, but we can't look into the dependent
9998      // type. Just record the identifier of the field.
9999      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
10000      CurrentType = Context.DependentTy;
10001      continue;
10002    }
10003
10004    // We need to have a complete type to look into.
10005    if (RequireCompleteType(OC.LocStart, CurrentType,
10006                            diag::err_offsetof_incomplete_type))
10007      return ExprError();
10008
10009    // Look for the designated field.
10010    const RecordType *RC = CurrentType->getAs<RecordType>();
10011    if (!RC)
10012      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
10013                       << CurrentType);
10014    RecordDecl *RD = RC->getDecl();
10015
10016    // C++ [lib.support.types]p5:
10017    //   The macro offsetof accepts a restricted set of type arguments in this
10018    //   International Standard. type shall be a POD structure or a POD union
10019    //   (clause 9).
10020    // C++11 [support.types]p4:
10021    //   If type is not a standard-layout class (Clause 9), the results are
10022    //   undefined.
10023    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
10024      bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
10025      unsigned DiagID =
10026        LangOpts.CPlusPlus11? diag::warn_offsetof_non_standardlayout_type
10027                            : diag::warn_offsetof_non_pod_type;
10028
10029      if (!IsSafe && !DidWarnAboutNonPOD &&
10030          DiagRuntimeBehavior(BuiltinLoc, 0,
10031                              PDiag(DiagID)
10032                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
10033                              << CurrentType))
10034        DidWarnAboutNonPOD = true;
10035    }
10036
10037    // Look for the field.
10038    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
10039    LookupQualifiedName(R, RD);
10040    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
10041    IndirectFieldDecl *IndirectMemberDecl = 0;
10042    if (!MemberDecl) {
10043      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
10044        MemberDecl = IndirectMemberDecl->getAnonField();
10045    }
10046
10047    if (!MemberDecl)
10048      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
10049                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
10050                                                              OC.LocEnd));
10051
10052    // C99 7.17p3:
10053    //   (If the specified member is a bit-field, the behavior is undefined.)
10054    //
10055    // We diagnose this as an error.
10056    if (MemberDecl->isBitField()) {
10057      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
10058        << MemberDecl->getDeclName()
10059        << SourceRange(BuiltinLoc, RParenLoc);
10060      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
10061      return ExprError();
10062    }
10063
10064    RecordDecl *Parent = MemberDecl->getParent();
10065    if (IndirectMemberDecl)
10066      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
10067
10068    // If the member was found in a base class, introduce OffsetOfNodes for
10069    // the base class indirections.
10070    CXXBasePaths Paths;
10071    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
10072      if (Paths.getDetectedVirtual()) {
10073        Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
10074          << MemberDecl->getDeclName()
10075          << SourceRange(BuiltinLoc, RParenLoc);
10076        return ExprError();
10077      }
10078
10079      CXXBasePath &Path = Paths.front();
10080      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
10081           B != BEnd; ++B)
10082        Comps.push_back(OffsetOfNode(B->Base));
10083    }
10084
10085    if (IndirectMemberDecl) {
10086      for (IndirectFieldDecl::chain_iterator FI =
10087           IndirectMemberDecl->chain_begin(),
10088           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
10089        assert(isa<FieldDecl>(*FI));
10090        Comps.push_back(OffsetOfNode(OC.LocStart,
10091                                     cast<FieldDecl>(*FI), OC.LocEnd));
10092      }
10093    } else
10094      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
10095
10096    CurrentType = MemberDecl->getType().getNonReferenceType();
10097  }
10098
10099  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
10100                                    TInfo, Comps, Exprs, RParenLoc));
10101}
10102
10103ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
10104                                      SourceLocation BuiltinLoc,
10105                                      SourceLocation TypeLoc,
10106                                      ParsedType ParsedArgTy,
10107                                      OffsetOfComponent *CompPtr,
10108                                      unsigned NumComponents,
10109                                      SourceLocation RParenLoc) {
10110
10111  TypeSourceInfo *ArgTInfo;
10112  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
10113  if (ArgTy.isNull())
10114    return ExprError();
10115
10116  if (!ArgTInfo)
10117    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
10118
10119  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
10120                              RParenLoc);
10121}
10122
10123
10124ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
10125                                 Expr *CondExpr,
10126                                 Expr *LHSExpr, Expr *RHSExpr,
10127                                 SourceLocation RPLoc) {
10128  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
10129
10130  ExprValueKind VK = VK_RValue;
10131  ExprObjectKind OK = OK_Ordinary;
10132  QualType resType;
10133  bool ValueDependent = false;
10134  bool CondIsTrue = false;
10135  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
10136    resType = Context.DependentTy;
10137    ValueDependent = true;
10138  } else {
10139    // The conditional expression is required to be a constant expression.
10140    llvm::APSInt condEval(32);
10141    ExprResult CondICE
10142      = VerifyIntegerConstantExpression(CondExpr, &condEval,
10143          diag::err_typecheck_choose_expr_requires_constant, false);
10144    if (CondICE.isInvalid())
10145      return ExprError();
10146    CondExpr = CondICE.take();
10147    CondIsTrue = condEval.getZExtValue();
10148
10149    // If the condition is > zero, then the AST type is the same as the LSHExpr.
10150    Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
10151
10152    resType = ActiveExpr->getType();
10153    ValueDependent = ActiveExpr->isValueDependent();
10154    VK = ActiveExpr->getValueKind();
10155    OK = ActiveExpr->getObjectKind();
10156  }
10157
10158  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
10159                                        resType, VK, OK, RPLoc, CondIsTrue,
10160                                        resType->isDependentType(),
10161                                        ValueDependent));
10162}
10163
10164//===----------------------------------------------------------------------===//
10165// Clang Extensions.
10166//===----------------------------------------------------------------------===//
10167
10168/// ActOnBlockStart - This callback is invoked when a block literal is started.
10169void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
10170  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
10171
10172  if (LangOpts.CPlusPlus) {
10173    Decl *ManglingContextDecl;
10174    if (MangleNumberingContext *MCtx =
10175            getCurrentMangleNumberContext(Block->getDeclContext(),
10176                                          ManglingContextDecl)) {
10177      unsigned ManglingNumber = MCtx->getManglingNumber(Block);
10178      Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
10179    }
10180  }
10181
10182  PushBlockScope(CurScope, Block);
10183  CurContext->addDecl(Block);
10184  if (CurScope)
10185    PushDeclContext(CurScope, Block);
10186  else
10187    CurContext = Block;
10188
10189  getCurBlock()->HasImplicitReturnType = true;
10190
10191  // Enter a new evaluation context to insulate the block from any
10192  // cleanups from the enclosing full-expression.
10193  PushExpressionEvaluationContext(PotentiallyEvaluated);
10194}
10195
10196void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
10197                               Scope *CurScope) {
10198  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
10199  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
10200  BlockScopeInfo *CurBlock = getCurBlock();
10201
10202  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
10203  QualType T = Sig->getType();
10204
10205  // FIXME: We should allow unexpanded parameter packs here, but that would,
10206  // in turn, make the block expression contain unexpanded parameter packs.
10207  if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
10208    // Drop the parameters.
10209    FunctionProtoType::ExtProtoInfo EPI;
10210    EPI.HasTrailingReturn = false;
10211    EPI.TypeQuals |= DeclSpec::TQ_const;
10212    T = Context.getFunctionType(Context.DependentTy, None, EPI);
10213    Sig = Context.getTrivialTypeSourceInfo(T);
10214  }
10215
10216  // GetTypeForDeclarator always produces a function type for a block
10217  // literal signature.  Furthermore, it is always a FunctionProtoType
10218  // unless the function was written with a typedef.
10219  assert(T->isFunctionType() &&
10220         "GetTypeForDeclarator made a non-function block signature");
10221
10222  // Look for an explicit signature in that function type.
10223  FunctionProtoTypeLoc ExplicitSignature;
10224
10225  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
10226  if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
10227
10228    // Check whether that explicit signature was synthesized by
10229    // GetTypeForDeclarator.  If so, don't save that as part of the
10230    // written signature.
10231    if (ExplicitSignature.getLocalRangeBegin() ==
10232        ExplicitSignature.getLocalRangeEnd()) {
10233      // This would be much cheaper if we stored TypeLocs instead of
10234      // TypeSourceInfos.
10235      TypeLoc Result = ExplicitSignature.getResultLoc();
10236      unsigned Size = Result.getFullDataSize();
10237      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
10238      Sig->getTypeLoc().initializeFullCopy(Result, Size);
10239
10240      ExplicitSignature = FunctionProtoTypeLoc();
10241    }
10242  }
10243
10244  CurBlock->TheDecl->setSignatureAsWritten(Sig);
10245  CurBlock->FunctionType = T;
10246
10247  const FunctionType *Fn = T->getAs<FunctionType>();
10248  QualType RetTy = Fn->getResultType();
10249  bool isVariadic =
10250    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
10251
10252  CurBlock->TheDecl->setIsVariadic(isVariadic);
10253
10254  // Context.DependentTy is used as a placeholder for a missing block
10255  // return type.  TODO:  what should we do with declarators like:
10256  //   ^ * { ... }
10257  // If the answer is "apply template argument deduction"....
10258  if (RetTy != Context.DependentTy) {
10259    CurBlock->ReturnType = RetTy;
10260    CurBlock->TheDecl->setBlockMissingReturnType(false);
10261    CurBlock->HasImplicitReturnType = false;
10262  }
10263
10264  // Push block parameters from the declarator if we had them.
10265  SmallVector<ParmVarDecl*, 8> Params;
10266  if (ExplicitSignature) {
10267    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
10268      ParmVarDecl *Param = ExplicitSignature.getArg(I);
10269      if (Param->getIdentifier() == 0 &&
10270          !Param->isImplicit() &&
10271          !Param->isInvalidDecl() &&
10272          !getLangOpts().CPlusPlus)
10273        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
10274      Params.push_back(Param);
10275    }
10276
10277  // Fake up parameter variables if we have a typedef, like
10278  //   ^ fntype { ... }
10279  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
10280    for (FunctionProtoType::arg_type_iterator
10281           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
10282      ParmVarDecl *Param =
10283        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
10284                                   ParamInfo.getLocStart(),
10285                                   *I);
10286      Params.push_back(Param);
10287    }
10288  }
10289
10290  // Set the parameters on the block decl.
10291  if (!Params.empty()) {
10292    CurBlock->TheDecl->setParams(Params);
10293    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
10294                             CurBlock->TheDecl->param_end(),
10295                             /*CheckParameterNames=*/false);
10296  }
10297
10298  // Finally we can process decl attributes.
10299  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
10300
10301  // Put the parameter variables in scope.
10302  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
10303         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
10304    (*AI)->setOwningFunction(CurBlock->TheDecl);
10305
10306    // If this has an identifier, add it to the scope stack.
10307    if ((*AI)->getIdentifier()) {
10308      CheckShadow(CurBlock->TheScope, *AI);
10309
10310      PushOnScopeChains(*AI, CurBlock->TheScope);
10311    }
10312  }
10313}
10314
10315/// ActOnBlockError - If there is an error parsing a block, this callback
10316/// is invoked to pop the information about the block from the action impl.
10317void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
10318  // Leave the expression-evaluation context.
10319  DiscardCleanupsInEvaluationContext();
10320  PopExpressionEvaluationContext();
10321
10322  // Pop off CurBlock, handle nested blocks.
10323  PopDeclContext();
10324  PopFunctionScopeInfo();
10325}
10326
10327/// ActOnBlockStmtExpr - This is called when the body of a block statement
10328/// literal was successfully completed.  ^(int x){...}
10329ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
10330                                    Stmt *Body, Scope *CurScope) {
10331  // If blocks are disabled, emit an error.
10332  if (!LangOpts.Blocks)
10333    Diag(CaretLoc, diag::err_blocks_disable);
10334
10335  // Leave the expression-evaluation context.
10336  if (hasAnyUnrecoverableErrorsInThisFunction())
10337    DiscardCleanupsInEvaluationContext();
10338  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
10339  PopExpressionEvaluationContext();
10340
10341  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
10342
10343  if (BSI->HasImplicitReturnType)
10344    deduceClosureReturnType(*BSI);
10345
10346  PopDeclContext();
10347
10348  QualType RetTy = Context.VoidTy;
10349  if (!BSI->ReturnType.isNull())
10350    RetTy = BSI->ReturnType;
10351
10352  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
10353  QualType BlockTy;
10354
10355  // Set the captured variables on the block.
10356  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
10357  SmallVector<BlockDecl::Capture, 4> Captures;
10358  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
10359    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
10360    if (Cap.isThisCapture())
10361      continue;
10362    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
10363                              Cap.isNested(), Cap.getInitExpr());
10364    Captures.push_back(NewCap);
10365  }
10366  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
10367                            BSI->CXXThisCaptureIndex != 0);
10368
10369  // If the user wrote a function type in some form, try to use that.
10370  if (!BSI->FunctionType.isNull()) {
10371    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
10372
10373    FunctionType::ExtInfo Ext = FTy->getExtInfo();
10374    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
10375
10376    // Turn protoless block types into nullary block types.
