SemaExpr.cpp revision 61a0f17301f889260de739219c3e1d4c8039210e
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30//  Standard Promotions and Conversions
31//===----------------------------------------------------------------------===//
32
33/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
34void Sema::DefaultFunctionArrayConversion(Expr *&E) {
35  QualType Ty = E->getType();
36  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
37
38  if (Ty->isFunctionType())
39    ImpCastExprToType(E, Context.getPointerType(Ty));
40  else if (Ty->isArrayType()) {
41    // In C90 mode, arrays only promote to pointers if the array expression is
42    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
43    // type 'array of type' is converted to an expression that has type 'pointer
44    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
45    // that has type 'array of type' ...".  The relevant change is "an lvalue"
46    // (C90) to "an expression" (C99).
47    //
48    // C++ 4.2p1:
49    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
50    // T" can be converted to an rvalue of type "pointer to T".
51    //
52    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
53        E->isLvalue(Context) == Expr::LV_Valid)
54      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
55  }
56}
57
58/// UsualUnaryConversions - Performs various conversions that are common to most
59/// operators (C99 6.3). The conversions of array and function types are
60/// sometimes surpressed. For example, the array->pointer conversion doesn't
61/// apply if the array is an argument to the sizeof or address (&) operators.
62/// In these instances, this routine should *not* be called.
63Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
64  QualType Ty = Expr->getType();
65  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
66
67  if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
68    ImpCastExprToType(Expr, Context.IntTy);
69  else
70    DefaultFunctionArrayConversion(Expr);
71
72  return Expr;
73}
74
75/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
76/// do not have a prototype. Arguments that have type float are promoted to
77/// double. All other argument types are converted by UsualUnaryConversions().
78void Sema::DefaultArgumentPromotion(Expr *&Expr) {
79  QualType Ty = Expr->getType();
80  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
81
82  // If this is a 'float' (CVR qualified or typedef) promote to double.
83  if (const BuiltinType *BT = Ty->getAsBuiltinType())
84    if (BT->getKind() == BuiltinType::Float)
85      return ImpCastExprToType(Expr, Context.DoubleTy);
86
87  UsualUnaryConversions(Expr);
88}
89
90// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
91// will warn if the resulting type is not a POD type.
92void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT)
93
94{
95  DefaultArgumentPromotion(Expr);
96
97  if (!Expr->getType()->isPODType()) {
98    Diag(Expr->getLocStart(),
99         diag::warn_cannot_pass_non_pod_arg_to_vararg) <<
100    Expr->getType() << CT;
101  }
102}
103
104
105/// UsualArithmeticConversions - Performs various conversions that are common to
106/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
107/// routine returns the first non-arithmetic type found. The client is
108/// responsible for emitting appropriate error diagnostics.
109/// FIXME: verify the conversion rules for "complex int" are consistent with
110/// GCC.
111QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
112                                          bool isCompAssign) {
113  if (!isCompAssign) {
114    UsualUnaryConversions(lhsExpr);
115    UsualUnaryConversions(rhsExpr);
116  }
117
118  // For conversion purposes, we ignore any qualifiers.
119  // For example, "const float" and "float" are equivalent.
120  QualType lhs =
121    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
122  QualType rhs =
123    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
124
125  // If both types are identical, no conversion is needed.
126  if (lhs == rhs)
127    return lhs;
128
129  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
130  // The caller can deal with this (e.g. pointer + int).
131  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
132    return lhs;
133
134  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
135  if (!isCompAssign) {
136    ImpCastExprToType(lhsExpr, destType);
137    ImpCastExprToType(rhsExpr, destType);
138  }
139  return destType;
140}
141
142QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
143  // Perform the usual unary conversions. We do this early so that
144  // integral promotions to "int" can allow us to exit early, in the
145  // lhs == rhs check. Also, for conversion purposes, we ignore any
146  // qualifiers.  For example, "const float" and "float" are
147  // equivalent.
148  if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
149  else                                lhs = lhs.getUnqualifiedType();
150  if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
151  else                                rhs = rhs.getUnqualifiedType();
152
153  // If both types are identical, no conversion is needed.
154  if (lhs == rhs)
155    return lhs;
156
157  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
158  // The caller can deal with this (e.g. pointer + int).
159  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
160    return lhs;
161
162  // At this point, we have two different arithmetic types.
163
164  // Handle complex types first (C99 6.3.1.8p1).
165  if (lhs->isComplexType() || rhs->isComplexType()) {
166    // if we have an integer operand, the result is the complex type.
167    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
168      // convert the rhs to the lhs complex type.
169      return lhs;
170    }
171    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
172      // convert the lhs to the rhs complex type.
173      return rhs;
174    }
175    // This handles complex/complex, complex/float, or float/complex.
176    // When both operands are complex, the shorter operand is converted to the
177    // type of the longer, and that is the type of the result. This corresponds
178    // to what is done when combining two real floating-point operands.
179    // The fun begins when size promotion occur across type domains.
180    // From H&S 6.3.4: When one operand is complex and the other is a real
181    // floating-point type, the less precise type is converted, within it's
182    // real or complex domain, to the precision of the other type. For example,
183    // when combining a "long double" with a "double _Complex", the
184    // "double _Complex" is promoted to "long double _Complex".
185    int result = Context.getFloatingTypeOrder(lhs, rhs);
186
187    if (result > 0) { // The left side is bigger, convert rhs.
188      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
189    } else if (result < 0) { // The right side is bigger, convert lhs.
190      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
191    }
192    // At this point, lhs and rhs have the same rank/size. Now, make sure the
193    // domains match. This is a requirement for our implementation, C99
194    // does not require this promotion.
195    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
196      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
197        return rhs;
198      } else { // handle "_Complex double, double".
199        return lhs;
200      }
201    }
202    return lhs; // The domain/size match exactly.
203  }
204  // Now handle "real" floating types (i.e. float, double, long double).
205  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
206    // if we have an integer operand, the result is the real floating type.
207    if (rhs->isIntegerType()) {
208      // convert rhs to the lhs floating point type.
209      return lhs;
210    }
211    if (rhs->isComplexIntegerType()) {
212      // convert rhs to the complex floating point type.
213      return Context.getComplexType(lhs);
214    }
215    if (lhs->isIntegerType()) {
216      // convert lhs to the rhs floating point type.
217      return rhs;
218    }
219    if (lhs->isComplexIntegerType()) {
220      // convert lhs to the complex floating point type.
221      return Context.getComplexType(rhs);
222    }
223    // We have two real floating types, float/complex combos were handled above.
224    // Convert the smaller operand to the bigger result.
225    int result = Context.getFloatingTypeOrder(lhs, rhs);
226
227    if (result > 0) { // convert the rhs
228      return lhs;
229    }
230    if (result < 0) { // convert the lhs
231      return rhs;
232    }
233    assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
234  }
235  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
236    // Handle GCC complex int extension.
237    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
238    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
239
240    if (lhsComplexInt && rhsComplexInt) {
241      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
242                                      rhsComplexInt->getElementType()) >= 0) {
243        // convert the rhs
244        return lhs;
245      }
246      return rhs;
247    } else if (lhsComplexInt && rhs->isIntegerType()) {
248      // convert the rhs to the lhs complex type.
249      return lhs;
250    } else if (rhsComplexInt && lhs->isIntegerType()) {
251      // convert the lhs to the rhs complex type.
252      return rhs;
253    }
254  }
255  // Finally, we have two differing integer types.
256  // The rules for this case are in C99 6.3.1.8
257  int compare = Context.getIntegerTypeOrder(lhs, rhs);
258  bool lhsSigned = lhs->isSignedIntegerType(),
259       rhsSigned = rhs->isSignedIntegerType();
260  QualType destType;
261  if (lhsSigned == rhsSigned) {
262    // Same signedness; use the higher-ranked type
263    destType = compare >= 0 ? lhs : rhs;
264  } else if (compare != (lhsSigned ? 1 : -1)) {
265    // The unsigned type has greater than or equal rank to the
266    // signed type, so use the unsigned type
267    destType = lhsSigned ? rhs : lhs;
268  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
269    // The two types are different widths; if we are here, that
270    // means the signed type is larger than the unsigned type, so
271    // use the signed type.
272    destType = lhsSigned ? lhs : rhs;
273  } else {
274    // The signed type is higher-ranked than the unsigned type,
275    // but isn't actually any bigger (like unsigned int and long
276    // on most 32-bit systems).  Use the unsigned type corresponding
277    // to the signed type.
278    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
279  }
280  return destType;
281}
282
283//===----------------------------------------------------------------------===//
284//  Semantic Analysis for various Expression Types
285//===----------------------------------------------------------------------===//
286
287
288/// ActOnStringLiteral - The specified tokens were lexed as pasted string
289/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
290/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
291/// multiple tokens.  However, the common case is that StringToks points to one
292/// string.
293///
294Action::OwningExprResult
295Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
296  assert(NumStringToks && "Must have at least one string!");
297
298  StringLiteralParser Literal(StringToks, NumStringToks, PP);
299  if (Literal.hadError)
300    return ExprError();
301
302  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
303  for (unsigned i = 0; i != NumStringToks; ++i)
304    StringTokLocs.push_back(StringToks[i].getLocation());
305
306  QualType StrTy = Context.CharTy;
307  if (Literal.AnyWide) StrTy = Context.getWCharType();
308  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
309
310  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
311  if (getLangOptions().CPlusPlus)
312    StrTy.addConst();
313
314  // Get an array type for the string, according to C99 6.4.5.  This includes
315  // the nul terminator character as well as the string length for pascal
316  // strings.
317  StrTy = Context.getConstantArrayType(StrTy,
318                                   llvm::APInt(32, Literal.GetStringLength()+1),
319                                       ArrayType::Normal, 0);
320
321  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
322  return Owned(new (Context) StringLiteral(Context, Literal.GetString(),
323                                 Literal.GetStringLength(),
324                                 Literal.AnyWide, StrTy,
325                                 StringToks[0].getLocation(),
326                                 StringToks[NumStringToks-1].getLocation()));
327}
328
329/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
330/// CurBlock to VD should cause it to be snapshotted (as we do for auto
331/// variables defined outside the block) or false if this is not needed (e.g.
332/// for values inside the block or for globals).
333///
334/// FIXME: This will create BlockDeclRefExprs for global variables,
335/// function references, etc which is suboptimal :) and breaks
336/// things like "integer constant expression" tests.
337static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
338                                              ValueDecl *VD) {
339  // If the value is defined inside the block, we couldn't snapshot it even if
340  // we wanted to.
341  if (CurBlock->TheDecl == VD->getDeclContext())
342    return false;
343
344  // If this is an enum constant or function, it is constant, don't snapshot.
345  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
346    return false;
347
348  // If this is a reference to an extern, static, or global variable, no need to
349  // snapshot it.
350  // FIXME: What about 'const' variables in C++?
351  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
352    return Var->hasLocalStorage();
353
354  return true;
355}
356
357
358
359/// ActOnIdentifierExpr - The parser read an identifier in expression context,
360/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
361/// identifier is used in a function call context.
362/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
363/// class or namespace that the identifier must be a member of.
364Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
365                                                 IdentifierInfo &II,
366                                                 bool HasTrailingLParen,
367                                                 const CXXScopeSpec *SS,
368                                                 bool isAddressOfOperand) {
369  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
370                                  isAddressOfOperand);
371}
372
373/// BuildDeclRefExpr - Build either a DeclRefExpr or a
374/// QualifiedDeclRefExpr based on whether or not SS is a
375/// nested-name-specifier.
376DeclRefExpr *
377Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
378                       bool TypeDependent, bool ValueDependent,
379                       const CXXScopeSpec *SS) {
380  if (SS && !SS->isEmpty())
381    return new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
382                       ValueDependent, SS->getRange().getBegin());
383  else
384    return new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
385}
386
387/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
388/// variable corresponding to the anonymous union or struct whose type
389/// is Record.
390static Decl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
391  assert(Record->isAnonymousStructOrUnion() &&
392         "Record must be an anonymous struct or union!");
393
394  // FIXME: Once Decls are directly linked together, this will
395  // be an O(1) operation rather than a slow walk through DeclContext's
396  // vector (which itself will be eliminated). DeclGroups might make
397  // this even better.
398  DeclContext *Ctx = Record->getDeclContext();
399  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
400                               DEnd = Ctx->decls_end();
401       D != DEnd; ++D) {
402    if (*D == Record) {
403      // The object for the anonymous struct/union directly
404      // follows its type in the list of declarations.
405      ++D;
406      assert(D != DEnd && "Missing object for anonymous record");
407      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
408      return *D;
409    }
410  }
411
412  assert(false && "Missing object for anonymous record");
413  return 0;
414}
415
416Sema::OwningExprResult
417Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
418                                               FieldDecl *Field,
419                                               Expr *BaseObjectExpr,
420                                               SourceLocation OpLoc) {
421  assert(Field->getDeclContext()->isRecord() &&
422         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
423         && "Field must be stored inside an anonymous struct or union");
424
425  // Construct the sequence of field member references
426  // we'll have to perform to get to the field in the anonymous
427  // union/struct. The list of members is built from the field
428  // outward, so traverse it backwards to go from an object in
429  // the current context to the field we found.
430  llvm::SmallVector<FieldDecl *, 4> AnonFields;
431  AnonFields.push_back(Field);
432  VarDecl *BaseObject = 0;
433  DeclContext *Ctx = Field->getDeclContext();
434  do {
435    RecordDecl *Record = cast<RecordDecl>(Ctx);
436    Decl *AnonObject = getObjectForAnonymousRecordDecl(Record);
437    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
438      AnonFields.push_back(AnonField);
439    else {
440      BaseObject = cast<VarDecl>(AnonObject);
441      break;
442    }
443    Ctx = Ctx->getParent();
444  } while (Ctx->isRecord() &&
445           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
446
447  // Build the expression that refers to the base object, from
448  // which we will build a sequence of member references to each
449  // of the anonymous union objects and, eventually, the field we
450  // found via name lookup.
451  bool BaseObjectIsPointer = false;
452  unsigned ExtraQuals = 0;
453  if (BaseObject) {
454    // BaseObject is an anonymous struct/union variable (and is,
455    // therefore, not part of another non-anonymous record).
456    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
457    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
458                                     SourceLocation());
459    ExtraQuals
460      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
461  } else if (BaseObjectExpr) {
462    // The caller provided the base object expression. Determine
463    // whether its a pointer and whether it adds any qualifiers to the
464    // anonymous struct/union fields we're looking into.
465    QualType ObjectType = BaseObjectExpr->getType();
466    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
467      BaseObjectIsPointer = true;
468      ObjectType = ObjectPtr->getPointeeType();
469    }
470    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
471  } else {
472    // We've found a member of an anonymous struct/union that is
473    // inside a non-anonymous struct/union, so in a well-formed
474    // program our base object expression is "this".
475    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
476      if (!MD->isStatic()) {
477        QualType AnonFieldType
478          = Context.getTagDeclType(
479                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
480        QualType ThisType = Context.getTagDeclType(MD->getParent());
481        if ((Context.getCanonicalType(AnonFieldType)
482               == Context.getCanonicalType(ThisType)) ||
483            IsDerivedFrom(ThisType, AnonFieldType)) {
484          // Our base object expression is "this".
485          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
486                                           MD->getThisType(Context));
487          BaseObjectIsPointer = true;
488        }
489      } else {
490        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
491          << Field->getDeclName());
492      }
493      ExtraQuals = MD->getTypeQualifiers();
494    }
495
496    if (!BaseObjectExpr)
497      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
498        << Field->getDeclName());
499  }
500
501  // Build the implicit member references to the field of the
502  // anonymous struct/union.
503  Expr *Result = BaseObjectExpr;
504  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
505         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
506       FI != FIEnd; ++FI) {
507    QualType MemberType = (*FI)->getType();
508    if (!(*FI)->isMutable()) {
509      unsigned combinedQualifiers
510        = MemberType.getCVRQualifiers() | ExtraQuals;
511      MemberType = MemberType.getQualifiedType(combinedQualifiers);
512    }
513    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
514                                      OpLoc, MemberType);
515    BaseObjectIsPointer = false;
516    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
517    OpLoc = SourceLocation();
518  }
519
520  return Owned(Result);
521}
522
523/// ActOnDeclarationNameExpr - The parser has read some kind of name
524/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
525/// performs lookup on that name and returns an expression that refers
526/// to that name. This routine isn't directly called from the parser,
527/// because the parser doesn't know about DeclarationName. Rather,
528/// this routine is called by ActOnIdentifierExpr,
529/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
530/// which form the DeclarationName from the corresponding syntactic
531/// forms.
532///
533/// HasTrailingLParen indicates whether this identifier is used in a
534/// function call context.  LookupCtx is only used for a C++
535/// qualified-id (foo::bar) to indicate the class or namespace that
536/// the identifier must be a member of.
537///
538/// isAddressOfOperand means that this expression is the direct operand
539/// of an address-of operator. This matters because this is the only
540/// situation where a qualified name referencing a non-static member may
541/// appear outside a member function of this class.
542Sema::OwningExprResult
543Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
544                               DeclarationName Name, bool HasTrailingLParen,
545                               const CXXScopeSpec *SS,
546                               bool isAddressOfOperand) {
547  // Could be enum-constant, value decl, instance variable, etc.
548  if (SS && SS->isInvalid())
549    return ExprError();
550  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
551                                         false, true, Loc);
552
553  if (getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
554      HasTrailingLParen && Lookup.getKind() == LookupResult::NotFound) {
555    // We've seen something of the form
556    //
557    //   identifier(
558    //
559    // and we did not find any entity by the name
560    // "identifier". However, this identifier is still subject to
561    // argument-dependent lookup, so keep track of the name.
562    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
563                                                          Context.OverloadTy,
564                                                          Loc));
565  }
566
567  NamedDecl *D = 0;
568  if (Lookup.isAmbiguous()) {
569    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
570                            SS && SS->isSet() ? SS->getRange()
571                                              : SourceRange());
572    return ExprError();
573  } else
574    D = Lookup.getAsDecl();
575
576  // If this reference is in an Objective-C method, then ivar lookup happens as
577  // well.
578  IdentifierInfo *II = Name.getAsIdentifierInfo();
579  if (II && getCurMethodDecl()) {
580    // There are two cases to handle here.  1) scoped lookup could have failed,
581    // in which case we should look for an ivar.  2) scoped lookup could have
582    // found a decl, but that decl is outside the current method (i.e. a global
583    // variable).  In these two cases, we do a lookup for an ivar with this
584    // name, if the lookup suceeds, we replace it our current decl.
585    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
586      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
587      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
588        // FIXME: This should use a new expr for a direct reference, don't turn
589        // this into Self->ivar, just return a BareIVarExpr or something.
