SemaExpr.cpp revision 98a541e80848d3b7d1131237ac04e698faffd151
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Lex/LiteralSupport.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/Designator.h"
26#include "clang/Parse/Scope.h"
27using namespace clang;
28
29/// \brief Determine whether the use of this declaration is valid, and
30/// emit any corresponding diagnostics.
31///
32/// This routine diagnoses various problems with referencing
33/// declarations that can occur when using a declaration. For example,
34/// it might warn if a deprecated or unavailable declaration is being
35/// used, or produce an error (and return true) if a C++0x deleted
36/// function is being used.
37///
38/// \returns true if there was an error (this declaration cannot be
39/// referenced), false otherwise.
40bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
41  // See if the decl is deprecated.
42  if (D->getAttr<DeprecatedAttr>()) {
43    // Implementing deprecated stuff requires referencing deprecated
44    // stuff. Don't warn if we are implementing a deprecated
45    // construct.
46    bool isSilenced = false;
47
48    if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
49      // If this reference happens *in* a deprecated function or method, don't
50      // warn.
51      isSilenced = ND->getAttr<DeprecatedAttr>();
52
53      // If this is an Objective-C method implementation, check to see if the
54      // method was deprecated on the declaration, not the definition.
55      if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
56        // The semantic decl context of a ObjCMethodDecl is the
57        // ObjCImplementationDecl.
58        if (ObjCImplementationDecl *Impl
59              = dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
60
61          MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
62                                                    MD->isInstanceMethod());
63          isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
64        }
65      }
66    }
67
68    if (!isSilenced)
69      Diag(Loc, diag::warn_deprecated) << D->getDeclName();
70  }
71
72  // See if this is a deleted function.
73  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74    if (FD->isDeleted()) {
75      Diag(Loc, diag::err_deleted_function_use);
76      Diag(D->getLocation(), diag::note_unavailable_here) << true;
77      return true;
78    }
79  }
80
81  // See if the decl is unavailable
82  if (D->getAttr<UnavailableAttr>()) {
83    Diag(Loc, diag::warn_unavailable) << D->getDeclName();
84    Diag(D->getLocation(), diag::note_unavailable_here) << 0;
85  }
86
87  return false;
88}
89
90/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
91/// (and other functions in future), which have been declared with sentinel
92/// attribute. It warns if call does not have the sentinel argument.
93///
94void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
95                                 Expr **Args, unsigned NumArgs)
96{
97  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
98  if (!attr)
99    return;
100  int sentinelPos = attr->getSentinel();
101  int nullPos = attr->getNullPos();
102
103  // FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
104  // base class. Then we won't be needing two versions of the same code.
105  unsigned int i = 0;
106  bool warnNotEnoughArgs = false;
107  int isMethod = 0;
108  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
109    // skip over named parameters.
110    ObjCMethodDecl::param_iterator P, E = MD->param_end();
111    for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
112      if (nullPos)
113        --nullPos;
114      else
115        ++i;
116    }
117    warnNotEnoughArgs = (P != E || i >= NumArgs);
118    isMethod = 1;
119  }
120  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
121    // skip over named parameters.
122    ObjCMethodDecl::param_iterator P, E = FD->param_end();
123    for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
124      if (nullPos)
125        --nullPos;
126      else
127        ++i;
128    }
129    warnNotEnoughArgs = (P != E || i >= NumArgs);
130  }
131  else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
132    // block or function pointer call.
133    QualType Ty = V->getType();
134    if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
135      const FunctionType *FT = Ty->isFunctionPointerType()
136      ? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
137      : Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
138      if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
139        unsigned NumArgsInProto = Proto->getNumArgs();
140        unsigned k;
141        for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
142          if (nullPos)
143            --nullPos;
144          else
145            ++i;
146        }
147        warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
148      }
149      if (Ty->isBlockPointerType())
150        isMethod = 2;
151    }
152    else
153      return;
154  }
155  else
156    return;
157
158  if (warnNotEnoughArgs) {
159    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
160    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
161    return;
162  }
163  int sentinel = i;
164  while (sentinelPos > 0 && i < NumArgs-1) {
165    --sentinelPos;
166    ++i;
167  }
168  if (sentinelPos > 0) {
169    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
170    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
171    return;
172  }
173  while (i < NumArgs-1) {
174    ++i;
175    ++sentinel;
176  }
177  Expr *sentinelExpr = Args[sentinel];
178  if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
179                       !sentinelExpr->isNullPointerConstant(Context))) {
180    Diag(Loc, diag::warn_missing_sentinel) << isMethod;
181    Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
182  }
183  return;
184}
185
186SourceRange Sema::getExprRange(ExprTy *E) const {
187  Expr *Ex = (Expr *)E;
188  return Ex? Ex->getSourceRange() : SourceRange();
189}
190
191//===----------------------------------------------------------------------===//
192//  Standard Promotions and Conversions
193//===----------------------------------------------------------------------===//
194
195/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
196void Sema::DefaultFunctionArrayConversion(Expr *&E) {
197  QualType Ty = E->getType();
198  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
199
200  if (Ty->isFunctionType())
201    ImpCastExprToType(E, Context.getPointerType(Ty));
202  else if (Ty->isArrayType()) {
203    // In C90 mode, arrays only promote to pointers if the array expression is
204    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
205    // type 'array of type' is converted to an expression that has type 'pointer
206    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
207    // that has type 'array of type' ...".  The relevant change is "an lvalue"
208    // (C90) to "an expression" (C99).
209    //
210    // C++ 4.2p1:
211    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
212    // T" can be converted to an rvalue of type "pointer to T".
213    //
214    if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
215        E->isLvalue(Context) == Expr::LV_Valid)
216      ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
217  }
218}
219
220/// \brief Whether this is a promotable bitfield reference according
221/// to C99 6.3.1.1p2, bullet 2.
222///
223/// \returns the type this bit-field will promote to, or NULL if no
224/// promotion occurs.
225static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
226  FieldDecl *Field = E->getBitField();
227  if (!Field)
228    return QualType();
229
230  const BuiltinType *BT = Field->getType()->getAsBuiltinType();
231  if (!BT)
232    return QualType();
233
234  if (BT->getKind() != BuiltinType::Bool &&
235      BT->getKind() != BuiltinType::Int &&
236      BT->getKind() != BuiltinType::UInt)
237    return QualType();
238
239  llvm::APSInt BitWidthAP;
240  if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
241    return QualType();
242
243  uint64_t BitWidth = BitWidthAP.getZExtValue();
244  uint64_t IntSize = Context.getTypeSize(Context.IntTy);
245  if (BitWidth < IntSize ||
246      (Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
247    return Context.IntTy;
248
249  if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
250    return Context.UnsignedIntTy;
251
252  return QualType();
253}
254
255/// UsualUnaryConversions - Performs various conversions that are common to most
256/// operators (C99 6.3). The conversions of array and function types are
257/// sometimes surpressed. For example, the array->pointer conversion doesn't
258/// apply if the array is an argument to the sizeof or address (&) operators.
259/// In these instances, this routine should *not* be called.
260Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
261  QualType Ty = Expr->getType();
262  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
263
264  // C99 6.3.1.1p2:
265  //
266  //   The following may be used in an expression wherever an int or
267  //   unsigned int may be used:
268  //     - an object or expression with an integer type whose integer
269  //       conversion rank is less than or equal to the rank of int
270  //       and unsigned int.
271  //     - A bit-field of type _Bool, int, signed int, or unsigned int.
272  //
273  //   If an int can represent all values of the original type, the
274  //   value is converted to an int; otherwise, it is converted to an
275  //   unsigned int. These are called the integer promotions. All
276  //   other types are unchanged by the integer promotions.
277  if (Ty->isPromotableIntegerType()) {
278    ImpCastExprToType(Expr, Context.IntTy);
279    return Expr;
280  } else {
281    QualType T = isPromotableBitField(Expr, Context);
282    if (!T.isNull()) {
283      ImpCastExprToType(Expr, T);
284      return Expr;
285    }
286  }
287
288  DefaultFunctionArrayConversion(Expr);
289  return Expr;
290}
291
292/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
293/// do not have a prototype. Arguments that have type float are promoted to
294/// double. All other argument types are converted by UsualUnaryConversions().
295void Sema::DefaultArgumentPromotion(Expr *&Expr) {
296  QualType Ty = Expr->getType();
297  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
298
299  // If this is a 'float' (CVR qualified or typedef) promote to double.
300  if (const BuiltinType *BT = Ty->getAsBuiltinType())
301    if (BT->getKind() == BuiltinType::Float)
302      return ImpCastExprToType(Expr, Context.DoubleTy);
303
304  UsualUnaryConversions(Expr);
305}
306
307/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
308/// will warn if the resulting type is not a POD type, and rejects ObjC
309/// interfaces passed by value.  This returns true if the argument type is
310/// completely illegal.
311bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
312  DefaultArgumentPromotion(Expr);
313
314  if (Expr->getType()->isObjCInterfaceType()) {
315    Diag(Expr->getLocStart(),
316         diag::err_cannot_pass_objc_interface_to_vararg)
317      << Expr->getType() << CT;
318    return true;
319  }
320
321  if (!Expr->getType()->isPODType())
322    Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
323      << Expr->getType() << CT;
324
325  return false;
326}
327
328
329/// UsualArithmeticConversions - Performs various conversions that are common to
330/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
331/// routine returns the first non-arithmetic type found. The client is
332/// responsible for emitting appropriate error diagnostics.
333/// FIXME: verify the conversion rules for "complex int" are consistent with
334/// GCC.
335QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
336                                          bool isCompAssign) {
337  if (!isCompAssign)
338    UsualUnaryConversions(lhsExpr);
339
340  UsualUnaryConversions(rhsExpr);
341
342  // For conversion purposes, we ignore any qualifiers.
343  // For example, "const float" and "float" are equivalent.
344  QualType lhs =
345    Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
346  QualType rhs =
347    Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
348
349  // If both types are identical, no conversion is needed.
350  if (lhs == rhs)
351    return lhs;
352
353  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
354  // The caller can deal with this (e.g. pointer + int).
355  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
356    return lhs;
357
358  // Perform bitfield promotions.
359  QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
360  if (!LHSBitfieldPromoteTy.isNull())
361    lhs = LHSBitfieldPromoteTy;
362  QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
363  if (!RHSBitfieldPromoteTy.isNull())
364    rhs = RHSBitfieldPromoteTy;
365
366  QualType destType = UsualArithmeticConversionsType(lhs, rhs);
367  if (!isCompAssign)
368    ImpCastExprToType(lhsExpr, destType);
369  ImpCastExprToType(rhsExpr, destType);
370  return destType;
371}
372
373QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
374  // Perform the usual unary conversions. We do this early so that
375  // integral promotions to "int" can allow us to exit early, in the
376  // lhs == rhs check. Also, for conversion purposes, we ignore any
377  // qualifiers.  For example, "const float" and "float" are
378  // equivalent.
379  if (lhs->isPromotableIntegerType())
380    lhs = Context.IntTy;
381  else
382    lhs = lhs.getUnqualifiedType();
383  if (rhs->isPromotableIntegerType())
384    rhs = Context.IntTy;
385  else
386    rhs = rhs.getUnqualifiedType();
387
388  // If both types are identical, no conversion is needed.
389  if (lhs == rhs)
390    return lhs;
391
392  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
393  // The caller can deal with this (e.g. pointer + int).
394  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
395    return lhs;
396
397  // At this point, we have two different arithmetic types.
398
399  // Handle complex types first (C99 6.3.1.8p1).
400  if (lhs->isComplexType() || rhs->isComplexType()) {
401    // if we have an integer operand, the result is the complex type.
402    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
403      // convert the rhs to the lhs complex type.
404      return lhs;
405    }
406    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
407      // convert the lhs to the rhs complex type.
408      return rhs;
409    }
410    // This handles complex/complex, complex/float, or float/complex.
411    // When both operands are complex, the shorter operand is converted to the
412    // type of the longer, and that is the type of the result. This corresponds
413    // to what is done when combining two real floating-point operands.
414    // The fun begins when size promotion occur across type domains.
415    // From H&S 6.3.4: When one operand is complex and the other is a real
416    // floating-point type, the less precise type is converted, within it's
417    // real or complex domain, to the precision of the other type. For example,
418    // when combining a "long double" with a "double _Complex", the
419    // "double _Complex" is promoted to "long double _Complex".
420    int result = Context.getFloatingTypeOrder(lhs, rhs);
421
422    if (result > 0) { // The left side is bigger, convert rhs.
423      rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
424    } else if (result < 0) { // The right side is bigger, convert lhs.
425      lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
426    }
427    // At this point, lhs and rhs have the same rank/size. Now, make sure the
428    // domains match. This is a requirement for our implementation, C99
429    // does not require this promotion.
430    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
431      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
432        return rhs;
433      } else { // handle "_Complex double, double".
434        return lhs;
435      }
436    }
437    return lhs; // The domain/size match exactly.
438  }
439  // Now handle "real" floating types (i.e. float, double, long double).
440  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
441    // if we have an integer operand, the result is the real floating type.
442    if (rhs->isIntegerType()) {
443      // convert rhs to the lhs floating point type.
444      return lhs;
445    }
446    if (rhs->isComplexIntegerType()) {
447      // convert rhs to the complex floating point type.
448      return Context.getComplexType(lhs);
449    }
450    if (lhs->isIntegerType()) {
451      // convert lhs to the rhs floating point type.
452      return rhs;
453    }
454    if (lhs->isComplexIntegerType()) {
455      // convert lhs to the complex floating point type.
456      return Context.getComplexType(rhs);
457    }
458    // We have two real floating types, float/complex combos were handled above.
459    // Convert the smaller operand to the bigger result.
460    int result = Context.getFloatingTypeOrder(lhs, rhs);
461    if (result > 0) // convert the rhs
462      return lhs;
463    assert(result < 0 && "illegal float comparison");
464    return rhs;   // convert the lhs
465  }
466  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
467    // Handle GCC complex int extension.
468    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
469    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
470
471    if (lhsComplexInt && rhsComplexInt) {
472      if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
473                                      rhsComplexInt->getElementType()) >= 0)
474        return lhs; // convert the rhs
475      return rhs;
476    } else if (lhsComplexInt && rhs->isIntegerType()) {
477      // convert the rhs to the lhs complex type.
478      return lhs;
479    } else if (rhsComplexInt && lhs->isIntegerType()) {
480      // convert the lhs to the rhs complex type.
481      return rhs;
482    }
483  }
484  // Finally, we have two differing integer types.
485  // The rules for this case are in C99 6.3.1.8
486  int compare = Context.getIntegerTypeOrder(lhs, rhs);
487  bool lhsSigned = lhs->isSignedIntegerType(),
488       rhsSigned = rhs->isSignedIntegerType();
489  QualType destType;
490  if (lhsSigned == rhsSigned) {
491    // Same signedness; use the higher-ranked type
492    destType = compare >= 0 ? lhs : rhs;
493  } else if (compare != (lhsSigned ? 1 : -1)) {
494    // The unsigned type has greater than or equal rank to the
495    // signed type, so use the unsigned type
496    destType = lhsSigned ? rhs : lhs;
497  } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
498    // The two types are different widths; if we are here, that
499    // means the signed type is larger than the unsigned type, so
500    // use the signed type.
501    destType = lhsSigned ? lhs : rhs;
502  } else {
503    // The signed type is higher-ranked than the unsigned type,
504    // but isn't actually any bigger (like unsigned int and long
505    // on most 32-bit systems).  Use the unsigned type corresponding
506    // to the signed type.
507    destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
508  }
509  return destType;
510}
511
512//===----------------------------------------------------------------------===//
513//  Semantic Analysis for various Expression Types
514//===----------------------------------------------------------------------===//
515
516
517/// ActOnStringLiteral - The specified tokens were lexed as pasted string
518/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
519/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
520/// multiple tokens.  However, the common case is that StringToks points to one
521/// string.
522///
523Action::OwningExprResult
524Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
525  assert(NumStringToks && "Must have at least one string!");
526
527  StringLiteralParser Literal(StringToks, NumStringToks, PP);
528  if (Literal.hadError)
529    return ExprError();
530
531  llvm::SmallVector<SourceLocation, 4> StringTokLocs;
532  for (unsigned i = 0; i != NumStringToks; ++i)
533    StringTokLocs.push_back(StringToks[i].getLocation());
534
535  QualType StrTy = Context.CharTy;
536  if (Literal.AnyWide) StrTy = Context.getWCharType();
537  if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
538
539  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
540  if (getLangOptions().CPlusPlus)
541    StrTy.addConst();
542
543  // Get an array type for the string, according to C99 6.4.5.  This includes
544  // the nul terminator character as well as the string length for pascal
545  // strings.
546  StrTy = Context.getConstantArrayType(StrTy,
547                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
548                                       ArrayType::Normal, 0);
549
550  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
551  return Owned(StringLiteral::Create(Context, Literal.GetString(),
552                                     Literal.GetStringLength(),
553                                     Literal.AnyWide, StrTy,
554                                     &StringTokLocs[0],
555                                     StringTokLocs.size()));
556}
557
558/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
559/// CurBlock to VD should cause it to be snapshotted (as we do for auto
560/// variables defined outside the block) or false if this is not needed (e.g.
561/// for values inside the block or for globals).
562///
563/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
564/// up-to-date.
565///
566static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
567                                              ValueDecl *VD) {
568  // If the value is defined inside the block, we couldn't snapshot it even if
569  // we wanted to.
570  if (CurBlock->TheDecl == VD->getDeclContext())
571    return false;
572
573  // If this is an enum constant or function, it is constant, don't snapshot.
574  if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
575    return false;
576
577  // If this is a reference to an extern, static, or global variable, no need to
578  // snapshot it.
579  // FIXME: What about 'const' variables in C++?
580  if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
581    if (!Var->hasLocalStorage())
582      return false;
583
584  // Blocks that have these can't be constant.
585  CurBlock->hasBlockDeclRefExprs = true;
586
587  // If we have nested blocks, the decl may be declared in an outer block (in
588  // which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
589  // be defined outside all of the current blocks (in which case the blocks do
590  // all get the bit).  Walk the nesting chain.
591  for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
592       NextBlock = NextBlock->PrevBlockInfo) {
593    // If we found the defining block for the variable, don't mark the block as
594    // having a reference outside it.
595    if (NextBlock->TheDecl == VD->getDeclContext())
596      break;
597
598    // Otherwise, the DeclRef from the inner block causes the outer one to need
599    // a snapshot as well.
600    NextBlock->hasBlockDeclRefExprs = true;
601  }
602
603  return true;
604}
605
606
607
608/// ActOnIdentifierExpr - The parser read an identifier in expression context,
609/// validate it per-C99 6.5.1.  HasTrailingLParen indicates whether this
610/// identifier is used in a function call context.
611/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
612/// class or namespace that the identifier must be a member of.
613Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
614                                                 IdentifierInfo &II,
615                                                 bool HasTrailingLParen,
616                                                 const CXXScopeSpec *SS,
617                                                 bool isAddressOfOperand) {
618  return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
619                                  isAddressOfOperand);
620}
621
622/// BuildDeclRefExpr - Build either a DeclRefExpr or a
623/// QualifiedDeclRefExpr based on whether or not SS is a
624/// nested-name-specifier.
625Sema::OwningExprResult
626Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
627                       bool TypeDependent, bool ValueDependent,
628                       const CXXScopeSpec *SS) {
629  if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
630    Diag(Loc,
631         diag::err_auto_variable_cannot_appear_in_own_initializer)
632      << D->getDeclName();
633    return ExprError();
634  }
635
636  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
637    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
638      if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
639        if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
640          Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
641            << D->getIdentifier() << FD->getDeclName();
642          Diag(D->getLocation(), diag::note_local_variable_declared_here)
643            << D->getIdentifier();
644          return ExprError();
645        }
646      }
647    }
648  }
649
650  MarkDeclarationReferenced(Loc, D);
651
652  Expr *E;
653  if (SS && !SS->isEmpty()) {
654    E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
655                                          ValueDependent, SS->getRange(),
656                  static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
657  } else
658    E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
659
660  return Owned(E);
661}
662
663/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
664/// variable corresponding to the anonymous union or struct whose type
665/// is Record.
666static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
667                                             RecordDecl *Record) {
668  assert(Record->isAnonymousStructOrUnion() &&
669         "Record must be an anonymous struct or union!");
670
671  // FIXME: Once Decls are directly linked together, this will be an O(1)
672  // operation rather than a slow walk through DeclContext's vector (which
673  // itself will be eliminated). DeclGroups might make this even better.
674  DeclContext *Ctx = Record->getDeclContext();
675  for (DeclContext::decl_iterator D = Ctx->decls_begin(),
676                               DEnd = Ctx->decls_end();
677       D != DEnd; ++D) {
678    if (*D == Record) {
679      // The object for the anonymous struct/union directly
680      // follows its type in the list of declarations.
681      ++D;
682      assert(D != DEnd && "Missing object for anonymous record");
683      assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
684      return *D;
685    }
686  }
687
688  assert(false && "Missing object for anonymous record");
689  return 0;
690}
691
692/// \brief Given a field that represents a member of an anonymous
693/// struct/union, build the path from that field's context to the
694/// actual member.
695///
696/// Construct the sequence of field member references we'll have to
697/// perform to get to the field in the anonymous union/struct. The
698/// list of members is built from the field outward, so traverse it
699/// backwards to go from an object in the current context to the field
700/// we found.
701///
702/// \returns The variable from which the field access should begin,
703/// for an anonymous struct/union that is not a member of another
704/// class. Otherwise, returns NULL.
705VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
706                                   llvm::SmallVectorImpl<FieldDecl *> &Path) {
707  assert(Field->getDeclContext()->isRecord() &&
708         cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
709         && "Field must be stored inside an anonymous struct or union");
710
711  Path.push_back(Field);
712  VarDecl *BaseObject = 0;
713  DeclContext *Ctx = Field->getDeclContext();
714  do {
715    RecordDecl *Record = cast<RecordDecl>(Ctx);
716    Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
717    if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
718      Path.push_back(AnonField);
719    else {
720      BaseObject = cast<VarDecl>(AnonObject);
721      break;
722    }
723    Ctx = Ctx->getParent();
724  } while (Ctx->isRecord() &&
725           cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
726
727  return BaseObject;
728}
729
730Sema::OwningExprResult
731Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
732                                               FieldDecl *Field,
733                                               Expr *BaseObjectExpr,
734                                               SourceLocation OpLoc) {
735  llvm::SmallVector<FieldDecl *, 4> AnonFields;
736  VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
737                                                            AnonFields);
738
739  // Build the expression that refers to the base object, from
740  // which we will build a sequence of member references to each
741  // of the anonymous union objects and, eventually, the field we
742  // found via name lookup.
743  bool BaseObjectIsPointer = false;
744  unsigned ExtraQuals = 0;
745  if (BaseObject) {
746    // BaseObject is an anonymous struct/union variable (and is,
747    // therefore, not part of another non-anonymous record).
748    if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
749    MarkDeclarationReferenced(Loc, BaseObject);
750    BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
751                                               SourceLocation());
752    ExtraQuals
753      = Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
754  } else if (BaseObjectExpr) {
755    // The caller provided the base object expression. Determine
756    // whether its a pointer and whether it adds any qualifiers to the
757    // anonymous struct/union fields we're looking into.
758    QualType ObjectType = BaseObjectExpr->getType();
759    if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
760      BaseObjectIsPointer = true;
761      ObjectType = ObjectPtr->getPointeeType();
762    }
763    ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
764  } else {
765    // We've found a member of an anonymous struct/union that is
766    // inside a non-anonymous struct/union, so in a well-formed
767    // program our base object expression is "this".
768    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
769      if (!MD->isStatic()) {
770        QualType AnonFieldType
771          = Context.getTagDeclType(
772                     cast<RecordDecl>(AnonFields.back()->getDeclContext()));
773        QualType ThisType = Context.getTagDeclType(MD->getParent());
774        if ((Context.getCanonicalType(AnonFieldType)
775               == Context.getCanonicalType(ThisType)) ||
776            IsDerivedFrom(ThisType, AnonFieldType)) {
777          // Our base object expression is "this".
778          BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
779                                                     MD->getThisType(Context));
780          BaseObjectIsPointer = true;
781        }
782      } else {
783        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
784          << Field->getDeclName());
785      }
786      ExtraQuals = MD->getTypeQualifiers();
787    }
788
789    if (!BaseObjectExpr)
790      return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
791        << Field->getDeclName());
792  }
793
794  // Build the implicit member references to the field of the
795  // anonymous struct/union.
