SemaExpr.cpp revision ab41fe914f63bb470dfa7e400876ada72f57a931
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/AnalysisBasedWarnings.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExprObjC.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Lex/LiteralSupport.h"
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/Designator.h"
39#include "clang/Sema/Scope.h"
40#include "clang/Sema/ScopeInfo.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/SemaFixItUtils.h"
43#include "clang/Sema/Template.h"
44#include "TreeTransform.h"
45using namespace clang;
46using namespace sema;
47
48/// \brief Determine whether the use of this declaration is valid, without
49/// emitting diagnostics.
50bool Sema::CanUseDecl(NamedDecl *D) {
51  // See if this is an auto-typed variable whose initializer we are parsing.
52  if (ParsingInitForAutoVars.count(D))
53    return false;
54
55  // See if this is a deleted function.
56  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
57    if (FD->isDeleted())
58      return false;
59  }
60
61  // See if this function is unavailable.
62  if (D->getAvailability() == AR_Unavailable &&
63      cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
64    return false;
65
66  return true;
67}
68
69static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
70                              NamedDecl *D, SourceLocation Loc,
71                              const ObjCInterfaceDecl *UnknownObjCClass) {
72  // See if this declaration is unavailable or deprecated.
73  std::string Message;
74  AvailabilityResult Result = D->getAvailability(&Message);
75  if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
76    if (Result == AR_Available) {
77      const DeclContext *DC = ECD->getDeclContext();
78      if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
79        Result = TheEnumDecl->getAvailability(&Message);
80    }
81
82  switch (Result) {
83    case AR_Available:
84    case AR_NotYetIntroduced:
85      break;
86
87    case AR_Deprecated:
88      S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
89      break;
90
91    case AR_Unavailable:
92      if (S.getCurContextAvailability() != AR_Unavailable) {
93        if (Message.empty()) {
94          if (!UnknownObjCClass)
95            S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
96          else
97            S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
98              << D->getDeclName();
99        }
100        else
101          S.Diag(Loc, diag::err_unavailable_message)
102            << D->getDeclName() << Message;
103          S.Diag(D->getLocation(), diag::note_unavailable_here)
104          << isa<FunctionDecl>(D) << false;
105      }
106      break;
107    }
108    return Result;
109}
110
111/// \brief Emit a note explaining that this function is deleted or unavailable.
112void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
113  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
114
115  if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
116    // If the method was explicitly defaulted, point at that declaration.
117    if (!Method->isImplicit())
118      Diag(Decl->getLocation(), diag::note_implicitly_deleted);
119
120    // Try to diagnose why this special member function was implicitly
121    // deleted. This might fail, if that reason no longer applies.
122    CXXSpecialMember CSM = getSpecialMember(Method);
123    if (CSM != CXXInvalid)
124      ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
125
126    return;
127  }
128
129  Diag(Decl->getLocation(), diag::note_unavailable_here)
130    << 1 << Decl->isDeleted();
131}
132
133/// \brief Determine whether the use of this declaration is valid, and
134/// emit any corresponding diagnostics.
135///
136/// This routine diagnoses various problems with referencing
137/// declarations that can occur when using a declaration. For example,
138/// it might warn if a deprecated or unavailable declaration is being
139/// used, or produce an error (and return true) if a C++0x deleted
140/// function is being used.
141///
142/// \returns true if there was an error (this declaration cannot be
143/// referenced), false otherwise.
144///
145bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
146                             const ObjCInterfaceDecl *UnknownObjCClass) {
147  if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
148    // If there were any diagnostics suppressed by template argument deduction,
149    // emit them now.
150    llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
151      Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
152    if (Pos != SuppressedDiagnostics.end()) {
153      SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
154      for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
155        Diag(Suppressed[I].first, Suppressed[I].second);
156
157      // Clear out the list of suppressed diagnostics, so that we don't emit
158      // them again for this specialization. However, we don't obsolete this
159      // entry from the table, because we want to avoid ever emitting these
160      // diagnostics again.
161      Suppressed.clear();
162    }
163  }
164
165  // See if this is an auto-typed variable whose initializer we are parsing.
166  if (ParsingInitForAutoVars.count(D)) {
167    Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
168      << D->getDeclName();
169    return true;
170  }
171
172  // See if this is a deleted function.
173  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
174    if (FD->isDeleted()) {
175      Diag(Loc, diag::err_deleted_function_use);
176      NoteDeletedFunction(FD);
177      return true;
178    }
179  }
180  DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
181
182  // Warn if this is used but marked unused.
183  if (D->hasAttr<UnusedAttr>())
184    Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
185  return false;
186}
187
188/// \brief Retrieve the message suffix that should be added to a
189/// diagnostic complaining about the given function being deleted or
190/// unavailable.
191std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
192  // FIXME: C++0x implicitly-deleted special member functions could be
193  // detected here so that we could improve diagnostics to say, e.g.,
194  // "base class 'A' had a deleted copy constructor".
195  if (FD->isDeleted())
196    return std::string();
197
198  std::string Message;
199  if (FD->getAvailability(&Message))
200    return ": " + Message;
201
202  return std::string();
203}
204
205/// DiagnoseSentinelCalls - This routine checks whether a call or
206/// message-send is to a declaration with the sentinel attribute, and
207/// if so, it checks that the requirements of the sentinel are
208/// satisfied.
209void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
210                                 Expr **args, unsigned numArgs) {
211  const SentinelAttr *attr = D->getAttr<SentinelAttr>();
212  if (!attr)
213    return;
214
215  // The number of formal parameters of the declaration.
216  unsigned numFormalParams;
217
218  // The kind of declaration.  This is also an index into a %select in
219  // the diagnostic.
220  enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
221
222  if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
223    numFormalParams = MD->param_size();
224    calleeType = CT_Method;
225  } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
226    numFormalParams = FD->param_size();
227    calleeType = CT_Function;
228  } else if (isa<VarDecl>(D)) {
229    QualType type = cast<ValueDecl>(D)->getType();
230    const FunctionType *fn = 0;
231    if (const PointerType *ptr = type->getAs<PointerType>()) {
232      fn = ptr->getPointeeType()->getAs<FunctionType>();
233      if (!fn) return;
234      calleeType = CT_Function;
235    } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
236      fn = ptr->getPointeeType()->castAs<FunctionType>();
237      calleeType = CT_Block;
238    } else {
239      return;
240    }
241
242    if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
243      numFormalParams = proto->getNumArgs();
244    } else {
245      numFormalParams = 0;
246    }
247  } else {
248    return;
249  }
250
251  // "nullPos" is the number of formal parameters at the end which
252  // effectively count as part of the variadic arguments.  This is
253  // useful if you would prefer to not have *any* formal parameters,
254  // but the language forces you to have at least one.
255  unsigned nullPos = attr->getNullPos();
256  assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
257  numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
258
259  // The number of arguments which should follow the sentinel.
260  unsigned numArgsAfterSentinel = attr->getSentinel();
261
262  // If there aren't enough arguments for all the formal parameters,
263  // the sentinel, and the args after the sentinel, complain.
264  if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
265    Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
266    Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
267    return;
268  }
269
270  // Otherwise, find the sentinel expression.
271  Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
272  if (!sentinelExpr) return;
273  if (sentinelExpr->isValueDependent()) return;
274  if (Context.isSentinelNullExpr(sentinelExpr)) return;
275
276  // Pick a reasonable string to insert.  Optimistically use 'nil' or
277  // 'NULL' if those are actually defined in the context.  Only use
278  // 'nil' for ObjC methods, where it's much more likely that the
279  // variadic arguments form a list of object pointers.
280  SourceLocation MissingNilLoc
281    = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
282  std::string NullValue;
283  if (calleeType == CT_Method &&
284      PP.getIdentifierInfo("nil")->hasMacroDefinition())
285    NullValue = "nil";
286  else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
287    NullValue = "NULL";
288  else
289    NullValue = "(void*) 0";
290
291  if (MissingNilLoc.isInvalid())
292    Diag(Loc, diag::warn_missing_sentinel) << calleeType;
293  else
294    Diag(MissingNilLoc, diag::warn_missing_sentinel)
295      << calleeType
296      << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
297  Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
298}
299
300SourceRange Sema::getExprRange(Expr *E) const {
301  return E ? E->getSourceRange() : SourceRange();
302}
303
304//===----------------------------------------------------------------------===//
305//  Standard Promotions and Conversions
306//===----------------------------------------------------------------------===//
307
308/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
309ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
310  // Handle any placeholder expressions which made it here.
311  if (E->getType()->isPlaceholderType()) {
312    ExprResult result = CheckPlaceholderExpr(E);
313    if (result.isInvalid()) return ExprError();
314    E = result.take();
315  }
316
317  QualType Ty = E->getType();
318  assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
319
320  if (Ty->isFunctionType())
321    E = ImpCastExprToType(E, Context.getPointerType(Ty),
322                          CK_FunctionToPointerDecay).take();
323  else if (Ty->isArrayType()) {
324    // In C90 mode, arrays only promote to pointers if the array expression is
325    // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
326    // type 'array of type' is converted to an expression that has type 'pointer
327    // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
328    // that has type 'array of type' ...".  The relevant change is "an lvalue"
329    // (C90) to "an expression" (C99).
330    //
331    // C++ 4.2p1:
332    // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
333    // T" can be converted to an rvalue of type "pointer to T".
334    //
335    if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
336      E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
337                            CK_ArrayToPointerDecay).take();
338  }
339  return Owned(E);
340}
341
342static void CheckForNullPointerDereference(Sema &S, Expr *E) {
343  // Check to see if we are dereferencing a null pointer.  If so,
344  // and if not volatile-qualified, this is undefined behavior that the
345  // optimizer will delete, so warn about it.  People sometimes try to use this
346  // to get a deterministic trap and are surprised by clang's behavior.  This
347  // only handles the pattern "*null", which is a very syntactic check.
348  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
349    if (UO->getOpcode() == UO_Deref &&
350        UO->getSubExpr()->IgnoreParenCasts()->
351          isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
352        !UO->getType().isVolatileQualified()) {
353    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
354                          S.PDiag(diag::warn_indirection_through_null)
355                            << UO->getSubExpr()->getSourceRange());
356    S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
357                        S.PDiag(diag::note_indirection_through_null));
358  }
359}
360
361ExprResult Sema::DefaultLvalueConversion(Expr *E) {
362  // Handle any placeholder expressions which made it here.
363  if (E->getType()->isPlaceholderType()) {
364    ExprResult result = CheckPlaceholderExpr(E);
365    if (result.isInvalid()) return ExprError();
366    E = result.take();
367  }
368
369  // C++ [conv.lval]p1:
370  //   A glvalue of a non-function, non-array type T can be
371  //   converted to a prvalue.
372  if (!E->isGLValue()) return Owned(E);
373
374  QualType T = E->getType();
375  assert(!T.isNull() && "r-value conversion on typeless expression?");
376
377  // We don't want to throw lvalue-to-rvalue casts on top of
378  // expressions of certain types in C++.
379  if (getLangOpts().CPlusPlus &&
380      (E->getType() == Context.OverloadTy ||
381       T->isDependentType() ||
382       T->isRecordType()))
383    return Owned(E);
384
385  // The C standard is actually really unclear on this point, and
386  // DR106 tells us what the result should be but not why.  It's
387  // generally best to say that void types just doesn't undergo
388  // lvalue-to-rvalue at all.  Note that expressions of unqualified
389  // 'void' type are never l-values, but qualified void can be.
390  if (T->isVoidType())
391    return Owned(E);
392
393  CheckForNullPointerDereference(*this, E);
394
395  // C++ [conv.lval]p1:
396  //   [...] If T is a non-class type, the type of the prvalue is the
397  //   cv-unqualified version of T. Otherwise, the type of the
398  //   rvalue is T.
399  //
400  // C99 6.3.2.1p2:
401  //   If the lvalue has qualified type, the value has the unqualified
402  //   version of the type of the lvalue; otherwise, the value has the
403  //   type of the lvalue.
404  if (T.hasQualifiers())
405    T = T.getUnqualifiedType();
406
407  UpdateMarkingForLValueToRValue(E);
408
409  ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
410                                                  E, 0, VK_RValue));
411
412  // C11 6.3.2.1p2:
413  //   ... if the lvalue has atomic type, the value has the non-atomic version
414  //   of the type of the lvalue ...
415  if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
416    T = Atomic->getValueType().getUnqualifiedType();
417    Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
418                                         Res.get(), 0, VK_RValue));
419  }
420
421  return Res;
422}
423
424ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
425  ExprResult Res = DefaultFunctionArrayConversion(E);
426  if (Res.isInvalid())
427    return ExprError();
428  Res = DefaultLvalueConversion(Res.take());
429  if (Res.isInvalid())
430    return ExprError();
431  return move(Res);
432}
433
434
435/// UsualUnaryConversions - Performs various conversions that are common to most
436/// operators (C99 6.3). The conversions of array and function types are
437/// sometimes suppressed. For example, the array->pointer conversion doesn't
438/// apply if the array is an argument to the sizeof or address (&) operators.
439/// In these instances, this routine should *not* be called.
440ExprResult Sema::UsualUnaryConversions(Expr *E) {
441  // First, convert to an r-value.
442  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
443  if (Res.isInvalid())
444    return Owned(E);
445  E = Res.take();
446
447  QualType Ty = E->getType();
448  assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
449
450  // Half FP is a bit different: it's a storage-only type, meaning that any
451  // "use" of it should be promoted to float.
452  if (Ty->isHalfType())
453    return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
454
455  // Try to perform integral promotions if the object has a theoretically
456  // promotable type.
457  if (Ty->isIntegralOrUnscopedEnumerationType()) {
458    // C99 6.3.1.1p2:
459    //
460    //   The following may be used in an expression wherever an int or
461    //   unsigned int may be used:
462    //     - an object or expression with an integer type whose integer
463    //       conversion rank is less than or equal to the rank of int
464    //       and unsigned int.
465    //     - A bit-field of type _Bool, int, signed int, or unsigned int.
466    //
467    //   If an int can represent all values of the original type, the
468    //   value is converted to an int; otherwise, it is converted to an
469    //   unsigned int. These are called the integer promotions. All
470    //   other types are unchanged by the integer promotions.
471
472    QualType PTy = Context.isPromotableBitField(E);
473    if (!PTy.isNull()) {
474      E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
475      return Owned(E);
476    }
477    if (Ty->isPromotableIntegerType()) {
478      QualType PT = Context.getPromotedIntegerType(Ty);
479      E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
480      return Owned(E);
481    }
482  }
483  return Owned(E);
484}
485
486/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
487/// do not have a prototype. Arguments that have type float are promoted to
488/// double. All other argument types are converted by UsualUnaryConversions().
489ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
490  QualType Ty = E->getType();
491  assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
492
493  ExprResult Res = UsualUnaryConversions(E);
494  if (Res.isInvalid())
495    return Owned(E);
496  E = Res.take();
497
498  // If this is a 'float' (CVR qualified or typedef) promote to double.
499  if (Ty->isSpecificBuiltinType(BuiltinType::Float))
500    E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
501
502  // C++ performs lvalue-to-rvalue conversion as a default argument
503  // promotion, even on class types, but note:
504  //   C++11 [conv.lval]p2:
505  //     When an lvalue-to-rvalue conversion occurs in an unevaluated
506  //     operand or a subexpression thereof the value contained in the
507  //     referenced object is not accessed. Otherwise, if the glvalue
508  //     has a class type, the conversion copy-initializes a temporary
509  //     of type T from the glvalue and the result of the conversion
510  //     is a prvalue for the temporary.
511  // FIXME: add some way to gate this entire thing for correctness in
512  // potentially potentially evaluated contexts.
513  if (getLangOpts().CPlusPlus && E->isGLValue() &&
514      ExprEvalContexts.back().Context != Unevaluated) {
515    ExprResult Temp = PerformCopyInitialization(
516                       InitializedEntity::InitializeTemporary(E->getType()),
517                                                E->getExprLoc(),
518                                                Owned(E));
519    if (Temp.isInvalid())
520      return ExprError();
521    E = Temp.get();
522  }
523
524  return Owned(E);
525}
526
527/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
528/// will warn if the resulting type is not a POD type, and rejects ObjC
529/// interfaces passed by value.
530ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
531                                                  FunctionDecl *FDecl) {
532  if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
533    // Strip the unbridged-cast placeholder expression off, if applicable.
534    if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
535        (CT == VariadicMethod ||
536         (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
537      E = stripARCUnbridgedCast(E);
538
539    // Otherwise, do normal placeholder checking.
540    } else {
541      ExprResult ExprRes = CheckPlaceholderExpr(E);
542      if (ExprRes.isInvalid())
543        return ExprError();
544      E = ExprRes.take();
545    }
546  }
547
548  ExprResult ExprRes = DefaultArgumentPromotion(E);
549  if (ExprRes.isInvalid())
550    return ExprError();
551  E = ExprRes.take();
552
553  // Don't allow one to pass an Objective-C interface to a vararg.
554  if (E->getType()->isObjCObjectType() &&
555    DiagRuntimeBehavior(E->getLocStart(), 0,
556                        PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
557                          << E->getType() << CT))
558    return ExprError();
559
560  // Complain about passing non-POD types through varargs. However, don't
561  // perform this check for incomplete types, which we can get here when we're
562  // in an unevaluated context.
563  if (!E->getType()->isIncompleteType() &&
564      !E->getType().isCXX98PODType(Context)) {
565    // C++0x [expr.call]p7:
566    //   Passing a potentially-evaluated argument of class type (Clause 9)
567    //   having a non-trivial copy constructor, a non-trivial move constructor,
568    //   or a non-trivial destructor, with no corresponding parameter,
569    //   is conditionally-supported with implementation-defined semantics.
570    bool TrivialEnough = false;
571    if (getLangOpts().CPlusPlus0x && !E->getType()->isDependentType())  {
572      if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
573        if (Record->hasTrivialCopyConstructor() &&
574            Record->hasTrivialMoveConstructor() &&
575            Record->hasTrivialDestructor()) {
576          DiagRuntimeBehavior(E->getLocStart(), 0,
577            PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
578              << E->getType() << CT);
579          TrivialEnough = true;
580        }
581      }
582    }
583
584    if (!TrivialEnough &&
585        getLangOpts().ObjCAutoRefCount &&
586        E->getType()->isObjCLifetimeType())
587      TrivialEnough = true;
588
589    if (TrivialEnough) {
590      // Nothing to diagnose. This is okay.
591    } else if (DiagRuntimeBehavior(E->getLocStart(), 0,
592                          PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
593                            << getLangOpts().CPlusPlus0x << E->getType()
594                            << CT)) {
595      // Turn this into a trap.
596      CXXScopeSpec SS;
597      SourceLocation TemplateKWLoc;
598      UnqualifiedId Name;
599      Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
600                         E->getLocStart());
601      ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
602                                            true, false);
603      if (TrapFn.isInvalid())
604        return ExprError();
605
606      ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
607                                      MultiExprArg(), E->getLocEnd());
608      if (Call.isInvalid())
609        return ExprError();
610
611      ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
612                                    Call.get(), E);
613      if (Comma.isInvalid())
614        return ExprError();
615      E = Comma.get();
616    }
617  }
618  // c++ rules are enforced elsewhere.
619  if (!getLangOpts().CPlusPlus &&
620      RequireCompleteType(E->getExprLoc(), E->getType(),
621                          diag::err_call_incomplete_argument))
622    return ExprError();
623
624  return Owned(E);
625}
626
627/// \brief Converts an integer to complex float type.  Helper function of
628/// UsualArithmeticConversions()
629///
630/// \return false if the integer expression is an integer type and is
631/// successfully converted to the complex type.
632static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
633                                                  ExprResult &ComplexExpr,
634                                                  QualType IntTy,
635                                                  QualType ComplexTy,
636                                                  bool SkipCast) {
637  if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
638  if (SkipCast) return false;
639  if (IntTy->isIntegerType()) {
640    QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
641    IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
642    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
643                                  CK_FloatingRealToComplex);
644  } else {
645    assert(IntTy->isComplexIntegerType());
646    IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
647                                  CK_IntegralComplexToFloatingComplex);
648  }
649  return false;
650}
651
652/// \brief Takes two complex float types and converts them to the same type.
653/// Helper function of UsualArithmeticConversions()
654static QualType
655handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
656                                            ExprResult &RHS, QualType LHSType,
657                                            QualType RHSType,
658                                            bool IsCompAssign) {
659  int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
660
661  if (order < 0) {
662    // _Complex float -> _Complex double
663    if (!IsCompAssign)
664      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
665    return RHSType;
666  }
667  if (order > 0)
668    // _Complex float -> _Complex double
669    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
670  return LHSType;
671}
672
673/// \brief Converts otherExpr to complex float and promotes complexExpr if
674/// necessary.  Helper function of UsualArithmeticConversions()
675static QualType handleOtherComplexFloatConversion(Sema &S,
676                                                  ExprResult &ComplexExpr,
677                                                  ExprResult &OtherExpr,
678                                                  QualType ComplexTy,
679                                                  QualType OtherTy,
680                                                  bool ConvertComplexExpr,
681                                                  bool ConvertOtherExpr) {
682  int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
683
684  // If just the complexExpr is complex, the otherExpr needs to be converted,
685  // and the complexExpr might need to be promoted.
686  if (order > 0) { // complexExpr is wider
687    // float -> _Complex double
688    if (ConvertOtherExpr) {
689      QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
690      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
691      OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
692                                      CK_FloatingRealToComplex);
693    }
694    return ComplexTy;
695  }
696
697  // otherTy is at least as wide.  Find its corresponding complex type.
698  QualType result = (order == 0 ? ComplexTy :
699                                  S.Context.getComplexType(OtherTy));
700
701  // double -> _Complex double
702  if (ConvertOtherExpr)
703    OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
704                                    CK_FloatingRealToComplex);
705
706  // _Complex float -> _Complex double
707  if (ConvertComplexExpr && order < 0)
708    ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
709                                      CK_FloatingComplexCast);
710
711  return result;
712}
713
714/// \brief Handle arithmetic conversion with complex types.  Helper function of
715/// UsualArithmeticConversions()
716static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
717                                             ExprResult &RHS, QualType LHSType,
718                                             QualType RHSType,
719                                             bool IsCompAssign) {
720  // if we have an integer operand, the result is the complex type.
721  if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
722                                             /*skipCast*/false))
723    return LHSType;
724  if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
725                                             /*skipCast*/IsCompAssign))
726    return RHSType;
727
728  // This handles complex/complex, complex/float, or float/complex.
729  // When both operands are complex, the shorter operand is converted to the
730  // type of the longer, and that is the type of the result. This corresponds
731  // to what is done when combining two real floating-point operands.
732  // The fun begins when size promotion occur across type domains.
733  // From H&S 6.3.4: When one operand is complex and the other is a real
734  // floating-point type, the less precise type is converted, within it's
735  // real or complex domain, to the precision of the other type. For example,
736  // when combining a "long double" with a "double _Complex", the
737  // "double _Complex" is promoted to "long double _Complex".
738
739  bool LHSComplexFloat = LHSType->isComplexType();
740  bool RHSComplexFloat = RHSType->isComplexType();
741
742  // If both are complex, just cast to the more precise type.
743  if (LHSComplexFloat && RHSComplexFloat)
744    return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
745                                                       LHSType, RHSType,
746                                                       IsCompAssign);
747
748  // If only one operand is complex, promote it if necessary and convert the
749  // other operand to complex.
750  if (LHSComplexFloat)
751    return handleOtherComplexFloatConversion(
752        S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
753        /*convertOtherExpr*/ true);
754
755  assert(RHSComplexFloat);
756  return handleOtherComplexFloatConversion(
757      S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
758      /*convertOtherExpr*/ !IsCompAssign);
759}
760
761/// \brief Hande arithmetic conversion from integer to float.  Helper function
762/// of UsualArithmeticConversions()
763static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
764                                           ExprResult &IntExpr,
765                                           QualType FloatTy, QualType IntTy,
766                                           bool ConvertFloat, bool ConvertInt) {
767  if (IntTy->isIntegerType()) {
768    if (ConvertInt)
769      // Convert intExpr to the lhs floating point type.
770      IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
771                                    CK_IntegralToFloating);
772    return FloatTy;
773  }
774
775  // Convert both sides to the appropriate complex float.
776  assert(IntTy->isComplexIntegerType());
777  QualType result = S.Context.getComplexType(FloatTy);
778
779  // _Complex int -> _Complex float
780  if (ConvertInt)
781    IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
782                                  CK_IntegralComplexToFloatingComplex);
783
784  // float -> _Complex float
785  if (ConvertFloat)
786    FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
787                                    CK_FloatingRealToComplex);
788
789  return result;
790}
791
792/// \brief Handle arithmethic conversion with floating point types.  Helper
793/// function of UsualArithmeticConversions()
794static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
795                                      ExprResult &RHS, QualType LHSType,
796                                      QualType RHSType, bool IsCompAssign) {
797  bool LHSFloat = LHSType->isRealFloatingType();
798  bool RHSFloat = RHSType->isRealFloatingType();
799
800  // If we have two real floating types, convert the smaller operand
801  // to the bigger result.
802  if (LHSFloat && RHSFloat) {
803    int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
804    if (order > 0) {
805      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
806      return LHSType;
807    }
808
809    assert(order < 0 && "illegal float comparison");
810    if (!IsCompAssign)
811      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
812    return RHSType;
813  }
814
815  if (LHSFloat)
816    return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
817                                      /*convertFloat=*/!IsCompAssign,
818                                      /*convertInt=*/ true);
819  assert(RHSFloat);
820  return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
821                                    /*convertInt=*/ true,
822                                    /*convertFloat=*/!IsCompAssign);
823}
824
825/// \brief Handle conversions with GCC complex int extension.  Helper function
826/// of UsualArithmeticConversions()
827// FIXME: if the operands are (int, _Complex long), we currently
828// don't promote the complex.  Also, signedness?
829static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
830                                           ExprResult &RHS, QualType LHSType,
831                                           QualType RHSType,
832                                           bool IsCompAssign) {
833  const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
834  const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
835
836  if (LHSComplexInt && RHSComplexInt) {
837    int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
838                                              RHSComplexInt->getElementType());
839    assert(order && "inequal types with equal element ordering");
840    if (order > 0) {
841      // _Complex int -> _Complex long
842      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
843      return LHSType;
844    }
845
846    if (!IsCompAssign)
847      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
848    return RHSType;
849  }
850
851  if (LHSComplexInt) {
852    // int -> _Complex int
853    // FIXME: This needs to take integer ranks into account
854    RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
855                              CK_IntegralCast);
856    RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
857    return LHSType;
858  }
859
860  assert(RHSComplexInt);
861  // int -> _Complex int
862  // FIXME: This needs to take integer ranks into account
863  if (!IsCompAssign) {
864    LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
865                              CK_IntegralCast);
866    LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
867  }
868  return RHSType;
869}
870
871/// \brief Handle integer arithmetic conversions.  Helper function of
872/// UsualArithmeticConversions()
873static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
874                                        ExprResult &RHS, QualType LHSType,
875                                        QualType RHSType, bool IsCompAssign) {
876  // The rules for this case are in C99 6.3.1.8
877  int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
878  bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
879  bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
880  if (LHSSigned == RHSSigned) {
881    // Same signedness; use the higher-ranked type
882    if (order >= 0) {
883      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
884      return LHSType;
885    } else if (!IsCompAssign)
886      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
887    return RHSType;
888  } else if (order != (LHSSigned ? 1 : -1)) {
889    // The unsigned type has greater than or equal rank to the
890    // signed type, so use the unsigned type
891    if (RHSSigned) {
892      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
893      return LHSType;
894    } else if (!IsCompAssign)
895      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
896    return RHSType;
897  } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
898    // The two types are different widths; if we are here, that
899    // means the signed type is larger than the unsigned type, so
900    // use the signed type.
901    if (LHSSigned) {
902      RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
903      return LHSType;
904    } else if (!IsCompAssign)
905      LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
906    return RHSType;
907  } else {
908    // The signed type is higher-ranked than the unsigned type,
909    // but isn't actually any bigger (like unsigned int and long
910    // on most 32-bit systems).  Use the unsigned type corresponding
911    // to the signed type.
912    QualType result =
913      S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
914    RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
915    if (!IsCompAssign)
916      LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
917    return result;
918  }
919}
920
921/// UsualArithmeticConversions - Performs various conversions that are common to
922/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
923/// routine returns the first non-arithmetic type found. The client is
924/// responsible for emitting appropriate error diagnostics.
925/// FIXME: verify the conversion rules for "complex int" are consistent with
926/// GCC.
927QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
928                                          bool IsCompAssign) {
929  if (!IsCompAssign) {
930    LHS = UsualUnaryConversions(LHS.take());
931    if (LHS.isInvalid())
932      return QualType();
933  }
934
935  RHS = UsualUnaryConversions(RHS.take());
936  if (RHS.isInvalid())
937    return QualType();
938
939  // For conversion purposes, we ignore any qualifiers.
940  // For example, "const float" and "float" are equivalent.
941  QualType LHSType =
942    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
943  QualType RHSType =
944    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
945
946  // If both types are identical, no conversion is needed.
947  if (LHSType == RHSType)
948    return LHSType;
949
950  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
951  // The caller can deal with this (e.g. pointer + int).
952  if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
953    return LHSType;
954
955  // Apply unary and bitfield promotions to the LHS's type.
956  QualType LHSUnpromotedType = LHSType;
957  if (LHSType->isPromotableIntegerType())
958    LHSType = Context.getPromotedIntegerType(LHSType);
959  QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
960  if (!LHSBitfieldPromoteTy.isNull())
961    LHSType = LHSBitfieldPromoteTy;
962  if (LHSType != LHSUnpromotedType && !IsCompAssign)
963    LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
964
965  // If both types are identical, no conversion is needed.
966  if (LHSType == RHSType)
967    return LHSType;
968
969  // At this point, we have two different arithmetic types.
970
971  // Handle complex types first (C99 6.3.1.8p1).
972  if (LHSType->isComplexType() || RHSType->isComplexType())
973    return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
974                                        IsCompAssign);
975
976  // Now handle "real" floating types (i.e. float, double, long double).
977  if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
978    return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
979                                 IsCompAssign);
980
981  // Handle GCC complex int extension.
982  if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
983    return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
984                                      IsCompAssign);
985
986  // Finally, we have two differing integer types.
987  return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
988                                 IsCompAssign);
989}
990
991//===----------------------------------------------------------------------===//
992//  Semantic Analysis for various Expression Types
993//===----------------------------------------------------------------------===//
994
995
996ExprResult
997Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
998                                SourceLocation DefaultLoc,
999                                SourceLocation RParenLoc,
1000                                Expr *ControllingExpr,
1001                                MultiTypeArg ArgTypes,
1002                                MultiExprArg ArgExprs) {
1003  unsigned NumAssocs = ArgTypes.size();
1004  assert(NumAssocs == ArgExprs.size());
1005
1006  ParsedType *ParsedTypes = ArgTypes.release();
1007  Expr **Exprs = ArgExprs.release();
1008
1009  TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1010  for (unsigned i = 0; i < NumAssocs; ++i) {
1011    if (ParsedTypes[i])
1012      (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
1013    else
1014      Types[i] = 0;
1015  }
1016
1017  ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1018                                             ControllingExpr, Types, Exprs,
1019                                             NumAssocs);
1020  delete [] Types;
1021  return ER;
1022}
1023
1024ExprResult
1025Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1026                                 SourceLocation DefaultLoc,
1027                                 SourceLocation RParenLoc,
1028                                 Expr *ControllingExpr,
1029                                 TypeSourceInfo **Types,
1030                                 Expr **Exprs,
1031                                 unsigned NumAssocs) {
1032  bool TypeErrorFound = false,
1033       IsResultDependent = ControllingExpr->isTypeDependent(),
1034       ContainsUnexpandedParameterPack
1035         = ControllingExpr->containsUnexpandedParameterPack();
1036
1037  for (unsigned i = 0; i < NumAssocs; ++i) {
1038    if (Exprs[i]->containsUnexpandedParameterPack())
1039      ContainsUnexpandedParameterPack = true;
1040
1041    if (Types[i]) {
1042      if (Types[i]->getType()->containsUnexpandedParameterPack())
1043        ContainsUnexpandedParameterPack = true;
1044
1045      if (Types[i]->getType()->isDependentType()) {
1046        IsResultDependent = true;
1047      } else {
1048        // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1049        // complete object type other than a variably modified type."
1050        unsigned D = 0;
1051        if (Types[i]->getType()->isIncompleteType())
1052          D = diag::err_assoc_type_incomplete;
1053        else if (!Types[i]->getType()->isObjectType())
1054          D = diag::err_assoc_type_nonobject;
1055        else if (Types[i]->getType()->isVariablyModifiedType())
1056          D = diag::err_assoc_type_variably_modified;
1057
1058        if (D != 0) {
1059          Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1060            << Types[i]->getTypeLoc().getSourceRange()
1061            << Types[i]->getType();
1062          TypeErrorFound = true;
1063        }
1064
1065        // C11 6.5.1.1p2 "No two generic associations in the same generic
1066        // selection shall specify compatible types."
1067        for (unsigned j = i+1; j < NumAssocs; ++j)
1068          if (Types[j] && !Types[j]->getType()->isDependentType() &&
1069              Context.typesAreCompatible(Types[i]->getType(),
1070                                         Types[j]->getType())) {
1071            Diag(Types[j]->getTypeLoc().getBeginLoc(),
1072                 diag::err_assoc_compatible_types)
1073              << Types[j]->getTypeLoc().getSourceRange()
1074              << Types[j]->getType()
1075              << Types[i]->getType();
1076            Diag(Types[i]->getTypeLoc().getBeginLoc(),
1077                 diag::note_compat_assoc)
1078              << Types[i]->getTypeLoc().getSourceRange()
1079              << Types[i]->getType();
1080            TypeErrorFound = true;
1081          }
1082      }
1083    }
1084  }
1085  if (TypeErrorFound)
1086    return ExprError();
1087
1088  // If we determined that the generic selection is result-dependent, don't
1089  // try to compute the result expression.
1090  if (IsResultDependent)
1091    return Owned(new (Context) GenericSelectionExpr(
1092                   Context, KeyLoc, ControllingExpr,
1093                   Types, Exprs, NumAssocs, DefaultLoc,
1094                   RParenLoc, ContainsUnexpandedParameterPack));
1095
1096  SmallVector<unsigned, 1> CompatIndices;
1097  unsigned DefaultIndex = -1U;
1098  for (unsigned i = 0; i < NumAssocs; ++i) {
1099    if (!Types[i])
1100      DefaultIndex = i;
1101    else if (Context.typesAreCompatible(ControllingExpr->getType(),
1102                                        Types[i]->getType()))
1103      CompatIndices.push_back(i);
1104  }
1105
1106  // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1107  // type compatible with at most one of the types named in its generic
1108  // association list."
1109  if (CompatIndices.size() > 1) {
1110    // We strip parens here because the controlling expression is typically
1111    // parenthesized in macro definitions.
1112    ControllingExpr = ControllingExpr->IgnoreParens();
1113    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1114      << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1115      << (unsigned) CompatIndices.size();
1116    for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
1117         E = CompatIndices.end(); I != E; ++I) {
1118      Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1119           diag::note_compat_assoc)
1120        << Types[*I]->getTypeLoc().getSourceRange()
1121        << Types[*I]->getType();
1122    }
1123    return ExprError();
1124  }
1125
1126  // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1127  // its controlling expression shall have type compatible with exactly one of
1128  // the types named in its generic association list."
1129  if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1130    // We strip parens here because the controlling expression is typically
1131    // parenthesized in macro definitions.
1132    ControllingExpr = ControllingExpr->IgnoreParens();
1133    Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1134      << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1135    return ExprError();
1136  }
1137
1138  // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1139  // type name that is compatible with the type of the controlling expression,
1140  // then the result expression of the generic selection is the expression
1141  // in that generic association. Otherwise, the result expression of the
1142  // generic selection is the expression in the default generic association."
1143  unsigned ResultIndex =
1144    CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1145
1146  return Owned(new (Context) GenericSelectionExpr(
1147                 Context, KeyLoc, ControllingExpr,
1148                 Types, Exprs, NumAssocs, DefaultLoc,
1149                 RParenLoc, ContainsUnexpandedParameterPack,
1150                 ResultIndex));
1151}
1152
1153/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1154/// location of the token and the offset of the ud-suffix within it.
1155static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1156                                     unsigned Offset) {
1157  return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1158                                        S.getLangOpts());
1159}
1160
1161/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1162/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1163static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1164                                                 IdentifierInfo *UDSuffix,
1165                                                 SourceLocation UDSuffixLoc,
1166                                                 ArrayRef<Expr*> Args,
1167                                                 SourceLocation LitEndLoc) {
1168  assert(Args.size() <= 2 && "too many arguments for literal operator");
1169
1170  QualType ArgTy[2];
1171  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1172    ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1173    if (ArgTy[ArgIdx]->isArrayType())
1174      ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1175  }
1176
1177  DeclarationName OpName =
1178    S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1179  DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1180  OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1181
1182  LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1183  if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1184                              /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
1185    return ExprError();
1186
1187  return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1188}
1189
1190/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1191/// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1192/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1193/// multiple tokens.  However, the common case is that StringToks points to one
1194/// string.