590        IdentifierInfo &II = Context.Idents.get("self");
591        OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
592        ObjCIvarRefExpr *MRef = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
593                                  Loc, static_cast<Expr*>(SelfExpr.release()),
594                                  true, true);
595        Context.setFieldDecl(IFace, IV, MRef);
596        return Owned(MRef);
597      }
598    }
599    // Needed to implement property "super.method" notation.
600    if (D == 0 && II->isStr("super")) {
601      QualType T = Context.getPointerType(Context.getObjCInterfaceType(
602                     getCurMethodDecl()->getClassInterface()));
603      return Owned(new (Context) ObjCSuperExpr(Loc, T));
604    }
605  }
606  if (D == 0) {
607    // Otherwise, this could be an implicitly declared function reference (legal
608    // in C90, extension in C99).
609    if (HasTrailingLParen && II &&
610        !getLangOptions().CPlusPlus) // Not in C++.
611      D = ImplicitlyDefineFunction(Loc, *II, S);
612    else {
613      // If this name wasn't predeclared and if this is not a function call,
614      // diagnose the problem.
615      if (SS && !SS->isEmpty())
616        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
617          << Name << SS->getRange());
618      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
619               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
620        return ExprError(Diag(Loc, diag::err_undeclared_use)
621          << Name.getAsString());
622      else
623        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
624    }
625  }
626
627  // If this is an expression of the form &Class::member, don't build an
628  // implicit member ref, because we want a pointer to the member in general,
629  // not any specific instance's member.
630  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
631    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
632    if (D && isa<CXXRecordDecl>(DC)) {
633      QualType DType;
634      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
635        DType = FD->getType().getNonReferenceType();
636      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
637        DType = Method->getType();
638      } else if (isa<OverloadedFunctionDecl>(D)) {
639        DType = Context.OverloadTy;
640      }
641      // Could be an inner type. That's diagnosed below, so ignore it here.
642      if (!DType.isNull()) {
643        // The pointer is type- and value-dependent if it points into something
644        // dependent.
645        bool Dependent = false;
646        for (; DC; DC = DC->getParent()) {
647          // FIXME: could stop early at namespace scope.
648          if (DC->isRecord()) {
649            CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
650            if (Context.getTypeDeclType(Record)->isDependentType()) {
651              Dependent = true;
652              break;
653            }
654          }
655        }
656        return Owned(BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS));
657      }
658    }
659  }
660
661  // We may have found a field within an anonymous union or struct
662  // (C++ [class.union]).
663  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
664    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
665      return BuildAnonymousStructUnionMemberReference(Loc, FD);
666
667  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
668    if (!MD->isStatic()) {
669      // C++ [class.mfct.nonstatic]p2:
670      //   [...] if name lookup (3.4.1) resolves the name in the
671      //   id-expression to a nonstatic nontype member of class X or of
672      //   a base class of X, the id-expression is transformed into a
673      //   class member access expression (5.2.5) using (*this) (9.3.2)
674      //   as the postfix-expression to the left of the '.' operator.
675      DeclContext *Ctx = 0;
676      QualType MemberType;
677      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
678        Ctx = FD->getDeclContext();
679        MemberType = FD->getType();
680
681        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
682          MemberType = RefType->getPointeeType();
683        else if (!FD->isMutable()) {
684          unsigned combinedQualifiers
685            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
686          MemberType = MemberType.getQualifiedType(combinedQualifiers);
687        }
688      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
689        if (!Method->isStatic()) {
690          Ctx = Method->getParent();
691          MemberType = Method->getType();
692        }
693      } else if (OverloadedFunctionDecl *Ovl
694                   = dyn_cast<OverloadedFunctionDecl>(D)) {
695        for (OverloadedFunctionDecl::function_iterator
696               Func = Ovl->function_begin(),
697               FuncEnd = Ovl->function_end();
698             Func != FuncEnd; ++Func) {
699          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
700            if (!DMethod->isStatic()) {
701              Ctx = Ovl->getDeclContext();
702              MemberType = Context.OverloadTy;
703              break;
704            }
705        }
706      }
707
708      if (Ctx && Ctx->isRecord()) {
709        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
710        QualType ThisType = Context.getTagDeclType(MD->getParent());
711        if ((Context.getCanonicalType(CtxType)
712               == Context.getCanonicalType(ThisType)) ||
713            IsDerivedFrom(ThisType, CtxType)) {
714          // Build the implicit member access expression.
715          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
716                                       MD->getThisType(Context));
717          return Owned(new (Context) MemberExpr(This, true, D,
718                                      SourceLocation(), MemberType));
719        }
720      }
721    }
722  }
723
724  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
725    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
726      if (MD->isStatic())
727        // "invalid use of member 'x' in static member function"
728        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
729          << FD->getDeclName());
730    }
731
732    // Any other ways we could have found the field in a well-formed
733    // program would have been turned into implicit member expressions
734    // above.
735    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
736      << FD->getDeclName());
737  }
738
739  if (isa<TypedefDecl>(D))
740    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
741  if (isa<ObjCInterfaceDecl>(D))
742    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
743  if (isa<NamespaceDecl>(D))
744    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
745
746  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
747  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
748    return Owned(BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
749                                  false, false, SS));
750  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
751    return Owned(BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
752                                  false, false, SS));
753  ValueDecl *VD = cast<ValueDecl>(D);
754
755  // Check if referencing an identifier with __attribute__((deprecated)).
756  if (VD->getAttr<DeprecatedAttr>()) {
757    // If this reference happens *in* a deprecated function or method, don't
758    // warn.  Implementing deprecated stuff requires referencing depreated
759    // stuff.
760    NamedDecl *ND = getCurFunctionOrMethodDecl();
761    if (ND == 0 || !ND->getAttr<DeprecatedAttr>())
762      Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
763  }
764
765  if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
766    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
767      Scope *CheckS = S;
768      while (CheckS) {
769        if (CheckS->isWithinElse() &&
770            CheckS->getControlParent()->isDeclScope(Var)) {
771          if (Var->getType()->isBooleanType())
772            ExprError(Diag(Loc, diag::warn_value_always_false)
773              << Var->getDeclName());
774          else
775            ExprError(Diag(Loc, diag::warn_value_always_zero)
776              << Var->getDeclName());
777          break;
778        }
779
780        // Move up one more control parent to check again.
781        CheckS = CheckS->getControlParent();
782        if (CheckS)
783          CheckS = CheckS->getParent();
784      }
785    }
786  }
787
788  // Only create DeclRefExpr's for valid Decl's.
789  if (VD->isInvalidDecl())
790    return ExprError();
791
792  // If the identifier reference is inside a block, and it refers to a value
793  // that is outside the block, create a BlockDeclRefExpr instead of a
794  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
795  // the block is formed.
796  //
797  // We do not do this for things like enum constants, global variables, etc,
798  // as they do not get snapshotted.
799  //
800  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
801    // The BlocksAttr indicates the variable is bound by-reference.
802    if (VD->getAttr<BlocksAttr>())
803      return Owned(new (Context) BlockDeclRefExpr(VD,
804                               VD->getType().getNonReferenceType(), Loc, true));
805
806    // Variable will be bound by-copy, make it const within the closure.
807    VD->getType().addConst();
808    return Owned(new (Context) BlockDeclRefExpr(VD,
809                             VD->getType().getNonReferenceType(), Loc, false));
810  }
811  // If this reference is not in a block or if the referenced variable is
812  // within the block, create a normal DeclRefExpr.
813
814  bool TypeDependent = false;
815  bool ValueDependent = false;
816  if (getLangOptions().CPlusPlus) {
817    // C++ [temp.dep.expr]p3:
818    //   An id-expression is type-dependent if it contains:
819    //     - an identifier that was declared with a dependent type,
820    if (VD->getType()->isDependentType())
821      TypeDependent = true;
822    //     - FIXME: a template-id that is dependent,
823    //     - a conversion-function-id that specifies a dependent type,
824    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
825             Name.getCXXNameType()->isDependentType())
826      TypeDependent = true;
827    //     - a nested-name-specifier that contains a class-name that
828    //       names a dependent type.
829    else if (SS && !SS->isEmpty()) {
830      for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
831           DC; DC = DC->getParent()) {
832        // FIXME: could stop early at namespace scope.
833        if (DC->isRecord()) {
834          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
835          if (Context.getTypeDeclType(Record)->isDependentType()) {
836            TypeDependent = true;
837            break;
838          }
839        }
840      }
841    }
842
843    // C++ [temp.dep.constexpr]p2:
844    //
845    //   An identifier is value-dependent if it is:
846    //     - a name declared with a dependent type,
847    if (TypeDependent)
848      ValueDependent = true;
849    //     - the name of a non-type template parameter,
850    else if (isa<NonTypeTemplateParmDecl>(VD))
851      ValueDependent = true;
852    //    - a constant with integral or enumeration type and is
853    //      initialized with an expression that is value-dependent
854    //      (FIXME!).
855  }
856
857  return Owned(BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
858                                TypeDependent, ValueDependent, SS));
859}
860
861Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
862                                                 tok::TokenKind Kind) {
863  PredefinedExpr::IdentType IT;
864
865  switch (Kind) {
866  default: assert(0 && "Unknown simple primary expr!");
867  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
868  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
869  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
870  }
871
872  // Pre-defined identifiers are of type char[x], where x is the length of the
873  // string.
874  unsigned Length;
875  if (FunctionDecl *FD = getCurFunctionDecl())
876    Length = FD->getIdentifier()->getLength();
877  else if (ObjCMethodDecl *MD = getCurMethodDecl())
878    Length = MD->getSynthesizedMethodSize();
879  else {
880    Diag(Loc, diag::ext_predef_outside_function);
881    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
882    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
883  }
884
885
886  llvm::APInt LengthI(32, Length + 1);
887  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
888  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
889  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
890}
891
892Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
893  llvm::SmallString<16> CharBuffer;
894  CharBuffer.resize(Tok.getLength());
895  const char *ThisTokBegin = &CharBuffer[0];
896  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
897
898  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
899                            Tok.getLocation(), PP);
900  if (Literal.hadError())
901    return ExprError();
902
903  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
904
905  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
906                                              Literal.isWide(),
907                                              type, Tok.getLocation()));
908}
909
910Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
911  // Fast path for a single digit (which is quite common).  A single digit
912  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
913  if (Tok.getLength() == 1) {
914    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
915    unsigned IntSize = Context.Target.getIntWidth();
916    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
917                    Context.IntTy, Tok.getLocation()));
918  }
919
920  llvm::SmallString<512> IntegerBuffer;
921  // Add padding so that NumericLiteralParser can overread by one character.
922  IntegerBuffer.resize(Tok.getLength()+1);
923  const char *ThisTokBegin = &IntegerBuffer[0];
924
925  // Get the spelling of the token, which eliminates trigraphs, etc.
926  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
927
928  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
929                               Tok.getLocation(), PP);
930  if (Literal.hadError)
931    return ExprError();
932
933  Expr *Res;
934
935  if (Literal.isFloatingLiteral()) {
936    QualType Ty;
937    if (Literal.isFloat)
938      Ty = Context.FloatTy;
939    else if (!Literal.isLong)
940      Ty = Context.DoubleTy;
941    else
942      Ty = Context.LongDoubleTy;
943
944    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
945
946    // isExact will be set by GetFloatValue().
947    bool isExact = false;
948    Res = new (Context) FloatingLiteral(Literal.GetFloatValue(Format, &isExact),
949                                        &isExact, Ty, Tok.getLocation());
950
951  } else if (!Literal.isIntegerLiteral()) {
952    return ExprError();
953  } else {
954    QualType Ty;
955
956    // long long is a C99 feature.
957    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
958        Literal.isLongLong)
959      Diag(Tok.getLocation(), diag::ext_longlong);
960
961    // Get the value in the widest-possible width.
962    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
963
964    if (Literal.GetIntegerValue(ResultVal)) {
965      // If this value didn't fit into uintmax_t, warn and force to ull.
966      Diag(Tok.getLocation(), diag::warn_integer_too_large);
967      Ty = Context.UnsignedLongLongTy;
968      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
969             "long long is not intmax_t?");
970    } else {
971      // If this value fits into a ULL, try to figure out what else it fits into
972      // according to the rules of C99 6.4.4.1p5.
973
974      // Octal, Hexadecimal, and integers with a U suffix are allowed to
975      // be an unsigned int.
976      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
977
978      // Check from smallest to largest, picking the smallest type we can.
979      unsigned Width = 0;
980      if (!Literal.isLong && !Literal.isLongLong) {
981        // Are int/unsigned possibilities?
982        unsigned IntSize = Context.Target.getIntWidth();
983
984        // Does it fit in a unsigned int?
985        if (ResultVal.isIntN(IntSize)) {
986          // Does it fit in a signed int?
987          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
988            Ty = Context.IntTy;
989          else if (AllowUnsigned)
990            Ty = Context.UnsignedIntTy;
991          Width = IntSize;
992        }
993      }
994
995      // Are long/unsigned long possibilities?
996      if (Ty.isNull() && !Literal.isLongLong) {
997        unsigned LongSize = Context.Target.getLongWidth();
998
999        // Does it fit in a unsigned long?
1000        if (ResultVal.isIntN(LongSize)) {
1001          // Does it fit in a signed long?
1002          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1003            Ty = Context.LongTy;
1004          else if (AllowUnsigned)
1005            Ty = Context.UnsignedLongTy;
1006          Width = LongSize;
1007        }
1008      }
1009
1010      // Finally, check long long if needed.
1011      if (Ty.isNull()) {
1012        unsigned LongLongSize = Context.Target.getLongLongWidth();
1013
1014        // Does it fit in a unsigned long long?
1015        if (ResultVal.isIntN(LongLongSize)) {
1016          // Does it fit in a signed long long?
1017          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1018            Ty = Context.LongLongTy;
1019          else if (AllowUnsigned)
1020            Ty = Context.UnsignedLongLongTy;
1021          Width = LongLongSize;
1022        }
1023      }
1024
1025      // If we still couldn't decide a type, we probably have something that
1026      // does not fit in a signed long long, but has no U suffix.
1027      if (Ty.isNull()) {
1028        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1029        Ty = Context.UnsignedLongLongTy;
1030        Width = Context.Target.getLongLongWidth();
1031      }
1032
1033      if (ResultVal.getBitWidth() != Width)
1034        ResultVal.trunc(Width);
1035    }
1036    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1037  }
1038
1039  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1040  if (Literal.isImaginary)
1041    Res = new (Context) ImaginaryLiteral(Res,
1042                                        Context.getComplexType(Res->getType()));
1043
1044  return Owned(Res);
1045}
1046
1047Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1048                                              SourceLocation R, ExprArg Val) {
1049  Expr *E = (Expr *)Val.release();
1050  assert((E != 0) && "ActOnParenExpr() missing expr");
1051  return Owned(new (Context) ParenExpr(L, R, E));
1052}
1053
1054/// The UsualUnaryConversions() function is *not* called by this routine.
1055/// See C99 6.3.2.1p[2-4] for more details.
1056bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1057                                     SourceLocation OpLoc,
1058                                     const SourceRange &ExprRange,
1059                                     bool isSizeof) {
1060  // C99 6.5.3.4p1:
1061  if (isa<FunctionType>(exprType)) {
1062    // alignof(function) is allowed.
1063    if (isSizeof)
1064      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1065    return false;
1066  }
1067
1068  if (exprType->isVoidType()) {
1069    Diag(OpLoc, diag::ext_sizeof_void_type)
1070      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1071    return false;
1072  }
1073
1074  return DiagnoseIncompleteType(OpLoc, exprType,
1075                                isSizeof ? diag::err_sizeof_incomplete_type :
1076                                           diag::err_alignof_incomplete_type,
1077                                ExprRange);
1078}
1079
1080bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1081                            const SourceRange &ExprRange) {
1082  E = E->IgnoreParens();
1083
1084  // alignof decl is always ok.
1085  if (isa<DeclRefExpr>(E))
1086    return false;
1087
1088  if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1089    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1090      if (FD->isBitField()) {
1091        Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1092        return true;
1093      }
1094      // Other fields are ok.
1095      return false;
1096    }
1097  }
1098  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1099}
1100
1101/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1102/// the same for @c alignof and @c __alignof
1103/// Note that the ArgRange is invalid if isType is false.
1104Action::OwningExprResult
1105Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1106                             void *TyOrEx, const SourceRange &ArgRange) {
1107  // If error parsing type, ignore.
1108  if (TyOrEx == 0) return ExprError();
1109
1110  QualType ArgTy;
1111  SourceRange Range;
1112  if (isType) {
1113    ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1114    Range = ArgRange;
1115
1116    // Verify that the operand is valid.
1117    if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
1118      return ExprError();
1119  } else {
1120    // Get the end location.
1121    Expr *ArgEx = (Expr *)TyOrEx;
1122    Range = ArgEx->getSourceRange();
1123    ArgTy = ArgEx->getType();
1124
1125    // Verify that the operand is valid.
1126    bool isInvalid;
1127    if (!isSizeof) {
1128      isInvalid = CheckAlignOfExpr(ArgEx, OpLoc, Range);
1129    } else if (ArgEx->isBitField()) {  // C99 6.5.3.4p1.
1130      Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1131      isInvalid = true;
1132    } else {
1133      isInvalid = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, true);
1134    }
1135
1136    if (isInvalid) {
1137      DeleteExpr(ArgEx);
1138      return ExprError();
1139    }
1140  }
1141
1142  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1143  return Owned(new (Context) SizeOfAlignOfExpr(isSizeof, isType, TyOrEx,
1144                                               Context.getSizeType(), OpLoc,
1145                                               Range.getEnd()));
1146}
1147
1148QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
1149  DefaultFunctionArrayConversion(V);
1150
1151  // These operators return the element type of a complex type.
1152  if (const ComplexType *CT = V->getType()->getAsComplexType())
1153    return CT->getElementType();
1154
1155  // Otherwise they pass through real integer and floating point types here.
1156  if (V->getType()->isArithmeticType())
1157    return V->getType();
1158
1159  // Reject anything else.
1160  Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
1161  return QualType();
1162}
1163
1164
1165
1166Action::OwningExprResult
1167Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1168                          tok::TokenKind Kind, ExprArg Input) {
1169  Expr *Arg = (Expr *)Input.get();
1170
1171  UnaryOperator::Opcode Opc;
1172  switch (Kind) {
1173  default: assert(0 && "Unknown unary op!");
1174  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1175  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1176  }
1177
1178  if (getLangOptions().CPlusPlus &&
1179      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1180    // Which overloaded operator?
1181    OverloadedOperatorKind OverOp =
1182      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1183
1184    // C++ [over.inc]p1:
1185    //
1186    //     [...] If the function is a member function with one
1187    //     parameter (which shall be of type int) or a non-member
1188    //     function with two parameters (the second of which shall be
1189    //     of type int), it defines the postfix increment operator ++
1190    //     for objects of that type. When the postfix increment is
1191    //     called as a result of using the ++ operator, the int
1192    //     argument will have value zero.