10377    if (isa<FunctionNoProtoType>(FTy)) {
10378      FunctionProtoType::ExtProtoInfo EPI;
10379      EPI.ExtInfo = Ext;
10380      BlockTy = Context.getFunctionType(RetTy, None, EPI);
10381
10382    // Otherwise, if we don't need to change anything about the function type,
10383    // preserve its sugar structure.
10384    } else if (FTy->getResultType() == RetTy &&
10385               (!NoReturn || FTy->getNoReturnAttr())) {
10386      BlockTy = BSI->FunctionType;
10387
10388    // Otherwise, make the minimal modifications to the function type.
10389    } else {
10390      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
10391      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10392      EPI.TypeQuals = 0; // FIXME: silently?
10393      EPI.ExtInfo = Ext;
10394      BlockTy = Context.getFunctionType(RetTy, FPT->getArgTypes(), EPI);
10395    }
10396
10397  // If we don't have a function type, just build one from nothing.
10398  } else {
10399    FunctionProtoType::ExtProtoInfo EPI;
10400    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
10401    BlockTy = Context.getFunctionType(RetTy, None, EPI);
10402  }
10403
10404  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
10405                           BSI->TheDecl->param_end());
10406  BlockTy = Context.getBlockPointerType(BlockTy);
10407
10408  // If needed, diagnose invalid gotos and switches in the block.
10409  if (getCurFunction()->NeedsScopeChecking() &&
10410      !hasAnyUnrecoverableErrorsInThisFunction() &&
10411      !PP.isCodeCompletionEnabled())
10412    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
10413
10414  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
10415
10416  // Try to apply the named return value optimization. We have to check again
10417  // if we can do this, though, because blocks keep return statements around
10418  // to deduce an implicit return type.
10419  if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
10420      !BSI->TheDecl->isDependentContext())
10421    computeNRVO(Body, getCurBlock());
10422
10423  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
10424  AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10425  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
10426
10427  // If the block isn't obviously global, i.e. it captures anything at
10428  // all, then we need to do a few things in the surrounding context:
10429  if (Result->getBlockDecl()->hasCaptures()) {
10430    // First, this expression has a new cleanup object.
10431    ExprCleanupObjects.push_back(Result->getBlockDecl());
10432    ExprNeedsCleanups = true;
10433
10434    // It also gets a branch-protected scope if any of the captured
10435    // variables needs destruction.
10436    for (BlockDecl::capture_const_iterator
10437           ci = Result->getBlockDecl()->capture_begin(),
10438           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
10439      const VarDecl *var = ci->getVariable();
10440      if (var->getType().isDestructedType() != QualType::DK_none) {
10441        getCurFunction()->setHasBranchProtectedScope();
10442        break;
10443      }
10444    }
10445  }
10446
10447  return Owned(Result);
10448}
10449
10450ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
10451                                        Expr *E, ParsedType Ty,
10452                                        SourceLocation RPLoc) {
10453  TypeSourceInfo *TInfo;
10454  GetTypeFromParser(Ty, &TInfo);
10455  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
10456}
10457
10458ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
10459                                Expr *E, TypeSourceInfo *TInfo,
10460                                SourceLocation RPLoc) {
10461  Expr *OrigExpr = E;
10462
10463  // Get the va_list type
10464  QualType VaListType = Context.getBuiltinVaListType();
10465  if (VaListType->isArrayType()) {
10466    // Deal with implicit array decay; for example, on x86-64,
10467    // va_list is an array, but it's supposed to decay to
10468    // a pointer for va_arg.
10469    VaListType = Context.getArrayDecayedType(VaListType);
10470    // Make sure the input expression also decays appropriately.
10471    ExprResult Result = UsualUnaryConversions(E);
10472    if (Result.isInvalid())
10473      return ExprError();
10474    E = Result.take();
10475  } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
10476    // If va_list is a record type and we are compiling in C++ mode,
10477    // check the argument using reference binding.
10478    InitializedEntity Entity
10479      = InitializedEntity::InitializeParameter(Context,
10480          Context.getLValueReferenceType(VaListType), false);
10481    ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
10482    if (Init.isInvalid())
10483      return ExprError();
10484    E = Init.takeAs<Expr>();
10485  } else {
10486    // Otherwise, the va_list argument must be an l-value because
10487    // it is modified by va_arg.
10488    if (!E->isTypeDependent() &&
10489        CheckForModifiableLvalue(E, BuiltinLoc, *this))
10490      return ExprError();
10491  }
10492
10493  if (!E->isTypeDependent() &&
10494      !Context.hasSameType(VaListType, E->getType())) {
10495    return ExprError(Diag(E->getLocStart(),
10496                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
10497      << OrigExpr->getType() << E->getSourceRange());
10498  }
10499
10500  if (!TInfo->getType()->isDependentType()) {
10501    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
10502                            diag::err_second_parameter_to_va_arg_incomplete,
10503                            TInfo->getTypeLoc()))
10504      return ExprError();
10505
10506    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
10507                               TInfo->getType(),
10508                               diag::err_second_parameter_to_va_arg_abstract,
10509                               TInfo->getTypeLoc()))
10510      return ExprError();
10511
10512    if (!TInfo->getType().isPODType(Context)) {
10513      Diag(TInfo->getTypeLoc().getBeginLoc(),
10514           TInfo->getType()->isObjCLifetimeType()
10515             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
10516             : diag::warn_second_parameter_to_va_arg_not_pod)
10517        << TInfo->getType()
10518        << TInfo->getTypeLoc().getSourceRange();
10519    }
10520
10521    // Check for va_arg where arguments of the given type will be promoted
10522    // (i.e. this va_arg is guaranteed to have undefined behavior).
10523    QualType PromoteType;
10524    if (TInfo->getType()->isPromotableIntegerType()) {
10525      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
10526      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
10527        PromoteType = QualType();
10528    }
10529    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
10530      PromoteType = Context.DoubleTy;
10531    if (!PromoteType.isNull())
10532      DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
10533                  PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
10534                          << TInfo->getType()
10535                          << PromoteType
10536                          << TInfo->getTypeLoc().getSourceRange());
10537  }
10538
10539  QualType T = TInfo->getType().getNonLValueExprType(Context);
10540  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
10541}
10542
10543ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
10544  // The type of __null will be int or long, depending on the size of
10545  // pointers on the target.
10546  QualType Ty;
10547  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
10548  if (pw == Context.getTargetInfo().getIntWidth())
10549    Ty = Context.IntTy;
10550  else if (pw == Context.getTargetInfo().getLongWidth())
10551    Ty = Context.LongTy;
10552  else if (pw == Context.getTargetInfo().getLongLongWidth())
10553    Ty = Context.LongLongTy;
10554  else {
10555    llvm_unreachable("I don't know size of pointer!");
10556  }
10557
10558  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
10559}
10560
10561static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
10562                                           Expr *SrcExpr, FixItHint &Hint,
10563                                           bool &IsNSString) {
10564  if (!SemaRef.getLangOpts().ObjC1)
10565    return;
10566
10567  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
10568  if (!PT)
10569    return;
10570
10571  // Check if the destination is of type 'id'.
10572  if (!PT->isObjCIdType()) {
10573    // Check if the destination is the 'NSString' interface.
10574    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
10575    if (!ID || !ID->getIdentifier()->isStr("NSString"))
10576      return;
10577    IsNSString = true;
10578  }
10579
10580  // Ignore any parens, implicit casts (should only be
10581  // array-to-pointer decays), and not-so-opaque values.  The last is
10582  // important for making this trigger for property assignments.
10583  SrcExpr = SrcExpr->IgnoreParenImpCasts();
10584  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
10585    if (OV->getSourceExpr())
10586      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
10587
10588  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
10589  if (!SL || !SL->isAscii())
10590    return;
10591
10592  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
10593}
10594
10595bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
10596                                    SourceLocation Loc,
10597                                    QualType DstType, QualType SrcType,
10598                                    Expr *SrcExpr, AssignmentAction Action,
10599                                    bool *Complained) {
10600  if (Complained)
10601    *Complained = false;
10602
10603  // Decode the result (notice that AST's are still created for extensions).
10604  bool CheckInferredResultType = false;
10605  bool isInvalid = false;
10606  unsigned DiagKind = 0;
10607  FixItHint Hint;
10608  ConversionFixItGenerator ConvHints;
10609  bool MayHaveConvFixit = false;
10610  bool MayHaveFunctionDiff = false;
10611  bool IsNSString = false;
10612
10613  switch (ConvTy) {
10614  case Compatible:
10615      DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
10616      return false;
10617
10618  case PointerToInt:
10619    DiagKind = diag::ext_typecheck_convert_pointer_int;
10620    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10621    MayHaveConvFixit = true;
10622    break;
10623  case IntToPointer:
10624    DiagKind = diag::ext_typecheck_convert_int_pointer;
10625    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10626    MayHaveConvFixit = true;
10627    break;
10628  case IncompatiblePointer:
10629    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint, IsNSString);
10630      DiagKind =
10631        (Action == AA_Passing_CFAudited ?
10632          diag::err_arc_typecheck_convert_incompatible_pointer :
10633          diag::ext_typecheck_convert_incompatible_pointer);
10634    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
10635      SrcType->isObjCObjectPointerType();
10636    if (Hint.isNull() && !CheckInferredResultType) {
10637      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10638    }
10639    else if (CheckInferredResultType) {
10640      SrcType = SrcType.getUnqualifiedType();
10641      DstType = DstType.getUnqualifiedType();
10642    }
10643    else if (IsNSString && !Hint.isNull())
10644      DiagKind = diag::warn_missing_atsign_prefix;
10645    MayHaveConvFixit = true;
10646    break;
10647  case IncompatiblePointerSign:
10648    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
10649    break;
10650  case FunctionVoidPointer:
10651    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
10652    break;
10653  case IncompatiblePointerDiscardsQualifiers: {
10654    // Perform array-to-pointer decay if necessary.
10655    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
10656
10657    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
10658    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
10659    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
10660      DiagKind = diag::err_typecheck_incompatible_address_space;
10661      break;
10662
10663
10664    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
10665      DiagKind = diag::err_typecheck_incompatible_ownership;
10666      break;
10667    }
10668
10669    llvm_unreachable("unknown error case for discarding qualifiers!");
10670    // fallthrough
10671  }
10672  case CompatiblePointerDiscardsQualifiers:
10673    // If the qualifiers lost were because we were applying the
10674    // (deprecated) C++ conversion from a string literal to a char*
10675    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
10676    // Ideally, this check would be performed in
10677    // checkPointerTypesForAssignment. However, that would require a
10678    // bit of refactoring (so that the second argument is an
10679    // expression, rather than a type), which should be done as part
10680    // of a larger effort to fix checkPointerTypesForAssignment for
10681    // C++ semantics.
10682    if (getLangOpts().CPlusPlus &&
10683        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
10684      return false;
10685    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
10686    break;
10687  case IncompatibleNestedPointerQualifiers:
10688    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
10689    break;
10690  case IntToBlockPointer:
10691    DiagKind = diag::err_int_to_block_pointer;
10692    break;
10693  case IncompatibleBlockPointer:
10694    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
10695    break;
10696  case IncompatibleObjCQualifiedId:
10697    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
10698    // it can give a more specific diagnostic.
10699    DiagKind = diag::warn_incompatible_qualified_id;
10700    break;
10701  case IncompatibleVectors:
10702    DiagKind = diag::warn_incompatible_vectors;
10703    break;
10704  case IncompatibleObjCWeakRef:
10705    DiagKind = diag::err_arc_weak_unavailable_assign;
10706    break;
10707  case Incompatible:
10708    DiagKind = diag::err_typecheck_convert_incompatible;
10709    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
10710    MayHaveConvFixit = true;
10711    isInvalid = true;
10712    MayHaveFunctionDiff = true;
10713    break;
10714  }
10715
10716  QualType FirstType, SecondType;
10717  switch (Action) {
10718  case AA_Assigning:
10719  case AA_Initializing:
10720    // The destination type comes first.
10721    FirstType = DstType;
10722    SecondType = SrcType;
10723    break;
10724
10725  case AA_Returning:
10726  case AA_Passing:
10727  case AA_Passing_CFAudited:
10728  case AA_Converting:
10729  case AA_Sending:
10730  case AA_Casting:
10731    // The source type comes first.
10732    FirstType = SrcType;
10733    SecondType = DstType;
10734    break;
10735  }
10736
10737  PartialDiagnostic FDiag = PDiag(DiagKind);
10738  if (Action == AA_Passing_CFAudited)
10739    FDiag << FirstType << SecondType << SrcExpr->getSourceRange();
10740  else
10741    FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
10742
10743  // If we can fix the conversion, suggest the FixIts.