1195///
1196ExprResult
1197Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
1198                         Scope *UDLScope) {
1199  assert(NumStringToks && "Must have at least one string!");
1200
1201  StringLiteralParser Literal(StringToks, NumStringToks, PP);
1202  if (Literal.hadError)
1203    return ExprError();
1204
1205  SmallVector<SourceLocation, 4> StringTokLocs;
1206  for (unsigned i = 0; i != NumStringToks; ++i)
1207    StringTokLocs.push_back(StringToks[i].getLocation());
1208
1209  QualType StrTy = Context.CharTy;
1210  if (Literal.isWide())
1211    StrTy = Context.getWCharType();
1212  else if (Literal.isUTF16())
1213    StrTy = Context.Char16Ty;
1214  else if (Literal.isUTF32())
1215    StrTy = Context.Char32Ty;
1216  else if (Literal.isPascal())
1217    StrTy = Context.UnsignedCharTy;
1218
1219  StringLiteral::StringKind Kind = StringLiteral::Ascii;
1220  if (Literal.isWide())
1221    Kind = StringLiteral::Wide;
1222  else if (Literal.isUTF8())
1223    Kind = StringLiteral::UTF8;
1224  else if (Literal.isUTF16())
1225    Kind = StringLiteral::UTF16;
1226  else if (Literal.isUTF32())
1227    Kind = StringLiteral::UTF32;
1228
1229  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1230  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1231    StrTy.addConst();
1232
1233  // Get an array type for the string, according to C99 6.4.5.  This includes
1234  // the nul terminator character as well as the string length for pascal
1235  // strings.
1236  StrTy = Context.getConstantArrayType(StrTy,
1237                                 llvm::APInt(32, Literal.GetNumStringChars()+1),
1238                                       ArrayType::Normal, 0);
1239
1240  // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1241  StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1242                                             Kind, Literal.Pascal, StrTy,
1243                                             &StringTokLocs[0],
1244                                             StringTokLocs.size());
1245  if (Literal.getUDSuffix().empty())
1246    return Owned(Lit);
1247
1248  // We're building a user-defined literal.
1249  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1250  SourceLocation UDSuffixLoc =
1251    getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1252                   Literal.getUDSuffixOffset());
1253
1254  // Make sure we're allowed user-defined literals here.
1255  if (!UDLScope)
1256    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1257
1258  // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1259  //   operator "" X (str, len)
1260  QualType SizeType = Context.getSizeType();
1261  llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1262  IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1263                                                  StringTokLocs[0]);
1264  Expr *Args[] = { Lit, LenArg };
1265  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
1266                                        Args, StringTokLocs.back());
1267}
1268
1269ExprResult
1270Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1271                       SourceLocation Loc,
1272                       const CXXScopeSpec *SS) {
1273  DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1274  return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1275}
1276
1277/// BuildDeclRefExpr - Build an expression that references a
1278/// declaration that does not require a closure capture.
1279ExprResult
1280Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1281                       const DeclarationNameInfo &NameInfo,
1282                       const CXXScopeSpec *SS) {
1283  if (getLangOpts().CUDA)
1284    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1285      if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1286        CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
1287                           CalleeTarget = IdentifyCUDATarget(Callee);
1288        if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
1289          Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1290            << CalleeTarget << D->getIdentifier() << CallerTarget;
1291          Diag(D->getLocation(), diag::note_previous_decl)
1292            << D->getIdentifier();
1293          return ExprError();
1294        }
1295      }
1296
1297  bool refersToEnclosingScope =
1298    (CurContext != D->getDeclContext() &&
1299     D->getDeclContext()->isFunctionOrMethod());
1300
1301  DeclRefExpr *E = DeclRefExpr::Create(Context,
1302                                       SS ? SS->getWithLocInContext(Context)
1303                                              : NestedNameSpecifierLoc(),
1304                                       SourceLocation(),
1305                                       D, refersToEnclosingScope,
1306                                       NameInfo, Ty, VK);
1307
1308  MarkDeclRefReferenced(E);
1309
1310  // Just in case we're building an illegal pointer-to-member.
1311  FieldDecl *FD = dyn_cast<FieldDecl>(D);
1312  if (FD && FD->isBitField())
1313    E->setObjectKind(OK_BitField);
1314
1315  return Owned(E);
1316}
1317
1318/// Decomposes the given name into a DeclarationNameInfo, its location, and
1319/// possibly a list of template arguments.
1320///
1321/// If this produces template arguments, it is permitted to call
1322/// DecomposeTemplateName.
1323///
1324/// This actually loses a lot of source location information for
1325/// non-standard name kinds; we should consider preserving that in
1326/// some way.
1327void
1328Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1329                             TemplateArgumentListInfo &Buffer,
1330                             DeclarationNameInfo &NameInfo,
1331                             const TemplateArgumentListInfo *&TemplateArgs) {
1332  if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1333    Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1334    Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1335
1336    ASTTemplateArgsPtr TemplateArgsPtr(*this,
1337                                       Id.TemplateId->getTemplateArgs(),
1338                                       Id.TemplateId->NumArgs);
1339    translateTemplateArguments(TemplateArgsPtr, Buffer);
1340    TemplateArgsPtr.release();
1341
1342    TemplateName TName = Id.TemplateId->Template.get();
1343    SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1344    NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1345    TemplateArgs = &Buffer;
1346  } else {
1347    NameInfo = GetNameFromUnqualifiedId(Id);
1348    TemplateArgs = 0;
1349  }
1350}
1351
1352/// Diagnose an empty lookup.
1353///
1354/// \return false if new lookup candidates were found
1355bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1356                               CorrectionCandidateCallback &CCC,
1357                               TemplateArgumentListInfo *ExplicitTemplateArgs,
1358                               llvm::ArrayRef<Expr *> Args) {
1359  DeclarationName Name = R.getLookupName();
1360
1361  unsigned diagnostic = diag::err_undeclared_var_use;
1362  unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1363  if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1364      Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1365      Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1366    diagnostic = diag::err_undeclared_use;
1367    diagnostic_suggest = diag::err_undeclared_use_suggest;
1368  }
1369
1370  // If the original lookup was an unqualified lookup, fake an
1371  // unqualified lookup.  This is useful when (for example) the
1372  // original lookup would not have found something because it was a
1373  // dependent name.
1374  DeclContext *DC = SS.isEmpty() ? CurContext : 0;
1375  while (DC) {
1376    if (isa<CXXRecordDecl>(DC)) {
1377      LookupQualifiedName(R, DC);
1378
1379      if (!R.empty()) {
1380        // Don't give errors about ambiguities in this lookup.
1381        R.suppressDiagnostics();
1382
1383        // During a default argument instantiation the CurContext points
1384        // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1385        // function parameter list, hence add an explicit check.
1386        bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1387                              ActiveTemplateInstantiations.back().Kind ==
1388            ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1389        CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1390        bool isInstance = CurMethod &&
1391                          CurMethod->isInstance() &&
1392                          DC == CurMethod->getParent() && !isDefaultArgument;
1393
1394
1395        // Give a code modification hint to insert 'this->'.
1396        // TODO: fixit for inserting 'Base<T>::' in the other cases.
1397        // Actually quite difficult!
1398        if (isInstance) {
1399          UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1400              CallsUndergoingInstantiation.back()->getCallee());
1401          CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
1402              CurMethod->getInstantiatedFromMemberFunction());
1403          if (DepMethod) {
1404            if (getLangOpts().MicrosoftMode)
1405              diagnostic = diag::warn_found_via_dependent_bases_lookup;
1406            Diag(R.getNameLoc(), diagnostic) << Name
1407              << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1408            QualType DepThisType = DepMethod->getThisType(Context);
1409            CheckCXXThisCapture(R.getNameLoc());
1410            CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1411                                       R.getNameLoc(), DepThisType, false);
1412            TemplateArgumentListInfo TList;
1413            if (ULE->hasExplicitTemplateArgs())
1414              ULE->copyTemplateArgumentsInto(TList);
1415
1416            CXXScopeSpec SS;
1417            SS.Adopt(ULE->getQualifierLoc());
1418            CXXDependentScopeMemberExpr *DepExpr =
1419                CXXDependentScopeMemberExpr::Create(
1420                    Context, DepThis, DepThisType, true, SourceLocation(),
1421                    SS.getWithLocInContext(Context),
1422                    ULE->getTemplateKeywordLoc(), 0,
1423                    R.getLookupNameInfo(),
1424                    ULE->hasExplicitTemplateArgs() ? &TList : 0);
1425            CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1426          } else {
1427            // FIXME: we should be able to handle this case too. It is correct
1428            // to add this-> here. This is a workaround for PR7947.
1429            Diag(R.getNameLoc(), diagnostic) << Name;
1430          }
1431        } else {
1432          if (getLangOpts().MicrosoftMode)
1433            diagnostic = diag::warn_found_via_dependent_bases_lookup;
1434          Diag(R.getNameLoc(), diagnostic) << Name;
1435        }
1436
1437        // Do we really want to note all of these?
1438        for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1439          Diag((*I)->getLocation(), diag::note_dependent_var_use);
1440
1441        // Return true if we are inside a default argument instantiation
1442        // and the found name refers to an instance member function, otherwise
1443        // the function calling DiagnoseEmptyLookup will try to create an
1444        // implicit member call and this is wrong for default argument.
1445        if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1446          Diag(R.getNameLoc(), diag::err_member_call_without_object);
1447          return true;
1448        }
1449
1450        // Tell the callee to try to recover.
1451        return false;
1452      }
1453
1454      R.clear();
1455    }
1456
1457    // In Microsoft mode, if we are performing lookup from within a friend
1458    // function definition declared at class scope then we must set
1459    // DC to the lexical parent to be able to search into the parent
1460    // class.
1461    if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
1462        cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1463        DC->getLexicalParent()->isRecord())
1464      DC = DC->getLexicalParent();
1465    else
1466      DC = DC->getParent();
1467  }
1468
1469  // We didn't find anything, so try to correct for a typo.
1470  TypoCorrection Corrected;
1471  if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
1472                                    S, &SS, CCC))) {
1473    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1474    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
1475    R.setLookupName(Corrected.getCorrection());
1476
1477    if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
1478      if (Corrected.isOverloaded()) {
1479        OverloadCandidateSet OCS(R.getNameLoc());
1480        OverloadCandidateSet::iterator Best;
1481        for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1482                                        CDEnd = Corrected.end();
1483             CD != CDEnd; ++CD) {
1484          if (FunctionTemplateDecl *FTD =
1485                   dyn_cast<FunctionTemplateDecl>(*CD))
1486            AddTemplateOverloadCandidate(
1487                FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1488                Args, OCS);
1489          else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1490            if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1491              AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1492                                   Args, OCS);
1493        }
1494        switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1495          case OR_Success:
1496            ND = Best->Function;
1497            break;
1498          default:
1499            break;
1500        }
1501      }
1502      R.addDecl(ND);
1503      if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
1504        if (SS.isEmpty())
1505          Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
1506            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1507        else
1508          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1509            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1510            << SS.getRange()
1511            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1512        if (ND)
1513          Diag(ND->getLocation(), diag::note_previous_decl)
1514            << CorrectedQuotedStr;
1515
1516        // Tell the callee to try to recover.
1517        return false;
1518      }
1519
1520      if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
1521        // FIXME: If we ended up with a typo for a type name or
1522        // Objective-C class name, we're in trouble because the parser
1523        // is in the wrong place to recover. Suggest the typo
1524        // correction, but don't make it a fix-it since we're not going
1525        // to recover well anyway.
1526        if (SS.isEmpty())
1527          Diag(R.getNameLoc(), diagnostic_suggest)
1528            << Name << CorrectedQuotedStr;
1529        else
1530          Diag(R.getNameLoc(), diag::err_no_member_suggest)
1531            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1532            << SS.getRange();
1533
1534        // Don't try to recover; it won't work.
1535        return true;
1536      }
1537    } else {
1538      // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1539      // because we aren't able to recover.
1540      if (SS.isEmpty())
1541        Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
1542      else
1543        Diag(R.getNameLoc(), diag::err_no_member_suggest)
1544        << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
1545        << SS.getRange();
1546      return true;
1547    }
1548  }
1549  R.clear();
1550
1551  // Emit a special diagnostic for failed member lookups.
1552  // FIXME: computing the declaration context might fail here (?)
1553  if (!SS.isEmpty()) {
1554    Diag(R.getNameLoc(), diag::err_no_member)
1555      << Name << computeDeclContext(SS, false)
1556      << SS.getRange();
1557    return true;
1558  }
1559
1560  // Give up, we can't recover.
1561  Diag(R.getNameLoc(), diagnostic) << Name;
1562  return true;
1563}
1564
1565ExprResult Sema::ActOnIdExpression(Scope *S,
1566                                   CXXScopeSpec &SS,
1567                                   SourceLocation TemplateKWLoc,
1568                                   UnqualifiedId &Id,
1569                                   bool HasTrailingLParen,
1570                                   bool IsAddressOfOperand,
1571                                   CorrectionCandidateCallback *CCC) {
1572  assert(!(IsAddressOfOperand && HasTrailingLParen) &&
1573         "cannot be direct & operand and have a trailing lparen");
1574
1575  if (SS.isInvalid())
1576    return ExprError();
1577
1578  TemplateArgumentListInfo TemplateArgsBuffer;
1579
1580  // Decompose the UnqualifiedId into the following data.
1581  DeclarationNameInfo NameInfo;
1582  const TemplateArgumentListInfo *TemplateArgs;
1583  DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
1584
1585  DeclarationName Name = NameInfo.getName();
1586  IdentifierInfo *II = Name.getAsIdentifierInfo();
1587  SourceLocation NameLoc = NameInfo.getLoc();
1588
1589  // C++ [temp.dep.expr]p3:
1590  //   An id-expression is type-dependent if it contains:
1591  //     -- an identifier that was declared with a dependent type,
1592  //        (note: handled after lookup)
1593  //     -- a template-id that is dependent,
1594  //        (note: handled in BuildTemplateIdExpr)
1595  //     -- a conversion-function-id that specifies a dependent type,
1596  //     -- a nested-name-specifier that contains a class-name that
1597  //        names a dependent type.
1598  // Determine whether this is a member of an unknown specialization;
1599  // we need to handle these differently.
1600  bool DependentID = false;
1601  if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1602      Name.getCXXNameType()->isDependentType()) {
1603    DependentID = true;
1604  } else if (SS.isSet()) {
1605    if (DeclContext *DC = computeDeclContext(SS, false)) {
1606      if (RequireCompleteDeclContext(SS, DC))
1607        return ExprError();
1608    } else {
1609      DependentID = true;
1610    }
1611  }
1612
1613  if (DependentID)
1614    return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1615                                      IsAddressOfOperand, TemplateArgs);
1616
1617  // Perform the required lookup.
1618  LookupResult R(*this, NameInfo,
1619                 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
1620                  ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
1621  if (TemplateArgs) {
1622    // Lookup the template name again to correctly establish the context in
1623    // which it was found. This is really unfortunate as we already did the
1624    // lookup to determine that it was a template name in the first place. If
1625    // this becomes a performance hit, we can work harder to preserve those
1626    // results until we get here but it's likely not worth it.
1627    bool MemberOfUnknownSpecialization;
1628    LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
1629                       MemberOfUnknownSpecialization);
1630
1631    if (MemberOfUnknownSpecialization ||
1632        (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
1633      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1634                                        IsAddressOfOperand, TemplateArgs);
1635  } else {
1636    bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
1637    LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
1638
1639    // If the result might be in a dependent base class, this is a dependent
1640    // id-expression.
1641    if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
1642      return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1643                                        IsAddressOfOperand, TemplateArgs);
1644
1645    // If this reference is in an Objective-C method, then we need to do
1646    // some special Objective-C lookup, too.
1647    if (IvarLookupFollowUp) {
1648      ExprResult E(LookupInObjCMethod(R, S, II, true));
1649      if (E.isInvalid())
1650        return ExprError();
1651
1652      if (Expr *Ex = E.takeAs<Expr>())
1653        return Owned(Ex);
1654    }
1655  }
1656
1657  if (R.isAmbiguous())
1658    return ExprError();
1659
1660  // Determine whether this name might be a candidate for
1661  // argument-dependent lookup.
1662  bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
1663
1664  if (R.empty() && !ADL) {
1665    // Otherwise, this could be an implicitly declared function reference (legal
1666    // in C90, extension in C99, forbidden in C++).
1667    if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
1668      NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
1669      if (D) R.addDecl(D);
1670    }
1671
1672    // If this name wasn't predeclared and if this is not a function
1673    // call, diagnose the problem.
1674    if (R.empty()) {
1675
1676      // In Microsoft mode, if we are inside a template class member function
1677      // and we can't resolve an identifier then assume the identifier is type
1678      // dependent. The goal is to postpone name lookup to instantiation time
1679      // to be able to search into type dependent base classes.
1680      if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
1681          isa<CXXMethodDecl>(CurContext))
1682        return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
1683                                          IsAddressOfOperand, TemplateArgs);
1684
1685      CorrectionCandidateCallback DefaultValidator;
1686      if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
1687        return ExprError();
1688
1689      assert(!R.empty() &&
1690             "DiagnoseEmptyLookup returned false but added no results");
1691
1692      // If we found an Objective-C instance variable, let
1693      // LookupInObjCMethod build the appropriate expression to
1694      // reference the ivar.
1695      if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
1696        R.clear();
1697        ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
1698        // In a hopelessly buggy code, Objective-C instance variable
1699        // lookup fails and no expression will be built to reference it.
1700        if (!E.isInvalid() && !E.get())
1701          return ExprError();
1702        return move(E);
1703      }
1704    }
1705  }
1706
1707  // This is guaranteed from this point on.
1708  assert(!R.empty() || ADL);
1709
1710  // Check whether this might be a C++ implicit instance member access.
1711  // C++ [class.mfct.non-static]p3:
1712  //   When an id-expression that is not part of a class member access
1713  //   syntax and not used to form a pointer to member is used in the
1714  //   body of a non-static member function of class X, if name lookup
1715  //   resolves the name in the id-expression to a non-static non-type
1716  //   member of some class C, the id-expression is transformed into a
1717  //   class member access expression using (*this) as the
1718  //   postfix-expression to the left of the . operator.
1719  //
1720  // But we don't actually need to do this for '&' operands if R
1721  // resolved to a function or overloaded function set, because the
1722  // expression is ill-formed if it actually works out to be a
1723  // non-static member function:
1724  //
1725  // C++ [expr.ref]p4:
1726  //   Otherwise, if E1.E2 refers to a non-static member function. . .
1727  //   [t]he expression can be used only as the left-hand operand of a
1728  //   member function call.
1729  //
1730  // There are other safeguards against such uses, but it's important
1731  // to get this right here so that we don't end up making a
1732  // spuriously dependent expression if we're inside a dependent
1733  // instance method.
1734  if (!R.empty() && (*R.begin())->isCXXClassMember()) {
1735    bool MightBeImplicitMember;
1736    if (!IsAddressOfOperand)
1737      MightBeImplicitMember = true;
1738    else if (!SS.isEmpty())
1739      MightBeImplicitMember = false;
1740    else if (R.isOverloadedResult())
1741      MightBeImplicitMember = false;
1742    else if (R.isUnresolvableResult())
1743      MightBeImplicitMember = true;
1744    else
1745      MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
1746                              isa<IndirectFieldDecl>(R.getFoundDecl());
1747
1748    if (MightBeImplicitMember)
1749      return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
1750                                             R, TemplateArgs);
1751  }
1752
1753  if (TemplateArgs || TemplateKWLoc.isValid())
1754    return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
1755
1756  return BuildDeclarationNameExpr(SS, R, ADL);
1757}
1758
1759/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
1760/// declaration name, generally during template instantiation.
1761/// There's a large number of things which don't need to be done along
1762/// this path.
1763ExprResult
1764Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
1765                                        const DeclarationNameInfo &NameInfo) {
1766  DeclContext *DC;
1767  if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
1768    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
1769                                     NameInfo, /*TemplateArgs=*/0);
1770
1771  if (RequireCompleteDeclContext(SS, DC))
1772    return ExprError();
1773
1774  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1775  LookupQualifiedName(R, DC);
1776
1777  if (R.isAmbiguous())
1778    return ExprError();
1779
1780  if (R.empty()) {
1781    Diag(NameInfo.getLoc(), diag::err_no_member)
1782      << NameInfo.getName() << DC << SS.getRange();
1783    return ExprError();
1784  }
1785
1786  return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
1787}
1788
1789/// LookupInObjCMethod - The parser has read a name in, and Sema has
1790/// detected that we're currently inside an ObjC method.  Perform some
1791/// additional lookup.
1792///
1793/// Ideally, most of this would be done by lookup, but there's
1794/// actually quite a lot of extra work involved.
1795///
1796/// Returns a null sentinel to indicate trivial success.
1797ExprResult
1798Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
1799                         IdentifierInfo *II, bool AllowBuiltinCreation) {
1800  SourceLocation Loc = Lookup.getNameLoc();
1801  ObjCMethodDecl *CurMethod = getCurMethodDecl();
1802
1803  // There are two cases to handle here.  1) scoped lookup could have failed,
1804  // in which case we should look for an ivar.  2) scoped lookup could have
1805  // found a decl, but that decl is outside the current instance method (i.e.
1806  // a global variable).  In these two cases, we do a lookup for an ivar with
1807  // this name, if the lookup sucedes, we replace it our current decl.
1808
1809  // If we're in a class method, we don't normally want to look for
1810  // ivars.  But if we don't find anything else, and there's an
1811  // ivar, that's an error.
1812  bool IsClassMethod = CurMethod->isClassMethod();
1813
1814  bool LookForIvars;
1815  if (Lookup.empty())
1816    LookForIvars = true;
1817  else if (IsClassMethod)
1818    LookForIvars = false;
1819  else
1820    LookForIvars = (Lookup.isSingleResult() &&
1821                    Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
1822  ObjCInterfaceDecl *IFace = 0;
1823  if (LookForIvars) {
1824    IFace = CurMethod->getClassInterface();
1825    ObjCInterfaceDecl *ClassDeclared;
1826    ObjCIvarDecl *IV = 0;
1827    if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
1828      // Diagnose using an ivar in a class method.
1829      if (IsClassMethod)
1830        return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1831                         << IV->getDeclName());
1832
1833      // If we're referencing an invalid decl, just return this as a silent
1834      // error node.  The error diagnostic was already emitted on the decl.
1835      if (IV->isInvalidDecl())
1836        return ExprError();
1837
1838      // Check if referencing a field with __attribute__((deprecated)).
1839      if (DiagnoseUseOfDecl(IV, Loc))
1840        return ExprError();
1841
1842      // Diagnose the use of an ivar outside of the declaring class.
1843      if (IV->getAccessControl() == ObjCIvarDecl::Private &&
1844          !declaresSameEntity(ClassDeclared, IFace) &&
1845          !getLangOpts().DebuggerSupport)
1846        Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
1847
1848      // FIXME: This should use a new expr for a direct reference, don't
1849      // turn this into Self->ivar, just return a BareIVarExpr or something.
1850      IdentifierInfo &II = Context.Idents.get("self");
1851      UnqualifiedId SelfName;
1852      SelfName.setIdentifier(&II, SourceLocation());
1853      SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
1854      CXXScopeSpec SelfScopeSpec;
1855      SourceLocation TemplateKWLoc;
1856      ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
1857                                              SelfName, false, false);
1858      if (SelfExpr.isInvalid())
1859        return ExprError();
1860
1861      SelfExpr = DefaultLvalueConversion(SelfExpr.take());
1862      if (SelfExpr.isInvalid())
1863        return ExprError();
1864
1865      MarkAnyDeclReferenced(Loc, IV);
1866      return Owned(new (Context)
1867                   ObjCIvarRefExpr(IV, IV->getType(), Loc,
1868                                   SelfExpr.take(), true, true));
1869    }
1870  } else if (CurMethod->isInstanceMethod()) {
1871    // We should warn if a local variable hides an ivar.
1872    if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
1873      ObjCInterfaceDecl *ClassDeclared;
1874      if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
1875        if (IV->getAccessControl() != ObjCIvarDecl::Private ||
1876            declaresSameEntity(IFace, ClassDeclared))
1877          Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
1878      }
1879    }
1880  } else if (Lookup.isSingleResult() &&
1881             Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
1882    // If accessing a stand-alone ivar in a class method, this is an error.
1883    if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
1884      return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
1885                       << IV->getDeclName());
1886  }
1887
1888  if (Lookup.empty() && II && AllowBuiltinCreation) {
1889    // FIXME. Consolidate this with similar code in LookupName.
1890    if (unsigned BuiltinID = II->getBuiltinID()) {
1891      if (!(getLangOpts().CPlusPlus &&
1892            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
1893        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
1894                                           S, Lookup.isForRedeclaration(),
1895                                           Lookup.getNameLoc());
1896        if (D) Lookup.addDecl(D);
1897      }
1898    }
1899  }
1900  // Sentinel value saying that we didn't do anything special.
1901  return Owned((Expr*) 0);
1902}
1903
1904/// \brief Cast a base object to a member's actual type.
1905///
1906/// Logically this happens in three phases:
1907///
1908/// * First we cast from the base type to the naming class.
1909///   The naming class is the class into which we were looking
1910///   when we found the member;  it's the qualifier type if a
1911///   qualifier was provided, and otherwise it's the base type.
1912///
1913/// * Next we cast from the naming class to the declaring class.
1914///   If the member we found was brought into a class's scope by
1915///   a using declaration, this is that class;  otherwise it's
1916///   the class declaring the member.
1917///
1918/// * Finally we cast from the declaring class to the "true"
1919///   declaring class of the member.  This conversion does not
1920///   obey access control.
1921ExprResult
1922Sema::PerformObjectMemberConversion(Expr *From,
1923                                    NestedNameSpecifier *Qualifier,
1924                                    NamedDecl *FoundDecl,
1925                                    NamedDecl *Member) {
1926  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
1927  if (!RD)
1928    return Owned(From);
1929
1930  QualType DestRecordType;
1931  QualType DestType;
1932  QualType FromRecordType;
1933  QualType FromType = From->getType();
1934  bool PointerConversions = false;
1935  if (isa<FieldDecl>(Member)) {
1936    DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
1937
1938    if (FromType->getAs<PointerType>()) {
1939      DestType = Context.getPointerType(DestRecordType);
1940      FromRecordType = FromType->getPointeeType();
1941      PointerConversions = true;
1942    } else {
1943      DestType = DestRecordType;
1944      FromRecordType = FromType;
1945    }
1946  } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
1947    if (Method->isStatic())
1948      return Owned(From);
1949
1950    DestType = Method->getThisType(Context);
1951    DestRecordType = DestType->getPointeeType();
1952
1953    if (FromType->getAs<PointerType>()) {
1954      FromRecordType = FromType->getPointeeType();
1955      PointerConversions = true;
1956    } else {
1957      FromRecordType = FromType;
1958      DestType = DestRecordType;
1959    }
1960  } else {
1961    // No conversion necessary.
1962    return Owned(From);
1963  }
1964
1965  if (DestType->isDependentType() || FromType->isDependentType())
1966    return Owned(From);
1967
1968  // If the unqualified types are the same, no conversion is necessary.
1969  if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
1970    return Owned(From);
1971
1972  SourceRange FromRange = From->getSourceRange();
1973  SourceLocation FromLoc = FromRange.getBegin();
1974
1975  ExprValueKind VK = From->getValueKind();
1976
1977  // C++ [class.member.lookup]p8:
1978  //   [...] Ambiguities can often be resolved by qualifying a name with its
1979  //   class name.
1980  //
1981  // If the member was a qualified name and the qualified referred to a
1982  // specific base subobject type, we'll cast to that intermediate type
1983  // first and then to the object in which the member is declared. That allows
1984  // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
1985  //
1986  //   class Base { public: int x; };
1987  //   class Derived1 : public Base { };
1988  //   class Derived2 : public Base { };
1989  //   class VeryDerived : public Derived1, public Derived2 { void f(); };
1990  //
1991  //   void VeryDerived::f() {
1992  //     x = 17; // error: ambiguous base subobjects
1993  //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
1994  //   }
1995  if (Qualifier) {
1996    QualType QType = QualType(Qualifier->getAsType(), 0);
1997    assert(!QType.isNull() && "lookup done with dependent qualifier?");
1998    assert(QType->isRecordType() && "lookup done with non-record type");
1999
2000    QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2001
2002    // In C++98, the qualifier type doesn't actually have to be a base
2003    // type of the object type, in which case we just ignore it.
2004    // Otherwise build the appropriate casts.
2005    if (IsDerivedFrom(FromRecordType, QRecordType)) {
2006      CXXCastPath BasePath;
2007      if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2008                                       FromLoc, FromRange, &BasePath))
2009        return ExprError();
2010
2011      if (PointerConversions)
2012        QType = Context.getPointerType(QType);
2013      From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2014                               VK, &BasePath).take();
2015
2016      FromType = QType;
2017      FromRecordType = QRecordType;
2018
2019      // If the qualifier type was the same as the destination type,
2020      // we're done.
2021      if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2022        return Owned(From);
2023    }
2024  }
2025
2026  bool IgnoreAccess = false;
2027
2028  // If we actually found the member through a using declaration, cast
2029  // down to the using declaration's type.
2030  //
2031  // Pointer equality is fine here because only one declaration of a
2032  // class ever has member declarations.
2033  if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2034    assert(isa<UsingShadowDecl>(FoundDecl));
2035    QualType URecordType = Context.getTypeDeclType(
2036                           cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2037
2038    // We only need to do this if the naming-class to declaring-class
2039    // conversion is non-trivial.
2040    if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2041      assert(IsDerivedFrom(FromRecordType, URecordType));
2042      CXXCastPath BasePath;
2043      if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2044                                       FromLoc, FromRange, &BasePath))
2045        return ExprError();
2046
2047      QualType UType = URecordType;
2048      if (PointerConversions)
2049        UType = Context.getPointerType(UType);
2050      From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2051                               VK, &BasePath).take();
2052      FromType = UType;
2053      FromRecordType = URecordType;
2054    }
2055
2056    // We don't do access control for the conversion from the
2057    // declaring class to the true declaring class.
2058    IgnoreAccess = true;
2059  }
2060
2061  CXXCastPath BasePath;
2062  if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2063                                   FromLoc, FromRange, &BasePath,
2064                                   IgnoreAccess))
2065    return ExprError();
2066
2067  return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2068                           VK, &BasePath);
2069}
2070
2071bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2072                                      const LookupResult &R,
2073                                      bool HasTrailingLParen) {
2074  // Only when used directly as the postfix-expression of a call.
2075  if (!HasTrailingLParen)
2076    return false;
2077
2078  // Never if a scope specifier was provided.
2079  if (SS.isSet())
2080    return false;
2081
2082  // Only in C++ or ObjC++.
2083  if (!getLangOpts().CPlusPlus)
2084    return false;
2085
2086  // Turn off ADL when we find certain kinds of declarations during
2087  // normal lookup:
2088  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2089    NamedDecl *D = *I;
2090
2091    // C++0x [basic.lookup.argdep]p3:
2092    //     -- a declaration of a class member
2093    // Since using decls preserve this property, we check this on the
2094    // original decl.
2095    if (D->isCXXClassMember())
2096      return false;
2097
2098    // C++0x [basic.lookup.argdep]p3:
2099    //     -- a block-scope function declaration that is not a
2100    //        using-declaration
2101    // NOTE: we also trigger this for function templates (in fact, we
2102    // don't check the decl type at all, since all other decl types
2103    // turn off ADL anyway).
2104    if (isa<UsingShadowDecl>(D))
2105      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2106    else if (D->getDeclContext()->isFunctionOrMethod())
2107      return false;
2108
2109    // C++0x [basic.lookup.argdep]p3:
2110    //     -- a declaration that is neither a function or a function
2111    //        template
2112    // And also for builtin functions.
2113    if (isa<FunctionDecl>(D)) {
2114      FunctionDecl *FDecl = cast<FunctionDecl>(D);
2115
2116      // But also builtin functions.
2117      if (FDecl->getBuiltinID() && FDecl->isImplicit())
2118        return false;
2119    } else if (!isa<FunctionTemplateDecl>(D))
2120      return false;
2121  }
2122
2123  return true;
2124}
2125
2126
2127/// Diagnoses obvious problems with the use of the given declaration
2128/// as an expression.  This is only actually called for lookups that
2129/// were not overloaded, and it doesn't promise that the declaration
2130/// will in fact be used.
2131static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2132  if (isa<TypedefNameDecl>(D)) {
2133    S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2134    return true;
2135  }
2136
2137  if (isa<ObjCInterfaceDecl>(D)) {
2138    S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2139    return true;
2140  }
2141
2142  if (isa<NamespaceDecl>(D)) {
2143    S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2144    return true;
2145  }
2146
2147  return false;
2148}
2149
2150ExprResult
2151Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2152                               LookupResult &R,
2153                               bool NeedsADL) {
2154  // If this is a single, fully-resolved result and we don't need ADL,
2155  // just build an ordinary singleton decl ref.
2156  if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2157    return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
2158                                    R.getFoundDecl());
2159
2160  // We only need to check the declaration if there's exactly one
2161  // result, because in the overloaded case the results can only be
2162  // functions and function templates.
2163  if (R.isSingleResult() &&
2164      CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2165    return ExprError();
2166
2167  // Otherwise, just build an unresolved lookup expression.  Suppress
2168  // any lookup-related diagnostics; we'll hash these out later, when
2169  // we've picked a target.
2170  R.suppressDiagnostics();
2171
2172  UnresolvedLookupExpr *ULE
2173    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2174                                   SS.getWithLocInContext(Context),
2175                                   R.getLookupNameInfo(),
2176                                   NeedsADL, R.isOverloadedResult(),
2177                                   R.begin(), R.end());
2178
2179  return Owned(ULE);
2180}
2181
2182/// \brief Complete semantic analysis for a reference to the given declaration.
2183ExprResult
2184Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2185                               const DeclarationNameInfo &NameInfo,
2186                               NamedDecl *D) {
2187  assert(D && "Cannot refer to a NULL declaration");
2188  assert(!isa<FunctionTemplateDecl>(D) &&
2189         "Cannot refer unambiguously to a function template");
2190
2191  SourceLocation Loc = NameInfo.getLoc();
2192  if (CheckDeclInExpr(*this, Loc, D))
2193    return ExprError();
2194
2195  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2196    // Specifically diagnose references to class templates that are missing
2197    // a template argument list.
2198    Diag(Loc, diag::err_template_decl_ref)
2199      << Template << SS.getRange();
2200    Diag(Template->getLocation(), diag::note_template_decl_here);
2201    return ExprError();
2202  }
2203
2204  // Make sure that we're referring to a value.
2205  ValueDecl *VD = dyn_cast<ValueDecl>(D);
2206  if (!VD) {
2207    Diag(Loc, diag::err_ref_non_value)
2208      << D << SS.getRange();
2209    Diag(D->getLocation(), diag::note_declared_at);
2210    return ExprError();
2211  }
2212
2213  // Check whether this declaration can be used. Note that we suppress
2214  // this check when we're going to perform argument-dependent lookup
2215  // on this function name, because this might not be the function
2216  // that overload resolution actually selects.
2217  if (DiagnoseUseOfDecl(VD, Loc))
2218    return ExprError();
2219
2220  // Only create DeclRefExpr's for valid Decl's.
2221  if (VD->isInvalidDecl())
2222    return ExprError();
2223
2224  // Handle members of anonymous structs and unions.  If we got here,
2225  // and the reference is to a class member indirect field, then this
2226  // must be the subject of a pointer-to-member expression.
2227  if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2228    if (!indirectField->isCXXClassMember())
2229      return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2230                                                      indirectField);
2231
2232  {
2233    QualType type = VD->getType();
2234    ExprValueKind valueKind = VK_RValue;
2235
2236    switch (D->getKind()) {
2237    // Ignore all the non-ValueDecl kinds.
2238#define ABSTRACT_DECL(kind)
2239#define VALUE(type, base)
2240#define DECL(type, base) \
2241    case Decl::type:
2242#include "clang/AST/DeclNodes.inc"
2243      llvm_unreachable("invalid value decl kind");
2244
2245    // These shouldn't make it here.
2246    case Decl::ObjCAtDefsField:
2247    case Decl::ObjCIvar:
2248      llvm_unreachable("forming non-member reference to ivar?");
2249
2250    // Enum constants are always r-values and never references.
2251    // Unresolved using declarations are dependent.
2252    case Decl::EnumConstant:
2253    case Decl::UnresolvedUsingValue:
2254      valueKind = VK_RValue;
2255      break;
2256
2257    // Fields and indirect fields that got here must be for
2258    // pointer-to-member expressions; we just call them l-values for
2259    // internal consistency, because this subexpression doesn't really
2260    // exist in the high-level semantics.