1193    Expr *Args[2] = {
1194      Arg,
1195      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1196                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1197    };
1198
1199    // Build the candidate set for overloading
1200    OverloadCandidateSet CandidateSet;
1201    if (AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet))
1202      return ExprError();
1203
1204    // Perform overload resolution.
1205    OverloadCandidateSet::iterator Best;
1206    switch (BestViableFunction(CandidateSet, Best)) {
1207    case OR_Success: {
1208      // We found a built-in operator or an overloaded operator.
1209      FunctionDecl *FnDecl = Best->Function;
1210
1211      if (FnDecl) {
1212        // We matched an overloaded operator. Build a call to that
1213        // operator.
1214
1215        // Convert the arguments.
1216        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1217          if (PerformObjectArgumentInitialization(Arg, Method))
1218            return ExprError();
1219        } else {
1220          // Convert the arguments.
1221          if (PerformCopyInitialization(Arg,
1222                                        FnDecl->getParamDecl(0)->getType(),
1223                                        "passing"))
1224            return ExprError();
1225        }
1226
1227        // Determine the result type
1228        QualType ResultTy
1229          = FnDecl->getType()->getAsFunctionType()->getResultType();
1230        ResultTy = ResultTy.getNonReferenceType();
1231
1232        // Build the actual expression node.
1233        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1234                                       SourceLocation());
1235        UsualUnaryConversions(FnExpr);
1236
1237        Input.release();
1238        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1239                                                       ResultTy, OpLoc));
1240      } else {
1241        // We matched a built-in operator. Convert the arguments, then
1242        // break out so that we will build the appropriate built-in
1243        // operator node.
1244        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1245                                      "passing"))
1246          return ExprError();
1247
1248        break;
1249      }
1250    }
1251
1252    case OR_No_Viable_Function:
1253      // No viable function; fall through to handling this as a
1254      // built-in operator, which will produce an error message for us.
1255      break;
1256
1257    case OR_Ambiguous:
1258      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1259          << UnaryOperator::getOpcodeStr(Opc)
1260          << Arg->getSourceRange();
1261      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1262      return ExprError();
1263    }
1264
1265    // Either we found no viable overloaded operator or we matched a
1266    // built-in operator. In either case, fall through to trying to
1267    // build a built-in operation.
1268  }
1269
1270  QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
1271                                                 Opc == UnaryOperator::PostInc);
1272  if (result.isNull())
1273    return ExprError();
1274  Input.release();
1275  return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
1276}
1277
1278Action::OwningExprResult
1279Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1280                              ExprArg Idx, SourceLocation RLoc) {
1281  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1282       *RHSExp = static_cast<Expr*>(Idx.get());
1283
1284  if (getLangOptions().CPlusPlus &&
1285      (LHSExp->getType()->isRecordType() ||
1286       LHSExp->getType()->isEnumeralType() ||
1287       RHSExp->getType()->isRecordType() ||
1288       RHSExp->getType()->isEnumeralType())) {
1289    // Add the appropriate overloaded operators (C++ [over.match.oper])
1290    // to the candidate set.
1291    OverloadCandidateSet CandidateSet;
1292    Expr *Args[2] = { LHSExp, RHSExp };
1293    if (AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1294                              SourceRange(LLoc, RLoc)))
1295      return ExprError();
1296
1297    // Perform overload resolution.
1298    OverloadCandidateSet::iterator Best;
1299    switch (BestViableFunction(CandidateSet, Best)) {
1300    case OR_Success: {
1301      // We found a built-in operator or an overloaded operator.
1302      FunctionDecl *FnDecl = Best->Function;
1303
1304      if (FnDecl) {
1305        // We matched an overloaded operator. Build a call to that
1306        // operator.
1307
1308        // Convert the arguments.
1309        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1310          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1311              PerformCopyInitialization(RHSExp,
1312                                        FnDecl->getParamDecl(0)->getType(),
1313                                        "passing"))
1314            return ExprError();
1315        } else {
1316          // Convert the arguments.
1317          if (PerformCopyInitialization(LHSExp,
1318                                        FnDecl->getParamDecl(0)->getType(),
1319                                        "passing") ||
1320              PerformCopyInitialization(RHSExp,
1321                                        FnDecl->getParamDecl(1)->getType(),
1322                                        "passing"))
1323            return ExprError();
1324        }
1325
1326        // Determine the result type
1327        QualType ResultTy
1328          = FnDecl->getType()->getAsFunctionType()->getResultType();
1329        ResultTy = ResultTy.getNonReferenceType();
1330
1331        // Build the actual expression node.
1332        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1333                                       SourceLocation());
1334        UsualUnaryConversions(FnExpr);
1335
1336        Base.release();
1337        Idx.release();
1338        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
1339                                                       ResultTy, LLoc));
1340      } else {
1341        // We matched a built-in operator. Convert the arguments, then
1342        // break out so that we will build the appropriate built-in
1343        // operator node.
1344        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1345                                      "passing") ||
1346            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1347                                      "passing"))
1348          return ExprError();
1349
1350        break;
1351      }
1352    }
1353
1354    case OR_No_Viable_Function:
1355      // No viable function; fall through to handling this as a
1356      // built-in operator, which will produce an error message for us.
1357      break;
1358
1359    case OR_Ambiguous:
1360      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1361          << "[]"
1362          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1363      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1364      return ExprError();
1365    }
1366
1367    // Either we found no viable overloaded operator or we matched a
1368    // built-in operator. In either case, fall through to trying to
1369    // build a built-in operation.
1370  }
1371
1372  // Perform default conversions.
1373  DefaultFunctionArrayConversion(LHSExp);
1374  DefaultFunctionArrayConversion(RHSExp);
1375
1376  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1377
1378  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1379  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1380  // in the subscript position. As a result, we need to derive the array base
1381  // and index from the expression types.
1382  Expr *BaseExpr, *IndexExpr;
1383  QualType ResultType;
1384  if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1385    BaseExpr = LHSExp;
1386    IndexExpr = RHSExp;
1387    // FIXME: need to deal with const...
1388    ResultType = PTy->getPointeeType();
1389  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1390     // Handle the uncommon case of "123[Ptr]".
1391    BaseExpr = RHSExp;
1392    IndexExpr = LHSExp;
1393    // FIXME: need to deal with const...
1394    ResultType = PTy->getPointeeType();
1395  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1396    BaseExpr = LHSExp;    // vectors: V[123]
1397    IndexExpr = RHSExp;
1398
1399    // FIXME: need to deal with const...
1400    ResultType = VTy->getElementType();
1401  } else {
1402    return ExprError(Diag(LHSExp->getLocStart(),
1403      diag::err_typecheck_subscript_value) << RHSExp->getSourceRange());
1404  }
1405  // C99 6.5.2.1p1
1406  if (!IndexExpr->getType()->isIntegerType())
1407    return ExprError(Diag(IndexExpr->getLocStart(),
1408      diag::err_typecheck_subscript) << IndexExpr->getSourceRange());
1409
1410  // C99 6.5.2.1p1: "shall have type "pointer to *object* type".  In practice,
1411  // the following check catches trying to index a pointer to a function (e.g.
1412  // void (*)(int)) and pointers to incomplete types.  Functions are not
1413  // objects in C99.
1414  if (!ResultType->isObjectType())
1415    return ExprError(Diag(BaseExpr->getLocStart(),
1416                diag::err_typecheck_subscript_not_object)
1417      << BaseExpr->getType() << BaseExpr->getSourceRange());
1418
1419  Base.release();
1420  Idx.release();
1421  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1422                                                ResultType, RLoc));
1423}
1424
1425QualType Sema::
1426CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1427                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1428  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1429
1430  // The vector accessor can't exceed the number of elements.
1431  const char *compStr = CompName.getName();
1432
1433  // This flag determines whether or not the component is one of the four
1434  // special names that indicate a subset of exactly half the elements are
1435  // to be selected.
1436  bool HalvingSwizzle = false;
1437
1438  // This flag determines whether or not CompName has an 's' char prefix,
1439  // indicating that it is a string of hex values to be used as vector indices.
1440  bool HexSwizzle = *compStr == 's';
1441
1442  // Check that we've found one of the special components, or that the component
1443  // names must come from the same set.
1444  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1445      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1446    HalvingSwizzle = true;
1447  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1448    do
1449      compStr++;
1450    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1451  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1452    do
1453      compStr++;
1454    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1455  }
1456
1457  if (!HalvingSwizzle && *compStr) {
1458    // We didn't get to the end of the string. This means the component names
1459    // didn't come from the same set *or* we encountered an illegal name.
1460    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1461      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1462    return QualType();
1463  }
1464
1465  // Ensure no component accessor exceeds the width of the vector type it
1466  // operates on.
1467  if (!HalvingSwizzle) {
1468    compStr = CompName.getName();
1469
1470    if (HexSwizzle)
1471      compStr++;
1472
1473    while (*compStr) {
1474      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1475        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1476          << baseType << SourceRange(CompLoc);
1477        return QualType();
1478      }
1479    }
1480  }
1481
1482  // If this is a halving swizzle, verify that the base type has an even
1483  // number of elements.
1484  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
1485    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
1486      << baseType << SourceRange(CompLoc);
1487    return QualType();
1488  }
1489
1490  // The component accessor looks fine - now we need to compute the actual type.
1491  // The vector type is implied by the component accessor. For example,
1492  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
1493  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
1494  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
1495  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
1496                                     : CompName.getLength();
1497  if (HexSwizzle)
1498    CompSize--;
1499
1500  if (CompSize == 1)
1501    return vecType->getElementType();
1502
1503  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
1504  // Now look up the TypeDefDecl from the vector type. Without this,
1505  // diagostics look bad. We want extended vector types to appear built-in.
1506  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
1507    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
1508      return Context.getTypedefType(ExtVectorDecls[i]);
1509  }
1510  return VT; // should never get here (a typedef type should always be found).
1511}
1512
1513/// constructSetterName - Return the setter name for the given
1514/// identifier, i.e. "set" + Name where the initial character of Name
1515/// has been capitalized.
1516// FIXME: Merge with same routine in Parser. But where should this
1517// live?
1518static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
1519                                           const IdentifierInfo *Name) {
1520  llvm::SmallString<100> SelectorName;
1521  SelectorName = "set";
1522  SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
1523  SelectorName[3] = toupper(SelectorName[3]);
1524  return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
1525}
1526
1527Action::OwningExprResult
1528Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
1529                               tok::TokenKind OpKind, SourceLocation MemberLoc,
1530                               IdentifierInfo &Member) {
1531  Expr *BaseExpr = static_cast<Expr *>(Base.release());
1532  assert(BaseExpr && "no record expression");
1533
1534  // Perform default conversions.
1535  DefaultFunctionArrayConversion(BaseExpr);
1536
1537  QualType BaseType = BaseExpr->getType();
1538  assert(!BaseType.isNull() && "no type for member expression");
1539
1540  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
1541  // must have pointer type, and the accessed type is the pointee.
1542  if (OpKind == tok::arrow) {
1543    if (const PointerType *PT = BaseType->getAsPointerType())
1544      BaseType = PT->getPointeeType();
1545    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
1546      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
1547                                            MemberLoc, Member));
1548    else
1549      return ExprError(Diag(MemberLoc,
1550                            diag::err_typecheck_member_reference_arrow)
1551        << BaseType << BaseExpr->getSourceRange());
1552  }
1553
1554  // Handle field access to simple records.  This also handles access to fields
1555  // of the ObjC 'id' struct.
1556  if (const RecordType *RTy = BaseType->getAsRecordType()) {
1557    RecordDecl *RDecl = RTy->getDecl();
1558    if (DiagnoseIncompleteType(OpLoc, BaseType,
1559                               diag::err_typecheck_incomplete_tag,
1560                               BaseExpr->getSourceRange()))
1561      return ExprError();
1562
1563    // The record definition is complete, now make sure the member is valid.
1564    // FIXME: Qualified name lookup for C++ is a bit more complicated
1565    // than this.
1566    LookupResult Result
1567      = LookupQualifiedName(RDecl, DeclarationName(&Member),
1568                            LookupMemberName, false);
1569
1570    NamedDecl *MemberDecl = 0;
1571    if (!Result)
1572      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
1573               << &Member << BaseExpr->getSourceRange());
1574    else if (Result.isAmbiguous()) {
1575      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
1576                              MemberLoc, BaseExpr->getSourceRange());
1577      return ExprError();
1578    } else
1579      MemberDecl = Result;
1580
1581    // If the decl being referenced had an error, return an error for this
1582    // sub-expr without emitting another error, in order to avoid cascading
1583    // error cases.
1584    if (MemberDecl->isInvalidDecl())
1585      return ExprError();
1586
1587    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
1588      // We may have found a field within an anonymous union or struct
1589      // (C++ [class.union]).
1590      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1591        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
1592                                                        BaseExpr, OpLoc);
1593
1594      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1595      // FIXME: Handle address space modifiers
1596      QualType MemberType = FD->getType();
1597      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
1598        MemberType = Ref->getPointeeType();
1599      else {
1600        unsigned combinedQualifiers =
1601          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
1602        if (FD->isMutable())
1603          combinedQualifiers &= ~QualType::Const;
1604        MemberType = MemberType.getQualifiedType(combinedQualifiers);
1605      }
1606
1607      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
1608                                            MemberLoc, MemberType));
1609    } else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
1610      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1611                                  Var, MemberLoc,
1612                                  Var->getType().getNonReferenceType()));
1613    else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
1614      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
1615                                  MemberFn, MemberLoc, MemberFn->getType()));
1616    else if (OverloadedFunctionDecl *Ovl
1617             = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
1618      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
1619                                  MemberLoc, Context.OverloadTy));
1620    else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
1621      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Enum,
1622                                  MemberLoc, Enum->getType()));
1623    else if (isa<TypeDecl>(MemberDecl))
1624      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
1625        << DeclarationName(&Member) << int(OpKind == tok::arrow));
1626
1627    // We found a declaration kind that we didn't expect. This is a
1628    // generic error message that tells the user that she can't refer
1629    // to this member with '.' or '->'.
1630    return ExprError(Diag(MemberLoc,
1631                          diag::err_typecheck_member_reference_unknown)
1632      << DeclarationName(&Member) << int(OpKind == tok::arrow));
1633  }
1634
1635  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
1636  // (*Obj).ivar.
1637  if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
1638    if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
1639      // If the decl being referenced had an error, return an error for this
1640      // sub-expr without emitting another error, in order to avoid cascading
1641      // error cases.
1642      if (IV->isInvalidDecl())
1643        return ExprError();
1644
1645      ObjCIvarRefExpr *MRef= new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1646                                                 MemberLoc, BaseExpr,
1647                                                 OpKind == tok::arrow);
1648      Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
1649      return Owned(MRef);
1650    }
1651    return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1652                       << IFTy->getDecl()->getDeclName() << &Member
1653                       << BaseExpr->getSourceRange());
1654  }
1655
1656  // Handle Objective-C property access, which is "Obj.property" where Obj is a
1657  // pointer to a (potentially qualified) interface type.
1658  const PointerType *PTy;
1659  const ObjCInterfaceType *IFTy;
1660  if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
1661      (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
1662    ObjCInterfaceDecl *IFace = IFTy->getDecl();
1663
1664    // Search for a declared property first.
1665    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
1666      return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1667                                           MemberLoc, BaseExpr));
1668
1669    // Check protocols on qualified interfaces.
1670    for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
1671         E = IFTy->qual_end(); I != E; ++I)
1672      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1673        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1674                                             MemberLoc, BaseExpr));
1675
1676    // If that failed, look for an "implicit" property by seeing if the nullary
1677    // selector is implemented.
1678
1679    // FIXME: The logic for looking up nullary and unary selectors should be
1680    // shared with the code in ActOnInstanceMessage.
1681
1682    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1683    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
1684
1685    // If this reference is in an @implementation, check for 'private' methods.
1686    if (!Getter)
1687      if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1688        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1689          if (ObjCImplementationDecl *ImpDecl =
1690              ObjCImplementations[ClassDecl->getIdentifier()])
1691            Getter = ImpDecl->getInstanceMethod(Sel);
1692
1693    // Look through local category implementations associated with the class.
1694    if (!Getter) {
1695      for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
1696        if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1697          Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
1698      }
1699    }
1700    if (Getter) {
1701      // If we found a getter then this may be a valid dot-reference, we
1702      // will look for the matching setter, in case it is needed.
1703      IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
1704                                                       &Member);
1705      Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
1706      ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
1707      if (!Setter) {
1708        // If this reference is in an @implementation, also check for 'private'
1709        // methods.
1710        if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
1711          if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
1712            if (ObjCImplementationDecl *ImpDecl =
1713                  ObjCImplementations[ClassDecl->getIdentifier()])
1714              Setter = ImpDecl->getInstanceMethod(SetterSel);
1715      }
1716      // Look through local category implementations associated with the class.
1717      if (!Setter) {
1718        for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
1719          if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
1720            Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
1721        }
1722      }
1723
1724      // FIXME: we must check that the setter has property type.
1725      return Owned(new (Context) ObjCKVCRefExpr(Getter, Getter->getResultType(),
1726                                      Setter, MemberLoc, BaseExpr));
1727    }
1728
1729    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1730      << &Member << BaseType);
1731  }
1732  // Handle properties on qualified "id" protocols.
1733  const ObjCQualifiedIdType *QIdTy;
1734  if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
1735    // Check protocols on qualified interfaces.
1736    for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
1737         E = QIdTy->qual_end(); I != E; ++I) {
1738      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
1739        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
1740                                             MemberLoc, BaseExpr));
1741      // Also must look for a getter name which uses property syntax.
1742      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
1743      if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
1744        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
1745                        OMD->getResultType(), OMD, OpLoc, MemberLoc, NULL, 0));
1746      }
1747    }
1748
1749    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1750                       << &Member << BaseType);
1751  }
1752  // Handle 'field access' to vectors, such as 'V.xx'.
1753  if (BaseType->isExtVectorType() && OpKind == tok::period) {
1754    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
1755    if (ret.isNull())
1756      return ExprError();
1757    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
1758                                                    MemberLoc));
1759  }
1760
1761  return ExprError(Diag(MemberLoc,
1762                        diag::err_typecheck_member_reference_struct_union)
1763                     << BaseType << BaseExpr->getSourceRange());
1764}
1765
1766/// ConvertArgumentsForCall - Converts the arguments specified in
1767/// Args/NumArgs to the parameter types of the function FDecl with
1768/// function prototype Proto. Call is the call expression itself, and
1769/// Fn is the function expression. For a C++ member function, this
1770/// routine does not attempt to convert the object argument. Returns
1771/// true if the call is ill-formed.
1772bool
1773Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
1774                              FunctionDecl *FDecl,
1775                              const FunctionTypeProto *Proto,
1776                              Expr **Args, unsigned NumArgs,
1777                              SourceLocation RParenLoc) {
1778  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
1779  // assignment, to the types of the corresponding parameter, ...