10744  assert(ConvHints.isNull() || Hint.isNull());
10745  if (!ConvHints.isNull()) {
10746    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
10747         HE = ConvHints.Hints.end(); HI != HE; ++HI)
10748      FDiag << *HI;
10749  } else {
10750    FDiag << Hint;
10751  }
10752  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
10753
10754  if (MayHaveFunctionDiff)
10755    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
10756
10757  Diag(Loc, FDiag);
10758
10759  if (SecondType == Context.OverloadTy)
10760    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
10761                              FirstType);
10762
10763  if (CheckInferredResultType)
10764    EmitRelatedResultTypeNote(SrcExpr);
10765
10766  if (Action == AA_Returning && ConvTy == IncompatiblePointer)
10767    EmitRelatedResultTypeNoteForReturn(DstType);
10768
10769  if (Complained)
10770    *Complained = true;
10771  return isInvalid;
10772}
10773
10774ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10775                                                 llvm::APSInt *Result) {
10776  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
10777  public:
10778    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10779      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
10780    }
10781  } Diagnoser;
10782
10783  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
10784}
10785
10786ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
10787                                                 llvm::APSInt *Result,
10788                                                 unsigned DiagID,
10789                                                 bool AllowFold) {
10790  class IDDiagnoser : public VerifyICEDiagnoser {
10791    unsigned DiagID;
10792
10793  public:
10794    IDDiagnoser(unsigned DiagID)
10795      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
10796
10797    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
10798      S.Diag(Loc, DiagID) << SR;
10799    }
10800  } Diagnoser(DiagID);
10801
10802  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
10803}
10804
10805void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
10806                                            SourceRange SR) {
10807  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
10808}
10809
10810ExprResult
10811Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
10812                                      VerifyICEDiagnoser &Diagnoser,
10813                                      bool AllowFold) {
10814  SourceLocation DiagLoc = E->getLocStart();
10815
10816  if (getLangOpts().CPlusPlus11) {
10817    // C++11 [expr.const]p5:
10818    //   If an expression of literal class type is used in a context where an
10819    //   integral constant expression is required, then that class type shall
10820    //   have a single non-explicit conversion function to an integral or
10821    //   unscoped enumeration type
10822    ExprResult Converted;
10823    class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
10824    public:
10825      CXX11ConvertDiagnoser(bool Silent)
10826          : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
10827                                Silent, true) {}
10828
10829      virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
10830                                                   QualType T) {
10831        return S.Diag(Loc, diag::err_ice_not_integral) << T;
10832      }
10833
10834      virtual SemaDiagnosticBuilder diagnoseIncomplete(
10835          Sema &S, SourceLocation Loc, QualType T) {
10836        return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
10837      }
10838
10839      virtual SemaDiagnosticBuilder diagnoseExplicitConv(
10840          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
10841        return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
10842      }
10843
10844      virtual SemaDiagnosticBuilder noteExplicitConv(
10845          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
10846        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10847                 << ConvTy->isEnumeralType() << ConvTy;
10848      }
10849
10850      virtual SemaDiagnosticBuilder diagnoseAmbiguous(
10851          Sema &S, SourceLocation Loc, QualType T) {
10852        return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
10853      }
10854
10855      virtual SemaDiagnosticBuilder noteAmbiguous(
10856          Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
10857        return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
10858                 << ConvTy->isEnumeralType() << ConvTy;
10859      }
10860
10861      virtual SemaDiagnosticBuilder diagnoseConversion(
10862          Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
10863        llvm_unreachable("conversion functions are permitted");
10864      }
10865    } ConvertDiagnoser(Diagnoser.Suppress);
10866
10867    Converted = PerformContextualImplicitConversion(DiagLoc, E,
10868                                                    ConvertDiagnoser);
10869    if (Converted.isInvalid())
10870      return Converted;
10871    E = Converted.take();
10872    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
10873      return ExprError();
10874  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
10875    // An ICE must be of integral or unscoped enumeration type.
10876    if (!Diagnoser.Suppress)
10877      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10878    return ExprError();
10879  }
10880
10881  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
10882  // in the non-ICE case.
10883  if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
10884    if (Result)
10885      *Result = E->EvaluateKnownConstInt(Context);
10886    return Owned(E);
10887  }
10888
10889  Expr::EvalResult EvalResult;
10890  SmallVector<PartialDiagnosticAt, 8> Notes;
10891  EvalResult.Diag = &Notes;
10892
10893  // Try to evaluate the expression, and produce diagnostics explaining why it's
10894  // not a constant expression as a side-effect.
10895  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
10896                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
10897
10898  // In C++11, we can rely on diagnostics being produced for any expression
10899  // which is not a constant expression. If no diagnostics were produced, then
10900  // this is a constant expression.
10901  if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
10902    if (Result)
10903      *Result = EvalResult.Val.getInt();
10904    return Owned(E);
10905  }
10906
10907  // If our only note is the usual "invalid subexpression" note, just point
10908  // the caret at its location rather than producing an essentially
10909  // redundant note.
10910  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10911        diag::note_invalid_subexpr_in_const_expr) {
10912    DiagLoc = Notes[0].first;
10913    Notes.clear();
10914  }
10915
10916  if (!Folded || !AllowFold) {
10917    if (!Diagnoser.Suppress) {
10918      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
10919      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10920        Diag(Notes[I].first, Notes[I].second);
10921    }
10922
10923    return ExprError();
10924  }
10925
10926  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
10927  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10928    Diag(Notes[I].first, Notes[I].second);
10929
10930  if (Result)
10931    *Result = EvalResult.Val.getInt();
10932  return Owned(E);
10933}
10934
10935namespace {
10936  // Handle the case where we conclude a expression which we speculatively
10937  // considered to be unevaluated is actually evaluated.
10938  class TransformToPE : public TreeTransform<TransformToPE> {
10939    typedef TreeTransform<TransformToPE> BaseTransform;
10940
10941  public:
10942    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
10943
10944    // Make sure we redo semantic analysis
10945    bool AlwaysRebuild() { return true; }
10946
10947    // Make sure we handle LabelStmts correctly.
10948    // FIXME: This does the right thing, but maybe we need a more general
10949    // fix to TreeTransform?
10950    StmtResult TransformLabelStmt(LabelStmt *S) {
10951      S->getDecl()->setStmt(0);
10952      return BaseTransform::TransformLabelStmt(S);
10953    }
10954
10955    // We need to special-case DeclRefExprs referring to FieldDecls which
10956    // are not part of a member pointer formation; normal TreeTransforming
10957    // doesn't catch this case because of the way we represent them in the AST.
10958    // FIXME: This is a bit ugly; is it really the best way to handle this
10959    // case?
10960    //
10961    // Error on DeclRefExprs referring to FieldDecls.
10962    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
10963      if (isa<FieldDecl>(E->getDecl()) &&
10964          !SemaRef.isUnevaluatedContext())
10965        return SemaRef.Diag(E->getLocation(),
10966                            diag::err_invalid_non_static_member_use)
10967            << E->getDecl() << E->getSourceRange();
10968
10969      return BaseTransform::TransformDeclRefExpr(E);
10970    }
10971
10972    // Exception: filter out member pointer formation
10973    ExprResult TransformUnaryOperator(UnaryOperator *E) {
10974      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
10975        return E;
10976
10977      return BaseTransform::TransformUnaryOperator(E);
10978    }
10979
10980    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10981      // Lambdas never need to be transformed.
10982      return E;
10983    }
10984  };
10985}
10986
10987ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
10988  assert(isUnevaluatedContext() &&
10989         "Should only transform unevaluated expressions");
10990  ExprEvalContexts.back().Context =
10991      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
10992  if (isUnevaluatedContext())
10993    return E;
10994  return TransformToPE(*this).TransformExpr(E);
10995}
10996
10997void
10998Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
10999                                      Decl *LambdaContextDecl,
11000                                      bool IsDecltype) {
11001  ExprEvalContexts.push_back(
11002             ExpressionEvaluationContextRecord(NewContext,
11003                                               ExprCleanupObjects.size(),
11004                                               ExprNeedsCleanups,
11005                                               LambdaContextDecl,
11006                                               IsDecltype));
11007  ExprNeedsCleanups = false;
11008  if (!MaybeODRUseExprs.empty())
11009    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
11010}
11011
11012void
11013Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
11014                                      ReuseLambdaContextDecl_t,
11015                                      bool IsDecltype) {
11016  Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
11017  PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
11018}
11019
11020void Sema::PopExpressionEvaluationContext() {
11021  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
11022
11023  if (!Rec.Lambdas.empty()) {
11024    if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11025      unsigned D;
11026      if (Rec.isUnevaluated()) {
11027        // C++11 [expr.prim.lambda]p2:
11028        //   A lambda-expression shall not appear in an unevaluated operand
11029        //   (Clause 5).
11030        D = diag::err_lambda_unevaluated_operand;
11031      } else {
11032        // C++1y [expr.const]p2:
11033        //   A conditional-expression e is a core constant expression unless the
11034        //   evaluation of e, following the rules of the abstract machine, would
11035        //   evaluate [...] a lambda-expression.
11036        D = diag::err_lambda_in_constant_expression;
11037      }
11038      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
11039        Diag(Rec.Lambdas[I]->getLocStart(), D);
11040    } else {
11041      // Mark the capture expressions odr-used. This was deferred
11042      // during lambda expression creation.
11043      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
11044        LambdaExpr *Lambda = Rec.Lambdas[I];
11045        for (LambdaExpr::capture_init_iterator
11046                  C = Lambda->capture_init_begin(),
11047               CEnd = Lambda->capture_init_end();
11048             C != CEnd; ++C) {
11049          MarkDeclarationsReferencedInExpr(*C);
11050        }
11051      }
11052    }
11053  }
11054
11055  // When are coming out of an unevaluated context, clear out any
11056  // temporaries that we may have created as part of the evaluation of
11057  // the expression in that context: they aren't relevant because they
11058  // will never be constructed.
11059  if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11060    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
11061                             ExprCleanupObjects.end());
11062    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
11063    CleanupVarDeclMarking();
11064    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
11065  // Otherwise, merge the contexts together.
11066  } else {
11067    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
11068    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
11069                            Rec.SavedMaybeODRUseExprs.end());
11070  }
11071
11072  // Pop the current expression evaluation context off the stack.
11073  ExprEvalContexts.pop_back();
11074}
11075
11076void Sema::DiscardCleanupsInEvaluationContext() {
11077  ExprCleanupObjects.erase(
11078         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
11079         ExprCleanupObjects.end());
11080  ExprNeedsCleanups = false;
11081  MaybeODRUseExprs.clear();
11082}
11083
11084ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
11085  if (!E->getType()->isVariablyModifiedType())
11086    return E;
11087  return TransformToPotentiallyEvaluated(E);
11088}
11089
11090static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
11091  // Do not mark anything as "used" within a dependent context; wait for
11092  // an instantiation.
11093  if (SemaRef.CurContext->isDependentContext())
11094    return false;
11095
11096  switch (SemaRef.ExprEvalContexts.back().Context) {
11097    case Sema::Unevaluated:
11098    case Sema::UnevaluatedAbstract:
11099      // We are in an expression that is not potentially evaluated; do nothing.
11100      // (Depending on how you read the standard, we actually do need to do
11101      // something here for null pointer constants, but the standard's
11102      // definition of a null pointer constant is completely crazy.)
11103      return false;
11104
11105    case Sema::ConstantEvaluated:
11106    case Sema::PotentiallyEvaluated:
11107      // We are in a potentially evaluated expression (or a constant-expression
11108      // in C++03); we need to do implicit template instantiation, implicitly
11109      // define class members, and mark most declarations as used.
11110      return true;
11111
11112    case Sema::PotentiallyEvaluatedIfUsed:
11113      // Referenced declarations will only be used if the construct in the
11114      // containing expression is used.
11115      return false;
11116  }
11117  llvm_unreachable("Invalid context");
11118}
11119
11120/// \brief Mark a function referenced, and check whether it is odr-used
11121/// (C++ [basic.def.odr]p2, C99 6.9p3)
11122void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
11123  assert(Func && "No function?");
11124
11125  Func->setReferenced();
11126
11127  // C++11 [basic.def.odr]p3:
11128  //   A function whose name appears as a potentially-evaluated expression is
11129  //   odr-used if it is the unique lookup result or the selected member of a
11130  //   set of overloaded functions [...].
11131  //
11132  // We (incorrectly) mark overload resolution as an unevaluated context, so we
11133  // can just check that here. Skip the rest of this function if we've already
11134  // marked the function as used.
11135  if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
11136    // C++11 [temp.inst]p3:
11137    //   Unless a function template specialization has been explicitly
11138    //   instantiated or explicitly specialized, the function template
11139    //   specialization is implicitly instantiated when the specialization is
11140    //   referenced in a context that requires a function definition to exist.
11141    //
11142    // We consider constexpr function templates to be referenced in a context
11143    // that requires a definition to exist whenever they are referenced.
11144    //
11145    // FIXME: This instantiates constexpr functions too frequently. If this is
11146    // really an unevaluated context (and we're not just in the definition of a
11147    // function template or overload resolution or other cases which we
11148    // incorrectly consider to be unevaluated contexts), and we're not in a
11149    // subexpression which we actually need to evaluate (for instance, a
11150    // template argument, array bound or an expression in a braced-init-list),
11151    // we are not permitted to instantiate this constexpr function definition.