2261    case Decl::Field:
2262    case Decl::IndirectField:
2263      assert(getLangOpts().CPlusPlus &&
2264             "building reference to field in C?");
2265
2266      // These can't have reference type in well-formed programs, but
2267      // for internal consistency we do this anyway.
2268      type = type.getNonReferenceType();
2269      valueKind = VK_LValue;
2270      break;
2271
2272    // Non-type template parameters are either l-values or r-values
2273    // depending on the type.
2274    case Decl::NonTypeTemplateParm: {
2275      if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2276        type = reftype->getPointeeType();
2277        valueKind = VK_LValue; // even if the parameter is an r-value reference
2278        break;
2279      }
2280
2281      // For non-references, we need to strip qualifiers just in case
2282      // the template parameter was declared as 'const int' or whatever.
2283      valueKind = VK_RValue;
2284      type = type.getUnqualifiedType();
2285      break;
2286    }
2287
2288    case Decl::Var:
2289      // In C, "extern void blah;" is valid and is an r-value.
2290      if (!getLangOpts().CPlusPlus &&
2291          !type.hasQualifiers() &&
2292          type->isVoidType()) {
2293        valueKind = VK_RValue;
2294        break;
2295      }
2296      // fallthrough
2297
2298    case Decl::ImplicitParam:
2299    case Decl::ParmVar: {
2300      // These are always l-values.
2301      valueKind = VK_LValue;
2302      type = type.getNonReferenceType();
2303
2304      // FIXME: Does the addition of const really only apply in
2305      // potentially-evaluated contexts? Since the variable isn't actually
2306      // captured in an unevaluated context, it seems that the answer is no.
2307      if (ExprEvalContexts.back().Context != Sema::Unevaluated) {
2308        QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2309        if (!CapturedType.isNull())
2310          type = CapturedType;
2311      }
2312
2313      break;
2314    }
2315
2316    case Decl::Function: {
2317      const FunctionType *fty = type->castAs<FunctionType>();
2318
2319      // If we're referring to a function with an __unknown_anytype
2320      // result type, make the entire expression __unknown_anytype.
2321      if (fty->getResultType() == Context.UnknownAnyTy) {
2322        type = Context.UnknownAnyTy;
2323        valueKind = VK_RValue;
2324        break;
2325      }
2326
2327      // Functions are l-values in C++.
2328      if (getLangOpts().CPlusPlus) {
2329        valueKind = VK_LValue;
2330        break;
2331      }
2332
2333      // C99 DR 316 says that, if a function type comes from a
2334      // function definition (without a prototype), that type is only
2335      // used for checking compatibility. Therefore, when referencing
2336      // the function, we pretend that we don't have the full function
2337      // type.
2338      if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2339          isa<FunctionProtoType>(fty))
2340        type = Context.getFunctionNoProtoType(fty->getResultType(),
2341                                              fty->getExtInfo());
2342
2343      // Functions are r-values in C.
2344      valueKind = VK_RValue;
2345      break;
2346    }
2347
2348    case Decl::CXXMethod:
2349      // If we're referring to a method with an __unknown_anytype
2350      // result type, make the entire expression __unknown_anytype.
2351      // This should only be possible with a type written directly.
2352      if (const FunctionProtoType *proto
2353            = dyn_cast<FunctionProtoType>(VD->getType()))
2354        if (proto->getResultType() == Context.UnknownAnyTy) {
2355          type = Context.UnknownAnyTy;
2356          valueKind = VK_RValue;
2357          break;
2358        }
2359
2360      // C++ methods are l-values if static, r-values if non-static.
2361      if (cast<CXXMethodDecl>(VD)->isStatic()) {
2362        valueKind = VK_LValue;
2363        break;
2364      }
2365      // fallthrough
2366
2367    case Decl::CXXConversion:
2368    case Decl::CXXDestructor:
2369    case Decl::CXXConstructor:
2370      valueKind = VK_RValue;
2371      break;
2372    }
2373
2374    return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
2375  }
2376}
2377
2378ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
2379  PredefinedExpr::IdentType IT;
2380
2381  switch (Kind) {
2382  default: llvm_unreachable("Unknown simple primary expr!");
2383  case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
2384  case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
2385  case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
2386  }
2387
2388  // Pre-defined identifiers are of type char[x], where x is the length of the
2389  // string.
2390
2391  Decl *currentDecl = getCurFunctionOrMethodDecl();
2392  if (!currentDecl && getCurBlock())
2393    currentDecl = getCurBlock()->TheDecl;
2394  if (!currentDecl) {
2395    Diag(Loc, diag::ext_predef_outside_function);
2396    currentDecl = Context.getTranslationUnitDecl();
2397  }
2398
2399  QualType ResTy;
2400  if (cast<DeclContext>(currentDecl)->isDependentContext()) {
2401    ResTy = Context.DependentTy;
2402  } else {
2403    unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
2404
2405    llvm::APInt LengthI(32, Length + 1);
2406    ResTy = Context.CharTy.withConst();
2407    ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
2408  }
2409  return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
2410}
2411
2412ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
2413  SmallString<16> CharBuffer;
2414  bool Invalid = false;
2415  StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
2416  if (Invalid)
2417    return ExprError();
2418
2419  CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
2420                            PP, Tok.getKind());
2421  if (Literal.hadError())
2422    return ExprError();
2423
2424  QualType Ty;
2425  if (Literal.isWide())
2426    Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
2427  else if (Literal.isUTF16())
2428    Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
2429  else if (Literal.isUTF32())
2430    Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
2431  else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
2432    Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
2433  else
2434    Ty = Context.CharTy;  // 'x' -> char in C++
2435
2436  CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
2437  if (Literal.isWide())
2438    Kind = CharacterLiteral::Wide;
2439  else if (Literal.isUTF16())
2440    Kind = CharacterLiteral::UTF16;
2441  else if (Literal.isUTF32())
2442    Kind = CharacterLiteral::UTF32;
2443
2444  Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
2445                                             Tok.getLocation());
2446
2447  if (Literal.getUDSuffix().empty())
2448    return Owned(Lit);
2449
2450  // We're building a user-defined literal.
2451  IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2452  SourceLocation UDSuffixLoc =
2453    getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2454
2455  // Make sure we're allowed user-defined literals here.
2456  if (!UDLScope)
2457    return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
2458
2459  // C++11 [lex.ext]p6: The literal L is treated as a call of the form
2460  //   operator "" X (ch)
2461  return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
2462                                        llvm::makeArrayRef(&Lit, 1),
2463                                        Tok.getLocation());
2464}
2465
2466ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
2467  unsigned IntSize = Context.getTargetInfo().getIntWidth();
2468  return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
2469                                      Context.IntTy, Loc));
2470}
2471
2472static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
2473                                  QualType Ty, SourceLocation Loc) {
2474  const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
2475
2476  using llvm::APFloat;
2477  APFloat Val(Format);
2478
2479  APFloat::opStatus result = Literal.GetFloatValue(Val);
2480
2481  // Overflow is always an error, but underflow is only an error if
2482  // we underflowed to zero (APFloat reports denormals as underflow).
2483  if ((result & APFloat::opOverflow) ||
2484      ((result & APFloat::opUnderflow) && Val.isZero())) {
2485    unsigned diagnostic;
2486    SmallString<20> buffer;
2487    if (result & APFloat::opOverflow) {
2488      diagnostic = diag::warn_float_overflow;
2489      APFloat::getLargest(Format).toString(buffer);
2490    } else {
2491      diagnostic = diag::warn_float_underflow;
2492      APFloat::getSmallest(Format).toString(buffer);
2493    }
2494
2495    S.Diag(Loc, diagnostic)
2496      << Ty
2497      << StringRef(buffer.data(), buffer.size());
2498  }
2499
2500  bool isExact = (result == APFloat::opOK);
2501  return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
2502}
2503
2504ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
2505  // Fast path for a single digit (which is quite common).  A single digit
2506  // cannot have a trigraph, escaped newline, radix prefix, or suffix.
2507  if (Tok.getLength() == 1) {
2508    const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
2509    return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
2510  }
2511
2512  SmallString<512> IntegerBuffer;
2513  // Add padding so that NumericLiteralParser can overread by one character.
2514  IntegerBuffer.resize(Tok.getLength()+1);
2515  const char *ThisTokBegin = &IntegerBuffer[0];
2516
2517  // Get the spelling of the token, which eliminates trigraphs, etc.
2518  bool Invalid = false;
2519  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
2520  if (Invalid)
2521    return ExprError();
2522
2523  NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
2524                               Tok.getLocation(), PP);
2525  if (Literal.hadError)
2526    return ExprError();
2527
2528  if (Literal.hasUDSuffix()) {
2529    // We're building a user-defined literal.
2530    IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2531    SourceLocation UDSuffixLoc =
2532      getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
2533
2534    // Make sure we're allowed user-defined literals here.
2535    if (!UDLScope)
2536      return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
2537
2538    QualType CookedTy;
2539    if (Literal.isFloatingLiteral()) {
2540      // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
2541      // long double, the literal is treated as a call of the form
2542      //   operator "" X (f L)
2543      CookedTy = Context.LongDoubleTy;
2544    } else {
2545      // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
2546      // unsigned long long, the literal is treated as a call of the form
2547      //   operator "" X (n ULL)
2548      CookedTy = Context.UnsignedLongLongTy;
2549    }
2550
2551    DeclarationName OpName =
2552      Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2553    DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2554    OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2555
2556    // Perform literal operator lookup to determine if we're building a raw
2557    // literal or a cooked one.
2558    LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2559    switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
2560                                  /*AllowRawAndTemplate*/true)) {
2561    case LOLR_Error:
2562      return ExprError();
2563
2564    case LOLR_Cooked: {
2565      Expr *Lit;
2566      if (Literal.isFloatingLiteral()) {
2567        Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
2568      } else {
2569        llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
2570        if (Literal.GetIntegerValue(ResultVal))
2571          Diag(Tok.getLocation(), diag::warn_integer_too_large);
2572        Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
2573                                     Tok.getLocation());
2574      }
2575      return BuildLiteralOperatorCall(R, OpNameInfo,
2576                                      llvm::makeArrayRef(&Lit, 1),
2577                                      Tok.getLocation());
2578    }
2579
2580    case LOLR_Raw: {
2581      // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
2582      // literal is treated as a call of the form
2583      //   operator "" X ("n")
2584      SourceLocation TokLoc = Tok.getLocation();
2585      unsigned Length = Literal.getUDSuffixOffset();
2586      QualType StrTy = Context.getConstantArrayType(
2587          Context.CharTy, llvm::APInt(32, Length + 1),
2588          ArrayType::Normal, 0);
2589      Expr *Lit = StringLiteral::Create(
2590          Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
2591          /*Pascal*/false, StrTy, &TokLoc, 1);
2592      return BuildLiteralOperatorCall(R, OpNameInfo,
2593                                      llvm::makeArrayRef(&Lit, 1), TokLoc);
2594    }
2595
2596    case LOLR_Template:
2597      // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
2598      // template), L is treated as a call fo the form
2599      //   operator "" X <'c1', 'c2', ... 'ck'>()
2600      // where n is the source character sequence c1 c2 ... ck.
2601      TemplateArgumentListInfo ExplicitArgs;
2602      unsigned CharBits = Context.getIntWidth(Context.CharTy);
2603      bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
2604      llvm::APSInt Value(CharBits, CharIsUnsigned);
2605      for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
2606        Value = ThisTokBegin[I];
2607        TemplateArgument Arg(Value, Context.CharTy);
2608        TemplateArgumentLocInfo ArgInfo;
2609        ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2610      }
2611      return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
2612                                      Tok.getLocation(), &ExplicitArgs);
2613    }
2614
2615    llvm_unreachable("unexpected literal operator lookup result");
2616  }
2617
2618  Expr *Res;
2619
2620  if (Literal.isFloatingLiteral()) {
2621    QualType Ty;
2622    if (Literal.isFloat)
2623      Ty = Context.FloatTy;
2624    else if (!Literal.isLong)
2625      Ty = Context.DoubleTy;
2626    else
2627      Ty = Context.LongDoubleTy;
2628
2629    Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
2630
2631    if (Ty == Context.DoubleTy) {
2632      if (getLangOpts().SinglePrecisionConstants) {
2633        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2634      } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
2635        Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
2636        Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
2637      }
2638    }
2639  } else if (!Literal.isIntegerLiteral()) {
2640    return ExprError();
2641  } else {
2642    QualType Ty;
2643
2644    // long long is a C99 feature.
2645    if (!getLangOpts().C99 && Literal.isLongLong)
2646      Diag(Tok.getLocation(),
2647           getLangOpts().CPlusPlus0x ?
2648             diag::warn_cxx98_compat_longlong : diag::ext_longlong);
2649
2650    // Get the value in the widest-possible width.
2651    unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
2652    // The microsoft literal suffix extensions support 128-bit literals, which
2653    // may be wider than [u]intmax_t.
2654    if (Literal.isMicrosoftInteger && MaxWidth < 128)
2655      MaxWidth = 128;
2656    llvm::APInt ResultVal(MaxWidth, 0);
2657
2658    if (Literal.GetIntegerValue(ResultVal)) {
2659      // If this value didn't fit into uintmax_t, warn and force to ull.
2660      Diag(Tok.getLocation(), diag::warn_integer_too_large);
2661      Ty = Context.UnsignedLongLongTy;
2662      assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
2663             "long long is not intmax_t?");
2664    } else {
2665      // If this value fits into a ULL, try to figure out what else it fits into
2666      // according to the rules of C99 6.4.4.1p5.
2667
2668      // Octal, Hexadecimal, and integers with a U suffix are allowed to
2669      // be an unsigned int.
2670      bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
2671
2672      // Check from smallest to largest, picking the smallest type we can.
2673      unsigned Width = 0;
2674      if (!Literal.isLong && !Literal.isLongLong) {
2675        // Are int/unsigned possibilities?
2676        unsigned IntSize = Context.getTargetInfo().getIntWidth();
2677
2678        // Does it fit in a unsigned int?
2679        if (ResultVal.isIntN(IntSize)) {
2680          // Does it fit in a signed int?
2681          if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
2682            Ty = Context.IntTy;
2683          else if (AllowUnsigned)
2684            Ty = Context.UnsignedIntTy;
2685          Width = IntSize;
2686        }
2687      }
2688
2689      // Are long/unsigned long possibilities?
2690      if (Ty.isNull() && !Literal.isLongLong) {
2691        unsigned LongSize = Context.getTargetInfo().getLongWidth();
2692
2693        // Does it fit in a unsigned long?
2694        if (ResultVal.isIntN(LongSize)) {
2695          // Does it fit in a signed long?
2696          if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
2697            Ty = Context.LongTy;
2698          else if (AllowUnsigned)
2699            Ty = Context.UnsignedLongTy;
2700          Width = LongSize;
2701        }
2702      }
2703
2704      // Check long long if needed.
2705      if (Ty.isNull()) {
2706        unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
2707
2708        // Does it fit in a unsigned long long?
2709        if (ResultVal.isIntN(LongLongSize)) {
2710          // Does it fit in a signed long long?
2711          // To be compatible with MSVC, hex integer literals ending with the
2712          // LL or i64 suffix are always signed in Microsoft mode.
2713          if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
2714              (getLangOpts().MicrosoftExt && Literal.isLongLong)))
2715            Ty = Context.LongLongTy;
2716          else if (AllowUnsigned)
2717            Ty = Context.UnsignedLongLongTy;
2718          Width = LongLongSize;
2719        }
2720      }
2721
2722      // If it doesn't fit in unsigned long long, and we're using Microsoft
2723      // extensions, then its a 128-bit integer literal.
2724      if (Ty.isNull() && Literal.isMicrosoftInteger) {
2725        if (Literal.isUnsigned)
2726          Ty = Context.UnsignedInt128Ty;
2727        else
2728          Ty = Context.Int128Ty;
2729        Width = 128;
2730      }
2731
2732      // If we still couldn't decide a type, we probably have something that
2733      // does not fit in a signed long long, but has no U suffix.
2734      if (Ty.isNull()) {
2735        Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
2736        Ty = Context.UnsignedLongLongTy;
2737        Width = Context.getTargetInfo().getLongLongWidth();
2738      }
2739
2740      if (ResultVal.getBitWidth() != Width)
2741        ResultVal = ResultVal.trunc(Width);
2742    }
2743    Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
2744  }
2745
2746  // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
2747  if (Literal.isImaginary)
2748    Res = new (Context) ImaginaryLiteral(Res,
2749                                        Context.getComplexType(Res->getType()));
2750
2751  return Owned(Res);
2752}
2753
2754ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
2755  assert((E != 0) && "ActOnParenExpr() missing expr");
2756  return Owned(new (Context) ParenExpr(L, R, E));
2757}
2758
2759static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
2760                                         SourceLocation Loc,
2761                                         SourceRange ArgRange) {
2762  // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
2763  // scalar or vector data type argument..."
2764  // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
2765  // type (C99 6.2.5p18) or void.
2766  if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
2767    S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
2768      << T << ArgRange;
2769    return true;
2770  }
2771
2772  assert((T->isVoidType() || !T->isIncompleteType()) &&
2773         "Scalar types should always be complete");
2774  return false;
2775}
2776
2777static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
2778                                           SourceLocation Loc,
2779                                           SourceRange ArgRange,
2780                                           UnaryExprOrTypeTrait TraitKind) {
2781  // C99 6.5.3.4p1:
2782  if (T->isFunctionType()) {
2783    // alignof(function) is allowed as an extension.
2784    if (TraitKind == UETT_SizeOf)
2785      S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
2786    return false;
2787  }
2788
2789  // Allow sizeof(void)/alignof(void) as an extension.
2790  if (T->isVoidType()) {
2791    S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
2792    return false;
2793  }
2794
2795  return true;
2796}
2797
2798static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
2799                                             SourceLocation Loc,
2800                                             SourceRange ArgRange,
2801                                             UnaryExprOrTypeTrait TraitKind) {
2802  // Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
2803  if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
2804    S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
2805      << T << (TraitKind == UETT_SizeOf)
2806      << ArgRange;
2807    return true;
2808  }
2809
2810  return false;
2811}
2812
2813/// \brief Check the constrains on expression operands to unary type expression
2814/// and type traits.
2815///
2816/// Completes any types necessary and validates the constraints on the operand
2817/// expression. The logic mostly mirrors the type-based overload, but may modify
2818/// the expression as it completes the type for that expression through template
2819/// instantiation, etc.
2820bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
2821                                            UnaryExprOrTypeTrait ExprKind) {
2822  QualType ExprTy = E->getType();
2823
2824  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2825  //   the result is the size of the referenced type."
2826  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2827  //   result shall be the alignment of the referenced type."
2828  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2829    ExprTy = Ref->getPointeeType();
2830
2831  if (ExprKind == UETT_VecStep)
2832    return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
2833                                        E->getSourceRange());
2834
2835  // Whitelist some types as extensions
2836  if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
2837                                      E->getSourceRange(), ExprKind))
2838    return false;
2839
2840  if (RequireCompleteExprType(E,
2841                              diag::err_sizeof_alignof_incomplete_type,
2842                              ExprKind, E->getSourceRange()))
2843    return true;
2844
2845  // Completeing the expression's type may have changed it.
2846  ExprTy = E->getType();
2847  if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
2848    ExprTy = Ref->getPointeeType();
2849
2850  if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
2851                                       E->getSourceRange(), ExprKind))
2852    return true;
2853
2854  if (ExprKind == UETT_SizeOf) {
2855    if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
2856      if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
2857        QualType OType = PVD->getOriginalType();
2858        QualType Type = PVD->getType();
2859        if (Type->isPointerType() && OType->isArrayType()) {
2860          Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
2861            << Type << OType;
2862          Diag(PVD->getLocation(), diag::note_declared_at);
2863        }
2864      }
2865    }
2866  }
2867
2868  return false;
2869}
2870
2871/// \brief Check the constraints on operands to unary expression and type
2872/// traits.
2873///
2874/// This will complete any types necessary, and validate the various constraints
2875/// on those operands.
2876///
2877/// The UsualUnaryConversions() function is *not* called by this routine.
2878/// C99 6.3.2.1p[2-4] all state:
2879///   Except when it is the operand of the sizeof operator ...
2880///
2881/// C++ [expr.sizeof]p4
2882///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
2883///   standard conversions are not applied to the operand of sizeof.
2884///
2885/// This policy is followed for all of the unary trait expressions.
2886bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
2887                                            SourceLocation OpLoc,
2888                                            SourceRange ExprRange,
2889                                            UnaryExprOrTypeTrait ExprKind) {
2890  if (ExprType->isDependentType())
2891    return false;
2892
2893  // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
2894  //   the result is the size of the referenced type."
2895  // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
2896  //   result shall be the alignment of the referenced type."
2897  if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
2898    ExprType = Ref->getPointeeType();
2899
2900  if (ExprKind == UETT_VecStep)
2901    return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
2902
2903  // Whitelist some types as extensions
2904  if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
2905                                      ExprKind))
2906    return false;
2907
2908  if (RequireCompleteType(OpLoc, ExprType,
2909                          diag::err_sizeof_alignof_incomplete_type,
2910                          ExprKind, ExprRange))
2911    return true;
2912
2913  if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
2914                                       ExprKind))
2915    return true;
2916
2917  return false;
2918}
2919
2920static bool CheckAlignOfExpr(Sema &S, Expr *E) {
2921  E = E->IgnoreParens();
2922
2923  // alignof decl is always ok.
2924  if (isa<DeclRefExpr>(E))
2925    return false;
2926
2927  // Cannot know anything else if the expression is dependent.
2928  if (E->isTypeDependent())
2929    return false;
2930
2931  if (E->getBitField()) {
2932    S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
2933       << 1 << E->getSourceRange();
2934    return true;
2935  }
2936
2937  // Alignment of a field access is always okay, so long as it isn't a
2938  // bit-field.
2939  if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
2940    if (isa<FieldDecl>(ME->getMemberDecl()))
2941      return false;
2942
2943  return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
2944}
2945
2946bool Sema::CheckVecStepExpr(Expr *E) {
2947  E = E->IgnoreParens();
2948
2949  // Cannot know anything else if the expression is dependent.
2950  if (E->isTypeDependent())
2951    return false;
2952
2953  return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
2954}
2955
2956/// \brief Build a sizeof or alignof expression given a type operand.
2957ExprResult
2958Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
2959                                     SourceLocation OpLoc,
2960                                     UnaryExprOrTypeTrait ExprKind,
2961                                     SourceRange R) {
2962  if (!TInfo)
2963    return ExprError();
2964
2965  QualType T = TInfo->getType();
2966
2967  if (!T->isDependentType() &&
2968      CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
2969    return ExprError();
2970
2971  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
2972  return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
2973                                                      Context.getSizeType(),
2974                                                      OpLoc, R.getEnd()));
2975}
2976
2977/// \brief Build a sizeof or alignof expression given an expression
2978/// operand.
2979ExprResult
2980Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
2981                                     UnaryExprOrTypeTrait ExprKind) {
2982  ExprResult PE = CheckPlaceholderExpr(E);
2983  if (PE.isInvalid())
2984    return ExprError();
2985
2986  E = PE.get();
2987
2988  // Verify that the operand is valid.
2989  bool isInvalid = false;
2990  if (E->isTypeDependent()) {
2991    // Delay type-checking for type-dependent expressions.
2992  } else if (ExprKind == UETT_AlignOf) {
2993    isInvalid = CheckAlignOfExpr(*this, E);
2994  } else if (ExprKind == UETT_VecStep) {
2995    isInvalid = CheckVecStepExpr(E);
2996  } else if (E->getBitField()) {  // C99 6.5.3.4p1.
2997    Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
2998    isInvalid = true;
2999  } else {
3000    isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3001  }
3002
3003  if (isInvalid)
3004    return ExprError();
3005
3006  if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3007    PE = TranformToPotentiallyEvaluated(E);
3008    if (PE.isInvalid()) return ExprError();
3009    E = PE.take();
3010  }
3011
3012  // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3013  return Owned(new (Context) UnaryExprOrTypeTraitExpr(
3014      ExprKind, E, Context.getSizeType(), OpLoc,
3015      E->getSourceRange().getEnd()));
3016}
3017
3018/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3019/// expr and the same for @c alignof and @c __alignof
3020/// Note that the ArgRange is invalid if isType is false.
3021ExprResult
3022Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3023                                    UnaryExprOrTypeTrait ExprKind, bool IsType,
3024                                    void *TyOrEx, const SourceRange &ArgRange) {
3025  // If error parsing type, ignore.
3026  if (TyOrEx == 0) return ExprError();
3027
3028  if (IsType) {
3029    TypeSourceInfo *TInfo;
3030    (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3031    return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3032  }
3033
3034  Expr *ArgEx = (Expr *)TyOrEx;
3035  ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3036  return move(Result);
3037}
3038
3039static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3040                                     bool IsReal) {
3041  if (V.get()->isTypeDependent())
3042    return S.Context.DependentTy;
3043
3044  // _Real and _Imag are only l-values for normal l-values.
3045  if (V.get()->getObjectKind() != OK_Ordinary) {
3046    V = S.DefaultLvalueConversion(V.take());
3047    if (V.isInvalid())
3048      return QualType();
3049  }
3050
3051  // These operators return the element type of a complex type.
3052  if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3053    return CT->getElementType();
3054
3055  // Otherwise they pass through real integer and floating point types here.
3056  if (V.get()->getType()->isArithmeticType())
3057    return V.get()->getType();
3058
3059  // Test for placeholders.
3060  ExprResult PR = S.CheckPlaceholderExpr(V.get());
3061  if (PR.isInvalid()) return QualType();
3062  if (PR.get() != V.get()) {
3063    V = move(PR);
3064    return CheckRealImagOperand(S, V, Loc, IsReal);
3065  }
3066
3067  // Reject anything else.
3068  S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3069    << (IsReal ? "__real" : "__imag");
3070  return QualType();
3071}
3072
3073
3074
3075ExprResult
3076Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3077                          tok::TokenKind Kind, Expr *Input) {
3078  UnaryOperatorKind Opc;
3079  switch (Kind) {
3080  default: llvm_unreachable("Unknown unary op!");
3081  case tok::plusplus:   Opc = UO_PostInc; break;
3082  case tok::minusminus: Opc = UO_PostDec; break;
3083  }
3084
3085  // Since this might is a postfix expression, get rid of ParenListExprs.
3086  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3087  if (Result.isInvalid()) return ExprError();
3088  Input = Result.take();
3089
3090  return BuildUnaryOp(S, OpLoc, Opc, Input);
3091}
3092
3093ExprResult
3094Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
3095                              Expr *Idx, SourceLocation RLoc) {
3096  // Since this might be a postfix expression, get rid of ParenListExprs.
3097  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3098  if (Result.isInvalid()) return ExprError();
3099  Base = Result.take();
3100
3101  Expr *LHSExp = Base, *RHSExp = Idx;
3102
3103  if (getLangOpts().CPlusPlus &&
3104      (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
3105    return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3106                                                  Context.DependentTy,
3107                                                  VK_LValue, OK_Ordinary,
3108                                                  RLoc));
3109  }
3110
3111  if (getLangOpts().CPlusPlus &&
3112      (LHSExp->getType()->isRecordType() ||
3113       LHSExp->getType()->isEnumeralType() ||
3114       RHSExp->getType()->isRecordType() ||
3115       RHSExp->getType()->isEnumeralType()) &&
3116      !LHSExp->getType()->isObjCObjectPointerType()) {
3117    return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
3118  }
3119
3120  return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
3121}
3122
3123
3124ExprResult
3125Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3126                                      Expr *Idx, SourceLocation RLoc) {
3127  Expr *LHSExp = Base;
3128  Expr *RHSExp = Idx;
3129
3130  // Perform default conversions.
3131  if (!LHSExp->getType()->getAs<VectorType>()) {
3132    ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3133    if (Result.isInvalid())
3134      return ExprError();
3135    LHSExp = Result.take();
3136  }
3137  ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3138  if (Result.isInvalid())
3139    return ExprError();
3140  RHSExp = Result.take();
3141
3142  QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3143  ExprValueKind VK = VK_LValue;
3144  ExprObjectKind OK = OK_Ordinary;
3145
3146  // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3147  // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3148  // in the subscript position. As a result, we need to derive the array base
3149  // and index from the expression types.
3150  Expr *BaseExpr, *IndexExpr;
3151  QualType ResultType;
3152  if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3153    BaseExpr = LHSExp;
3154    IndexExpr = RHSExp;
3155    ResultType = Context.DependentTy;
3156  } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3157    BaseExpr = LHSExp;
3158    IndexExpr = RHSExp;
3159    ResultType = PTy->getPointeeType();
3160  } else if (const ObjCObjectPointerType *PTy =
3161             LHSTy->getAs<ObjCObjectPointerType>()) {
3162    BaseExpr = LHSExp;
3163    IndexExpr = RHSExp;
3164    Result = BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
3165    if (!Result.isInvalid())
3166      return Owned(Result.take());
3167    ResultType = PTy->getPointeeType();
3168  } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3169     // Handle the uncommon case of "123[Ptr]".
3170    BaseExpr = RHSExp;
3171    IndexExpr = LHSExp;
3172    ResultType = PTy->getPointeeType();
3173  } else if (const ObjCObjectPointerType *PTy =
3174               RHSTy->getAs<ObjCObjectPointerType>()) {
3175     // Handle the uncommon case of "123[Ptr]".
3176    BaseExpr = RHSExp;
3177    IndexExpr = LHSExp;
3178    ResultType = PTy->getPointeeType();
3179  } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3180    BaseExpr = LHSExp;    // vectors: V[123]
3181    IndexExpr = RHSExp;
3182    VK = LHSExp->getValueKind();
3183    if (VK != VK_RValue)
3184      OK = OK_VectorComponent;
3185
3186    // FIXME: need to deal with const...
3187    ResultType = VTy->getElementType();
3188  } else if (LHSTy->isArrayType()) {
3189    // If we see an array that wasn't promoted by
3190    // DefaultFunctionArrayLvalueConversion, it must be an array that
3191    // wasn't promoted because of the C90 rule that doesn't
3192    // allow promoting non-lvalue arrays.  Warn, then
3193    // force the promotion here.
3194    Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3195        LHSExp->getSourceRange();
3196    LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3197                               CK_ArrayToPointerDecay).take();
3198    LHSTy = LHSExp->getType();
3199
3200    BaseExpr = LHSExp;
3201    IndexExpr = RHSExp;
3202    ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3203  } else if (RHSTy->isArrayType()) {
3204    // Same as previous, except for 123[f().a] case
3205    Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3206        RHSExp->getSourceRange();
3207    RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3208                               CK_ArrayToPointerDecay).take();
3209    RHSTy = RHSExp->getType();
3210
3211    BaseExpr = RHSExp;
3212    IndexExpr = LHSExp;
3213    ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
3214  } else {
3215    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
3216       << LHSExp->getSourceRange() << RHSExp->getSourceRange());
3217  }
3218  // C99 6.5.2.1p1
3219  if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
3220    return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
3221                     << IndexExpr->getSourceRange());
3222
3223  if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
3224       IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
3225         && !IndexExpr->isTypeDependent())
3226    Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
3227
3228  // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
3229  // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
3230  // type. Note that Functions are not objects, and that (in C99 parlance)
3231  // incomplete types are not object types.
3232  if (ResultType->isFunctionType()) {
3233    Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
3234      << ResultType << BaseExpr->getSourceRange();
3235    return ExprError();
3236  }
3237
3238  if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
3239    // GNU extension: subscripting on pointer to void
3240    Diag(LLoc, diag::ext_gnu_subscript_void_type)
3241      << BaseExpr->getSourceRange();
3242
3243    // C forbids expressions of unqualified void type from being l-values.
3244    // See IsCForbiddenLValueType.
3245    if (!ResultType.hasQualifiers()) VK = VK_RValue;
3246  } else if (!ResultType->isDependentType() &&
3247      RequireCompleteType(LLoc, ResultType,
3248                          diag::err_subscript_incomplete_type, BaseExpr))
3249    return ExprError();
3250
3251  // Diagnose bad cases where we step over interface counts.
3252  if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
3253    Diag(LLoc, diag::err_subscript_nonfragile_interface)
3254      << ResultType << BaseExpr->getSourceRange();
3255    return ExprError();
3256  }
3257
3258  assert(VK == VK_RValue || LangOpts.CPlusPlus ||
3259         !ResultType.isCForbiddenLValueType());
3260
3261  return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
3262                                                ResultType, VK, OK, RLoc));
3263}
3264
3265ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
3266                                        FunctionDecl *FD,
3267                                        ParmVarDecl *Param) {
3268  if (Param->hasUnparsedDefaultArg()) {
3269    Diag(CallLoc,
3270         diag::err_use_of_default_argument_to_function_declared_later) <<
3271      FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
3272    Diag(UnparsedDefaultArgLocs[Param],
3273         diag::note_default_argument_declared_here);
3274    return ExprError();
3275  }
3276
3277  if (Param->hasUninstantiatedDefaultArg()) {
3278    Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
3279
3280    // Instantiate the expression.
3281    MultiLevelTemplateArgumentList ArgList
3282      = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
3283
3284    std::pair<const TemplateArgument *, unsigned> Innermost
3285      = ArgList.getInnermost();
3286    InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
3287                               Innermost.second);
3288
3289    ExprResult Result;
3290    {
3291      // C++ [dcl.fct.default]p5:
3292      //   The names in the [default argument] expression are bound, and
3293      //   the semantic constraints are checked, at the point where the
3294      //   default argument expression appears.
3295      ContextRAII SavedContext(*this, FD);
3296      LocalInstantiationScope Local(*this);
3297      Result = SubstExpr(UninstExpr, ArgList);
3298    }
3299    if (Result.isInvalid())
3300      return ExprError();
3301
3302    // Check the expression as an initializer for the parameter.
3303    InitializedEntity Entity
3304      = InitializedEntity::InitializeParameter(Context, Param);
3305    InitializationKind Kind
3306      = InitializationKind::CreateCopy(Param->getLocation(),
3307             /*FIXME:EqualLoc*/UninstExpr->getLocStart());
3308    Expr *ResultE = Result.takeAs<Expr>();
3309
3310    InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
3311    Result = InitSeq.Perform(*this, Entity, Kind,
3312                             MultiExprArg(*this, &ResultE, 1));
3313    if (Result.isInvalid())
3314      return ExprError();
3315
3316    Expr *Arg = Result.takeAs<Expr>();
3317    CheckImplicitConversions(Arg, Arg->getExprLoc());
3318    // Build the default argument expression.
3319    return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
3320  }
3321
3322  // If the default expression creates temporaries, we need to
3323  // push them to the current stack of expression temporaries so they'll
3324  // be properly destroyed.
3325  // FIXME: We should really be rebuilding the default argument with new
3326  // bound temporaries; see the comment in PR5810.
3327  // We don't need to do that with block decls, though, because
3328  // blocks in default argument expression can never capture anything.
3329  if (isa<ExprWithCleanups>(Param->getInit())) {
3330    // Set the "needs cleanups" bit regardless of whether there are
3331    // any explicit objects.
3332    ExprNeedsCleanups = true;
3333
3334    // Append all the objects to the cleanup list.  Right now, this
3335    // should always be a no-op, because blocks in default argument
3336    // expressions should never be able to capture anything.
3337    assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
3338           "default argument expression has capturing blocks?");
3339  }
3340
3341  // We already type-checked the argument, so we know it works.
3342  // Just mark all of the declarations in this potentially-evaluated expression
3343  // as being "referenced".
3344  MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
3345                                   /*SkipLocalVariables=*/true);
3346  return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
3347}
3348
3349/// ConvertArgumentsForCall - Converts the arguments specified in
3350/// Args/NumArgs to the parameter types of the function FDecl with
3351/// function prototype Proto. Call is the call expression itself, and
3352/// Fn is the function expression. For a C++ member function, this
3353/// routine does not attempt to convert the object argument. Returns
3354/// true if the call is ill-formed.
3355bool
3356Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
3357                              FunctionDecl *FDecl,
3358                              const FunctionProtoType *Proto,
3359                              Expr **Args, unsigned NumArgs,
3360                              SourceLocation RParenLoc,
3361                              bool IsExecConfig) {
3362  // Bail out early if calling a builtin with custom typechecking.
3363  // We don't need to do this in the
3364  if (FDecl)
3365    if (unsigned ID = FDecl->getBuiltinID())
3366      if (Context.BuiltinInfo.hasCustomTypechecking(ID))
3367        return false;
3368
3369  // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
3370  // assignment, to the types of the corresponding parameter, ...
3371  unsigned NumArgsInProto = Proto->getNumArgs();
3372  bool Invalid = false;
3373  unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
3374  unsigned FnKind = Fn->getType()->isBlockPointerType()
3375                       ? 1 /* block */
3376                       : (IsExecConfig ? 3 /* kernel function (exec config) */
3377                                       : 0 /* function */);
3378
3379  // If too few arguments are available (and we don't have default
3380  // arguments for the remaining parameters), don't make the call.