796  Expr *Result = BaseObjectExpr;
797  unsigned BaseAddrSpace = BaseObjectExpr->getType().getAddressSpace();
798  for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
799         FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
800       FI != FIEnd; ++FI) {
801    QualType MemberType = (*FI)->getType();
802    if (!(*FI)->isMutable()) {
803      unsigned combinedQualifiers
804        = MemberType.getCVRQualifiers() | ExtraQuals;
805      MemberType = MemberType.getQualifiedType(combinedQualifiers);
806    }
807    if (BaseAddrSpace != MemberType.getAddressSpace())
808      MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
809    MarkDeclarationReferenced(Loc, *FI);
810    Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
811                                      OpLoc, MemberType);
812    BaseObjectIsPointer = false;
813    ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
814  }
815
816  return Owned(Result);
817}
818
819/// ActOnDeclarationNameExpr - The parser has read some kind of name
820/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
821/// performs lookup on that name and returns an expression that refers
822/// to that name. This routine isn't directly called from the parser,
823/// because the parser doesn't know about DeclarationName. Rather,
824/// this routine is called by ActOnIdentifierExpr,
825/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
826/// which form the DeclarationName from the corresponding syntactic
827/// forms.
828///
829/// HasTrailingLParen indicates whether this identifier is used in a
830/// function call context.  LookupCtx is only used for a C++
831/// qualified-id (foo::bar) to indicate the class or namespace that
832/// the identifier must be a member of.
833///
834/// isAddressOfOperand means that this expression is the direct operand
835/// of an address-of operator. This matters because this is the only
836/// situation where a qualified name referencing a non-static member may
837/// appear outside a member function of this class.
838Sema::OwningExprResult
839Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
840                               DeclarationName Name, bool HasTrailingLParen,
841                               const CXXScopeSpec *SS,
842                               bool isAddressOfOperand) {
843  // Could be enum-constant, value decl, instance variable, etc.
844  if (SS && SS->isInvalid())
845    return ExprError();
846
847  // C++ [temp.dep.expr]p3:
848  //   An id-expression is type-dependent if it contains:
849  //     -- a nested-name-specifier that contains a class-name that
850  //        names a dependent type.
851  // FIXME: Member of the current instantiation.
852  if (SS && isDependentScopeSpecifier(*SS)) {
853    return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
854                                                     Loc, SS->getRange(),
855                static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
856                                                     isAddressOfOperand));
857  }
858
859  LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
860                                         false, true, Loc);
861
862  if (Lookup.isAmbiguous()) {
863    DiagnoseAmbiguousLookup(Lookup, Name, Loc,
864                            SS && SS->isSet() ? SS->getRange()
865                                              : SourceRange());
866    return ExprError();
867  }
868
869  NamedDecl *D = Lookup.getAsDecl();
870
871  // If this reference is in an Objective-C method, then ivar lookup happens as
872  // well.
873  IdentifierInfo *II = Name.getAsIdentifierInfo();
874  if (II && getCurMethodDecl()) {
875    // There are two cases to handle here.  1) scoped lookup could have failed,
876    // in which case we should look for an ivar.  2) scoped lookup could have
877    // found a decl, but that decl is outside the current instance method (i.e.
878    // a global variable).  In these two cases, we do a lookup for an ivar with
879    // this name, if the lookup sucedes, we replace it our current decl.
880    if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
881      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
882      ObjCInterfaceDecl *ClassDeclared;
883      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
884        // Check if referencing a field with __attribute__((deprecated)).
885        if (DiagnoseUseOfDecl(IV, Loc))
886          return ExprError();
887
888        // If we're referencing an invalid decl, just return this as a silent
889        // error node.  The error diagnostic was already emitted on the decl.
890        if (IV->isInvalidDecl())
891          return ExprError();
892
893        bool IsClsMethod = getCurMethodDecl()->isClassMethod();
894        // If a class method attemps to use a free standing ivar, this is
895        // an error.
896        if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
897           return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
898                           << IV->getDeclName());
899        // If a class method uses a global variable, even if an ivar with
900        // same name exists, use the global.
901        if (!IsClsMethod) {
902          if (IV->getAccessControl() == ObjCIvarDecl::Private &&
903              ClassDeclared != IFace)
904           Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
905          // FIXME: This should use a new expr for a direct reference, don't
906          // turn this into Self->ivar, just return a BareIVarExpr or something.
907          IdentifierInfo &II = Context.Idents.get("self");
908          OwningExprResult SelfExpr = ActOnIdentifierExpr(S, SourceLocation(),
909                                                          II, false);
910          MarkDeclarationReferenced(Loc, IV);
911          return Owned(new (Context)
912                       ObjCIvarRefExpr(IV, IV->getType(), Loc,
913                                       SelfExpr.takeAs<Expr>(), true, true));
914        }
915      }
916    }
917    else if (getCurMethodDecl()->isInstanceMethod()) {
918      // We should warn if a local variable hides an ivar.
919      ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
920      ObjCInterfaceDecl *ClassDeclared;
921      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
922        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
923            IFace == ClassDeclared)
924          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
925      }
926    }
927    // Needed to implement property "super.method" notation.
928    if (D == 0 && II->isStr("super")) {
929      QualType T;
930
931      if (getCurMethodDecl()->isInstanceMethod())
932        T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
933                                      getCurMethodDecl()->getClassInterface()));
934      else
935        T = Context.getObjCClassType();
936      return Owned(new (Context) ObjCSuperExpr(Loc, T));
937    }
938  }
939
940  // Determine whether this name might be a candidate for
941  // argument-dependent lookup.
942  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
943             HasTrailingLParen;
944
945  if (ADL && D == 0) {
946    // We've seen something of the form
947    //
948    //   identifier(
949    //
950    // and we did not find any entity by the name
951    // "identifier". However, this identifier is still subject to
952    // argument-dependent lookup, so keep track of the name.
953    return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
954                                                          Context.OverloadTy,
955                                                          Loc));
956  }
957
958  if (D == 0) {
959    // Otherwise, this could be an implicitly declared function reference (legal
960    // in C90, extension in C99).
961    if (HasTrailingLParen && II &&
962        !getLangOptions().CPlusPlus) // Not in C++.
963      D = ImplicitlyDefineFunction(Loc, *II, S);
964    else {
965      // If this name wasn't predeclared and if this is not a function call,
966      // diagnose the problem.
967      if (SS && !SS->isEmpty())
968        return ExprError(Diag(Loc, diag::err_typecheck_no_member)
969          << Name << SS->getRange());
970      else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
971               Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
972        return ExprError(Diag(Loc, diag::err_undeclared_use)
973          << Name.getAsString());
974      else
975        return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
976    }
977  }
978
979  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
980    // Warn about constructs like:
981    //   if (void *X = foo()) { ... } else { X }.
982    // In the else block, the pointer is always false.
983
984    // FIXME: In a template instantiation, we don't have scope
985    // information to check this property.
986    if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
987      Scope *CheckS = S;
988      while (CheckS) {
989        if (CheckS->isWithinElse() &&
990            CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
991          if (Var->getType()->isBooleanType())
992            ExprError(Diag(Loc, diag::warn_value_always_false)
993                      << Var->getDeclName());
994          else
995            ExprError(Diag(Loc, diag::warn_value_always_zero)
996                      << Var->getDeclName());
997          break;
998        }
999
1000        // Move up one more control parent to check again.
1001        CheckS = CheckS->getControlParent();
1002        if (CheckS)
1003          CheckS = CheckS->getParent();
1004      }
1005    }
1006  } else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
1007    if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
1008      // C99 DR 316 says that, if a function type comes from a
1009      // function definition (without a prototype), that type is only
1010      // used for checking compatibility. Therefore, when referencing
1011      // the function, we pretend that we don't have the full function
1012      // type.
1013      if (DiagnoseUseOfDecl(Func, Loc))
1014        return ExprError();
1015
1016      QualType T = Func->getType();
1017      QualType NoProtoType = T;
1018      if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
1019        NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
1020      return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
1021    }
1022  }
1023
1024  return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
1025}
1026/// \brief Cast member's object to its own class if necessary.
1027void
1028Sema::PerformObjectMemberConversion(Expr *&From, NamedDecl *Member) {
1029  if (FieldDecl *FD = dyn_cast<FieldDecl>(Member))
1030    if (CXXRecordDecl *RD =
1031        dyn_cast<CXXRecordDecl>(FD->getDeclContext())) {
1032      QualType DestType =
1033        Context.getCanonicalType(Context.getTypeDeclType(RD));
1034      if (!DestType->isDependentType() &&
1035          !From->getType()->isDependentType()) {
1036        if (From->getType()->getAsPointerType())
1037          DestType = Context.getPointerType(DestType);
1038        ImpCastExprToType(From, DestType, /*isLvalue=*/true);
1039      }
1040    }
1041}
1042
1043/// \brief Complete semantic analysis for a reference to the given declaration.
1044Sema::OwningExprResult
1045Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
1046                               bool HasTrailingLParen,
1047                               const CXXScopeSpec *SS,
1048                               bool isAddressOfOperand) {
1049  assert(D && "Cannot refer to a NULL declaration");
1050  DeclarationName Name = D->getDeclName();
1051
1052  // If this is an expression of the form &Class::member, don't build an
1053  // implicit member ref, because we want a pointer to the member in general,
1054  // not any specific instance's member.
1055  if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
1056    DeclContext *DC = computeDeclContext(*SS);
1057    if (D && isa<CXXRecordDecl>(DC)) {
1058      QualType DType;
1059      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1060        DType = FD->getType().getNonReferenceType();
1061      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1062        DType = Method->getType();
1063      } else if (isa<OverloadedFunctionDecl>(D)) {
1064        DType = Context.OverloadTy;
1065      }
1066      // Could be an inner type. That's diagnosed below, so ignore it here.
1067      if (!DType.isNull()) {
1068        // The pointer is type- and value-dependent if it points into something
1069        // dependent.
1070        bool Dependent = DC->isDependentContext();
1071        return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
1072      }
1073    }
1074  }
1075
1076  // We may have found a field within an anonymous union or struct
1077  // (C++ [class.union]).
1078  if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
1079    if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
1080      return BuildAnonymousStructUnionMemberReference(Loc, FD);
1081
1082  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1083    if (!MD->isStatic()) {
1084      // C++ [class.mfct.nonstatic]p2:
1085      //   [...] if name lookup (3.4.1) resolves the name in the
1086      //   id-expression to a nonstatic nontype member of class X or of
1087      //   a base class of X, the id-expression is transformed into a
1088      //   class member access expression (5.2.5) using (*this) (9.3.2)
1089      //   as the postfix-expression to the left of the '.' operator.
1090      DeclContext *Ctx = 0;
1091      QualType MemberType;
1092      if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1093        Ctx = FD->getDeclContext();
1094        MemberType = FD->getType();
1095
1096        if (const ReferenceType *RefType = MemberType->getAsReferenceType())
1097          MemberType = RefType->getPointeeType();
1098        else if (!FD->isMutable()) {
1099          unsigned combinedQualifiers
1100            = MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
1101          MemberType = MemberType.getQualifiedType(combinedQualifiers);
1102        }
1103      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1104        if (!Method->isStatic()) {
1105          Ctx = Method->getParent();
1106          MemberType = Method->getType();
1107        }
1108      } else if (OverloadedFunctionDecl *Ovl
1109                   = dyn_cast<OverloadedFunctionDecl>(D)) {
1110        for (OverloadedFunctionDecl::function_iterator
1111               Func = Ovl->function_begin(),
1112               FuncEnd = Ovl->function_end();
1113             Func != FuncEnd; ++Func) {
1114          if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
1115            if (!DMethod->isStatic()) {
1116              Ctx = Ovl->getDeclContext();
1117              MemberType = Context.OverloadTy;
1118              break;
1119            }
1120        }
1121      }
1122
1123      if (Ctx && Ctx->isRecord()) {
1124        QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
1125        QualType ThisType = Context.getTagDeclType(MD->getParent());
1126        if ((Context.getCanonicalType(CtxType)
1127               == Context.getCanonicalType(ThisType)) ||
1128            IsDerivedFrom(ThisType, CtxType)) {
1129          // Build the implicit member access expression.
1130          Expr *This = new (Context) CXXThisExpr(SourceLocation(),
1131                                                 MD->getThisType(Context));
1132          MarkDeclarationReferenced(Loc, D);
1133          PerformObjectMemberConversion(This, D);
1134          return Owned(new (Context) MemberExpr(This, true, D,
1135                                                Loc, MemberType));
1136        }
1137      }
1138    }
1139  }
1140
1141  if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1142    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
1143      if (MD->isStatic())
1144        // "invalid use of member 'x' in static member function"
1145        return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
1146          << FD->getDeclName());
1147    }
1148
1149    // Any other ways we could have found the field in a well-formed
1150    // program would have been turned into implicit member expressions
1151    // above.
1152    return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
1153      << FD->getDeclName());
1154  }
1155
1156  if (isa<TypedefDecl>(D))
1157    return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
1158  if (isa<ObjCInterfaceDecl>(D))
1159    return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
1160  if (isa<NamespaceDecl>(D))
1161    return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
1162
1163  // Make the DeclRefExpr or BlockDeclRefExpr for the decl.
1164  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
1165    return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
1166                           false, false, SS);
1167  else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1168    return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
1169                            false, false, SS);
1170  ValueDecl *VD = cast<ValueDecl>(D);
1171
1172  // Check whether this declaration can be used. Note that we suppress
1173  // this check when we're going to perform argument-dependent lookup
1174  // on this function name, because this might not be the function
1175  // that overload resolution actually selects.
1176  bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
1177             HasTrailingLParen;
1178  if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
1179    return ExprError();
1180
1181  // Only create DeclRefExpr's for valid Decl's.
1182  if (VD->isInvalidDecl())
1183    return ExprError();
1184
1185  // If the identifier reference is inside a block, and it refers to a value
1186  // that is outside the block, create a BlockDeclRefExpr instead of a
1187  // DeclRefExpr.  This ensures the value is treated as a copy-in snapshot when
1188  // the block is formed.
1189  //
1190  // We do not do this for things like enum constants, global variables, etc,
1191  // as they do not get snapshotted.
1192  //
1193  if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
1194    MarkDeclarationReferenced(Loc, VD);
1195    QualType ExprTy = VD->getType().getNonReferenceType();
1196    // The BlocksAttr indicates the variable is bound by-reference.
1197    if (VD->getAttr<BlocksAttr>())
1198      return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
1199    // This is to record that a 'const' was actually synthesize and added.
1200    bool constAdded = !ExprTy.isConstQualified();
1201    // Variable will be bound by-copy, make it const within the closure.
1202
1203    ExprTy.addConst();
1204    return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
1205                                                constAdded));
1206  }
1207  // If this reference is not in a block or if the referenced variable is
1208  // within the block, create a normal DeclRefExpr.
1209
1210  bool TypeDependent = false;
1211  bool ValueDependent = false;
1212  if (getLangOptions().CPlusPlus) {
1213    // C++ [temp.dep.expr]p3:
1214    //   An id-expression is type-dependent if it contains:
1215    //     - an identifier that was declared with a dependent type,
1216    if (VD->getType()->isDependentType())
1217      TypeDependent = true;
1218    //     - FIXME: a template-id that is dependent,
1219    //     - a conversion-function-id that specifies a dependent type,
1220    else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1221             Name.getCXXNameType()->isDependentType())
1222      TypeDependent = true;
1223    //     - a nested-name-specifier that contains a class-name that
1224    //       names a dependent type.
1225    else if (SS && !SS->isEmpty()) {
1226      for (DeclContext *DC = computeDeclContext(*SS);
1227           DC; DC = DC->getParent()) {
1228        // FIXME: could stop early at namespace scope.
1229        if (DC->isRecord()) {
1230          CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1231          if (Context.getTypeDeclType(Record)->isDependentType()) {
1232            TypeDependent = true;
1233            break;
1234          }
1235        }
1236      }
1237    }
1238
1239    // C++ [temp.dep.constexpr]p2:
1240    //
1241    //   An identifier is value-dependent if it is:
1242    //     - a name declared with a dependent type,
1243    if (TypeDependent)
1244      ValueDependent = true;
1245    //     - the name of a non-type template parameter,
1246    else if (isa<NonTypeTemplateParmDecl>(VD))
1247      ValueDependent = true;
1248    //    - a constant with integral or enumeration type and is
1249    //      initialized with an expression that is value-dependent
1250    else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
1251      if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
1252          Dcl->getInit()) {
1253        ValueDependent = Dcl->getInit()->isValueDependent();
1254      }
1255    }
1256  }
1257
1258  return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
1259                          TypeDependent, ValueDependent, SS);
1260}
1261
1262Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
1263                                                 tok::TokenKind Kind) {
1264  PredefinedExpr::IdentType IT;
1265
1266  switch (Kind) {
1267  default: assert(0 && "Unknown simple primary expr!");
1268  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
1269  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
1270  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
1271  }
1272
1273  // Pre-defined identifiers are of type char[x], where x is the length of the
1274  // string.
1275  unsigned Length;
1276  if (FunctionDecl *FD = getCurFunctionDecl())
1277    Length = FD->getIdentifier()->getLength();
1278  else if (ObjCMethodDecl *MD = getCurMethodDecl())
1279    Length = MD->getSynthesizedMethodSize();
1280  else {
1281    Diag(Loc, diag::ext_predef_outside_function);
1282    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
1283    Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
1284  }
1285
1286
1287  llvm::APInt LengthI(32, Length + 1);
1288  QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
1289  ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
1290  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
1291}
1292
1293Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
1294  llvm::SmallString<16> CharBuffer;
1295  CharBuffer.resize(Tok.getLength());
1296  const char *ThisTokBegin = &CharBuffer[0];
1297  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1298
1299  CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1300                            Tok.getLocation(), PP);
1301  if (Literal.hadError())
1302    return ExprError();
1303
1304  QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
1305
1306  return Owned(new (Context) CharacterLiteral(Literal.getValue(),
1307                                              Literal.isWide(),
1308                                              type, Tok.getLocation()));
1309}
1310
1311Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
1312  // Fast path for a single digit (which is quite common).  A single digit
1313  // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
1314  if (Tok.getLength() == 1) {
1315    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
1316    unsigned IntSize = Context.Target.getIntWidth();
1317    return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
1318                    Context.IntTy, Tok.getLocation()));
1319  }
1320
1321  llvm::SmallString<512> IntegerBuffer;
1322  // Add padding so that NumericLiteralParser can overread by one character.
1323  IntegerBuffer.resize(Tok.getLength()+1);
1324  const char *ThisTokBegin = &IntegerBuffer[0];
1325
1326  // Get the spelling of the token, which eliminates trigraphs, etc.
1327  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
1328
1329  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
1330                               Tok.getLocation(), PP);
1331  if (Literal.hadError)
1332    return ExprError();
1333
1334  Expr *Res;
1335
1336  if (Literal.isFloatingLiteral()) {
1337    QualType Ty;
1338    if (Literal.isFloat)
1339      Ty = Context.FloatTy;
1340    else if (!Literal.isLong)
1341      Ty = Context.DoubleTy;
1342    else
1343      Ty = Context.LongDoubleTy;
1344
1345    const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
1346
1347    // isExact will be set by GetFloatValue().
1348    bool isExact = false;
1349    llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
1350    Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
1351
1352  } else if (!Literal.isIntegerLiteral()) {
1353    return ExprError();
1354  } else {
1355    QualType Ty;
1356
1357    // long long is a C99 feature.
1358    if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
1359        Literal.isLongLong)
1360      Diag(Tok.getLocation(), diag::ext_longlong);
1361
1362    // Get the value in the widest-possible width.
1363    llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
1364
1365    if (Literal.GetIntegerValue(ResultVal)) {
1366      // If this value didn't fit into uintmax_t, warn and force to ull.
1367      Diag(Tok.getLocation(), diag::warn_integer_too_large);
1368      Ty = Context.UnsignedLongLongTy;
1369      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
1370             "long long is not intmax_t?");
1371    } else {
1372      // If this value fits into a ULL, try to figure out what else it fits into
1373      // according to the rules of C99 6.4.4.1p5.
1374
1375      // Octal, Hexadecimal, and integers with a U suffix are allowed to
1376      // be an unsigned int.
1377      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
1378
1379      // Check from smallest to largest, picking the smallest type we can.
1380      unsigned Width = 0;
1381      if (!Literal.isLong && !Literal.isLongLong) {
1382        // Are int/unsigned possibilities?
1383        unsigned IntSize = Context.Target.getIntWidth();
1384
1385        // Does it fit in a unsigned int?
1386        if (ResultVal.isIntN(IntSize)) {
1387          // Does it fit in a signed int?
1388          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
1389            Ty = Context.IntTy;
1390          else if (AllowUnsigned)
1391            Ty = Context.UnsignedIntTy;
1392          Width = IntSize;
1393        }
1394      }
1395
1396      // Are long/unsigned long possibilities?
1397      if (Ty.isNull() && !Literal.isLongLong) {
1398        unsigned LongSize = Context.Target.getLongWidth();
1399
1400        // Does it fit in a unsigned long?
1401        if (ResultVal.isIntN(LongSize)) {
1402          // Does it fit in a signed long?
1403          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
1404            Ty = Context.LongTy;
1405          else if (AllowUnsigned)
1406            Ty = Context.UnsignedLongTy;
1407          Width = LongSize;
1408        }
1409      }
1410
1411      // Finally, check long long if needed.
1412      if (Ty.isNull()) {
1413        unsigned LongLongSize = Context.Target.getLongLongWidth();
1414
1415        // Does it fit in a unsigned long long?
1416        if (ResultVal.isIntN(LongLongSize)) {
1417          // Does it fit in a signed long long?
1418          if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
1419            Ty = Context.LongLongTy;
1420          else if (AllowUnsigned)
1421            Ty = Context.UnsignedLongLongTy;
1422          Width = LongLongSize;
1423        }
1424      }
1425
1426      // If we still couldn't decide a type, we probably have something that
1427      // does not fit in a signed long long, but has no U suffix.
1428      if (Ty.isNull()) {
1429        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
1430        Ty = Context.UnsignedLongLongTy;
1431        Width = Context.Target.getLongLongWidth();
1432      }
1433
1434      if (ResultVal.getBitWidth() != Width)
1435        ResultVal.trunc(Width);
1436    }
1437    Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
1438  }
1439
1440  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
1441  if (Literal.isImaginary)
1442    Res = new (Context) ImaginaryLiteral(Res,
1443                                        Context.getComplexType(Res->getType()));
1444
1445  return Owned(Res);
1446}
1447
1448Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
1449                                              SourceLocation R, ExprArg Val) {
1450  Expr *E = Val.takeAs<Expr>();
1451  assert((E != 0) && "ActOnParenExpr() missing expr");
1452  return Owned(new (Context) ParenExpr(L, R, E));
1453}
1454
1455/// The UsualUnaryConversions() function is *not* called by this routine.
1456/// See C99 6.3.2.1p[2-4] for more details.
1457bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
1458                                     SourceLocation OpLoc,
1459                                     const SourceRange &ExprRange,
1460                                     bool isSizeof) {
1461  if (exprType->isDependentType())
1462    return false;
1463
1464  // C99 6.5.3.4p1:
1465  if (isa<FunctionType>(exprType)) {
1466    // alignof(function) is allowed as an extension.
1467    if (isSizeof)
1468      Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
1469    return false;
1470  }
1471
1472  // Allow sizeof(void)/alignof(void) as an extension.
1473  if (exprType->isVoidType()) {
1474    Diag(OpLoc, diag::ext_sizeof_void_type)
1475      << (isSizeof ? "sizeof" : "__alignof") << ExprRange;
1476    return false;
1477  }
1478
1479  if (RequireCompleteType(OpLoc, exprType,
1480                          isSizeof ? diag::err_sizeof_incomplete_type :
1481                          diag::err_alignof_incomplete_type,
1482                          ExprRange))
1483    return true;
1484
1485  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
1486  if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
1487    Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
1488      << exprType << isSizeof << ExprRange;
1489    return true;
1490  }
1491
1492  return false;
1493}
1494
1495bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
1496                            const SourceRange &ExprRange) {
1497  E = E->IgnoreParens();
1498
1499  // alignof decl is always ok.
1500  if (isa<DeclRefExpr>(E))
1501    return false;
1502
1503  // Cannot know anything else if the expression is dependent.
1504  if (E->isTypeDependent())
1505    return false;
1506
1507  if (E->getBitField()) {
1508    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
1509    return true;
1510  }
1511
1512  // Alignment of a field access is always okay, so long as it isn't a
1513  // bit-field.
1514  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
1515    if (isa<FieldDecl>(ME->getMemberDecl()))
1516      return false;
1517
1518  return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
1519}
1520
1521/// \brief Build a sizeof or alignof expression given a type operand.
1522Action::OwningExprResult
1523Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
1524                              bool isSizeOf, SourceRange R) {
1525  if (T.isNull())
1526    return ExprError();
1527
1528  if (!T->isDependentType() &&
1529      CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
1530    return ExprError();
1531
1532  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1533  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
1534                                               Context.getSizeType(), OpLoc,
1535                                               R.getEnd()));
1536}
1537
1538/// \brief Build a sizeof or alignof expression given an expression
1539/// operand.