11152    //
11153    // FIXME: This also implicitly defines special members too frequently. They
11154    // are only supposed to be implicitly defined if they are odr-used, but they
11155    // are not odr-used from constant expressions in unevaluated contexts.
11156    // However, they cannot be referenced if they are deleted, and they are
11157    // deleted whenever the implicit definition of the special member would
11158    // fail.
11159    if (!Func->isConstexpr() || Func->getBody())
11160      return;
11161    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
11162    if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
11163      return;
11164  }
11165
11166  // Note that this declaration has been used.
11167  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
11168    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
11169      if (Constructor->isDefaultConstructor()) {
11170        if (Constructor->isTrivial())
11171          return;
11172        if (!Constructor->isUsed(false))
11173          DefineImplicitDefaultConstructor(Loc, Constructor);
11174      } else if (Constructor->isCopyConstructor()) {
11175        if (!Constructor->isUsed(false))
11176          DefineImplicitCopyConstructor(Loc, Constructor);
11177      } else if (Constructor->isMoveConstructor()) {
11178        if (!Constructor->isUsed(false))
11179          DefineImplicitMoveConstructor(Loc, Constructor);
11180      }
11181    } else if (Constructor->getInheritedConstructor()) {
11182      if (!Constructor->isUsed(false))
11183        DefineInheritingConstructor(Loc, Constructor);
11184    }
11185
11186    MarkVTableUsed(Loc, Constructor->getParent());
11187  } else if (CXXDestructorDecl *Destructor =
11188                 dyn_cast<CXXDestructorDecl>(Func)) {
11189    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
11190        !Destructor->isUsed(false))
11191      DefineImplicitDestructor(Loc, Destructor);
11192    if (Destructor->isVirtual())
11193      MarkVTableUsed(Loc, Destructor->getParent());
11194  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
11195    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
11196        MethodDecl->isOverloadedOperator() &&
11197        MethodDecl->getOverloadedOperator() == OO_Equal) {
11198      if (!MethodDecl->isUsed(false)) {
11199        if (MethodDecl->isCopyAssignmentOperator())
11200          DefineImplicitCopyAssignment(Loc, MethodDecl);
11201        else
11202          DefineImplicitMoveAssignment(Loc, MethodDecl);
11203      }
11204    } else if (isa<CXXConversionDecl>(MethodDecl) &&
11205               MethodDecl->getParent()->isLambda()) {
11206      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
11207      if (Conversion->isLambdaToBlockPointerConversion())
11208        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
11209      else
11210        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
11211    } else if (MethodDecl->isVirtual())
11212      MarkVTableUsed(Loc, MethodDecl->getParent());
11213  }
11214
11215  // Recursive functions should be marked when used from another function.
11216  // FIXME: Is this really right?
11217  if (CurContext == Func) return;
11218
11219  // Resolve the exception specification for any function which is
11220  // used: CodeGen will need it.
11221  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
11222  if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
11223    ResolveExceptionSpec(Loc, FPT);
11224
11225  // Implicit instantiation of function templates and member functions of
11226  // class templates.
11227  if (Func->isImplicitlyInstantiable()) {
11228    bool AlreadyInstantiated = false;
11229    SourceLocation PointOfInstantiation = Loc;
11230    if (FunctionTemplateSpecializationInfo *SpecInfo
11231                              = Func->getTemplateSpecializationInfo()) {
11232      if (SpecInfo->getPointOfInstantiation().isInvalid())
11233        SpecInfo->setPointOfInstantiation(Loc);
11234      else if (SpecInfo->getTemplateSpecializationKind()
11235                 == TSK_ImplicitInstantiation) {
11236        AlreadyInstantiated = true;
11237        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
11238      }
11239    } else if (MemberSpecializationInfo *MSInfo
11240                                = Func->getMemberSpecializationInfo()) {
11241      if (MSInfo->getPointOfInstantiation().isInvalid())
11242        MSInfo->setPointOfInstantiation(Loc);
11243      else if (MSInfo->getTemplateSpecializationKind()
11244                 == TSK_ImplicitInstantiation) {
11245        AlreadyInstantiated = true;
11246        PointOfInstantiation = MSInfo->getPointOfInstantiation();
11247      }
11248    }
11249
11250    if (!AlreadyInstantiated || Func->isConstexpr()) {
11251      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
11252          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
11253          ActiveTemplateInstantiations.size())
11254        PendingLocalImplicitInstantiations.push_back(
11255            std::make_pair(Func, PointOfInstantiation));
11256      else if (Func->isConstexpr())
11257        // Do not defer instantiations of constexpr functions, to avoid the
11258        // expression evaluator needing to call back into Sema if it sees a
11259        // call to such a function.
11260        InstantiateFunctionDefinition(PointOfInstantiation, Func);
11261      else {
11262        PendingInstantiations.push_back(std::make_pair(Func,
11263                                                       PointOfInstantiation));
11264        // Notify the consumer that a function was implicitly instantiated.
11265        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
11266      }
11267    }
11268  } else {
11269    // Walk redefinitions, as some of them may be instantiable.
11270    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
11271         e(Func->redecls_end()); i != e; ++i) {
11272      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
11273        MarkFunctionReferenced(Loc, *i);
11274    }
11275  }
11276
11277  // Keep track of used but undefined functions.
11278  if (!Func->isDefined()) {
11279    if (mightHaveNonExternalLinkage(Func))
11280      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11281    else if (Func->getMostRecentDecl()->isInlined() &&
11282             (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
11283             !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
11284      UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11285  }
11286
11287  // Normally the most current decl is marked used while processing the use and
11288  // any subsequent decls are marked used by decl merging. This fails with
11289  // template instantiation since marking can happen at the end of the file
11290  // and, because of the two phase lookup, this function is called with at
11291  // decl in the middle of a decl chain. We loop to maintain the invariant
11292  // that once a decl is used, all decls after it are also used.
11293  for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
11294    F->markUsed(Context);
11295    if (F == Func)
11296      break;
11297  }
11298}
11299
11300static void
11301diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
11302                                   VarDecl *var, DeclContext *DC) {
11303  DeclContext *VarDC = var->getDeclContext();
11304
11305  //  If the parameter still belongs to the translation unit, then
11306  //  we're actually just using one parameter in the declaration of
11307  //  the next.
11308  if (isa<ParmVarDecl>(var) &&
11309      isa<TranslationUnitDecl>(VarDC))
11310    return;
11311
11312  // For C code, don't diagnose about capture if we're not actually in code
11313  // right now; it's impossible to write a non-constant expression outside of
11314  // function context, so we'll get other (more useful) diagnostics later.
11315  //
11316  // For C++, things get a bit more nasty... it would be nice to suppress this
11317  // diagnostic for certain cases like using a local variable in an array bound
11318  // for a member of a local class, but the correct predicate is not obvious.
11319  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
11320    return;
11321
11322  if (isa<CXXMethodDecl>(VarDC) &&
11323      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
11324    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
11325      << var->getIdentifier();
11326  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
11327    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
11328      << var->getIdentifier() << fn->getDeclName();
11329  } else if (isa<BlockDecl>(VarDC)) {
11330    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
11331      << var->getIdentifier();
11332  } else {
11333    // FIXME: Is there any other context where a local variable can be
11334    // declared?
11335    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
11336      << var->getIdentifier();
11337  }
11338
11339  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
11340    << var->getIdentifier();
11341
11342  // FIXME: Add additional diagnostic info about class etc. which prevents
11343  // capture.
11344}
11345
11346
11347static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
11348                                      bool &SubCapturesAreNested,
11349                                      QualType &CaptureType,
11350                                      QualType &DeclRefType) {
11351   // Check whether we've already captured it.
11352  if (CSI->CaptureMap.count(Var)) {
11353    // If we found a capture, any subcaptures are nested.
11354    SubCapturesAreNested = true;
11355
11356    // Retrieve the capture type for this variable.
11357    CaptureType = CSI->getCapture(Var).getCaptureType();
11358
11359    // Compute the type of an expression that refers to this variable.
11360    DeclRefType = CaptureType.getNonReferenceType();
11361
11362    const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
11363    if (Cap.isCopyCapture() &&
11364        !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
11365      DeclRefType.addConst();
11366    return true;
11367  }
11368  return false;
11369}
11370
11371// Only block literals, captured statements, and lambda expressions can
11372// capture; other scopes don't work.
11373static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
11374                                 SourceLocation Loc,
11375                                 const bool Diagnose, Sema &S) {
11376  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC))
11377    return DC->getParent();
11378  else if (isa<CXXMethodDecl>(DC) &&
11379                cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
11380                cast<CXXRecordDecl>(DC->getParent())->isLambda())
11381    return DC->getParent()->getParent();
11382  else {
11383    if (Diagnose)
11384       diagnoseUncapturableValueReference(S, Loc, Var, DC);
11385  }
11386  return 0;
11387}
11388
11389// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
11390// certain types of variables (unnamed, variably modified types etc.)
11391// so check for eligibility.
11392static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
11393                                 SourceLocation Loc,
11394                                 const bool Diagnose, Sema &S) {
11395
11396  bool IsBlock = isa<BlockScopeInfo>(CSI);
11397  bool IsLambda = isa<LambdaScopeInfo>(CSI);
11398
11399  // Lambdas are not allowed to capture unnamed variables
11400  // (e.g. anonymous unions).
11401  // FIXME: The C++11 rule don't actually state this explicitly, but I'm
11402  // assuming that's the intent.
11403  if (IsLambda && !Var->getDeclName()) {
11404    if (Diagnose) {
11405      S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
11406      S.Diag(Var->getLocation(), diag::note_declared_at);
11407    }
11408    return false;
11409  }
11410
11411  // Prohibit variably-modified types; they're difficult to deal with.
11412  if (Var->getType()->isVariablyModifiedType()) {
11413    if (Diagnose) {
11414      if (IsBlock)
11415        S.Diag(Loc, diag::err_ref_vm_type);
11416      else
11417        S.Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
11418      S.Diag(Var->getLocation(), diag::note_previous_decl)
11419        << Var->getDeclName();
11420    }
11421    return false;
11422  }
11423  // Prohibit structs with flexible array members too.
11424  // We cannot capture what is in the tail end of the struct.
11425  if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
11426    if (VTTy->getDecl()->hasFlexibleArrayMember()) {
11427      if (Diagnose) {
11428        if (IsBlock)
11429          S.Diag(Loc, diag::err_ref_flexarray_type);
11430        else
11431          S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
11432            << Var->getDeclName();
11433        S.Diag(Var->getLocation(), diag::note_previous_decl)
11434          << Var->getDeclName();
11435      }
11436      return false;
11437    }
11438  }
11439  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11440  // Lambdas and captured statements are not allowed to capture __block
11441  // variables; they don't support the expected semantics.
11442  if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
11443    if (Diagnose) {
11444      S.Diag(Loc, diag::err_capture_block_variable)
11445        << Var->getDeclName() << !IsLambda;
11446      S.Diag(Var->getLocation(), diag::note_previous_decl)
11447        << Var->getDeclName();
11448    }
11449    return false;
11450  }
11451
11452  return true;
11453}
11454
11455// Returns true if the capture by block was successful.
11456static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
11457                                 SourceLocation Loc,
11458                                 const bool BuildAndDiagnose,
11459                                 QualType &CaptureType,
11460                                 QualType &DeclRefType,
11461                                 const bool Nested,
11462                                 Sema &S) {
11463  Expr *CopyExpr = 0;
11464  bool ByRef = false;
11465
11466  // Blocks are not allowed to capture arrays.
11467  if (CaptureType->isArrayType()) {
11468    if (BuildAndDiagnose) {
11469      S.Diag(Loc, diag::err_ref_array_type);
11470      S.Diag(Var->getLocation(), diag::note_previous_decl)
11471      << Var->getDeclName();
11472    }
11473    return false;
11474  }
11475
11476  // Forbid the block-capture of autoreleasing variables.
11477  if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11478    if (BuildAndDiagnose) {
11479      S.Diag(Loc, diag::err_arc_autoreleasing_capture)
11480        << /*block*/ 0;
11481      S.Diag(Var->getLocation(), diag::note_previous_decl)
11482        << Var->getDeclName();
11483    }
11484    return false;
11485  }
11486  const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11487  if (HasBlocksAttr || CaptureType->isReferenceType()) {
11488    // Block capture by reference does not change the capture or
11489    // declaration reference types.
11490    ByRef = true;
11491  } else {
11492    // Block capture by copy introduces 'const'.
11493    CaptureType = CaptureType.getNonReferenceType().withConst();
11494    DeclRefType = CaptureType;
11495
11496    if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
11497      if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
11498        // The capture logic needs the destructor, so make sure we mark it.
11499        // Usually this is unnecessary because most local variables have
11500        // their destructors marked at declaration time, but parameters are
11501        // an exception because it's technically only the call site that
11502        // actually requires the destructor.