3381  if (NumArgs < NumArgsInProto) {
3382    if (NumArgs < MinArgs) {
3383      Diag(RParenLoc, MinArgs == NumArgsInProto
3384                        ? diag::err_typecheck_call_too_few_args
3385                        : diag::err_typecheck_call_too_few_args_at_least)
3386        << FnKind
3387        << MinArgs << NumArgs << Fn->getSourceRange();
3388
3389      // Emit the location of the prototype.
3390      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3391        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3392          << FDecl;
3393
3394      return true;
3395    }
3396    Call->setNumArgs(Context, NumArgsInProto);
3397  }
3398
3399  // If too many are passed and not variadic, error on the extras and drop
3400  // them.
3401  if (NumArgs > NumArgsInProto) {
3402    if (!Proto->isVariadic()) {
3403      Diag(Args[NumArgsInProto]->getLocStart(),
3404           MinArgs == NumArgsInProto
3405             ? diag::err_typecheck_call_too_many_args
3406             : diag::err_typecheck_call_too_many_args_at_most)
3407        << FnKind
3408        << NumArgsInProto << NumArgs << Fn->getSourceRange()
3409        << SourceRange(Args[NumArgsInProto]->getLocStart(),
3410                       Args[NumArgs-1]->getLocEnd());
3411
3412      // Emit the location of the prototype.
3413      if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
3414        Diag(FDecl->getLocStart(), diag::note_callee_decl)
3415          << FDecl;
3416
3417      // This deletes the extra arguments.
3418      Call->setNumArgs(Context, NumArgsInProto);
3419      return true;
3420    }
3421  }
3422  SmallVector<Expr *, 8> AllArgs;
3423  VariadicCallType CallType =
3424    Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
3425  if (Fn->getType()->isBlockPointerType())
3426    CallType = VariadicBlock; // Block
3427  else if (isa<MemberExpr>(Fn))
3428    CallType = VariadicMethod;
3429  Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
3430                                   Proto, 0, Args, NumArgs, AllArgs, CallType);
3431  if (Invalid)
3432    return true;
3433  unsigned TotalNumArgs = AllArgs.size();
3434  for (unsigned i = 0; i < TotalNumArgs; ++i)
3435    Call->setArg(i, AllArgs[i]);
3436
3437  return false;
3438}
3439
3440bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
3441                                  FunctionDecl *FDecl,
3442                                  const FunctionProtoType *Proto,
3443                                  unsigned FirstProtoArg,
3444                                  Expr **Args, unsigned NumArgs,
3445                                  SmallVector<Expr *, 8> &AllArgs,
3446                                  VariadicCallType CallType,
3447                                  bool AllowExplicit) {
3448  unsigned NumArgsInProto = Proto->getNumArgs();
3449  unsigned NumArgsToCheck = NumArgs;
3450  bool Invalid = false;
3451  if (NumArgs != NumArgsInProto)
3452    // Use default arguments for missing arguments
3453    NumArgsToCheck = NumArgsInProto;
3454  unsigned ArgIx = 0;
3455  // Continue to check argument types (even if we have too few/many args).
3456  for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
3457    QualType ProtoArgType = Proto->getArgType(i);
3458
3459    Expr *Arg;
3460    ParmVarDecl *Param;
3461    if (ArgIx < NumArgs) {
3462      Arg = Args[ArgIx++];
3463
3464      if (RequireCompleteType(Arg->getLocStart(),
3465                              ProtoArgType,
3466                              diag::err_call_incomplete_argument, Arg))
3467        return true;
3468
3469      // Pass the argument
3470      Param = 0;
3471      if (FDecl && i < FDecl->getNumParams())
3472        Param = FDecl->getParamDecl(i);
3473
3474      // Strip the unbridged-cast placeholder expression off, if applicable.
3475      if (Arg->getType() == Context.ARCUnbridgedCastTy &&
3476          FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
3477          (!Param || !Param->hasAttr<CFConsumedAttr>()))
3478        Arg = stripARCUnbridgedCast(Arg);
3479
3480      InitializedEntity Entity =
3481        Param? InitializedEntity::InitializeParameter(Context, Param)
3482             : InitializedEntity::InitializeParameter(Context, ProtoArgType,
3483                                                      Proto->isArgConsumed(i));
3484      ExprResult ArgE = PerformCopyInitialization(Entity,
3485                                                  SourceLocation(),
3486                                                  Owned(Arg),
3487                                                  /*TopLevelOfInitList=*/false,
3488                                                  AllowExplicit);
3489      if (ArgE.isInvalid())
3490        return true;
3491
3492      Arg = ArgE.takeAs<Expr>();
3493    } else {
3494      Param = FDecl->getParamDecl(i);
3495
3496      ExprResult ArgExpr =
3497        BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
3498      if (ArgExpr.isInvalid())
3499        return true;
3500
3501      Arg = ArgExpr.takeAs<Expr>();
3502    }
3503
3504    // Check for array bounds violations for each argument to the call. This
3505    // check only triggers warnings when the argument isn't a more complex Expr
3506    // with its own checking, such as a BinaryOperator.
3507    CheckArrayAccess(Arg);
3508
3509    // Check for violations of C99 static array rules (C99 6.7.5.3p7).
3510    CheckStaticArrayArgument(CallLoc, Param, Arg);
3511
3512    AllArgs.push_back(Arg);
3513  }
3514
3515  // If this is a variadic call, handle args passed through "...".
3516  if (CallType != VariadicDoesNotApply) {
3517
3518    // Assume that extern "C" functions with variadic arguments that
3519    // return __unknown_anytype aren't *really* variadic.
3520    if (Proto->getResultType() == Context.UnknownAnyTy &&
3521        FDecl && FDecl->isExternC()) {
3522      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3523        ExprResult arg;
3524        if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
3525          arg = DefaultFunctionArrayLvalueConversion(Args[i]);
3526        else
3527          arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
3528        Invalid |= arg.isInvalid();
3529        AllArgs.push_back(arg.take());
3530      }
3531
3532    // Otherwise do argument promotion, (C99 6.5.2.2p7).
3533    } else {
3534      for (unsigned i = ArgIx; i != NumArgs; ++i) {
3535        ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
3536                                                          FDecl);
3537        Invalid |= Arg.isInvalid();
3538        AllArgs.push_back(Arg.take());
3539      }
3540    }
3541
3542    // Check for array bounds violations.
3543    for (unsigned i = ArgIx; i != NumArgs; ++i)
3544      CheckArrayAccess(Args[i]);
3545  }
3546  return Invalid;
3547}
3548
3549static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
3550  TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
3551  if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
3552    S.Diag(PVD->getLocation(), diag::note_callee_static_array)
3553      << ATL->getLocalSourceRange();
3554}
3555
3556/// CheckStaticArrayArgument - If the given argument corresponds to a static
3557/// array parameter, check that it is non-null, and that if it is formed by
3558/// array-to-pointer decay, the underlying array is sufficiently large.
3559///
3560/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
3561/// array type derivation, then for each call to the function, the value of the
3562/// corresponding actual argument shall provide access to the first element of
3563/// an array with at least as many elements as specified by the size expression.
3564void
3565Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
3566                               ParmVarDecl *Param,
3567                               const Expr *ArgExpr) {
3568  // Static array parameters are not supported in C++.
3569  if (!Param || getLangOpts().CPlusPlus)
3570    return;
3571
3572  QualType OrigTy = Param->getOriginalType();
3573
3574  const ArrayType *AT = Context.getAsArrayType(OrigTy);
3575  if (!AT || AT->getSizeModifier() != ArrayType::Static)
3576    return;
3577
3578  if (ArgExpr->isNullPointerConstant(Context,
3579                                     Expr::NPC_NeverValueDependent)) {
3580    Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
3581    DiagnoseCalleeStaticArrayParam(*this, Param);
3582    return;
3583  }
3584
3585  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
3586  if (!CAT)
3587    return;
3588
3589  const ConstantArrayType *ArgCAT =
3590    Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
3591  if (!ArgCAT)
3592    return;
3593
3594  if (ArgCAT->getSize().ult(CAT->getSize())) {
3595    Diag(CallLoc, diag::warn_static_array_too_small)
3596      << ArgExpr->getSourceRange()
3597      << (unsigned) ArgCAT->getSize().getZExtValue()
3598      << (unsigned) CAT->getSize().getZExtValue();
3599    DiagnoseCalleeStaticArrayParam(*this, Param);
3600  }
3601}
3602
3603/// Given a function expression of unknown-any type, try to rebuild it
3604/// to have a function type.
3605static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
3606
3607/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
3608/// This provides the location of the left/right parens and a list of comma
3609/// locations.
3610ExprResult
3611Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
3612                    MultiExprArg ArgExprs, SourceLocation RParenLoc,
3613                    Expr *ExecConfig, bool IsExecConfig) {
3614  unsigned NumArgs = ArgExprs.size();
3615
3616  // Since this might be a postfix expression, get rid of ParenListExprs.
3617  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
3618  if (Result.isInvalid()) return ExprError();
3619  Fn = Result.take();
3620
3621  Expr **Args = ArgExprs.release();
3622
3623  if (getLangOpts().CPlusPlus) {
3624    // If this is a pseudo-destructor expression, build the call immediately.
3625    if (isa<CXXPseudoDestructorExpr>(Fn)) {
3626      if (NumArgs > 0) {
3627        // Pseudo-destructor calls should not have any arguments.
3628        Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
3629          << FixItHint::CreateRemoval(
3630                                    SourceRange(Args[0]->getLocStart(),
3631                                                Args[NumArgs-1]->getLocEnd()));
3632      }
3633
3634      return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
3635                                          VK_RValue, RParenLoc));
3636    }
3637
3638    // Determine whether this is a dependent call inside a C++ template,
3639    // in which case we won't do any semantic analysis now.
3640    // FIXME: Will need to cache the results of name lookup (including ADL) in
3641    // Fn.
3642    bool Dependent = false;
3643    if (Fn->isTypeDependent())
3644      Dependent = true;
3645    else if (Expr::hasAnyTypeDependentArguments(
3646        llvm::makeArrayRef(Args, NumArgs)))
3647      Dependent = true;
3648
3649    if (Dependent) {
3650      if (ExecConfig) {
3651        return Owned(new (Context) CUDAKernelCallExpr(
3652            Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
3653            Context.DependentTy, VK_RValue, RParenLoc));
3654      } else {
3655        return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
3656                                            Context.DependentTy, VK_RValue,
3657                                            RParenLoc));
3658      }
3659    }
3660
3661    // Determine whether this is a call to an object (C++ [over.call.object]).
3662    if (Fn->getType()->isRecordType())
3663      return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
3664                                                RParenLoc));
3665
3666    if (Fn->getType() == Context.UnknownAnyTy) {
3667      ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3668      if (result.isInvalid()) return ExprError();
3669      Fn = result.take();
3670    }
3671
3672    if (Fn->getType() == Context.BoundMemberTy) {
3673      return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3674                                       RParenLoc);
3675    }
3676  }
3677
3678  // Check for overloaded calls.  This can happen even in C due to extensions.
3679  if (Fn->getType() == Context.OverloadTy) {
3680    OverloadExpr::FindResult find = OverloadExpr::find(Fn);
3681
3682    // We aren't supposed to apply this logic for if there's an '&' involved.
3683    if (!find.HasFormOfMemberPointer) {
3684      OverloadExpr *ovl = find.Expression;
3685      if (isa<UnresolvedLookupExpr>(ovl)) {
3686        UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
3687        return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
3688                                       RParenLoc, ExecConfig);
3689      } else {
3690        return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
3691                                         RParenLoc);
3692      }
3693    }
3694  }
3695
3696  // If we're directly calling a function, get the appropriate declaration.
3697  if (Fn->getType() == Context.UnknownAnyTy) {
3698    ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
3699    if (result.isInvalid()) return ExprError();
3700    Fn = result.take();
3701  }
3702
3703  Expr *NakedFn = Fn->IgnoreParens();
3704
3705  NamedDecl *NDecl = 0;
3706  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
3707    if (UnOp->getOpcode() == UO_AddrOf)
3708      NakedFn = UnOp->getSubExpr()->IgnoreParens();
3709
3710  if (isa<DeclRefExpr>(NakedFn))
3711    NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
3712  else if (isa<MemberExpr>(NakedFn))
3713    NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
3714
3715  return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
3716                               ExecConfig, IsExecConfig);
3717}
3718
3719ExprResult
3720Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
3721                              MultiExprArg ExecConfig, SourceLocation GGGLoc) {
3722  FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
3723  if (!ConfigDecl)
3724    return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
3725                          << "cudaConfigureCall");
3726  QualType ConfigQTy = ConfigDecl->getType();
3727
3728  DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
3729      ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
3730  MarkFunctionReferenced(LLLLoc, ConfigDecl);
3731
3732  return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
3733                       /*IsExecConfig=*/true);
3734}
3735
3736/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
3737///
3738/// __builtin_astype( value, dst type )
3739///
3740ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
3741                                 SourceLocation BuiltinLoc,
3742                                 SourceLocation RParenLoc) {
3743  ExprValueKind VK = VK_RValue;
3744  ExprObjectKind OK = OK_Ordinary;
3745  QualType DstTy = GetTypeFromParser(ParsedDestTy);
3746  QualType SrcTy = E->getType();
3747  if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
3748    return ExprError(Diag(BuiltinLoc,
3749                          diag::err_invalid_astype_of_different_size)
3750                     << DstTy
3751                     << SrcTy
3752                     << E->getSourceRange());
3753  return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
3754               RParenLoc));
3755}
3756
3757/// BuildResolvedCallExpr - Build a call to a resolved expression,
3758/// i.e. an expression not of \p OverloadTy.  The expression should
3759/// unary-convert to an expression of function-pointer or
3760/// block-pointer type.
3761///
3762/// \param NDecl the declaration being called, if available
3763ExprResult
3764Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
3765                            SourceLocation LParenLoc,
3766                            Expr **Args, unsigned NumArgs,
3767                            SourceLocation RParenLoc,
3768                            Expr *Config, bool IsExecConfig) {
3769  FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
3770
3771  // Promote the function operand.
3772  ExprResult Result = UsualUnaryConversions(Fn);
3773  if (Result.isInvalid())
3774    return ExprError();
3775  Fn = Result.take();
3776
3777  // Make the call expr early, before semantic checks.  This guarantees cleanup
3778  // of arguments and function on error.
3779  CallExpr *TheCall;
3780  if (Config) {
3781    TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
3782                                               cast<CallExpr>(Config),
3783                                               Args, NumArgs,
3784                                               Context.BoolTy,
3785                                               VK_RValue,
3786                                               RParenLoc);
3787  } else {
3788    TheCall = new (Context) CallExpr(Context, Fn,
3789                                     Args, NumArgs,
3790                                     Context.BoolTy,
3791                                     VK_RValue,
3792                                     RParenLoc);
3793  }
3794
3795  unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
3796
3797  // Bail out early if calling a builtin with custom typechecking.
3798  if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
3799    return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3800
3801 retry:
3802  const FunctionType *FuncT;
3803  if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
3804    // C99 6.5.2.2p1 - "The expression that denotes the called function shall
3805    // have type pointer to function".
3806    FuncT = PT->getPointeeType()->getAs<FunctionType>();
3807    if (FuncT == 0)
3808      return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3809                         << Fn->getType() << Fn->getSourceRange());
3810  } else if (const BlockPointerType *BPT =
3811               Fn->getType()->getAs<BlockPointerType>()) {
3812    FuncT = BPT->getPointeeType()->castAs<FunctionType>();
3813  } else {
3814    // Handle calls to expressions of unknown-any type.
3815    if (Fn->getType() == Context.UnknownAnyTy) {
3816      ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
3817      if (rewrite.isInvalid()) return ExprError();
3818      Fn = rewrite.take();
3819      TheCall->setCallee(Fn);
3820      goto retry;
3821    }
3822
3823    return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
3824      << Fn->getType() << Fn->getSourceRange());
3825  }
3826
3827  if (getLangOpts().CUDA) {
3828    if (Config) {
3829      // CUDA: Kernel calls must be to global functions
3830      if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
3831        return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
3832            << FDecl->getName() << Fn->getSourceRange());
3833
3834      // CUDA: Kernel function must have 'void' return type
3835      if (!FuncT->getResultType()->isVoidType())
3836        return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
3837            << Fn->getType() << Fn->getSourceRange());
3838    } else {
3839      // CUDA: Calls to global functions must be configured
3840      if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
3841        return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
3842            << FDecl->getName() << Fn->getSourceRange());
3843    }
3844  }
3845
3846  // Check for a valid return type
3847  if (CheckCallReturnType(FuncT->getResultType(),
3848                          Fn->getLocStart(), TheCall,
3849                          FDecl))
3850    return ExprError();
3851
3852  // We know the result type of the call, set it.
3853  TheCall->setType(FuncT->getCallResultType(Context));
3854  TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
3855
3856  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
3857    if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
3858                                RParenLoc, IsExecConfig))
3859      return ExprError();
3860  } else {
3861    assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
3862
3863    if (FDecl) {
3864      // Check if we have too few/too many template arguments, based
3865      // on our knowledge of the function definition.
3866      const FunctionDecl *Def = 0;
3867      if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
3868        const FunctionProtoType *Proto
3869          = Def->getType()->getAs<FunctionProtoType>();
3870        if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
3871          Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
3872            << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
3873      }
3874
3875      // If the function we're calling isn't a function prototype, but we have
3876      // a function prototype from a prior declaratiom, use that prototype.
3877      if (!FDecl->hasPrototype())
3878        Proto = FDecl->getType()->getAs<FunctionProtoType>();
3879    }
3880
3881    // Promote the arguments (C99 6.5.2.2p6).
3882    for (unsigned i = 0; i != NumArgs; i++) {
3883      Expr *Arg = Args[i];
3884
3885      if (Proto && i < Proto->getNumArgs()) {
3886        InitializedEntity Entity
3887          = InitializedEntity::InitializeParameter(Context,
3888                                                   Proto->getArgType(i),
3889                                                   Proto->isArgConsumed(i));
3890        ExprResult ArgE = PerformCopyInitialization(Entity,
3891                                                    SourceLocation(),
3892                                                    Owned(Arg));
3893        if (ArgE.isInvalid())
3894          return true;
3895
3896        Arg = ArgE.takeAs<Expr>();
3897
3898      } else {
3899        ExprResult ArgE = DefaultArgumentPromotion(Arg);
3900
3901        if (ArgE.isInvalid())
3902          return true;
3903
3904        Arg = ArgE.takeAs<Expr>();
3905      }
3906
3907      if (RequireCompleteType(Arg->getLocStart(),
3908                              Arg->getType(),
3909                              diag::err_call_incomplete_argument, Arg))
3910        return ExprError();
3911
3912      TheCall->setArg(i, Arg);
3913    }
3914  }
3915
3916  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
3917    if (!Method->isStatic())
3918      return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
3919        << Fn->getSourceRange());
3920
3921  // Check for sentinels
3922  if (NDecl)
3923    DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
3924
3925  // Do special checking on direct calls to functions.
3926  if (FDecl) {
3927    if (CheckFunctionCall(FDecl, TheCall))
3928      return ExprError();
3929
3930    if (BuiltinID)
3931      return CheckBuiltinFunctionCall(BuiltinID, TheCall);
3932  } else if (NDecl) {
3933    if (CheckBlockCall(NDecl, TheCall))
3934      return ExprError();
3935  }
3936
3937  return MaybeBindToTemporary(TheCall);
3938}
3939
3940ExprResult
3941Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
3942                           SourceLocation RParenLoc, Expr *InitExpr) {
3943  assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
3944  // FIXME: put back this assert when initializers are worked out.
3945  //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
3946
3947  TypeSourceInfo *TInfo;
3948  QualType literalType = GetTypeFromParser(Ty, &TInfo);
3949  if (!TInfo)
3950    TInfo = Context.getTrivialTypeSourceInfo(literalType);
3951
3952  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
3953}
3954
3955ExprResult
3956Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
3957                               SourceLocation RParenLoc, Expr *LiteralExpr) {
3958  QualType literalType = TInfo->getType();
3959
3960  if (literalType->isArrayType()) {
3961    if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
3962          diag::err_illegal_decl_array_incomplete_type,
3963          SourceRange(LParenLoc,
3964                      LiteralExpr->getSourceRange().getEnd())))
3965      return ExprError();
3966    if (literalType->isVariableArrayType())
3967      return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
3968        << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
3969  } else if (!literalType->isDependentType() &&
3970             RequireCompleteType(LParenLoc, literalType,
3971               diag::err_typecheck_decl_incomplete_type,
3972               SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
3973    return ExprError();
3974
3975  InitializedEntity Entity
3976    = InitializedEntity::InitializeTemporary(literalType);
3977  InitializationKind Kind
3978    = InitializationKind::CreateCStyleCast(LParenLoc,
3979                                           SourceRange(LParenLoc, RParenLoc),
3980                                           /*InitList=*/true);
3981  InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
3982  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3983                                       MultiExprArg(*this, &LiteralExpr, 1),
3984                                            &literalType);
3985  if (Result.isInvalid())
3986    return ExprError();
3987  LiteralExpr = Result.get();
3988
3989  bool isFileScope = getCurFunctionOrMethodDecl() == 0;
3990  if (isFileScope) { // 6.5.2.5p3
3991    if (CheckForConstantInitializer(LiteralExpr, literalType))
3992      return ExprError();
3993  }
3994
3995  // In C, compound literals are l-values for some reason.
3996  ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
3997
3998  return MaybeBindToTemporary(
3999           new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4000                                             VK, LiteralExpr, isFileScope));
4001}
4002
4003ExprResult
4004Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4005                    SourceLocation RBraceLoc) {
4006  unsigned NumInit = InitArgList.size();
4007  Expr **InitList = InitArgList.release();
4008
4009  // Immediately handle non-overload placeholders.  Overloads can be
4010  // resolved contextually, but everything else here can't.
4011  for (unsigned I = 0; I != NumInit; ++I) {
4012    if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
4013      ExprResult result = CheckPlaceholderExpr(InitList[I]);
4014
4015      // Ignore failures; dropping the entire initializer list because
4016      // of one failure would be terrible for indexing/etc.
4017      if (result.isInvalid()) continue;
4018
4019      InitList[I] = result.take();
4020    }
4021  }
4022
4023  // Semantic analysis for initializers is done by ActOnDeclarator() and
4024  // CheckInitializer() - it requires knowledge of the object being intialized.
4025
4026  InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
4027                                               NumInit, RBraceLoc);
4028  E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4029  return Owned(E);
4030}
4031
4032/// Do an explicit extend of the given block pointer if we're in ARC.
4033static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4034  assert(E.get()->getType()->isBlockPointerType());
4035  assert(E.get()->isRValue());
4036
4037  // Only do this in an r-value context.
4038  if (!S.getLangOpts().ObjCAutoRefCount) return;
4039
4040  E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
4041                               CK_ARCExtendBlockObject, E.get(),
4042                               /*base path*/ 0, VK_RValue);
4043  S.ExprNeedsCleanups = true;
4044}
4045
4046/// Prepare a conversion of the given expression to an ObjC object
4047/// pointer type.
4048CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
4049  QualType type = E.get()->getType();
4050  if (type->isObjCObjectPointerType()) {
4051    return CK_BitCast;
4052  } else if (type->isBlockPointerType()) {
4053    maybeExtendBlockObject(*this, E);
4054    return CK_BlockPointerToObjCPointerCast;
4055  } else {
4056    assert(type->isPointerType());
4057    return CK_CPointerToObjCPointerCast;
4058  }
4059}
4060
4061/// Prepares for a scalar cast, performing all the necessary stages
4062/// except the final cast and returning the kind required.
4063CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
4064  // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
4065  // Also, callers should have filtered out the invalid cases with
4066  // pointers.  Everything else should be possible.
4067
4068  QualType SrcTy = Src.get()->getType();
4069  if (const AtomicType *SrcAtomicTy = SrcTy->getAs<AtomicType>())
4070    SrcTy = SrcAtomicTy->getValueType();
4071  if (const AtomicType *DestAtomicTy = DestTy->getAs<AtomicType>())
4072    DestTy = DestAtomicTy->getValueType();
4073
4074  if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
4075    return CK_NoOp;
4076
4077  switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
4078  case Type::STK_MemberPointer:
4079    llvm_unreachable("member pointer type in C");
4080
4081  case Type::STK_CPointer:
4082  case Type::STK_BlockPointer:
4083  case Type::STK_ObjCObjectPointer:
4084    switch (DestTy->getScalarTypeKind()) {
4085    case Type::STK_CPointer:
4086      return CK_BitCast;
4087    case Type::STK_BlockPointer:
4088      return (SrcKind == Type::STK_BlockPointer
4089                ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
4090    case Type::STK_ObjCObjectPointer:
4091      if (SrcKind == Type::STK_ObjCObjectPointer)
4092        return CK_BitCast;
4093      if (SrcKind == Type::STK_CPointer)
4094        return CK_CPointerToObjCPointerCast;
4095      maybeExtendBlockObject(*this, Src);
4096      return CK_BlockPointerToObjCPointerCast;
4097    case Type::STK_Bool:
4098      return CK_PointerToBoolean;
4099    case Type::STK_Integral:
4100      return CK_PointerToIntegral;
4101    case Type::STK_Floating:
4102    case Type::STK_FloatingComplex:
4103    case Type::STK_IntegralComplex:
4104    case Type::STK_MemberPointer:
4105      llvm_unreachable("illegal cast from pointer");
4106    }
4107    llvm_unreachable("Should have returned before this");
4108
4109  case Type::STK_Bool: // casting from bool is like casting from an integer
4110  case Type::STK_Integral:
4111    switch (DestTy->getScalarTypeKind()) {
4112    case Type::STK_CPointer:
4113    case Type::STK_ObjCObjectPointer:
4114    case Type::STK_BlockPointer:
4115      if (Src.get()->isNullPointerConstant(Context,
4116                                           Expr::NPC_ValueDependentIsNull))
4117        return CK_NullToPointer;
4118      return CK_IntegralToPointer;
4119    case Type::STK_Bool:
4120      return CK_IntegralToBoolean;
4121    case Type::STK_Integral:
4122      return CK_IntegralCast;
4123    case Type::STK_Floating:
4124      return CK_IntegralToFloating;
4125    case Type::STK_IntegralComplex:
4126      Src = ImpCastExprToType(Src.take(),
4127                              DestTy->castAs<ComplexType>()->getElementType(),
4128                              CK_IntegralCast);
4129      return CK_IntegralRealToComplex;
4130    case Type::STK_FloatingComplex:
4131      Src = ImpCastExprToType(Src.take(),
4132                              DestTy->castAs<ComplexType>()->getElementType(),
4133                              CK_IntegralToFloating);
4134      return CK_FloatingRealToComplex;
4135    case Type::STK_MemberPointer:
4136      llvm_unreachable("member pointer type in C");
4137    }
4138    llvm_unreachable("Should have returned before this");
4139
4140  case Type::STK_Floating:
4141    switch (DestTy->getScalarTypeKind()) {
4142    case Type::STK_Floating:
4143      return CK_FloatingCast;
4144    case Type::STK_Bool:
4145      return CK_FloatingToBoolean;
4146    case Type::STK_Integral:
4147      return CK_FloatingToIntegral;
4148    case Type::STK_FloatingComplex:
4149      Src = ImpCastExprToType(Src.take(),
4150                              DestTy->castAs<ComplexType>()->getElementType(),
4151                              CK_FloatingCast);
4152      return CK_FloatingRealToComplex;
4153    case Type::STK_IntegralComplex:
4154      Src = ImpCastExprToType(Src.take(),
4155                              DestTy->castAs<ComplexType>()->getElementType(),
4156                              CK_FloatingToIntegral);
4157      return CK_IntegralRealToComplex;
4158    case Type::STK_CPointer:
4159    case Type::STK_ObjCObjectPointer:
4160    case Type::STK_BlockPointer:
4161      llvm_unreachable("valid float->pointer cast?");
4162    case Type::STK_MemberPointer:
4163      llvm_unreachable("member pointer type in C");
4164    }
4165    llvm_unreachable("Should have returned before this");
4166
4167  case Type::STK_FloatingComplex:
4168    switch (DestTy->getScalarTypeKind()) {
4169    case Type::STK_FloatingComplex:
4170      return CK_FloatingComplexCast;
4171    case Type::STK_IntegralComplex:
4172      return CK_FloatingComplexToIntegralComplex;
4173    case Type::STK_Floating: {
4174      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4175      if (Context.hasSameType(ET, DestTy))
4176        return CK_FloatingComplexToReal;
4177      Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
4178      return CK_FloatingCast;
4179    }
4180    case Type::STK_Bool:
4181      return CK_FloatingComplexToBoolean;
4182    case Type::STK_Integral:
4183      Src = ImpCastExprToType(Src.take(),
4184                              SrcTy->castAs<ComplexType>()->getElementType(),
4185                              CK_FloatingComplexToReal);
4186      return CK_FloatingToIntegral;
4187    case Type::STK_CPointer:
4188    case Type::STK_ObjCObjectPointer:
4189    case Type::STK_BlockPointer:
4190      llvm_unreachable("valid complex float->pointer cast?");
4191    case Type::STK_MemberPointer:
4192      llvm_unreachable("member pointer type in C");
4193    }
4194    llvm_unreachable("Should have returned before this");
4195
4196  case Type::STK_IntegralComplex:
4197    switch (DestTy->getScalarTypeKind()) {
4198    case Type::STK_FloatingComplex:
4199      return CK_IntegralComplexToFloatingComplex;
4200    case Type::STK_IntegralComplex:
4201      return CK_IntegralComplexCast;
4202    case Type::STK_Integral: {
4203      QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
4204      if (Context.hasSameType(ET, DestTy))
4205        return CK_IntegralComplexToReal;
4206      Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
4207      return CK_IntegralCast;
4208    }
4209    case Type::STK_Bool:
4210      return CK_IntegralComplexToBoolean;
4211    case Type::STK_Floating:
4212      Src = ImpCastExprToType(Src.take(),
4213                              SrcTy->castAs<ComplexType>()->getElementType(),
4214                              CK_IntegralComplexToReal);
4215      return CK_IntegralToFloating;
4216    case Type::STK_CPointer:
4217    case Type::STK_ObjCObjectPointer:
4218    case Type::STK_BlockPointer:
4219      llvm_unreachable("valid complex int->pointer cast?");
4220    case Type::STK_MemberPointer:
4221      llvm_unreachable("member pointer type in C");
4222    }
4223    llvm_unreachable("Should have returned before this");
4224  }
4225
4226  llvm_unreachable("Unhandled scalar cast");
4227}
4228
4229bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
4230                           CastKind &Kind) {
4231  assert(VectorTy->isVectorType() && "Not a vector type!");
4232
4233  if (Ty->isVectorType() || Ty->isIntegerType()) {
4234    if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
4235      return Diag(R.getBegin(),
4236                  Ty->isVectorType() ?
4237                  diag::err_invalid_conversion_between_vectors :
4238                  diag::err_invalid_conversion_between_vector_and_integer)
4239        << VectorTy << Ty << R;
4240  } else
4241    return Diag(R.getBegin(),
4242                diag::err_invalid_conversion_between_vector_and_scalar)
4243      << VectorTy << Ty << R;
4244
4245  Kind = CK_BitCast;
4246  return false;
4247}
4248
4249ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
4250                                    Expr *CastExpr, CastKind &Kind) {
4251  assert(DestTy->isExtVectorType() && "Not an extended vector type!");
4252
4253  QualType SrcTy = CastExpr->getType();
4254
4255  // If SrcTy is a VectorType, the total size must match to explicitly cast to
4256  // an ExtVectorType.
4257  // In OpenCL, casts between vectors of different types are not allowed.
4258  // (See OpenCL 6.2).
4259  if (SrcTy->isVectorType()) {
4260    if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
4261        || (getLangOpts().OpenCL &&
4262            (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
4263      Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
4264        << DestTy << SrcTy << R;
4265      return ExprError();
4266    }
4267    Kind = CK_BitCast;
4268    return Owned(CastExpr);
4269  }
4270
4271  // All non-pointer scalars can be cast to ExtVector type.  The appropriate
4272  // conversion will take place first from scalar to elt type, and then
4273  // splat from elt type to vector.
4274  if (SrcTy->isPointerType())
4275    return Diag(R.getBegin(),
4276                diag::err_invalid_conversion_between_vector_and_scalar)
4277      << DestTy << SrcTy << R;
4278
4279  QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
4280  ExprResult CastExprRes = Owned(CastExpr);
4281  CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
4282  if (CastExprRes.isInvalid())
4283    return ExprError();
4284  CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
4285
4286  Kind = CK_VectorSplat;
4287  return Owned(CastExpr);
4288}
4289
4290ExprResult
4291Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
4292                    Declarator &D, ParsedType &Ty,
4293                    SourceLocation RParenLoc, Expr *CastExpr) {
4294  assert(!D.isInvalidType() && (CastExpr != 0) &&
4295         "ActOnCastExpr(): missing type or expr");
4296
4297  TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
4298  if (D.isInvalidType())
4299    return ExprError();
4300
4301  if (getLangOpts().CPlusPlus) {
4302    // Check that there are no default arguments (C++ only).
4303    CheckExtraCXXDefaultArguments(D);
4304  }
4305
4306  checkUnusedDeclAttributes(D);
4307
4308  QualType castType = castTInfo->getType();
4309  Ty = CreateParsedType(castType, castTInfo);
4310
4311  bool isVectorLiteral = false;
4312
4313  // Check for an altivec or OpenCL literal,
4314  // i.e. all the elements are integer constants.
4315  ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
4316  ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
4317  if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
4318       && castType->isVectorType() && (PE || PLE)) {
4319    if (PLE && PLE->getNumExprs() == 0) {
4320      Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
4321      return ExprError();
4322    }
4323    if (PE || PLE->getNumExprs() == 1) {
4324      Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
4325      if (!E->getType()->isVectorType())
4326        isVectorLiteral = true;
4327    }
4328    else
4329      isVectorLiteral = true;
4330  }
4331
4332  // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
4333  // then handle it as such.
4334  if (isVectorLiteral)
4335    return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
4336
4337  // If the Expr being casted is a ParenListExpr, handle it specially.
4338  // This is not an AltiVec-style cast, so turn the ParenListExpr into a
4339  // sequence of BinOp comma operators.
4340  if (isa<ParenListExpr>(CastExpr)) {
4341    ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
4342    if (Result.isInvalid()) return ExprError();
4343    CastExpr = Result.take();
4344  }
4345
4346  return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
4347}
4348
4349ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
4350                                    SourceLocation RParenLoc, Expr *E,
4351                                    TypeSourceInfo *TInfo) {
4352  assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
4353         "Expected paren or paren list expression");
4354
4355  Expr **exprs;
4356  unsigned numExprs;
4357  Expr *subExpr;
4358  if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
4359    exprs = PE->getExprs();
4360    numExprs = PE->getNumExprs();
4361  } else {
4362    subExpr = cast<ParenExpr>(E)->getSubExpr();
4363    exprs = &subExpr;
4364    numExprs = 1;
4365  }
4366
4367  QualType Ty = TInfo->getType();
4368  assert(Ty->isVectorType() && "Expected vector type");
4369
4370  SmallVector<Expr *, 8> initExprs;
4371  const VectorType *VTy = Ty->getAs<VectorType>();
4372  unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
4373
4374  // '(...)' form of vector initialization in AltiVec: the number of
4375  // initializers must be one or must match the size of the vector.
4376  // If a single value is specified in the initializer then it will be
4377  // replicated to all the components of the vector
4378  if (VTy->getVectorKind() == VectorType::AltiVecVector) {
4379    // The number of initializers must be one or must match the size of the
4380    // vector. If a single value is specified in the initializer then it will
4381    // be replicated to all the components of the vector
4382    if (numExprs == 1) {
4383      QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4384      ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4385      if (Literal.isInvalid())
4386        return ExprError();
4387      Literal = ImpCastExprToType(Literal.take(), ElemTy,
4388                                  PrepareScalarCast(Literal, ElemTy));
4389      return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4390    }
4391    else if (numExprs < numElems) {
4392      Diag(E->getExprLoc(),
4393           diag::err_incorrect_number_of_vector_initializers);
4394      return ExprError();
4395    }
4396    else
4397      initExprs.append(exprs, exprs + numExprs);
4398  }
4399  else {
4400    // For OpenCL, when the number of initializers is a single value,
4401    // it will be replicated to all components of the vector.
4402    if (getLangOpts().OpenCL &&
4403        VTy->getVectorKind() == VectorType::GenericVector &&
4404        numExprs == 1) {
4405        QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
4406        ExprResult Literal = DefaultLvalueConversion(exprs[0]);
4407        if (Literal.isInvalid())
4408          return ExprError();
4409        Literal = ImpCastExprToType(Literal.take(), ElemTy,
4410                                    PrepareScalarCast(Literal, ElemTy));
4411        return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
4412    }
4413
4414    initExprs.append(exprs, exprs + numExprs);
4415  }
4416  // FIXME: This means that pretty-printing the final AST will produce curly
4417  // braces instead of the original commas.