1540Action::OwningExprResult
1541Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
1542                              bool isSizeOf, SourceRange R) {
1543  // Verify that the operand is valid.
1544  bool isInvalid = false;
1545  if (E->isTypeDependent()) {
1546    // Delay type-checking for type-dependent expressions.
1547  } else if (!isSizeOf) {
1548    isInvalid = CheckAlignOfExpr(E, OpLoc, R);
1549  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
1550    Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
1551    isInvalid = true;
1552  } else {
1553    isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
1554  }
1555
1556  if (isInvalid)
1557    return ExprError();
1558
1559  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
1560  return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
1561                                               Context.getSizeType(), OpLoc,
1562                                               R.getEnd()));
1563}
1564
1565/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
1566/// the same for @c alignof and @c __alignof
1567/// Note that the ArgRange is invalid if isType is false.
1568Action::OwningExprResult
1569Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
1570                             void *TyOrEx, const SourceRange &ArgRange) {
1571  // If error parsing type, ignore.
1572  if (TyOrEx == 0) return ExprError();
1573
1574  if (isType) {
1575    QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
1576    return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
1577  }
1578
1579  // Get the end location.
1580  Expr *ArgEx = (Expr *)TyOrEx;
1581  Action::OwningExprResult Result
1582    = CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
1583
1584  if (Result.isInvalid())
1585    DeleteExpr(ArgEx);
1586
1587  return move(Result);
1588}
1589
1590QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
1591  if (V->isTypeDependent())
1592    return Context.DependentTy;
1593
1594  // These operators return the element type of a complex type.
1595  if (const ComplexType *CT = V->getType()->getAsComplexType())
1596    return CT->getElementType();
1597
1598  // Otherwise they pass through real integer and floating point types here.
1599  if (V->getType()->isArithmeticType())
1600    return V->getType();
1601
1602  // Reject anything else.
1603  Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
1604    << (isReal ? "__real" : "__imag");
1605  return QualType();
1606}
1607
1608
1609
1610Action::OwningExprResult
1611Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
1612                          tok::TokenKind Kind, ExprArg Input) {
1613  Expr *Arg = (Expr *)Input.get();
1614
1615  UnaryOperator::Opcode Opc;
1616  switch (Kind) {
1617  default: assert(0 && "Unknown unary op!");
1618  case tok::plusplus:   Opc = UnaryOperator::PostInc; break;
1619  case tok::minusminus: Opc = UnaryOperator::PostDec; break;
1620  }
1621
1622  if (getLangOptions().CPlusPlus &&
1623      (Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
1624    // Which overloaded operator?
1625    OverloadedOperatorKind OverOp =
1626      (Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
1627
1628    // C++ [over.inc]p1:
1629    //
1630    //     [...] If the function is a member function with one
1631    //     parameter (which shall be of type int) or a non-member
1632    //     function with two parameters (the second of which shall be
1633    //     of type int), it defines the postfix increment operator ++
1634    //     for objects of that type. When the postfix increment is
1635    //     called as a result of using the ++ operator, the int
1636    //     argument will have value zero.
1637    Expr *Args[2] = {
1638      Arg,
1639      new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
1640                          /*isSigned=*/true), Context.IntTy, SourceLocation())
1641    };
1642
1643    // Build the candidate set for overloading
1644    OverloadCandidateSet CandidateSet;
1645    AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
1646
1647    // Perform overload resolution.
1648    OverloadCandidateSet::iterator Best;
1649    switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
1650    case OR_Success: {
1651      // We found a built-in operator or an overloaded operator.
1652      FunctionDecl *FnDecl = Best->Function;
1653
1654      if (FnDecl) {
1655        // We matched an overloaded operator. Build a call to that
1656        // operator.
1657
1658        // Convert the arguments.
1659        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1660          if (PerformObjectArgumentInitialization(Arg, Method))
1661            return ExprError();
1662        } else {
1663          // Convert the arguments.
1664          if (PerformCopyInitialization(Arg,
1665                                        FnDecl->getParamDecl(0)->getType(),
1666                                        "passing"))
1667            return ExprError();
1668        }
1669
1670        // Determine the result type
1671        QualType ResultTy
1672          = FnDecl->getType()->getAsFunctionType()->getResultType();
1673        ResultTy = ResultTy.getNonReferenceType();
1674
1675        // Build the actual expression node.
1676        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1677                                                 SourceLocation());
1678        UsualUnaryConversions(FnExpr);
1679
1680        Input.release();
1681        Args[0] = Arg;
1682        return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
1683                                                       Args, 2, ResultTy,
1684                                                       OpLoc));
1685      } else {
1686        // We matched a built-in operator. Convert the arguments, then
1687        // break out so that we will build the appropriate built-in
1688        // operator node.
1689        if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
1690                                      "passing"))
1691          return ExprError();
1692
1693        break;
1694      }
1695    }
1696
1697    case OR_No_Viable_Function:
1698      // No viable function; fall through to handling this as a
1699      // built-in operator, which will produce an error message for us.
1700      break;
1701
1702    case OR_Ambiguous:
1703      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
1704          << UnaryOperator::getOpcodeStr(Opc)
1705          << Arg->getSourceRange();
1706      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1707      return ExprError();
1708
1709    case OR_Deleted:
1710      Diag(OpLoc, diag::err_ovl_deleted_oper)
1711        << Best->Function->isDeleted()
1712        << UnaryOperator::getOpcodeStr(Opc)
1713        << Arg->getSourceRange();
1714      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1715      return ExprError();
1716    }
1717
1718    // Either we found no viable overloaded operator or we matched a
1719    // built-in operator. In either case, fall through to trying to
1720    // build a built-in operation.
1721  }
1722
1723  Input.release();
1724  Input = Arg;
1725  return CreateBuiltinUnaryOp(OpLoc, Opc, move(Input));
1726}
1727
1728Action::OwningExprResult
1729Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
1730                              ExprArg Idx, SourceLocation RLoc) {
1731  Expr *LHSExp = static_cast<Expr*>(Base.get()),
1732       *RHSExp = static_cast<Expr*>(Idx.get());
1733
1734  if (getLangOptions().CPlusPlus &&
1735      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
1736    Base.release();
1737    Idx.release();
1738    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1739                                                  Context.DependentTy, RLoc));
1740  }
1741
1742  if (getLangOptions().CPlusPlus &&
1743      (LHSExp->getType()->isRecordType() ||
1744       LHSExp->getType()->isEnumeralType() ||
1745       RHSExp->getType()->isRecordType() ||
1746       RHSExp->getType()->isEnumeralType())) {
1747    // Add the appropriate overloaded operators (C++ [over.match.oper])
1748    // to the candidate set.
1749    OverloadCandidateSet CandidateSet;
1750    Expr *Args[2] = { LHSExp, RHSExp };
1751    AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
1752                          SourceRange(LLoc, RLoc));
1753
1754    // Perform overload resolution.
1755    OverloadCandidateSet::iterator Best;
1756    switch (BestViableFunction(CandidateSet, LLoc, Best)) {
1757    case OR_Success: {
1758      // We found a built-in operator or an overloaded operator.
1759      FunctionDecl *FnDecl = Best->Function;
1760
1761      if (FnDecl) {
1762        // We matched an overloaded operator. Build a call to that
1763        // operator.
1764
1765        // Convert the arguments.
1766        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
1767          if (PerformObjectArgumentInitialization(LHSExp, Method) ||
1768              PerformCopyInitialization(RHSExp,
1769                                        FnDecl->getParamDecl(0)->getType(),
1770                                        "passing"))
1771            return ExprError();
1772        } else {
1773          // Convert the arguments.
1774          if (PerformCopyInitialization(LHSExp,
1775                                        FnDecl->getParamDecl(0)->getType(),
1776                                        "passing") ||
1777              PerformCopyInitialization(RHSExp,
1778                                        FnDecl->getParamDecl(1)->getType(),
1779                                        "passing"))
1780            return ExprError();
1781        }
1782
1783        // Determine the result type
1784        QualType ResultTy
1785          = FnDecl->getType()->getAsFunctionType()->getResultType();
1786        ResultTy = ResultTy.getNonReferenceType();
1787
1788        // Build the actual expression node.
1789        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
1790                                                 SourceLocation());
1791        UsualUnaryConversions(FnExpr);
1792
1793        Base.release();
1794        Idx.release();
1795        Args[0] = LHSExp;
1796        Args[1] = RHSExp;
1797        return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
1798                                                       FnExpr, Args, 2,
1799                                                       ResultTy, LLoc));
1800      } else {
1801        // We matched a built-in operator. Convert the arguments, then
1802        // break out so that we will build the appropriate built-in
1803        // operator node.
1804        if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
1805                                      "passing") ||
1806            PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
1807                                      "passing"))
1808          return ExprError();
1809
1810        break;
1811      }
1812    }
1813
1814    case OR_No_Viable_Function:
1815      // No viable function; fall through to handling this as a
1816      // built-in operator, which will produce an error message for us.
1817      break;
1818
1819    case OR_Ambiguous:
1820      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
1821          << "[]"
1822          << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1823      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1824      return ExprError();
1825
1826    case OR_Deleted:
1827      Diag(LLoc, diag::err_ovl_deleted_oper)
1828        << Best->Function->isDeleted()
1829        << "[]"
1830        << LHSExp->getSourceRange() << RHSExp->getSourceRange();
1831      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1832      return ExprError();
1833    }
1834
1835    // Either we found no viable overloaded operator or we matched a
1836    // built-in operator. In either case, fall through to trying to
1837    // build a built-in operation.
1838  }
1839
1840  // Perform default conversions.
1841  DefaultFunctionArrayConversion(LHSExp);
1842  DefaultFunctionArrayConversion(RHSExp);
1843
1844  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
1845
1846  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
1847  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
1848  // in the subscript position. As a result, we need to derive the array base
1849  // and index from the expression types.
1850  Expr *BaseExpr, *IndexExpr;
1851  QualType ResultType;
1852  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
1853    BaseExpr = LHSExp;
1854    IndexExpr = RHSExp;
1855    ResultType = Context.DependentTy;
1856  } else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
1857    BaseExpr = LHSExp;
1858    IndexExpr = RHSExp;
1859    ResultType = PTy->getPointeeType();
1860  } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
1861     // Handle the uncommon case of "123[Ptr]".
1862    BaseExpr = RHSExp;
1863    IndexExpr = LHSExp;
1864    ResultType = PTy->getPointeeType();
1865  } else if (const ObjCObjectPointerType *PTy =
1866               LHSTy->getAsObjCObjectPointerType()) {
1867    BaseExpr = LHSExp;
1868    IndexExpr = RHSExp;
1869    ResultType = PTy->getPointeeType();
1870  } else if (const ObjCObjectPointerType *PTy =
1871               RHSTy->getAsObjCObjectPointerType()) {
1872     // Handle the uncommon case of "123[Ptr]".
1873    BaseExpr = RHSExp;
1874    IndexExpr = LHSExp;
1875    ResultType = PTy->getPointeeType();
1876  } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
1877    BaseExpr = LHSExp;    // vectors: V[123]
1878    IndexExpr = RHSExp;
1879
1880    // FIXME: need to deal with const...
1881    ResultType = VTy->getElementType();
1882  } else if (LHSTy->isArrayType()) {
1883    // If we see an array that wasn't promoted by
1884    // DefaultFunctionArrayConversion, it must be an array that
1885    // wasn't promoted because of the C90 rule that doesn't
1886    // allow promoting non-lvalue arrays.  Warn, then
1887    // force the promotion here.
1888    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1889        LHSExp->getSourceRange();
1890    ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
1891    LHSTy = LHSExp->getType();
1892
1893    BaseExpr = LHSExp;
1894    IndexExpr = RHSExp;
1895    ResultType = LHSTy->getAsPointerType()->getPointeeType();
1896  } else if (RHSTy->isArrayType()) {
1897    // Same as previous, except for 123[f().a] case
1898    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
1899        RHSExp->getSourceRange();
1900    ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
1901    RHSTy = RHSExp->getType();
1902
1903    BaseExpr = RHSExp;
1904    IndexExpr = LHSExp;
1905    ResultType = RHSTy->getAsPointerType()->getPointeeType();
1906  } else {
1907    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
1908       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
1909  }
1910  // C99 6.5.2.1p1
1911  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
1912    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
1913                     << IndexExpr->getSourceRange());
1914
1915  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
1916  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
1917  // type. Note that Functions are not objects, and that (in C99 parlance)
1918  // incomplete types are not object types.
1919  if (ResultType->isFunctionType()) {
1920    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
1921      << ResultType << BaseExpr->getSourceRange();
1922    return ExprError();
1923  }
1924
1925  if (!ResultType->isDependentType() &&
1926      RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
1927                          BaseExpr->getSourceRange()))
1928    return ExprError();
1929
1930  // Diagnose bad cases where we step over interface counts.
1931  if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
1932    Diag(LLoc, diag::err_subscript_nonfragile_interface)
1933      << ResultType << BaseExpr->getSourceRange();
1934    return ExprError();
1935  }
1936
1937  Base.release();
1938  Idx.release();
1939  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
1940                                                ResultType, RLoc));
1941}
1942
1943QualType Sema::
1944CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
1945                        IdentifierInfo &CompName, SourceLocation CompLoc) {
1946  const ExtVectorType *vecType = baseType->getAsExtVectorType();
1947
1948  // The vector accessor can't exceed the number of elements.
1949  const char *compStr = CompName.getName();
1950
1951  // This flag determines whether or not the component is one of the four
1952  // special names that indicate a subset of exactly half the elements are
1953  // to be selected.
1954  bool HalvingSwizzle = false;
1955
1956  // This flag determines whether or not CompName has an 's' char prefix,
1957  // indicating that it is a string of hex values to be used as vector indices.
1958  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
1959
1960  // Check that we've found one of the special components, or that the component
1961  // names must come from the same set.
1962  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1963      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
1964    HalvingSwizzle = true;
1965  } else if (vecType->getPointAccessorIdx(*compStr) != -1) {
1966    do
1967      compStr++;
1968    while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
1969  } else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
1970    do
1971      compStr++;
1972    while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
1973  }
1974
1975  if (!HalvingSwizzle && *compStr) {
1976    // We didn't get to the end of the string. This means the component names
1977    // didn't come from the same set *or* we encountered an illegal name.
1978    Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
1979      << std::string(compStr,compStr+1) << SourceRange(CompLoc);
1980    return QualType();
1981  }
1982
1983  // Ensure no component accessor exceeds the width of the vector type it
1984  // operates on.
1985  if (!HalvingSwizzle) {
1986    compStr = CompName.getName();
1987
1988    if (HexSwizzle)
1989      compStr++;
1990
1991    while (*compStr) {
1992      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
1993        Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
1994          << baseType << SourceRange(CompLoc);
1995        return QualType();
1996      }
1997    }
1998  }
1999
2000  // If this is a halving swizzle, verify that the base type has an even
2001  // number of elements.
2002  if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
2003    Diag(OpLoc, diag::err_ext_vector_component_requires_even)
2004      << baseType << SourceRange(CompLoc);
2005    return QualType();
2006  }
2007
2008  // The component accessor looks fine - now we need to compute the actual type.
2009  // The vector type is implied by the component accessor. For example,
2010  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
2011  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
2012  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
2013  unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
2014                                     : CompName.getLength();
2015  if (HexSwizzle)
2016    CompSize--;
2017
2018  if (CompSize == 1)
2019    return vecType->getElementType();
2020
2021  QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
2022  // Now look up the TypeDefDecl from the vector type. Without this,
2023  // diagostics look bad. We want extended vector types to appear built-in.
2024  for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
2025    if (ExtVectorDecls[i]->getUnderlyingType() == VT)
2026      return Context.getTypedefType(ExtVectorDecls[i]);
2027  }
2028  return VT; // should never get here (a typedef type should always be found).
2029}
2030
2031static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
2032                                                IdentifierInfo &Member,
2033                                                const Selector &Sel,
2034                                                ASTContext &Context) {
2035
2036  if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
2037    return PD;
2038  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
2039    return OMD;
2040
2041  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
2042       E = PDecl->protocol_end(); I != E; ++I) {
2043    if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
2044                                                     Context))
2045      return D;
2046  }
2047  return 0;
2048}
2049
2050static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
2051                                IdentifierInfo &Member,
2052                                const Selector &Sel,
2053                                ASTContext &Context) {
2054  // Check protocols on qualified interfaces.
2055  Decl *GDecl = 0;
2056  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2057       E = QIdTy->qual_end(); I != E; ++I) {
2058    if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2059      GDecl = PD;
2060      break;
2061    }
2062    // Also must look for a getter name which uses property syntax.
2063    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
2064      GDecl = OMD;
2065      break;
2066    }
2067  }
2068  if (!GDecl) {
2069    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
2070         E = QIdTy->qual_end(); I != E; ++I) {
2071      // Search in the protocol-qualifier list of current protocol.
2072      GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
2073      if (GDecl)
2074        return GDecl;
2075    }
2076  }
2077  return GDecl;
2078}
2079
2080/// FindMethodInNestedImplementations - Look up a method in current and
2081/// all base class implementations.
2082///
2083ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
2084                                              const ObjCInterfaceDecl *IFace,
2085                                              const Selector &Sel) {
2086  ObjCMethodDecl *Method = 0;
2087  if (ObjCImplementationDecl *ImpDecl = IFace->getImplementation())
2088    Method = ImpDecl->getInstanceMethod(Sel);
2089
2090  if (!Method && IFace->getSuperClass())
2091    return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
2092  return Method;
2093}
2094
2095Action::OwningExprResult
2096Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
2097                               tok::TokenKind OpKind, SourceLocation MemberLoc,
2098                               IdentifierInfo &Member,
2099                               DeclPtrTy ObjCImpDecl) {
2100  Expr *BaseExpr = Base.takeAs<Expr>();
2101  assert(BaseExpr && "no record expression");
2102
2103  // Perform default conversions.
2104  DefaultFunctionArrayConversion(BaseExpr);
2105
2106  QualType BaseType = BaseExpr->getType();
2107  assert(!BaseType.isNull() && "no type for member expression");
2108
2109  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
2110  // must have pointer type, and the accessed type is the pointee.
2111  if (OpKind == tok::arrow) {
2112    if (BaseType->isDependentType())
2113      return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2114                                                         BaseExpr, true,
2115                                                         OpLoc,
2116                                                     DeclarationName(&Member),
2117                                                         MemberLoc));
2118    else if (const PointerType *PT = BaseType->getAsPointerType())
2119      BaseType = PT->getPointeeType();
2120    else if (BaseType->isObjCObjectPointerType())
2121      ;
2122    else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
2123      return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
2124                                            MemberLoc, Member));
2125    else
2126      return ExprError(Diag(MemberLoc,
2127                            diag::err_typecheck_member_reference_arrow)
2128        << BaseType << BaseExpr->getSourceRange());
2129  } else {
2130    if (BaseType->isDependentType()) {
2131      // Require that the base type isn't a pointer type
2132      // (so we'll report an error for)
2133      // T* t;
2134      // t.f;
2135      //
2136      // In Obj-C++, however, the above expression is valid, since it could be
2137      // accessing the 'f' property if T is an Obj-C interface. The extra check
2138      // allows this, while still reporting an error if T is a struct pointer.
2139      const PointerType *PT = BaseType->getAsPointerType();
2140
2141      if (!PT || (getLangOptions().ObjC1 &&
2142                  !PT->getPointeeType()->isRecordType()))
2143        return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
2144                                                           BaseExpr, false,
2145                                                           OpLoc,
2146                                                     DeclarationName(&Member),
2147                                                           MemberLoc));
2148    }
2149  }
2150
2151  // Handle field access to simple records.  This also handles access to fields
2152  // of the ObjC 'id' struct.
2153  if (const RecordType *RTy = BaseType->getAsRecordType()) {
2154    RecordDecl *RDecl = RTy->getDecl();
2155    if (RequireCompleteType(OpLoc, BaseType,
2156                               diag::err_typecheck_incomplete_tag,
2157                               BaseExpr->getSourceRange()))
2158      return ExprError();
2159
2160    // The record definition is complete, now make sure the member is valid.
2161    // FIXME: Qualified name lookup for C++ is a bit more complicated than this.
2162    LookupResult Result
2163      = LookupQualifiedName(RDecl, DeclarationName(&Member),
2164                            LookupMemberName, false);
2165
2166    if (!Result)
2167      return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
2168               << &Member << BaseExpr->getSourceRange());
2169    if (Result.isAmbiguous()) {
2170      DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
2171                              MemberLoc, BaseExpr->getSourceRange());
2172      return ExprError();
2173    }
2174
2175    NamedDecl *MemberDecl = Result;
2176
2177    // If the decl being referenced had an error, return an error for this
2178    // sub-expr without emitting another error, in order to avoid cascading
2179    // error cases.
2180    if (MemberDecl->isInvalidDecl())
2181      return ExprError();
2182
2183    // Check the use of this field
2184    if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
2185      return ExprError();
2186
2187    if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
2188      // We may have found a field within an anonymous union or struct
2189      // (C++ [class.union]).
2190      if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
2191        return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
2192                                                        BaseExpr, OpLoc);
2193
2194      // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
2195      QualType MemberType = FD->getType();
2196      if (const ReferenceType *Ref = MemberType->getAsReferenceType())
2197        MemberType = Ref->getPointeeType();
2198      else {
2199        unsigned BaseAddrSpace = BaseType.getAddressSpace();
2200        unsigned combinedQualifiers =
2201          MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
2202        if (FD->isMutable())
2203          combinedQualifiers &= ~QualType::Const;
2204        MemberType = MemberType.getQualifiedType(combinedQualifiers);
2205        if (BaseAddrSpace != MemberType.getAddressSpace())
2206           MemberType = Context.getAddrSpaceQualType(MemberType, BaseAddrSpace);
2207      }
2208
2209      MarkDeclarationReferenced(MemberLoc, FD);
2210      PerformObjectMemberConversion(BaseExpr, FD);
2211      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
2212                                            MemberLoc, MemberType));
2213    }
2214
2215    if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
2216      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2217      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2218                                            Var, MemberLoc,
2219                                         Var->getType().getNonReferenceType()));
2220    }
2221    if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
2222      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2223      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2224                                            MemberFn, MemberLoc,
2225                                            MemberFn->getType()));
2226    }
2227    if (OverloadedFunctionDecl *Ovl
2228          = dyn_cast<OverloadedFunctionDecl>(MemberDecl))
2229      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
2230                                            MemberLoc, Context.OverloadTy));
2231    if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
2232      MarkDeclarationReferenced(MemberLoc, MemberDecl);
2233      return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
2234                                            Enum, MemberLoc, Enum->getType()));
2235    }
2236    if (isa<TypeDecl>(MemberDecl))
2237      return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
2238        << DeclarationName(&Member) << int(OpKind == tok::arrow));
2239
2240    // We found a declaration kind that we didn't expect. This is a
2241    // generic error message that tells the user that she can't refer
2242    // to this member with '.' or '->'.
2243    return ExprError(Diag(MemberLoc,
2244                          diag::err_typecheck_member_reference_unknown)
2245      << DeclarationName(&Member) << int(OpKind == tok::arrow));
2246  }
2247
2248  // Handle properties on ObjC 'Class' types.
2249  if (OpKind == tok::period && BaseType->isObjCClassType()) {
2250    // Also must look for a getter name which uses property syntax.
2251    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2252    if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2253      ObjCInterfaceDecl *IFace = MD->getClassInterface();
2254      ObjCMethodDecl *Getter;
2255      // FIXME: need to also look locally in the implementation.
2256      if ((Getter = IFace->lookupClassMethod(Sel))) {
2257        // Check the use of this method.
2258        if (DiagnoseUseOfDecl(Getter, MemberLoc))
2259          return ExprError();
2260      }
2261      // If we found a getter then this may be a valid dot-reference, we
2262      // will look for the matching setter, in case it is needed.
2263      Selector SetterSel =
2264        SelectorTable::constructSetterName(PP.getIdentifierTable(),
2265                                           PP.getSelectorTable(), &Member);
2266      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
2267      if (!Setter) {
2268        // If this reference is in an @implementation, also check for 'private'
2269        // methods.
2270        Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2271      }
2272      // Look through local category implementations associated with the class.
2273      if (!Setter)
2274        Setter = IFace->getCategoryClassMethod(SetterSel);
2275
2276      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2277        return ExprError();
2278
2279      if (Getter || Setter) {
2280        QualType PType;
2281
2282        if (Getter)
2283          PType = Getter->getResultType();
2284        else {
2285          for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2286               E = Setter->param_end(); PI != E; ++PI)
2287            PType = (*PI)->getType();
2288        }
2289        // FIXME: we must check that the setter has property type.
2290        return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2291                                        Setter, MemberLoc, BaseExpr));
2292      }
2293      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2294        << &Member << BaseType);
2295    }
2296  }
2297  // Handle access to Objective-C instance variables, such as "Obj->ivar" and
2298  // (*Obj).ivar.