11503        if (isa<ParmVarDecl>(Var))
11504          S.FinalizeVarWithDestructor(Var, Record);
11505
11506        // Enter a new evaluation context to insulate the copy
11507        // full-expression.
11508        EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
11509
11510        // According to the blocks spec, the capture of a variable from
11511        // the stack requires a const copy constructor.  This is not true
11512        // of the copy/move done to move a __block variable to the heap.
11513        Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
11514                                                  DeclRefType.withConst(),
11515                                                  VK_LValue, Loc);
11516
11517        ExprResult Result
11518          = S.PerformCopyInitialization(
11519              InitializedEntity::InitializeBlock(Var->getLocation(),
11520                                                  CaptureType, false),
11521              Loc, S.Owned(DeclRef));
11522
11523        // Build a full-expression copy expression if initialization
11524        // succeeded and used a non-trivial constructor.  Recover from
11525        // errors by pretending that the copy isn't necessary.
11526        if (!Result.isInvalid() &&
11527            !cast<CXXConstructExpr>(Result.get())->getConstructor()
11528                ->isTrivial()) {
11529          Result = S.MaybeCreateExprWithCleanups(Result);
11530          CopyExpr = Result.take();
11531        }
11532      }
11533    }
11534  }
11535
11536  // Actually capture the variable.
11537  if (BuildAndDiagnose)
11538    BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11539                    SourceLocation(), CaptureType, CopyExpr);
11540
11541  return true;
11542
11543}
11544
11545
11546/// \brief Capture the given variable in the captured region.
11547static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
11548                                    VarDecl *Var,
11549                                    SourceLocation Loc,
11550                                    const bool BuildAndDiagnose,
11551                                    QualType &CaptureType,
11552                                    QualType &DeclRefType,
11553                                    const bool RefersToEnclosingLocal,
11554                                    Sema &S) {
11555
11556  // By default, capture variables by reference.
11557  bool ByRef = true;
11558  // Using an LValue reference type is consistent with Lambdas (see below).
11559  CaptureType = S.Context.getLValueReferenceType(DeclRefType);
11560  Expr *CopyExpr = 0;
11561  if (BuildAndDiagnose) {
11562    // The current implementation assumes that all variables are captured
11563    // by references. Since there is no capture by copy, no expression evaluation
11564    // will be needed.
11565    //
11566    RecordDecl *RD = RSI->TheRecordDecl;
11567
11568    FieldDecl *Field
11569      = FieldDecl::Create(S.Context, RD, Loc, Loc, 0, CaptureType,
11570                          S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
11571                          0, false, ICIS_NoInit);
11572    Field->setImplicit(true);
11573    Field->setAccess(AS_private);
11574    RD->addDecl(Field);
11575
11576    CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
11577                                            DeclRefType, VK_LValue, Loc);
11578    Var->setReferenced(true);
11579    Var->markUsed(S.Context);
11580  }
11581
11582  // Actually capture the variable.
11583  if (BuildAndDiagnose)
11584    RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToEnclosingLocal, Loc,
11585                    SourceLocation(), CaptureType, CopyExpr);
11586
11587
11588  return true;
11589}
11590
11591/// \brief Create a field within the lambda class for the variable
11592///  being captured.  Handle Array captures.
11593static ExprResult addAsFieldToClosureType(Sema &S,
11594                                 LambdaScopeInfo *LSI,
11595                                  VarDecl *Var, QualType FieldType,
11596                                  QualType DeclRefType,
11597                                  SourceLocation Loc,
11598                                  bool RefersToEnclosingLocal) {
11599  CXXRecordDecl *Lambda = LSI->Lambda;
11600
11601  // Build the non-static data member.
11602  FieldDecl *Field
11603    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
11604                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
11605                        0, false, ICIS_NoInit);
11606  Field->setImplicit(true);
11607  Field->setAccess(AS_private);
11608  Lambda->addDecl(Field);
11609
11610  // C++11 [expr.prim.lambda]p21:
11611  //   When the lambda-expression is evaluated, the entities that
11612  //   are captured by copy are used to direct-initialize each
11613  //   corresponding non-static data member of the resulting closure
11614  //   object. (For array members, the array elements are
11615  //   direct-initialized in increasing subscript order.) These
11616  //   initializations are performed in the (unspecified) order in
11617  //   which the non-static data members are declared.
11618
11619  // Introduce a new evaluation context for the initialization, so
11620  // that temporaries introduced as part of the capture are retained
11621  // to be re-"exported" from the lambda expression itself.
11622  EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
11623
11624  // C++ [expr.prim.labda]p12:
11625  //   An entity captured by a lambda-expression is odr-used (3.2) in
11626  //   the scope containing the lambda-expression.
11627  Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
11628                                          DeclRefType, VK_LValue, Loc);
11629  Var->setReferenced(true);
11630  Var->markUsed(S.Context);
11631
11632  // When the field has array type, create index variables for each
11633  // dimension of the array. We use these index variables to subscript
11634  // the source array, and other clients (e.g., CodeGen) will perform
11635  // the necessary iteration with these index variables.
11636  SmallVector<VarDecl *, 4> IndexVariables;
11637  QualType BaseType = FieldType;
11638  QualType SizeType = S.Context.getSizeType();
11639  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
11640  while (const ConstantArrayType *Array
11641                        = S.Context.getAsConstantArrayType(BaseType)) {
11642    // Create the iteration variable for this array index.
11643    IdentifierInfo *IterationVarName = 0;
11644    {
11645      SmallString<8> Str;
11646      llvm::raw_svector_ostream OS(Str);
11647      OS << "__i" << IndexVariables.size();
11648      IterationVarName = &S.Context.Idents.get(OS.str());
11649    }
11650    VarDecl *IterationVar
11651      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
11652                        IterationVarName, SizeType,
11653                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
11654                        SC_None);
11655    IndexVariables.push_back(IterationVar);
11656    LSI->ArrayIndexVars.push_back(IterationVar);
11657
11658    // Create a reference to the iteration variable.
11659    ExprResult IterationVarRef
11660      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
11661    assert(!IterationVarRef.isInvalid() &&
11662           "Reference to invented variable cannot fail!");
11663    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
11664    assert(!IterationVarRef.isInvalid() &&
11665           "Conversion of invented variable cannot fail!");
11666
11667    // Subscript the array with this iteration variable.
11668    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
11669                             Ref, Loc, IterationVarRef.take(), Loc);
11670    if (Subscript.isInvalid()) {
11671      S.CleanupVarDeclMarking();
11672      S.DiscardCleanupsInEvaluationContext();
11673      return ExprError();
11674    }
11675
11676    Ref = Subscript.take();
11677    BaseType = Array->getElementType();
11678  }
11679
11680  // Construct the entity that we will be initializing. For an array, this
11681  // will be first element in the array, which may require several levels
11682  // of array-subscript entities.
11683  SmallVector<InitializedEntity, 4> Entities;
11684  Entities.reserve(1 + IndexVariables.size());
11685  Entities.push_back(
11686    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
11687  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
11688    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
11689                                                            0,
11690                                                            Entities.back()));
11691
11692  InitializationKind InitKind
11693    = InitializationKind::CreateDirect(Loc, Loc, Loc);
11694  InitializationSequence Init(S, Entities.back(), InitKind, Ref);
11695  ExprResult Result(true);
11696  if (!Init.Diagnose(S, Entities.back(), InitKind, Ref))
11697    Result = Init.Perform(S, Entities.back(), InitKind, Ref);
11698
11699  // If this initialization requires any cleanups (e.g., due to a
11700  // default argument to a copy constructor), note that for the
11701  // lambda.
11702  if (S.ExprNeedsCleanups)
11703    LSI->ExprNeedsCleanups = true;
11704
11705  // Exit the expression evaluation context used for the capture.
11706  S.CleanupVarDeclMarking();
11707  S.DiscardCleanupsInEvaluationContext();
11708  return Result;
11709}
11710
11711
11712
11713/// \brief Capture the given variable in the lambda.
11714static bool captureInLambda(LambdaScopeInfo *LSI,
11715                            VarDecl *Var,
11716                            SourceLocation Loc,
11717                            const bool BuildAndDiagnose,
11718                            QualType &CaptureType,
11719                            QualType &DeclRefType,
11720                            const bool RefersToEnclosingLocal,
11721                            const Sema::TryCaptureKind Kind,
11722                            SourceLocation EllipsisLoc,
11723                            const bool IsTopScope,
11724                            Sema &S) {
11725
11726  // Determine whether we are capturing by reference or by value.
11727  bool ByRef = false;
11728  if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
11729    ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
11730  } else {
11731    ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
11732  }
11733
11734  // Compute the type of the field that will capture this variable.
11735  if (ByRef) {
11736    // C++11 [expr.prim.lambda]p15:
11737    //   An entity is captured by reference if it is implicitly or
11738    //   explicitly captured but not captured by copy. It is
11739    //   unspecified whether additional unnamed non-static data
11740    //   members are declared in the closure type for entities
11741    //   captured by reference.
11742    //
11743    // FIXME: It is not clear whether we want to build an lvalue reference
11744    // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
11745    // to do the former, while EDG does the latter. Core issue 1249 will
11746    // clarify, but for now we follow GCC because it's a more permissive and
11747    // easily defensible position.
11748    CaptureType = S.Context.getLValueReferenceType(DeclRefType);
11749  } else {
11750    // C++11 [expr.prim.lambda]p14:
11751    //   For each entity captured by copy, an unnamed non-static
11752    //   data member is declared in the closure type. The
11753    //   declaration order of these members is unspecified. The type
11754    //   of such a data member is the type of the corresponding
11755    //   captured entity if the entity is not a reference to an
11756    //   object, or the referenced type otherwise. [Note: If the
11757    //   captured entity is a reference to a function, the
11758    //   corresponding data member is also a reference to a
11759    //   function. - end note ]
11760    if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
11761      if (!RefType->getPointeeType()->isFunctionType())
11762        CaptureType = RefType->getPointeeType();
11763    }
11764
11765    // Forbid the lambda copy-capture of autoreleasing variables.
11766    if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11767      if (BuildAndDiagnose) {
11768        S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
11769        S.Diag(Var->getLocation(), diag::note_previous_decl)
11770          << Var->getDeclName();
11771      }
11772      return false;
11773    }
11774
11775    if (S.RequireNonAbstractType(Loc, CaptureType,
11776                                 diag::err_capture_of_abstract_type))
11777      return false;
11778  }
11779
11780  // Capture this variable in the lambda.
11781  Expr *CopyExpr = 0;
11782  if (BuildAndDiagnose) {
11783    ExprResult Result = addAsFieldToClosureType(S, LSI, Var,
11784                                        CaptureType, DeclRefType, Loc,
11785                                        RefersToEnclosingLocal);
11786    if (!Result.isInvalid())
11787      CopyExpr = Result.take();
11788  }
11789
11790  // Compute the type of a reference to this captured variable.
11791  if (ByRef)
11792    DeclRefType = CaptureType.getNonReferenceType();
11793  else {
11794    // C++ [expr.prim.lambda]p5:
11795    //   The closure type for a lambda-expression has a public inline
11796    //   function call operator [...]. This function call operator is
11797    //   declared const (9.3.1) if and only if the lambda-expression’s
11798    //   parameter-declaration-clause is not followed by mutable.
11799    DeclRefType = CaptureType.getNonReferenceType();
11800    if (!LSI->Mutable && !CaptureType->isReferenceType())
11801      DeclRefType.addConst();
11802  }
11803
11804  // Add the capture.
11805  if (BuildAndDiagnose)
11806    LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToEnclosingLocal,
11807                    Loc, EllipsisLoc, CaptureType, CopyExpr);
11808
11809  return true;
11810}
11811
11812
11813bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation ExprLoc,
11814                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
11815                              bool BuildAndDiagnose,
11816                              QualType &CaptureType,
11817                              QualType &DeclRefType) {
11818  bool Nested = false;
11819
11820  DeclContext *DC = CurContext;
11821  const unsigned MaxFunctionScopesIndex = FunctionScopes.size() - 1;
11822
11823  // If the variable is declared in the current context (and is not an
11824  // init-capture), there is no need to capture it.
11825  if (!Var->isInitCapture() && Var->getDeclContext() == DC) return true;
11826  if (!Var->hasLocalStorage()) return true;
11827
11828  // Walk up the stack to determine whether we can capture the variable,
11829  // performing the "simple" checks that don't depend on type. We stop when
11830  // we've either hit the declared scope of the variable or find an existing
11831  // capture of that variable.  We start from the innermost capturing-entity
11832  // (the DC) and ensure that all intervening capturing-entities
11833  // (blocks/lambdas etc.) between the innermost capturer and the variable`s
11834  // declcontext can either capture the variable or have already captured
11835  // the variable.
11836  CaptureType = Var->getType();
11837  DeclRefType = CaptureType.getNonReferenceType();
11838  bool Explicit = (Kind != TryCapture_Implicit);
11839  unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
11840  do {
11841    // Only block literals, captured statements, and lambda expressions can
11842    // capture; other scopes don't work.