4418  InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
4419                                                   &initExprs[0],
4420                                                   initExprs.size(), RParenLoc);
4421  initE->setType(Ty);
4422  return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
4423}
4424
4425/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
4426/// the ParenListExpr into a sequence of comma binary operators.
4427ExprResult
4428Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
4429  ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
4430  if (!E)
4431    return Owned(OrigExpr);
4432
4433  ExprResult Result(E->getExpr(0));
4434
4435  for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
4436    Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
4437                        E->getExpr(i));
4438
4439  if (Result.isInvalid()) return ExprError();
4440
4441  return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
4442}
4443
4444ExprResult Sema::ActOnParenListExpr(SourceLocation L,
4445                                    SourceLocation R,
4446                                    MultiExprArg Val) {
4447  unsigned nexprs = Val.size();
4448  Expr **exprs = reinterpret_cast<Expr**>(Val.release());
4449  assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
4450  Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
4451  return Owned(expr);
4452}
4453
4454/// \brief Emit a specialized diagnostic when one expression is a null pointer
4455/// constant and the other is not a pointer.  Returns true if a diagnostic is
4456/// emitted.
4457bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
4458                                      SourceLocation QuestionLoc) {
4459  Expr *NullExpr = LHSExpr;
4460  Expr *NonPointerExpr = RHSExpr;
4461  Expr::NullPointerConstantKind NullKind =
4462      NullExpr->isNullPointerConstant(Context,
4463                                      Expr::NPC_ValueDependentIsNotNull);
4464
4465  if (NullKind == Expr::NPCK_NotNull) {
4466    NullExpr = RHSExpr;
4467    NonPointerExpr = LHSExpr;
4468    NullKind =
4469        NullExpr->isNullPointerConstant(Context,
4470                                        Expr::NPC_ValueDependentIsNotNull);
4471  }
4472
4473  if (NullKind == Expr::NPCK_NotNull)
4474    return false;
4475
4476  if (NullKind == Expr::NPCK_ZeroInteger) {
4477    // In this case, check to make sure that we got here from a "NULL"
4478    // string in the source code.
4479    NullExpr = NullExpr->IgnoreParenImpCasts();
4480    SourceLocation loc = NullExpr->getExprLoc();
4481    if (!findMacroSpelling(loc, "NULL"))
4482      return false;
4483  }
4484
4485  int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
4486  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
4487      << NonPointerExpr->getType() << DiagType
4488      << NonPointerExpr->getSourceRange();
4489  return true;
4490}
4491
4492/// \brief Return false if the condition expression is valid, true otherwise.
4493static bool checkCondition(Sema &S, Expr *Cond) {
4494  QualType CondTy = Cond->getType();
4495
4496  // C99 6.5.15p2
4497  if (CondTy->isScalarType()) return false;
4498
4499  // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
4500  if (S.getLangOpts().OpenCL && CondTy->isVectorType())
4501    return false;
4502
4503  // Emit the proper error message.
4504  S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
4505                              diag::err_typecheck_cond_expect_scalar :
4506                              diag::err_typecheck_cond_expect_scalar_or_vector)
4507    << CondTy;
4508  return true;
4509}
4510
4511/// \brief Return false if the two expressions can be converted to a vector,
4512/// true otherwise
4513static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
4514                                                    ExprResult &RHS,
4515                                                    QualType CondTy) {
4516  // Both operands should be of scalar type.
4517  if (!LHS.get()->getType()->isScalarType()) {
4518    S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4519      << CondTy;
4520    return true;
4521  }
4522  if (!RHS.get()->getType()->isScalarType()) {
4523    S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
4524      << CondTy;
4525    return true;
4526  }
4527
4528  // Implicity convert these scalars to the type of the condition.
4529  LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
4530  RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
4531  return false;
4532}
4533
4534/// \brief Handle when one or both operands are void type.
4535static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
4536                                         ExprResult &RHS) {
4537    Expr *LHSExpr = LHS.get();
4538    Expr *RHSExpr = RHS.get();
4539
4540    if (!LHSExpr->getType()->isVoidType())
4541      S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4542        << RHSExpr->getSourceRange();
4543    if (!RHSExpr->getType()->isVoidType())
4544      S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
4545        << LHSExpr->getSourceRange();
4546    LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
4547    RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
4548    return S.Context.VoidTy;
4549}
4550
4551/// \brief Return false if the NullExpr can be promoted to PointerTy,
4552/// true otherwise.
4553static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
4554                                        QualType PointerTy) {
4555  if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
4556      !NullExpr.get()->isNullPointerConstant(S.Context,
4557                                            Expr::NPC_ValueDependentIsNull))
4558    return true;
4559
4560  NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
4561  return false;
4562}
4563
4564/// \brief Checks compatibility between two pointers and return the resulting
4565/// type.
4566static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
4567                                                     ExprResult &RHS,
4568                                                     SourceLocation Loc) {
4569  QualType LHSTy = LHS.get()->getType();
4570  QualType RHSTy = RHS.get()->getType();
4571
4572  if (S.Context.hasSameType(LHSTy, RHSTy)) {
4573    // Two identical pointers types are always compatible.
4574    return LHSTy;
4575  }
4576
4577  QualType lhptee, rhptee;
4578
4579  // Get the pointee types.
4580  if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
4581    lhptee = LHSBTy->getPointeeType();
4582    rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
4583  } else {
4584    lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
4585    rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
4586  }
4587
4588  // C99 6.5.15p6: If both operands are pointers to compatible types or to
4589  // differently qualified versions of compatible types, the result type is
4590  // a pointer to an appropriately qualified version of the composite
4591  // type.
4592
4593  // Only CVR-qualifiers exist in the standard, and the differently-qualified
4594  // clause doesn't make sense for our extensions. E.g. address space 2 should
4595  // be incompatible with address space 3: they may live on different devices or
4596  // anything.
4597  Qualifiers lhQual = lhptee.getQualifiers();
4598  Qualifiers rhQual = rhptee.getQualifiers();
4599
4600  unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
4601  lhQual.removeCVRQualifiers();
4602  rhQual.removeCVRQualifiers();
4603
4604  lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
4605  rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
4606
4607  QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
4608
4609  if (CompositeTy.isNull()) {
4610    S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
4611      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4612      << RHS.get()->getSourceRange();
4613    // In this situation, we assume void* type. No especially good
4614    // reason, but this is what gcc does, and we do have to pick
4615    // to get a consistent AST.
4616    QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
4617    LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4618    RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4619    return incompatTy;
4620  }
4621
4622  // The pointer types are compatible.
4623  QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
4624  ResultTy = S.Context.getPointerType(ResultTy);
4625
4626  LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
4627  RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
4628  return ResultTy;
4629}
4630
4631/// \brief Return the resulting type when the operands are both block pointers.
4632static QualType checkConditionalBlockPointerCompatibility(Sema &S,
4633                                                          ExprResult &LHS,
4634                                                          ExprResult &RHS,
4635                                                          SourceLocation Loc) {
4636  QualType LHSTy = LHS.get()->getType();
4637  QualType RHSTy = RHS.get()->getType();
4638
4639  if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
4640    if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
4641      QualType destType = S.Context.getPointerType(S.Context.VoidTy);
4642      LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4643      RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4644      return destType;
4645    }
4646    S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
4647      << LHSTy << RHSTy << LHS.get()->getSourceRange()
4648      << RHS.get()->getSourceRange();
4649    return QualType();
4650  }
4651
4652  // We have 2 block pointer types.
4653  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4654}
4655
4656/// \brief Return the resulting type when the operands are both pointers.
4657static QualType
4658checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
4659                                            ExprResult &RHS,
4660                                            SourceLocation Loc) {
4661  // get the pointer types
4662  QualType LHSTy = LHS.get()->getType();
4663  QualType RHSTy = RHS.get()->getType();
4664
4665  // get the "pointed to" types
4666  QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4667  QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4668
4669  // ignore qualifiers on void (C99 6.5.15p3, clause 6)
4670  if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
4671    // Figure out necessary qualifiers (C99 6.5.15p6)
4672    QualType destPointee
4673      = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4674    QualType destType = S.Context.getPointerType(destPointee);
4675    // Add qualifiers if necessary.
4676    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4677    // Promote to void*.
4678    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4679    return destType;
4680  }
4681  if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
4682    QualType destPointee
4683      = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4684    QualType destType = S.Context.getPointerType(destPointee);
4685    // Add qualifiers if necessary.
4686    RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4687    // Promote to void*.
4688    LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4689    return destType;
4690  }
4691
4692  return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
4693}
4694
4695/// \brief Return false if the first expression is not an integer and the second
4696/// expression is not a pointer, true otherwise.
4697static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
4698                                        Expr* PointerExpr, SourceLocation Loc,
4699                                        bool IsIntFirstExpr) {
4700  if (!PointerExpr->getType()->isPointerType() ||
4701      !Int.get()->getType()->isIntegerType())
4702    return false;
4703
4704  Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
4705  Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
4706
4707  S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
4708    << Expr1->getType() << Expr2->getType()
4709    << Expr1->getSourceRange() << Expr2->getSourceRange();
4710  Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
4711                            CK_IntegralToPointer);
4712  return true;
4713}
4714
4715/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
4716/// In that case, LHS = cond.
4717/// C99 6.5.15
4718QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4719                                        ExprResult &RHS, ExprValueKind &VK,
4720                                        ExprObjectKind &OK,
4721                                        SourceLocation QuestionLoc) {
4722
4723  ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
4724  if (!LHSResult.isUsable()) return QualType();
4725  LHS = move(LHSResult);
4726
4727  ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
4728  if (!RHSResult.isUsable()) return QualType();
4729  RHS = move(RHSResult);
4730
4731  // C++ is sufficiently different to merit its own checker.
4732  if (getLangOpts().CPlusPlus)
4733    return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
4734
4735  VK = VK_RValue;
4736  OK = OK_Ordinary;
4737
4738  Cond = UsualUnaryConversions(Cond.take());
4739  if (Cond.isInvalid())
4740    return QualType();
4741  LHS = UsualUnaryConversions(LHS.take());
4742  if (LHS.isInvalid())
4743    return QualType();
4744  RHS = UsualUnaryConversions(RHS.take());
4745  if (RHS.isInvalid())
4746    return QualType();
4747
4748  QualType CondTy = Cond.get()->getType();
4749  QualType LHSTy = LHS.get()->getType();
4750  QualType RHSTy = RHS.get()->getType();
4751
4752  // first, check the condition.
4753  if (checkCondition(*this, Cond.get()))
4754    return QualType();
4755
4756  // Now check the two expressions.
4757  if (LHSTy->isVectorType() || RHSTy->isVectorType())
4758    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4759
4760  // OpenCL: If the condition is a vector, and both operands are scalar,
4761  // attempt to implicity convert them to the vector type to act like the
4762  // built in select.
4763  if (getLangOpts().OpenCL && CondTy->isVectorType())
4764    if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
4765      return QualType();
4766
4767  // If both operands have arithmetic type, do the usual arithmetic conversions
4768  // to find a common type: C99 6.5.15p3,5.
4769  if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
4770    UsualArithmeticConversions(LHS, RHS);
4771    if (LHS.isInvalid() || RHS.isInvalid())
4772      return QualType();
4773    return LHS.get()->getType();
4774  }
4775
4776  // If both operands are the same structure or union type, the result is that
4777  // type.
4778  if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
4779    if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
4780      if (LHSRT->getDecl() == RHSRT->getDecl())
4781        // "If both the operands have structure or union type, the result has
4782        // that type."  This implies that CV qualifiers are dropped.
4783        return LHSTy.getUnqualifiedType();
4784    // FIXME: Type of conditional expression must be complete in C mode.
4785  }
4786
4787  // C99 6.5.15p5: "If both operands have void type, the result has void type."
4788  // The following || allows only one side to be void (a GCC-ism).
4789  if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
4790    return checkConditionalVoidType(*this, LHS, RHS);
4791  }
4792
4793  // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
4794  // the type of the other operand."
4795  if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
4796  if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
4797
4798  // All objective-c pointer type analysis is done here.
4799  QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
4800                                                        QuestionLoc);
4801  if (LHS.isInvalid() || RHS.isInvalid())
4802    return QualType();
4803  if (!compositeType.isNull())
4804    return compositeType;
4805
4806
4807  // Handle block pointer types.
4808  if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
4809    return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
4810                                                     QuestionLoc);
4811
4812  // Check constraints for C object pointers types (C99 6.5.15p3,6).
4813  if (LHSTy->isPointerType() && RHSTy->isPointerType())
4814    return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
4815                                                       QuestionLoc);
4816
4817  // GCC compatibility: soften pointer/integer mismatch.  Note that
4818  // null pointers have been filtered out by this point.
4819  if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
4820      /*isIntFirstExpr=*/true))
4821    return RHSTy;
4822  if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
4823      /*isIntFirstExpr=*/false))
4824    return LHSTy;
4825
4826  // Emit a better diagnostic if one of the expressions is a null pointer
4827  // constant and the other is not a pointer type. In this case, the user most
4828  // likely forgot to take the address of the other expression.
4829  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4830    return QualType();
4831
4832  // Otherwise, the operands are not compatible.
4833  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4834    << LHSTy << RHSTy << LHS.get()->getSourceRange()
4835    << RHS.get()->getSourceRange();
4836  return QualType();
4837}
4838
4839/// FindCompositeObjCPointerType - Helper method to find composite type of
4840/// two objective-c pointer types of the two input expressions.
4841QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
4842                                            SourceLocation QuestionLoc) {
4843  QualType LHSTy = LHS.get()->getType();
4844  QualType RHSTy = RHS.get()->getType();
4845
4846  // Handle things like Class and struct objc_class*.  Here we case the result
4847  // to the pseudo-builtin, because that will be implicitly cast back to the
4848  // redefinition type if an attempt is made to access its fields.
4849  if (LHSTy->isObjCClassType() &&
4850      (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
4851    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4852    return LHSTy;
4853  }
4854  if (RHSTy->isObjCClassType() &&
4855      (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
4856    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4857    return RHSTy;
4858  }
4859  // And the same for struct objc_object* / id
4860  if (LHSTy->isObjCIdType() &&
4861      (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
4862    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
4863    return LHSTy;
4864  }
4865  if (RHSTy->isObjCIdType() &&
4866      (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
4867    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
4868    return RHSTy;
4869  }
4870  // And the same for struct objc_selector* / SEL
4871  if (Context.isObjCSelType(LHSTy) &&
4872      (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
4873    RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
4874    return LHSTy;
4875  }
4876  if (Context.isObjCSelType(RHSTy) &&
4877      (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
4878    LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
4879    return RHSTy;
4880  }
4881  // Check constraints for Objective-C object pointers types.
4882  if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
4883
4884    if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
4885      // Two identical object pointer types are always compatible.
4886      return LHSTy;
4887    }
4888    const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
4889    const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
4890    QualType compositeType = LHSTy;
4891
4892    // If both operands are interfaces and either operand can be
4893    // assigned to the other, use that type as the composite
4894    // type. This allows
4895    //   xxx ? (A*) a : (B*) b
4896    // where B is a subclass of A.
4897    //
4898    // Additionally, as for assignment, if either type is 'id'
4899    // allow silent coercion. Finally, if the types are
4900    // incompatible then make sure to use 'id' as the composite
4901    // type so the result is acceptable for sending messages to.
4902
4903    // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
4904    // It could return the composite type.
4905    if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
4906      compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
4907    } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
4908      compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
4909    } else if ((LHSTy->isObjCQualifiedIdType() ||
4910                RHSTy->isObjCQualifiedIdType()) &&
4911               Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
4912      // Need to handle "id<xx>" explicitly.
4913      // GCC allows qualified id and any Objective-C type to devolve to
4914      // id. Currently localizing to here until clear this should be
4915      // part of ObjCQualifiedIdTypesAreCompatible.
4916      compositeType = Context.getObjCIdType();
4917    } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
4918      compositeType = Context.getObjCIdType();
4919    } else if (!(compositeType =
4920                 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
4921      ;
4922    else {
4923      Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
4924      << LHSTy << RHSTy
4925      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4926      QualType incompatTy = Context.getObjCIdType();
4927      LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
4928      RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
4929      return incompatTy;
4930    }
4931    // The object pointer types are compatible.
4932    LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
4933    RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
4934    return compositeType;
4935  }
4936  // Check Objective-C object pointer types and 'void *'
4937  if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
4938    if (getLangOpts().ObjCAutoRefCount) {
4939      // ARC forbids the implicit conversion of object pointers to 'void *',
4940      // so these types are not compatible.
4941      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4942          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4943      LHS = RHS = true;
4944      return QualType();
4945    }
4946    QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
4947    QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4948    QualType destPointee
4949    = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
4950    QualType destType = Context.getPointerType(destPointee);
4951    // Add qualifiers if necessary.
4952    LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
4953    // Promote to void*.
4954    RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
4955    return destType;
4956  }
4957  if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
4958    if (getLangOpts().ObjCAutoRefCount) {
4959      // ARC forbids the implicit conversion of object pointers to 'void *',
4960      // so these types are not compatible.
4961      Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
4962          << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4963      LHS = RHS = true;
4964      return QualType();
4965    }
4966    QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
4967    QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
4968    QualType destPointee
4969    = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
4970    QualType destType = Context.getPointerType(destPointee);
4971    // Add qualifiers if necessary.
4972    RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
4973    // Promote to void*.
4974    LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
4975    return destType;
4976  }
4977  return QualType();
4978}
4979
4980/// SuggestParentheses - Emit a note with a fixit hint that wraps
4981/// ParenRange in parentheses.
4982static void SuggestParentheses(Sema &Self, SourceLocation Loc,
4983                               const PartialDiagnostic &Note,
4984                               SourceRange ParenRange) {
4985  SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
4986  if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
4987      EndLoc.isValid()) {
4988    Self.Diag(Loc, Note)
4989      << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
4990      << FixItHint::CreateInsertion(EndLoc, ")");
4991  } else {
4992    // We can't display the parentheses, so just show the bare note.
4993    Self.Diag(Loc, Note) << ParenRange;
4994  }
4995}
4996
4997static bool IsArithmeticOp(BinaryOperatorKind Opc) {
4998  return Opc >= BO_Mul && Opc <= BO_Shr;
4999}
5000
5001/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
5002/// expression, either using a built-in or overloaded operator,
5003/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
5004/// expression.
5005static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
5006                                   Expr **RHSExprs) {
5007  // Don't strip parenthesis: we should not warn if E is in parenthesis.
5008  E = E->IgnoreImpCasts();
5009  E = E->IgnoreConversionOperator();
5010  E = E->IgnoreImpCasts();
5011
5012  // Built-in binary operator.
5013  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
5014    if (IsArithmeticOp(OP->getOpcode())) {
5015      *Opcode = OP->getOpcode();
5016      *RHSExprs = OP->getRHS();
5017      return true;
5018    }
5019  }
5020
5021  // Overloaded operator.
5022  if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
5023    if (Call->getNumArgs() != 2)
5024      return false;
5025
5026    // Make sure this is really a binary operator that is safe to pass into
5027    // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
5028    OverloadedOperatorKind OO = Call->getOperator();
5029    if (OO < OO_Plus || OO > OO_Arrow)
5030      return false;
5031
5032    BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
5033    if (IsArithmeticOp(OpKind)) {
5034      *Opcode = OpKind;
5035      *RHSExprs = Call->getArg(1);
5036      return true;
5037    }
5038  }
5039
5040  return false;
5041}
5042
5043static bool IsLogicOp(BinaryOperatorKind Opc) {
5044  return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
5045}
5046
5047/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
5048/// or is a logical expression such as (x==y) which has int type, but is
5049/// commonly interpreted as boolean.
5050static bool ExprLooksBoolean(Expr *E) {
5051  E = E->IgnoreParenImpCasts();
5052
5053  if (E->getType()->isBooleanType())
5054    return true;
5055  if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
5056    return IsLogicOp(OP->getOpcode());
5057  if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
5058    return OP->getOpcode() == UO_LNot;
5059
5060  return false;
5061}
5062
5063/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
5064/// and binary operator are mixed in a way that suggests the programmer assumed
5065/// the conditional operator has higher precedence, for example:
5066/// "int x = a + someBinaryCondition ? 1 : 2".
5067static void DiagnoseConditionalPrecedence(Sema &Self,
5068                                          SourceLocation OpLoc,
5069                                          Expr *Condition,
5070                                          Expr *LHSExpr,
5071                                          Expr *RHSExpr) {
5072  BinaryOperatorKind CondOpcode;
5073  Expr *CondRHS;
5074
5075  if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
5076    return;
5077  if (!ExprLooksBoolean(CondRHS))
5078    return;
5079
5080  // The condition is an arithmetic binary expression, with a right-
5081  // hand side that looks boolean, so warn.
5082
5083  Self.Diag(OpLoc, diag::warn_precedence_conditional)
5084      << Condition->getSourceRange()
5085      << BinaryOperator::getOpcodeStr(CondOpcode);
5086
5087  SuggestParentheses(Self, OpLoc,
5088    Self.PDiag(diag::note_precedence_conditional_silence)
5089      << BinaryOperator::getOpcodeStr(CondOpcode),
5090    SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
5091
5092  SuggestParentheses(Self, OpLoc,
5093    Self.PDiag(diag::note_precedence_conditional_first),
5094    SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
5095}
5096
5097/// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
5098/// in the case of a the GNU conditional expr extension.
5099ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
5100                                    SourceLocation ColonLoc,
5101                                    Expr *CondExpr, Expr *LHSExpr,
5102                                    Expr *RHSExpr) {
5103  // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
5104  // was the condition.
5105  OpaqueValueExpr *opaqueValue = 0;
5106  Expr *commonExpr = 0;
5107  if (LHSExpr == 0) {
5108    commonExpr = CondExpr;
5109
5110    // We usually want to apply unary conversions *before* saving, except
5111    // in the special case of a C++ l-value conditional.
5112    if (!(getLangOpts().CPlusPlus
5113          && !commonExpr->isTypeDependent()
5114          && commonExpr->getValueKind() == RHSExpr->getValueKind()
5115          && commonExpr->isGLValue()
5116          && commonExpr->isOrdinaryOrBitFieldObject()
5117          && RHSExpr->isOrdinaryOrBitFieldObject()
5118          && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
5119      ExprResult commonRes = UsualUnaryConversions(commonExpr);
5120      if (commonRes.isInvalid())
5121        return ExprError();
5122      commonExpr = commonRes.take();
5123    }
5124
5125    opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
5126                                                commonExpr->getType(),
5127                                                commonExpr->getValueKind(),
5128                                                commonExpr->getObjectKind(),
5129                                                commonExpr);
5130    LHSExpr = CondExpr = opaqueValue;
5131  }
5132
5133  ExprValueKind VK = VK_RValue;
5134  ExprObjectKind OK = OK_Ordinary;
5135  ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
5136  QualType result = CheckConditionalOperands(Cond, LHS, RHS,
5137                                             VK, OK, QuestionLoc);
5138  if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
5139      RHS.isInvalid())
5140    return ExprError();
5141
5142  DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
5143                                RHS.get());
5144
5145  if (!commonExpr)
5146    return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
5147                                                   LHS.take(), ColonLoc,
5148                                                   RHS.take(), result, VK, OK));
5149
5150  return Owned(new (Context)
5151    BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
5152                              RHS.take(), QuestionLoc, ColonLoc, result, VK,
5153                              OK));
5154}
5155
5156// checkPointerTypesForAssignment - This is a very tricky routine (despite
5157// being closely modeled after the C99 spec:-). The odd characteristic of this
5158// routine is it effectively iqnores the qualifiers on the top level pointee.
5159// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
5160// FIXME: add a couple examples in this comment.
5161static Sema::AssignConvertType
5162checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
5163  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5164  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5165
5166  // get the "pointed to" type (ignoring qualifiers at the top level)
5167  const Type *lhptee, *rhptee;
5168  Qualifiers lhq, rhq;
5169  llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
5170  llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
5171
5172  Sema::AssignConvertType ConvTy = Sema::Compatible;
5173
5174  // C99 6.5.16.1p1: This following citation is common to constraints
5175  // 3 & 4 (below). ...and the type *pointed to* by the left has all the
5176  // qualifiers of the type *pointed to* by the right;
5177  Qualifiers lq;
5178
5179  // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
5180  if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
5181      lhq.compatiblyIncludesObjCLifetime(rhq)) {
5182    // Ignore lifetime for further calculation.
5183    lhq.removeObjCLifetime();
5184    rhq.removeObjCLifetime();
5185  }
5186
5187  if (!lhq.compatiblyIncludes(rhq)) {
5188    // Treat address-space mismatches as fatal.  TODO: address subspaces
5189    if (lhq.getAddressSpace() != rhq.getAddressSpace())
5190      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5191
5192    // It's okay to add or remove GC or lifetime qualifiers when converting to
5193    // and from void*.
5194    else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
5195                        .compatiblyIncludes(
5196                                rhq.withoutObjCGCAttr().withoutObjCLifetime())
5197             && (lhptee->isVoidType() || rhptee->isVoidType()))
5198      ; // keep old
5199
5200    // Treat lifetime mismatches as fatal.
5201    else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
5202      ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
5203
5204    // For GCC compatibility, other qualifier mismatches are treated
5205    // as still compatible in C.
5206    else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5207  }
5208
5209  // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
5210  // incomplete type and the other is a pointer to a qualified or unqualified
5211  // version of void...
5212  if (lhptee->isVoidType()) {
5213    if (rhptee->isIncompleteOrObjectType())
5214      return ConvTy;
5215
5216    // As an extension, we allow cast to/from void* to function pointer.
5217    assert(rhptee->isFunctionType());
5218    return Sema::FunctionVoidPointer;
5219  }
5220
5221  if (rhptee->isVoidType()) {
5222    if (lhptee->isIncompleteOrObjectType())
5223      return ConvTy;
5224
5225    // As an extension, we allow cast to/from void* to function pointer.
5226    assert(lhptee->isFunctionType());
5227    return Sema::FunctionVoidPointer;
5228  }
5229
5230  // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
5231  // unqualified versions of compatible types, ...
5232  QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
5233  if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
5234    // Check if the pointee types are compatible ignoring the sign.
5235    // We explicitly check for char so that we catch "char" vs
5236    // "unsigned char" on systems where "char" is unsigned.
5237    if (lhptee->isCharType())
5238      ltrans = S.Context.UnsignedCharTy;
5239    else if (lhptee->hasSignedIntegerRepresentation())
5240      ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
5241
5242    if (rhptee->isCharType())
5243      rtrans = S.Context.UnsignedCharTy;
5244    else if (rhptee->hasSignedIntegerRepresentation())
5245      rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
5246
5247    if (ltrans == rtrans) {
5248      // Types are compatible ignoring the sign. Qualifier incompatibility
5249      // takes priority over sign incompatibility because the sign
5250      // warning can be disabled.
5251      if (ConvTy != Sema::Compatible)
5252        return ConvTy;
5253
5254      return Sema::IncompatiblePointerSign;
5255    }
5256
5257    // If we are a multi-level pointer, it's possible that our issue is simply
5258    // one of qualification - e.g. char ** -> const char ** is not allowed. If
5259    // the eventual target type is the same and the pointers have the same
5260    // level of indirection, this must be the issue.
5261    if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
5262      do {
5263        lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
5264        rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
5265      } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
5266
5267      if (lhptee == rhptee)
5268        return Sema::IncompatibleNestedPointerQualifiers;
5269    }
5270
5271    // General pointer incompatibility takes priority over qualifiers.
5272    return Sema::IncompatiblePointer;
5273  }
5274  if (!S.getLangOpts().CPlusPlus &&
5275      S.IsNoReturnConversion(ltrans, rtrans, ltrans))
5276    return Sema::IncompatiblePointer;
5277  return ConvTy;
5278}
5279
5280/// checkBlockPointerTypesForAssignment - This routine determines whether two
5281/// block pointer types are compatible or whether a block and normal pointer
5282/// are compatible. It is more restrict than comparing two function pointer
5283// types.
5284static Sema::AssignConvertType
5285checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
5286                                    QualType RHSType) {
5287  assert(LHSType.isCanonical() && "LHS not canonicalized!");
5288  assert(RHSType.isCanonical() && "RHS not canonicalized!");
5289
5290  QualType lhptee, rhptee;
5291
5292  // get the "pointed to" type (ignoring qualifiers at the top level)
5293  lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
5294  rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
5295
5296  // In C++, the types have to match exactly.
5297  if (S.getLangOpts().CPlusPlus)
5298    return Sema::IncompatibleBlockPointer;
5299
5300  Sema::AssignConvertType ConvTy = Sema::Compatible;
5301
5302  // For blocks we enforce that qualifiers are identical.
5303  if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
5304    ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
5305
5306  if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
5307    return Sema::IncompatibleBlockPointer;
5308
5309  return ConvTy;
5310}
5311
5312/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
5313/// for assignment compatibility.
5314static Sema::AssignConvertType
5315checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
5316                                   QualType RHSType) {
5317  assert(LHSType.isCanonical() && "LHS was not canonicalized!");
5318  assert(RHSType.isCanonical() && "RHS was not canonicalized!");
5319
5320  if (LHSType->isObjCBuiltinType()) {
5321    // Class is not compatible with ObjC object pointers.
5322    if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
5323        !RHSType->isObjCQualifiedClassType())
5324      return Sema::IncompatiblePointer;
5325    return Sema::Compatible;
5326  }
5327  if (RHSType->isObjCBuiltinType()) {
5328    if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
5329        !LHSType->isObjCQualifiedClassType())
5330      return Sema::IncompatiblePointer;
5331    return Sema::Compatible;
5332  }
5333  QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5334  QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
5335
5336  if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
5337      // make an exception for id<P>
5338      !LHSType->isObjCQualifiedIdType())
5339    return Sema::CompatiblePointerDiscardsQualifiers;
5340
5341  if (S.Context.typesAreCompatible(LHSType, RHSType))
5342    return Sema::Compatible;
5343  if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
5344    return Sema::IncompatibleObjCQualifiedId;
5345  return Sema::IncompatiblePointer;
5346}
5347
5348Sema::AssignConvertType
5349Sema::CheckAssignmentConstraints(SourceLocation Loc,
5350                                 QualType LHSType, QualType RHSType) {
5351  // Fake up an opaque expression.  We don't actually care about what
5352  // cast operations are required, so if CheckAssignmentConstraints
5353  // adds casts to this they'll be wasted, but fortunately that doesn't
5354  // usually happen on valid code.
5355  OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
5356  ExprResult RHSPtr = &RHSExpr;
5357  CastKind K = CK_Invalid;
5358
5359  return CheckAssignmentConstraints(LHSType, RHSPtr, K);
5360}
5361
5362/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
5363/// has code to accommodate several GCC extensions when type checking
5364/// pointers. Here are some objectionable examples that GCC considers warnings:
5365///
5366///  int a, *pint;
5367///  short *pshort;
5368///  struct foo *pfoo;
5369///
5370///  pint = pshort; // warning: assignment from incompatible pointer type
5371///  a = pint; // warning: assignment makes integer from pointer without a cast
5372///  pint = a; // warning: assignment makes pointer from integer without a cast
5373///  pint = pfoo; // warning: assignment from incompatible pointer type
5374///
5375/// As a result, the code for dealing with pointers is more complex than the
5376/// C99 spec dictates.
5377///
5378/// Sets 'Kind' for any result kind except Incompatible.
5379Sema::AssignConvertType
5380Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5381                                 CastKind &Kind) {
5382  QualType RHSType = RHS.get()->getType();
5383  QualType OrigLHSType = LHSType;
5384
5385  // Get canonical types.  We're not formatting these types, just comparing
5386  // them.
5387  LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
5388  RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
5389
5390
5391  // Common case: no conversion required.
5392  if (LHSType == RHSType) {
5393    Kind = CK_NoOp;
5394    return Compatible;
5395  }
5396
5397  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
5398    if (AtomicTy->getValueType() == RHSType) {
5399      Kind = CK_NonAtomicToAtomic;
5400      return Compatible;
5401    }
5402  }
5403
5404  if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(RHSType)) {
5405    if (AtomicTy->getValueType() == LHSType) {
5406      Kind = CK_AtomicToNonAtomic;
5407      return Compatible;
5408    }
5409  }
5410
5411
5412  // If the left-hand side is a reference type, then we are in a
5413  // (rare!) case where we've allowed the use of references in C,
5414  // e.g., as a parameter type in a built-in function. In this case,
5415  // just make sure that the type referenced is compatible with the
5416  // right-hand side type. The caller is responsible for adjusting
5417  // LHSType so that the resulting expression does not have reference
5418  // type.
5419  if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
5420    if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
5421      Kind = CK_LValueBitCast;
5422      return Compatible;
5423    }
5424    return Incompatible;
5425  }
5426
5427  // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
5428  // to the same ExtVector type.
5429  if (LHSType->isExtVectorType()) {
5430    if (RHSType->isExtVectorType())
5431      return Incompatible;
5432    if (RHSType->isArithmeticType()) {
5433      // CK_VectorSplat does T -> vector T, so first cast to the
5434      // element type.
5435      QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
5436      if (elType != RHSType) {
5437        Kind = PrepareScalarCast(RHS, elType);
5438        RHS = ImpCastExprToType(RHS.take(), elType, Kind);
5439      }
5440      Kind = CK_VectorSplat;
5441      return Compatible;
5442    }
5443  }
5444
5445  // Conversions to or from vector type.
5446  if (LHSType->isVectorType() || RHSType->isVectorType()) {
5447    if (LHSType->isVectorType() && RHSType->isVectorType()) {
5448      // Allow assignments of an AltiVec vector type to an equivalent GCC
5449      // vector type and vice versa
5450      if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5451        Kind = CK_BitCast;
5452        return Compatible;
5453      }
5454
5455      // If we are allowing lax vector conversions, and LHS and RHS are both
5456      // vectors, the total size only needs to be the same. This is a bitcast;
5457      // no bits are changed but the result type is different.
5458      if (getLangOpts().LaxVectorConversions &&
5459          (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
5460        Kind = CK_BitCast;
5461        return IncompatibleVectors;
5462      }
5463    }
5464    return Incompatible;
5465  }
5466
5467  // Arithmetic conversions.
5468  if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
5469      !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
5470    Kind = PrepareScalarCast(RHS, LHSType);
5471    return Compatible;
5472  }
5473
5474  // Conversions to normal pointers.
5475  if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
5476    // U* -> T*
5477    if (isa<PointerType>(RHSType)) {
5478      Kind = CK_BitCast;
5479      return checkPointerTypesForAssignment(*this, LHSType, RHSType);
5480    }
5481
5482    // int -> T*
5483    if (RHSType->isIntegerType()) {
5484      Kind = CK_IntegralToPointer; // FIXME: null?
5485      return IntToPointer;
5486    }
5487
5488    // C pointers are not compatible with ObjC object pointers,
5489    // with two exceptions:
5490    if (isa<ObjCObjectPointerType>(RHSType)) {
5491      //  - conversions to void*
5492      if (LHSPointer->getPointeeType()->isVoidType()) {
5493        Kind = CK_BitCast;
5494        return Compatible;
5495      }
5496
5497      //  - conversions from 'Class' to the redefinition type
5498      if (RHSType->isObjCClassType() &&
5499          Context.hasSameType(LHSType,
5500                              Context.getObjCClassRedefinitionType())) {
5501        Kind = CK_BitCast;
5502        return Compatible;
5503      }
5504
5505      Kind = CK_BitCast;
5506      return IncompatiblePointer;
5507    }
5508
5509    // U^ -> void*
5510    if (RHSType->getAs<BlockPointerType>()) {
5511      if (LHSPointer->getPointeeType()->isVoidType()) {
5512        Kind = CK_BitCast;
5513        return Compatible;
5514      }
5515    }
5516
5517    return Incompatible;
5518  }
5519
5520  // Conversions to block pointers.
5521  if (isa<BlockPointerType>(LHSType)) {
5522    // U^ -> T^
5523    if (RHSType->isBlockPointerType()) {
5524      Kind = CK_BitCast;
5525      return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
5526    }
5527
5528    // int or null -> T^
5529    if (RHSType->isIntegerType()) {
5530      Kind = CK_IntegralToPointer; // FIXME: null
5531      return IntToBlockPointer;
5532    }
5533
5534    // id -> T^
5535    if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
5536      Kind = CK_AnyPointerToBlockPointerCast;
5537      return Compatible;
5538    }
5539
5540    // void* -> T^
5541    if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
5542      if (RHSPT->getPointeeType()->isVoidType()) {
5543        Kind = CK_AnyPointerToBlockPointerCast;
5544        return Compatible;
5545      }
5546
5547    return Incompatible;
5548  }
5549
5550  // Conversions to Objective-C pointers.