1780  unsigned NumArgsInProto = Proto->getNumArgs();
1781  unsigned NumArgsToCheck = NumArgs;
1782  bool Invalid = false;
1783
1784  // If too few arguments are available (and we don't have default
1785  // arguments for the remaining parameters), don't make the call.
1786  if (NumArgs < NumArgsInProto) {
1787    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
1788      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
1789        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
1790    // Use default arguments for missing arguments
1791    NumArgsToCheck = NumArgsInProto;
1792    Call->setNumArgs(Context, NumArgsInProto);
1793  }
1794
1795  // If too many are passed and not variadic, error on the extras and drop
1796  // them.
1797  if (NumArgs > NumArgsInProto) {
1798    if (!Proto->isVariadic()) {
1799      Diag(Args[NumArgsInProto]->getLocStart(),
1800           diag::err_typecheck_call_too_many_args)
1801        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
1802        << SourceRange(Args[NumArgsInProto]->getLocStart(),
1803                       Args[NumArgs-1]->getLocEnd());
1804      // This deletes the extra arguments.
1805      Call->setNumArgs(Context, NumArgsInProto);
1806      Invalid = true;
1807    }
1808    NumArgsToCheck = NumArgsInProto;
1809  }
1810
1811  // Continue to check argument types (even if we have too few/many args).
1812  for (unsigned i = 0; i != NumArgsToCheck; i++) {
1813    QualType ProtoArgType = Proto->getArgType(i);
1814
1815    Expr *Arg;
1816    if (i < NumArgs) {
1817      Arg = Args[i];
1818
1819      // Pass the argument.
1820      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
1821        return true;
1822    } else
1823      // We already type-checked the argument, so we know it works.
1824      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
1825    QualType ArgType = Arg->getType();
1826
1827    Call->setArg(i, Arg);
1828  }
1829
1830  // If this is a variadic call, handle args passed through "...".
1831  if (Proto->isVariadic()) {
1832    VariadicCallType CallType = VariadicFunction;
1833    if (Fn->getType()->isBlockPointerType())
1834      CallType = VariadicBlock; // Block
1835    else if (isa<MemberExpr>(Fn))
1836      CallType = VariadicMethod;
1837
1838    // Promote the arguments (C99 6.5.2.2p7).
1839    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
1840      Expr *Arg = Args[i];
1841      DefaultVariadicArgumentPromotion(Arg, CallType);
1842      Call->setArg(i, Arg);
1843    }
1844  }
1845
1846  return Invalid;
1847}
1848
1849/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
1850/// This provides the location of the left/right parens and a list of comma
1851/// locations.
1852Action::OwningExprResult
1853Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
1854                    MultiExprArg args,
1855                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
1856  unsigned NumArgs = args.size();
1857  Expr *Fn = static_cast<Expr *>(fn.release());
1858  Expr **Args = reinterpret_cast<Expr**>(args.release());
1859  assert(Fn && "no function call expression");
1860  FunctionDecl *FDecl = NULL;
1861  DeclarationName UnqualifiedName;
1862
1863  if (getLangOptions().CPlusPlus) {
1864    // Determine whether this is a dependent call inside a C++ template,
1865    // in which case we won't do any semantic analysis now.
1866    // FIXME: Will need to cache the results of name lookup (including ADL) in Fn.
1867    bool Dependent = false;
1868    if (Fn->isTypeDependent())
1869      Dependent = true;
1870    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1871      Dependent = true;
1872
1873    if (Dependent)
1874      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
1875                                          Context.DependentTy, RParenLoc));
1876
1877    // Determine whether this is a call to an object (C++ [over.call.object]).
1878    if (Fn->getType()->isRecordType())
1879      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
1880                                                CommaLocs, RParenLoc));
1881
1882    // Determine whether this is a call to a member function.
1883    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
1884      if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
1885          isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
1886        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
1887                                               CommaLocs, RParenLoc));
1888  }
1889
1890  // If we're directly calling a function, get the appropriate declaration.
1891  DeclRefExpr *DRExpr = NULL;
1892  Expr *FnExpr = Fn;
1893  bool ADL = true;
1894  while (true) {
1895    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
1896      FnExpr = IcExpr->getSubExpr();
1897    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
1898      // Parentheses around a function disable ADL
1899      // (C++0x [basic.lookup.argdep]p1).
1900      ADL = false;
1901      FnExpr = PExpr->getSubExpr();
1902    } else if (isa<UnaryOperator>(FnExpr) &&
1903               cast<UnaryOperator>(FnExpr)->getOpcode()
1904                 == UnaryOperator::AddrOf) {
1905      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
1906    } else if ((DRExpr = dyn_cast<DeclRefExpr>(FnExpr))) {
1907      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
1908      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
1909      break;
1910    } else if (UnresolvedFunctionNameExpr *DepName
1911                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
1912      UnqualifiedName = DepName->getName();
1913      break;
1914    } else {
1915      // Any kind of name that does not refer to a declaration (or
1916      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
1917      ADL = false;
1918      break;
1919    }
1920  }
1921
1922  OverloadedFunctionDecl *Ovl = 0;
1923  if (DRExpr) {
1924    FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
1925    Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
1926  }
1927
1928  if (Ovl || (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
1929    // We don't perform ADL for implicit declarations of builtins.
1930    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
1931      ADL = false;
1932
1933    // We don't perform ADL in C.
1934    if (!getLangOptions().CPlusPlus)
1935      ADL = false;
1936
1937    if (Ovl || ADL) {
1938      FDecl = ResolveOverloadedCallFn(Fn, DRExpr? DRExpr->getDecl() : 0,
1939                                      UnqualifiedName, LParenLoc, Args,
1940                                      NumArgs, CommaLocs, RParenLoc, ADL);
1941      if (!FDecl)
1942        return ExprError();
1943
1944      // Update Fn to refer to the actual function selected.
1945      Expr *NewFn = 0;
1946      if (QualifiedDeclRefExpr *QDRExpr
1947            = dyn_cast_or_null<QualifiedDeclRefExpr>(DRExpr))
1948        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
1949                                                   QDRExpr->getLocation(),
1950                                                   false, false,
1951                                          QDRExpr->getSourceRange().getBegin());
1952      else
1953        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
1954                                          Fn->getSourceRange().getBegin());
1955      Fn->Destroy(Context);
1956      Fn = NewFn;
1957    }
1958  }
1959
1960  // Promote the function operand.
1961  UsualUnaryConversions(Fn);
1962
1963  // Make the call expr early, before semantic checks.  This guarantees cleanup
1964  // of arguments and function on error.
1965  // FIXME: Except that llvm::OwningPtr uses delete, when it really must be
1966  // Destroy(), or nothing gets cleaned up.
1967  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
1968                                                               Args, NumArgs,
1969                                                               Context.BoolTy,
1970                                                               RParenLoc));
1971
1972  const FunctionType *FuncT;
1973  if (!Fn->getType()->isBlockPointerType()) {
1974    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
1975    // have type pointer to function".
1976    const PointerType *PT = Fn->getType()->getAsPointerType();
1977    if (PT == 0)
1978      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
1979        << Fn->getType() << Fn->getSourceRange());
1980    FuncT = PT->getPointeeType()->getAsFunctionType();
1981  } else { // This is a block call.
1982    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
1983                getAsFunctionType();
1984  }
1985  if (FuncT == 0)
1986    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
1987      << Fn->getType() << Fn->getSourceRange());
1988
1989  // We know the result type of the call, set it.
1990  TheCall->setType(FuncT->getResultType().getNonReferenceType());
1991
1992  if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
1993    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
1994                                RParenLoc))
1995      return ExprError();
1996  } else {
1997    assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
1998
1999    // Promote the arguments (C99 6.5.2.2p6).
2000    for (unsigned i = 0; i != NumArgs; i++) {
2001      Expr *Arg = Args[i];
2002      DefaultArgumentPromotion(Arg);
2003      TheCall->setArg(i, Arg);
2004    }
2005  }
2006
2007  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2008    if (!Method->isStatic())
2009      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2010        << Fn->getSourceRange());
2011
2012  // Do special checking on direct calls to functions.
2013  if (FDecl)
2014    return CheckFunctionCall(FDecl, TheCall.take());
2015
2016  return Owned(TheCall.take());
2017}
2018
2019Action::OwningExprResult
2020Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2021                           SourceLocation RParenLoc, ExprArg InitExpr) {
2022  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2023  QualType literalType = QualType::getFromOpaquePtr(Ty);
2024  // FIXME: put back this assert when initializers are worked out.
2025  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2026  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2027
2028  if (literalType->isArrayType()) {
2029    if (literalType->isVariableArrayType())
2030      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2031        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2032  } else if (DiagnoseIncompleteType(LParenLoc, literalType,
2033                                    diag::err_typecheck_decl_incomplete_type,
2034                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2035    return ExprError();
2036
2037  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2038                            DeclarationName(), /*FIXME:DirectInit=*/false))
2039    return ExprError();
2040
2041  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2042  if (isFileScope) { // 6.5.2.5p3
2043    if (CheckForConstantInitializer(literalExpr, literalType))
2044      return ExprError();
2045  }
2046  InitExpr.release();
2047  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2048                                                 literalExpr, isFileScope));
2049}
2050
2051Action::OwningExprResult
2052Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2053                    InitListDesignations &Designators,
2054                    SourceLocation RBraceLoc) {
2055  unsigned NumInit = initlist.size();
2056  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2057
2058  // Semantic analysis for initializers is done by ActOnDeclarator() and
2059  // CheckInitializer() - it requires knowledge of the object being intialized.
2060
2061  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2062                                               RBraceLoc);
2063  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2064  return Owned(E);
2065}
2066
2067/// CheckCastTypes - Check type constraints for casting between types.
2068bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
2069  UsualUnaryConversions(castExpr);
2070
2071  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2072  // type needs to be scalar.
2073  if (castType->isVoidType()) {
2074    // Cast to void allows any expr type.
2075  } else if (castType->isDependentType() || castExpr->isTypeDependent()) {
2076    // We can't check any more until template instantiation time.
2077  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2078    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2079        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2080        (castType->isStructureType() || castType->isUnionType())) {
2081      // GCC struct/union extension: allow cast to self.
2082      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2083        << castType << castExpr->getSourceRange();
2084    } else if (castType->isUnionType()) {
2085      // GCC cast to union extension
2086      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2087      RecordDecl::field_iterator Field, FieldEnd;
2088      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2089           Field != FieldEnd; ++Field) {
2090        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2091            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2092          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2093            << castExpr->getSourceRange();
2094          break;
2095        }
2096      }
2097      if (Field == FieldEnd)
2098        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2099          << castExpr->getType() << castExpr->getSourceRange();
2100    } else {
2101      // Reject any other conversions to non-scalar types.
2102      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2103        << castType << castExpr->getSourceRange();
2104    }
2105  } else if (!castExpr->getType()->isScalarType() &&
2106             !castExpr->getType()->isVectorType()) {
2107    return Diag(castExpr->getLocStart(),
2108                diag::err_typecheck_expect_scalar_operand)
2109      << castExpr->getType() << castExpr->getSourceRange();
2110  } else if (castExpr->getType()->isVectorType()) {
2111    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2112      return true;
2113  } else if (castType->isVectorType()) {
2114    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2115      return true;
2116  }
2117  return false;
2118}
2119
2120bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
2121  assert(VectorTy->isVectorType() && "Not a vector type!");
2122
2123  if (Ty->isVectorType() || Ty->isIntegerType()) {
2124    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
2125      return Diag(R.getBegin(),
2126                  Ty->isVectorType() ?
2127                  diag::err_invalid_conversion_between_vectors :
2128                  diag::err_invalid_conversion_between_vector_and_integer)
2129        << VectorTy << Ty << R;
2130  } else
2131    return Diag(R.getBegin(),
2132                diag::err_invalid_conversion_between_vector_and_scalar)
2133      << VectorTy << Ty << R;
2134
2135  return false;
2136}
2137
2138Action::OwningExprResult
2139Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
2140                    SourceLocation RParenLoc, ExprArg Op) {
2141  assert((Ty != 0) && (Op.get() != 0) &&
2142         "ActOnCastExpr(): missing type or expr");
2143
2144  Expr *castExpr = static_cast<Expr*>(Op.release());
2145  QualType castType = QualType::getFromOpaquePtr(Ty);
2146
2147  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
2148    return ExprError();
2149  return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
2150                                  LParenLoc, RParenLoc));
2151}
2152
2153/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
2154/// In that case, lex = cond.
2155inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
2156  Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
2157  UsualUnaryConversions(cond);
2158  UsualUnaryConversions(lex);
2159  UsualUnaryConversions(rex);
2160  QualType condT = cond->getType();
2161  QualType lexT = lex->getType();
2162  QualType rexT = rex->getType();
2163
2164  // first, check the condition.
2165  if (!cond->isTypeDependent()) {
2166    if (!condT->isScalarType()) { // C99 6.5.15p2
2167      Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
2168      return QualType();
2169    }
2170  }
2171
2172  // Now check the two expressions.
2173  if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
2174    return Context.DependentTy;
2175
2176  // If both operands have arithmetic type, do the usual arithmetic conversions
2177  // to find a common type: C99 6.5.15p3,5.
2178  if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
2179    UsualArithmeticConversions(lex, rex);
2180    return lex->getType();
2181  }
2182
2183  // If both operands are the same structure or union type, the result is that
2184  // type.
2185  if (const RecordType *LHSRT = lexT->getAsRecordType()) {    // C99 6.5.15p3
2186    if (const RecordType *RHSRT = rexT->getAsRecordType())
2187      if (LHSRT->getDecl() == RHSRT->getDecl())
2188        // "If both the operands have structure or union type, the result has
2189        // that type."  This implies that CV qualifiers are dropped.
2190        return lexT.getUnqualifiedType();
2191  }
2192
2193  // C99 6.5.15p5: "If both operands have void type, the result has void type."
2194  // The following || allows only one side to be void (a GCC-ism).
2195  if (lexT->isVoidType() || rexT->isVoidType()) {
2196    if (!lexT->isVoidType())
2197      Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
2198        << rex->getSourceRange();
2199    if (!rexT->isVoidType())
2200      Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
2201        << lex->getSourceRange();
2202    ImpCastExprToType(lex, Context.VoidTy);
2203    ImpCastExprToType(rex, Context.VoidTy);
2204    return Context.VoidTy;
2205  }
2206  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
2207  // the type of the other operand."
2208  if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
2209       Context.isObjCObjectPointerType(lexT)) &&
2210      rex->isNullPointerConstant(Context)) {
2211    ImpCastExprToType(rex, lexT); // promote the null to a pointer.
2212    return lexT;
2213  }
2214  if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
2215       Context.isObjCObjectPointerType(rexT)) &&
2216      lex->isNullPointerConstant(Context)) {
2217    ImpCastExprToType(lex, rexT); // promote the null to a pointer.
2218    return rexT;
2219  }
2220  // Handle the case where both operands are pointers before we handle null
2221  // pointer constants in case both operands are null pointer constants.
2222  if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
2223    if (const PointerType *RHSPT = rexT->getAsPointerType()) {
2224      // get the "pointed to" types
2225      QualType lhptee = LHSPT->getPointeeType();
2226      QualType rhptee = RHSPT->getPointeeType();
2227
2228      // ignore qualifiers on void (C99 6.5.15p3, clause 6)
2229      if (lhptee->isVoidType() &&
2230          rhptee->isIncompleteOrObjectType()) {
2231        // Figure out necessary qualifiers (C99 6.5.15p6)
2232        QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
2233        QualType destType = Context.getPointerType(destPointee);
2234        ImpCastExprToType(lex, destType); // add qualifiers if necessary
2235        ImpCastExprToType(rex, destType); // promote to void*
2236        return destType;
2237      }
2238      if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
2239        QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
2240        QualType destType = Context.getPointerType(destPointee);
2241        ImpCastExprToType(lex, destType); // add qualifiers if necessary
2242        ImpCastExprToType(rex, destType); // promote to void*
2243        return destType;
2244      }
2245
2246      QualType compositeType = lexT;
2247
2248      // If either type is an Objective-C object type then check
2249      // compatibility according to Objective-C.
2250      if (Context.isObjCObjectPointerType(lexT) ||
2251          Context.isObjCObjectPointerType(rexT)) {
2252        // If both operands are interfaces and either operand can be
2253        // assigned to the other, use that type as the composite
2254        // type. This allows
2255        //   xxx ? (A*) a : (B*) b
2256        // where B is a subclass of A.
2257        //
2258        // Additionally, as for assignment, if either type is 'id'
2259        // allow silent coercion. Finally, if the types are
2260        // incompatible then make sure to use 'id' as the composite
2261        // type so the result is acceptable for sending messages to.
2262
2263        // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
2264        // It could return the composite type.
2265        const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2266        const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2267        if (LHSIface && RHSIface &&
2268            Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
2269          compositeType = lexT;
2270        } else if (LHSIface && RHSIface &&
2271                   Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
2272          compositeType = rexT;
2273        } else if (Context.isObjCIdStructType(lhptee) ||
2274                   Context.isObjCIdStructType(rhptee)) {
2275          compositeType = Context.getObjCIdType();
2276        } else {
2277          Diag(questionLoc, diag::ext_typecheck_comparison_of_distinct_pointers)
2278               << lexT << rexT
2279               << lex->getSourceRange() << rex->getSourceRange();
2280          QualType incompatTy = Context.getObjCIdType();
2281          ImpCastExprToType(lex, incompatTy);
2282          ImpCastExprToType(rex, incompatTy);
2283          return incompatTy;
2284        }
2285      } else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2286                                             rhptee.getUnqualifiedType())) {
2287        Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
2288          << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
2289        // In this situation, we assume void* type. No especially good
2290        // reason, but this is what gcc does, and we do have to pick
2291        // to get a consistent AST.
2292        QualType incompatTy = Context.getPointerType(Context.VoidTy);
2293        ImpCastExprToType(lex, incompatTy);
2294        ImpCastExprToType(rex, incompatTy);
2295        return incompatTy;
2296      }
2297      // The pointer types are compatible.
2298      // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
2299      // differently qualified versions of compatible types, the result type is
2300      // a pointer to an appropriately qualified version of the *composite*
2301      // type.
2302      // FIXME: Need to calculate the composite type.
2303      // FIXME: Need to add qualifiers
2304      ImpCastExprToType(lex, compositeType);
2305      ImpCastExprToType(rex, compositeType);
2306      return compositeType;
2307    }
2308  }
2309  // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
2310  // evaluates to "struct objc_object *" (and is handled above when comparing
2311  // id with statically typed objects).
2312  if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
2313    // GCC allows qualified id and any Objective-C type to devolve to
2314    // id. Currently localizing to here until clear this should be
2315    // part of ObjCQualifiedIdTypesAreCompatible.