2299  if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
2300      (OpKind == tok::period && BaseType->isObjCInterfaceType())) {
2301    const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
2302    const ObjCInterfaceType *IFaceT =
2303      OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
2304    if (IFaceT) {
2305      ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
2306      ObjCInterfaceDecl *ClassDeclared;
2307      ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(&Member, ClassDeclared);
2308
2309      if (IV) {
2310        // If the decl being referenced had an error, return an error for this
2311        // sub-expr without emitting another error, in order to avoid cascading
2312        // error cases.
2313        if (IV->isInvalidDecl())
2314          return ExprError();
2315
2316        // Check whether we can reference this field.
2317        if (DiagnoseUseOfDecl(IV, MemberLoc))
2318          return ExprError();
2319        if (IV->getAccessControl() != ObjCIvarDecl::Public &&
2320            IV->getAccessControl() != ObjCIvarDecl::Package) {
2321          ObjCInterfaceDecl *ClassOfMethodDecl = 0;
2322          if (ObjCMethodDecl *MD = getCurMethodDecl())
2323            ClassOfMethodDecl =  MD->getClassInterface();
2324          else if (ObjCImpDecl && getCurFunctionDecl()) {
2325            // Case of a c-function declared inside an objc implementation.
2326            // FIXME: For a c-style function nested inside an objc implementation
2327            // class, there is no implementation context available, so we pass
2328            // down the context as argument to this routine. Ideally, this context
2329            // need be passed down in the AST node and somehow calculated from the
2330            // AST for a function decl.
2331            Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
2332            if (ObjCImplementationDecl *IMPD =
2333                dyn_cast<ObjCImplementationDecl>(ImplDecl))
2334              ClassOfMethodDecl = IMPD->getClassInterface();
2335            else if (ObjCCategoryImplDecl* CatImplClass =
2336                        dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
2337              ClassOfMethodDecl = CatImplClass->getClassInterface();
2338          }
2339
2340          if (IV->getAccessControl() == ObjCIvarDecl::Private) {
2341            if (ClassDeclared != IDecl ||
2342                ClassOfMethodDecl != ClassDeclared)
2343              Diag(MemberLoc, diag::error_private_ivar_access)
2344                << IV->getDeclName();
2345          }
2346          // @protected
2347          else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
2348            Diag(MemberLoc, diag::error_protected_ivar_access)
2349              << IV->getDeclName();
2350        }
2351
2352        return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
2353                                                   MemberLoc, BaseExpr,
2354                                                   OpKind == tok::arrow));
2355      }
2356      return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
2357                         << IDecl->getDeclName() << &Member
2358                         << BaseExpr->getSourceRange());
2359    }
2360    // We have an 'id' type. Rather than fall through, we check if this
2361    // is a reference to 'isa'.
2362    if (Member.isStr("isa"))
2363      return Owned(new (Context) ObjCIsaExpr(BaseExpr, true, MemberLoc,
2364                                             Context.getObjCIdType()));
2365  }
2366  // Handle properties on 'id' and qualified "id".
2367  if (OpKind == tok::period && (BaseType->isObjCIdType() ||
2368                                BaseType->isObjCQualifiedIdType())) {
2369    const ObjCObjectPointerType *QIdTy = BaseType->getAsObjCObjectPointerType();
2370
2371    // Check protocols on qualified interfaces.
2372    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2373    if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
2374      if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
2375        // Check the use of this declaration
2376        if (DiagnoseUseOfDecl(PD, MemberLoc))
2377          return ExprError();
2378
2379        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2380                                                       MemberLoc, BaseExpr));
2381      }
2382      if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
2383        // Check the use of this method.
2384        if (DiagnoseUseOfDecl(OMD, MemberLoc))
2385          return ExprError();
2386
2387        return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
2388                                                   OMD->getResultType(),
2389                                                   OMD, OpLoc, MemberLoc,
2390                                                   NULL, 0));
2391      }
2392    }
2393
2394    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2395                       << &Member << BaseType);
2396  }
2397  // Handle Objective-C property access, which is "Obj.property" where Obj is a
2398  // pointer to a (potentially qualified) interface type.
2399  const ObjCObjectPointerType *OPT;
2400  if (OpKind == tok::period &&
2401      (OPT = BaseType->getAsObjCInterfacePointerType())) {
2402    const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
2403    ObjCInterfaceDecl *IFace = IFaceT->getDecl();
2404
2405    // Search for a declared property first.
2406    if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
2407      // Check whether we can reference this property.
2408      if (DiagnoseUseOfDecl(PD, MemberLoc))
2409        return ExprError();
2410      QualType ResTy = PD->getType();
2411      Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2412      ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2413      if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
2414        ResTy = Getter->getResultType();
2415      return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
2416                                                     MemberLoc, BaseExpr));
2417    }
2418    // Check protocols on qualified interfaces.
2419    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2420         E = OPT->qual_end(); I != E; ++I)
2421      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2422        // Check whether we can reference this property.
2423        if (DiagnoseUseOfDecl(PD, MemberLoc))
2424          return ExprError();
2425
2426        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2427                                                       MemberLoc, BaseExpr));
2428      }
2429    for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2430         E = OPT->qual_end(); I != E; ++I)
2431      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
2432        // Check whether we can reference this property.
2433        if (DiagnoseUseOfDecl(PD, MemberLoc))
2434          return ExprError();
2435
2436        return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
2437                                                       MemberLoc, BaseExpr));
2438      }
2439    // If that failed, look for an "implicit" property by seeing if the nullary
2440    // selector is implemented.
2441
2442    // FIXME: The logic for looking up nullary and unary selectors should be
2443    // shared with the code in ActOnInstanceMessage.
2444
2445    Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
2446    ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
2447
2448    // If this reference is in an @implementation, check for 'private' methods.
2449    if (!Getter)
2450      Getter = FindMethodInNestedImplementations(IFace, Sel);
2451
2452    // Look through local category implementations associated with the class.
2453    if (!Getter)
2454      Getter = IFace->getCategoryInstanceMethod(Sel);
2455    if (Getter) {
2456      // Check if we can reference this property.
2457      if (DiagnoseUseOfDecl(Getter, MemberLoc))
2458        return ExprError();
2459    }
2460    // If we found a getter then this may be a valid dot-reference, we
2461    // will look for the matching setter, in case it is needed.
2462    Selector SetterSel =
2463      SelectorTable::constructSetterName(PP.getIdentifierTable(),
2464                                         PP.getSelectorTable(), &Member);
2465    ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
2466    if (!Setter) {
2467      // If this reference is in an @implementation, also check for 'private'
2468      // methods.
2469      Setter = FindMethodInNestedImplementations(IFace, SetterSel);
2470    }
2471    // Look through local category implementations associated with the class.
2472    if (!Setter)
2473      Setter = IFace->getCategoryInstanceMethod(SetterSel);
2474
2475    if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
2476      return ExprError();
2477
2478    if (Getter || Setter) {
2479      QualType PType;
2480
2481      if (Getter)
2482        PType = Getter->getResultType();
2483      else {
2484        for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
2485             E = Setter->param_end(); PI != E; ++PI)
2486          PType = (*PI)->getType();
2487      }
2488      // FIXME: we must check that the setter has property type.
2489      return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
2490                                      Setter, MemberLoc, BaseExpr));
2491    }
2492    return ExprError(Diag(MemberLoc, diag::err_property_not_found)
2493      << &Member << BaseType);
2494  }
2495
2496  // Handle the following exceptional case (*Obj).isa.
2497  if (OpKind == tok::period &&
2498      BaseType->isSpecificBuiltinType(BuiltinType::ObjCId) &&
2499      Member.isStr("isa"))
2500    return Owned(new (Context) ObjCIsaExpr(BaseExpr, false, MemberLoc,
2501                                           Context.getObjCIdType()));
2502
2503  // Handle 'field access' to vectors, such as 'V.xx'.
2504  if (BaseType->isExtVectorType()) {
2505    QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
2506    if (ret.isNull())
2507      return ExprError();
2508    return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
2509                                                    MemberLoc));
2510  }
2511
2512  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
2513    << BaseType << BaseExpr->getSourceRange();
2514
2515  // If the user is trying to apply -> or . to a function or function
2516  // pointer, it's probably because they forgot parentheses to call
2517  // the function. Suggest the addition of those parentheses.
2518  if (BaseType == Context.OverloadTy ||
2519      BaseType->isFunctionType() ||
2520      (BaseType->isPointerType() &&
2521       BaseType->getAsPointerType()->isFunctionType())) {
2522    SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
2523    Diag(Loc, diag::note_member_reference_needs_call)
2524      << CodeModificationHint::CreateInsertion(Loc, "()");
2525  }
2526
2527  return ExprError();
2528}
2529
2530/// ConvertArgumentsForCall - Converts the arguments specified in
2531/// Args/NumArgs to the parameter types of the function FDecl with
2532/// function prototype Proto. Call is the call expression itself, and
2533/// Fn is the function expression. For a C++ member function, this
2534/// routine does not attempt to convert the object argument. Returns
2535/// true if the call is ill-formed.
2536bool
2537Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
2538                              FunctionDecl *FDecl,
2539                              const FunctionProtoType *Proto,
2540                              Expr **Args, unsigned NumArgs,
2541                              SourceLocation RParenLoc) {
2542  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
2543  // assignment, to the types of the corresponding parameter, ...
2544  unsigned NumArgsInProto = Proto->getNumArgs();
2545  unsigned NumArgsToCheck = NumArgs;
2546  bool Invalid = false;
2547
2548  // If too few arguments are available (and we don't have default
2549  // arguments for the remaining parameters), don't make the call.
2550  if (NumArgs < NumArgsInProto) {
2551    if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
2552      return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
2553        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
2554    // Use default arguments for missing arguments
2555    NumArgsToCheck = NumArgsInProto;
2556    Call->setNumArgs(Context, NumArgsInProto);
2557  }
2558
2559  // If too many are passed and not variadic, error on the extras and drop
2560  // them.
2561  if (NumArgs > NumArgsInProto) {
2562    if (!Proto->isVariadic()) {
2563      Diag(Args[NumArgsInProto]->getLocStart(),
2564           diag::err_typecheck_call_too_many_args)
2565        << Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
2566        << SourceRange(Args[NumArgsInProto]->getLocStart(),
2567                       Args[NumArgs-1]->getLocEnd());
2568      // This deletes the extra arguments.
2569      Call->setNumArgs(Context, NumArgsInProto);
2570      Invalid = true;
2571    }
2572    NumArgsToCheck = NumArgsInProto;
2573  }
2574
2575  // Continue to check argument types (even if we have too few/many args).
2576  for (unsigned i = 0; i != NumArgsToCheck; i++) {
2577    QualType ProtoArgType = Proto->getArgType(i);
2578
2579    Expr *Arg;
2580    if (i < NumArgs) {
2581      Arg = Args[i];
2582
2583      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2584                              ProtoArgType,
2585                              diag::err_call_incomplete_argument,
2586                              Arg->getSourceRange()))
2587        return true;
2588
2589      // Pass the argument.
2590      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2591        return true;
2592    } else {
2593      if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
2594        Diag (Call->getSourceRange().getBegin(),
2595              diag::err_use_of_default_argument_to_function_declared_later) <<
2596        FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
2597        Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
2598              diag::note_default_argument_declared_here);
2599      } else {
2600        Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
2601
2602        // If the default expression creates temporaries, we need to
2603        // push them to the current stack of expression temporaries so they'll
2604        // be properly destroyed.
2605        if (CXXExprWithTemporaries *E
2606              = dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
2607          assert(!E->shouldDestroyTemporaries() &&
2608                 "Can't destroy temporaries in a default argument expr!");
2609          for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
2610            ExprTemporaries.push_back(E->getTemporary(I));
2611        }
2612      }
2613
2614      // We already type-checked the argument, so we know it works.
2615      Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
2616    }
2617
2618    QualType ArgType = Arg->getType();
2619
2620    Call->setArg(i, Arg);
2621  }
2622
2623  // If this is a variadic call, handle args passed through "...".
2624  if (Proto->isVariadic()) {
2625    VariadicCallType CallType = VariadicFunction;
2626    if (Fn->getType()->isBlockPointerType())
2627      CallType = VariadicBlock; // Block
2628    else if (isa<MemberExpr>(Fn))
2629      CallType = VariadicMethod;
2630
2631    // Promote the arguments (C99 6.5.2.2p7).
2632    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2633      Expr *Arg = Args[i];
2634      Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
2635      Call->setArg(i, Arg);
2636    }
2637  }
2638
2639  return Invalid;
2640}
2641
2642/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
2643/// This provides the location of the left/right parens and a list of comma
2644/// locations.
2645Action::OwningExprResult
2646Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
2647                    MultiExprArg args,
2648                    SourceLocation *CommaLocs, SourceLocation RParenLoc) {
2649  unsigned NumArgs = args.size();
2650  Expr *Fn = fn.takeAs<Expr>();
2651  Expr **Args = reinterpret_cast<Expr**>(args.release());
2652  assert(Fn && "no function call expression");
2653  FunctionDecl *FDecl = NULL;
2654  NamedDecl *NDecl = NULL;
2655  DeclarationName UnqualifiedName;
2656
2657  if (getLangOptions().CPlusPlus) {
2658    // Determine whether this is a dependent call inside a C++ template,
2659    // in which case we won't do any semantic analysis now.
2660    // FIXME: Will need to cache the results of name lookup (including ADL) in
2661    // Fn.
2662    bool Dependent = false;
2663    if (Fn->isTypeDependent())
2664      Dependent = true;
2665    else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
2666      Dependent = true;
2667
2668    if (Dependent)
2669      return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
2670                                          Context.DependentTy, RParenLoc));
2671
2672    // Determine whether this is a call to an object (C++ [over.call.object]).
2673    if (Fn->getType()->isRecordType())
2674      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
2675                                                CommaLocs, RParenLoc));
2676
2677    // Determine whether this is a call to a member function.
2678    if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
2679      NamedDecl *MemDecl = MemExpr->getMemberDecl();
2680      if (isa<OverloadedFunctionDecl>(MemDecl) ||
2681          isa<CXXMethodDecl>(MemDecl) ||
2682          (isa<FunctionTemplateDecl>(MemDecl) &&
2683           isa<CXXMethodDecl>(
2684                cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
2685        return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
2686                                               CommaLocs, RParenLoc));
2687    }
2688  }
2689
2690  // If we're directly calling a function, get the appropriate declaration.
2691  // Also, in C++, keep track of whether we should perform argument-dependent
2692  // lookup and whether there were any explicitly-specified template arguments.
2693  Expr *FnExpr = Fn;
2694  bool ADL = true;
2695  bool HasExplicitTemplateArgs = 0;
2696  const TemplateArgument *ExplicitTemplateArgs = 0;
2697  unsigned NumExplicitTemplateArgs = 0;
2698  while (true) {
2699    if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
2700      FnExpr = IcExpr->getSubExpr();
2701    else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
2702      // Parentheses around a function disable ADL
2703      // (C++0x [basic.lookup.argdep]p1).
2704      ADL = false;
2705      FnExpr = PExpr->getSubExpr();
2706    } else if (isa<UnaryOperator>(FnExpr) &&
2707               cast<UnaryOperator>(FnExpr)->getOpcode()
2708                 == UnaryOperator::AddrOf) {
2709      FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
2710    } else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
2711      // Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
2712      ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
2713      NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
2714      break;
2715    } else if (UnresolvedFunctionNameExpr *DepName
2716                 = dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
2717      UnqualifiedName = DepName->getName();
2718      break;
2719    } else if (TemplateIdRefExpr *TemplateIdRef
2720                 = dyn_cast<TemplateIdRefExpr>(FnExpr)) {
2721      NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
2722      if (!NDecl)
2723        NDecl = TemplateIdRef->getTemplateName().getAsOverloadedFunctionDecl();
2724      HasExplicitTemplateArgs = true;
2725      ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
2726      NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
2727
2728      // C++ [temp.arg.explicit]p6:
2729      //   [Note: For simple function names, argument dependent lookup (3.4.2)
2730      //   applies even when the function name is not visible within the
2731      //   scope of the call. This is because the call still has the syntactic
2732      //   form of a function call (3.4.1). But when a function template with
2733      //   explicit template arguments is used, the call does not have the
2734      //   correct syntactic form unless there is a function template with
2735      //   that name visible at the point of the call. If no such name is
2736      //   visible, the call is not syntactically well-formed and
2737      //   argument-dependent lookup does not apply. If some such name is
2738      //   visible, argument dependent lookup applies and additional function
2739      //   templates may be found in other namespaces.
2740      //
2741      // The summary of this paragraph is that, if we get to this point and the
2742      // template-id was not a qualified name, then argument-dependent lookup
2743      // is still possible.
2744      if (TemplateIdRef->getQualifier())
2745        ADL = false;
2746      break;
2747    } else {
2748      // Any kind of name that does not refer to a declaration (or
2749      // set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
2750      ADL = false;
2751      break;
2752    }
2753  }
2754
2755  OverloadedFunctionDecl *Ovl = 0;
2756  FunctionTemplateDecl *FunctionTemplate = 0;
2757  if (NDecl) {
2758    FDecl = dyn_cast<FunctionDecl>(NDecl);
2759    if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
2760      FDecl = FunctionTemplate->getTemplatedDecl();
2761    else
2762      FDecl = dyn_cast<FunctionDecl>(NDecl);
2763    Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
2764  }
2765
2766  if (Ovl || FunctionTemplate ||
2767      (getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
2768    // We don't perform ADL for implicit declarations of builtins.
2769    if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
2770      ADL = false;
2771
2772    // We don't perform ADL in C.
2773    if (!getLangOptions().CPlusPlus)
2774      ADL = false;
2775
2776    if (Ovl || FunctionTemplate || ADL) {
2777      FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
2778                                      HasExplicitTemplateArgs,
2779                                      ExplicitTemplateArgs,
2780                                      NumExplicitTemplateArgs,
2781                                      LParenLoc, Args, NumArgs, CommaLocs,
2782                                      RParenLoc, ADL);
2783      if (!FDecl)
2784        return ExprError();
2785
2786      // Update Fn to refer to the actual function selected.
2787      Expr *NewFn = 0;
2788      if (QualifiedDeclRefExpr *QDRExpr
2789            = dyn_cast<QualifiedDeclRefExpr>(FnExpr))
2790        NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
2791                                                   QDRExpr->getLocation(),
2792                                                   false, false,
2793                                                 QDRExpr->getQualifierRange(),
2794                                                   QDRExpr->getQualifier());
2795      else
2796        NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
2797                                          Fn->getSourceRange().getBegin());
2798      Fn->Destroy(Context);
2799      Fn = NewFn;
2800    }
2801  }
2802
2803  // Promote the function operand.
2804  UsualUnaryConversions(Fn);
2805
2806  // Make the call expr early, before semantic checks.  This guarantees cleanup
2807  // of arguments and function on error.
2808  ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
2809                                                               Args, NumArgs,
2810                                                               Context.BoolTy,
2811                                                               RParenLoc));
2812
2813  const FunctionType *FuncT;
2814  if (!Fn->getType()->isBlockPointerType()) {
2815    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
2816    // have type pointer to function".
2817    const PointerType *PT = Fn->getType()->getAsPointerType();
2818    if (PT == 0)
2819      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2820        << Fn->getType() << Fn->getSourceRange());
2821    FuncT = PT->getPointeeType()->getAsFunctionType();
2822  } else { // This is a block call.
2823    FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
2824                getAsFunctionType();
2825  }
2826  if (FuncT == 0)
2827    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
2828      << Fn->getType() << Fn->getSourceRange());
2829
2830  // Check for a valid return type
2831  if (!FuncT->getResultType()->isVoidType() &&
2832      RequireCompleteType(Fn->getSourceRange().getBegin(),
2833                          FuncT->getResultType(),
2834                          diag::err_call_incomplete_return,
2835                          TheCall->getSourceRange()))
2836    return ExprError();
2837
2838  // We know the result type of the call, set it.
2839  TheCall->setType(FuncT->getResultType().getNonReferenceType());
2840
2841  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
2842    if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
2843                                RParenLoc))
2844      return ExprError();
2845  } else {
2846    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
2847
2848    if (FDecl) {
2849      // Check if we have too few/too many template arguments, based
2850      // on our knowledge of the function definition.
2851      const FunctionDecl *Def = 0;
2852      if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
2853        const FunctionProtoType *Proto =
2854            Def->getType()->getAsFunctionProtoType();
2855        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
2856          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
2857            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
2858        }
2859      }
2860    }
2861
2862    // Promote the arguments (C99 6.5.2.2p6).
2863    for (unsigned i = 0; i != NumArgs; i++) {
2864      Expr *Arg = Args[i];
2865      DefaultArgumentPromotion(Arg);
2866      if (RequireCompleteType(Arg->getSourceRange().getBegin(),
2867                              Arg->getType(),
2868                              diag::err_call_incomplete_argument,
2869                              Arg->getSourceRange()))
2870        return ExprError();
2871      TheCall->setArg(i, Arg);
2872    }
2873  }
2874
2875  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
2876    if (!Method->isStatic())
2877      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
2878        << Fn->getSourceRange());
2879
2880  // Check for sentinels
2881  if (NDecl)
2882    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
2883  // Do special checking on direct calls to functions.
2884  if (FDecl)
2885    return CheckFunctionCall(FDecl, TheCall.take());
2886  if (NDecl)
2887    return CheckBlockCall(NDecl, TheCall.take());
2888
2889  return Owned(TheCall.take());
2890}
2891
2892Action::OwningExprResult
2893Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
2894                           SourceLocation RParenLoc, ExprArg InitExpr) {
2895  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
2896  QualType literalType = QualType::getFromOpaquePtr(Ty);
2897  // FIXME: put back this assert when initializers are worked out.
2898  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
2899  Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
2900
2901  if (literalType->isArrayType()) {
2902    if (literalType->isVariableArrayType())
2903      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
2904        << SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
2905  } else if (!literalType->isDependentType() &&
2906             RequireCompleteType(LParenLoc, literalType,
2907                                 diag::err_typecheck_decl_incomplete_type,
2908                SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
2909    return ExprError();
2910
2911  if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
2912                            DeclarationName(), /*FIXME:DirectInit=*/false))
2913    return ExprError();
2914
2915  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
2916  if (isFileScope) { // 6.5.2.5p3
2917    if (CheckForConstantInitializer(literalExpr, literalType))
2918      return ExprError();
2919  }
2920  InitExpr.release();
2921  return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
2922                                                 literalExpr, isFileScope));
2923}
2924
2925Action::OwningExprResult
2926Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
2927                    SourceLocation RBraceLoc) {
2928  unsigned NumInit = initlist.size();
2929  Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
2930
2931  // Semantic analysis for initializers is done by ActOnDeclarator() and
2932  // CheckInitializer() - it requires knowledge of the object being intialized.
2933
2934  InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
2935                                               RBraceLoc);
2936  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
2937  return Owned(E);
2938}
2939
2940/// CheckCastTypes - Check type constraints for casting between types.
2941bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr,
2942                          bool FunctionalStyle) {
2943  if (getLangOptions().CPlusPlus)
2944    return CXXCheckCStyleCast(TyR, castType, castExpr, FunctionalStyle);
2945
2946  UsualUnaryConversions(castExpr);
2947
2948  // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2949  // type needs to be scalar.
2950  if (castType->isVoidType()) {
2951    // Cast to void allows any expr type.
2952  } else if (!castType->isScalarType() && !castType->isVectorType()) {
2953    if (Context.getCanonicalType(castType).getUnqualifiedType() ==
2954        Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
2955        (castType->isStructureType() || castType->isUnionType())) {
2956      // GCC struct/union extension: allow cast to self.
2957      // FIXME: Check that the cast destination type is complete.
2958      Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
2959        << castType << castExpr->getSourceRange();
2960    } else if (castType->isUnionType()) {
2961      // GCC cast to union extension
2962      RecordDecl *RD = castType->getAsRecordType()->getDecl();
2963      RecordDecl::field_iterator Field, FieldEnd;
2964      for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2965           Field != FieldEnd; ++Field) {
2966        if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
2967            Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
2968          Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
2969            << castExpr->getSourceRange();
2970          break;
2971        }
2972      }
2973      if (Field == FieldEnd)
2974        return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
2975          << castExpr->getType() << castExpr->getSourceRange();
2976    } else {
2977      // Reject any other conversions to non-scalar types.