5551  if (isa<ObjCObjectPointerType>(LHSType)) {
5552    // A* -> B*
5553    if (RHSType->isObjCObjectPointerType()) {
5554      Kind = CK_BitCast;
5555      Sema::AssignConvertType result =
5556        checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
5557      if (getLangOpts().ObjCAutoRefCount &&
5558          result == Compatible &&
5559          !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
5560        result = IncompatibleObjCWeakRef;
5561      return result;
5562    }
5563
5564    // int or null -> A*
5565    if (RHSType->isIntegerType()) {
5566      Kind = CK_IntegralToPointer; // FIXME: null
5567      return IntToPointer;
5568    }
5569
5570    // In general, C pointers are not compatible with ObjC object pointers,
5571    // with two exceptions:
5572    if (isa<PointerType>(RHSType)) {
5573      Kind = CK_CPointerToObjCPointerCast;
5574
5575      //  - conversions from 'void*'
5576      if (RHSType->isVoidPointerType()) {
5577        return Compatible;
5578      }
5579
5580      //  - conversions to 'Class' from its redefinition type
5581      if (LHSType->isObjCClassType() &&
5582          Context.hasSameType(RHSType,
5583                              Context.getObjCClassRedefinitionType())) {
5584        return Compatible;
5585      }
5586
5587      return IncompatiblePointer;
5588    }
5589
5590    // T^ -> A*
5591    if (RHSType->isBlockPointerType()) {
5592      maybeExtendBlockObject(*this, RHS);
5593      Kind = CK_BlockPointerToObjCPointerCast;
5594      return Compatible;
5595    }
5596
5597    return Incompatible;
5598  }
5599
5600  // Conversions from pointers that are not covered by the above.
5601  if (isa<PointerType>(RHSType)) {
5602    // T* -> _Bool
5603    if (LHSType == Context.BoolTy) {
5604      Kind = CK_PointerToBoolean;
5605      return Compatible;
5606    }
5607
5608    // T* -> int
5609    if (LHSType->isIntegerType()) {
5610      Kind = CK_PointerToIntegral;
5611      return PointerToInt;
5612    }
5613
5614    return Incompatible;
5615  }
5616
5617  // Conversions from Objective-C pointers that are not covered by the above.
5618  if (isa<ObjCObjectPointerType>(RHSType)) {
5619    // T* -> _Bool
5620    if (LHSType == Context.BoolTy) {
5621      Kind = CK_PointerToBoolean;
5622      return Compatible;
5623    }
5624
5625    // T* -> int
5626    if (LHSType->isIntegerType()) {
5627      Kind = CK_PointerToIntegral;
5628      return PointerToInt;
5629    }
5630
5631    return Incompatible;
5632  }
5633
5634  // struct A -> struct B
5635  if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
5636    if (Context.typesAreCompatible(LHSType, RHSType)) {
5637      Kind = CK_NoOp;
5638      return Compatible;
5639    }
5640  }
5641
5642  return Incompatible;
5643}
5644
5645/// \brief Constructs a transparent union from an expression that is
5646/// used to initialize the transparent union.
5647static void ConstructTransparentUnion(Sema &S, ASTContext &C,
5648                                      ExprResult &EResult, QualType UnionType,
5649                                      FieldDecl *Field) {
5650  // Build an initializer list that designates the appropriate member
5651  // of the transparent union.
5652  Expr *E = EResult.take();
5653  InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
5654                                                   &E, 1,
5655                                                   SourceLocation());
5656  Initializer->setType(UnionType);
5657  Initializer->setInitializedFieldInUnion(Field);
5658
5659  // Build a compound literal constructing a value of the transparent
5660  // union type from this initializer list.
5661  TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
5662  EResult = S.Owned(
5663    new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
5664                                VK_RValue, Initializer, false));
5665}
5666
5667Sema::AssignConvertType
5668Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
5669                                               ExprResult &RHS) {
5670  QualType RHSType = RHS.get()->getType();
5671
5672  // If the ArgType is a Union type, we want to handle a potential
5673  // transparent_union GCC extension.
5674  const RecordType *UT = ArgType->getAsUnionType();
5675  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
5676    return Incompatible;
5677
5678  // The field to initialize within the transparent union.
5679  RecordDecl *UD = UT->getDecl();
5680  FieldDecl *InitField = 0;
5681  // It's compatible if the expression matches any of the fields.
5682  for (RecordDecl::field_iterator it = UD->field_begin(),
5683         itend = UD->field_end();
5684       it != itend; ++it) {
5685    if (it->getType()->isPointerType()) {
5686      // If the transparent union contains a pointer type, we allow:
5687      // 1) void pointer
5688      // 2) null pointer constant
5689      if (RHSType->isPointerType())
5690        if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
5691          RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
5692          InitField = &*it;
5693          break;
5694        }
5695
5696      if (RHS.get()->isNullPointerConstant(Context,
5697                                           Expr::NPC_ValueDependentIsNull)) {
5698        RHS = ImpCastExprToType(RHS.take(), it->getType(),
5699                                CK_NullToPointer);
5700        InitField = &*it;
5701        break;
5702      }
5703    }
5704
5705    CastKind Kind = CK_Invalid;
5706    if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
5707          == Compatible) {
5708      RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
5709      InitField = &*it;
5710      break;
5711    }
5712  }
5713
5714  if (!InitField)
5715    return Incompatible;
5716
5717  ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
5718  return Compatible;
5719}
5720
5721Sema::AssignConvertType
5722Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
5723                                       bool Diagnose) {
5724  if (getLangOpts().CPlusPlus) {
5725    if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
5726      // C++ 5.17p3: If the left operand is not of class type, the
5727      // expression is implicitly converted (C++ 4) to the
5728      // cv-unqualified type of the left operand.
5729      ExprResult Res;
5730      if (Diagnose) {
5731        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5732                                        AA_Assigning);
5733      } else {
5734        ImplicitConversionSequence ICS =
5735            TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5736                                  /*SuppressUserConversions=*/false,
5737                                  /*AllowExplicit=*/false,
5738                                  /*InOverloadResolution=*/false,
5739                                  /*CStyle=*/false,
5740                                  /*AllowObjCWritebackConversion=*/false);
5741        if (ICS.isFailure())
5742          return Incompatible;
5743        Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
5744                                        ICS, AA_Assigning);
5745      }
5746      if (Res.isInvalid())
5747        return Incompatible;
5748      Sema::AssignConvertType result = Compatible;
5749      if (getLangOpts().ObjCAutoRefCount &&
5750          !CheckObjCARCUnavailableWeakConversion(LHSType,
5751                                                 RHS.get()->getType()))
5752        result = IncompatibleObjCWeakRef;
5753      RHS = move(Res);
5754      return result;
5755    }
5756
5757    // FIXME: Currently, we fall through and treat C++ classes like C
5758    // structures.
5759    // FIXME: We also fall through for atomics; not sure what should
5760    // happen there, though.
5761  }
5762
5763  // C99 6.5.16.1p1: the left operand is a pointer and the right is
5764  // a null pointer constant.
5765  if ((LHSType->isPointerType() ||
5766       LHSType->isObjCObjectPointerType() ||
5767       LHSType->isBlockPointerType())
5768      && RHS.get()->isNullPointerConstant(Context,
5769                                          Expr::NPC_ValueDependentIsNull)) {
5770    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
5771    return Compatible;
5772  }
5773
5774  // This check seems unnatural, however it is necessary to ensure the proper
5775  // conversion of functions/arrays. If the conversion were done for all
5776  // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
5777  // expressions that suppress this implicit conversion (&, sizeof).
5778  //
5779  // Suppress this for references: C++ 8.5.3p5.
5780  if (!LHSType->isReferenceType()) {
5781    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5782    if (RHS.isInvalid())
5783      return Incompatible;
5784  }
5785
5786  CastKind Kind = CK_Invalid;
5787  Sema::AssignConvertType result =
5788    CheckAssignmentConstraints(LHSType, RHS, Kind);
5789
5790  // C99 6.5.16.1p2: The value of the right operand is converted to the
5791  // type of the assignment expression.
5792  // CheckAssignmentConstraints allows the left-hand side to be a reference,
5793  // so that we can use references in built-in functions even in C.
5794  // The getNonReferenceType() call makes sure that the resulting expression
5795  // does not have reference type.
5796  if (result != Incompatible && RHS.get()->getType() != LHSType)
5797    RHS = ImpCastExprToType(RHS.take(),
5798                            LHSType.getNonLValueExprType(Context), Kind);
5799  return result;
5800}
5801
5802QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
5803                               ExprResult &RHS) {
5804  Diag(Loc, diag::err_typecheck_invalid_operands)
5805    << LHS.get()->getType() << RHS.get()->getType()
5806    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5807  return QualType();
5808}
5809
5810QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
5811                                   SourceLocation Loc, bool IsCompAssign) {
5812  if (!IsCompAssign) {
5813    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
5814    if (LHS.isInvalid())
5815      return QualType();
5816  }
5817  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
5818  if (RHS.isInvalid())
5819    return QualType();
5820
5821  // For conversion purposes, we ignore any qualifiers.
5822  // For example, "const float" and "float" are equivalent.
5823  QualType LHSType =
5824    Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
5825  QualType RHSType =
5826    Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
5827
5828  // If the vector types are identical, return.
5829  if (LHSType == RHSType)
5830    return LHSType;
5831
5832  // Handle the case of equivalent AltiVec and GCC vector types
5833  if (LHSType->isVectorType() && RHSType->isVectorType() &&
5834      Context.areCompatibleVectorTypes(LHSType, RHSType)) {
5835    if (LHSType->isExtVectorType()) {
5836      RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5837      return LHSType;
5838    }
5839
5840    if (!IsCompAssign)
5841      LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
5842    return RHSType;
5843  }
5844
5845  if (getLangOpts().LaxVectorConversions &&
5846      Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
5847    // If we are allowing lax vector conversions, and LHS and RHS are both
5848    // vectors, the total size only needs to be the same. This is a
5849    // bitcast; no bits are changed but the result type is different.
5850    // FIXME: Should we really be allowing this?
5851    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
5852    return LHSType;
5853  }
5854
5855  // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
5856  // swap back (so that we don't reverse the inputs to a subtract, for instance.
5857  bool swapped = false;
5858  if (RHSType->isExtVectorType() && !IsCompAssign) {
5859    swapped = true;
5860    std::swap(RHS, LHS);
5861    std::swap(RHSType, LHSType);
5862  }
5863
5864  // Handle the case of an ext vector and scalar.
5865  if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
5866    QualType EltTy = LV->getElementType();
5867    if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
5868      int order = Context.getIntegerTypeOrder(EltTy, RHSType);
5869      if (order > 0)
5870        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
5871      if (order >= 0) {
5872        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5873        if (swapped) std::swap(RHS, LHS);
5874        return LHSType;
5875      }
5876    }
5877    if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
5878        RHSType->isRealFloatingType()) {
5879      int order = Context.getFloatingTypeOrder(EltTy, RHSType);
5880      if (order > 0)
5881        RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
5882      if (order >= 0) {
5883        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
5884        if (swapped) std::swap(RHS, LHS);
5885        return LHSType;
5886      }
5887    }
5888  }
5889
5890  // Vectors of different size or scalar and non-ext-vector are errors.
5891  if (swapped) std::swap(RHS, LHS);
5892  Diag(Loc, diag::err_typecheck_vector_not_convertable)
5893    << LHS.get()->getType() << RHS.get()->getType()
5894    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5895  return QualType();
5896}
5897
5898// checkArithmeticNull - Detect when a NULL constant is used improperly in an
5899// expression.  These are mainly cases where the null pointer is used as an
5900// integer instead of a pointer.
5901static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
5902                                SourceLocation Loc, bool IsCompare) {
5903  // The canonical way to check for a GNU null is with isNullPointerConstant,
5904  // but we use a bit of a hack here for speed; this is a relatively
5905  // hot path, and isNullPointerConstant is slow.
5906  bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
5907  bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
5908
5909  QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
5910
5911  // Avoid analyzing cases where the result will either be invalid (and
5912  // diagnosed as such) or entirely valid and not something to warn about.
5913  if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
5914      NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
5915    return;
5916
5917  // Comparison operations would not make sense with a null pointer no matter
5918  // what the other expression is.
5919  if (!IsCompare) {
5920    S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
5921        << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
5922        << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
5923    return;
5924  }
5925
5926  // The rest of the operations only make sense with a null pointer
5927  // if the other expression is a pointer.
5928  if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
5929      NonNullType->canDecayToPointerType())
5930    return;
5931
5932  S.Diag(Loc, diag::warn_null_in_comparison_operation)
5933      << LHSNull /* LHS is NULL */ << NonNullType
5934      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5935}
5936
5937QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
5938                                           SourceLocation Loc,
5939                                           bool IsCompAssign, bool IsDiv) {
5940  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5941
5942  if (LHS.get()->getType()->isVectorType() ||
5943      RHS.get()->getType()->isVectorType())
5944    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5945
5946  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5947  if (LHS.isInvalid() || RHS.isInvalid())
5948    return QualType();
5949
5950
5951  if (!LHS.get()->getType()->isArithmeticType() ||
5952      !RHS.get()->getType()->isArithmeticType()) {
5953    if (IsCompAssign &&
5954        LHS.get()->getType()->isAtomicType() &&
5955        RHS.get()->getType()->isArithmeticType())
5956      return compType;
5957    return InvalidOperands(Loc, LHS, RHS);
5958  }
5959
5960  // Check for division by zero.
5961  if (IsDiv &&
5962      RHS.get()->isNullPointerConstant(Context,
5963                                       Expr::NPC_ValueDependentIsNotNull))
5964    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
5965                                          << RHS.get()->getSourceRange());
5966
5967  return compType;
5968}
5969
5970QualType Sema::CheckRemainderOperands(
5971  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
5972  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
5973
5974  if (LHS.get()->getType()->isVectorType() ||
5975      RHS.get()->getType()->isVectorType()) {
5976    if (LHS.get()->getType()->hasIntegerRepresentation() &&
5977        RHS.get()->getType()->hasIntegerRepresentation())
5978      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
5979    return InvalidOperands(Loc, LHS, RHS);
5980  }
5981
5982  QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
5983  if (LHS.isInvalid() || RHS.isInvalid())
5984    return QualType();
5985
5986  if (!LHS.get()->getType()->isIntegerType() ||
5987      !RHS.get()->getType()->isIntegerType())
5988    return InvalidOperands(Loc, LHS, RHS);
5989
5990  // Check for remainder by zero.
5991  if (RHS.get()->isNullPointerConstant(Context,
5992                                       Expr::NPC_ValueDependentIsNotNull))
5993    DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
5994                                 << RHS.get()->getSourceRange());
5995
5996  return compType;
5997}
5998
5999/// \brief Diagnose invalid arithmetic on two void pointers.
6000static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
6001                                                Expr *LHSExpr, Expr *RHSExpr) {
6002  S.Diag(Loc, S.getLangOpts().CPlusPlus
6003                ? diag::err_typecheck_pointer_arith_void_type
6004                : diag::ext_gnu_void_ptr)
6005    << 1 /* two pointers */ << LHSExpr->getSourceRange()
6006                            << RHSExpr->getSourceRange();
6007}
6008
6009/// \brief Diagnose invalid arithmetic on a void pointer.
6010static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
6011                                            Expr *Pointer) {
6012  S.Diag(Loc, S.getLangOpts().CPlusPlus
6013                ? diag::err_typecheck_pointer_arith_void_type
6014                : diag::ext_gnu_void_ptr)
6015    << 0 /* one pointer */ << Pointer->getSourceRange();
6016}
6017
6018/// \brief Diagnose invalid arithmetic on two function pointers.
6019static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
6020                                                    Expr *LHS, Expr *RHS) {
6021  assert(LHS->getType()->isAnyPointerType());
6022  assert(RHS->getType()->isAnyPointerType());
6023  S.Diag(Loc, S.getLangOpts().CPlusPlus
6024                ? diag::err_typecheck_pointer_arith_function_type
6025                : diag::ext_gnu_ptr_func_arith)
6026    << 1 /* two pointers */ << LHS->getType()->getPointeeType()
6027    // We only show the second type if it differs from the first.
6028    << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
6029                                                   RHS->getType())
6030    << RHS->getType()->getPointeeType()
6031    << LHS->getSourceRange() << RHS->getSourceRange();
6032}
6033
6034/// \brief Diagnose invalid arithmetic on a function pointer.
6035static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
6036                                                Expr *Pointer) {
6037  assert(Pointer->getType()->isAnyPointerType());
6038  S.Diag(Loc, S.getLangOpts().CPlusPlus
6039                ? diag::err_typecheck_pointer_arith_function_type
6040                : diag::ext_gnu_ptr_func_arith)
6041    << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
6042    << 0 /* one pointer, so only one type */
6043    << Pointer->getSourceRange();
6044}
6045
6046/// \brief Emit error if Operand is incomplete pointer type
6047///
6048/// \returns True if pointer has incomplete type
6049static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
6050                                                 Expr *Operand) {
6051  if ((Operand->getType()->isPointerType() &&
6052       !Operand->getType()->isDependentType()) ||
6053      Operand->getType()->isObjCObjectPointerType()) {
6054    QualType PointeeTy = Operand->getType()->getPointeeType();
6055    if (S.RequireCompleteType(
6056          Loc, PointeeTy,
6057          diag::err_typecheck_arithmetic_incomplete_type,
6058          PointeeTy, Operand->getSourceRange()))
6059      return true;
6060  }
6061  return false;
6062}
6063
6064/// \brief Check the validity of an arithmetic pointer operand.
6065///
6066/// If the operand has pointer type, this code will check for pointer types
6067/// which are invalid in arithmetic operations. These will be diagnosed
6068/// appropriately, including whether or not the use is supported as an
6069/// extension.
6070///
6071/// \returns True when the operand is valid to use (even if as an extension).
6072static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
6073                                            Expr *Operand) {
6074  if (!Operand->getType()->isAnyPointerType()) return true;
6075
6076  QualType PointeeTy = Operand->getType()->getPointeeType();
6077  if (PointeeTy->isVoidType()) {
6078    diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
6079    return !S.getLangOpts().CPlusPlus;
6080  }
6081  if (PointeeTy->isFunctionType()) {
6082    diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
6083    return !S.getLangOpts().CPlusPlus;
6084  }
6085
6086  if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
6087
6088  return true;
6089}
6090
6091/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
6092/// operands.
6093///
6094/// This routine will diagnose any invalid arithmetic on pointer operands much
6095/// like \see checkArithmeticOpPointerOperand. However, it has special logic
6096/// for emitting a single diagnostic even for operations where both LHS and RHS
6097/// are (potentially problematic) pointers.
6098///
6099/// \returns True when the operand is valid to use (even if as an extension).
6100static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
6101                                                Expr *LHSExpr, Expr *RHSExpr) {
6102  bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
6103  bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
6104  if (!isLHSPointer && !isRHSPointer) return true;
6105
6106  QualType LHSPointeeTy, RHSPointeeTy;
6107  if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
6108  if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
6109
6110  // Check for arithmetic on pointers to incomplete types.
6111  bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
6112  bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
6113  if (isLHSVoidPtr || isRHSVoidPtr) {
6114    if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
6115    else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
6116    else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
6117
6118    return !S.getLangOpts().CPlusPlus;
6119  }
6120
6121  bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
6122  bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
6123  if (isLHSFuncPtr || isRHSFuncPtr) {
6124    if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
6125    else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
6126                                                                RHSExpr);
6127    else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
6128
6129    return !S.getLangOpts().CPlusPlus;
6130  }
6131
6132  if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
6133  if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
6134
6135  return true;
6136}
6137
6138/// \brief Check bad cases where we step over interface counts.
6139static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
6140                                                   SourceLocation OpLoc,
6141                                                   Expr *Op) {
6142  assert(Op->getType()->isAnyPointerType());
6143  QualType PointeeTy = Op->getType()->getPointeeType();
6144  if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
6145    return true;
6146
6147  S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
6148    << PointeeTy << Op->getSourceRange();
6149  return false;
6150}
6151
6152/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
6153/// literal.
6154static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
6155                                  Expr *LHSExpr, Expr *RHSExpr) {
6156  StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
6157  Expr* IndexExpr = RHSExpr;
6158  if (!StrExpr) {
6159    StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
6160    IndexExpr = LHSExpr;
6161  }
6162
6163  bool IsStringPlusInt = StrExpr &&
6164      IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
6165  if (!IsStringPlusInt)
6166    return;
6167
6168  llvm::APSInt index;
6169  if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
6170    unsigned StrLenWithNull = StrExpr->getLength() + 1;
6171    if (index.isNonNegative() &&
6172        index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
6173                              index.isUnsigned()))
6174      return;
6175  }
6176
6177  SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
6178  Self.Diag(OpLoc, diag::warn_string_plus_int)
6179      << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
6180
6181  // Only print a fixit for "str" + int, not for int + "str".
6182  if (IndexExpr == RHSExpr) {
6183    SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
6184    Self.Diag(OpLoc, diag::note_string_plus_int_silence)
6185        << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
6186        << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
6187        << FixItHint::CreateInsertion(EndLoc, "]");
6188  } else
6189    Self.Diag(OpLoc, diag::note_string_plus_int_silence);
6190}
6191
6192/// \brief Emit error when two pointers are incompatible.
6193static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
6194                                           Expr *LHSExpr, Expr *RHSExpr) {
6195  assert(LHSExpr->getType()->isAnyPointerType());
6196  assert(RHSExpr->getType()->isAnyPointerType());
6197  S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
6198    << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
6199    << RHSExpr->getSourceRange();
6200}
6201
6202QualType Sema::CheckAdditionOperands( // C99 6.5.6
6203    ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
6204    QualType* CompLHSTy) {
6205  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6206
6207  if (LHS.get()->getType()->isVectorType() ||
6208      RHS.get()->getType()->isVectorType()) {
6209    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6210    if (CompLHSTy) *CompLHSTy = compType;
6211    return compType;
6212  }
6213
6214  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6215  if (LHS.isInvalid() || RHS.isInvalid())
6216    return QualType();
6217
6218  // Diagnose "string literal" '+' int.
6219  if (Opc == BO_Add)
6220    diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
6221
6222  // handle the common case first (both operands are arithmetic).
6223  if (LHS.get()->getType()->isArithmeticType() &&
6224      RHS.get()->getType()->isArithmeticType()) {
6225    if (CompLHSTy) *CompLHSTy = compType;
6226    return compType;
6227  }
6228
6229  if (LHS.get()->getType()->isAtomicType() &&
6230      RHS.get()->getType()->isArithmeticType()) {
6231    *CompLHSTy = LHS.get()->getType();
6232    return compType;
6233  }
6234
6235  // Put any potential pointer into PExp
6236  Expr* PExp = LHS.get(), *IExp = RHS.get();
6237  if (IExp->getType()->isAnyPointerType())
6238    std::swap(PExp, IExp);
6239
6240  if (!PExp->getType()->isAnyPointerType())
6241    return InvalidOperands(Loc, LHS, RHS);
6242
6243  if (!IExp->getType()->isIntegerType())
6244    return InvalidOperands(Loc, LHS, RHS);
6245
6246  if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
6247    return QualType();
6248
6249  // Diagnose bad cases where we step over interface counts.
6250  if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
6251    return QualType();
6252
6253  // Check array bounds for pointer arithemtic
6254  CheckArrayAccess(PExp, IExp);
6255
6256  if (CompLHSTy) {
6257    QualType LHSTy = Context.isPromotableBitField(LHS.get());
6258    if (LHSTy.isNull()) {
6259      LHSTy = LHS.get()->getType();
6260      if (LHSTy->isPromotableIntegerType())
6261        LHSTy = Context.getPromotedIntegerType(LHSTy);
6262    }
6263    *CompLHSTy = LHSTy;
6264  }
6265
6266  return PExp->getType();
6267}
6268
6269// C99 6.5.6
6270QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
6271                                        SourceLocation Loc,
6272                                        QualType* CompLHSTy) {
6273  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6274
6275  if (LHS.get()->getType()->isVectorType() ||
6276      RHS.get()->getType()->isVectorType()) {
6277    QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
6278    if (CompLHSTy) *CompLHSTy = compType;
6279    return compType;
6280  }
6281
6282  QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
6283  if (LHS.isInvalid() || RHS.isInvalid())
6284    return QualType();
6285
6286  // Enforce type constraints: C99 6.5.6p3.
6287
6288  // Handle the common case first (both operands are arithmetic).
6289  if (LHS.get()->getType()->isArithmeticType() &&
6290      RHS.get()->getType()->isArithmeticType()) {
6291    if (CompLHSTy) *CompLHSTy = compType;
6292    return compType;
6293  }
6294
6295  if (LHS.get()->getType()->isAtomicType() &&
6296      RHS.get()->getType()->isArithmeticType()) {
6297    *CompLHSTy = LHS.get()->getType();
6298    return compType;
6299  }
6300
6301  // Either ptr - int   or   ptr - ptr.
6302  if (LHS.get()->getType()->isAnyPointerType()) {
6303    QualType lpointee = LHS.get()->getType()->getPointeeType();
6304
6305    // Diagnose bad cases where we step over interface counts.
6306    if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
6307      return QualType();
6308
6309    // The result type of a pointer-int computation is the pointer type.
6310    if (RHS.get()->getType()->isIntegerType()) {
6311      if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
6312        return QualType();
6313
6314      // Check array bounds for pointer arithemtic
6315      CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
6316                       /*AllowOnePastEnd*/true, /*IndexNegated*/true);
6317
6318      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6319      return LHS.get()->getType();
6320    }
6321
6322    // Handle pointer-pointer subtractions.
6323    if (const PointerType *RHSPTy
6324          = RHS.get()->getType()->getAs<PointerType>()) {
6325      QualType rpointee = RHSPTy->getPointeeType();
6326
6327      if (getLangOpts().CPlusPlus) {
6328        // Pointee types must be the same: C++ [expr.add]
6329        if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
6330          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6331        }
6332      } else {
6333        // Pointee types must be compatible C99 6.5.6p3
6334        if (!Context.typesAreCompatible(
6335                Context.getCanonicalType(lpointee).getUnqualifiedType(),
6336                Context.getCanonicalType(rpointee).getUnqualifiedType())) {
6337          diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
6338          return QualType();
6339        }
6340      }
6341
6342      if (!checkArithmeticBinOpPointerOperands(*this, Loc,
6343                                               LHS.get(), RHS.get()))
6344        return QualType();
6345
6346      if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
6347      return Context.getPointerDiffType();
6348    }
6349  }
6350
6351  return InvalidOperands(Loc, LHS, RHS);
6352}
6353
6354static bool isScopedEnumerationType(QualType T) {
6355  if (const EnumType *ET = dyn_cast<EnumType>(T))
6356    return ET->getDecl()->isScoped();
6357  return false;
6358}
6359
6360static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
6361                                   SourceLocation Loc, unsigned Opc,
6362                                   QualType LHSType) {
6363  llvm::APSInt Right;
6364  // Check right/shifter operand
6365  if (RHS.get()->isValueDependent() ||
6366      !RHS.get()->isIntegerConstantExpr(Right, S.Context))
6367    return;
6368
6369  if (Right.isNegative()) {
6370    S.DiagRuntimeBehavior(Loc, RHS.get(),
6371                          S.PDiag(diag::warn_shift_negative)
6372                            << RHS.get()->getSourceRange());
6373    return;
6374  }
6375  llvm::APInt LeftBits(Right.getBitWidth(),
6376                       S.Context.getTypeSize(LHS.get()->getType()));
6377  if (Right.uge(LeftBits)) {
6378    S.DiagRuntimeBehavior(Loc, RHS.get(),
6379                          S.PDiag(diag::warn_shift_gt_typewidth)
6380                            << RHS.get()->getSourceRange());
6381    return;
6382  }
6383  if (Opc != BO_Shl)
6384    return;
6385
6386  // When left shifting an ICE which is signed, we can check for overflow which
6387  // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
6388  // integers have defined behavior modulo one more than the maximum value
6389  // representable in the result type, so never warn for those.
6390  llvm::APSInt Left;
6391  if (LHS.get()->isValueDependent() ||
6392      !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
6393      LHSType->hasUnsignedIntegerRepresentation())
6394    return;
6395  llvm::APInt ResultBits =
6396      static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
6397  if (LeftBits.uge(ResultBits))
6398    return;
6399  llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
6400  Result = Result.shl(Right);
6401
6402  // Print the bit representation of the signed integer as an unsigned
6403  // hexadecimal number.
6404  SmallString<40> HexResult;
6405  Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
6406
6407  // If we are only missing a sign bit, this is less likely to result in actual
6408  // bugs -- if the result is cast back to an unsigned type, it will have the
6409  // expected value. Thus we place this behind a different warning that can be
6410  // turned off separately if needed.
6411  if (LeftBits == ResultBits - 1) {
6412    S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
6413        << HexResult.str() << LHSType
6414        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6415    return;
6416  }
6417
6418  S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
6419    << HexResult.str() << Result.getMinSignedBits() << LHSType
6420    << Left.getBitWidth() << LHS.get()->getSourceRange()
6421    << RHS.get()->getSourceRange();
6422}
6423
6424// C99 6.5.7
6425QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
6426                                  SourceLocation Loc, unsigned Opc,
6427                                  bool IsCompAssign) {
6428  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
6429
6430  // C99 6.5.7p2: Each of the operands shall have integer type.
6431  if (!LHS.get()->getType()->hasIntegerRepresentation() ||
6432      !RHS.get()->getType()->hasIntegerRepresentation())
6433    return InvalidOperands(Loc, LHS, RHS);
6434
6435  // C++0x: Don't allow scoped enums. FIXME: Use something better than
6436  // hasIntegerRepresentation() above instead of this.
6437  if (isScopedEnumerationType(LHS.get()->getType()) ||
6438      isScopedEnumerationType(RHS.get()->getType())) {
6439    return InvalidOperands(Loc, LHS, RHS);
6440  }
6441
6442  // Vector shifts promote their scalar inputs to vector type.
6443  if (LHS.get()->getType()->isVectorType() ||
6444      RHS.get()->getType()->isVectorType())
6445    return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
6446
6447  // Shifts don't perform usual arithmetic conversions, they just do integer
6448  // promotions on each operand. C99 6.5.7p3
6449
6450  // For the LHS, do usual unary conversions, but then reset them away
6451  // if this is a compound assignment.
6452  ExprResult OldLHS = LHS;
6453  LHS = UsualUnaryConversions(LHS.take());
6454  if (LHS.isInvalid())
6455    return QualType();
6456  QualType LHSType = LHS.get()->getType();
6457  if (IsCompAssign) LHS = OldLHS;
6458
6459  // The RHS is simpler.
6460  RHS = UsualUnaryConversions(RHS.take());
6461  if (RHS.isInvalid())
6462    return QualType();
6463
6464  // Sanity-check shift operands
6465  DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
6466
6467  // "The type of the result is that of the promoted left operand."
6468  return LHSType;
6469}
6470
6471static bool IsWithinTemplateSpecialization(Decl *D) {
6472  if (DeclContext *DC = D->getDeclContext()) {
6473    if (isa<ClassTemplateSpecializationDecl>(DC))
6474      return true;
6475    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
6476      return FD->isFunctionTemplateSpecialization();
6477  }
6478  return false;
6479}
6480
6481/// If two different enums are compared, raise a warning.
6482static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
6483                                ExprResult &RHS) {
6484  QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
6485  QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
6486
6487  const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
6488  if (!LHSEnumType)
6489    return;
6490  const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
6491  if (!RHSEnumType)
6492    return;
6493
6494  // Ignore anonymous enums.
6495  if (!LHSEnumType->getDecl()->getIdentifier())
6496    return;
6497  if (!RHSEnumType->getDecl()->getIdentifier())
6498    return;
6499
6500  if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
6501    return;
6502
6503  S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
6504      << LHSStrippedType << RHSStrippedType
6505      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6506}
6507
6508/// \brief Diagnose bad pointer comparisons.
6509static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
6510                                              ExprResult &LHS, ExprResult &RHS,
6511                                              bool IsError) {
6512  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
6513                      : diag::ext_typecheck_comparison_of_distinct_pointers)
6514    << LHS.get()->getType() << RHS.get()->getType()
6515    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6516}
6517
6518/// \brief Returns false if the pointers are converted to a composite type,
6519/// true otherwise.
6520static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
6521                                           ExprResult &LHS, ExprResult &RHS) {
6522  // C++ [expr.rel]p2:
6523  //   [...] Pointer conversions (4.10) and qualification
6524  //   conversions (4.4) are performed on pointer operands (or on
6525  //   a pointer operand and a null pointer constant) to bring
6526  //   them to their composite pointer type. [...]
6527  //
6528  // C++ [expr.eq]p1 uses the same notion for (in)equality
6529  // comparisons of pointers.
6530
6531  // C++ [expr.eq]p2:
6532  //   In addition, pointers to members can be compared, or a pointer to
6533  //   member and a null pointer constant. Pointer to member conversions
6534  //   (4.11) and qualification conversions (4.4) are performed to bring
6535  //   them to a common type. If one operand is a null pointer constant,
6536  //   the common type is the type of the other operand. Otherwise, the
6537  //   common type is a pointer to member type similar (4.4) to the type
6538  //   of one of the operands, with a cv-qualification signature (4.4)
6539  //   that is the union of the cv-qualification signatures of the operand
6540  //   types.
6541
6542  QualType LHSType = LHS.get()->getType();
6543  QualType RHSType = RHS.get()->getType();
6544  assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
6545         (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
6546
6547  bool NonStandardCompositeType = false;
6548  bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
6549  QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
6550  if (T.isNull()) {
6551    diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
6552    return true;
6553  }
6554
6555  if (NonStandardCompositeType)
6556    S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
6557      << LHSType << RHSType << T << LHS.get()->getSourceRange()
6558      << RHS.get()->getSourceRange();
6559
6560  LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
6561  RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
6562  return false;
6563}
6564
6565static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
6566                                                    ExprResult &LHS,
6567                                                    ExprResult &RHS,
6568                                                    bool IsError) {
6569  S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
6570                      : diag::ext_typecheck_comparison_of_fptr_to_void)
6571    << LHS.get()->getType() << RHS.get()->getType()
6572    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6573}
6574
6575// C99 6.5.8, C++ [expr.rel]
6576QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
6577                                    SourceLocation Loc, unsigned OpaqueOpc,
6578                                    bool IsRelational) {
6579  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
6580
6581  BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
6582
6583  // Handle vector comparisons separately.
6584  if (LHS.get()->getType()->isVectorType() ||
6585      RHS.get()->getType()->isVectorType())
6586    return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
6587
6588  QualType LHSType = LHS.get()->getType();
6589  QualType RHSType = RHS.get()->getType();
6590
6591  Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
6592  Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
6593
6594  checkEnumComparison(*this, Loc, LHS, RHS);
6595
6596  if (!LHSType->hasFloatingRepresentation() &&
6597      !(LHSType->isBlockPointerType() && IsRelational) &&
6598      !LHS.get()->getLocStart().isMacroID() &&
6599      !RHS.get()->getLocStart().isMacroID()) {
6600    // For non-floating point types, check for self-comparisons of the form
6601    // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6602    // often indicate logic errors in the program.
6603    //
6604    // NOTE: Don't warn about comparison expressions resulting from macro
6605    // expansion. Also don't warn about comparisons which are only self
6606    // comparisons within a template specialization. The warnings should catch
6607    // obvious cases in the definition of the template anyways. The idea is to
6608    // warn when the typed comparison operator will always evaluate to the same
6609    // result.
6610    if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
6611      if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
6612        if (DRL->getDecl() == DRR->getDecl() &&
6613            !IsWithinTemplateSpecialization(DRL->getDecl())) {
6614          DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6615                              << 0 // self-
6616                              << (Opc == BO_EQ
6617                                  || Opc == BO_LE
6618                                  || Opc == BO_GE));
6619        } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
6620                   !DRL->getDecl()->getType()->isReferenceType() &&
6621                   !DRR->getDecl()->getType()->isReferenceType()) {
6622            // what is it always going to eval to?
6623            char always_evals_to;
6624            switch(Opc) {
6625            case BO_EQ: // e.g. array1 == array2
6626              always_evals_to = 0; // false
6627              break;
6628            case BO_NE: // e.g. array1 != array2
6629              always_evals_to = 1; // true
6630              break;
6631            default:
6632              // best we can say is 'a constant'
6633              always_evals_to = 2; // e.g. array1 <= array2
6634              break;
6635            }
6636            DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
6637                                << 1 // array
6638                                << always_evals_to);
6639        }
6640      }
6641    }
6642
6643    if (isa<CastExpr>(LHSStripped))
6644      LHSStripped = LHSStripped->IgnoreParenCasts();
6645    if (isa<CastExpr>(RHSStripped))
6646      RHSStripped = RHSStripped->IgnoreParenCasts();
6647
6648    // Warn about comparisons against a string constant (unless the other
6649    // operand is null), the user probably wants strcmp.