2316    if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
2317        (lexT->isObjCQualifiedIdType() &&
2318         Context.isObjCObjectPointerType(rexT)) ||
2319        (rexT->isObjCQualifiedIdType() &&
2320         Context.isObjCObjectPointerType(lexT))) {
2321      // FIXME: This is not the correct composite type. This only
2322      // happens to work because id can more or less be used anywhere,
2323      // however this may change the type of method sends.
2324      // FIXME: gcc adds some type-checking of the arguments and emits
2325      // (confusing) incompatible comparison warnings in some
2326      // cases. Investigate.
2327      QualType compositeType = Context.getObjCIdType();
2328      ImpCastExprToType(lex, compositeType);
2329      ImpCastExprToType(rex, compositeType);
2330      return compositeType;
2331    }
2332  }
2333
2334  // Selection between block pointer types is ok as long as they are the same.
2335  if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
2336      Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
2337    return lexT;
2338
2339  // Otherwise, the operands are not compatible.
2340  Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
2341    << lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
2342  return QualType();
2343}
2344
2345/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
2346/// in the case of a the GNU conditional expr extension.
2347Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
2348                                                  SourceLocation ColonLoc,
2349                                                  ExprArg Cond, ExprArg LHS,
2350                                                  ExprArg RHS) {
2351  Expr *CondExpr = (Expr *) Cond.get();
2352  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
2353
2354  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
2355  // was the condition.
2356  bool isLHSNull = LHSExpr == 0;
2357  if (isLHSNull)
2358    LHSExpr = CondExpr;
2359
2360  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
2361                                             RHSExpr, QuestionLoc);
2362  if (result.isNull())
2363    return ExprError();
2364
2365  Cond.release();
2366  LHS.release();
2367  RHS.release();
2368  return Owned(new (Context) ConditionalOperator(CondExpr,
2369                                                 isLHSNull ? 0 : LHSExpr,
2370                                                 RHSExpr, result));
2371}
2372
2373
2374// CheckPointerTypesForAssignment - This is a very tricky routine (despite
2375// being closely modeled after the C99 spec:-). The odd characteristic of this
2376// routine is it effectively iqnores the qualifiers on the top level pointee.
2377// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
2378// FIXME: add a couple examples in this comment.
2379Sema::AssignConvertType
2380Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
2381  QualType lhptee, rhptee;
2382
2383  // get the "pointed to" type (ignoring qualifiers at the top level)
2384  lhptee = lhsType->getAsPointerType()->getPointeeType();
2385  rhptee = rhsType->getAsPointerType()->getPointeeType();
2386
2387  // make sure we operate on the canonical type
2388  lhptee = Context.getCanonicalType(lhptee);
2389  rhptee = Context.getCanonicalType(rhptee);
2390
2391  AssignConvertType ConvTy = Compatible;
2392
2393  // C99 6.5.16.1p1: This following citation is common to constraints
2394  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
2395  // qualifiers of the type *pointed to* by the right;
2396  // FIXME: Handle ASQualType
2397  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
2398    ConvTy = CompatiblePointerDiscardsQualifiers;
2399
2400  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
2401  // incomplete type and the other is a pointer to a qualified or unqualified
2402  // version of void...
2403  if (lhptee->isVoidType()) {
2404    if (rhptee->isIncompleteOrObjectType())
2405      return ConvTy;
2406
2407    // As an extension, we allow cast to/from void* to function pointer.
2408    assert(rhptee->isFunctionType());
2409    return FunctionVoidPointer;
2410  }
2411
2412  if (rhptee->isVoidType()) {
2413    if (lhptee->isIncompleteOrObjectType())
2414      return ConvTy;
2415
2416    // As an extension, we allow cast to/from void* to function pointer.
2417    assert(lhptee->isFunctionType());
2418    return FunctionVoidPointer;
2419  }
2420
2421  // Check for ObjC interfaces
2422  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2423  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2424  if (LHSIface && RHSIface &&
2425      Context.canAssignObjCInterfaces(LHSIface, RHSIface))
2426    return ConvTy;
2427
2428  // ID acts sort of like void* for ObjC interfaces
2429  if (LHSIface && Context.isObjCIdStructType(rhptee))
2430    return ConvTy;
2431  if (RHSIface && Context.isObjCIdStructType(lhptee))
2432    return ConvTy;
2433
2434  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
2435  // unqualified versions of compatible types, ...
2436  if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
2437                                  rhptee.getUnqualifiedType()))
2438    return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
2439  return ConvTy;
2440}
2441
2442/// CheckBlockPointerTypesForAssignment - This routine determines whether two
2443/// block pointer types are compatible or whether a block and normal pointer
2444/// are compatible. It is more restrict than comparing two function pointer
2445// types.
2446Sema::AssignConvertType
2447Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
2448                                          QualType rhsType) {
2449  QualType lhptee, rhptee;
2450
2451  // get the "pointed to" type (ignoring qualifiers at the top level)
2452  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
2453  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
2454
2455  // make sure we operate on the canonical type
2456  lhptee = Context.getCanonicalType(lhptee);
2457  rhptee = Context.getCanonicalType(rhptee);
2458
2459  AssignConvertType ConvTy = Compatible;
2460
2461  // For blocks we enforce that qualifiers are identical.
2462  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
2463    ConvTy = CompatiblePointerDiscardsQualifiers;
2464
2465  if (!Context.typesAreBlockCompatible(lhptee, rhptee))
2466    return IncompatibleBlockPointer;
2467  return ConvTy;
2468}
2469
2470/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
2471/// has code to accommodate several GCC extensions when type checking
2472/// pointers. Here are some objectionable examples that GCC considers warnings:
2473///
2474///  int a, *pint;
2475///  short *pshort;
2476///  struct foo *pfoo;
2477///
2478///  pint = pshort; // warning: assignment from incompatible pointer type
2479///  a = pint; // warning: assignment makes integer from pointer without a cast
2480///  pint = a; // warning: assignment makes pointer from integer without a cast
2481///  pint = pfoo; // warning: assignment from incompatible pointer type
2482///
2483/// As a result, the code for dealing with pointers is more complex than the
2484/// C99 spec dictates.
2485///
2486Sema::AssignConvertType
2487Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
2488  // Get canonical types.  We're not formatting these types, just comparing
2489  // them.
2490  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
2491  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
2492
2493  if (lhsType == rhsType)
2494    return Compatible; // Common case: fast path an exact match.
2495
2496  // If the left-hand side is a reference type, then we are in a
2497  // (rare!) case where we've allowed the use of references in C,
2498  // e.g., as a parameter type in a built-in function. In this case,
2499  // just make sure that the type referenced is compatible with the
2500  // right-hand side type. The caller is responsible for adjusting
2501  // lhsType so that the resulting expression does not have reference
2502  // type.
2503  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
2504    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
2505      return Compatible;
2506    return Incompatible;
2507  }
2508
2509  if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
2510    if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
2511      return Compatible;
2512    // Relax integer conversions like we do for pointers below.
2513    if (rhsType->isIntegerType())
2514      return IntToPointer;
2515    if (lhsType->isIntegerType())
2516      return PointerToInt;
2517    return IncompatibleObjCQualifiedId;
2518  }
2519
2520  if (lhsType->isVectorType() || rhsType->isVectorType()) {
2521    // For ExtVector, allow vector splats; float -> <n x float>
2522    if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
2523      if (LV->getElementType() == rhsType)
2524        return Compatible;
2525
2526    // If we are allowing lax vector conversions, and LHS and RHS are both
2527    // vectors, the total size only needs to be the same. This is a bitcast;
2528    // no bits are changed but the result type is different.
2529    if (getLangOptions().LaxVectorConversions &&
2530        lhsType->isVectorType() && rhsType->isVectorType()) {
2531      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
2532        return IncompatibleVectors;
2533    }
2534    return Incompatible;
2535  }
2536
2537  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
2538    return Compatible;
2539
2540  if (isa<PointerType>(lhsType)) {
2541    if (rhsType->isIntegerType())
2542      return IntToPointer;
2543
2544    if (isa<PointerType>(rhsType))
2545      return CheckPointerTypesForAssignment(lhsType, rhsType);
2546
2547    if (rhsType->getAsBlockPointerType()) {
2548      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
2549        return Compatible;
2550
2551      // Treat block pointers as objects.
2552      if (getLangOptions().ObjC1 &&
2553          lhsType == Context.getCanonicalType(Context.getObjCIdType()))
2554        return Compatible;
2555    }
2556    return Incompatible;
2557  }
2558
2559  if (isa<BlockPointerType>(lhsType)) {
2560    if (rhsType->isIntegerType())
2561      return IntToPointer;
2562
2563    // Treat block pointers as objects.
2564    if (getLangOptions().ObjC1 &&
2565        rhsType == Context.getCanonicalType(Context.getObjCIdType()))
2566      return Compatible;
2567
2568    if (rhsType->isBlockPointerType())
2569      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
2570
2571    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
2572      if (RHSPT->getPointeeType()->isVoidType())
2573        return Compatible;
2574    }
2575    return Incompatible;
2576  }
2577
2578  if (isa<PointerType>(rhsType)) {
2579    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
2580    if (lhsType == Context.BoolTy)
2581      return Compatible;
2582
2583    if (lhsType->isIntegerType())
2584      return PointerToInt;
2585
2586    if (isa<PointerType>(lhsType))
2587      return CheckPointerTypesForAssignment(lhsType, rhsType);
2588
2589    if (isa<BlockPointerType>(lhsType) &&
2590        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
2591      return Compatible;
2592    return Incompatible;
2593  }
2594
2595  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
2596    if (Context.typesAreCompatible(lhsType, rhsType))
2597      return Compatible;
2598  }
2599  return Incompatible;
2600}
2601
2602Sema::AssignConvertType
2603Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
2604  if (getLangOptions().CPlusPlus) {
2605    if (!lhsType->isRecordType()) {
2606      // C++ 5.17p3: If the left operand is not of class type, the
2607      // expression is implicitly converted (C++ 4) to the
2608      // cv-unqualified type of the left operand.
2609      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
2610                                    "assigning"))
2611        return Incompatible;
2612      else
2613        return Compatible;
2614    }
2615
2616    // FIXME: Currently, we fall through and treat C++ classes like C
2617    // structures.
2618  }
2619
2620  // C99 6.5.16.1p1: the left operand is a pointer and the right is
2621  // a null pointer constant.
2622  if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
2623       lhsType->isBlockPointerType())
2624      && rExpr->isNullPointerConstant(Context)) {
2625    ImpCastExprToType(rExpr, lhsType);
2626    return Compatible;
2627  }
2628
2629  // We don't allow conversion of non-null-pointer constants to integers.
2630  if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
2631    return IntToBlockPointer;
2632
2633  // This check seems unnatural, however it is necessary to ensure the proper
2634  // conversion of functions/arrays. If the conversion were done for all
2635  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
2636  // expressions that surpress this implicit conversion (&, sizeof).
2637  //
2638  // Suppress this for references: C++ 8.5.3p5.
2639  if (!lhsType->isReferenceType())
2640    DefaultFunctionArrayConversion(rExpr);
2641
2642  Sema::AssignConvertType result =
2643    CheckAssignmentConstraints(lhsType, rExpr->getType());
2644
2645  // C99 6.5.16.1p2: The value of the right operand is converted to the
2646  // type of the assignment expression.
2647  // CheckAssignmentConstraints allows the left-hand side to be a reference,
2648  // so that we can use references in built-in functions even in C.
2649  // The getNonReferenceType() call makes sure that the resulting expression
2650  // does not have reference type.
2651  if (rExpr->getType() != lhsType)
2652    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
2653  return result;
2654}
2655
2656Sema::AssignConvertType
2657Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
2658  return CheckAssignmentConstraints(lhsType, rhsType);
2659}
2660
2661QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
2662  Diag(Loc, diag::err_typecheck_invalid_operands)
2663    << lex->getType() << rex->getType()
2664    << lex->getSourceRange() << rex->getSourceRange();
2665  return QualType();
2666}
2667
2668inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
2669                                                              Expr *&rex) {
2670  // For conversion purposes, we ignore any qualifiers.
2671  // For example, "const float" and "float" are equivalent.
2672  QualType lhsType =
2673    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
2674  QualType rhsType =
2675    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
2676
2677  // If the vector types are identical, return.
2678  if (lhsType == rhsType)
2679    return lhsType;
2680
2681  // Handle the case of a vector & extvector type of the same size and element
2682  // type.  It would be nice if we only had one vector type someday.
2683  if (getLangOptions().LaxVectorConversions) {
2684    // FIXME: Should we warn here?
2685    if (const VectorType *LV = lhsType->getAsVectorType()) {
2686      if (const VectorType *RV = rhsType->getAsVectorType())
2687        if (LV->getElementType() == RV->getElementType() &&
2688            LV->getNumElements() == RV->getNumElements()) {
2689          return lhsType->isExtVectorType() ? lhsType : rhsType;
2690        }
2691    }
2692  }
2693
2694  // If the lhs is an extended vector and the rhs is a scalar of the same type
2695  // or a literal, promote the rhs to the vector type.
2696  if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
2697    QualType eltType = V->getElementType();
2698
2699    if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
2700        (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
2701        (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
2702      ImpCastExprToType(rex, lhsType);
2703      return lhsType;
2704    }
2705  }
2706
2707  // If the rhs is an extended vector and the lhs is a scalar of the same type,
2708  // promote the lhs to the vector type.
2709  if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
2710    QualType eltType = V->getElementType();
2711
2712    if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
2713        (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
2714        (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
2715      ImpCastExprToType(lex, rhsType);
2716      return rhsType;
2717    }
2718  }
2719
2720  // You cannot convert between vector values of different size.
2721  Diag(Loc, diag::err_typecheck_vector_not_convertable)
2722    << lex->getType() << rex->getType()
2723    << lex->getSourceRange() << rex->getSourceRange();
2724  return QualType();
2725}
2726
2727inline QualType Sema::CheckMultiplyDivideOperands(
2728  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2729{
2730  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2731    return CheckVectorOperands(Loc, lex, rex);
2732
2733  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2734
2735  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2736    return compType;
2737  return InvalidOperands(Loc, lex, rex);
2738}
2739
2740inline QualType Sema::CheckRemainderOperands(
2741  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2742{
2743  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
2744    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2745      return CheckVectorOperands(Loc, lex, rex);
2746    return InvalidOperands(Loc, lex, rex);
2747  }
2748
2749  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2750
2751  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
2752    return compType;
2753  return InvalidOperands(Loc, lex, rex);
2754}
2755
2756inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
2757  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
2758{
2759  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2760    return CheckVectorOperands(Loc, lex, rex);
2761
2762  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2763
2764  // handle the common case first (both operands are arithmetic).
2765  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2766    return compType;
2767
2768  // Put any potential pointer into PExp
2769  Expr* PExp = lex, *IExp = rex;
2770  if (IExp->getType()->isPointerType())
2771    std::swap(PExp, IExp);
2772
2773  if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
2774    if (IExp->getType()->isIntegerType()) {
2775      // Check for arithmetic on pointers to incomplete types
2776      if (!PTy->getPointeeType()->isObjectType()) {
2777        if (PTy->getPointeeType()->isVoidType()) {
2778          if (getLangOptions().CPlusPlus) {
2779            Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
2780              << lex->getSourceRange() << rex->getSourceRange();
2781            return QualType();
2782          }
2783
2784          // GNU extension: arithmetic on pointer to void
2785          Diag(Loc, diag::ext_gnu_void_ptr)
2786            << lex->getSourceRange() << rex->getSourceRange();
2787        } else if (PTy->getPointeeType()->isFunctionType()) {
2788          if (getLangOptions().CPlusPlus) {
2789            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2790              << lex->getType() << lex->getSourceRange();
2791            return QualType();
2792          }
2793
2794          // GNU extension: arithmetic on pointer to function
2795          Diag(Loc, diag::ext_gnu_ptr_func_arith)
2796            << lex->getType() << lex->getSourceRange();
2797        } else {
2798          DiagnoseIncompleteType(Loc, PTy->getPointeeType(),
2799                                 diag::err_typecheck_arithmetic_incomplete_type,
2800                                 lex->getSourceRange(), SourceRange(),
2801                                 lex->getType());
2802          return QualType();
2803        }
2804      }
2805      return PExp->getType();
2806    }
2807  }
2808
2809  return InvalidOperands(Loc, lex, rex);
2810}
2811
2812// C99 6.5.6
2813QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
2814                                        SourceLocation Loc, bool isCompAssign) {
2815  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2816    return CheckVectorOperands(Loc, lex, rex);
2817
2818  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
2819
2820  // Enforce type constraints: C99 6.5.6p3.
2821
2822  // Handle the common case first (both operands are arithmetic).
2823  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2824    return compType;
2825
2826  // Either ptr - int   or   ptr - ptr.
2827  if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
2828    QualType lpointee = LHSPTy->getPointeeType();
2829
2830    // The LHS must be an object type, not incomplete, function, etc.
2831    if (!lpointee->isObjectType()) {
2832      // Handle the GNU void* extension.
2833      if (lpointee->isVoidType()) {
2834        Diag(Loc, diag::ext_gnu_void_ptr)
2835          << lex->getSourceRange() << rex->getSourceRange();
2836      } else if (lpointee->isFunctionType()) {
2837        if (getLangOptions().CPlusPlus) {
2838          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2839            << lex->getType() << lex->getSourceRange();
2840          return QualType();
2841        }
2842
2843        // GNU extension: arithmetic on pointer to function
2844        Diag(Loc, diag::ext_gnu_ptr_func_arith)
2845          << lex->getType() << lex->getSourceRange();
2846      } else {
2847        Diag(Loc, diag::err_typecheck_sub_ptr_object)
2848          << lex->getType() << lex->getSourceRange();
2849        return QualType();
2850      }
2851    }
2852
2853    // The result type of a pointer-int computation is the pointer type.
2854    if (rex->getType()->isIntegerType())
2855      return lex->getType();
2856
2857    // Handle pointer-pointer subtractions.
2858    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
2859      QualType rpointee = RHSPTy->getPointeeType();
2860
2861      // RHS must be an object type, unless void (GNU).
2862      if (!rpointee->isObjectType()) {
2863        // Handle the GNU void* extension.
2864        if (rpointee->isVoidType()) {
2865          if (!lpointee->isVoidType())
2866            Diag(Loc, diag::ext_gnu_void_ptr)
2867              << lex->getSourceRange() << rex->getSourceRange();
2868        } else if (rpointee->isFunctionType()) {
2869          if (getLangOptions().CPlusPlus) {
2870            Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
2871              << rex->getType() << rex->getSourceRange();
2872            return QualType();
2873          }
2874
2875          // GNU extension: arithmetic on pointer to function
2876          if (!lpointee->isFunctionType())
2877            Diag(Loc, diag::ext_gnu_ptr_func_arith)
2878              << lex->getType() << lex->getSourceRange();
2879        } else {
2880          Diag(Loc, diag::err_typecheck_sub_ptr_object)
2881            << rex->getType() << rex->getSourceRange();
2882          return QualType();
2883        }
2884      }
2885
2886      // Pointee types must be compatible.