11843    DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
11844                                                              ExprLoc,
11845                                                              BuildAndDiagnose,
11846                                                              *this);
11847    if (!ParentDC) return true;
11848
11849    FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
11850    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
11851
11852
11853    // Check whether we've already captured it.
11854    if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
11855                                             DeclRefType))
11856      break;
11857
11858    // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
11859    // certain types of variables (unnamed, variably modified types etc.)
11860    // so check for eligibility.
11861    if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
11862       return true;
11863
11864    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
11865      // No capture-default, and this is not an explicit capture
11866      // so cannot capture this variable.
11867      if (BuildAndDiagnose) {
11868        Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
11869        Diag(Var->getLocation(), diag::note_previous_decl)
11870          << Var->getDeclName();
11871        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
11872             diag::note_lambda_decl);
11873      }
11874      return true;
11875    }
11876
11877    FunctionScopesIndex--;
11878    DC = ParentDC;
11879    Explicit = false;
11880  } while (!Var->getDeclContext()->Equals(DC));
11881
11882  // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
11883  // computing the type of the capture at each step, checking type-specific
11884  // requirements, and adding captures if requested.
11885  // If the variable had already been captured previously, we start capturing
11886  // at the lambda nested within that one.
11887  for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
11888       ++I) {
11889    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
11890
11891    if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
11892      if (!captureInBlock(BSI, Var, ExprLoc,
11893                          BuildAndDiagnose, CaptureType,
11894                          DeclRefType, Nested, *this))
11895        return true;
11896      Nested = true;
11897    } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
11898      if (!captureInCapturedRegion(RSI, Var, ExprLoc,
11899                                   BuildAndDiagnose, CaptureType,
11900                                   DeclRefType, Nested, *this))
11901        return true;
11902      Nested = true;
11903    } else {
11904      LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
11905      if (!captureInLambda(LSI, Var, ExprLoc,
11906                           BuildAndDiagnose, CaptureType,
11907                           DeclRefType, Nested, Kind, EllipsisLoc,
11908                            /*IsTopScope*/I == N - 1, *this))
11909        return true;
11910      Nested = true;
11911    }
11912  }
11913  return false;
11914}
11915
11916bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
11917                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
11918  QualType CaptureType;
11919  QualType DeclRefType;
11920  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
11921                            /*BuildAndDiagnose=*/true, CaptureType,
11922                            DeclRefType);
11923}
11924
11925QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
11926  QualType CaptureType;
11927  QualType DeclRefType;
11928
11929  // Determine whether we can capture this variable.
11930  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
11931                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
11932    return QualType();
11933
11934  return DeclRefType;
11935}
11936
11937static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
11938                               SourceLocation Loc) {
11939  // Keep track of used but undefined variables.
11940  // FIXME: We shouldn't suppress this warning for static data members.
11941  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
11942      !Var->isExternallyVisible() &&
11943      !(Var->isStaticDataMember() && Var->hasInit())) {
11944    SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
11945    if (old.isInvalid()) old = Loc;
11946  }
11947
11948  SemaRef.tryCaptureVariable(Var, Loc);
11949
11950  Var->markUsed(SemaRef.Context);
11951}
11952
11953void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
11954  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
11955  // an object that satisfies the requirements for appearing in a
11956  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
11957  // is immediately applied."  This function handles the lvalue-to-rvalue
11958  // conversion part.
11959  MaybeODRUseExprs.erase(E->IgnoreParens());
11960}
11961
11962ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
11963  if (!Res.isUsable())
11964    return Res;
11965
11966  // If a constant-expression is a reference to a variable where we delay
11967  // deciding whether it is an odr-use, just assume we will apply the
11968  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
11969  // (a non-type template argument), we have special handling anyway.
11970  UpdateMarkingForLValueToRValue(Res.get());
11971  return Res;
11972}
11973
11974void Sema::CleanupVarDeclMarking() {
11975  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
11976                                        e = MaybeODRUseExprs.end();
11977       i != e; ++i) {
11978    VarDecl *Var;
11979    SourceLocation Loc;
11980    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
11981      Var = cast<VarDecl>(DRE->getDecl());
11982      Loc = DRE->getLocation();
11983    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
11984      Var = cast<VarDecl>(ME->getMemberDecl());
11985      Loc = ME->getMemberLoc();
11986    } else {
11987      llvm_unreachable("Unexpcted expression");
11988    }
11989
11990    MarkVarDeclODRUsed(*this, Var, Loc);
11991  }
11992
11993  MaybeODRUseExprs.clear();
11994}
11995
11996// Mark a VarDecl referenced, and perform the necessary handling to compute
11997// odr-uses.
11998static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
11999                                    VarDecl *Var, Expr *E) {
12000  Var->setReferenced();
12001
12002  if (!IsPotentiallyEvaluatedContext(SemaRef))
12003    return;
12004
12005  VarTemplateSpecializationDecl *VarSpec =
12006      dyn_cast<VarTemplateSpecializationDecl>(Var);
12007  assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
12008         "Can't instantiate a partial template specialization.");
12009
12010  // Implicit instantiation of static data members, static data member
12011  // templates of class templates, and variable template specializations.
12012  // Delay instantiations of variable templates, except for those
12013  // that could be used in a constant expression.
12014  TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
12015  if (isTemplateInstantiation(TSK)) {
12016    bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
12017
12018    if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
12019      if (Var->getPointOfInstantiation().isInvalid()) {
12020        // This is a modification of an existing AST node. Notify listeners.
12021        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
12022          L->StaticDataMemberInstantiated(Var);
12023      } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
12024        // Don't bother trying to instantiate it again, unless we might need
12025        // its initializer before we get to the end of the TU.
12026        TryInstantiating = false;
12027    }
12028
12029    if (Var->getPointOfInstantiation().isInvalid())
12030      Var->setTemplateSpecializationKind(TSK, Loc);
12031
12032    if (TryInstantiating) {
12033      SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
12034      bool InstantiationDependent = false;
12035      bool IsNonDependent =
12036          VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
12037                        VarSpec->getTemplateArgsInfo(), InstantiationDependent)
12038                  : true;
12039
12040      // Do not instantiate specializations that are still type-dependent.
12041      if (IsNonDependent) {
12042        if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
12043          // Do not defer instantiations of variables which could be used in a
12044          // constant expression.
12045          SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
12046        } else {
12047          SemaRef.PendingInstantiations
12048              .push_back(std::make_pair(Var, PointOfInstantiation));
12049        }
12050      }
12051    }
12052  }
12053
12054  // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
12055  // the requirements for appearing in a constant expression (5.19) and, if
12056  // it is an object, the lvalue-to-rvalue conversion (4.1)
12057  // is immediately applied."  We check the first part here, and
12058  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
12059  // Note that we use the C++11 definition everywhere because nothing in
12060  // C++03 depends on whether we get the C++03 version correct. The second
12061  // part does not apply to references, since they are not objects.
12062  const VarDecl *DefVD;
12063  if (E && !isa<ParmVarDecl>(Var) &&
12064      Var->isUsableInConstantExpressions(SemaRef.Context) &&
12065      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE()) {
12066    if (!Var->getType()->isReferenceType())
12067      SemaRef.MaybeODRUseExprs.insert(E);
12068  } else
12069    MarkVarDeclODRUsed(SemaRef, Var, Loc);
12070}
12071
12072/// \brief Mark a variable referenced, and check whether it is odr-used
12073/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
12074/// used directly for normal expressions referring to VarDecl.
12075void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
12076  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
12077}
12078
12079static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
12080                               Decl *D, Expr *E, bool OdrUse) {
12081  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
12082    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
12083    return;
12084  }
12085
12086  SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
12087
12088  // If this is a call to a method via a cast, also mark the method in the
12089  // derived class used in case codegen can devirtualize the call.
12090  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12091  if (!ME)
12092    return;
12093  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
12094  if (!MD)
12095    return;
12096  const Expr *Base = ME->getBase();
12097  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
12098  if (!MostDerivedClassDecl)
12099    return;
12100  CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
12101  if (!DM || DM->isPure())
12102    return;
12103  SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
12104}
12105
12106/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
12107void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
12108  // TODO: update this with DR# once a defect report is filed.
12109  // C++11 defect. The address of a pure member should not be an ODR use, even
12110  // if it's a qualified reference.
12111  bool OdrUse = true;
12112  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
12113    if (Method->isVirtual())
12114      OdrUse = false;
12115  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
12116}
12117
12118/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
12119void Sema::MarkMemberReferenced(MemberExpr *E) {
12120  // C++11 [basic.def.odr]p2:
12121  //   A non-overloaded function whose name appears as a potentially-evaluated
12122  //   expression or a member of a set of candidate functions, if selected by
12123  //   overload resolution when referred to from a potentially-evaluated
12124  //   expression, is odr-used, unless it is a pure virtual function and its
12125  //   name is not explicitly qualified.
12126  bool OdrUse = true;
12127  if (!E->hasQualifier()) {
12128    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
12129      if (Method->isPure())
12130        OdrUse = false;
12131  }
12132  SourceLocation Loc = E->getMemberLoc().isValid() ?
12133                            E->getMemberLoc() : E->getLocStart();
12134  MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
12135}
12136
12137/// \brief Perform marking for a reference to an arbitrary declaration.  It
12138/// marks the declaration referenced, and performs odr-use checking for functions
12139/// and variables. This method should not be used when building an normal
12140/// expression which refers to a variable.
12141void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
12142  if (OdrUse) {
12143    if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
12144      MarkVariableReferenced(Loc, VD);
12145      return;
12146    }
12147    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
12148      MarkFunctionReferenced(Loc, FD);
12149      return;
12150    }
12151  }
12152  D->setReferenced();
12153}
12154
12155namespace {
12156  // Mark all of the declarations referenced
12157  // FIXME: Not fully implemented yet! We need to have a better understanding
12158  // of when we're entering
12159  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
12160    Sema &S;
12161    SourceLocation Loc;
12162
12163  public:
12164    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
12165
12166    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
12167
12168    bool TraverseTemplateArgument(const TemplateArgument &Arg);
12169    bool TraverseRecordType(RecordType *T);
12170  };
12171}
12172
12173bool MarkReferencedDecls::TraverseTemplateArgument(
12174  const TemplateArgument &Arg) {
12175  if (Arg.getKind() == TemplateArgument::Declaration) {
12176    if (Decl *D = Arg.getAsDecl())
12177      S.MarkAnyDeclReferenced(Loc, D, true);
12178  }
12179
12180  return Inherited::TraverseTemplateArgument(Arg);
12181}
12182
12183bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
12184  if (ClassTemplateSpecializationDecl *Spec
12185                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
12186    const TemplateArgumentList &Args = Spec->getTemplateArgs();
12187    return TraverseTemplateArguments(Args.data(), Args.size());
12188  }
12189
12190  return true;
12191}
12192
12193void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
12194  MarkReferencedDecls Marker(*this, Loc);
12195  Marker.TraverseType(Context.getCanonicalType(T));
12196}
12197
12198namespace {
12199  /// \brief Helper class that marks all of the declarations referenced by
12200  /// potentially-evaluated subexpressions as "referenced".
12201  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
12202    Sema &S;
12203    bool SkipLocalVariables;
12204
12205  public:
12206    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
12207
12208    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
12209      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
12210
12211    void VisitDeclRefExpr(DeclRefExpr *E) {
12212      // If we were asked not to visit local variables, don't.
12213      if (SkipLocalVariables) {
12214        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
12215          if (VD->hasLocalStorage())
12216            return;
12217      }
12218
12219      S.MarkDeclRefReferenced(E);
12220    }
12221
12222    void VisitMemberExpr(MemberExpr *E) {
12223      S.MarkMemberReferenced(E);
12224      Inherited::VisitMemberExpr(E);
12225    }
12226
12227    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
12228      S.MarkFunctionReferenced(E->getLocStart(),
12229            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
12230      Visit(E->getSubExpr());
12231    }
12232
12233    void VisitCXXNewExpr(CXXNewExpr *E) {
12234      if (E->getOperatorNew())
12235        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
12236      if (E->getOperatorDelete())
12237        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12238      Inherited::VisitCXXNewExpr(E);
12239    }
12240
12241    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
12242      if (E->getOperatorDelete())
12243        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12244      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
12245      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
12246        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
12247        S.MarkFunctionReferenced(E->getLocStart(),
12248                                    S.LookupDestructor(Record));
12249      }
12250
12251      Inherited::VisitCXXDeleteExpr(E);
12252    }
12253
12254    void VisitCXXConstructExpr(CXXConstructExpr *E) {
12255      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
12256      Inherited::VisitCXXConstructExpr(E);
12257    }
12258
12259    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
12260      Visit(E->getExpr());
12261    }
12262
12263    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12264      Inherited::VisitImplicitCastExpr(E);
12265
12266      if (E->getCastKind() == CK_LValueToRValue)
12267        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
12268    }
12269  };
12270}
12271
12272/// \brief Mark any declarations that appear within this expression or any
12273/// potentially-evaluated subexpressions as "referenced".