2978      return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
2979        << castType << castExpr->getSourceRange();
2980    }
2981  } else if (!castExpr->getType()->isScalarType() &&
2982             !castExpr->getType()->isVectorType()) {
2983    return Diag(castExpr->getLocStart(),
2984                diag::err_typecheck_expect_scalar_operand)
2985      << castExpr->getType() << castExpr->getSourceRange();
2986  } else if (castType->isExtVectorType()) {
2987    if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
2988      return true;
2989  } else if (castType->isVectorType()) {
2990    if (CheckVectorCast(TyR, castType, castExpr->getType()))
2991      return true;
2992  } else if (castExpr->getType()->isVectorType()) {
2993    if (CheckVectorCast(TyR, castExpr->getType(), castType))
2994      return true;
2995  } else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
2996    return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
2997  } else if (!castType->isArithmeticType()) {
2998    QualType castExprType = castExpr->getType();
2999    if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
3000      return Diag(castExpr->getLocStart(),
3001                  diag::err_cast_pointer_from_non_pointer_int)
3002        << castExprType << castExpr->getSourceRange();
3003  } else if (!castExpr->getType()->isArithmeticType()) {
3004    if (!castType->isIntegralType() && castType->isArithmeticType())
3005      return Diag(castExpr->getLocStart(),
3006                  diag::err_cast_pointer_to_non_pointer_int)
3007        << castType << castExpr->getSourceRange();
3008  }
3009  if (isa<ObjCSelectorExpr>(castExpr))
3010    return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
3011  return false;
3012}
3013
3014bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
3015  assert(VectorTy->isVectorType() && "Not a vector type!");
3016
3017  if (Ty->isVectorType() || Ty->isIntegerType()) {
3018    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
3019      return Diag(R.getBegin(),
3020                  Ty->isVectorType() ?
3021                  diag::err_invalid_conversion_between_vectors :
3022                  diag::err_invalid_conversion_between_vector_and_integer)
3023        << VectorTy << Ty << R;
3024  } else
3025    return Diag(R.getBegin(),
3026                diag::err_invalid_conversion_between_vector_and_scalar)
3027      << VectorTy << Ty << R;
3028
3029  return false;
3030}
3031
3032bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
3033  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
3034
3035  // If SrcTy is a VectorType, the total size must match to explicitly cast to
3036  // an ExtVectorType.
3037  if (SrcTy->isVectorType()) {
3038    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
3039      return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
3040        << DestTy << SrcTy << R;
3041    return false;
3042  }
3043
3044  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
3045  // conversion will take place first from scalar to elt type, and then
3046  // splat from elt type to vector.
3047  if (SrcTy->isPointerType())
3048    return Diag(R.getBegin(),
3049                diag::err_invalid_conversion_between_vector_and_scalar)
3050      << DestTy << SrcTy << R;
3051  return false;
3052}
3053
3054Action::OwningExprResult
3055Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
3056                    SourceLocation RParenLoc, ExprArg Op) {
3057  assert((Ty != 0) && (Op.get() != 0) &&
3058         "ActOnCastExpr(): missing type or expr");
3059
3060  Expr *castExpr = Op.takeAs<Expr>();
3061  QualType castType = QualType::getFromOpaquePtr(Ty);
3062
3063  if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
3064    return ExprError();
3065  return Owned(new (Context) CStyleCastExpr(castType.getNonReferenceType(),
3066                                            castExpr, castType,
3067                                            LParenLoc, RParenLoc));
3068}
3069
3070/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
3071/// In that case, lhs = cond.
3072/// C99 6.5.15
3073QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3074                                        SourceLocation QuestionLoc) {
3075  // C++ is sufficiently different to merit its own checker.
3076  if (getLangOptions().CPlusPlus)
3077    return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
3078
3079  UsualUnaryConversions(Cond);
3080  UsualUnaryConversions(LHS);
3081  UsualUnaryConversions(RHS);
3082  QualType CondTy = Cond->getType();
3083  QualType LHSTy = LHS->getType();
3084  QualType RHSTy = RHS->getType();
3085
3086  // first, check the condition.
3087  if (!CondTy->isScalarType()) { // C99 6.5.15p2
3088    Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
3089      << CondTy;
3090    return QualType();
3091  }
3092
3093  // Now check the two expressions.
3094
3095  // If both operands have arithmetic type, do the usual arithmetic conversions
3096  // to find a common type: C99 6.5.15p3,5.
3097  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
3098    UsualArithmeticConversions(LHS, RHS);
3099    return LHS->getType();
3100  }
3101
3102  // If both operands are the same structure or union type, the result is that
3103  // type.
3104  if (const RecordType *LHSRT = LHSTy->getAsRecordType()) {    // C99 6.5.15p3
3105    if (const RecordType *RHSRT = RHSTy->getAsRecordType())
3106      if (LHSRT->getDecl() == RHSRT->getDecl())
3107        // "If both the operands have structure or union type, the result has
3108        // that type."  This implies that CV qualifiers are dropped.
3109        return LHSTy.getUnqualifiedType();
3110    // FIXME: Type of conditional expression must be complete in C mode.
3111  }
3112
3113  // C99 6.5.15p5: "If both operands have void type, the result has void type."
3114  // The following || allows only one side to be void (a GCC-ism).
3115  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
3116    if (!LHSTy->isVoidType())
3117      Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3118        << RHS->getSourceRange();
3119    if (!RHSTy->isVoidType())
3120      Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
3121        << LHS->getSourceRange();
3122    ImpCastExprToType(LHS, Context.VoidTy);
3123    ImpCastExprToType(RHS, Context.VoidTy);
3124    return Context.VoidTy;
3125  }
3126  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
3127  // the type of the other operand."
3128  if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
3129      RHS->isNullPointerConstant(Context)) {
3130    ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
3131    return LHSTy;
3132  }
3133  if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
3134      LHS->isNullPointerConstant(Context)) {
3135    ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
3136    return RHSTy;
3137  }
3138  // Handle block pointer types.
3139  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
3140    if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
3141      if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
3142        QualType destType = Context.getPointerType(Context.VoidTy);
3143        ImpCastExprToType(LHS, destType);
3144        ImpCastExprToType(RHS, destType);
3145        return destType;
3146      }
3147      Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3148            << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3149      return QualType();
3150    }
3151    // We have 2 block pointer types.
3152    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3153      // Two identical block pointer types are always compatible.
3154      return LHSTy;
3155    }
3156    // The block pointer types aren't identical, continue checking.
3157    QualType lhptee = LHSTy->getAsBlockPointerType()->getPointeeType();
3158    QualType rhptee = RHSTy->getAsBlockPointerType()->getPointeeType();
3159
3160    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3161                                    rhptee.getUnqualifiedType())) {
3162      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3163        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3164      // In this situation, we assume void* type. No especially good
3165      // reason, but this is what gcc does, and we do have to pick
3166      // to get a consistent AST.
3167      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3168      ImpCastExprToType(LHS, incompatTy);
3169      ImpCastExprToType(RHS, incompatTy);
3170      return incompatTy;
3171    }
3172    // The block pointer types are compatible.
3173    ImpCastExprToType(LHS, LHSTy);
3174    ImpCastExprToType(RHS, LHSTy);
3175    return LHSTy;
3176  }
3177  // Check constraints for Objective-C object pointers types.
3178  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
3179
3180    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3181      // Two identical object pointer types are always compatible.
3182      return LHSTy;
3183    }
3184    const ObjCObjectPointerType *LHSOPT = LHSTy->getAsObjCObjectPointerType();
3185    const ObjCObjectPointerType *RHSOPT = RHSTy->getAsObjCObjectPointerType();
3186    QualType compositeType = LHSTy;
3187
3188    // If both operands are interfaces and either operand can be
3189    // assigned to the other, use that type as the composite
3190    // type. This allows
3191    //   xxx ? (A*) a : (B*) b
3192    // where B is a subclass of A.
3193    //
3194    // Additionally, as for assignment, if either type is 'id'
3195    // allow silent coercion. Finally, if the types are
3196    // incompatible then make sure to use 'id' as the composite
3197    // type so the result is acceptable for sending messages to.
3198
3199    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
3200    // It could return the composite type.
3201    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
3202      compositeType = LHSTy;
3203    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
3204      compositeType = RHSTy;
3205    } else if ((LHSTy->isObjCQualifiedIdType() ||
3206                RHSTy->isObjCQualifiedIdType()) &&
3207                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
3208      // Need to handle "id<xx>" explicitly.
3209      // GCC allows qualified id and any Objective-C type to devolve to
3210      // id. Currently localizing to here until clear this should be
3211      // part of ObjCQualifiedIdTypesAreCompatible.
3212      compositeType = Context.getObjCIdType();
3213    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
3214      compositeType = Context.getObjCIdType();
3215    } else {
3216      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
3217        << LHSTy << RHSTy
3218        << LHS->getSourceRange() << RHS->getSourceRange();
3219      QualType incompatTy = Context.getObjCIdType();
3220      ImpCastExprToType(LHS, incompatTy);
3221      ImpCastExprToType(RHS, incompatTy);
3222      return incompatTy;
3223    }
3224    // The object pointer types are compatible.
3225    ImpCastExprToType(LHS, compositeType);
3226    ImpCastExprToType(RHS, compositeType);
3227    return compositeType;
3228  }
3229  // Check Objective-C object pointer types and 'void *'
3230  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
3231    QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
3232    QualType rhptee = RHSTy->getAsObjCObjectPointerType()->getPointeeType();
3233    QualType destPointee = lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3234    QualType destType = Context.getPointerType(destPointee);
3235    ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3236    ImpCastExprToType(RHS, destType); // promote to void*
3237    return destType;
3238  }
3239  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
3240    QualType lhptee = LHSTy->getAsObjCObjectPointerType()->getPointeeType();
3241    QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
3242    QualType destPointee = rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3243    QualType destType = Context.getPointerType(destPointee);
3244    ImpCastExprToType(RHS, destType); // add qualifiers if necessary
3245    ImpCastExprToType(LHS, destType); // promote to void*
3246    return destType;
3247  }
3248  // Check constraints for C object pointers types (C99 6.5.15p3,6).
3249  if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
3250    // get the "pointed to" types
3251    QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
3252    QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
3253
3254    // ignore qualifiers on void (C99 6.5.15p3, clause 6)
3255    if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
3256      // Figure out necessary qualifiers (C99 6.5.15p6)
3257      QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
3258      QualType destType = Context.getPointerType(destPointee);
3259      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3260      ImpCastExprToType(RHS, destType); // promote to void*
3261      return destType;
3262    }
3263    if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
3264      QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
3265      QualType destType = Context.getPointerType(destPointee);
3266      ImpCastExprToType(LHS, destType); // add qualifiers if necessary
3267      ImpCastExprToType(RHS, destType); // promote to void*
3268      return destType;
3269    }
3270
3271    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
3272      // Two identical pointer types are always compatible.
3273      return LHSTy;
3274    }
3275    if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
3276                                    rhptee.getUnqualifiedType())) {
3277      Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
3278        << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3279      // In this situation, we assume void* type. No especially good
3280      // reason, but this is what gcc does, and we do have to pick
3281      // to get a consistent AST.
3282      QualType incompatTy = Context.getPointerType(Context.VoidTy);
3283      ImpCastExprToType(LHS, incompatTy);
3284      ImpCastExprToType(RHS, incompatTy);
3285      return incompatTy;
3286    }
3287    // The pointer types are compatible.
3288    // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
3289    // differently qualified versions of compatible types, the result type is
3290    // a pointer to an appropriately qualified version of the *composite*
3291    // type.
3292    // FIXME: Need to calculate the composite type.
3293    // FIXME: Need to add qualifiers
3294    ImpCastExprToType(LHS, LHSTy);
3295    ImpCastExprToType(RHS, LHSTy);
3296    return LHSTy;
3297  }
3298
3299  // GCC compatibility: soften pointer/integer mismatch.
3300  if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
3301    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3302      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3303    ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
3304    return RHSTy;
3305  }
3306  if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
3307    Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
3308      << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3309    ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
3310    return LHSTy;
3311  }
3312
3313  // Otherwise, the operands are not compatible.
3314  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3315    << LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
3316  return QualType();
3317}
3318
3319/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
3320/// in the case of a the GNU conditional expr extension.
3321Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
3322                                                  SourceLocation ColonLoc,
3323                                                  ExprArg Cond, ExprArg LHS,
3324                                                  ExprArg RHS) {
3325  Expr *CondExpr = (Expr *) Cond.get();
3326  Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
3327
3328  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
3329  // was the condition.
3330  bool isLHSNull = LHSExpr == 0;
3331  if (isLHSNull)
3332    LHSExpr = CondExpr;
3333
3334  QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
3335                                             RHSExpr, QuestionLoc);
3336  if (result.isNull())
3337    return ExprError();
3338
3339  Cond.release();
3340  LHS.release();
3341  RHS.release();
3342  return Owned(new (Context) ConditionalOperator(CondExpr,
3343                                                 isLHSNull ? 0 : LHSExpr,
3344                                                 RHSExpr, result));
3345}
3346
3347// CheckPointerTypesForAssignment - This is a very tricky routine (despite
3348// being closely modeled after the C99 spec:-). The odd characteristic of this
3349// routine is it effectively iqnores the qualifiers on the top level pointee.
3350// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
3351// FIXME: add a couple examples in this comment.
3352Sema::AssignConvertType
3353Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
3354  QualType lhptee, rhptee;
3355
3356  // get the "pointed to" type (ignoring qualifiers at the top level)
3357  lhptee = lhsType->getAsPointerType()->getPointeeType();
3358  rhptee = rhsType->getAsPointerType()->getPointeeType();
3359
3360  // make sure we operate on the canonical type
3361  lhptee = Context.getCanonicalType(lhptee);
3362  rhptee = Context.getCanonicalType(rhptee);
3363
3364  AssignConvertType ConvTy = Compatible;
3365
3366  // C99 6.5.16.1p1: This following citation is common to constraints
3367  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
3368  // qualifiers of the type *pointed to* by the right;
3369  // FIXME: Handle ExtQualType
3370  if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
3371    ConvTy = CompatiblePointerDiscardsQualifiers;
3372
3373  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
3374  // incomplete type and the other is a pointer to a qualified or unqualified
3375  // version of void...
3376  if (lhptee->isVoidType()) {
3377    if (rhptee->isIncompleteOrObjectType())
3378      return ConvTy;
3379
3380    // As an extension, we allow cast to/from void* to function pointer.
3381    assert(rhptee->isFunctionType());
3382    return FunctionVoidPointer;
3383  }
3384
3385  if (rhptee->isVoidType()) {
3386    if (lhptee->isIncompleteOrObjectType())
3387      return ConvTy;
3388
3389    // As an extension, we allow cast to/from void* to function pointer.
3390    assert(lhptee->isFunctionType());
3391    return FunctionVoidPointer;
3392  }
3393  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
3394  // unqualified versions of compatible types, ...
3395  lhptee = lhptee.getUnqualifiedType();
3396  rhptee = rhptee.getUnqualifiedType();
3397  if (!Context.typesAreCompatible(lhptee, rhptee)) {
3398    // Check if the pointee types are compatible ignoring the sign.
3399    // We explicitly check for char so that we catch "char" vs
3400    // "unsigned char" on systems where "char" is unsigned.
3401    if (lhptee->isCharType()) {
3402      lhptee = Context.UnsignedCharTy;
3403    } else if (lhptee->isSignedIntegerType()) {
3404      lhptee = Context.getCorrespondingUnsignedType(lhptee);
3405    }
3406    if (rhptee->isCharType()) {
3407      rhptee = Context.UnsignedCharTy;
3408    } else if (rhptee->isSignedIntegerType()) {
3409      rhptee = Context.getCorrespondingUnsignedType(rhptee);
3410    }
3411    if (lhptee == rhptee) {
3412      // Types are compatible ignoring the sign. Qualifier incompatibility
3413      // takes priority over sign incompatibility because the sign
3414      // warning can be disabled.
3415      if (ConvTy != Compatible)
3416        return ConvTy;
3417      return IncompatiblePointerSign;
3418    }
3419    // General pointer incompatibility takes priority over qualifiers.
3420    return IncompatiblePointer;
3421  }
3422  return ConvTy;
3423}
3424
3425/// CheckBlockPointerTypesForAssignment - This routine determines whether two
3426/// block pointer types are compatible or whether a block and normal pointer
3427/// are compatible. It is more restrict than comparing two function pointer
3428// types.
3429Sema::AssignConvertType
3430Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
3431                                          QualType rhsType) {
3432  QualType lhptee, rhptee;
3433
3434  // get the "pointed to" type (ignoring qualifiers at the top level)
3435  lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
3436  rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
3437
3438  // make sure we operate on the canonical type
3439  lhptee = Context.getCanonicalType(lhptee);
3440  rhptee = Context.getCanonicalType(rhptee);
3441
3442  AssignConvertType ConvTy = Compatible;
3443
3444  // For blocks we enforce that qualifiers are identical.
3445  if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
3446    ConvTy = CompatiblePointerDiscardsQualifiers;
3447
3448  if (!Context.typesAreCompatible(lhptee, rhptee))
3449    return IncompatibleBlockPointer;
3450  return ConvTy;
3451}
3452
3453/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
3454/// has code to accommodate several GCC extensions when type checking
3455/// pointers. Here are some objectionable examples that GCC considers warnings:
3456///
3457///  int a, *pint;
3458///  short *pshort;
3459///  struct foo *pfoo;
3460///
3461///  pint = pshort; // warning: assignment from incompatible pointer type
3462///  a = pint; // warning: assignment makes integer from pointer without a cast
3463///  pint = a; // warning: assignment makes pointer from integer without a cast
3464///  pint = pfoo; // warning: assignment from incompatible pointer type
3465///
3466/// As a result, the code for dealing with pointers is more complex than the
3467/// C99 spec dictates.
3468///
3469Sema::AssignConvertType
3470Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
3471  // Get canonical types.  We're not formatting these types, just comparing
3472  // them.
3473  lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
3474  rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
3475
3476  if (lhsType == rhsType)
3477    return Compatible; // Common case: fast path an exact match.
3478
3479  // If the left-hand side is a reference type, then we are in a
3480  // (rare!) case where we've allowed the use of references in C,
3481  // e.g., as a parameter type in a built-in function. In this case,
3482  // just make sure that the type referenced is compatible with the
3483  // right-hand side type. The caller is responsible for adjusting
3484  // lhsType so that the resulting expression does not have reference
3485  // type.
3486  if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
3487    if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
3488      return Compatible;
3489    return Incompatible;
3490  }
3491  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
3492  // to the same ExtVector type.
3493  if (lhsType->isExtVectorType()) {
3494    if (rhsType->isExtVectorType())
3495      return lhsType == rhsType ? Compatible : Incompatible;
3496    if (!rhsType->isVectorType() && rhsType->isArithmeticType())
3497      return Compatible;
3498  }
3499
3500  if (lhsType->isVectorType() || rhsType->isVectorType()) {
3501    // If we are allowing lax vector conversions, and LHS and RHS are both
3502    // vectors, the total size only needs to be the same. This is a bitcast;
3503    // no bits are changed but the result type is different.
3504    if (getLangOptions().LaxVectorConversions &&
3505        lhsType->isVectorType() && rhsType->isVectorType()) {
3506      if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
3507        return IncompatibleVectors;
3508    }
3509    return Incompatible;
3510  }
3511
3512  if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
3513    return Compatible;
3514
3515  if (isa<PointerType>(lhsType)) {
3516    if (rhsType->isIntegerType())
3517      return IntToPointer;
3518
3519    if (isa<PointerType>(rhsType))
3520      return CheckPointerTypesForAssignment(lhsType, rhsType);
3521
3522    // In general, C pointers are not compatible with ObjC object pointers.
3523    if (isa<ObjCObjectPointerType>(rhsType)) {
3524      if (lhsType->isVoidPointerType()) // an exception to the rule.
3525        return Compatible;
3526      return IncompatiblePointer;
3527    }
3528    if (rhsType->getAsBlockPointerType()) {
3529      if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
3530        return Compatible;
3531
3532      // Treat block pointers as objects.
3533      if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
3534        return Compatible;
3535    }
3536    return Incompatible;
3537  }
3538
3539  if (isa<BlockPointerType>(lhsType)) {
3540    if (rhsType->isIntegerType())
3541      return IntToBlockPointer;
3542
3543    // Treat block pointers as objects.
3544    if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
3545      return Compatible;
3546
3547    if (rhsType->isBlockPointerType())
3548      return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
3549
3550    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3551      if (RHSPT->getPointeeType()->isVoidType())
3552        return Compatible;
3553    }
3554    return Incompatible;
3555  }
3556
3557  if (isa<ObjCObjectPointerType>(lhsType)) {
3558    if (rhsType->isIntegerType())
3559      return IntToPointer;
3560
3561    // In general, C pointers are not compatible with ObjC object pointers.
3562    if (isa<PointerType>(rhsType)) {
3563      if (rhsType->isVoidPointerType()) // an exception to the rule.
3564        return Compatible;
3565      return IncompatiblePointer;
3566    }
3567    if (rhsType->isObjCObjectPointerType()) {
3568      if (lhsType->isObjCBuiltinType() || rhsType->isObjCBuiltinType())
3569        return Compatible;
3570      if (Context.typesAreCompatible(lhsType, rhsType))
3571        return Compatible;
3572      if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
3573        return IncompatibleObjCQualifiedId;
3574      return IncompatiblePointer;
3575    }
3576    if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
3577      if (RHSPT->getPointeeType()->isVoidType())
3578        return Compatible;
3579    }
3580    // Treat block pointers as objects.
3581    if (rhsType->isBlockPointerType())
3582      return Compatible;
3583    return Incompatible;
3584  }
3585  if (isa<PointerType>(rhsType)) {
3586    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3587    if (lhsType == Context.BoolTy)
3588      return Compatible;
3589
3590    if (lhsType->isIntegerType())
3591      return PointerToInt;
3592
3593    if (isa<PointerType>(lhsType))
3594      return CheckPointerTypesForAssignment(lhsType, rhsType);
3595
3596    if (isa<BlockPointerType>(lhsType) &&
3597        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3598      return Compatible;
3599    return Incompatible;
3600  }
3601  if (isa<ObjCObjectPointerType>(rhsType)) {
3602    // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
3603    if (lhsType == Context.BoolTy)
3604      return Compatible;
3605
3606    if (lhsType->isIntegerType())
3607      return PointerToInt;
3608
3609    // In general, C pointers are not compatible with ObjC object pointers.
3610    if (isa<PointerType>(lhsType)) {
3611      if (lhsType->isVoidPointerType()) // an exception to the rule.
3612        return Compatible;
3613      return IncompatiblePointer;
3614    }
3615    if (isa<BlockPointerType>(lhsType) &&
3616        rhsType->getAsPointerType()->getPointeeType()->isVoidType())
3617      return Compatible;
3618    return Incompatible;
3619  }
3620
3621  if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
3622    if (Context.typesAreCompatible(lhsType, rhsType))
3623      return Compatible;
3624  }
3625  return Incompatible;
3626}
3627
3628/// \brief Constructs a transparent union from an expression that is
3629/// used to initialize the transparent union.
3630static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
3631                                      QualType UnionType, FieldDecl *Field) {
3632  // Build an initializer list that designates the appropriate member
3633  // of the transparent union.
3634  InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
3635                                                   &E, 1,
3636                                                   SourceLocation());
3637  Initializer->setType(UnionType);
3638  Initializer->setInitializedFieldInUnion(Field);
3639
3640  // Build a compound literal constructing a value of the transparent
3641  // union type from this initializer list.
3642  E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
3643                                  false);
3644}
3645
3646Sema::AssignConvertType
3647Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
3648  QualType FromType = rExpr->getType();
3649
3650  // If the ArgType is a Union type, we want to handle a potential
3651  // transparent_union GCC extension.
3652  const RecordType *UT = ArgType->getAsUnionType();
3653  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
3654    return Incompatible;
3655
3656  // The field to initialize within the transparent union.
3657  RecordDecl *UD = UT->getDecl();
3658  FieldDecl *InitField = 0;
3659  // It's compatible if the expression matches any of the fields.
3660  for (RecordDecl::field_iterator it = UD->field_begin(),
3661         itend = UD->field_end();
3662       it != itend; ++it) {
3663    if (it->getType()->isPointerType()) {
3664      // If the transparent union contains a pointer type, we allow:
3665      // 1) void pointer
3666      // 2) null pointer constant
3667      if (FromType->isPointerType())
3668        if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
3669          ImpCastExprToType(rExpr, it->getType());
3670          InitField = *it;
3671          break;
3672        }
3673
3674      if (rExpr->isNullPointerConstant(Context)) {
3675        ImpCastExprToType(rExpr, it->getType());
3676        InitField = *it;
3677        break;
3678      }
3679    }
3680
3681    if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
3682          == Compatible) {
3683      InitField = *it;
3684      break;
3685    }
3686  }
3687
3688  if (!InitField)
3689    return Incompatible;
3690
3691  ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
3692  return Compatible;
3693}
3694
3695Sema::AssignConvertType
3696Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
3697  if (getLangOptions().CPlusPlus) {
3698    if (!lhsType->isRecordType()) {
3699      // C++ 5.17p3: If the left operand is not of class type, the
3700      // expression is implicitly converted (C++ 4) to the
3701      // cv-unqualified type of the left operand.