2887      if (!Context.typesAreCompatible(
2888              Context.getCanonicalType(lpointee).getUnqualifiedType(),
2889              Context.getCanonicalType(rpointee).getUnqualifiedType())) {
2890        Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
2891          << lex->getType() << rex->getType()
2892          << lex->getSourceRange() << rex->getSourceRange();
2893        return QualType();
2894      }
2895
2896      return Context.getPointerDiffType();
2897    }
2898  }
2899
2900  return InvalidOperands(Loc, lex, rex);
2901}
2902
2903// C99 6.5.7
2904QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2905                                  bool isCompAssign) {
2906  // C99 6.5.7p2: Each of the operands shall have integer type.
2907  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
2908    return InvalidOperands(Loc, lex, rex);
2909
2910  // Shifts don't perform usual arithmetic conversions, they just do integer
2911  // promotions on each operand. C99 6.5.7p3
2912  if (!isCompAssign)
2913    UsualUnaryConversions(lex);
2914  UsualUnaryConversions(rex);
2915
2916  // "The type of the result is that of the promoted left operand."
2917  return lex->getType();
2918}
2919
2920// C99 6.5.8
2921QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
2922                                    bool isRelational) {
2923  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
2924    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
2925
2926  // C99 6.5.8p3 / C99 6.5.9p4
2927  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
2928    UsualArithmeticConversions(lex, rex);
2929  else {
2930    UsualUnaryConversions(lex);
2931    UsualUnaryConversions(rex);
2932  }
2933  QualType lType = lex->getType();
2934  QualType rType = rex->getType();
2935
2936  // For non-floating point types, check for self-comparisons of the form
2937  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
2938  // often indicate logic errors in the program.
2939  if (!lType->isFloatingType()) {
2940    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
2941      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
2942        if (DRL->getDecl() == DRR->getDecl())
2943          Diag(Loc, diag::warn_selfcomparison);
2944  }
2945
2946  // The result of comparisons is 'bool' in C++, 'int' in C.
2947  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
2948
2949  if (isRelational) {
2950    if (lType->isRealType() && rType->isRealType())
2951      return ResultTy;
2952  } else {
2953    // Check for comparisons of floating point operands using != and ==.
2954    if (lType->isFloatingType()) {
2955      assert (rType->isFloatingType());
2956      CheckFloatComparison(Loc,lex,rex);
2957    }
2958
2959    if (lType->isArithmeticType() && rType->isArithmeticType())
2960      return ResultTy;
2961  }
2962
2963  bool LHSIsNull = lex->isNullPointerConstant(Context);
2964  bool RHSIsNull = rex->isNullPointerConstant(Context);
2965
2966  // All of the following pointer related warnings are GCC extensions, except
2967  // when handling null pointer constants. One day, we can consider making them
2968  // errors (when -pedantic-errors is enabled).
2969  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
2970    QualType LCanPointeeTy =
2971      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
2972    QualType RCanPointeeTy =
2973      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
2974
2975    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
2976        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
2977        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
2978                                    RCanPointeeTy.getUnqualifiedType()) &&
2979        !Context.areComparableObjCPointerTypes(lType, rType)) {
2980      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
2981        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2982    }
2983    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2984    return ResultTy;
2985  }
2986  // Handle block pointer types.
2987  if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
2988    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
2989    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
2990
2991    if (!LHSIsNull && !RHSIsNull &&
2992        !Context.typesAreBlockCompatible(lpointee, rpointee)) {
2993      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
2994        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
2995    }
2996    ImpCastExprToType(rex, lType); // promote the pointer to pointer
2997    return ResultTy;
2998  }
2999  // Allow block pointers to be compared with null pointer constants.
3000  if ((lType->isBlockPointerType() && rType->isPointerType()) ||
3001      (lType->isPointerType() && rType->isBlockPointerType())) {
3002    if (!LHSIsNull && !RHSIsNull) {
3003      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
3004        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3005    }
3006    ImpCastExprToType(rex, lType); // promote the pointer to pointer
3007    return ResultTy;
3008  }
3009
3010  if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
3011    if (lType->isPointerType() || rType->isPointerType()) {
3012      const PointerType *LPT = lType->getAsPointerType();
3013      const PointerType *RPT = rType->getAsPointerType();
3014      bool LPtrToVoid = LPT ?
3015        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
3016      bool RPtrToVoid = RPT ?
3017        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
3018
3019      if (!LPtrToVoid && !RPtrToVoid &&
3020          !Context.typesAreCompatible(lType, rType)) {
3021        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
3022          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3023        ImpCastExprToType(rex, lType);
3024        return ResultTy;
3025      }
3026      ImpCastExprToType(rex, lType);
3027      return ResultTy;
3028    }
3029    if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
3030      ImpCastExprToType(rex, lType);
3031      return ResultTy;
3032    } else {
3033      if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
3034        Diag(Loc, diag::warn_incompatible_qualified_id_operands)
3035          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3036        ImpCastExprToType(rex, lType);
3037        return ResultTy;
3038      }
3039    }
3040  }
3041  if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
3042       rType->isIntegerType()) {
3043    if (!RHSIsNull)
3044      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3045        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3046    ImpCastExprToType(rex, lType); // promote the integer to pointer
3047    return ResultTy;
3048  }
3049  if (lType->isIntegerType() &&
3050      (rType->isPointerType() || rType->isObjCQualifiedIdType())) {
3051    if (!LHSIsNull)
3052      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3053        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3054    ImpCastExprToType(lex, rType); // promote the integer to pointer
3055    return ResultTy;
3056  }
3057  // Handle block pointers.
3058  if (lType->isBlockPointerType() && rType->isIntegerType()) {
3059    if (!RHSIsNull)
3060      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3061        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3062    ImpCastExprToType(rex, lType); // promote the integer to pointer
3063    return ResultTy;
3064  }
3065  if (lType->isIntegerType() && rType->isBlockPointerType()) {
3066    if (!LHSIsNull)
3067      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
3068        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
3069    ImpCastExprToType(lex, rType); // promote the integer to pointer
3070    return ResultTy;
3071  }
3072  return InvalidOperands(Loc, lex, rex);
3073}
3074
3075/// CheckVectorCompareOperands - vector comparisons are a clang extension that
3076/// operates on extended vector types.  Instead of producing an IntTy result,
3077/// like a scalar comparison, a vector comparison produces a vector of integer
3078/// types.
3079QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
3080                                          SourceLocation Loc,
3081                                          bool isRelational) {
3082  // Check to make sure we're operating on vectors of the same type and width,
3083  // Allowing one side to be a scalar of element type.
3084  QualType vType = CheckVectorOperands(Loc, lex, rex);
3085  if (vType.isNull())
3086    return vType;
3087
3088  QualType lType = lex->getType();
3089  QualType rType = rex->getType();
3090
3091  // For non-floating point types, check for self-comparisons of the form
3092  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
3093  // often indicate logic errors in the program.
3094  if (!lType->isFloatingType()) {
3095    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
3096      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
3097        if (DRL->getDecl() == DRR->getDecl())
3098          Diag(Loc, diag::warn_selfcomparison);
3099  }
3100
3101  // Check for comparisons of floating point operands using != and ==.
3102  if (!isRelational && lType->isFloatingType()) {
3103    assert (rType->isFloatingType());
3104    CheckFloatComparison(Loc,lex,rex);
3105  }
3106
3107  // Return the type for the comparison, which is the same as vector type for
3108  // integer vectors, or an integer type of identical size and number of
3109  // elements for floating point vectors.
3110  if (lType->isIntegerType())
3111    return lType;
3112
3113  const VectorType *VTy = lType->getAsVectorType();
3114  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
3115  if (TypeSize == Context.getTypeSize(Context.IntTy))
3116    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
3117  else if (TypeSize == Context.getTypeSize(Context.LongTy))
3118    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
3119
3120  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
3121         "Unhandled vector element size in vector compare");
3122  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
3123}
3124
3125inline QualType Sema::CheckBitwiseOperands(
3126  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3127{
3128  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3129    return CheckVectorOperands(Loc, lex, rex);
3130
3131  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3132
3133  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3134    return compType;
3135  return InvalidOperands(Loc, lex, rex);
3136}
3137
3138inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
3139  Expr *&lex, Expr *&rex, SourceLocation Loc)
3140{
3141  UsualUnaryConversions(lex);
3142  UsualUnaryConversions(rex);
3143
3144  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
3145    return Context.IntTy;
3146  return InvalidOperands(Loc, lex, rex);
3147}
3148
3149/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
3150/// is a read-only property; return true if so. A readonly property expression
3151/// depends on various declarations and thus must be treated specially.
3152///
3153static bool IsReadonlyProperty(Expr *E, Sema &S)
3154{
3155  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
3156    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
3157    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
3158      QualType BaseType = PropExpr->getBase()->getType();
3159      if (const PointerType *PTy = BaseType->getAsPointerType())
3160        if (const ObjCInterfaceType *IFTy =
3161            PTy->getPointeeType()->getAsObjCInterfaceType())
3162          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
3163            if (S.isPropertyReadonly(PDecl, IFace))
3164              return true;
3165    }
3166  }
3167  return false;
3168}
3169
3170/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
3171/// emit an error and return true.  If so, return false.
3172static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
3173  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
3174  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
3175    IsLV = Expr::MLV_ReadonlyProperty;
3176  if (IsLV == Expr::MLV_Valid)
3177    return false;
3178
3179  unsigned Diag = 0;
3180  bool NeedType = false;
3181  switch (IsLV) { // C99 6.5.16p2
3182  default: assert(0 && "Unknown result from isModifiableLvalue!");
3183  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
3184  case Expr::MLV_ArrayType:
3185    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
3186    NeedType = true;
3187    break;
3188  case Expr::MLV_NotObjectType:
3189    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
3190    NeedType = true;
3191    break;
3192  case Expr::MLV_LValueCast:
3193    Diag = diag::err_typecheck_lvalue_casts_not_supported;
3194    break;
3195  case Expr::MLV_InvalidExpression:
3196    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
3197    break;
3198  case Expr::MLV_IncompleteType:
3199  case Expr::MLV_IncompleteVoidType:
3200    return S.DiagnoseIncompleteType(Loc, E->getType(),
3201                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
3202                                    E->getSourceRange());
3203  case Expr::MLV_DuplicateVectorComponents:
3204    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
3205    break;
3206  case Expr::MLV_NotBlockQualified:
3207    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
3208    break;
3209  case Expr::MLV_ReadonlyProperty:
3210    Diag = diag::error_readonly_property_assignment;
3211    break;
3212  case Expr::MLV_NoSetterProperty:
3213    Diag = diag::error_nosetter_property_assignment;
3214    break;
3215  }
3216
3217  if (NeedType)
3218    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
3219  else
3220    S.Diag(Loc, Diag) << E->getSourceRange();
3221  return true;
3222}
3223
3224
3225
3226// C99 6.5.16.1
3227QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
3228                                       SourceLocation Loc,
3229                                       QualType CompoundType) {
3230  // Verify that LHS is a modifiable lvalue, and emit error if not.
3231  if (CheckForModifiableLvalue(LHS, Loc, *this))
3232    return QualType();
3233
3234  QualType LHSType = LHS->getType();
3235  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
3236
3237  AssignConvertType ConvTy;
3238  if (CompoundType.isNull()) {
3239    // Simple assignment "x = y".
3240    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
3241    // Special case of NSObject attributes on c-style pointer types.
3242    if (ConvTy == IncompatiblePointer &&
3243        ((Context.isObjCNSObjectType(LHSType) &&
3244          Context.isObjCObjectPointerType(RHSType)) ||
3245         (Context.isObjCNSObjectType(RHSType) &&
3246          Context.isObjCObjectPointerType(LHSType))))
3247      ConvTy = Compatible;
3248
3249    // If the RHS is a unary plus or minus, check to see if they = and + are
3250    // right next to each other.  If so, the user may have typo'd "x =+ 4"
3251    // instead of "x += 4".
3252    Expr *RHSCheck = RHS;
3253    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
3254      RHSCheck = ICE->getSubExpr();
3255    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
3256      if ((UO->getOpcode() == UnaryOperator::Plus ||
3257           UO->getOpcode() == UnaryOperator::Minus) &&
3258          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
3259          // Only if the two operators are exactly adjacent.
3260          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
3261        Diag(Loc, diag::warn_not_compound_assign)
3262          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
3263          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
3264    }
3265  } else {
3266    // Compound assignment "x += y"
3267    ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
3268  }
3269
3270  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
3271                               RHS, "assigning"))
3272    return QualType();
3273
3274  // C99 6.5.16p3: The type of an assignment expression is the type of the
3275  // left operand unless the left operand has qualified type, in which case
3276  // it is the unqualified version of the type of the left operand.
3277  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
3278  // is converted to the type of the assignment expression (above).
3279  // C++ 5.17p1: the type of the assignment expression is that of its left
3280  // oprdu.
3281  return LHSType.getUnqualifiedType();
3282}
3283
3284// C99 6.5.17
3285QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
3286  // FIXME: what is required for LHS?
3287
3288  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
3289  DefaultFunctionArrayConversion(RHS);
3290  return RHS->getType();
3291}
3292
3293/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
3294/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
3295QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
3296                                              bool isInc) {
3297  QualType ResType = Op->getType();
3298  assert(!ResType.isNull() && "no type for increment/decrement expression");
3299
3300  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
3301    // Decrement of bool is not allowed.
3302    if (!isInc) {
3303      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
3304      return QualType();
3305    }
3306    // Increment of bool sets it to true, but is deprecated.
3307    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
3308  } else if (ResType->isRealType()) {
3309    // OK!
3310  } else if (const PointerType *PT = ResType->getAsPointerType()) {
3311    // C99 6.5.2.4p2, 6.5.6p2
3312    if (PT->getPointeeType()->isObjectType()) {
3313      // Pointer to object is ok!
3314    } else if (PT->getPointeeType()->isVoidType()) {
3315      if (getLangOptions().CPlusPlus) {
3316        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
3317          << Op->getSourceRange();
3318        return QualType();
3319      }
3320
3321      // Pointer to void is a GNU extension in C.
3322      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
3323    } else if (PT->getPointeeType()->isFunctionType()) {
3324      if (getLangOptions().CPlusPlus) {
3325        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
3326          << Op->getType() << Op->getSourceRange();
3327        return QualType();
3328      }
3329
3330      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
3331        << ResType << Op->getSourceRange();
3332      return QualType();
3333    } else {
3334      DiagnoseIncompleteType(OpLoc, PT->getPointeeType(),
3335                             diag::err_typecheck_arithmetic_incomplete_type,
3336                             Op->getSourceRange(), SourceRange(),
3337                             ResType);
3338      return QualType();
3339    }
3340  } else if (ResType->isComplexType()) {
3341    // C99 does not support ++/-- on complex types, we allow as an extension.
3342    Diag(OpLoc, diag::ext_integer_increment_complex)
3343      << ResType << Op->getSourceRange();
3344  } else {
3345    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
3346      << ResType << Op->getSourceRange();
3347    return QualType();
3348  }
3349  // At this point, we know we have a real, complex or pointer type.
3350  // Now make sure the operand is a modifiable lvalue.
3351  if (CheckForModifiableLvalue(Op, OpLoc, *this))
3352    return QualType();
3353  return ResType;
3354}
3355
3356/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
3357/// This routine allows us to typecheck complex/recursive expressions
3358/// where the declaration is needed for type checking. We only need to
3359/// handle cases when the expression references a function designator
3360/// or is an lvalue. Here are some examples:
3361///  - &(x) => x
3362///  - &*****f => f for f a function designator.
3363///  - &s.xx => s
3364///  - &s.zz[1].yy -> s, if zz is an array
3365///  - *(x + 1) -> x, if x is an array
3366///  - &"123"[2] -> 0
3367///  - & __real__ x -> x
3368static NamedDecl *getPrimaryDecl(Expr *E) {
3369  switch (E->getStmtClass()) {
3370  case Stmt::DeclRefExprClass:
3371  case Stmt::QualifiedDeclRefExprClass:
3372    return cast<DeclRefExpr>(E)->getDecl();
3373  case Stmt::MemberExprClass:
3374    // Fields cannot be declared with a 'register' storage class.
3375    // &X->f is always ok, even if X is declared register.
3376    if (cast<MemberExpr>(E)->isArrow())
3377      return 0;
3378    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
3379  case Stmt::ArraySubscriptExprClass: {
3380    // &X[4] and &4[X] refers to X if X is not a pointer.
3381
3382    NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
3383    ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
3384    if (!VD || VD->getType()->isPointerType())
3385      return 0;
3386    else
3387      return VD;
3388  }
3389  case Stmt::UnaryOperatorClass: {
3390    UnaryOperator *UO = cast<UnaryOperator>(E);
3391
3392    switch(UO->getOpcode()) {
3393    case UnaryOperator::Deref: {
3394      // *(X + 1) refers to X if X is not a pointer.
3395      if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
3396        ValueDecl *VD = dyn_cast<ValueDecl>(D);
3397        if (!VD || VD->getType()->isPointerType())
3398          return 0;
3399        return VD;
3400      }
3401      return 0;
3402    }
3403    case UnaryOperator::Real:
3404    case UnaryOperator::Imag:
3405    case UnaryOperator::Extension:
3406      return getPrimaryDecl(UO->getSubExpr());
3407    default:
3408      return 0;
3409    }
3410  }
3411  case Stmt::BinaryOperatorClass: {
3412    BinaryOperator *BO = cast<BinaryOperator>(E);
3413
3414    // Handle cases involving pointer arithmetic. The result of an
3415    // Assign or AddAssign is not an lvalue so they can be ignored.
3416
3417    // (x + n) or (n + x) => x
3418    if (BO->getOpcode() == BinaryOperator::Add) {
3419      if (BO->getLHS()->getType()->isPointerType()) {
3420        return getPrimaryDecl(BO->getLHS());
3421      } else if (BO->getRHS()->getType()->isPointerType()) {
3422        return getPrimaryDecl(BO->getRHS());
3423      }
3424    }
3425
3426    return 0;
3427  }
3428  case Stmt::ParenExprClass:
3429    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
3430  case Stmt::ImplicitCastExprClass:
3431    // &X[4] when X is an array, has an implicit cast from array to pointer.
3432    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
3433  default:
3434    return 0;
3435  }
3436}
3437
3438/// CheckAddressOfOperand - The operand of & must be either a function
3439/// designator or an lvalue designating an object. If it is an lvalue, the
3440/// object cannot be declared with storage class register or be a bit field.