12274///
12275/// \param SkipLocalVariables If true, don't mark local variables as
12276/// 'referenced'.
12277void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
12278                                            bool SkipLocalVariables) {
12279  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
12280}
12281
12282/// \brief Emit a diagnostic that describes an effect on the run-time behavior
12283/// of the program being compiled.
12284///
12285/// This routine emits the given diagnostic when the code currently being
12286/// type-checked is "potentially evaluated", meaning that there is a
12287/// possibility that the code will actually be executable. Code in sizeof()
12288/// expressions, code used only during overload resolution, etc., are not
12289/// potentially evaluated. This routine will suppress such diagnostics or,
12290/// in the absolutely nutty case of potentially potentially evaluated
12291/// expressions (C++ typeid), queue the diagnostic to potentially emit it
12292/// later.
12293///
12294/// This routine should be used for all diagnostics that describe the run-time
12295/// behavior of a program, such as passing a non-POD value through an ellipsis.
12296/// Failure to do so will likely result in spurious diagnostics or failures
12297/// during overload resolution or within sizeof/alignof/typeof/typeid.
12298bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
12299                               const PartialDiagnostic &PD) {
12300  switch (ExprEvalContexts.back().Context) {
12301  case Unevaluated:
12302  case UnevaluatedAbstract:
12303    // The argument will never be evaluated, so don't complain.
12304    break;
12305
12306  case ConstantEvaluated:
12307    // Relevant diagnostics should be produced by constant evaluation.
12308    break;
12309
12310  case PotentiallyEvaluated:
12311  case PotentiallyEvaluatedIfUsed:
12312    if (Statement && getCurFunctionOrMethodDecl()) {
12313      FunctionScopes.back()->PossiblyUnreachableDiags.
12314        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
12315    }
12316    else
12317      Diag(Loc, PD);
12318
12319    return true;
12320  }
12321
12322  return false;
12323}
12324
12325bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
12326                               CallExpr *CE, FunctionDecl *FD) {
12327  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
12328    return false;
12329
12330  // If we're inside a decltype's expression, don't check for a valid return
12331  // type or construct temporaries until we know whether this is the last call.
12332  if (ExprEvalContexts.back().IsDecltype) {
12333    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
12334    return false;
12335  }
12336
12337  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
12338    FunctionDecl *FD;
12339    CallExpr *CE;
12340
12341  public:
12342    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
12343      : FD(FD), CE(CE) { }
12344
12345    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
12346      if (!FD) {
12347        S.Diag(Loc, diag::err_call_incomplete_return)
12348          << T << CE->getSourceRange();
12349        return;
12350      }
12351
12352      S.Diag(Loc, diag::err_call_function_incomplete_return)
12353        << CE->getSourceRange() << FD->getDeclName() << T;
12354      S.Diag(FD->getLocation(),
12355             diag::note_function_with_incomplete_return_type_declared_here)
12356        << FD->getDeclName();
12357    }
12358  } Diagnoser(FD, CE);
12359
12360  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
12361    return true;
12362
12363  return false;
12364}
12365
12366// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
12367// will prevent this condition from triggering, which is what we want.
12368void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
12369  SourceLocation Loc;
12370
12371  unsigned diagnostic = diag::warn_condition_is_assignment;
12372  bool IsOrAssign = false;
12373
12374  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
12375    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
12376      return;
12377
12378    IsOrAssign = Op->getOpcode() == BO_OrAssign;
12379
12380    // Greylist some idioms by putting them into a warning subcategory.
12381    if (ObjCMessageExpr *ME
12382          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
12383      Selector Sel = ME->getSelector();
12384
12385      // self = [<foo> init...]
12386      if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
12387        diagnostic = diag::warn_condition_is_idiomatic_assignment;
12388
12389      // <foo> = [<bar> nextObject]
12390      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
12391        diagnostic = diag::warn_condition_is_idiomatic_assignment;
12392    }
12393
12394    Loc = Op->getOperatorLoc();
12395  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
12396    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
12397      return;
12398
12399    IsOrAssign = Op->getOperator() == OO_PipeEqual;
12400    Loc = Op->getOperatorLoc();
12401  } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
12402    return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
12403  else {
12404    // Not an assignment.
12405    return;
12406  }
12407
12408  Diag(Loc, diagnostic) << E->getSourceRange();
12409
12410  SourceLocation Open = E->getLocStart();
12411  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
12412  Diag(Loc, diag::note_condition_assign_silence)
12413        << FixItHint::CreateInsertion(Open, "(")
12414        << FixItHint::CreateInsertion(Close, ")");
12415
12416  if (IsOrAssign)
12417    Diag(Loc, diag::note_condition_or_assign_to_comparison)
12418      << FixItHint::CreateReplacement(Loc, "!=");
12419  else
12420    Diag(Loc, diag::note_condition_assign_to_comparison)
12421      << FixItHint::CreateReplacement(Loc, "==");
12422}
12423
12424/// \brief Redundant parentheses over an equality comparison can indicate
12425/// that the user intended an assignment used as condition.
12426void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
12427  // Don't warn if the parens came from a macro.
12428  SourceLocation parenLoc = ParenE->getLocStart();
12429  if (parenLoc.isInvalid() || parenLoc.isMacroID())
12430    return;
12431  // Don't warn for dependent expressions.
12432  if (ParenE->isTypeDependent())
12433    return;
12434
12435  Expr *E = ParenE->IgnoreParens();
12436
12437  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
12438    if (opE->getOpcode() == BO_EQ &&
12439        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
12440                                                           == Expr::MLV_Valid) {
12441      SourceLocation Loc = opE->getOperatorLoc();
12442
12443      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
12444      SourceRange ParenERange = ParenE->getSourceRange();
12445      Diag(Loc, diag::note_equality_comparison_silence)
12446        << FixItHint::CreateRemoval(ParenERange.getBegin())
12447        << FixItHint::CreateRemoval(ParenERange.getEnd());
12448      Diag(Loc, diag::note_equality_comparison_to_assign)
12449        << FixItHint::CreateReplacement(Loc, "=");
12450    }
12451}
12452
12453ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
12454  DiagnoseAssignmentAsCondition(E);
12455  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
12456    DiagnoseEqualityWithExtraParens(parenE);
12457
12458  ExprResult result = CheckPlaceholderExpr(E);
12459  if (result.isInvalid()) return ExprError();
12460  E = result.take();
12461
12462  if (!E->isTypeDependent()) {
12463    if (getLangOpts().CPlusPlus)
12464      return CheckCXXBooleanCondition(E); // C++ 6.4p4
12465
12466    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
12467    if (ERes.isInvalid())
12468      return ExprError();
12469    E = ERes.take();
12470
12471    QualType T = E->getType();
12472    if (!T->isScalarType()) { // C99 6.8.4.1p1
12473      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
12474        << T << E->getSourceRange();
12475      return ExprError();
12476    }
12477  }
12478
12479  return Owned(E);
12480}
12481
12482ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
12483                                       Expr *SubExpr) {
12484  if (!SubExpr)
12485    return ExprError();
12486
12487  return CheckBooleanCondition(SubExpr, Loc);
12488}
12489
12490namespace {
12491  /// A visitor for rebuilding a call to an __unknown_any expression
12492  /// to have an appropriate type.
12493  struct RebuildUnknownAnyFunction
12494    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
12495
12496    Sema &S;
12497
12498    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
12499
12500    ExprResult VisitStmt(Stmt *S) {
12501      llvm_unreachable("unexpected statement!");
12502    }
12503
12504    ExprResult VisitExpr(Expr *E) {
12505      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
12506        << E->getSourceRange();
12507      return ExprError();
12508    }
12509
12510    /// Rebuild an expression which simply semantically wraps another
12511    /// expression which it shares the type and value kind of.
12512    template <class T> ExprResult rebuildSugarExpr(T *E) {
12513      ExprResult SubResult = Visit(E->getSubExpr());
12514      if (SubResult.isInvalid()) return ExprError();
12515
12516      Expr *SubExpr = SubResult.take();
12517      E->setSubExpr(SubExpr);
12518      E->setType(SubExpr->getType());
12519      E->setValueKind(SubExpr->getValueKind());
12520      assert(E->getObjectKind() == OK_Ordinary);
12521      return E;
12522    }
12523
12524    ExprResult VisitParenExpr(ParenExpr *E) {
12525      return rebuildSugarExpr(E);
12526    }
12527
12528    ExprResult VisitUnaryExtension(UnaryOperator *E) {
12529      return rebuildSugarExpr(E);
12530    }
12531
12532    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
12533      ExprResult SubResult = Visit(E->getSubExpr());
12534      if (SubResult.isInvalid()) return ExprError();
12535
12536      Expr *SubExpr = SubResult.take();
12537      E->setSubExpr(SubExpr);
12538      E->setType(S.Context.getPointerType(SubExpr->getType()));
12539      assert(E->getValueKind() == VK_RValue);
12540      assert(E->getObjectKind() == OK_Ordinary);
12541      return E;
12542    }
12543
12544    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
12545      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
12546
12547      E->setType(VD->getType());
12548
12549      assert(E->getValueKind() == VK_RValue);
12550      if (S.getLangOpts().CPlusPlus &&
12551          !(isa<CXXMethodDecl>(VD) &&
12552            cast<CXXMethodDecl>(VD)->isInstance()))
12553        E->setValueKind(VK_LValue);
12554
12555      return E;
12556    }
12557
12558    ExprResult VisitMemberExpr(MemberExpr *E) {
12559      return resolveDecl(E, E->getMemberDecl());
12560    }
12561
12562    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
12563      return resolveDecl(E, E->getDecl());
12564    }
12565  };
12566}
12567
12568/// Given a function expression of unknown-any type, try to rebuild it
12569/// to have a function type.
12570static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
12571  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
12572  if (Result.isInvalid()) return ExprError();
12573  return S.DefaultFunctionArrayConversion(Result.take());
12574}
12575
12576namespace {
12577  /// A visitor for rebuilding an expression of type __unknown_anytype
12578  /// into one which resolves the type directly on the referring
12579  /// expression.  Strict preservation of the original source
12580  /// structure is not a goal.
12581  struct RebuildUnknownAnyExpr
12582    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
12583
12584    Sema &S;
12585
12586    /// The current destination type.
12587    QualType DestType;
12588
12589    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
12590      : S(S), DestType(CastType) {}
12591
12592    ExprResult VisitStmt(Stmt *S) {
12593      llvm_unreachable("unexpected statement!");
12594    }
12595
12596    ExprResult VisitExpr(Expr *E) {
12597      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12598        << E->getSourceRange();
12599      return ExprError();
12600    }
12601
12602    ExprResult VisitCallExpr(CallExpr *E);
12603    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
12604
12605    /// Rebuild an expression which simply semantically wraps another
12606    /// expression which it shares the type and value kind of.
12607    template <class T> ExprResult rebuildSugarExpr(T *E) {
12608      ExprResult SubResult = Visit(E->getSubExpr());
12609      if (SubResult.isInvalid()) return ExprError();
12610      Expr *SubExpr = SubResult.take();
12611      E->setSubExpr(SubExpr);
12612      E->setType(SubExpr->getType());
12613      E->setValueKind(SubExpr->getValueKind());
12614      assert(E->getObjectKind() == OK_Ordinary);
12615      return E;
12616    }
12617
12618    ExprResult VisitParenExpr(ParenExpr *E) {
12619      return rebuildSugarExpr(E);
12620    }
12621
12622    ExprResult VisitUnaryExtension(UnaryOperator *E) {
12623      return rebuildSugarExpr(E);
12624    }
12625
12626    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
12627      const PointerType *Ptr = DestType->getAs<PointerType>();
12628      if (!Ptr) {
12629        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
12630          << E->getSourceRange();
12631        return ExprError();
12632      }
12633      assert(E->getValueKind() == VK_RValue);
12634      assert(E->getObjectKind() == OK_Ordinary);
12635      E->setType(DestType);
12636
12637      // Build the sub-expression as if it were an object of the pointee type.
12638      DestType = Ptr->getPointeeType();
12639      ExprResult SubResult = Visit(E->getSubExpr());
12640      if (SubResult.isInvalid()) return ExprError();
12641      E->setSubExpr(SubResult.take());
12642      return E;
12643    }
12644
12645    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
12646
12647    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
12648
12649    ExprResult VisitMemberExpr(MemberExpr *E) {
12650      return resolveDecl(E, E->getMemberDecl());
12651    }
12652
12653    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
12654      return resolveDecl(E, E->getDecl());
12655    }
12656  };
12657}
12658
12659/// Rebuilds a call expression which yielded __unknown_anytype.