3702      if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
3703                                    "assigning"))
3704        return Incompatible;
3705      return Compatible;
3706    }
3707
3708    // FIXME: Currently, we fall through and treat C++ classes like C
3709    // structures.
3710  }
3711
3712  // C99 6.5.16.1p1: the left operand is a pointer and the right is
3713  // a null pointer constant.
3714  if ((lhsType->isPointerType() ||
3715       lhsType->isObjCObjectPointerType() ||
3716       lhsType->isBlockPointerType())
3717      && rExpr->isNullPointerConstant(Context)) {
3718    ImpCastExprToType(rExpr, lhsType);
3719    return Compatible;
3720  }
3721
3722  // This check seems unnatural, however it is necessary to ensure the proper
3723  // conversion of functions/arrays. If the conversion were done for all
3724  // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
3725  // expressions that surpress this implicit conversion (&, sizeof).
3726  //
3727  // Suppress this for references: C++ 8.5.3p5.
3728  if (!lhsType->isReferenceType())
3729    DefaultFunctionArrayConversion(rExpr);
3730
3731  Sema::AssignConvertType result =
3732    CheckAssignmentConstraints(lhsType, rExpr->getType());
3733
3734  // C99 6.5.16.1p2: The value of the right operand is converted to the
3735  // type of the assignment expression.
3736  // CheckAssignmentConstraints allows the left-hand side to be a reference,
3737  // so that we can use references in built-in functions even in C.
3738  // The getNonReferenceType() call makes sure that the resulting expression
3739  // does not have reference type.
3740  if (result != Incompatible && rExpr->getType() != lhsType)
3741    ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
3742  return result;
3743}
3744
3745QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
3746  Diag(Loc, diag::err_typecheck_invalid_operands)
3747    << lex->getType() << rex->getType()
3748    << lex->getSourceRange() << rex->getSourceRange();
3749  return QualType();
3750}
3751
3752inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
3753                                                              Expr *&rex) {
3754  // For conversion purposes, we ignore any qualifiers.
3755  // For example, "const float" and "float" are equivalent.
3756  QualType lhsType =
3757    Context.getCanonicalType(lex->getType()).getUnqualifiedType();
3758  QualType rhsType =
3759    Context.getCanonicalType(rex->getType()).getUnqualifiedType();
3760
3761  // If the vector types are identical, return.
3762  if (lhsType == rhsType)
3763    return lhsType;
3764
3765  // Handle the case of a vector & extvector type of the same size and element
3766  // type.  It would be nice if we only had one vector type someday.
3767  if (getLangOptions().LaxVectorConversions) {
3768    // FIXME: Should we warn here?
3769    if (const VectorType *LV = lhsType->getAsVectorType()) {
3770      if (const VectorType *RV = rhsType->getAsVectorType())
3771        if (LV->getElementType() == RV->getElementType() &&
3772            LV->getNumElements() == RV->getNumElements()) {
3773          return lhsType->isExtVectorType() ? lhsType : rhsType;
3774        }
3775    }
3776  }
3777
3778  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
3779  // swap back (so that we don't reverse the inputs to a subtract, for instance.
3780  bool swapped = false;
3781  if (rhsType->isExtVectorType()) {
3782    swapped = true;
3783    std::swap(rex, lex);
3784    std::swap(rhsType, lhsType);
3785  }
3786
3787  // Handle the case of an ext vector and scalar.
3788  if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
3789    QualType EltTy = LV->getElementType();
3790    if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
3791      if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
3792        ImpCastExprToType(rex, lhsType);
3793        if (swapped) std::swap(rex, lex);
3794        return lhsType;
3795      }
3796    }
3797    if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
3798        rhsType->isRealFloatingType()) {
3799      if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
3800        ImpCastExprToType(rex, lhsType);
3801        if (swapped) std::swap(rex, lex);
3802        return lhsType;
3803      }
3804    }
3805  }
3806
3807  // Vectors of different size or scalar and non-ext-vector are errors.
3808  Diag(Loc, diag::err_typecheck_vector_not_convertable)
3809    << lex->getType() << rex->getType()
3810    << lex->getSourceRange() << rex->getSourceRange();
3811  return QualType();
3812}
3813
3814inline QualType Sema::CheckMultiplyDivideOperands(
3815  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3816{
3817  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
3818    return CheckVectorOperands(Loc, lex, rex);
3819
3820  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3821
3822  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
3823    return compType;
3824  return InvalidOperands(Loc, lex, rex);
3825}
3826
3827inline QualType Sema::CheckRemainderOperands(
3828  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
3829{
3830  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3831    if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3832      return CheckVectorOperands(Loc, lex, rex);
3833    return InvalidOperands(Loc, lex, rex);
3834  }
3835
3836  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
3837
3838  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
3839    return compType;
3840  return InvalidOperands(Loc, lex, rex);
3841}
3842
3843inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
3844  Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
3845{
3846  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3847    QualType compType = CheckVectorOperands(Loc, lex, rex);
3848    if (CompLHSTy) *CompLHSTy = compType;
3849    return compType;
3850  }
3851
3852  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3853
3854  // handle the common case first (both operands are arithmetic).
3855  if (lex->getType()->isArithmeticType() &&
3856      rex->getType()->isArithmeticType()) {
3857    if (CompLHSTy) *CompLHSTy = compType;
3858    return compType;
3859  }
3860
3861  // Put any potential pointer into PExp
3862  Expr* PExp = lex, *IExp = rex;
3863  if (IExp->getType()->isAnyPointerType())
3864    std::swap(PExp, IExp);
3865
3866  if (PExp->getType()->isAnyPointerType()) {
3867
3868    if (IExp->getType()->isIntegerType()) {
3869      QualType PointeeTy = PExp->getType()->getPointeeType();
3870
3871      // Check for arithmetic on pointers to incomplete types.
3872      if (PointeeTy->isVoidType()) {
3873        if (getLangOptions().CPlusPlus) {
3874          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3875            << lex->getSourceRange() << rex->getSourceRange();
3876          return QualType();
3877        }
3878
3879        // GNU extension: arithmetic on pointer to void
3880        Diag(Loc, diag::ext_gnu_void_ptr)
3881          << lex->getSourceRange() << rex->getSourceRange();
3882      } else if (PointeeTy->isFunctionType()) {
3883        if (getLangOptions().CPlusPlus) {
3884          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3885            << lex->getType() << lex->getSourceRange();
3886          return QualType();
3887        }
3888
3889        // GNU extension: arithmetic on pointer to function
3890        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3891          << lex->getType() << lex->getSourceRange();
3892      } else {
3893        // Check if we require a complete type.
3894        if (((PExp->getType()->isPointerType() &&
3895              !PExp->getType()->isDependentType()) ||
3896              PExp->getType()->isObjCObjectPointerType()) &&
3897             RequireCompleteType(Loc, PointeeTy,
3898                                 diag::err_typecheck_arithmetic_incomplete_type,
3899                                 PExp->getSourceRange(), SourceRange(),
3900                                 PExp->getType()))
3901          return QualType();
3902      }
3903      // Diagnose bad cases where we step over interface counts.
3904      if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3905        Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3906          << PointeeTy << PExp->getSourceRange();
3907        return QualType();
3908      }
3909
3910      if (CompLHSTy) {
3911        QualType LHSTy = lex->getType();
3912        if (LHSTy->isPromotableIntegerType())
3913          LHSTy = Context.IntTy;
3914        else {
3915          QualType T = isPromotableBitField(lex, Context);
3916          if (!T.isNull())
3917            LHSTy = T;
3918        }
3919
3920        *CompLHSTy = LHSTy;
3921      }
3922      return PExp->getType();
3923    }
3924  }
3925
3926  return InvalidOperands(Loc, lex, rex);
3927}
3928
3929// C99 6.5.6
3930QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
3931                                        SourceLocation Loc, QualType* CompLHSTy) {
3932  if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
3933    QualType compType = CheckVectorOperands(Loc, lex, rex);
3934    if (CompLHSTy) *CompLHSTy = compType;
3935    return compType;
3936  }
3937
3938  QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
3939
3940  // Enforce type constraints: C99 6.5.6p3.
3941
3942  // Handle the common case first (both operands are arithmetic).
3943  if (lex->getType()->isArithmeticType()
3944      && rex->getType()->isArithmeticType()) {
3945    if (CompLHSTy) *CompLHSTy = compType;
3946    return compType;
3947  }
3948
3949  // Either ptr - int   or   ptr - ptr.
3950  if (lex->getType()->isAnyPointerType()) {
3951    QualType lpointee = lex->getType()->getPointeeType();
3952
3953    // The LHS must be an completely-defined object type.
3954
3955    bool ComplainAboutVoid = false;
3956    Expr *ComplainAboutFunc = 0;
3957    if (lpointee->isVoidType()) {
3958      if (getLangOptions().CPlusPlus) {
3959        Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
3960          << lex->getSourceRange() << rex->getSourceRange();
3961        return QualType();
3962      }
3963
3964      // GNU C extension: arithmetic on pointer to void
3965      ComplainAboutVoid = true;
3966    } else if (lpointee->isFunctionType()) {
3967      if (getLangOptions().CPlusPlus) {
3968        Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
3969          << lex->getType() << lex->getSourceRange();
3970        return QualType();
3971      }
3972
3973      // GNU C extension: arithmetic on pointer to function
3974      ComplainAboutFunc = lex;
3975    } else if (!lpointee->isDependentType() &&
3976               RequireCompleteType(Loc, lpointee,
3977                                   diag::err_typecheck_sub_ptr_object,
3978                                   lex->getSourceRange(),
3979                                   SourceRange(),
3980                                   lex->getType()))
3981      return QualType();
3982
3983    // Diagnose bad cases where we step over interface counts.
3984    if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
3985      Diag(Loc, diag::err_arithmetic_nonfragile_interface)
3986        << lpointee << lex->getSourceRange();
3987      return QualType();
3988    }
3989
3990    // The result type of a pointer-int computation is the pointer type.
3991    if (rex->getType()->isIntegerType()) {
3992      if (ComplainAboutVoid)
3993        Diag(Loc, diag::ext_gnu_void_ptr)
3994          << lex->getSourceRange() << rex->getSourceRange();
3995      if (ComplainAboutFunc)
3996        Diag(Loc, diag::ext_gnu_ptr_func_arith)
3997          << ComplainAboutFunc->getType()
3998          << ComplainAboutFunc->getSourceRange();
3999
4000      if (CompLHSTy) *CompLHSTy = lex->getType();
4001      return lex->getType();
4002    }
4003
4004    // Handle pointer-pointer subtractions.
4005    if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
4006      QualType rpointee = RHSPTy->getPointeeType();
4007
4008      // RHS must be a completely-type object type.
4009      // Handle the GNU void* extension.
4010      if (rpointee->isVoidType()) {
4011        if (getLangOptions().CPlusPlus) {
4012          Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
4013            << lex->getSourceRange() << rex->getSourceRange();
4014          return QualType();
4015        }
4016
4017        ComplainAboutVoid = true;
4018      } else if (rpointee->isFunctionType()) {
4019        if (getLangOptions().CPlusPlus) {
4020          Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
4021            << rex->getType() << rex->getSourceRange();
4022          return QualType();
4023        }
4024
4025        // GNU extension: arithmetic on pointer to function
4026        if (!ComplainAboutFunc)
4027          ComplainAboutFunc = rex;
4028      } else if (!rpointee->isDependentType() &&
4029                 RequireCompleteType(Loc, rpointee,
4030                                     diag::err_typecheck_sub_ptr_object,
4031                                     rex->getSourceRange(),
4032                                     SourceRange(),
4033                                     rex->getType()))
4034        return QualType();
4035
4036      if (getLangOptions().CPlusPlus) {
4037        // Pointee types must be the same: C++ [expr.add]
4038        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
4039          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4040            << lex->getType() << rex->getType()
4041            << lex->getSourceRange() << rex->getSourceRange();
4042          return QualType();
4043        }
4044      } else {
4045        // Pointee types must be compatible C99 6.5.6p3
4046        if (!Context.typesAreCompatible(
4047                Context.getCanonicalType(lpointee).getUnqualifiedType(),
4048                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
4049          Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
4050            << lex->getType() << rex->getType()
4051            << lex->getSourceRange() << rex->getSourceRange();
4052          return QualType();
4053        }
4054      }
4055
4056      if (ComplainAboutVoid)
4057        Diag(Loc, diag::ext_gnu_void_ptr)
4058          << lex->getSourceRange() << rex->getSourceRange();
4059      if (ComplainAboutFunc)
4060        Diag(Loc, diag::ext_gnu_ptr_func_arith)
4061          << ComplainAboutFunc->getType()
4062          << ComplainAboutFunc->getSourceRange();
4063
4064      if (CompLHSTy) *CompLHSTy = lex->getType();
4065      return Context.getPointerDiffType();
4066    }
4067  }
4068
4069  return InvalidOperands(Loc, lex, rex);
4070}
4071
4072// C99 6.5.7
4073QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4074                                  bool isCompAssign) {
4075  // C99 6.5.7p2: Each of the operands shall have integer type.
4076  if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
4077    return InvalidOperands(Loc, lex, rex);
4078
4079  // Shifts don't perform usual arithmetic conversions, they just do integer
4080  // promotions on each operand. C99 6.5.7p3
4081  QualType LHSTy;
4082  if (lex->getType()->isPromotableIntegerType())
4083    LHSTy = Context.IntTy;
4084  else {
4085    LHSTy = isPromotableBitField(lex, Context);
4086    if (LHSTy.isNull())
4087      LHSTy = lex->getType();
4088  }
4089  if (!isCompAssign)
4090    ImpCastExprToType(lex, LHSTy);
4091
4092  UsualUnaryConversions(rex);
4093
4094  // "The type of the result is that of the promoted left operand."
4095  return LHSTy;
4096}
4097
4098// C99 6.5.8, C++ [expr.rel]
4099QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
4100                                    unsigned OpaqueOpc, bool isRelational) {
4101  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
4102
4103  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4104    return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
4105
4106  // C99 6.5.8p3 / C99 6.5.9p4
4107  if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
4108    UsualArithmeticConversions(lex, rex);
4109  else {
4110    UsualUnaryConversions(lex);
4111    UsualUnaryConversions(rex);
4112  }
4113  QualType lType = lex->getType();
4114  QualType rType = rex->getType();
4115
4116  if (!lType->isFloatingType()
4117      && !(lType->isBlockPointerType() && isRelational)) {
4118    // For non-floating point types, check for self-comparisons of the form
4119    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4120    // often indicate logic errors in the program.
4121    // NOTE: Don't warn about comparisons of enum constants. These can arise
4122    //  from macro expansions, and are usually quite deliberate.
4123    Expr *LHSStripped = lex->IgnoreParens();
4124    Expr *RHSStripped = rex->IgnoreParens();
4125    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
4126      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
4127        if (DRL->getDecl() == DRR->getDecl() &&
4128            !isa<EnumConstantDecl>(DRL->getDecl()))
4129          Diag(Loc, diag::warn_selfcomparison);
4130
4131    if (isa<CastExpr>(LHSStripped))
4132      LHSStripped = LHSStripped->IgnoreParenCasts();
4133    if (isa<CastExpr>(RHSStripped))
4134      RHSStripped = RHSStripped->IgnoreParenCasts();
4135
4136    // Warn about comparisons against a string constant (unless the other
4137    // operand is null), the user probably wants strcmp.
4138    Expr *literalString = 0;
4139    Expr *literalStringStripped = 0;
4140    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
4141        !RHSStripped->isNullPointerConstant(Context)) {
4142      literalString = lex;
4143      literalStringStripped = LHSStripped;
4144    }
4145    else if ((isa<StringLiteral>(RHSStripped) ||
4146              isa<ObjCEncodeExpr>(RHSStripped)) &&
4147             !LHSStripped->isNullPointerConstant(Context)) {
4148      literalString = rex;
4149      literalStringStripped = RHSStripped;
4150    }
4151
4152    if (literalString) {
4153      std::string resultComparison;
4154      switch (Opc) {
4155      case BinaryOperator::LT: resultComparison = ") < 0"; break;
4156      case BinaryOperator::GT: resultComparison = ") > 0"; break;
4157      case BinaryOperator::LE: resultComparison = ") <= 0"; break;
4158      case BinaryOperator::GE: resultComparison = ") >= 0"; break;
4159      case BinaryOperator::EQ: resultComparison = ") == 0"; break;
4160      case BinaryOperator::NE: resultComparison = ") != 0"; break;
4161      default: assert(false && "Invalid comparison operator");
4162      }
4163      Diag(Loc, diag::warn_stringcompare)
4164        << isa<ObjCEncodeExpr>(literalStringStripped)
4165        << literalString->getSourceRange()
4166        << CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
4167        << CodeModificationHint::CreateInsertion(lex->getLocStart(),
4168                                                 "strcmp(")
4169        << CodeModificationHint::CreateInsertion(
4170                                       PP.getLocForEndOfToken(rex->getLocEnd()),
4171                                       resultComparison);
4172    }
4173  }
4174
4175  // The result of comparisons is 'bool' in C++, 'int' in C.
4176  QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
4177
4178  if (isRelational) {
4179    if (lType->isRealType() && rType->isRealType())
4180      return ResultTy;
4181  } else {
4182    // Check for comparisons of floating point operands using != and ==.
4183    if (lType->isFloatingType()) {
4184      assert(rType->isFloatingType());
4185      CheckFloatComparison(Loc,lex,rex);
4186    }
4187
4188    if (lType->isArithmeticType() && rType->isArithmeticType())
4189      return ResultTy;
4190  }
4191
4192  bool LHSIsNull = lex->isNullPointerConstant(Context);
4193  bool RHSIsNull = rex->isNullPointerConstant(Context);
4194
4195  // All of the following pointer related warnings are GCC extensions, except
4196  // when handling null pointer constants. One day, we can consider making them
4197  // errors (when -pedantic-errors is enabled).
4198  if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
4199    QualType LCanPointeeTy =
4200      Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
4201    QualType RCanPointeeTy =
4202      Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
4203
4204    if (isRelational) {
4205      if (lType->isFunctionPointerType() || rType->isFunctionPointerType()) {
4206        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
4207          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4208      }
4209      if (LCanPointeeTy->isVoidType() != RCanPointeeTy->isVoidType()) {
4210        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4211          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4212      }
4213    } else {
4214      if (lType->isFunctionPointerType() != rType->isFunctionPointerType()) {
4215        if (!LHSIsNull && !RHSIsNull)
4216          Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4217            << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4218      }
4219    }
4220
4221    // Simple check: if the pointee types are identical, we're done.
4222    if (LCanPointeeTy == RCanPointeeTy)
4223      return ResultTy;
4224
4225    if (getLangOptions().CPlusPlus) {
4226      // C++ [expr.rel]p2:
4227      //   [...] Pointer conversions (4.10) and qualification
4228      //   conversions (4.4) are performed on pointer operands (or on
4229      //   a pointer operand and a null pointer constant) to bring
4230      //   them to their composite pointer type. [...]
4231      //
4232      // C++ [expr.eq]p2 uses the same notion for (in)equality
4233      // comparisons of pointers.
4234      QualType T = FindCompositePointerType(lex, rex);
4235      if (T.isNull()) {
4236        Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
4237          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4238        return QualType();
4239      }
4240
4241      ImpCastExprToType(lex, T);
4242      ImpCastExprToType(rex, T);
4243      return ResultTy;
4244    }
4245
4246    if (!LHSIsNull && !RHSIsNull &&                       // C99 6.5.9p2
4247        !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
4248        !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
4249                                    RCanPointeeTy.getUnqualifiedType())) {
4250      Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4251        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4252    }
4253    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4254    return ResultTy;
4255  }
4256  // C++ allows comparison of pointers with null pointer constants.
4257  if (getLangOptions().CPlusPlus) {
4258    if (lType->isPointerType() && RHSIsNull) {
4259      ImpCastExprToType(rex, lType);
4260      return ResultTy;
4261    }
4262    if (rType->isPointerType() && LHSIsNull) {
4263      ImpCastExprToType(lex, rType);
4264      return ResultTy;
4265    }
4266    // And comparison of nullptr_t with itself.
4267    if (lType->isNullPtrType() && rType->isNullPtrType())
4268      return ResultTy;
4269  }
4270  // Handle block pointer types.
4271  if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
4272    QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
4273    QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
4274
4275    if (!LHSIsNull && !RHSIsNull &&
4276        !Context.typesAreCompatible(lpointee, rpointee)) {
4277      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4278        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4279    }
4280    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4281    return ResultTy;
4282  }
4283  // Allow block pointers to be compared with null pointer constants.
4284  if (!isRelational
4285      && ((lType->isBlockPointerType() && rType->isPointerType())
4286          || (lType->isPointerType() && rType->isBlockPointerType()))) {
4287    if (!LHSIsNull && !RHSIsNull) {
4288      if (!((rType->isPointerType() && rType->getAsPointerType()
4289             ->getPointeeType()->isVoidType())
4290            || (lType->isPointerType() && lType->getAsPointerType()
4291                ->getPointeeType()->isVoidType())))
4292        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
4293          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4294    }
4295    ImpCastExprToType(rex, lType); // promote the pointer to pointer
4296    return ResultTy;
4297  }
4298
4299  if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
4300    if (lType->isPointerType() || rType->isPointerType()) {
4301      const PointerType *LPT = lType->getAsPointerType();
4302      const PointerType *RPT = rType->getAsPointerType();
4303      bool LPtrToVoid = LPT ?
4304        Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
4305      bool RPtrToVoid = RPT ?
4306        Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
4307
4308      if (!LPtrToVoid && !RPtrToVoid &&
4309          !Context.typesAreCompatible(lType, rType)) {
4310        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4311          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4312      }
4313      ImpCastExprToType(rex, lType);
4314      return ResultTy;
4315    }
4316    if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
4317      if (!Context.areComparableObjCPointerTypes(lType, rType)) {
4318        Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
4319          << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4320      }
4321      ImpCastExprToType(rex, lType);
4322      return ResultTy;
4323    }
4324  }
4325  if (lType->isAnyPointerType() && rType->isIntegerType()) {
4326    if (isRelational)
4327      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4328        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4329    else if (!RHSIsNull)
4330      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4331        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4332    ImpCastExprToType(rex, lType); // promote the integer to pointer
4333    return ResultTy;
4334  }
4335  if (lType->isIntegerType() && rType->isAnyPointerType()) {
4336    if (isRelational)
4337      Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
4338        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4339    else if (!LHSIsNull)
4340      Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
4341        << lType << rType << lex->getSourceRange() << rex->getSourceRange();
4342    ImpCastExprToType(lex, rType); // promote the integer to pointer
4343    return ResultTy;
4344  }
4345  // Handle block pointers.
4346  if (!isRelational && RHSIsNull
4347      && lType->isBlockPointerType() && rType->isIntegerType()) {
4348    ImpCastExprToType(rex, lType); // promote the integer to pointer
4349    return ResultTy;
4350  }
4351  if (!isRelational && LHSIsNull
4352      && lType->isIntegerType() && rType->isBlockPointerType()) {
4353    ImpCastExprToType(lex, rType); // promote the integer to pointer
4354    return ResultTy;
4355  }
4356  return InvalidOperands(Loc, lex, rex);
4357}
4358
4359/// CheckVectorCompareOperands - vector comparisons are a clang extension that
4360/// operates on extended vector types.  Instead of producing an IntTy result,
4361/// like a scalar comparison, a vector comparison produces a vector of integer
4362/// types.
4363QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
4364                                          SourceLocation Loc,
4365                                          bool isRelational) {
4366  // Check to make sure we're operating on vectors of the same type and width,
4367  // Allowing one side to be a scalar of element type.
4368  QualType vType = CheckVectorOperands(Loc, lex, rex);
4369  if (vType.isNull())
4370    return vType;
4371
4372  QualType lType = lex->getType();
4373  QualType rType = rex->getType();
4374
4375  // For non-floating point types, check for self-comparisons of the form
4376  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
4377  // often indicate logic errors in the program.
4378  if (!lType->isFloatingType()) {
4379    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
4380      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
4381        if (DRL->getDecl() == DRR->getDecl())
4382          Diag(Loc, diag::warn_selfcomparison);
4383  }
4384
4385  // Check for comparisons of floating point operands using != and ==.
4386  if (!isRelational && lType->isFloatingType()) {
4387    assert (rType->isFloatingType());
4388    CheckFloatComparison(Loc,lex,rex);
4389  }
4390
4391  // Return the type for the comparison, which is the same as vector type for
4392  // integer vectors, or an integer type of identical size and number of
4393  // elements for floating point vectors.