3441/// Note: The usual conversions are *not* applied to the operand of the &
3442/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
3443/// In C++, the operand might be an overloaded function name, in which case
3444/// we allow the '&' but retain the overloaded-function type.
3445QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
3446  if (op->isTypeDependent())
3447    return Context.DependentTy;
3448
3449  if (getLangOptions().C99) {
3450    // Implement C99-only parts of addressof rules.
3451    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
3452      if (uOp->getOpcode() == UnaryOperator::Deref)
3453        // Per C99 6.5.3.2, the address of a deref always returns a valid result
3454        // (assuming the deref expression is valid).
3455        return uOp->getSubExpr()->getType();
3456    }
3457    // Technically, there should be a check for array subscript
3458    // expressions here, but the result of one is always an lvalue anyway.
3459  }
3460  NamedDecl *dcl = getPrimaryDecl(op);
3461  Expr::isLvalueResult lval = op->isLvalue(Context);
3462
3463  if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
3464    if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
3465      // FIXME: emit more specific diag...
3466      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
3467        << op->getSourceRange();
3468      return QualType();
3469    }
3470  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
3471    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
3472      if (Field->isBitField()) {
3473        Diag(OpLoc, diag::err_typecheck_address_of)
3474          << "bit-field" << op->getSourceRange();
3475        return QualType();
3476      }
3477    }
3478  // Check for Apple extension for accessing vector components.
3479  } else if (isa<ArraySubscriptExpr>(op) &&
3480           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
3481    Diag(OpLoc, diag::err_typecheck_address_of)
3482      << "vector" << op->getSourceRange();
3483    return QualType();
3484  } else if (dcl) { // C99 6.5.3.2p1
3485    // We have an lvalue with a decl. Make sure the decl is not declared
3486    // with the register storage-class specifier.
3487    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
3488      if (vd->getStorageClass() == VarDecl::Register) {
3489        Diag(OpLoc, diag::err_typecheck_address_of)
3490          << "register variable" << op->getSourceRange();
3491        return QualType();
3492      }
3493    } else if (isa<OverloadedFunctionDecl>(dcl)) {
3494      return Context.OverloadTy;
3495    } else if (isa<FieldDecl>(dcl)) {
3496      // Okay: we can take the address of a field.
3497      // Could be a pointer to member, though, if there is an explicit
3498      // scope qualifier for the class.
3499      if (isa<QualifiedDeclRefExpr>(op)) {
3500        DeclContext *Ctx = dcl->getDeclContext();
3501        if (Ctx && Ctx->isRecord())
3502          return Context.getMemberPointerType(op->getType(),
3503                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3504      }
3505    } else if (isa<FunctionDecl>(dcl)) {
3506      // Okay: we can take the address of a function.
3507      // As above.
3508      if (isa<QualifiedDeclRefExpr>(op)) {
3509        DeclContext *Ctx = dcl->getDeclContext();
3510        if (Ctx && Ctx->isRecord())
3511          return Context.getMemberPointerType(op->getType(),
3512                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
3513      }
3514    }
3515    else
3516      assert(0 && "Unknown/unexpected decl type");
3517  }
3518
3519  // If the operand has type "type", the result has type "pointer to type".
3520  return Context.getPointerType(op->getType());
3521}
3522
3523QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
3524  UsualUnaryConversions(Op);
3525  QualType Ty = Op->getType();
3526
3527  // Note that per both C89 and C99, this is always legal, even if ptype is an
3528  // incomplete type or void.  It would be possible to warn about dereferencing
3529  // a void pointer, but it's completely well-defined, and such a warning is
3530  // unlikely to catch any mistakes.
3531  if (const PointerType *PT = Ty->getAsPointerType())
3532    return PT->getPointeeType();
3533
3534  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
3535    << Ty << Op->getSourceRange();
3536  return QualType();
3537}
3538
3539static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
3540  tok::TokenKind Kind) {
3541  BinaryOperator::Opcode Opc;
3542  switch (Kind) {
3543  default: assert(0 && "Unknown binop!");
3544  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
3545  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
3546  case tok::star:                 Opc = BinaryOperator::Mul; break;
3547  case tok::slash:                Opc = BinaryOperator::Div; break;
3548  case tok::percent:              Opc = BinaryOperator::Rem; break;
3549  case tok::plus:                 Opc = BinaryOperator::Add; break;
3550  case tok::minus:                Opc = BinaryOperator::Sub; break;
3551  case tok::lessless:             Opc = BinaryOperator::Shl; break;
3552  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
3553  case tok::lessequal:            Opc = BinaryOperator::LE; break;
3554  case tok::less:                 Opc = BinaryOperator::LT; break;
3555  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
3556  case tok::greater:              Opc = BinaryOperator::GT; break;
3557  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
3558  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
3559  case tok::amp:                  Opc = BinaryOperator::And; break;
3560  case tok::caret:                Opc = BinaryOperator::Xor; break;
3561  case tok::pipe:                 Opc = BinaryOperator::Or; break;
3562  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
3563  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
3564  case tok::equal:                Opc = BinaryOperator::Assign; break;
3565  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
3566  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
3567  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
3568  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
3569  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
3570  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
3571  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
3572  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
3573  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
3574  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
3575  case tok::comma:                Opc = BinaryOperator::Comma; break;
3576  }
3577  return Opc;
3578}
3579
3580static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
3581  tok::TokenKind Kind) {
3582  UnaryOperator::Opcode Opc;
3583  switch (Kind) {
3584  default: assert(0 && "Unknown unary op!");
3585  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
3586  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
3587  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
3588  case tok::star:         Opc = UnaryOperator::Deref; break;
3589  case tok::plus:         Opc = UnaryOperator::Plus; break;
3590  case tok::minus:        Opc = UnaryOperator::Minus; break;
3591  case tok::tilde:        Opc = UnaryOperator::Not; break;
3592  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
3593  case tok::kw___real:    Opc = UnaryOperator::Real; break;
3594  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
3595  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
3596  }
3597  return Opc;
3598}
3599
3600/// CreateBuiltinBinOp - Creates a new built-in binary operation with
3601/// operator @p Opc at location @c TokLoc. This routine only supports
3602/// built-in operations; ActOnBinOp handles overloaded operators.
3603Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
3604                                                  unsigned Op,
3605                                                  Expr *lhs, Expr *rhs) {
3606  QualType ResultTy;  // Result type of the binary operator.
3607  QualType CompTy;    // Computation type for compound assignments (e.g. '+=')
3608  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
3609
3610  switch (Opc) {
3611  default:
3612    assert(0 && "Unknown binary expr!");
3613  case BinaryOperator::Assign:
3614    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
3615    break;
3616  case BinaryOperator::PtrMemD:
3617  case BinaryOperator::PtrMemI:
3618    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
3619                                            Opc == BinaryOperator::PtrMemI);
3620    break;
3621  case BinaryOperator::Mul:
3622  case BinaryOperator::Div:
3623    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
3624    break;
3625  case BinaryOperator::Rem:
3626    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
3627    break;
3628  case BinaryOperator::Add:
3629    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
3630    break;
3631  case BinaryOperator::Sub:
3632    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
3633    break;
3634  case BinaryOperator::Shl:
3635  case BinaryOperator::Shr:
3636    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
3637    break;
3638  case BinaryOperator::LE:
3639  case BinaryOperator::LT:
3640  case BinaryOperator::GE:
3641  case BinaryOperator::GT:
3642    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
3643    break;
3644  case BinaryOperator::EQ:
3645  case BinaryOperator::NE:
3646    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
3647    break;
3648  case BinaryOperator::And:
3649  case BinaryOperator::Xor:
3650  case BinaryOperator::Or:
3651    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
3652    break;
3653  case BinaryOperator::LAnd:
3654  case BinaryOperator::LOr:
3655    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
3656    break;
3657  case BinaryOperator::MulAssign:
3658  case BinaryOperator::DivAssign:
3659    CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
3660    if (!CompTy.isNull())
3661      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3662    break;
3663  case BinaryOperator::RemAssign:
3664    CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
3665    if (!CompTy.isNull())
3666      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3667    break;
3668  case BinaryOperator::AddAssign:
3669    CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
3670    if (!CompTy.isNull())
3671      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3672    break;
3673  case BinaryOperator::SubAssign:
3674    CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
3675    if (!CompTy.isNull())
3676      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3677    break;
3678  case BinaryOperator::ShlAssign:
3679  case BinaryOperator::ShrAssign:
3680    CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
3681    if (!CompTy.isNull())
3682      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3683    break;
3684  case BinaryOperator::AndAssign:
3685  case BinaryOperator::XorAssign:
3686  case BinaryOperator::OrAssign:
3687    CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
3688    if (!CompTy.isNull())
3689      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
3690    break;
3691  case BinaryOperator::Comma:
3692    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
3693    break;
3694  }
3695  if (ResultTy.isNull())
3696    return ExprError();
3697  if (CompTy.isNull())
3698    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
3699  else
3700    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
3701                                                  CompTy, OpLoc));
3702}
3703
3704// Binary Operators.  'Tok' is the token for the operator.
3705Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
3706                                          tok::TokenKind Kind,
3707                                          ExprArg LHS, ExprArg RHS) {
3708  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
3709  Expr *lhs = (Expr *)LHS.release(), *rhs = (Expr*)RHS.release();
3710
3711  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
3712  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
3713
3714  // If either expression is type-dependent, just build the AST.
3715  // FIXME: We'll need to perform some caching of the result of name
3716  // lookup for operator+.
3717  if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
3718    if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
3719      return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc,
3720                                              Context.DependentTy,
3721                                              Context.DependentTy, TokLoc));
3722    else
3723      return Owned(new (Context) BinaryOperator(lhs, rhs, Opc,
3724                                                Context.DependentTy, TokLoc));
3725  }
3726
3727  if (getLangOptions().CPlusPlus && Opc != BinaryOperator::PtrMemD &&
3728      (lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
3729       rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
3730    // If this is one of the assignment operators, we only perform
3731    // overload resolution if the left-hand side is a class or
3732    // enumeration type (C++ [expr.ass]p3).
3733    if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3734        !(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
3735      return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3736    }
3737
3738    // Determine which overloaded operator we're dealing with.
3739    static const OverloadedOperatorKind OverOps[] = {
3740      // Overloading .* is not possible.
3741      static_cast<OverloadedOperatorKind>(0), OO_ArrowStar,
3742      OO_Star, OO_Slash, OO_Percent,
3743      OO_Plus, OO_Minus,
3744      OO_LessLess, OO_GreaterGreater,
3745      OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
3746      OO_EqualEqual, OO_ExclaimEqual,
3747      OO_Amp,
3748      OO_Caret,
3749      OO_Pipe,
3750      OO_AmpAmp,
3751      OO_PipePipe,
3752      OO_Equal, OO_StarEqual,
3753      OO_SlashEqual, OO_PercentEqual,
3754      OO_PlusEqual, OO_MinusEqual,
3755      OO_LessLessEqual, OO_GreaterGreaterEqual,
3756      OO_AmpEqual, OO_CaretEqual,
3757      OO_PipeEqual,
3758      OO_Comma
3759    };
3760    OverloadedOperatorKind OverOp = OverOps[Opc];
3761
3762    // Add the appropriate overloaded operators (C++ [over.match.oper])
3763    // to the candidate set.
3764    OverloadCandidateSet CandidateSet;
3765    Expr *Args[2] = { lhs, rhs };
3766    if (AddOperatorCandidates(OverOp, S, TokLoc, Args, 2, CandidateSet))
3767      return ExprError();
3768
3769    // Perform overload resolution.
3770    OverloadCandidateSet::iterator Best;
3771    switch (BestViableFunction(CandidateSet, Best)) {
3772    case OR_Success: {
3773      // We found a built-in operator or an overloaded operator.
3774      FunctionDecl *FnDecl = Best->Function;
3775
3776      if (FnDecl) {
3777        // We matched an overloaded operator. Build a call to that
3778        // operator.
3779
3780        // Convert the arguments.
3781        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3782          if (PerformObjectArgumentInitialization(lhs, Method) ||
3783              PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
3784                                        "passing"))
3785            return ExprError();
3786        } else {
3787          // Convert the arguments.
3788          if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
3789                                        "passing") ||
3790              PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
3791                                        "passing"))
3792            return ExprError();
3793        }
3794
3795        // Determine the result type
3796        QualType ResultTy
3797          = FnDecl->getType()->getAsFunctionType()->getResultType();
3798        ResultTy = ResultTy.getNonReferenceType();
3799
3800        // Build the actual expression node.
3801        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3802                                                 SourceLocation());
3803        UsualUnaryConversions(FnExpr);
3804
3805        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, Args, 2,
3806                                                       ResultTy, TokLoc));
3807      } else {
3808        // We matched a built-in operator. Convert the arguments, then
3809        // break out so that we will build the appropriate built-in
3810        // operator node.
3811        if (PerformImplicitConversion(lhs, Best->BuiltinTypes.ParamTypes[0],
3812                                      Best->Conversions[0], "passing") ||
3813            PerformImplicitConversion(rhs, Best->BuiltinTypes.ParamTypes[1],
3814                                      Best->Conversions[1], "passing"))
3815          return ExprError();
3816
3817        break;
3818      }
3819    }
3820
3821    case OR_No_Viable_Function:
3822      // No viable function; fall through to handling this as a
3823      // built-in operator, which will produce an error message for us.
3824      break;
3825
3826    case OR_Ambiguous:
3827      Diag(TokLoc,  diag::err_ovl_ambiguous_oper)
3828          << BinaryOperator::getOpcodeStr(Opc)
3829          << lhs->getSourceRange() << rhs->getSourceRange();
3830      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3831      return ExprError();
3832    }
3833
3834    // Either we found no viable overloaded operator or we matched a
3835    // built-in operator. In either case, fall through to trying to
3836    // build a built-in operation.
3837  }
3838
3839  // Build a built-in binary operation.
3840  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
3841}
3842
3843// Unary Operators.  'Tok' is the token for the operator.
3844Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
3845                                            tok::TokenKind Op, ExprArg input) {
3846  // FIXME: Input is modified later, but smart pointer not reassigned.
3847  Expr *Input = (Expr*)input.get();
3848  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
3849
3850  if (getLangOptions().CPlusPlus &&
3851      (Input->getType()->isRecordType()
3852       || Input->getType()->isEnumeralType())) {
3853    // Determine which overloaded operator we're dealing with.
3854    static const OverloadedOperatorKind OverOps[] = {
3855      OO_None, OO_None,
3856      OO_PlusPlus, OO_MinusMinus,
3857      OO_Amp, OO_Star,
3858      OO_Plus, OO_Minus,
3859      OO_Tilde, OO_Exclaim,
3860      OO_None, OO_None,
3861      OO_None,
3862      OO_None
3863    };
3864    OverloadedOperatorKind OverOp = OverOps[Opc];
3865
3866    // Add the appropriate overloaded operators (C++ [over.match.oper])
3867    // to the candidate set.
3868    OverloadCandidateSet CandidateSet;
3869    if (OverOp != OO_None &&
3870        AddOperatorCandidates(OverOp, S, OpLoc, &Input, 1, CandidateSet))
3871      return ExprError();
3872
3873    // Perform overload resolution.
3874    OverloadCandidateSet::iterator Best;
3875    switch (BestViableFunction(CandidateSet, Best)) {
3876    case OR_Success: {
3877      // We found a built-in operator or an overloaded operator.
3878      FunctionDecl *FnDecl = Best->Function;
3879
3880      if (FnDecl) {
3881        // We matched an overloaded operator. Build a call to that
3882        // operator.
3883
3884        // Convert the arguments.
3885        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3886          if (PerformObjectArgumentInitialization(Input, Method))
3887            return ExprError();
3888        } else {
3889          // Convert the arguments.
3890          if (PerformCopyInitialization(Input,
3891                                        FnDecl->getParamDecl(0)->getType(),
3892                                        "passing"))
3893            return ExprError();
3894        }
3895
3896        // Determine the result type
3897        QualType ResultTy
3898          = FnDecl->getType()->getAsFunctionType()->getResultType();
3899        ResultTy = ResultTy.getNonReferenceType();
3900
3901        // Build the actual expression node.
3902        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3903                                                 SourceLocation());
3904        UsualUnaryConversions(FnExpr);
3905
3906        input.release();
3907        return Owned(new (Context) CXXOperatorCallExpr(Context, FnExpr, &Input, 1,
3908                                                       ResultTy, OpLoc));
3909      } else {
3910        // We matched a built-in operator. Convert the arguments, then
3911        // break out so that we will build the appropriate built-in
3912        // operator node.
3913        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3914                                      Best->Conversions[0], "passing"))
3915          return ExprError();
3916
3917        break;
3918      }
3919    }
3920
3921    case OR_No_Viable_Function:
3922      // No viable function; fall through to handling this as a
3923      // built-in operator, which will produce an error message for us.
3924      break;
3925
3926    case OR_Ambiguous:
3927      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3928          << UnaryOperator::getOpcodeStr(Opc)
3929          << Input->getSourceRange();
3930      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3931      return ExprError();
3932    }
3933
3934    // Either we found no viable overloaded operator or we matched a
3935    // built-in operator. In either case, fall through to trying to
3936    // build a built-in operation.
3937  }
3938
3939  QualType resultType;
3940  switch (Opc) {
3941  default:
3942    assert(0 && "Unimplemented unary expr!");
3943  case UnaryOperator::PreInc:
3944  case UnaryOperator::PreDec:
3945    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
3946                                                Opc == UnaryOperator::PreInc);
3947    break;
3948  case UnaryOperator::AddrOf:
3949    resultType = CheckAddressOfOperand(Input, OpLoc);
3950    break;
3951  case UnaryOperator::Deref:
3952    DefaultFunctionArrayConversion(Input);
3953    resultType = CheckIndirectionOperand(Input, OpLoc);
3954    break;
3955  case UnaryOperator::Plus:
3956  case UnaryOperator::Minus:
3957    UsualUnaryConversions(Input);
3958    resultType = Input->getType();
3959    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
3960      break;
3961    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
3962             resultType->isEnumeralType())
3963      break;
3964    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
3965             Opc == UnaryOperator::Plus &&
3966             resultType->isPointerType())
3967      break;
3968
3969    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
3970      << resultType << Input->getSourceRange());
3971  case UnaryOperator::Not: // bitwise complement
3972    UsualUnaryConversions(Input);
3973    resultType = Input->getType();
3974    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
3975    if (resultType->isComplexType() || resultType->isComplexIntegerType())
3976      // C99 does not support '~' for complex conjugation.