6650    Expr *literalString = 0;
6651    Expr *literalStringStripped = 0;
6652    if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
6653        !RHSStripped->isNullPointerConstant(Context,
6654                                            Expr::NPC_ValueDependentIsNull)) {
6655      literalString = LHS.get();
6656      literalStringStripped = LHSStripped;
6657    } else if ((isa<StringLiteral>(RHSStripped) ||
6658                isa<ObjCEncodeExpr>(RHSStripped)) &&
6659               !LHSStripped->isNullPointerConstant(Context,
6660                                            Expr::NPC_ValueDependentIsNull)) {
6661      literalString = RHS.get();
6662      literalStringStripped = RHSStripped;
6663    }
6664
6665    if (literalString) {
6666      std::string resultComparison;
6667      switch (Opc) {
6668      case BO_LT: resultComparison = ") < 0"; break;
6669      case BO_GT: resultComparison = ") > 0"; break;
6670      case BO_LE: resultComparison = ") <= 0"; break;
6671      case BO_GE: resultComparison = ") >= 0"; break;
6672      case BO_EQ: resultComparison = ") == 0"; break;
6673      case BO_NE: resultComparison = ") != 0"; break;
6674      default: llvm_unreachable("Invalid comparison operator");
6675      }
6676
6677      DiagRuntimeBehavior(Loc, 0,
6678        PDiag(diag::warn_stringcompare)
6679          << isa<ObjCEncodeExpr>(literalStringStripped)
6680          << literalString->getSourceRange());
6681    }
6682  }
6683
6684  // C99 6.5.8p3 / C99 6.5.9p4
6685  if (LHS.get()->getType()->isArithmeticType() &&
6686      RHS.get()->getType()->isArithmeticType()) {
6687    UsualArithmeticConversions(LHS, RHS);
6688    if (LHS.isInvalid() || RHS.isInvalid())
6689      return QualType();
6690  }
6691  else {
6692    LHS = UsualUnaryConversions(LHS.take());
6693    if (LHS.isInvalid())
6694      return QualType();
6695
6696    RHS = UsualUnaryConversions(RHS.take());
6697    if (RHS.isInvalid())
6698      return QualType();
6699  }
6700
6701  LHSType = LHS.get()->getType();
6702  RHSType = RHS.get()->getType();
6703
6704  // The result of comparisons is 'bool' in C++, 'int' in C.
6705  QualType ResultTy = Context.getLogicalOperationType();
6706
6707  if (IsRelational) {
6708    if (LHSType->isRealType() && RHSType->isRealType())
6709      return ResultTy;
6710  } else {
6711    // Check for comparisons of floating point operands using != and ==.
6712    if (LHSType->hasFloatingRepresentation())
6713      CheckFloatComparison(Loc, LHS.get(), RHS.get());
6714
6715    if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
6716      return ResultTy;
6717  }
6718
6719  bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
6720                                              Expr::NPC_ValueDependentIsNull);
6721  bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
6722                                              Expr::NPC_ValueDependentIsNull);
6723
6724  // All of the following pointer-related warnings are GCC extensions, except
6725  // when handling null pointer constants.
6726  if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
6727    QualType LCanPointeeTy =
6728      LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6729    QualType RCanPointeeTy =
6730      RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
6731
6732    if (getLangOpts().CPlusPlus) {
6733      if (LCanPointeeTy == RCanPointeeTy)
6734        return ResultTy;
6735      if (!IsRelational &&
6736          (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6737        // Valid unless comparison between non-null pointer and function pointer
6738        // This is a gcc extension compatibility comparison.
6739        // In a SFINAE context, we treat this as a hard error to maintain
6740        // conformance with the C++ standard.
6741        if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6742            && !LHSIsNull && !RHSIsNull) {
6743          diagnoseFunctionPointerToVoidComparison(
6744              *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
6745
6746          if (isSFINAEContext())
6747            return QualType();
6748
6749          RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6750          return ResultTy;
6751        }
6752      }
6753
6754      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6755        return QualType();
6756      else
6757        return ResultTy;
6758    }
6759    // C99 6.5.9p2 and C99 6.5.8p2
6760    if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
6761                                   RCanPointeeTy.getUnqualifiedType())) {
6762      // Valid unless a relational comparison of function pointers
6763      if (IsRelational && LCanPointeeTy->isFunctionType()) {
6764        Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
6765          << LHSType << RHSType << LHS.get()->getSourceRange()
6766          << RHS.get()->getSourceRange();
6767      }
6768    } else if (!IsRelational &&
6769               (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
6770      // Valid unless comparison between non-null pointer and function pointer
6771      if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
6772          && !LHSIsNull && !RHSIsNull)
6773        diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
6774                                                /*isError*/false);
6775    } else {
6776      // Invalid
6777      diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
6778    }
6779    if (LCanPointeeTy != RCanPointeeTy) {
6780      if (LHSIsNull && !RHSIsNull)
6781        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6782      else
6783        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6784    }
6785    return ResultTy;
6786  }
6787
6788  if (getLangOpts().CPlusPlus) {
6789    // Comparison of nullptr_t with itself.
6790    if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
6791      return ResultTy;
6792
6793    // Comparison of pointers with null pointer constants and equality
6794    // comparisons of member pointers to null pointer constants.
6795    if (RHSIsNull &&
6796        ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
6797         (!IsRelational &&
6798          (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
6799      RHS = ImpCastExprToType(RHS.take(), LHSType,
6800                        LHSType->isMemberPointerType()
6801                          ? CK_NullToMemberPointer
6802                          : CK_NullToPointer);
6803      return ResultTy;
6804    }
6805    if (LHSIsNull &&
6806        ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
6807         (!IsRelational &&
6808          (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
6809      LHS = ImpCastExprToType(LHS.take(), RHSType,
6810                        RHSType->isMemberPointerType()
6811                          ? CK_NullToMemberPointer
6812                          : CK_NullToPointer);
6813      return ResultTy;
6814    }
6815
6816    // Comparison of member pointers.
6817    if (!IsRelational &&
6818        LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
6819      if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
6820        return QualType();
6821      else
6822        return ResultTy;
6823    }
6824
6825    // Handle scoped enumeration types specifically, since they don't promote
6826    // to integers.
6827    if (LHS.get()->getType()->isEnumeralType() &&
6828        Context.hasSameUnqualifiedType(LHS.get()->getType(),
6829                                       RHS.get()->getType()))
6830      return ResultTy;
6831  }
6832
6833  // Handle block pointer types.
6834  if (!IsRelational && LHSType->isBlockPointerType() &&
6835      RHSType->isBlockPointerType()) {
6836    QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
6837    QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
6838
6839    if (!LHSIsNull && !RHSIsNull &&
6840        !Context.typesAreCompatible(lpointee, rpointee)) {
6841      Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6842        << LHSType << RHSType << LHS.get()->getSourceRange()
6843        << RHS.get()->getSourceRange();
6844    }
6845    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6846    return ResultTy;
6847  }
6848
6849  // Allow block pointers to be compared with null pointer constants.
6850  if (!IsRelational
6851      && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
6852          || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
6853    if (!LHSIsNull && !RHSIsNull) {
6854      if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
6855             ->getPointeeType()->isVoidType())
6856            || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
6857                ->getPointeeType()->isVoidType())))
6858        Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
6859          << LHSType << RHSType << LHS.get()->getSourceRange()
6860          << RHS.get()->getSourceRange();
6861    }
6862    if (LHSIsNull && !RHSIsNull)
6863      LHS = ImpCastExprToType(LHS.take(), RHSType,
6864                              RHSType->isPointerType() ? CK_BitCast
6865                                : CK_AnyPointerToBlockPointerCast);
6866    else
6867      RHS = ImpCastExprToType(RHS.take(), LHSType,
6868                              LHSType->isPointerType() ? CK_BitCast
6869                                : CK_AnyPointerToBlockPointerCast);
6870    return ResultTy;
6871  }
6872
6873  if (LHSType->isObjCObjectPointerType() ||
6874      RHSType->isObjCObjectPointerType()) {
6875    const PointerType *LPT = LHSType->getAs<PointerType>();
6876    const PointerType *RPT = RHSType->getAs<PointerType>();
6877    if (LPT || RPT) {
6878      bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
6879      bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
6880
6881      if (!LPtrToVoid && !RPtrToVoid &&
6882          !Context.typesAreCompatible(LHSType, RHSType)) {
6883        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6884                                          /*isError*/false);
6885      }
6886      if (LHSIsNull && !RHSIsNull)
6887        LHS = ImpCastExprToType(LHS.take(), RHSType,
6888                                RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6889      else
6890        RHS = ImpCastExprToType(RHS.take(), LHSType,
6891                                LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
6892      return ResultTy;
6893    }
6894    if (LHSType->isObjCObjectPointerType() &&
6895        RHSType->isObjCObjectPointerType()) {
6896      if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
6897        diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
6898                                          /*isError*/false);
6899      if (LHSIsNull && !RHSIsNull)
6900        LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
6901      else
6902        RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
6903      return ResultTy;
6904    }
6905  }
6906  if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
6907      (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
6908    unsigned DiagID = 0;
6909    bool isError = false;
6910    if ((LHSIsNull && LHSType->isIntegerType()) ||
6911        (RHSIsNull && RHSType->isIntegerType())) {
6912      if (IsRelational && !getLangOpts().CPlusPlus)
6913        DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
6914    } else if (IsRelational && !getLangOpts().CPlusPlus)
6915      DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
6916    else if (getLangOpts().CPlusPlus) {
6917      DiagID = diag::err_typecheck_comparison_of_pointer_integer;
6918      isError = true;
6919    } else
6920      DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
6921
6922    if (DiagID) {
6923      Diag(Loc, DiagID)
6924        << LHSType << RHSType << LHS.get()->getSourceRange()
6925        << RHS.get()->getSourceRange();
6926      if (isError)
6927        return QualType();
6928    }
6929
6930    if (LHSType->isIntegerType())
6931      LHS = ImpCastExprToType(LHS.take(), RHSType,
6932                        LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6933    else
6934      RHS = ImpCastExprToType(RHS.take(), LHSType,
6935                        RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
6936    return ResultTy;
6937  }
6938
6939  // Handle block pointers.
6940  if (!IsRelational && RHSIsNull
6941      && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
6942    RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
6943    return ResultTy;
6944  }
6945  if (!IsRelational && LHSIsNull
6946      && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
6947    LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
6948    return ResultTy;
6949  }
6950
6951  return InvalidOperands(Loc, LHS, RHS);
6952}
6953
6954
6955// Return a signed type that is of identical size and number of elements.
6956// For floating point vectors, return an integer type of identical size
6957// and number of elements.
6958QualType Sema::GetSignedVectorType(QualType V) {
6959  const VectorType *VTy = V->getAs<VectorType>();
6960  unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
6961  if (TypeSize == Context.getTypeSize(Context.CharTy))
6962    return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
6963  else if (TypeSize == Context.getTypeSize(Context.ShortTy))
6964    return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
6965  else if (TypeSize == Context.getTypeSize(Context.IntTy))
6966    return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
6967  else if (TypeSize == Context.getTypeSize(Context.LongTy))
6968    return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
6969  assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
6970         "Unhandled vector element size in vector compare");
6971  return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
6972}
6973
6974/// CheckVectorCompareOperands - vector comparisons are a clang extension that
6975/// operates on extended vector types.  Instead of producing an IntTy result,
6976/// like a scalar comparison, a vector comparison produces a vector of integer
6977/// types.
6978QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
6979                                          SourceLocation Loc,
6980                                          bool IsRelational) {
6981  // Check to make sure we're operating on vectors of the same type and width,
6982  // Allowing one side to be a scalar of element type.
6983  QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
6984  if (vType.isNull())
6985    return vType;
6986
6987  QualType LHSType = LHS.get()->getType();
6988
6989  // If AltiVec, the comparison results in a numeric type, i.e.
6990  // bool for C++, int for C
6991  if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
6992    return Context.getLogicalOperationType();
6993
6994  // For non-floating point types, check for self-comparisons of the form
6995  // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
6996  // often indicate logic errors in the program.
6997  if (!LHSType->hasFloatingRepresentation()) {
6998    if (DeclRefExpr* DRL
6999          = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
7000      if (DeclRefExpr* DRR
7001            = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
7002        if (DRL->getDecl() == DRR->getDecl())
7003          DiagRuntimeBehavior(Loc, 0,
7004                              PDiag(diag::warn_comparison_always)
7005                                << 0 // self-
7006                                << 2 // "a constant"
7007                              );
7008  }
7009
7010  // Check for comparisons of floating point operands using != and ==.
7011  if (!IsRelational && LHSType->hasFloatingRepresentation()) {
7012    assert (RHS.get()->getType()->hasFloatingRepresentation());
7013    CheckFloatComparison(Loc, LHS.get(), RHS.get());
7014  }
7015
7016  // Return a signed type for the vector.
7017  return GetSignedVectorType(LHSType);
7018}
7019
7020QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
7021                                          SourceLocation Loc) {
7022  // Ensure that either both operands are of the same vector type, or
7023  // one operand is of a vector type and the other is of its element type.
7024  QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
7025  if (vType.isNull() || vType->isFloatingType())
7026    return InvalidOperands(Loc, LHS, RHS);
7027
7028  return GetSignedVectorType(LHS.get()->getType());
7029}
7030
7031inline QualType Sema::CheckBitwiseOperands(
7032  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7033  checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7034
7035  if (LHS.get()->getType()->isVectorType() ||
7036      RHS.get()->getType()->isVectorType()) {
7037    if (LHS.get()->getType()->hasIntegerRepresentation() &&
7038        RHS.get()->getType()->hasIntegerRepresentation())
7039      return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7040
7041    return InvalidOperands(Loc, LHS, RHS);
7042  }
7043
7044  ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
7045  QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
7046                                                 IsCompAssign);
7047  if (LHSResult.isInvalid() || RHSResult.isInvalid())
7048    return QualType();
7049  LHS = LHSResult.take();
7050  RHS = RHSResult.take();
7051
7052  if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
7053      RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
7054    return compType;
7055  return InvalidOperands(Loc, LHS, RHS);
7056}
7057
7058inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
7059  ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
7060
7061  // Check vector operands differently.
7062  if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
7063    return CheckVectorLogicalOperands(LHS, RHS, Loc);
7064
7065  // Diagnose cases where the user write a logical and/or but probably meant a
7066  // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
7067  // is a constant.
7068  if (LHS.get()->getType()->isIntegerType() &&
7069      !LHS.get()->getType()->isBooleanType() &&
7070      RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
7071      // Don't warn in macros or template instantiations.
7072      !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
7073    // If the RHS can be constant folded, and if it constant folds to something
7074    // that isn't 0 or 1 (which indicate a potential logical operation that
7075    // happened to fold to true/false) then warn.
7076    // Parens on the RHS are ignored.
7077    llvm::APSInt Result;
7078    if (RHS.get()->EvaluateAsInt(Result, Context))
7079      if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
7080          (Result != 0 && Result != 1)) {
7081        Diag(Loc, diag::warn_logical_instead_of_bitwise)
7082          << RHS.get()->getSourceRange()
7083          << (Opc == BO_LAnd ? "&&" : "||");
7084        // Suggest replacing the logical operator with the bitwise version
7085        Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
7086            << (Opc == BO_LAnd ? "&" : "|")
7087            << FixItHint::CreateReplacement(SourceRange(
7088                Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
7089                                                getLangOpts())),
7090                                            Opc == BO_LAnd ? "&" : "|");
7091        if (Opc == BO_LAnd)
7092          // Suggest replacing "Foo() && kNonZero" with "Foo()"
7093          Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
7094              << FixItHint::CreateRemoval(
7095                  SourceRange(
7096                      Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
7097                                                 0, getSourceManager(),
7098                                                 getLangOpts()),
7099                      RHS.get()->getLocEnd()));
7100      }
7101  }
7102
7103  if (!Context.getLangOpts().CPlusPlus) {
7104    LHS = UsualUnaryConversions(LHS.take());
7105    if (LHS.isInvalid())
7106      return QualType();
7107
7108    RHS = UsualUnaryConversions(RHS.take());
7109    if (RHS.isInvalid())
7110      return QualType();
7111
7112    if (!LHS.get()->getType()->isScalarType() ||
7113        !RHS.get()->getType()->isScalarType())
7114      return InvalidOperands(Loc, LHS, RHS);
7115
7116    return Context.IntTy;
7117  }
7118
7119  // The following is safe because we only use this method for
7120  // non-overloadable operands.
7121
7122  // C++ [expr.log.and]p1
7123  // C++ [expr.log.or]p1
7124  // The operands are both contextually converted to type bool.
7125  ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
7126  if (LHSRes.isInvalid())
7127    return InvalidOperands(Loc, LHS, RHS);
7128  LHS = move(LHSRes);
7129
7130  ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
7131  if (RHSRes.isInvalid())
7132    return InvalidOperands(Loc, LHS, RHS);
7133  RHS = move(RHSRes);
7134
7135  // C++ [expr.log.and]p2
7136  // C++ [expr.log.or]p2
7137  // The result is a bool.
7138  return Context.BoolTy;
7139}
7140
7141/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
7142/// is a read-only property; return true if so. A readonly property expression
7143/// depends on various declarations and thus must be treated specially.
7144///
7145static bool IsReadonlyProperty(Expr *E, Sema &S) {
7146  const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
7147  if (!PropExpr) return false;
7148  if (PropExpr->isImplicitProperty()) return false;
7149
7150  ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
7151  QualType BaseType = PropExpr->isSuperReceiver() ?
7152                            PropExpr->getSuperReceiverType() :
7153                            PropExpr->getBase()->getType();
7154
7155  if (const ObjCObjectPointerType *OPT =
7156      BaseType->getAsObjCInterfacePointerType())
7157    if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
7158      if (S.isPropertyReadonly(PDecl, IFace))
7159        return true;
7160  return false;
7161}
7162
7163static bool IsReadonlyMessage(Expr *E, Sema &S) {
7164  const MemberExpr *ME = dyn_cast<MemberExpr>(E);
7165  if (!ME) return false;
7166  if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
7167  ObjCMessageExpr *Base =
7168    dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
7169  if (!Base) return false;
7170  return Base->getMethodDecl() != 0;
7171}
7172
7173/// Is the given expression (which must be 'const') a reference to a
7174/// variable which was originally non-const, but which has become
7175/// 'const' due to being captured within a block?
7176enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
7177static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
7178  assert(E->isLValue() && E->getType().isConstQualified());
7179  E = E->IgnoreParens();
7180
7181  // Must be a reference to a declaration from an enclosing scope.
7182  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
7183  if (!DRE) return NCCK_None;
7184  if (!DRE->refersToEnclosingLocal()) return NCCK_None;
7185
7186  // The declaration must be a variable which is not declared 'const'.
7187  VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
7188  if (!var) return NCCK_None;
7189  if (var->getType().isConstQualified()) return NCCK_None;
7190  assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
7191
7192  // Decide whether the first capture was for a block or a lambda.
7193  DeclContext *DC = S.CurContext;
7194  while (DC->getParent() != var->getDeclContext())
7195    DC = DC->getParent();
7196  return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
7197}
7198
7199/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
7200/// emit an error and return true.  If so, return false.
7201static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
7202  assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
7203  SourceLocation OrigLoc = Loc;
7204  Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
7205                                                              &Loc);
7206  if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
7207    IsLV = Expr::MLV_ReadonlyProperty;
7208  else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
7209    IsLV = Expr::MLV_InvalidMessageExpression;
7210  if (IsLV == Expr::MLV_Valid)
7211    return false;
7212
7213  unsigned Diag = 0;
7214  bool NeedType = false;
7215  switch (IsLV) { // C99 6.5.16p2
7216  case Expr::MLV_ConstQualified:
7217    Diag = diag::err_typecheck_assign_const;
7218
7219    // Use a specialized diagnostic when we're assigning to an object
7220    // from an enclosing function or block.
7221    if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
7222      if (NCCK == NCCK_Block)
7223        Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
7224      else
7225        Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
7226      break;
7227    }
7228
7229    // In ARC, use some specialized diagnostics for occasions where we
7230    // infer 'const'.  These are always pseudo-strong variables.
7231    if (S.getLangOpts().ObjCAutoRefCount) {
7232      DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
7233      if (declRef && isa<VarDecl>(declRef->getDecl())) {
7234        VarDecl *var = cast<VarDecl>(declRef->getDecl());
7235
7236        // Use the normal diagnostic if it's pseudo-__strong but the
7237        // user actually wrote 'const'.
7238        if (var->isARCPseudoStrong() &&
7239            (!var->getTypeSourceInfo() ||
7240             !var->getTypeSourceInfo()->getType().isConstQualified())) {
7241          // There are two pseudo-strong cases:
7242          //  - self
7243          ObjCMethodDecl *method = S.getCurMethodDecl();
7244          if (method && var == method->getSelfDecl())
7245            Diag = method->isClassMethod()
7246              ? diag::err_typecheck_arc_assign_self_class_method
7247              : diag::err_typecheck_arc_assign_self;
7248
7249          //  - fast enumeration variables
7250          else
7251            Diag = diag::err_typecheck_arr_assign_enumeration;
7252
7253          SourceRange Assign;
7254          if (Loc != OrigLoc)
7255            Assign = SourceRange(OrigLoc, OrigLoc);
7256          S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7257          // We need to preserve the AST regardless, so migration tool
7258          // can do its job.
7259          return false;
7260        }
7261      }
7262    }
7263
7264    break;
7265  case Expr::MLV_ArrayType:
7266    Diag = diag::err_typecheck_array_not_modifiable_lvalue;
7267    NeedType = true;
7268    break;
7269  case Expr::MLV_NotObjectType:
7270    Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
7271    NeedType = true;
7272    break;
7273  case Expr::MLV_LValueCast:
7274    Diag = diag::err_typecheck_lvalue_casts_not_supported;
7275    break;
7276  case Expr::MLV_Valid:
7277    llvm_unreachable("did not take early return for MLV_Valid");
7278  case Expr::MLV_InvalidExpression:
7279  case Expr::MLV_MemberFunction:
7280  case Expr::MLV_ClassTemporary:
7281    Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
7282    break;
7283  case Expr::MLV_IncompleteType:
7284  case Expr::MLV_IncompleteVoidType:
7285    return S.RequireCompleteType(Loc, E->getType(),
7286             diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
7287  case Expr::MLV_DuplicateVectorComponents:
7288    Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
7289    break;
7290  case Expr::MLV_ReadonlyProperty:
7291  case Expr::MLV_NoSetterProperty:
7292    llvm_unreachable("readonly properties should be processed differently");
7293  case Expr::MLV_InvalidMessageExpression:
7294    Diag = diag::error_readonly_message_assignment;
7295    break;
7296  case Expr::MLV_SubObjCPropertySetting:
7297    Diag = diag::error_no_subobject_property_setting;
7298    break;
7299  }
7300
7301  SourceRange Assign;
7302  if (Loc != OrigLoc)
7303    Assign = SourceRange(OrigLoc, OrigLoc);
7304  if (NeedType)
7305    S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
7306  else
7307    S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
7308  return true;
7309}
7310
7311
7312
7313// C99 6.5.16.1
7314QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
7315                                       SourceLocation Loc,
7316                                       QualType CompoundType) {
7317  assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
7318
7319  // Verify that LHS is a modifiable lvalue, and emit error if not.
7320  if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
7321    return QualType();
7322
7323  QualType LHSType = LHSExpr->getType();
7324  QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
7325                                             CompoundType;
7326  AssignConvertType ConvTy;
7327  if (CompoundType.isNull()) {
7328    QualType LHSTy(LHSType);
7329    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
7330    if (RHS.isInvalid())
7331      return QualType();
7332    // Special case of NSObject attributes on c-style pointer types.
7333    if (ConvTy == IncompatiblePointer &&
7334        ((Context.isObjCNSObjectType(LHSType) &&
7335          RHSType->isObjCObjectPointerType()) ||
7336         (Context.isObjCNSObjectType(RHSType) &&
7337          LHSType->isObjCObjectPointerType())))
7338      ConvTy = Compatible;
7339
7340    if (ConvTy == Compatible &&
7341        LHSType->isObjCObjectType())
7342        Diag(Loc, diag::err_objc_object_assignment)
7343          << LHSType;
7344
7345    // If the RHS is a unary plus or minus, check to see if they = and + are
7346    // right next to each other.  If so, the user may have typo'd "x =+ 4"
7347    // instead of "x += 4".
7348    Expr *RHSCheck = RHS.get();
7349    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
7350      RHSCheck = ICE->getSubExpr();
7351    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
7352      if ((UO->getOpcode() == UO_Plus ||
7353           UO->getOpcode() == UO_Minus) &&
7354          Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
7355          // Only if the two operators are exactly adjacent.
7356          Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
7357          // And there is a space or other character before the subexpr of the
7358          // unary +/-.  We don't want to warn on "x=-1".
7359          Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
7360          UO->getSubExpr()->getLocStart().isFileID()) {
7361        Diag(Loc, diag::warn_not_compound_assign)
7362          << (UO->getOpcode() == UO_Plus ? "+" : "-")
7363          << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
7364      }
7365    }
7366
7367    if (ConvTy == Compatible) {
7368      if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
7369        checkRetainCycles(LHSExpr, RHS.get());
7370      else if (getLangOpts().ObjCAutoRefCount)
7371        checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
7372    }
7373  } else {
7374    // Compound assignment "x += y"
7375    ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
7376  }
7377
7378  if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
7379                               RHS.get(), AA_Assigning))
7380    return QualType();
7381
7382  CheckForNullPointerDereference(*this, LHSExpr);
7383
7384  // C99 6.5.16p3: The type of an assignment expression is the type of the
7385  // left operand unless the left operand has qualified type, in which case
7386  // it is the unqualified version of the type of the left operand.
7387  // C99 6.5.16.1p2: In simple assignment, the value of the right operand
7388  // is converted to the type of the assignment expression (above).
7389  // C++ 5.17p1: the type of the assignment expression is that of its left
7390  // operand.
7391  return (getLangOpts().CPlusPlus
7392          ? LHSType : LHSType.getUnqualifiedType());
7393}
7394
7395// C99 6.5.17
7396static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
7397                                   SourceLocation Loc) {
7398  S.DiagnoseUnusedExprResult(LHS.get());
7399
7400  LHS = S.CheckPlaceholderExpr(LHS.take());
7401  RHS = S.CheckPlaceholderExpr(RHS.take());
7402  if (LHS.isInvalid() || RHS.isInvalid())
7403    return QualType();
7404
7405  // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
7406  // operands, but not unary promotions.
7407  // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
7408
7409  // So we treat the LHS as a ignored value, and in C++ we allow the
7410  // containing site to determine what should be done with the RHS.
7411  LHS = S.IgnoredValueConversions(LHS.take());
7412  if (LHS.isInvalid())
7413    return QualType();
7414
7415  if (!S.getLangOpts().CPlusPlus) {
7416    RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
7417    if (RHS.isInvalid())
7418      return QualType();
7419    if (!RHS.get()->getType()->isVoidType())
7420      S.RequireCompleteType(Loc, RHS.get()->getType(),
7421                            diag::err_incomplete_type);
7422  }
7423
7424  return RHS.get()->getType();
7425}
7426
7427/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
7428/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
7429static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
7430                                               ExprValueKind &VK,
7431                                               SourceLocation OpLoc,
7432                                               bool IsInc, bool IsPrefix) {
7433  if (Op->isTypeDependent())
7434    return S.Context.DependentTy;
7435
7436  QualType ResType = Op->getType();
7437  // Atomic types can be used for increment / decrement where the non-atomic
7438  // versions can, so ignore the _Atomic() specifier for the purpose of
7439  // checking.
7440  if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
7441    ResType = ResAtomicType->getValueType();
7442
7443  assert(!ResType.isNull() && "no type for increment/decrement expression");
7444
7445  if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
7446    // Decrement of bool is not allowed.
7447    if (!IsInc) {
7448      S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
7449      return QualType();
7450    }
7451    // Increment of bool sets it to true, but is deprecated.
7452    S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
7453  } else if (ResType->isRealType()) {
7454    // OK!
7455  } else if (ResType->isAnyPointerType()) {
7456    // C99 6.5.2.4p2, 6.5.6p2
7457    if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
7458      return QualType();
7459
7460    // Diagnose bad cases where we step over interface counts.
7461    else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
7462      return QualType();
7463  } else if (ResType->isAnyComplexType()) {
7464    // C99 does not support ++/-- on complex types, we allow as an extension.
7465    S.Diag(OpLoc, diag::ext_integer_increment_complex)
7466      << ResType << Op->getSourceRange();
7467  } else if (ResType->isPlaceholderType()) {
7468    ExprResult PR = S.CheckPlaceholderExpr(Op);
7469    if (PR.isInvalid()) return QualType();
7470    return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
7471                                          IsInc, IsPrefix);
7472  } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
7473    // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
7474  } else {
7475    S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
7476      << ResType << int(IsInc) << Op->getSourceRange();
7477    return QualType();
7478  }
7479  // At this point, we know we have a real, complex or pointer type.
7480  // Now make sure the operand is a modifiable lvalue.
7481  if (CheckForModifiableLvalue(Op, OpLoc, S))
7482    return QualType();
7483  // In C++, a prefix increment is the same type as the operand. Otherwise
7484  // (in C or with postfix), the increment is the unqualified type of the
7485  // operand.
7486  if (IsPrefix && S.getLangOpts().CPlusPlus) {
7487    VK = VK_LValue;
7488    return ResType;
7489  } else {
7490    VK = VK_RValue;
7491    return ResType.getUnqualifiedType();
7492  }
7493}
7494
7495
7496/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
7497/// This routine allows us to typecheck complex/recursive expressions
7498/// where the declaration is needed for type checking. We only need to
7499/// handle cases when the expression references a function designator
7500/// or is an lvalue. Here are some examples:
7501///  - &(x) => x
7502///  - &*****f => f for f a function designator.
7503///  - &s.xx => s
7504///  - &s.zz[1].yy -> s, if zz is an array
7505///  - *(x + 1) -> x, if x is an array
7506///  - &"123"[2] -> 0
7507///  - & __real__ x -> x
7508static ValueDecl *getPrimaryDecl(Expr *E) {
7509  switch (E->getStmtClass()) {
7510  case Stmt::DeclRefExprClass:
7511    return cast<DeclRefExpr>(E)->getDecl();
7512  case Stmt::MemberExprClass:
7513    // If this is an arrow operator, the address is an offset from
7514    // the base's value, so the object the base refers to is
7515    // irrelevant.
7516    if (cast<MemberExpr>(E)->isArrow())
7517      return 0;
7518    // Otherwise, the expression refers to a part of the base
7519    return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
7520  case Stmt::ArraySubscriptExprClass: {
7521    // FIXME: This code shouldn't be necessary!  We should catch the implicit
7522    // promotion of register arrays earlier.
7523    Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
7524    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
7525      if (ICE->getSubExpr()->getType()->isArrayType())
7526        return getPrimaryDecl(ICE->getSubExpr());
7527    }
7528    return 0;
7529  }
7530  case Stmt::UnaryOperatorClass: {
7531    UnaryOperator *UO = cast<UnaryOperator>(E);
7532
7533    switch(UO->getOpcode()) {
7534    case UO_Real:
7535    case UO_Imag:
7536    case UO_Extension:
7537      return getPrimaryDecl(UO->getSubExpr());
7538    default:
7539      return 0;
7540    }
7541  }
7542  case Stmt::ParenExprClass:
7543    return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
7544  case Stmt::ImplicitCastExprClass:
7545    // If the result of an implicit cast is an l-value, we care about
7546    // the sub-expression; otherwise, the result here doesn't matter.
7547    return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
7548  default:
7549    return 0;
7550  }
7551}
7552
7553namespace {
7554  enum {
7555    AO_Bit_Field = 0,
7556    AO_Vector_Element = 1,
7557    AO_Property_Expansion = 2,
7558    AO_Register_Variable = 3,
7559    AO_No_Error = 4
7560  };
7561}
7562/// \brief Diagnose invalid operand for address of operations.
7563///
7564/// \param Type The type of operand which cannot have its address taken.
7565static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
7566                                         Expr *E, unsigned Type) {
7567  S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
7568}
7569
7570/// CheckAddressOfOperand - The operand of & must be either a function
7571/// designator or an lvalue designating an object. If it is an lvalue, the
7572/// object cannot be declared with storage class register or be a bit field.
7573/// Note: The usual conversions are *not* applied to the operand of the &
7574/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
7575/// In C++, the operand might be an overloaded function name, in which case
7576/// we allow the '&' but retain the overloaded-function type.
7577static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
7578                                      SourceLocation OpLoc) {
7579  if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
7580    if (PTy->getKind() == BuiltinType::Overload) {
7581      if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
7582        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7583          << OrigOp.get()->getSourceRange();
7584        return QualType();
7585      }
7586
7587      return S.Context.OverloadTy;
7588    }
7589
7590    if (PTy->getKind() == BuiltinType::UnknownAny)
7591      return S.Context.UnknownAnyTy;
7592
7593    if (PTy->getKind() == BuiltinType::BoundMember) {
7594      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7595        << OrigOp.get()->getSourceRange();
7596      return QualType();
7597    }
7598
7599    OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
7600    if (OrigOp.isInvalid()) return QualType();
7601  }
7602
7603  if (OrigOp.get()->isTypeDependent())
7604    return S.Context.DependentTy;
7605
7606  assert(!OrigOp.get()->getType()->isPlaceholderType());
7607
7608  // Make sure to ignore parentheses in subsequent checks
7609  Expr *op = OrigOp.get()->IgnoreParens();
7610
7611  if (S.getLangOpts().C99) {
7612    // Implement C99-only parts of addressof rules.
7613    if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
7614      if (uOp->getOpcode() == UO_Deref)
7615        // Per C99 6.5.3.2, the address of a deref always returns a valid result
7616        // (assuming the deref expression is valid).
7617        return uOp->getSubExpr()->getType();
7618    }
7619    // Technically, there should be a check for array subscript
7620    // expressions here, but the result of one is always an lvalue anyway.
7621  }
7622  ValueDecl *dcl = getPrimaryDecl(op);
7623  Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
7624  unsigned AddressOfError = AO_No_Error;
7625
7626  if (lval == Expr::LV_ClassTemporary) {
7627    bool sfinae = S.isSFINAEContext();
7628    S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
7629                         : diag::ext_typecheck_addrof_class_temporary)
7630      << op->getType() << op->getSourceRange();
7631    if (sfinae)
7632      return QualType();
7633  } else if (isa<ObjCSelectorExpr>(op)) {
7634    return S.Context.getPointerType(op->getType());
7635  } else if (lval == Expr::LV_MemberFunction) {
7636    // If it's an instance method, make a member pointer.
7637    // The expression must have exactly the form &A::foo.
7638
7639    // If the underlying expression isn't a decl ref, give up.
7640    if (!isa<DeclRefExpr>(op)) {
7641      S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
7642        << OrigOp.get()->getSourceRange();
7643      return QualType();
7644    }
7645    DeclRefExpr *DRE = cast<DeclRefExpr>(op);
7646    CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
7647
7648    // The id-expression was parenthesized.
7649    if (OrigOp.get() != DRE) {
7650      S.Diag(OpLoc, diag::err_parens_pointer_member_function)
7651        << OrigOp.get()->getSourceRange();
7652
7653    // The method was named without a qualifier.
7654    } else if (!DRE->getQualifier()) {
7655      S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
7656        << op->getSourceRange();
7657    }
7658
7659    return S.Context.getMemberPointerType(op->getType(),
7660              S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
7661  } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
7662    // C99 6.5.3.2p1
7663    // The operand must be either an l-value or a function designator
7664    if (!op->getType()->isFunctionType()) {
7665      // Use a special diagnostic for loads from property references.
7666      if (isa<PseudoObjectExpr>(op)) {
7667        AddressOfError = AO_Property_Expansion;
7668      } else {
7669        // FIXME: emit more specific diag...
7670        S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
7671          << op->getSourceRange();
7672        return QualType();
7673      }
7674    }
7675  } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
7676    // The operand cannot be a bit-field
7677    AddressOfError = AO_Bit_Field;
7678  } else if (op->getObjectKind() == OK_VectorComponent) {
7679    // The operand cannot be an element of a vector
7680    AddressOfError = AO_Vector_Element;
7681  } else if (dcl) { // C99 6.5.3.2p1
7682    // We have an lvalue with a decl. Make sure the decl is not declared
7683    // with the register storage-class specifier.
7684    if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
7685      // in C++ it is not error to take address of a register
7686      // variable (c++03 7.1.1P3)
7687      if (vd->getStorageClass() == SC_Register &&
7688          !S.getLangOpts().CPlusPlus) {
7689        AddressOfError = AO_Register_Variable;
7690      }
7691    } else if (isa<FunctionTemplateDecl>(dcl)) {
7692      return S.Context.OverloadTy;
7693    } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
7694      // Okay: we can take the address of a field.
7695      // Could be a pointer to member, though, if there is an explicit
7696      // scope qualifier for the class.