4394  if (lType->isIntegerType())
4395    return lType;
4396
4397  const VectorType *VTy = lType->getAsVectorType();
4398  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
4399  if (TypeSize == Context.getTypeSize(Context.IntTy))
4400    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
4401  if (TypeSize == Context.getTypeSize(Context.LongTy))
4402    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
4403
4404  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
4405         "Unhandled vector element size in vector compare");
4406  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
4407}
4408
4409inline QualType Sema::CheckBitwiseOperands(
4410  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
4411{
4412  if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
4413    return CheckVectorOperands(Loc, lex, rex);
4414
4415  QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
4416
4417  if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
4418    return compType;
4419  return InvalidOperands(Loc, lex, rex);
4420}
4421
4422inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
4423  Expr *&lex, Expr *&rex, SourceLocation Loc)
4424{
4425  UsualUnaryConversions(lex);
4426  UsualUnaryConversions(rex);
4427
4428  if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
4429    return Context.IntTy;
4430  return InvalidOperands(Loc, lex, rex);
4431}
4432
4433/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
4434/// is a read-only property; return true if so. A readonly property expression
4435/// depends on various declarations and thus must be treated specially.
4436///
4437static bool IsReadonlyProperty(Expr *E, Sema &S)
4438{
4439  if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
4440    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
4441    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
4442      QualType BaseType = PropExpr->getBase()->getType();
4443      if (const ObjCObjectPointerType *OPT =
4444            BaseType->getAsObjCInterfacePointerType())
4445        if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
4446          if (S.isPropertyReadonly(PDecl, IFace))
4447            return true;
4448    }
4449  }
4450  return false;
4451}
4452
4453/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
4454/// emit an error and return true.  If so, return false.
4455static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
4456  SourceLocation OrigLoc = Loc;
4457  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
4458                                                              &Loc);
4459  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
4460    IsLV = Expr::MLV_ReadonlyProperty;
4461  if (IsLV == Expr::MLV_Valid)
4462    return false;
4463
4464  unsigned Diag = 0;
4465  bool NeedType = false;
4466  switch (IsLV) { // C99 6.5.16p2
4467  default: assert(0 && "Unknown result from isModifiableLvalue!");
4468  case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
4469  case Expr::MLV_ArrayType:
4470    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
4471    NeedType = true;
4472    break;
4473  case Expr::MLV_NotObjectType:
4474    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
4475    NeedType = true;
4476    break;
4477  case Expr::MLV_LValueCast:
4478    Diag = diag::err_typecheck_lvalue_casts_not_supported;
4479    break;
4480  case Expr::MLV_InvalidExpression:
4481    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
4482    break;
4483  case Expr::MLV_IncompleteType:
4484  case Expr::MLV_IncompleteVoidType:
4485    return S.RequireCompleteType(Loc, E->getType(),
4486                      diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
4487                                    E->getSourceRange());
4488  case Expr::MLV_DuplicateVectorComponents:
4489    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
4490    break;
4491  case Expr::MLV_NotBlockQualified:
4492    Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
4493    break;
4494  case Expr::MLV_ReadonlyProperty:
4495    Diag = diag::error_readonly_property_assignment;
4496    break;
4497  case Expr::MLV_NoSetterProperty:
4498    Diag = diag::error_nosetter_property_assignment;
4499    break;
4500  }
4501
4502  SourceRange Assign;
4503  if (Loc != OrigLoc)
4504    Assign = SourceRange(OrigLoc, OrigLoc);
4505  if (NeedType)
4506    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
4507  else
4508    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
4509  return true;
4510}
4511
4512
4513
4514// C99 6.5.16.1
4515QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
4516                                       SourceLocation Loc,
4517                                       QualType CompoundType) {
4518  // Verify that LHS is a modifiable lvalue, and emit error if not.
4519  if (CheckForModifiableLvalue(LHS, Loc, *this))
4520    return QualType();
4521
4522  QualType LHSType = LHS->getType();
4523  QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
4524
4525  AssignConvertType ConvTy;
4526  if (CompoundType.isNull()) {
4527    // Simple assignment "x = y".
4528    ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
4529    // Special case of NSObject attributes on c-style pointer types.
4530    if (ConvTy == IncompatiblePointer &&
4531        ((Context.isObjCNSObjectType(LHSType) &&
4532          RHSType->isObjCObjectPointerType()) ||
4533         (Context.isObjCNSObjectType(RHSType) &&
4534          LHSType->isObjCObjectPointerType())))
4535      ConvTy = Compatible;
4536
4537    // If the RHS is a unary plus or minus, check to see if they = and + are
4538    // right next to each other.  If so, the user may have typo'd "x =+ 4"
4539    // instead of "x += 4".
4540    Expr *RHSCheck = RHS;
4541    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
4542      RHSCheck = ICE->getSubExpr();
4543    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
4544      if ((UO->getOpcode() == UnaryOperator::Plus ||
4545           UO->getOpcode() == UnaryOperator::Minus) &&
4546          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
4547          // Only if the two operators are exactly adjacent.
4548          Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
4549          // And there is a space or other character before the subexpr of the
4550          // unary +/-.  We don't want to warn on "x=-1".
4551          Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
4552          UO->getSubExpr()->getLocStart().isFileID()) {
4553        Diag(Loc, diag::warn_not_compound_assign)
4554          << (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
4555          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
4556      }
4557    }
4558  } else {
4559    // Compound assignment "x += y"
4560    ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
4561  }
4562
4563  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
4564                               RHS, "assigning"))
4565    return QualType();
4566
4567  // C99 6.5.16p3: The type of an assignment expression is the type of the
4568  // left operand unless the left operand has qualified type, in which case
4569  // it is the unqualified version of the type of the left operand.
4570  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
4571  // is converted to the type of the assignment expression (above).
4572  // C++ 5.17p1: the type of the assignment expression is that of its left
4573  // operand.
4574  return LHSType.getUnqualifiedType();
4575}
4576
4577// C99 6.5.17
4578QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
4579  // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
4580  DefaultFunctionArrayConversion(RHS);
4581
4582  // FIXME: Check that RHS type is complete in C mode (it's legal for it to be
4583  // incomplete in C++).
4584
4585  return RHS->getType();
4586}
4587
4588/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
4589/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
4590QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
4591                                              bool isInc) {
4592  if (Op->isTypeDependent())
4593    return Context.DependentTy;
4594
4595  QualType ResType = Op->getType();
4596  assert(!ResType.isNull() && "no type for increment/decrement expression");
4597
4598  if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
4599    // Decrement of bool is not allowed.
4600    if (!isInc) {
4601      Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
4602      return QualType();
4603    }
4604    // Increment of bool sets it to true, but is deprecated.
4605    Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
4606  } else if (ResType->isRealType()) {
4607    // OK!
4608  } else if (ResType->isAnyPointerType()) {
4609    QualType PointeeTy = ResType->getPointeeType();
4610
4611    // C99 6.5.2.4p2, 6.5.6p2
4612    if (PointeeTy->isVoidType()) {
4613      if (getLangOptions().CPlusPlus) {
4614        Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
4615          << Op->getSourceRange();
4616        return QualType();
4617      }
4618
4619      // Pointer to void is a GNU extension in C.
4620      Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
4621    } else if (PointeeTy->isFunctionType()) {
4622      if (getLangOptions().CPlusPlus) {
4623        Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
4624          << Op->getType() << Op->getSourceRange();
4625        return QualType();
4626      }
4627
4628      Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
4629        << ResType << Op->getSourceRange();
4630    } else if (RequireCompleteType(OpLoc, PointeeTy,
4631                               diag::err_typecheck_arithmetic_incomplete_type,
4632                                   Op->getSourceRange(), SourceRange(),
4633                                   ResType))
4634      return QualType();
4635    // Diagnose bad cases where we step over interface counts.
4636    else if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
4637      Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
4638        << PointeeTy << Op->getSourceRange();
4639      return QualType();
4640    }
4641  } else if (ResType->isComplexType()) {
4642    // C99 does not support ++/-- on complex types, we allow as an extension.
4643    Diag(OpLoc, diag::ext_integer_increment_complex)
4644      << ResType << Op->getSourceRange();
4645  } else {
4646    Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
4647      << ResType << Op->getSourceRange();
4648    return QualType();
4649  }
4650  // At this point, we know we have a real, complex or pointer type.
4651  // Now make sure the operand is a modifiable lvalue.
4652  if (CheckForModifiableLvalue(Op, OpLoc, *this))
4653    return QualType();
4654  return ResType;
4655}
4656
4657/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
4658/// This routine allows us to typecheck complex/recursive expressions
4659/// where the declaration is needed for type checking. We only need to
4660/// handle cases when the expression references a function designator
4661/// or is an lvalue. Here are some examples:
4662///  - &(x) => x
4663///  - &*****f => f for f a function designator.
4664///  - &s.xx => s
4665///  - &s.zz[1].yy -> s, if zz is an array
4666///  - *(x + 1) -> x, if x is an array
4667///  - &"123"[2] -> 0
4668///  - & __real__ x -> x
4669static NamedDecl *getPrimaryDecl(Expr *E) {
4670  switch (E->getStmtClass()) {
4671  case Stmt::DeclRefExprClass:
4672  case Stmt::QualifiedDeclRefExprClass:
4673    return cast<DeclRefExpr>(E)->getDecl();
4674  case Stmt::MemberExprClass:
4675    // If this is an arrow operator, the address is an offset from
4676    // the base's value, so the object the base refers to is
4677    // irrelevant.
4678    if (cast<MemberExpr>(E)->isArrow())
4679      return 0;
4680    // Otherwise, the expression refers to a part of the base
4681    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
4682  case Stmt::ArraySubscriptExprClass: {
4683    // FIXME: This code shouldn't be necessary!  We should catch the implicit
4684    // promotion of register arrays earlier.
4685    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
4686    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
4687      if (ICE->getSubExpr()->getType()->isArrayType())
4688        return getPrimaryDecl(ICE->getSubExpr());
4689    }
4690    return 0;
4691  }
4692  case Stmt::UnaryOperatorClass: {
4693    UnaryOperator *UO = cast<UnaryOperator>(E);
4694
4695    switch(UO->getOpcode()) {
4696    case UnaryOperator::Real:
4697    case UnaryOperator::Imag:
4698    case UnaryOperator::Extension:
4699      return getPrimaryDecl(UO->getSubExpr());
4700    default:
4701      return 0;
4702    }
4703  }
4704  case Stmt::ParenExprClass:
4705    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
4706  case Stmt::ImplicitCastExprClass:
4707    // If the result of an implicit cast is an l-value, we care about
4708    // the sub-expression; otherwise, the result here doesn't matter.
4709    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
4710  default:
4711    return 0;
4712  }
4713}
4714
4715/// CheckAddressOfOperand - The operand of & must be either a function
4716/// designator or an lvalue designating an object. If it is an lvalue, the
4717/// object cannot be declared with storage class register or be a bit field.
4718/// Note: The usual conversions are *not* applied to the operand of the &
4719/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
4720/// In C++, the operand might be an overloaded function name, in which case
4721/// we allow the '&' but retain the overloaded-function type.
4722QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
4723  // Make sure to ignore parentheses in subsequent checks
4724  op = op->IgnoreParens();
4725
4726  if (op->isTypeDependent())
4727    return Context.DependentTy;
4728
4729  if (getLangOptions().C99) {
4730    // Implement C99-only parts of addressof rules.
4731    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
4732      if (uOp->getOpcode() == UnaryOperator::Deref)
4733        // Per C99 6.5.3.2, the address of a deref always returns a valid result
4734        // (assuming the deref expression is valid).
4735        return uOp->getSubExpr()->getType();
4736    }
4737    // Technically, there should be a check for array subscript
4738    // expressions here, but the result of one is always an lvalue anyway.
4739  }
4740  NamedDecl *dcl = getPrimaryDecl(op);
4741  Expr::isLvalueResult lval = op->isLvalue(Context);
4742
4743  if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
4744    // C99 6.5.3.2p1
4745    // The operand must be either an l-value or a function designator
4746    if (!op->getType()->isFunctionType()) {
4747      // FIXME: emit more specific diag...
4748      Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
4749        << op->getSourceRange();
4750      return QualType();
4751    }
4752  } else if (op->getBitField()) { // C99 6.5.3.2p1
4753    // The operand cannot be a bit-field
4754    Diag(OpLoc, diag::err_typecheck_address_of)
4755      << "bit-field" << op->getSourceRange();
4756        return QualType();
4757  } else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
4758           cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
4759    // The operand cannot be an element of a vector
4760    Diag(OpLoc, diag::err_typecheck_address_of)
4761      << "vector element" << op->getSourceRange();
4762    return QualType();
4763  } else if (isa<ObjCPropertyRefExpr>(op)) {
4764    // cannot take address of a property expression.
4765    Diag(OpLoc, diag::err_typecheck_address_of)
4766      << "property expression" << op->getSourceRange();
4767    return QualType();
4768  } else if (dcl) { // C99 6.5.3.2p1
4769    // We have an lvalue with a decl. Make sure the decl is not declared
4770    // with the register storage-class specifier.
4771    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
4772      if (vd->getStorageClass() == VarDecl::Register) {
4773        Diag(OpLoc, diag::err_typecheck_address_of)
4774          << "register variable" << op->getSourceRange();
4775        return QualType();
4776      }
4777    } else if (isa<OverloadedFunctionDecl>(dcl) ||
4778               isa<FunctionTemplateDecl>(dcl)) {
4779      return Context.OverloadTy;
4780    } else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
4781      // Okay: we can take the address of a field.
4782      // Could be a pointer to member, though, if there is an explicit
4783      // scope qualifier for the class.
4784      if (isa<QualifiedDeclRefExpr>(op)) {
4785        DeclContext *Ctx = dcl->getDeclContext();
4786        if (Ctx && Ctx->isRecord()) {
4787          if (FD->getType()->isReferenceType()) {
4788            Diag(OpLoc,
4789                 diag::err_cannot_form_pointer_to_member_of_reference_type)
4790              << FD->getDeclName() << FD->getType();
4791            return QualType();
4792          }
4793
4794          return Context.getMemberPointerType(op->getType(),
4795                Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
4796        }
4797      }
4798    } else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
4799      // Okay: we can take the address of a function.
4800      // As above.
4801      if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
4802        return Context.getMemberPointerType(op->getType(),
4803              Context.getTypeDeclType(MD->getParent()).getTypePtr());
4804    } else if (!isa<FunctionDecl>(dcl))
4805      assert(0 && "Unknown/unexpected decl type");
4806  }
4807
4808  if (lval == Expr::LV_IncompleteVoidType) {
4809    // Taking the address of a void variable is technically illegal, but we
4810    // allow it in cases which are otherwise valid.
4811    // Example: "extern void x; void* y = &x;".
4812    Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
4813  }
4814
4815  // If the operand has type "type", the result has type "pointer to type".
4816  return Context.getPointerType(op->getType());
4817}
4818
4819QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
4820  if (Op->isTypeDependent())
4821    return Context.DependentTy;
4822
4823  UsualUnaryConversions(Op);
4824  QualType Ty = Op->getType();
4825
4826  // Note that per both C89 and C99, this is always legal, even if ptype is an
4827  // incomplete type or void.  It would be possible to warn about dereferencing
4828  // a void pointer, but it's completely well-defined, and such a warning is
4829  // unlikely to catch any mistakes.
4830  if (const PointerType *PT = Ty->getAsPointerType())
4831    return PT->getPointeeType();
4832
4833  if (const ObjCObjectPointerType *OPT = Ty->getAsObjCObjectPointerType())
4834    return OPT->getPointeeType();
4835
4836  Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
4837    << Ty << Op->getSourceRange();
4838  return QualType();
4839}
4840
4841static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
4842  tok::TokenKind Kind) {
4843  BinaryOperator::Opcode Opc;
4844  switch (Kind) {
4845  default: assert(0 && "Unknown binop!");
4846  case tok::periodstar:           Opc = BinaryOperator::PtrMemD; break;
4847  case tok::arrowstar:            Opc = BinaryOperator::PtrMemI; break;
4848  case tok::star:                 Opc = BinaryOperator::Mul; break;
4849  case tok::slash:                Opc = BinaryOperator::Div; break;
4850  case tok::percent:              Opc = BinaryOperator::Rem; break;
4851  case tok::plus:                 Opc = BinaryOperator::Add; break;
4852  case tok::minus:                Opc = BinaryOperator::Sub; break;
4853  case tok::lessless:             Opc = BinaryOperator::Shl; break;
4854  case tok::greatergreater:       Opc = BinaryOperator::Shr; break;
4855  case tok::lessequal:            Opc = BinaryOperator::LE; break;
4856  case tok::less:                 Opc = BinaryOperator::LT; break;
4857  case tok::greaterequal:         Opc = BinaryOperator::GE; break;
4858  case tok::greater:              Opc = BinaryOperator::GT; break;
4859  case tok::exclaimequal:         Opc = BinaryOperator::NE; break;
4860  case tok::equalequal:           Opc = BinaryOperator::EQ; break;
4861  case tok::amp:                  Opc = BinaryOperator::And; break;
4862  case tok::caret:                Opc = BinaryOperator::Xor; break;
4863  case tok::pipe:                 Opc = BinaryOperator::Or; break;
4864  case tok::ampamp:               Opc = BinaryOperator::LAnd; break;
4865  case tok::pipepipe:             Opc = BinaryOperator::LOr; break;
4866  case tok::equal:                Opc = BinaryOperator::Assign; break;
4867  case tok::starequal:            Opc = BinaryOperator::MulAssign; break;
4868  case tok::slashequal:           Opc = BinaryOperator::DivAssign; break;
4869  case tok::percentequal:         Opc = BinaryOperator::RemAssign; break;
4870  case tok::plusequal:            Opc = BinaryOperator::AddAssign; break;
4871  case tok::minusequal:           Opc = BinaryOperator::SubAssign; break;
4872  case tok::lesslessequal:        Opc = BinaryOperator::ShlAssign; break;
4873  case tok::greatergreaterequal:  Opc = BinaryOperator::ShrAssign; break;
4874  case tok::ampequal:             Opc = BinaryOperator::AndAssign; break;
4875  case tok::caretequal:           Opc = BinaryOperator::XorAssign; break;
4876  case tok::pipeequal:            Opc = BinaryOperator::OrAssign; break;
4877  case tok::comma:                Opc = BinaryOperator::Comma; break;
4878  }
4879  return Opc;
4880}
4881
4882static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
4883  tok::TokenKind Kind) {
4884  UnaryOperator::Opcode Opc;
4885  switch (Kind) {
4886  default: assert(0 && "Unknown unary op!");
4887  case tok::plusplus:     Opc = UnaryOperator::PreInc; break;
4888  case tok::minusminus:   Opc = UnaryOperator::PreDec; break;
4889  case tok::amp:          Opc = UnaryOperator::AddrOf; break;
4890  case tok::star:         Opc = UnaryOperator::Deref; break;
4891  case tok::plus:         Opc = UnaryOperator::Plus; break;
4892  case tok::minus:        Opc = UnaryOperator::Minus; break;
4893  case tok::tilde:        Opc = UnaryOperator::Not; break;
4894  case tok::exclaim:      Opc = UnaryOperator::LNot; break;
4895  case tok::kw___real:    Opc = UnaryOperator::Real; break;
4896  case tok::kw___imag:    Opc = UnaryOperator::Imag; break;
4897  case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
4898  }
4899  return Opc;
4900}
4901
4902/// CreateBuiltinBinOp - Creates a new built-in binary operation with
4903/// operator @p Opc at location @c TokLoc. This routine only supports
4904/// built-in operations; ActOnBinOp handles overloaded operators.
4905Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
4906                                                  unsigned Op,
4907                                                  Expr *lhs, Expr *rhs) {
4908  QualType ResultTy;     // Result type of the binary operator.
4909  BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
4910  // The following two variables are used for compound assignment operators
4911  QualType CompLHSTy;    // Type of LHS after promotions for computation
4912  QualType CompResultTy; // Type of computation result
4913
4914  switch (Opc) {
4915  case BinaryOperator::Assign:
4916    ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
4917    break;
4918  case BinaryOperator::PtrMemD:
4919  case BinaryOperator::PtrMemI:
4920    ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
4921                                            Opc == BinaryOperator::PtrMemI);
4922    break;
4923  case BinaryOperator::Mul:
4924  case BinaryOperator::Div:
4925    ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
4926    break;
4927  case BinaryOperator::Rem:
4928    ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
4929    break;
4930  case BinaryOperator::Add:
4931    ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
4932    break;
4933  case BinaryOperator::Sub:
4934    ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
4935    break;
4936  case BinaryOperator::Shl:
4937  case BinaryOperator::Shr:
4938    ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
4939    break;
4940  case BinaryOperator::LE:
4941  case BinaryOperator::LT:
4942  case BinaryOperator::GE:
4943  case BinaryOperator::GT:
4944    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
4945    break;
4946  case BinaryOperator::EQ:
4947  case BinaryOperator::NE:
4948    ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
4949    break;
4950  case BinaryOperator::And:
4951  case BinaryOperator::Xor:
4952  case BinaryOperator::Or:
4953    ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
4954    break;
4955  case BinaryOperator::LAnd:
4956  case BinaryOperator::LOr:
4957    ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
4958    break;
4959  case BinaryOperator::MulAssign:
4960  case BinaryOperator::DivAssign:
4961    CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
4962    CompLHSTy = CompResultTy;
4963    if (!CompResultTy.isNull())
4964      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4965    break;
4966  case BinaryOperator::RemAssign:
4967    CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
4968    CompLHSTy = CompResultTy;
4969    if (!CompResultTy.isNull())
4970      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4971    break;
4972  case BinaryOperator::AddAssign:
4973    CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4974    if (!CompResultTy.isNull())
4975      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4976    break;
4977  case BinaryOperator::SubAssign:
4978    CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
4979    if (!CompResultTy.isNull())
4980      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4981    break;
4982  case BinaryOperator::ShlAssign:
4983  case BinaryOperator::ShrAssign:
4984    CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
4985    CompLHSTy = CompResultTy;
4986    if (!CompResultTy.isNull())
4987      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4988    break;
4989  case BinaryOperator::AndAssign:
4990  case BinaryOperator::XorAssign:
4991  case BinaryOperator::OrAssign:
4992    CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
4993    CompLHSTy = CompResultTy;
4994    if (!CompResultTy.isNull())
4995      ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
4996    break;
4997  case BinaryOperator::Comma:
4998    ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
4999    break;
5000  }
5001  if (ResultTy.isNull())
5002    return ExprError();
5003  if (CompResultTy.isNull())
5004    return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
5005  else
5006    return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
5007                                                      CompLHSTy, CompResultTy,
5008                                                      OpLoc));
5009}
5010
5011// Binary Operators.  'Tok' is the token for the operator.
5012Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
5013                                          tok::TokenKind Kind,
5014                                          ExprArg LHS, ExprArg RHS) {
5015  BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
5016  Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
5017
5018  assert((lhs != 0) && "ActOnBinOp(): missing left expression");
5019  assert((rhs != 0) && "ActOnBinOp(): missing right expression");
5020
5021  if (getLangOptions().CPlusPlus &&
5022      (lhs->getType()->isOverloadableType() ||
5023       rhs->getType()->isOverloadableType())) {
5024    // Find all of the overloaded operators visible from this
5025    // point. We perform both an operator-name lookup from the local
5026    // scope and an argument-dependent lookup based on the types of
5027    // the arguments.
5028    FunctionSet Functions;
5029    OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
5030    if (OverOp != OO_None) {
5031      LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
5032                                   Functions);
5033      Expr *Args[2] = { lhs, rhs };
5034      DeclarationName OpName
5035        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5036      ArgumentDependentLookup(OpName, Args, 2, Functions);
5037    }
5038
5039    // Build the (potentially-overloaded, potentially-dependent)
5040    // binary operation.
5041    return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
5042  }
5043
5044  // Build a built-in binary operation.
5045  return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
5046}
5047
5048Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
5049                                                    unsigned OpcIn,
5050                                                    ExprArg InputArg) {
5051  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5052
5053  // FIXME: Input is modified below, but InputArg is not updated appropriately.
5054  Expr *Input = (Expr *)InputArg.get();
5055  QualType resultType;
5056  switch (Opc) {
5057  case UnaryOperator::OffsetOf:
5058    assert(false && "Invalid unary operator");
5059    break;
5060
5061  case UnaryOperator::PreInc:
5062  case UnaryOperator::PreDec:
5063  case UnaryOperator::PostInc:
5064  case UnaryOperator::PostDec:
5065    resultType = CheckIncrementDecrementOperand(Input, OpLoc,
5066                                                Opc == UnaryOperator::PreInc ||
5067                                                Opc == UnaryOperator::PostInc);
5068    break;
5069  case UnaryOperator::AddrOf:
5070    resultType = CheckAddressOfOperand(Input, OpLoc);
5071    break;
5072  case UnaryOperator::Deref:
5073    DefaultFunctionArrayConversion(Input);
5074    resultType = CheckIndirectionOperand(Input, OpLoc);
5075    break;
5076  case UnaryOperator::Plus:
5077  case UnaryOperator::Minus:
5078    UsualUnaryConversions(Input);
5079    resultType = Input->getType();
5080    if (resultType->isDependentType())
5081      break;
5082    if (resultType->isArithmeticType()) // C99 6.5.3.3p1
5083      break;
5084    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
5085             resultType->isEnumeralType())
5086      break;
5087    else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
5088             Opc == UnaryOperator::Plus &&
5089             resultType->isPointerType())
5090      break;
5091
5092    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5093      << resultType << Input->getSourceRange());
5094  case UnaryOperator::Not: // bitwise complement
5095    UsualUnaryConversions(Input);
5096    resultType = Input->getType();
5097    if (resultType->isDependentType())
5098      break;
5099    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
5100    if (resultType->isComplexType() || resultType->isComplexIntegerType())
5101      // C99 does not support '~' for complex conjugation.