12660ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
12661  Expr *CalleeExpr = E->getCallee();
12662
12663  enum FnKind {
12664    FK_MemberFunction,
12665    FK_FunctionPointer,
12666    FK_BlockPointer
12667  };
12668
12669  FnKind Kind;
12670  QualType CalleeType = CalleeExpr->getType();
12671  if (CalleeType == S.Context.BoundMemberTy) {
12672    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
12673    Kind = FK_MemberFunction;
12674    CalleeType = Expr::findBoundMemberType(CalleeExpr);
12675  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
12676    CalleeType = Ptr->getPointeeType();
12677    Kind = FK_FunctionPointer;
12678  } else {
12679    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
12680    Kind = FK_BlockPointer;
12681  }
12682  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
12683
12684  // Verify that this is a legal result type of a function.
12685  if (DestType->isArrayType() || DestType->isFunctionType()) {
12686    unsigned diagID = diag::err_func_returning_array_function;
12687    if (Kind == FK_BlockPointer)
12688      diagID = diag::err_block_returning_array_function;
12689
12690    S.Diag(E->getExprLoc(), diagID)
12691      << DestType->isFunctionType() << DestType;
12692    return ExprError();
12693  }
12694
12695  // Otherwise, go ahead and set DestType as the call's result.
12696  E->setType(DestType.getNonLValueExprType(S.Context));
12697  E->setValueKind(Expr::getValueKindForType(DestType));
12698  assert(E->getObjectKind() == OK_Ordinary);
12699
12700  // Rebuild the function type, replacing the result type with DestType.
12701  const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
12702  if (Proto) {
12703    // __unknown_anytype(...) is a special case used by the debugger when
12704    // it has no idea what a function's signature is.
12705    //
12706    // We want to build this call essentially under the K&R
12707    // unprototyped rules, but making a FunctionNoProtoType in C++
12708    // would foul up all sorts of assumptions.  However, we cannot
12709    // simply pass all arguments as variadic arguments, nor can we
12710    // portably just call the function under a non-variadic type; see
12711    // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
12712    // However, it turns out that in practice it is generally safe to
12713    // call a function declared as "A foo(B,C,D);" under the prototype
12714    // "A foo(B,C,D,...);".  The only known exception is with the
12715    // Windows ABI, where any variadic function is implicitly cdecl
12716    // regardless of its normal CC.  Therefore we change the parameter
12717    // types to match the types of the arguments.
12718    //
12719    // This is a hack, but it is far superior to moving the
12720    // corresponding target-specific code from IR-gen to Sema/AST.
12721
12722    ArrayRef<QualType> ParamTypes = Proto->getArgTypes();
12723    SmallVector<QualType, 8> ArgTypes;
12724    if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
12725      ArgTypes.reserve(E->getNumArgs());
12726      for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
12727        Expr *Arg = E->getArg(i);
12728        QualType ArgType = Arg->getType();
12729        if (E->isLValue()) {
12730          ArgType = S.Context.getLValueReferenceType(ArgType);
12731        } else if (E->isXValue()) {
12732          ArgType = S.Context.getRValueReferenceType(ArgType);
12733        }
12734        ArgTypes.push_back(ArgType);
12735      }
12736      ParamTypes = ArgTypes;
12737    }
12738    DestType = S.Context.getFunctionType(DestType, ParamTypes,
12739                                         Proto->getExtProtoInfo());
12740  } else {
12741    DestType = S.Context.getFunctionNoProtoType(DestType,
12742                                                FnType->getExtInfo());
12743  }
12744
12745  // Rebuild the appropriate pointer-to-function type.
12746  switch (Kind) {
12747  case FK_MemberFunction:
12748    // Nothing to do.
12749    break;
12750
12751  case FK_FunctionPointer:
12752    DestType = S.Context.getPointerType(DestType);
12753    break;
12754
12755  case FK_BlockPointer:
12756    DestType = S.Context.getBlockPointerType(DestType);
12757    break;
12758  }
12759
12760  // Finally, we can recurse.
12761  ExprResult CalleeResult = Visit(CalleeExpr);
12762  if (!CalleeResult.isUsable()) return ExprError();
12763  E->setCallee(CalleeResult.take());
12764
12765  // Bind a temporary if necessary.
12766  return S.MaybeBindToTemporary(E);
12767}
12768
12769ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
12770  // Verify that this is a legal result type of a call.
12771  if (DestType->isArrayType() || DestType->isFunctionType()) {
12772    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
12773      << DestType->isFunctionType() << DestType;
12774    return ExprError();
12775  }
12776
12777  // Rewrite the method result type if available.
12778  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
12779    assert(Method->getResultType() == S.Context.UnknownAnyTy);
12780    Method->setResultType(DestType);
12781  }
12782
12783  // Change the type of the message.
12784  E->setType(DestType.getNonReferenceType());
12785  E->setValueKind(Expr::getValueKindForType(DestType));
12786
12787  return S.MaybeBindToTemporary(E);
12788}
12789
12790ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
12791  // The only case we should ever see here is a function-to-pointer decay.
12792  if (E->getCastKind() == CK_FunctionToPointerDecay) {
12793    assert(E->getValueKind() == VK_RValue);
12794    assert(E->getObjectKind() == OK_Ordinary);
12795
12796    E->setType(DestType);
12797
12798    // Rebuild the sub-expression as the pointee (function) type.
12799    DestType = DestType->castAs<PointerType>()->getPointeeType();
12800
12801    ExprResult Result = Visit(E->getSubExpr());
12802    if (!Result.isUsable()) return ExprError();
12803
12804    E->setSubExpr(Result.take());
12805    return S.Owned(E);
12806  } else if (E->getCastKind() == CK_LValueToRValue) {
12807    assert(E->getValueKind() == VK_RValue);
12808    assert(E->getObjectKind() == OK_Ordinary);
12809
12810    assert(isa<BlockPointerType>(E->getType()));
12811
12812    E->setType(DestType);
12813
12814    // The sub-expression has to be a lvalue reference, so rebuild it as such.
12815    DestType = S.Context.getLValueReferenceType(DestType);
12816
12817    ExprResult Result = Visit(E->getSubExpr());
12818    if (!Result.isUsable()) return ExprError();
12819
12820    E->setSubExpr(Result.take());
12821    return S.Owned(E);
12822  } else {
12823    llvm_unreachable("Unhandled cast type!");
12824  }
12825}
12826
12827ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
12828  ExprValueKind ValueKind = VK_LValue;
12829  QualType Type = DestType;
12830
12831  // We know how to make this work for certain kinds of decls:
12832
12833  //  - functions
12834  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
12835    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
12836      DestType = Ptr->getPointeeType();
12837      ExprResult Result = resolveDecl(E, VD);
12838      if (Result.isInvalid()) return ExprError();
12839      return S.ImpCastExprToType(Result.take(), Type,
12840                                 CK_FunctionToPointerDecay, VK_RValue);
12841    }
12842
12843    if (!Type->isFunctionType()) {
12844      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
12845        << VD << E->getSourceRange();
12846      return ExprError();
12847    }
12848
12849    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
12850      if (MD->isInstance()) {
12851        ValueKind = VK_RValue;
12852        Type = S.Context.BoundMemberTy;
12853      }
12854
12855    // Function references aren't l-values in C.
12856    if (!S.getLangOpts().CPlusPlus)
12857      ValueKind = VK_RValue;
12858
12859  //  - variables
12860  } else if (isa<VarDecl>(VD)) {
12861    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
12862      Type = RefTy->getPointeeType();
12863    } else if (Type->isFunctionType()) {
12864      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
12865        << VD << E->getSourceRange();
12866      return ExprError();
12867    }
12868
12869  //  - nothing else
12870  } else {
12871    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
12872      << VD << E->getSourceRange();
12873    return ExprError();
12874  }
12875
12876  // Modifying the declaration like this is friendly to IR-gen but
12877  // also really dangerous.
12878  VD->setType(DestType);
12879  E->setType(Type);
12880  E->setValueKind(ValueKind);
12881  return S.Owned(E);
12882}
12883
12884/// Check a cast of an unknown-any type.  We intentionally only
12885/// trigger this for C-style casts.
12886ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
12887                                     Expr *CastExpr, CastKind &CastKind,
12888                                     ExprValueKind &VK, CXXCastPath &Path) {
12889  // Rewrite the casted expression from scratch.
12890  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
12891  if (!result.isUsable()) return ExprError();
12892
12893  CastExpr = result.take();
12894  VK = CastExpr->getValueKind();
12895  CastKind = CK_NoOp;
12896
12897  return CastExpr;
12898}
12899
12900ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
12901  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
12902}
12903
12904ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
12905                                    Expr *arg, QualType &paramType) {
12906  // If the syntactic form of the argument is not an explicit cast of
12907  // any sort, just do default argument promotion.
12908  ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
12909  if (!castArg) {
12910    ExprResult result = DefaultArgumentPromotion(arg);
12911    if (result.isInvalid()) return ExprError();
12912    paramType = result.get()->getType();
12913    return result;
12914  }
12915
12916  // Otherwise, use the type that was written in the explicit cast.
12917  assert(!arg->hasPlaceholderType());
12918  paramType = castArg->getTypeAsWritten();
12919
12920  // Copy-initialize a parameter of that type.
12921  InitializedEntity entity =
12922    InitializedEntity::InitializeParameter(Context, paramType,
12923                                           /*consumed*/ false);
12924  return PerformCopyInitialization(entity, callLoc, Owned(arg));
12925}
12926
12927static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
12928  Expr *orig = E;
12929  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
12930  while (true) {
12931    E = E->IgnoreParenImpCasts();
12932    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
12933      E = call->getCallee();
12934      diagID = diag::err_uncasted_call_of_unknown_any;
12935    } else {
12936      break;
12937    }
12938  }
12939
12940  SourceLocation loc;
12941  NamedDecl *d;
12942  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
12943    loc = ref->getLocation();
12944    d = ref->getDecl();
12945  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
12946    loc = mem->getMemberLoc();
12947    d = mem->getMemberDecl();
12948  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
12949    diagID = diag::err_uncasted_call_of_unknown_any;
12950    loc = msg->getSelectorStartLoc();
12951    d = msg->getMethodDecl();
12952    if (!d) {
12953      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
12954        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
12955        << orig->getSourceRange();
12956      return ExprError();
12957    }
12958  } else {
12959    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
12960      << E->getSourceRange();
12961    return ExprError();
12962  }
12963
12964  S.Diag(loc, diagID) << d << orig->getSourceRange();
12965
12966  // Never recoverable.
12967  return ExprError();
12968}
12969
12970/// Check for operands with placeholder types and complain if found.
12971/// Returns true if there was an error and no recovery was possible.
12972ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
12973  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
12974  if (!placeholderType) return Owned(E);
12975
12976  switch (placeholderType->getKind()) {
12977
12978  // Overloaded expressions.
12979  case BuiltinType::Overload: {
12980    // Try to resolve a single function template specialization.
12981    // This is obligatory.
12982    ExprResult result = Owned(E);
12983    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
12984      return result;
12985
12986    // If that failed, try to recover with a call.
12987    } else {
12988      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
12989                           /*complain*/ true);
12990      return result;
12991    }
12992  }
12993
12994  // Bound member functions.
12995  case BuiltinType::BoundMember: {
12996    ExprResult result = Owned(E);
12997    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
12998                         /*complain*/ true);
12999    return result;
13000  }
13001
13002  // ARC unbridged casts.
13003  case BuiltinType::ARCUnbridgedCast: {
13004    Expr *realCast = stripARCUnbridgedCast(E);
13005    diagnoseARCUnbridgedCast(realCast);
13006    return Owned(realCast);
13007  }
13008
13009  // Expressions of unknown type.
13010  case BuiltinType::UnknownAny:
13011    return diagnoseUnknownAnyExpr(*this, E);
13012
13013  // Pseudo-objects.
13014  case BuiltinType::PseudoObject:
13015    return checkPseudoObjectRValue(E);
13016
13017  case BuiltinType::BuiltinFn:
13018    Diag(E->getLocStart(), diag::err_builtin_fn_use);
13019    return ExprError();
13020
13021  // Everything else should be impossible.
13022#define BUILTIN_TYPE(Id, SingletonId) \
13023  case BuiltinType::Id:
13024#define PLACEHOLDER_TYPE(Id, SingletonId)
13025#include "clang/AST/BuiltinTypes.def"
13026    break;
13027  }
13028
13029  llvm_unreachable("invalid placeholder type!");
13030}
13031
13032bool Sema::CheckCaseExpression(Expr *E) {
13033  if (E->isTypeDependent())
13034    return true;
13035  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
13036    return E->getType()->isIntegralOrEnumerationType();
13037  return false;
13038}
13039
13040/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
13041ExprResult
13042Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
13043  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
13044         "Unknown Objective-C Boolean value!");
13045  QualType BoolT = Context.ObjCBuiltinBoolTy;
13046  if (!Context.getBOOLDecl()) {
13047    LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
13048                        Sema::LookupOrdinaryName);
13049    if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
13050      NamedDecl *ND = Result.getFoundDecl();
13051      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
13052        Context.setBOOLDecl(TD);
13053    }
13054  }
13055  if (Context.getBOOLDecl())
13056    BoolT = Context.getBOOLType();
13057  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
13058                                        BoolT, OpLoc));
13059}
13060