3977      Diag(OpLoc, diag::ext_integer_complement_complex)
3978        << resultType << Input->getSourceRange();
3979    else if (!resultType->isIntegerType())
3980      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
3981        << resultType << Input->getSourceRange());
3982    break;
3983  case UnaryOperator::LNot: // logical negation
3984    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
3985    DefaultFunctionArrayConversion(Input);
3986    resultType = Input->getType();
3987    if (!resultType->isScalarType()) // C99 6.5.3.3p1
3988      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
3989        << resultType << Input->getSourceRange());
3990    // LNot always has type int. C99 6.5.3.3p5.
3991    // In C++, it's bool. C++ 5.3.1p8
3992    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
3993    break;
3994  case UnaryOperator::Real:
3995  case UnaryOperator::Imag:
3996    resultType = CheckRealImagOperand(Input, OpLoc);
3997    break;
3998  case UnaryOperator::Extension:
3999    resultType = Input->getType();
4000    break;
4001  }
4002  if (resultType.isNull())
4003    return ExprError();
4004  input.release();
4005  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
4006}
4007
4008/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
4009Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
4010                                      SourceLocation LabLoc,
4011                                      IdentifierInfo *LabelII) {
4012  // Look up the record for this label identifier.
4013  LabelStmt *&LabelDecl = LabelMap[LabelII];
4014
4015  // If we haven't seen this label yet, create a forward reference. It
4016  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
4017  if (LabelDecl == 0)
4018    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
4019
4020  // Create the AST node.  The address of a label always has type 'void*'.
4021  return new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
4022                                     Context.getPointerType(Context.VoidTy));
4023}
4024
4025Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
4026                                     SourceLocation RPLoc) { // "({..})"
4027  Stmt *SubStmt = static_cast<Stmt*>(substmt);
4028  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
4029  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
4030
4031  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
4032  if (isFileScope) {
4033    return Diag(LPLoc, diag::err_stmtexpr_file_scope);
4034  }
4035
4036  // FIXME: there are a variety of strange constraints to enforce here, for
4037  // example, it is not possible to goto into a stmt expression apparently.
4038  // More semantic analysis is needed.
4039
4040  // FIXME: the last statement in the compount stmt has its value used.  We
4041  // should not warn about it being unused.
4042
4043  // If there are sub stmts in the compound stmt, take the type of the last one
4044  // as the type of the stmtexpr.
4045  QualType Ty = Context.VoidTy;
4046
4047  if (!Compound->body_empty()) {
4048    Stmt *LastStmt = Compound->body_back();
4049    // If LastStmt is a label, skip down through into the body.
4050    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
4051      LastStmt = Label->getSubStmt();
4052
4053    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
4054      Ty = LastExpr->getType();
4055  }
4056
4057  return new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
4058}
4059
4060Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
4061                                            SourceLocation BuiltinLoc,
4062                                            SourceLocation TypeLoc,
4063                                            TypeTy *argty,
4064                                            OffsetOfComponent *CompPtr,
4065                                            unsigned NumComponents,
4066                                            SourceLocation RPLoc) {
4067  QualType ArgTy = QualType::getFromOpaquePtr(argty);
4068  assert(!ArgTy.isNull() && "Missing type argument!");
4069
4070  // We must have at least one component that refers to the type, and the first
4071  // one is known to be a field designator.  Verify that the ArgTy represents
4072  // a struct/union/class.
4073  if (!ArgTy->isRecordType())
4074    return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
4075
4076  // Otherwise, create a compound literal expression as the base, and
4077  // iteratively process the offsetof designators.
4078  InitListExpr *IList =
4079      new (Context) InitListExpr(SourceLocation(), 0, 0, SourceLocation());
4080  IList->setType(ArgTy);
4081  Expr *Res =
4082      new (Context) CompoundLiteralExpr(SourceLocation(), ArgTy, IList, false);
4083
4084  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
4085  // GCC extension, diagnose them.
4086  if (NumComponents != 1)
4087    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
4088      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
4089
4090  for (unsigned i = 0; i != NumComponents; ++i) {
4091    const OffsetOfComponent &OC = CompPtr[i];
4092    if (OC.isBrackets) {
4093      // Offset of an array sub-field.  TODO: Should we allow vector elements?
4094      const ArrayType *AT = Context.getAsArrayType(Res->getType());
4095      if (!AT) {
4096        Res->Destroy(Context);
4097        return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
4098      }
4099
4100      // FIXME: C++: Verify that operator[] isn't overloaded.
4101
4102      // C99 6.5.2.1p1
4103      Expr *Idx = static_cast<Expr*>(OC.U.E);
4104      if (!Idx->getType()->isIntegerType())
4105        return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
4106          << Idx->getSourceRange();
4107
4108      Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
4109                                             OC.LocEnd);
4110      continue;
4111    }
4112
4113    const RecordType *RC = Res->getType()->getAsRecordType();
4114    if (!RC) {
4115      Res->Destroy(Context);
4116      return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
4117    }
4118
4119    // Get the decl corresponding to this.
4120    RecordDecl *RD = RC->getDecl();
4121    FieldDecl *MemberDecl
4122      = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
4123                                                        LookupMemberName)
4124                                      .getAsDecl());
4125    if (!MemberDecl)
4126      return Diag(BuiltinLoc, diag::err_typecheck_no_member)
4127       << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
4128
4129    // FIXME: C++: Verify that MemberDecl isn't a static field.
4130    // FIXME: Verify that MemberDecl isn't a bitfield.
4131    // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
4132    // matter here.
4133    Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
4134                                   MemberDecl->getType().getNonReferenceType());
4135  }
4136
4137  return new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
4138                                     Context.getSizeType(), BuiltinLoc);
4139}
4140
4141
4142Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
4143                                                TypeTy *arg1, TypeTy *arg2,
4144                                                SourceLocation RPLoc) {
4145  QualType argT1 = QualType::getFromOpaquePtr(arg1);
4146  QualType argT2 = QualType::getFromOpaquePtr(arg2);
4147
4148  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
4149
4150  return new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1,
4151                                           argT2, RPLoc);
4152}
4153
4154Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
4155                                       ExprTy *expr1, ExprTy *expr2,
4156                                       SourceLocation RPLoc) {
4157  Expr *CondExpr = static_cast<Expr*>(cond);
4158  Expr *LHSExpr = static_cast<Expr*>(expr1);
4159  Expr *RHSExpr = static_cast<Expr*>(expr2);
4160
4161  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
4162
4163  // The conditional expression is required to be a constant expression.
4164  llvm::APSInt condEval(32);
4165  SourceLocation ExpLoc;
4166  if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
4167    return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
4168      << CondExpr->getSourceRange();
4169
4170  // If the condition is > zero, then the AST type is the same as the LSHExpr.
4171  QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
4172                                               RHSExpr->getType();
4173  return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
4174                                  resType, RPLoc);
4175}
4176
4177//===----------------------------------------------------------------------===//
4178// Clang Extensions.
4179//===----------------------------------------------------------------------===//
4180
4181/// ActOnBlockStart - This callback is invoked when a block literal is started.
4182void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
4183  // Analyze block parameters.
4184  BlockSemaInfo *BSI = new BlockSemaInfo();
4185
4186  // Add BSI to CurBlock.
4187  BSI->PrevBlockInfo = CurBlock;
4188  CurBlock = BSI;
4189
4190  BSI->ReturnType = 0;
4191  BSI->TheScope = BlockScope;
4192
4193  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
4194  PushDeclContext(BlockScope, BSI->TheDecl);
4195}
4196
4197void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
4198  assert(ParamInfo.getIdentifier() == 0 && "block-id should have no identifier!");
4199
4200  if (ParamInfo.getNumTypeObjects() == 0
4201      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
4202    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
4203
4204    // The type is entirely optional as well, if none, use DependentTy.
4205    if (T.isNull())
4206      T = Context.DependentTy;
4207
4208    // The parameter list is optional, if there was none, assume ().
4209    if (!T->isFunctionType())
4210      T = Context.getFunctionType(T, NULL, 0, 0, 0);
4211
4212    CurBlock->hasPrototype = true;
4213    CurBlock->isVariadic = false;
4214    Type *RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4215      .getTypePtr();
4216
4217    if (!RetTy->isDependentType())
4218      CurBlock->ReturnType = RetTy;
4219    return;
4220  }
4221
4222  // Analyze arguments to block.
4223  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4224         "Not a function declarator!");
4225  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
4226
4227  CurBlock->hasPrototype = FTI.hasPrototype;
4228  CurBlock->isVariadic = true;
4229
4230  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
4231  // no arguments, not a function that takes a single void argument.
4232  if (FTI.hasPrototype &&
4233      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4234      (!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
4235        ((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
4236    // empty arg list, don't push any params.
4237    CurBlock->isVariadic = false;
4238  } else if (FTI.hasPrototype) {
4239    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
4240      CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
4241    CurBlock->isVariadic = FTI.isVariadic;
4242    QualType T = GetTypeForDeclarator (ParamInfo, CurScope);
4243
4244    Type* RetTy = T.getTypePtr()->getAsFunctionType()->getResultType()
4245      .getTypePtr();
4246
4247    if (!RetTy->isDependentType())
4248      CurBlock->ReturnType = RetTy;
4249  }
4250  CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
4251
4252  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
4253       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
4254    // If this has an identifier, add it to the scope stack.
4255    if ((*AI)->getIdentifier())
4256      PushOnScopeChains(*AI, CurBlock->TheScope);
4257}
4258
4259/// ActOnBlockError - If there is an error parsing a block, this callback
4260/// is invoked to pop the information about the block from the action impl.
4261void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
4262  // Ensure that CurBlock is deleted.
4263  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
4264
4265  // Pop off CurBlock, handle nested blocks.
4266  CurBlock = CurBlock->PrevBlockInfo;
4267
4268  // FIXME: Delete the ParmVarDecl objects as well???
4269
4270}
4271
4272/// ActOnBlockStmtExpr - This is called when the body of a block statement
4273/// literal was successfully completed.  ^(int x){...}
4274Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
4275                                          Scope *CurScope) {
4276  // Ensure that CurBlock is deleted.
4277  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
4278  ExprOwningPtr<CompoundStmt> Body(this, static_cast<CompoundStmt*>(body));
4279
4280  PopDeclContext();
4281
4282  // Pop off CurBlock, handle nested blocks.
4283  CurBlock = CurBlock->PrevBlockInfo;
4284
4285  QualType RetTy = Context.VoidTy;
4286  if (BSI->ReturnType)
4287    RetTy = QualType(BSI->ReturnType, 0);
4288
4289  llvm::SmallVector<QualType, 8> ArgTypes;
4290  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
4291    ArgTypes.push_back(BSI->Params[i]->getType());
4292
4293  QualType BlockTy;
4294  if (!BSI->hasPrototype)
4295    BlockTy = Context.getFunctionTypeNoProto(RetTy);
4296  else
4297    BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
4298                                      BSI->isVariadic, 0);
4299
4300  BlockTy = Context.getBlockPointerType(BlockTy);
4301
4302  BSI->TheDecl->setBody(Body.take());
4303  return new (Context) BlockExpr(BSI->TheDecl, BlockTy);
4304}
4305
4306/// ExprsMatchFnType - return true if the Exprs in array Args have
4307/// QualTypes that match the QualTypes of the arguments of the FnType.
4308/// The number of arguments has already been validated to match the number of
4309/// arguments in FnType.
4310static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
4311                             ASTContext &Context) {
4312  unsigned NumParams = FnType->getNumArgs();
4313  for (unsigned i = 0; i != NumParams; ++i) {
4314    QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
4315    QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
4316
4317    if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
4318      return false;
4319  }
4320  return true;
4321}
4322
4323Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
4324                                         SourceLocation *CommaLocs,
4325                                         SourceLocation BuiltinLoc,
4326                                         SourceLocation RParenLoc) {
4327  // __builtin_overload requires at least 2 arguments
4328  if (NumArgs < 2)
4329    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4330      << SourceRange(BuiltinLoc, RParenLoc);
4331
4332  // The first argument is required to be a constant expression.  It tells us
4333  // the number of arguments to pass to each of the functions to be overloaded.
4334  Expr **Args = reinterpret_cast<Expr**>(args);
4335  Expr *NParamsExpr = Args[0];
4336  llvm::APSInt constEval(32);
4337  SourceLocation ExpLoc;
4338  if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
4339    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
4340      << NParamsExpr->getSourceRange();
4341
4342  // Verify that the number of parameters is > 0
4343  unsigned NumParams = constEval.getZExtValue();
4344  if (NumParams == 0)
4345    return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
4346      << NParamsExpr->getSourceRange();
4347  // Verify that we have at least 1 + NumParams arguments to the builtin.
4348  if ((NumParams + 1) > NumArgs)
4349    return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
4350      << SourceRange(BuiltinLoc, RParenLoc);
4351
4352  // Figure out the return type, by matching the args to one of the functions
4353  // listed after the parameters.
4354  OverloadExpr *OE = 0;
4355  for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
4356    // UsualUnaryConversions will convert the function DeclRefExpr into a
4357    // pointer to function.
4358    Expr *Fn = UsualUnaryConversions(Args[i]);
4359    const FunctionTypeProto *FnType = 0;
4360    if (const PointerType *PT = Fn->getType()->getAsPointerType())
4361      FnType = PT->getPointeeType()->getAsFunctionTypeProto();
4362
4363    // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
4364    // parameters, and the number of parameters must match the value passed to
4365    // the builtin.
4366    if (!FnType || (FnType->getNumArgs() != NumParams))
4367      return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
4368        << Fn->getSourceRange();
4369
4370    // Scan the parameter list for the FunctionType, checking the QualType of
4371    // each parameter against the QualTypes of the arguments to the builtin.
4372    // If they match, return a new OverloadExpr.
4373    if (ExprsMatchFnType(Args+1, FnType, Context)) {
4374      if (OE)
4375        return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
4376          << OE->getFn()->getSourceRange();
4377      // Remember our match, and continue processing the remaining arguments
4378      // to catch any errors.
4379      OE = new (Context) OverloadExpr(Context, Args, NumArgs, i,
4380                            FnType->getResultType().getNonReferenceType(),
4381                            BuiltinLoc, RParenLoc);
4382    }
4383  }
4384  // Return the newly created OverloadExpr node, if we succeded in matching
4385  // exactly one of the candidate functions.
4386  if (OE)
4387    return OE;
4388
4389  // If we didn't find a matching function Expr in the __builtin_overload list
4390  // the return an error.
4391  std::string typeNames;
4392  for (unsigned i = 0; i != NumParams; ++i) {
4393    if (i != 0) typeNames += ", ";
4394    typeNames += Args[i+1]->getType().getAsString();
4395  }
4396
4397  return Diag(BuiltinLoc, diag::err_overload_no_match)
4398    << typeNames << SourceRange(BuiltinLoc, RParenLoc);
4399}
4400
4401Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
4402                                  ExprTy *expr, TypeTy *type,
4403                                  SourceLocation RPLoc) {
4404  Expr *E = static_cast<Expr*>(expr);
4405  QualType T = QualType::getFromOpaquePtr(type);
4406
4407  InitBuiltinVaListType();
4408
4409  // Get the va_list type
4410  QualType VaListType = Context.getBuiltinVaListType();
4411  // Deal with implicit array decay; for example, on x86-64,
4412  // va_list is an array, but it's supposed to decay to
4413  // a pointer for va_arg.
4414  if (VaListType->isArrayType())
4415    VaListType = Context.getArrayDecayedType(VaListType);
4416  // Make sure the input expression also decays appropriately.
4417  UsualUnaryConversions(E);
4418
4419  if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
4420    return Diag(E->getLocStart(),
4421                diag::err_first_argument_to_va_arg_not_of_type_va_list)
4422      << E->getType() << E->getSourceRange();
4423
4424  // FIXME: Warn if a non-POD type is passed in.
4425
4426  return new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
4427}
4428
4429Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
4430  // The type of __null will be int or long, depending on the size of
4431  // pointers on the target.
4432  QualType Ty;
4433  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
4434    Ty = Context.IntTy;
4435  else
4436    Ty = Context.LongTy;
4437
4438  return new (Context) GNUNullExpr(Ty, TokenLoc);
4439}
4440
4441bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
4442                                    SourceLocation Loc,
4443                                    QualType DstType, QualType SrcType,
4444                                    Expr *SrcExpr, const char *Flavor) {
4445  // Decode the result (notice that AST's are still created for extensions).
4446  bool isInvalid = false;
4447  unsigned DiagKind;
4448  switch (ConvTy) {
4449  default: assert(0 && "Unknown conversion type");
4450  case Compatible: return false;
4451  case PointerToInt:
4452    DiagKind = diag::ext_typecheck_convert_pointer_int;
4453    break;
4454  case IntToPointer:
4455    DiagKind = diag::ext_typecheck_convert_int_pointer;
4456    break;
4457  case IncompatiblePointer:
4458    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
4459    break;
4460  case FunctionVoidPointer:
4461    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
4462    break;
4463  case CompatiblePointerDiscardsQualifiers:
4464    // If the qualifiers lost were because we were applying the
4465    // (deprecated) C++ conversion from a string literal to a char*
4466    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
4467    // Ideally, this check would be performed in
4468    // CheckPointerTypesForAssignment. However, that would require a
4469    // bit of refactoring (so that the second argument is an
4470    // expression, rather than a type), which should be done as part
4471    // of a larger effort to fix CheckPointerTypesForAssignment for
4472    // C++ semantics.
4473    if (getLangOptions().CPlusPlus &&
4474        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
4475      return false;
4476    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
4477    break;
4478  case IntToBlockPointer:
4479    DiagKind = diag::err_int_to_block_pointer;
4480    break;
4481  case IncompatibleBlockPointer:
4482    DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
4483    break;
4484  case IncompatibleObjCQualifiedId:
4485    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
4486    // it can give a more specific diagnostic.
4487    DiagKind = diag::warn_incompatible_qualified_id;
4488    break;
4489  case IncompatibleVectors:
4490    DiagKind = diag::warn_incompatible_vectors;
4491    break;
4492  case Incompatible:
4493    DiagKind = diag::err_typecheck_convert_incompatible;
4494    isInvalid = true;
4495    break;
4496  }
4497
4498  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
4499    << SrcExpr->getSourceRange();
4500  return isInvalid;
4501}
4502
4503bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
4504{
4505  Expr::EvalResult EvalResult;
4506
4507  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
4508      EvalResult.HasSideEffects) {
4509    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
4510
4511    if (EvalResult.Diag) {
4512      // We only show the note if it's not the usual "invalid subexpression"
4513      // or if it's actually in a subexpression.
4514      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
4515          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
4516        Diag(EvalResult.DiagLoc, EvalResult.Diag);
4517    }
4518
4519    return true;
4520  }
4521
4522  if (EvalResult.Diag) {
4523    Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
4524      E->getSourceRange();
4525
4526    // Print the reason it's not a constant.
4527    if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
4528      Diag(EvalResult.DiagLoc, EvalResult.Diag);
4529  }
4530
4531  if (Result)
4532    *Result = EvalResult.Val.getInt();
4533  return false;
4534}
4535