5102      Diag(OpLoc, diag::ext_integer_complement_complex)
5103        << resultType << Input->getSourceRange();
5104    else if (!resultType->isIntegerType())
5105      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5106        << resultType << Input->getSourceRange());
5107    break;
5108  case UnaryOperator::LNot: // logical negation
5109    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
5110    DefaultFunctionArrayConversion(Input);
5111    resultType = Input->getType();
5112    if (resultType->isDependentType())
5113      break;
5114    if (!resultType->isScalarType()) // C99 6.5.3.3p1
5115      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
5116        << resultType << Input->getSourceRange());
5117    // LNot always has type int. C99 6.5.3.3p5.
5118    // In C++, it's bool. C++ 5.3.1p8
5119    resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
5120    break;
5121  case UnaryOperator::Real:
5122  case UnaryOperator::Imag:
5123    resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
5124    break;
5125  case UnaryOperator::Extension:
5126    resultType = Input->getType();
5127    break;
5128  }
5129  if (resultType.isNull())
5130    return ExprError();
5131
5132  InputArg.release();
5133  return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
5134}
5135
5136// Unary Operators.  'Tok' is the token for the operator.
5137Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5138                                            tok::TokenKind Op, ExprArg input) {
5139  Expr *Input = (Expr*)input.get();
5140  UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
5141
5142  if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
5143    // Find all of the overloaded operators visible from this
5144    // point. We perform both an operator-name lookup from the local
5145    // scope and an argument-dependent lookup based on the types of
5146    // the arguments.
5147    FunctionSet Functions;
5148    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
5149    if (OverOp != OO_None) {
5150      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
5151                                   Functions);
5152      DeclarationName OpName
5153        = Context.DeclarationNames.getCXXOperatorName(OverOp);
5154      ArgumentDependentLookup(OpName, &Input, 1, Functions);
5155    }
5156
5157    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
5158  }
5159
5160  return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
5161}
5162
5163/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5164Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
5165                                            SourceLocation LabLoc,
5166                                            IdentifierInfo *LabelII) {
5167  // Look up the record for this label identifier.
5168  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
5169
5170  // If we haven't seen this label yet, create a forward reference. It
5171  // will be validated and/or cleaned up in ActOnFinishFunctionBody.
5172  if (LabelDecl == 0)
5173    LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
5174
5175  // Create the AST node.  The address of a label always has type 'void*'.
5176  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
5177                                       Context.getPointerType(Context.VoidTy)));
5178}
5179
5180Sema::OwningExprResult
5181Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
5182                    SourceLocation RPLoc) { // "({..})"
5183  Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
5184  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
5185  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
5186
5187  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
5188  if (isFileScope)
5189    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
5190
5191  // FIXME: there are a variety of strange constraints to enforce here, for
5192  // example, it is not possible to goto into a stmt expression apparently.
5193  // More semantic analysis is needed.
5194
5195  // If there are sub stmts in the compound stmt, take the type of the last one
5196  // as the type of the stmtexpr.
5197  QualType Ty = Context.VoidTy;
5198
5199  if (!Compound->body_empty()) {
5200    Stmt *LastStmt = Compound->body_back();
5201    // If LastStmt is a label, skip down through into the body.
5202    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
5203      LastStmt = Label->getSubStmt();
5204
5205    if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
5206      Ty = LastExpr->getType();
5207  }
5208
5209  // FIXME: Check that expression type is complete/non-abstract; statement
5210  // expressions are not lvalues.
5211
5212  substmt.release();
5213  return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
5214}
5215
5216Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
5217                                                  SourceLocation BuiltinLoc,
5218                                                  SourceLocation TypeLoc,
5219                                                  TypeTy *argty,
5220                                                  OffsetOfComponent *CompPtr,
5221                                                  unsigned NumComponents,
5222                                                  SourceLocation RPLoc) {
5223  // FIXME: This function leaks all expressions in the offset components on
5224  // error.
5225  QualType ArgTy = QualType::getFromOpaquePtr(argty);
5226  assert(!ArgTy.isNull() && "Missing type argument!");
5227
5228  bool Dependent = ArgTy->isDependentType();
5229
5230  // We must have at least one component that refers to the type, and the first
5231  // one is known to be a field designator.  Verify that the ArgTy represents
5232  // a struct/union/class.
5233  if (!Dependent && !ArgTy->isRecordType())
5234    return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
5235
5236  // FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
5237  // with an incomplete type would be illegal.
5238
5239  // Otherwise, create a null pointer as the base, and iteratively process
5240  // the offsetof designators.
5241  QualType ArgTyPtr = Context.getPointerType(ArgTy);
5242  Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
5243  Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
5244                                    ArgTy, SourceLocation());
5245
5246  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
5247  // GCC extension, diagnose them.
5248  // FIXME: This diagnostic isn't actually visible because the location is in
5249  // a system header!
5250  if (NumComponents != 1)
5251    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
5252      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
5253
5254  if (!Dependent) {
5255    bool DidWarnAboutNonPOD = false;
5256
5257    // FIXME: Dependent case loses a lot of information here. And probably
5258    // leaks like a sieve.
5259    for (unsigned i = 0; i != NumComponents; ++i) {
5260      const OffsetOfComponent &OC = CompPtr[i];
5261      if (OC.isBrackets) {
5262        // Offset of an array sub-field.  TODO: Should we allow vector elements?
5263        const ArrayType *AT = Context.getAsArrayType(Res->getType());
5264        if (!AT) {
5265          Res->Destroy(Context);
5266          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
5267            << Res->getType());
5268        }
5269
5270        // FIXME: C++: Verify that operator[] isn't overloaded.
5271
5272        // Promote the array so it looks more like a normal array subscript
5273        // expression.
5274        DefaultFunctionArrayConversion(Res);
5275
5276        // C99 6.5.2.1p1
5277        Expr *Idx = static_cast<Expr*>(OC.U.E);
5278        // FIXME: Leaks Res
5279        if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
5280          return ExprError(Diag(Idx->getLocStart(),
5281                                diag::err_typecheck_subscript_not_integer)
5282            << Idx->getSourceRange());
5283
5284        Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
5285                                               OC.LocEnd);
5286        continue;
5287      }
5288
5289      const RecordType *RC = Res->getType()->getAsRecordType();
5290      if (!RC) {
5291        Res->Destroy(Context);
5292        return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
5293          << Res->getType());
5294      }
5295
5296      // Get the decl corresponding to this.
5297      RecordDecl *RD = RC->getDecl();
5298      if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
5299        if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
5300          ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
5301            << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
5302            << Res->getType());
5303          DidWarnAboutNonPOD = true;
5304        }
5305      }
5306
5307      FieldDecl *MemberDecl
5308        = dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
5309                                                          LookupMemberName)
5310                                        .getAsDecl());
5311      // FIXME: Leaks Res
5312      if (!MemberDecl)
5313        return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
5314         << OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
5315
5316      // FIXME: C++: Verify that MemberDecl isn't a static field.
5317      // FIXME: Verify that MemberDecl isn't a bitfield.
5318      if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
5319        Res = BuildAnonymousStructUnionMemberReference(
5320            SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
5321      } else {
5322        // MemberDecl->getType() doesn't get the right qualifiers, but it
5323        // doesn't matter here.
5324        Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
5325                MemberDecl->getType().getNonReferenceType());
5326      }
5327    }
5328  }
5329
5330  return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
5331                                           Context.getSizeType(), BuiltinLoc));
5332}
5333
5334
5335Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
5336                                                      TypeTy *arg1,TypeTy *arg2,
5337                                                      SourceLocation RPLoc) {
5338  QualType argT1 = QualType::getFromOpaquePtr(arg1);
5339  QualType argT2 = QualType::getFromOpaquePtr(arg2);
5340
5341  assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
5342
5343  if (getLangOptions().CPlusPlus) {
5344    Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
5345      << SourceRange(BuiltinLoc, RPLoc);
5346    return ExprError();
5347  }
5348
5349  return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
5350                                                 argT1, argT2, RPLoc));
5351}
5352
5353Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
5354                                             ExprArg cond,
5355                                             ExprArg expr1, ExprArg expr2,
5356                                             SourceLocation RPLoc) {
5357  Expr *CondExpr = static_cast<Expr*>(cond.get());
5358  Expr *LHSExpr = static_cast<Expr*>(expr1.get());
5359  Expr *RHSExpr = static_cast<Expr*>(expr2.get());
5360
5361  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
5362
5363  QualType resType;
5364  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
5365    resType = Context.DependentTy;
5366  } else {
5367    // The conditional expression is required to be a constant expression.
5368    llvm::APSInt condEval(32);
5369    SourceLocation ExpLoc;
5370    if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
5371      return ExprError(Diag(ExpLoc,
5372                       diag::err_typecheck_choose_expr_requires_constant)
5373        << CondExpr->getSourceRange());
5374
5375    // If the condition is > zero, then the AST type is the same as the LSHExpr.
5376    resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
5377  }
5378
5379  cond.release(); expr1.release(); expr2.release();
5380  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
5381                                        resType, RPLoc));
5382}
5383
5384//===----------------------------------------------------------------------===//
5385// Clang Extensions.
5386//===----------------------------------------------------------------------===//
5387
5388/// ActOnBlockStart - This callback is invoked when a block literal is started.
5389void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
5390  // Analyze block parameters.
5391  BlockSemaInfo *BSI = new BlockSemaInfo();
5392
5393  // Add BSI to CurBlock.
5394  BSI->PrevBlockInfo = CurBlock;
5395  CurBlock = BSI;
5396
5397  BSI->ReturnType = QualType();
5398  BSI->TheScope = BlockScope;
5399  BSI->hasBlockDeclRefExprs = false;
5400  BSI->hasPrototype = false;
5401  BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
5402  CurFunctionNeedsScopeChecking = false;
5403
5404  BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
5405  PushDeclContext(BlockScope, BSI->TheDecl);
5406}
5407
5408void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
5409  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
5410
5411  if (ParamInfo.getNumTypeObjects() == 0
5412      || ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
5413    ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5414    QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5415
5416    if (T->isArrayType()) {
5417      Diag(ParamInfo.getSourceRange().getBegin(),
5418           diag::err_block_returns_array);
5419      return;
5420    }
5421
5422    // The parameter list is optional, if there was none, assume ().
5423    if (!T->isFunctionType())
5424      T = Context.getFunctionType(T, NULL, 0, 0, 0);
5425
5426    CurBlock->hasPrototype = true;
5427    CurBlock->isVariadic = false;
5428    // Check for a valid sentinel attribute on this block.
5429    if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5430      Diag(ParamInfo.getAttributes()->getLoc(),
5431           diag::warn_attribute_sentinel_not_variadic) << 1;
5432      // FIXME: remove the attribute.
5433    }
5434    QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
5435
5436    // Do not allow returning a objc interface by-value.
5437    if (RetTy->isObjCInterfaceType()) {
5438      Diag(ParamInfo.getSourceRange().getBegin(),
5439           diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5440      return;
5441    }
5442    return;
5443  }
5444
5445  // Analyze arguments to block.
5446  assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
5447         "Not a function declarator!");
5448  DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
5449
5450  CurBlock->hasPrototype = FTI.hasPrototype;
5451  CurBlock->isVariadic = true;
5452
5453  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
5454  // no arguments, not a function that takes a single void argument.
5455  if (FTI.hasPrototype &&
5456      FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5457     (!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
5458        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
5459    // empty arg list, don't push any params.
5460    CurBlock->isVariadic = false;
5461  } else if (FTI.hasPrototype) {
5462    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
5463      CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
5464    CurBlock->isVariadic = FTI.isVariadic;
5465  }
5466  CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
5467                               CurBlock->Params.size());
5468  CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
5469  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
5470  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
5471       E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
5472    // If this has an identifier, add it to the scope stack.
5473    if ((*AI)->getIdentifier())
5474      PushOnScopeChains(*AI, CurBlock->TheScope);
5475
5476  // Check for a valid sentinel attribute on this block.
5477  if (!CurBlock->isVariadic &&
5478      CurBlock->TheDecl->getAttr<SentinelAttr>()) {
5479    Diag(ParamInfo.getAttributes()->getLoc(),
5480         diag::warn_attribute_sentinel_not_variadic) << 1;
5481    // FIXME: remove the attribute.
5482  }
5483
5484  // Analyze the return type.
5485  QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
5486  QualType RetTy = T->getAsFunctionType()->getResultType();
5487
5488  // Do not allow returning a objc interface by-value.
5489  if (RetTy->isObjCInterfaceType()) {
5490    Diag(ParamInfo.getSourceRange().getBegin(),
5491         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
5492  } else if (!RetTy->isDependentType())
5493    CurBlock->ReturnType = RetTy;
5494}
5495
5496/// ActOnBlockError - If there is an error parsing a block, this callback
5497/// is invoked to pop the information about the block from the action impl.
5498void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
5499  // Ensure that CurBlock is deleted.
5500  llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
5501
5502  CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
5503
5504  // Pop off CurBlock, handle nested blocks.
5505  PopDeclContext();
5506  CurBlock = CurBlock->PrevBlockInfo;
5507  // FIXME: Delete the ParmVarDecl objects as well???
5508}
5509
5510/// ActOnBlockStmtExpr - This is called when the body of a block statement
5511/// literal was successfully completed.  ^(int x){...}
5512Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
5513                                                StmtArg body, Scope *CurScope) {
5514  // If blocks are disabled, emit an error.
5515  if (!LangOpts.Blocks)
5516    Diag(CaretLoc, diag::err_blocks_disable);
5517
5518  // Ensure that CurBlock is deleted.
5519  llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
5520
5521  PopDeclContext();
5522
5523  // Pop off CurBlock, handle nested blocks.
5524  CurBlock = CurBlock->PrevBlockInfo;
5525
5526  QualType RetTy = Context.VoidTy;
5527  if (!BSI->ReturnType.isNull())
5528    RetTy = BSI->ReturnType;
5529
5530  llvm::SmallVector<QualType, 8> ArgTypes;
5531  for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
5532    ArgTypes.push_back(BSI->Params[i]->getType());
5533
5534  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
5535  QualType BlockTy;
5536  if (!BSI->hasPrototype)
5537    BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0, false, false, 0, 0,
5538                                      NoReturn);
5539  else
5540    BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
5541                                      BSI->isVariadic, 0, false, false, 0, 0,
5542                                      NoReturn);
5543
5544  // FIXME: Check that return/parameter types are complete/non-abstract
5545  DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
5546  BlockTy = Context.getBlockPointerType(BlockTy);
5547
5548  // If needed, diagnose invalid gotos and switches in the block.
5549  if (CurFunctionNeedsScopeChecking)
5550    DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
5551  CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
5552
5553  BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
5554  CheckFallThroughForBlock(BlockTy, BSI->TheDecl->getBody());
5555  return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
5556                                       BSI->hasBlockDeclRefExprs));
5557}
5558
5559Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
5560                                        ExprArg expr, TypeTy *type,
5561                                        SourceLocation RPLoc) {
5562  QualType T = QualType::getFromOpaquePtr(type);
5563  Expr *E = static_cast<Expr*>(expr.get());
5564  Expr *OrigExpr = E;
5565
5566  InitBuiltinVaListType();
5567
5568  // Get the va_list type
5569  QualType VaListType = Context.getBuiltinVaListType();
5570  if (VaListType->isArrayType()) {
5571    // Deal with implicit array decay; for example, on x86-64,
5572    // va_list is an array, but it's supposed to decay to
5573    // a pointer for va_arg.
5574    VaListType = Context.getArrayDecayedType(VaListType);
5575    // Make sure the input expression also decays appropriately.
5576    UsualUnaryConversions(E);
5577  } else {
5578    // Otherwise, the va_list argument must be an l-value because
5579    // it is modified by va_arg.
5580    if (!E->isTypeDependent() &&
5581        CheckForModifiableLvalue(E, BuiltinLoc, *this))
5582      return ExprError();
5583  }
5584
5585  if (!E->isTypeDependent() &&
5586      !Context.hasSameType(VaListType, E->getType())) {
5587    return ExprError(Diag(E->getLocStart(),
5588                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
5589      << OrigExpr->getType() << E->getSourceRange());
5590  }
5591
5592  // FIXME: Check that type is complete/non-abstract
5593  // FIXME: Warn if a non-POD type is passed in.
5594
5595  expr.release();
5596  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
5597                                       RPLoc));
5598}
5599
5600Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
5601  // The type of __null will be int or long, depending on the size of
5602  // pointers on the target.
5603  QualType Ty;
5604  if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
5605    Ty = Context.IntTy;
5606  else
5607    Ty = Context.LongTy;
5608
5609  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
5610}
5611
5612bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
5613                                    SourceLocation Loc,
5614                                    QualType DstType, QualType SrcType,
5615                                    Expr *SrcExpr, const char *Flavor) {
5616  // Decode the result (notice that AST's are still created for extensions).
5617  bool isInvalid = false;
5618  unsigned DiagKind;
5619  switch (ConvTy) {
5620  default: assert(0 && "Unknown conversion type");
5621  case Compatible: return false;
5622  case PointerToInt:
5623    DiagKind = diag::ext_typecheck_convert_pointer_int;
5624    break;
5625  case IntToPointer:
5626    DiagKind = diag::ext_typecheck_convert_int_pointer;
5627    break;
5628  case IncompatiblePointer:
5629    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
5630    break;
5631  case IncompatiblePointerSign:
5632    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
5633    break;
5634  case FunctionVoidPointer:
5635    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
5636    break;
5637  case CompatiblePointerDiscardsQualifiers:
5638    // If the qualifiers lost were because we were applying the
5639    // (deprecated) C++ conversion from a string literal to a char*
5640    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
5641    // Ideally, this check would be performed in
5642    // CheckPointerTypesForAssignment. However, that would require a
5643    // bit of refactoring (so that the second argument is an
5644    // expression, rather than a type), which should be done as part
5645    // of a larger effort to fix CheckPointerTypesForAssignment for
5646    // C++ semantics.
5647    if (getLangOptions().CPlusPlus &&
5648        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
5649      return false;
5650    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
5651    break;
5652  case IntToBlockPointer:
5653    DiagKind = diag::err_int_to_block_pointer;
5654    break;
5655  case IncompatibleBlockPointer:
5656    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
5657    break;
5658  case IncompatibleObjCQualifiedId:
5659    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
5660    // it can give a more specific diagnostic.
5661    DiagKind = diag::warn_incompatible_qualified_id;
5662    break;
5663  case IncompatibleVectors:
5664    DiagKind = diag::warn_incompatible_vectors;
5665    break;
5666  case Incompatible:
5667    DiagKind = diag::err_typecheck_convert_incompatible;
5668    isInvalid = true;
5669    break;
5670  }
5671
5672  Diag(Loc, DiagKind) << DstType << SrcType << Flavor
5673    << SrcExpr->getSourceRange();
5674  return isInvalid;
5675}
5676
5677bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
5678  llvm::APSInt ICEResult;
5679  if (E->isIntegerConstantExpr(ICEResult, Context)) {
5680    if (Result)
5681      *Result = ICEResult;
5682    return false;
5683  }
5684
5685  Expr::EvalResult EvalResult;
5686
5687  if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
5688      EvalResult.HasSideEffects) {
5689    Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
5690
5691    if (EvalResult.Diag) {
5692      // We only show the note if it's not the usual "invalid subexpression"
5693      // or if it's actually in a subexpression.
5694      if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
5695          E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
5696        Diag(EvalResult.DiagLoc, EvalResult.Diag);
5697    }
5698
5699    return true;
5700  }
5701
5702  Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
5703    E->getSourceRange();
5704
5705  if (EvalResult.Diag &&
5706      Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
5707    Diag(EvalResult.DiagLoc, EvalResult.Diag);
5708
5709  if (Result)
5710    *Result = EvalResult.Val.getInt();
5711  return false;
5712}
5713
5714Sema::ExpressionEvaluationContext
5715Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
5716  // Introduce a new set of potentially referenced declarations to the stack.
5717  if (NewContext == PotentiallyPotentiallyEvaluated)
5718    PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
5719
5720  std::swap(ExprEvalContext, NewContext);
5721  return NewContext;
5722}
5723
5724void
5725Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
5726                                     ExpressionEvaluationContext NewContext) {
5727  ExprEvalContext = NewContext;
5728
5729  if (OldContext == PotentiallyPotentiallyEvaluated) {
5730    // Mark any remaining declarations in the current position of the stack
5731    // as "referenced". If they were not meant to be referenced, semantic
5732    // analysis would have eliminated them (e.g., in ActOnCXXTypeId).
5733    PotentiallyReferencedDecls RemainingDecls;
5734    RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
5735    PotentiallyReferencedDeclStack.pop_back();
5736
5737    for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
5738                                           IEnd = RemainingDecls.end();
5739         I != IEnd; ++I)
5740      MarkDeclarationReferenced(I->first, I->second);
5741  }
5742}
5743
5744/// \brief Note that the given declaration was referenced in the source code.
5745///
5746/// This routine should be invoke whenever a given declaration is referenced
5747/// in the source code, and where that reference occurred. If this declaration
5748/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
5749/// C99 6.9p3), then the declaration will be marked as used.
5750///
5751/// \param Loc the location where the declaration was referenced.
5752///
5753/// \param D the declaration that has been referenced by the source code.
5754void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
5755  assert(D && "No declaration?");
5756
5757  if (D->isUsed())
5758    return;
5759
5760  // Mark a parameter declaration "used", regardless of whether we're in a
5761  // template or not.
5762  if (isa<ParmVarDecl>(D))
5763    D->setUsed(true);
5764
5765  // Do not mark anything as "used" within a dependent context; wait for
5766  // an instantiation.
5767  if (CurContext->isDependentContext())
5768    return;
5769
5770  switch (ExprEvalContext) {
5771    case Unevaluated:
5772      // We are in an expression that is not potentially evaluated; do nothing.
5773      return;
5774
5775    case PotentiallyEvaluated:
5776      // We are in a potentially-evaluated expression, so this declaration is
5777      // "used"; handle this below.
5778      break;
5779
5780    case PotentiallyPotentiallyEvaluated:
5781      // We are in an expression that may be potentially evaluated; queue this
5782      // declaration reference until we know whether the expression is
5783      // potentially evaluated.
5784      PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
5785      return;
5786  }
5787
5788  // Note that this declaration has been used.
5789  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
5790    unsigned TypeQuals;
5791    if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
5792        if (!Constructor->isUsed())
5793          DefineImplicitDefaultConstructor(Loc, Constructor);
5794    }
5795    else if (Constructor->isImplicit() &&
5796             Constructor->isCopyConstructor(Context, TypeQuals)) {
5797      if (!Constructor->isUsed())
5798        DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
5799    }
5800  } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
5801    if (Destructor->isImplicit() && !Destructor->isUsed())
5802      DefineImplicitDestructor(Loc, Destructor);
5803
5804  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
5805    if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
5806        MethodDecl->getOverloadedOperator() == OO_Equal) {
5807      if (!MethodDecl->isUsed())
5808        DefineImplicitOverloadedAssign(Loc, MethodDecl);
5809    }
5810  }
5811  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
5812    // Implicit instantiation of function templates and member functions of
5813    // class templates.
5814    if (!Function->getBody()) {
5815      // FIXME: distinguish between implicit instantiations of function
5816      // templates and explicit specializations (the latter don't get
5817      // instantiated, naturally).
5818      if (Function->getInstantiatedFromMemberFunction() ||
5819          Function->getPrimaryTemplate())
5820        PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
5821    }
5822
5823
5824    // FIXME: keep track of references to static functions
5825    Function->setUsed(true);
5826    return;
5827  }
5828
5829  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
5830    // Implicit instantiation of static data members of class templates.
5831    // FIXME: distinguish between implicit instantiations (which we need to
5832    // actually instantiate) and explicit specializations.
5833    if (Var->isStaticDataMember() &&
5834        Var->getInstantiatedFromStaticDataMember())
5835      PendingImplicitInstantiations.push_back(std::make_pair(Var, Loc));
5836
5837    // FIXME: keep track of references to static data?
5838
5839    D->setUsed(true);
5840    return;
5841}
5842}
5843
5844