7697      if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
7698        DeclContext *Ctx = dcl->getDeclContext();
7699        if (Ctx && Ctx->isRecord()) {
7700          if (dcl->getType()->isReferenceType()) {
7701            S.Diag(OpLoc,
7702                   diag::err_cannot_form_pointer_to_member_of_reference_type)
7703              << dcl->getDeclName() << dcl->getType();
7704            return QualType();
7705          }
7706
7707          while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
7708            Ctx = Ctx->getParent();
7709          return S.Context.getMemberPointerType(op->getType(),
7710                S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
7711        }
7712      }
7713    } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
7714      llvm_unreachable("Unknown/unexpected decl type");
7715  }
7716
7717  if (AddressOfError != AO_No_Error) {
7718    diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
7719    return QualType();
7720  }
7721
7722  if (lval == Expr::LV_IncompleteVoidType) {
7723    // Taking the address of a void variable is technically illegal, but we
7724    // allow it in cases which are otherwise valid.
7725    // Example: "extern void x; void* y = &x;".
7726    S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
7727  }
7728
7729  // If the operand has type "type", the result has type "pointer to type".
7730  if (op->getType()->isObjCObjectType())
7731    return S.Context.getObjCObjectPointerType(op->getType());
7732  return S.Context.getPointerType(op->getType());
7733}
7734
7735/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
7736static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
7737                                        SourceLocation OpLoc) {
7738  if (Op->isTypeDependent())
7739    return S.Context.DependentTy;
7740
7741  ExprResult ConvResult = S.UsualUnaryConversions(Op);
7742  if (ConvResult.isInvalid())
7743    return QualType();
7744  Op = ConvResult.take();
7745  QualType OpTy = Op->getType();
7746  QualType Result;
7747
7748  if (isa<CXXReinterpretCastExpr>(Op)) {
7749    QualType OpOrigType = Op->IgnoreParenCasts()->getType();
7750    S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
7751                                     Op->getSourceRange());
7752  }
7753
7754  // Note that per both C89 and C99, indirection is always legal, even if OpTy
7755  // is an incomplete type or void.  It would be possible to warn about
7756  // dereferencing a void pointer, but it's completely well-defined, and such a
7757  // warning is unlikely to catch any mistakes.
7758  if (const PointerType *PT = OpTy->getAs<PointerType>())
7759    Result = PT->getPointeeType();
7760  else if (const ObjCObjectPointerType *OPT =
7761             OpTy->getAs<ObjCObjectPointerType>())
7762    Result = OPT->getPointeeType();
7763  else {
7764    ExprResult PR = S.CheckPlaceholderExpr(Op);
7765    if (PR.isInvalid()) return QualType();
7766    if (PR.take() != Op)
7767      return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
7768  }
7769
7770  if (Result.isNull()) {
7771    S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
7772      << OpTy << Op->getSourceRange();
7773    return QualType();
7774  }
7775
7776  // Dereferences are usually l-values...
7777  VK = VK_LValue;
7778
7779  // ...except that certain expressions are never l-values in C.
7780  if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
7781    VK = VK_RValue;
7782
7783  return Result;
7784}
7785
7786static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
7787  tok::TokenKind Kind) {
7788  BinaryOperatorKind Opc;
7789  switch (Kind) {
7790  default: llvm_unreachable("Unknown binop!");
7791  case tok::periodstar:           Opc = BO_PtrMemD; break;
7792  case tok::arrowstar:            Opc = BO_PtrMemI; break;
7793  case tok::star:                 Opc = BO_Mul; break;
7794  case tok::slash:                Opc = BO_Div; break;
7795  case tok::percent:              Opc = BO_Rem; break;
7796  case tok::plus:                 Opc = BO_Add; break;
7797  case tok::minus:                Opc = BO_Sub; break;
7798  case tok::lessless:             Opc = BO_Shl; break;
7799  case tok::greatergreater:       Opc = BO_Shr; break;
7800  case tok::lessequal:            Opc = BO_LE; break;
7801  case tok::less:                 Opc = BO_LT; break;
7802  case tok::greaterequal:         Opc = BO_GE; break;
7803  case tok::greater:              Opc = BO_GT; break;
7804  case tok::exclaimequal:         Opc = BO_NE; break;
7805  case tok::equalequal:           Opc = BO_EQ; break;
7806  case tok::amp:                  Opc = BO_And; break;
7807  case tok::caret:                Opc = BO_Xor; break;
7808  case tok::pipe:                 Opc = BO_Or; break;
7809  case tok::ampamp:               Opc = BO_LAnd; break;
7810  case tok::pipepipe:             Opc = BO_LOr; break;
7811  case tok::equal:                Opc = BO_Assign; break;
7812  case tok::starequal:            Opc = BO_MulAssign; break;
7813  case tok::slashequal:           Opc = BO_DivAssign; break;
7814  case tok::percentequal:         Opc = BO_RemAssign; break;
7815  case tok::plusequal:            Opc = BO_AddAssign; break;
7816  case tok::minusequal:           Opc = BO_SubAssign; break;
7817  case tok::lesslessequal:        Opc = BO_ShlAssign; break;
7818  case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
7819  case tok::ampequal:             Opc = BO_AndAssign; break;
7820  case tok::caretequal:           Opc = BO_XorAssign; break;
7821  case tok::pipeequal:            Opc = BO_OrAssign; break;
7822  case tok::comma:                Opc = BO_Comma; break;
7823  }
7824  return Opc;
7825}
7826
7827static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
7828  tok::TokenKind Kind) {
7829  UnaryOperatorKind Opc;
7830  switch (Kind) {
7831  default: llvm_unreachable("Unknown unary op!");
7832  case tok::plusplus:     Opc = UO_PreInc; break;
7833  case tok::minusminus:   Opc = UO_PreDec; break;
7834  case tok::amp:          Opc = UO_AddrOf; break;
7835  case tok::star:         Opc = UO_Deref; break;
7836  case tok::plus:         Opc = UO_Plus; break;
7837  case tok::minus:        Opc = UO_Minus; break;
7838  case tok::tilde:        Opc = UO_Not; break;
7839  case tok::exclaim:      Opc = UO_LNot; break;
7840  case tok::kw___real:    Opc = UO_Real; break;
7841  case tok::kw___imag:    Opc = UO_Imag; break;
7842  case tok::kw___extension__: Opc = UO_Extension; break;
7843  }
7844  return Opc;
7845}
7846
7847/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
7848/// This warning is only emitted for builtin assignment operations. It is also
7849/// suppressed in the event of macro expansions.
7850static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
7851                                   SourceLocation OpLoc) {
7852  if (!S.ActiveTemplateInstantiations.empty())
7853    return;
7854  if (OpLoc.isInvalid() || OpLoc.isMacroID())
7855    return;
7856  LHSExpr = LHSExpr->IgnoreParenImpCasts();
7857  RHSExpr = RHSExpr->IgnoreParenImpCasts();
7858  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
7859  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
7860  if (!LHSDeclRef || !RHSDeclRef ||
7861      LHSDeclRef->getLocation().isMacroID() ||
7862      RHSDeclRef->getLocation().isMacroID())
7863    return;
7864  const ValueDecl *LHSDecl =
7865    cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
7866  const ValueDecl *RHSDecl =
7867    cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
7868  if (LHSDecl != RHSDecl)
7869    return;
7870  if (LHSDecl->getType().isVolatileQualified())
7871    return;
7872  if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
7873    if (RefTy->getPointeeType().isVolatileQualified())
7874      return;
7875
7876  S.Diag(OpLoc, diag::warn_self_assignment)
7877      << LHSDeclRef->getType()
7878      << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7879}
7880
7881/// CreateBuiltinBinOp - Creates a new built-in binary operation with
7882/// operator @p Opc at location @c TokLoc. This routine only supports
7883/// built-in operations; ActOnBinOp handles overloaded operators.
7884ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
7885                                    BinaryOperatorKind Opc,
7886                                    Expr *LHSExpr, Expr *RHSExpr) {
7887  if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
7888    // The syntax only allows initializer lists on the RHS of assignment,
7889    // so we don't need to worry about accepting invalid code for
7890    // non-assignment operators.
7891    // C++11 5.17p9:
7892    //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
7893    //   of x = {} is x = T().
7894    InitializationKind Kind =
7895        InitializationKind::CreateDirectList(RHSExpr->getLocStart());
7896    InitializedEntity Entity =
7897        InitializedEntity::InitializeTemporary(LHSExpr->getType());
7898    InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
7899    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
7900                                      MultiExprArg(&RHSExpr, 1));
7901    if (Init.isInvalid())
7902      return Init;
7903    RHSExpr = Init.take();
7904  }
7905
7906  ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
7907  QualType ResultTy;     // Result type of the binary operator.
7908  // The following two variables are used for compound assignment operators
7909  QualType CompLHSTy;    // Type of LHS after promotions for computation
7910  QualType CompResultTy; // Type of computation result
7911  ExprValueKind VK = VK_RValue;
7912  ExprObjectKind OK = OK_Ordinary;
7913
7914  switch (Opc) {
7915  case BO_Assign:
7916    ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
7917    if (getLangOpts().CPlusPlus &&
7918        LHS.get()->getObjectKind() != OK_ObjCProperty) {
7919      VK = LHS.get()->getValueKind();
7920      OK = LHS.get()->getObjectKind();
7921    }
7922    if (!ResultTy.isNull())
7923      DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
7924    break;
7925  case BO_PtrMemD:
7926  case BO_PtrMemI:
7927    ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
7928                                            Opc == BO_PtrMemI);
7929    break;
7930  case BO_Mul:
7931  case BO_Div:
7932    ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
7933                                           Opc == BO_Div);
7934    break;
7935  case BO_Rem:
7936    ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
7937    break;
7938  case BO_Add:
7939    ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
7940    break;
7941  case BO_Sub:
7942    ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
7943    break;
7944  case BO_Shl:
7945  case BO_Shr:
7946    ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
7947    break;
7948  case BO_LE:
7949  case BO_LT:
7950  case BO_GE:
7951  case BO_GT:
7952    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
7953    break;
7954  case BO_EQ:
7955  case BO_NE:
7956    ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
7957    break;
7958  case BO_And:
7959  case BO_Xor:
7960  case BO_Or:
7961    ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
7962    break;
7963  case BO_LAnd:
7964  case BO_LOr:
7965    ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
7966    break;
7967  case BO_MulAssign:
7968  case BO_DivAssign:
7969    CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
7970                                               Opc == BO_DivAssign);
7971    CompLHSTy = CompResultTy;
7972    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7973      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7974    break;
7975  case BO_RemAssign:
7976    CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
7977    CompLHSTy = CompResultTy;
7978    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7979      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7980    break;
7981  case BO_AddAssign:
7982    CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
7983    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7984      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7985    break;
7986  case BO_SubAssign:
7987    CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
7988    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7989      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7990    break;
7991  case BO_ShlAssign:
7992  case BO_ShrAssign:
7993    CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
7994    CompLHSTy = CompResultTy;
7995    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
7996      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
7997    break;
7998  case BO_AndAssign:
7999  case BO_XorAssign:
8000  case BO_OrAssign:
8001    CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
8002    CompLHSTy = CompResultTy;
8003    if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
8004      ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
8005    break;
8006  case BO_Comma:
8007    ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
8008    if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
8009      VK = RHS.get()->getValueKind();
8010      OK = RHS.get()->getObjectKind();
8011    }
8012    break;
8013  }
8014  if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
8015    return ExprError();
8016
8017  // Check for array bounds violations for both sides of the BinaryOperator
8018  CheckArrayAccess(LHS.get());
8019  CheckArrayAccess(RHS.get());
8020
8021  if (CompResultTy.isNull())
8022    return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
8023                                              ResultTy, VK, OK, OpLoc));
8024  if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
8025      OK_ObjCProperty) {
8026    VK = VK_LValue;
8027    OK = LHS.get()->getObjectKind();
8028  }
8029  return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
8030                                                    ResultTy, VK, OK, CompLHSTy,
8031                                                    CompResultTy, OpLoc));
8032}
8033
8034/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
8035/// operators are mixed in a way that suggests that the programmer forgot that
8036/// comparison operators have higher precedence. The most typical example of
8037/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
8038static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
8039                                      SourceLocation OpLoc, Expr *LHSExpr,
8040                                      Expr *RHSExpr) {
8041  typedef BinaryOperator BinOp;
8042  BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
8043                RHSopc = static_cast<BinOp::Opcode>(-1);
8044  if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
8045    LHSopc = BO->getOpcode();
8046  if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
8047    RHSopc = BO->getOpcode();
8048
8049  // Subs are not binary operators.
8050  if (LHSopc == -1 && RHSopc == -1)
8051    return;
8052
8053  // Bitwise operations are sometimes used as eager logical ops.
8054  // Don't diagnose this.
8055  if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
8056      (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
8057    return;
8058
8059  bool isLeftComp = BinOp::isComparisonOp(LHSopc);
8060  bool isRightComp = BinOp::isComparisonOp(RHSopc);
8061  if (!isLeftComp && !isRightComp) return;
8062
8063  SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
8064                                                   OpLoc)
8065                                     : SourceRange(OpLoc, RHSExpr->getLocEnd());
8066  std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
8067                                 : BinOp::getOpcodeStr(RHSopc);
8068  SourceRange ParensRange = isLeftComp ?
8069      SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
8070                  RHSExpr->getLocEnd())
8071    : SourceRange(LHSExpr->getLocStart(),
8072                  cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
8073
8074  Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
8075    << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
8076  SuggestParentheses(Self, OpLoc,
8077    Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
8078    RHSExpr->getSourceRange());
8079  SuggestParentheses(Self, OpLoc,
8080    Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
8081    ParensRange);
8082}
8083
8084/// \brief It accepts a '&' expr that is inside a '|' one.
8085/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
8086/// in parentheses.
8087static void
8088EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
8089                                       BinaryOperator *Bop) {
8090  assert(Bop->getOpcode() == BO_And);
8091  Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
8092      << Bop->getSourceRange() << OpLoc;
8093  SuggestParentheses(Self, Bop->getOperatorLoc(),
8094    Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
8095    Bop->getSourceRange());
8096}
8097
8098/// \brief It accepts a '&&' expr that is inside a '||' one.
8099/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
8100/// in parentheses.
8101static void
8102EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
8103                                       BinaryOperator *Bop) {
8104  assert(Bop->getOpcode() == BO_LAnd);
8105  Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
8106      << Bop->getSourceRange() << OpLoc;
8107  SuggestParentheses(Self, Bop->getOperatorLoc(),
8108    Self.PDiag(diag::note_logical_and_in_logical_or_silence),
8109    Bop->getSourceRange());
8110}
8111
8112/// \brief Returns true if the given expression can be evaluated as a constant
8113/// 'true'.
8114static bool EvaluatesAsTrue(Sema &S, Expr *E) {
8115  bool Res;
8116  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
8117}
8118
8119/// \brief Returns true if the given expression can be evaluated as a constant
8120/// 'false'.
8121static bool EvaluatesAsFalse(Sema &S, Expr *E) {
8122  bool Res;
8123  return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
8124}
8125
8126/// \brief Look for '&&' in the left hand of a '||' expr.
8127static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
8128                                             Expr *LHSExpr, Expr *RHSExpr) {
8129  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
8130    if (Bop->getOpcode() == BO_LAnd) {
8131      // If it's "a && b || 0" don't warn since the precedence doesn't matter.
8132      if (EvaluatesAsFalse(S, RHSExpr))
8133        return;
8134      // If it's "1 && a || b" don't warn since the precedence doesn't matter.
8135      if (!EvaluatesAsTrue(S, Bop->getLHS()))
8136        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8137    } else if (Bop->getOpcode() == BO_LOr) {
8138      if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
8139        // If it's "a || b && 1 || c" we didn't warn earlier for
8140        // "a || b && 1", but warn now.
8141        if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
8142          return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
8143      }
8144    }
8145  }
8146}
8147
8148/// \brief Look for '&&' in the right hand of a '||' expr.
8149static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
8150                                             Expr *LHSExpr, Expr *RHSExpr) {
8151  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
8152    if (Bop->getOpcode() == BO_LAnd) {
8153      // If it's "0 || a && b" don't warn since the precedence doesn't matter.
8154      if (EvaluatesAsFalse(S, LHSExpr))
8155        return;
8156      // If it's "a || b && 1" don't warn since the precedence doesn't matter.
8157      if (!EvaluatesAsTrue(S, Bop->getRHS()))
8158        return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
8159    }
8160  }
8161}
8162
8163/// \brief Look for '&' in the left or right hand of a '|' expr.
8164static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
8165                                             Expr *OrArg) {
8166  if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
8167    if (Bop->getOpcode() == BO_And)
8168      return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
8169  }
8170}
8171
8172/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
8173/// precedence.
8174static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
8175                                    SourceLocation OpLoc, Expr *LHSExpr,
8176                                    Expr *RHSExpr){
8177  // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
8178  if (BinaryOperator::isBitwiseOp(Opc))
8179    DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
8180
8181  // Diagnose "arg1 & arg2 | arg3"
8182  if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8183    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
8184    DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
8185  }
8186
8187  // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
8188  // We don't warn for 'assert(a || b && "bad")' since this is safe.
8189  if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
8190    DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
8191    DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
8192  }
8193}
8194
8195// Binary Operators.  'Tok' is the token for the operator.
8196ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
8197                            tok::TokenKind Kind,
8198                            Expr *LHSExpr, Expr *RHSExpr) {
8199  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
8200  assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
8201  assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
8202
8203  // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
8204  DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
8205
8206  return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
8207}
8208
8209/// Build an overloaded binary operator expression in the given scope.
8210static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
8211                                       BinaryOperatorKind Opc,
8212                                       Expr *LHS, Expr *RHS) {
8213  // Find all of the overloaded operators visible from this
8214  // point. We perform both an operator-name lookup from the local
8215  // scope and an argument-dependent lookup based on the types of
8216  // the arguments.
8217  UnresolvedSet<16> Functions;
8218  OverloadedOperatorKind OverOp
8219    = BinaryOperator::getOverloadedOperator(Opc);
8220  if (Sc && OverOp != OO_None)
8221    S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
8222                                   RHS->getType(), Functions);
8223
8224  // Build the (potentially-overloaded, potentially-dependent)
8225  // binary operation.
8226  return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
8227}
8228
8229ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
8230                            BinaryOperatorKind Opc,
8231                            Expr *LHSExpr, Expr *RHSExpr) {
8232  // We want to end up calling one of checkPseudoObjectAssignment
8233  // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
8234  // both expressions are overloadable or either is type-dependent),
8235  // or CreateBuiltinBinOp (in any other case).  We also want to get
8236  // any placeholder types out of the way.
8237
8238  // Handle pseudo-objects in the LHS.
8239  if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
8240    // Assignments with a pseudo-object l-value need special analysis.
8241    if (pty->getKind() == BuiltinType::PseudoObject &&
8242        BinaryOperator::isAssignmentOp(Opc))
8243      return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
8244
8245    // Don't resolve overloads if the other type is overloadable.
8246    if (pty->getKind() == BuiltinType::Overload) {
8247      // We can't actually test that if we still have a placeholder,
8248      // though.  Fortunately, none of the exceptions we see in that
8249      // code below are valid when the LHS is an overload set.  Note
8250      // that an overload set can be dependently-typed, but it never
8251      // instantiates to having an overloadable type.
8252      ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8253      if (resolvedRHS.isInvalid()) return ExprError();
8254      RHSExpr = resolvedRHS.take();
8255
8256      if (RHSExpr->isTypeDependent() ||
8257          RHSExpr->getType()->isOverloadableType())
8258        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8259    }
8260
8261    ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
8262    if (LHS.isInvalid()) return ExprError();
8263    LHSExpr = LHS.take();
8264  }
8265
8266  // Handle pseudo-objects in the RHS.
8267  if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
8268    // An overload in the RHS can potentially be resolved by the type
8269    // being assigned to.
8270    if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
8271      if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8272        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8273
8274      if (LHSExpr->getType()->isOverloadableType())
8275        return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8276
8277      return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8278    }
8279
8280    // Don't resolve overloads if the other type is overloadable.
8281    if (pty->getKind() == BuiltinType::Overload &&
8282        LHSExpr->getType()->isOverloadableType())
8283      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8284
8285    ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
8286    if (!resolvedRHS.isUsable()) return ExprError();
8287    RHSExpr = resolvedRHS.take();
8288  }
8289
8290  if (getLangOpts().CPlusPlus) {
8291    // If either expression is type-dependent, always build an
8292    // overloaded op.
8293    if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
8294      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8295
8296    // Otherwise, build an overloaded op if either expression has an
8297    // overloadable type.
8298    if (LHSExpr->getType()->isOverloadableType() ||
8299        RHSExpr->getType()->isOverloadableType())
8300      return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
8301  }
8302
8303  // Build a built-in binary operation.
8304  return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
8305}
8306
8307ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
8308                                      UnaryOperatorKind Opc,
8309                                      Expr *InputExpr) {
8310  ExprResult Input = Owned(InputExpr);
8311  ExprValueKind VK = VK_RValue;
8312  ExprObjectKind OK = OK_Ordinary;
8313  QualType resultType;
8314  switch (Opc) {
8315  case UO_PreInc:
8316  case UO_PreDec:
8317  case UO_PostInc:
8318  case UO_PostDec:
8319    resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
8320                                                Opc == UO_PreInc ||
8321                                                Opc == UO_PostInc,
8322                                                Opc == UO_PreInc ||
8323                                                Opc == UO_PreDec);
8324    break;
8325  case UO_AddrOf:
8326    resultType = CheckAddressOfOperand(*this, Input, OpLoc);
8327    break;
8328  case UO_Deref: {
8329    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8330    resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
8331    break;
8332  }
8333  case UO_Plus:
8334  case UO_Minus:
8335    Input = UsualUnaryConversions(Input.take());
8336    if (Input.isInvalid()) return ExprError();
8337    resultType = Input.get()->getType();
8338    if (resultType->isDependentType())
8339      break;
8340    if (resultType->isArithmeticType() || // C99 6.5.3.3p1
8341        resultType->isVectorType())
8342      break;
8343    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
8344             resultType->isEnumeralType())
8345      break;
8346    else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
8347             Opc == UO_Plus &&
8348             resultType->isPointerType())
8349      break;
8350
8351    return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8352      << resultType << Input.get()->getSourceRange());
8353
8354  case UO_Not: // bitwise complement
8355    Input = UsualUnaryConversions(Input.take());
8356    if (Input.isInvalid()) return ExprError();
8357    resultType = Input.get()->getType();
8358    if (resultType->isDependentType())
8359      break;
8360    // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
8361    if (resultType->isComplexType() || resultType->isComplexIntegerType())
8362      // C99 does not support '~' for complex conjugation.
8363      Diag(OpLoc, diag::ext_integer_complement_complex)
8364        << resultType << Input.get()->getSourceRange();
8365    else if (resultType->hasIntegerRepresentation())
8366      break;
8367    else {
8368      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8369        << resultType << Input.get()->getSourceRange());
8370    }
8371    break;
8372
8373  case UO_LNot: // logical negation
8374    // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
8375    Input = DefaultFunctionArrayLvalueConversion(Input.take());
8376    if (Input.isInvalid()) return ExprError();
8377    resultType = Input.get()->getType();
8378
8379    // Though we still have to promote half FP to float...
8380    if (resultType->isHalfType()) {
8381      Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
8382      resultType = Context.FloatTy;
8383    }
8384
8385    if (resultType->isDependentType())
8386      break;
8387    if (resultType->isScalarType()) {
8388      // C99 6.5.3.3p1: ok, fallthrough;
8389      if (Context.getLangOpts().CPlusPlus) {
8390        // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
8391        // operand contextually converted to bool.
8392        Input = ImpCastExprToType(Input.take(), Context.BoolTy,
8393                                  ScalarTypeToBooleanCastKind(resultType));
8394      }
8395    } else if (resultType->isExtVectorType()) {
8396      // Vector logical not returns the signed variant of the operand type.
8397      resultType = GetSignedVectorType(resultType);
8398      break;
8399    } else {
8400      return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
8401        << resultType << Input.get()->getSourceRange());
8402    }
8403
8404    // LNot always has type int. C99 6.5.3.3p5.
8405    // In C++, it's bool. C++ 5.3.1p8
8406    resultType = Context.getLogicalOperationType();
8407    break;
8408  case UO_Real:
8409  case UO_Imag:
8410    resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
8411    // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
8412    // complex l-values to ordinary l-values and all other values to r-values.
8413    if (Input.isInvalid()) return ExprError();
8414    if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
8415      if (Input.get()->getValueKind() != VK_RValue &&
8416          Input.get()->getObjectKind() == OK_Ordinary)
8417        VK = Input.get()->getValueKind();
8418    } else if (!getLangOpts().CPlusPlus) {
8419      // In C, a volatile scalar is read by __imag. In C++, it is not.
8420      Input = DefaultLvalueConversion(Input.take());
8421    }
8422    break;
8423  case UO_Extension:
8424    resultType = Input.get()->getType();
8425    VK = Input.get()->getValueKind();
8426    OK = Input.get()->getObjectKind();
8427    break;
8428  }
8429  if (resultType.isNull() || Input.isInvalid())
8430    return ExprError();
8431
8432  // Check for array bounds violations in the operand of the UnaryOperator,
8433  // except for the '*' and '&' operators that have to be handled specially
8434  // by CheckArrayAccess (as there are special cases like &array[arraysize]
8435  // that are explicitly defined as valid by the standard).
8436  if (Opc != UO_AddrOf && Opc != UO_Deref)
8437    CheckArrayAccess(Input.get());
8438
8439  return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
8440                                           VK, OK, OpLoc));
8441}
8442
8443/// \brief Determine whether the given expression is a qualified member
8444/// access expression, of a form that could be turned into a pointer to member
8445/// with the address-of operator.
8446static bool isQualifiedMemberAccess(Expr *E) {
8447  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8448    if (!DRE->getQualifier())
8449      return false;
8450
8451    ValueDecl *VD = DRE->getDecl();
8452    if (!VD->isCXXClassMember())
8453      return false;
8454
8455    if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
8456      return true;
8457    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
8458      return Method->isInstance();
8459
8460    return false;
8461  }
8462
8463  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8464    if (!ULE->getQualifier())
8465      return false;
8466
8467    for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
8468                                           DEnd = ULE->decls_end();
8469         D != DEnd; ++D) {
8470      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
8471        if (Method->isInstance())
8472          return true;
8473      } else {
8474        // Overload set does not contain methods.
8475        break;
8476      }
8477    }
8478
8479    return false;
8480  }
8481
8482  return false;
8483}
8484
8485ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
8486                              UnaryOperatorKind Opc, Expr *Input) {
8487  // First things first: handle placeholders so that the
8488  // overloaded-operator check considers the right type.
8489  if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
8490    // Increment and decrement of pseudo-object references.
8491    if (pty->getKind() == BuiltinType::PseudoObject &&
8492        UnaryOperator::isIncrementDecrementOp(Opc))
8493      return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
8494
8495    // extension is always a builtin operator.
8496    if (Opc == UO_Extension)
8497      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8498
8499    // & gets special logic for several kinds of placeholder.
8500    // The builtin code knows what to do.
8501    if (Opc == UO_AddrOf &&
8502        (pty->getKind() == BuiltinType::Overload ||
8503         pty->getKind() == BuiltinType::UnknownAny ||
8504         pty->getKind() == BuiltinType::BoundMember))
8505      return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8506
8507    // Anything else needs to be handled now.
8508    ExprResult Result = CheckPlaceholderExpr(Input);
8509    if (Result.isInvalid()) return ExprError();
8510    Input = Result.take();
8511  }
8512
8513  if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
8514      UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
8515      !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
8516    // Find all of the overloaded operators visible from this
8517    // point. We perform both an operator-name lookup from the local
8518    // scope and an argument-dependent lookup based on the types of
8519    // the arguments.
8520    UnresolvedSet<16> Functions;
8521    OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
8522    if (S && OverOp != OO_None)
8523      LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
8524                                   Functions);
8525
8526    return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
8527  }
8528
8529  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8530}
8531
8532// Unary Operators.  'Tok' is the token for the operator.
8533ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
8534                              tok::TokenKind Op, Expr *Input) {
8535  return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
8536}
8537
8538/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
8539ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
8540                                LabelDecl *TheDecl) {
8541  TheDecl->setUsed();
8542  // Create the AST node.  The address of a label always has type 'void*'.
8543  return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
8544                                       Context.getPointerType(Context.VoidTy)));
8545}
8546
8547/// Given the last statement in a statement-expression, check whether
8548/// the result is a producing expression (like a call to an
8549/// ns_returns_retained function) and, if so, rebuild it to hoist the
8550/// release out of the full-expression.  Otherwise, return null.
8551/// Cannot fail.
8552static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
8553  // Should always be wrapped with one of these.
8554  ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
8555  if (!cleanups) return 0;
8556
8557  ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
8558  if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
8559    return 0;
8560
8561  // Splice out the cast.  This shouldn't modify any interesting
8562  // features of the statement.
8563  Expr *producer = cast->getSubExpr();
8564  assert(producer->getType() == cast->getType());
8565  assert(producer->getValueKind() == cast->getValueKind());
8566  cleanups->setSubExpr(producer);
8567  return cleanups;
8568}
8569
8570void Sema::ActOnStartStmtExpr() {
8571  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
8572}
8573
8574void Sema::ActOnStmtExprError() {
8575  // Note that function is also called by TreeTransform when leaving a
8576  // StmtExpr scope without rebuilding anything.
8577
8578  DiscardCleanupsInEvaluationContext();
8579  PopExpressionEvaluationContext();
8580}
8581
8582ExprResult
8583Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
8584                    SourceLocation RPLoc) { // "({..})"
8585  assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
8586  CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
8587
8588  if (hasAnyUnrecoverableErrorsInThisFunction())
8589    DiscardCleanupsInEvaluationContext();
8590  assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
8591  PopExpressionEvaluationContext();
8592
8593  bool isFileScope
8594    = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
8595  if (isFileScope)
8596    return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
8597
8598  // FIXME: there are a variety of strange constraints to enforce here, for
8599  // example, it is not possible to goto into a stmt expression apparently.
8600  // More semantic analysis is needed.
8601
8602  // If there are sub stmts in the compound stmt, take the type of the last one
8603  // as the type of the stmtexpr.
8604  QualType Ty = Context.VoidTy;
8605  bool StmtExprMayBindToTemp = false;
8606  if (!Compound->body_empty()) {
8607    Stmt *LastStmt = Compound->body_back();
8608    LabelStmt *LastLabelStmt = 0;
8609    // If LastStmt is a label, skip down through into the body.
8610    while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
8611      LastLabelStmt = Label;
8612      LastStmt = Label->getSubStmt();
8613    }
8614
8615    if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
8616      // Do function/array conversion on the last expression, but not
8617      // lvalue-to-rvalue.  However, initialize an unqualified type.
8618      ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
8619      if (LastExpr.isInvalid())
8620        return ExprError();
8621      Ty = LastExpr.get()->getType().getUnqualifiedType();
8622
8623      if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
8624        // In ARC, if the final expression ends in a consume, splice
8625        // the consume out and bind it later.  In the alternate case
8626        // (when dealing with a retainable type), the result
8627        // initialization will create a produce.  In both cases the
8628        // result will be +1, and we'll need to balance that out with
8629        // a bind.
8630        if (Expr *rebuiltLastStmt
8631              = maybeRebuildARCConsumingStmt(LastExpr.get())) {
8632          LastExpr = rebuiltLastStmt;
8633        } else {
8634          LastExpr = PerformCopyInitialization(
8635                            InitializedEntity::InitializeResult(LPLoc,
8636                                                                Ty,
8637                                                                false),
8638                                                   SourceLocation(),
8639                                               LastExpr);
8640        }
8641
8642        if (LastExpr.isInvalid())
8643          return ExprError();
8644        if (LastExpr.get() != 0) {
8645          if (!LastLabelStmt)
8646            Compound->setLastStmt(LastExpr.take());
8647          else
8648            LastLabelStmt->setSubStmt(LastExpr.take());
8649          StmtExprMayBindToTemp = true;
8650        }
8651      }
8652    }
8653  }
8654
8655  // FIXME: Check that expression type is complete/non-abstract; statement
8656  // expressions are not lvalues.
8657  Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
8658  if (StmtExprMayBindToTemp)
8659    return MaybeBindToTemporary(ResStmtExpr);
8660  return Owned(ResStmtExpr);
8661}
8662
8663ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
8664                                      TypeSourceInfo *TInfo,
8665                                      OffsetOfComponent *CompPtr,
8666                                      unsigned NumComponents,
8667                                      SourceLocation RParenLoc) {
8668  QualType ArgTy = TInfo->getType();
8669  bool Dependent = ArgTy->isDependentType();
8670  SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
8671
8672  // We must have at least one component that refers to the type, and the first
8673  // one is known to be a field designator.  Verify that the ArgTy represents
8674  // a struct/union/class.
8675  if (!Dependent && !ArgTy->isRecordType())
8676    return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
8677                       << ArgTy << TypeRange);
8678
8679  // Type must be complete per C99 7.17p3 because a declaring a variable
8680  // with an incomplete type would be ill-formed.
8681  if (!Dependent
8682      && RequireCompleteType(BuiltinLoc, ArgTy,
8683                             diag::err_offsetof_incomplete_type, TypeRange))
8684    return ExprError();
8685
8686  // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
8687  // GCC extension, diagnose them.
8688  // FIXME: This diagnostic isn't actually visible because the location is in
8689  // a system header!
8690  if (NumComponents != 1)
8691    Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
8692      << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
8693
8694  bool DidWarnAboutNonPOD = false;
8695  QualType CurrentType = ArgTy;
8696  typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
8697  SmallVector<OffsetOfNode, 4> Comps;
8698  SmallVector<Expr*, 4> Exprs;
8699  for (unsigned i = 0; i != NumComponents; ++i) {
8700    const OffsetOfComponent &OC = CompPtr[i];
8701    if (OC.isBrackets) {
8702      // Offset of an array sub-field.  TODO: Should we allow vector elements?
8703      if (!CurrentType->isDependentType()) {
8704        const ArrayType *AT = Context.getAsArrayType(CurrentType);
8705        if(!AT)
8706          return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
8707                           << CurrentType);
8708        CurrentType = AT->getElementType();
8709      } else
8710        CurrentType = Context.DependentTy;
8711
8712      ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
8713      if (IdxRval.isInvalid())
8714        return ExprError();
8715      Expr *Idx = IdxRval.take();
8716
8717      // The expression must be an integral expression.
8718      // FIXME: An integral constant expression?
8719      if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
8720          !Idx->getType()->isIntegerType())
8721        return ExprError(Diag(Idx->getLocStart(),
8722                              diag::err_typecheck_subscript_not_integer)
8723                         << Idx->getSourceRange());
8724
8725      // Record this array index.
8726      Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
8727      Exprs.push_back(Idx);
8728      continue;
8729    }
8730
8731    // Offset of a field.
8732    if (CurrentType->isDependentType()) {
8733      // We have the offset of a field, but we can't look into the dependent
8734      // type. Just record the identifier of the field.
8735      Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
8736      CurrentType = Context.DependentTy;
8737      continue;
8738    }
8739
8740    // We need to have a complete type to look into.
8741    if (RequireCompleteType(OC.LocStart, CurrentType,
8742                            diag::err_offsetof_incomplete_type))
8743      return ExprError();
8744
8745    // Look for the designated field.
8746    const RecordType *RC = CurrentType->getAs<RecordType>();
8747    if (!RC)
8748      return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
8749                       << CurrentType);
8750    RecordDecl *RD = RC->getDecl();
8751
8752    // C++ [lib.support.types]p5:
8753    //   The macro offsetof accepts a restricted set of type arguments in this
8754    //   International Standard. type shall be a POD structure or a POD union
8755    //   (clause 9).
8756    // C++11 [support.types]p4:
8757    //   If type is not a standard-layout class (Clause 9), the results are
8758    //   undefined.
8759    if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
8760      bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
8761      unsigned DiagID =
8762        LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
8763                            : diag::warn_offsetof_non_pod_type;
8764
8765      if (!IsSafe && !DidWarnAboutNonPOD &&
8766          DiagRuntimeBehavior(BuiltinLoc, 0,
8767                              PDiag(DiagID)
8768                              << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
8769                              << CurrentType))
8770        DidWarnAboutNonPOD = true;
8771    }
8772
8773    // Look for the field.
8774    LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
8775    LookupQualifiedName(R, RD);
8776    FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
8777    IndirectFieldDecl *IndirectMemberDecl = 0;
8778    if (!MemberDecl) {
8779      if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
8780        MemberDecl = IndirectMemberDecl->getAnonField();
8781    }
8782
8783    if (!MemberDecl)
8784      return ExprError(Diag(BuiltinLoc, diag::err_no_member)
8785                       << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
8786                                                              OC.LocEnd));
8787
8788    // C99 7.17p3:
8789    //   (If the specified member is a bit-field, the behavior is undefined.)
8790    //
8791    // We diagnose this as an error.
8792    if (MemberDecl->isBitField()) {
8793      Diag(OC.LocEnd, diag::err_offsetof_bitfield)
8794        << MemberDecl->getDeclName()
8795        << SourceRange(BuiltinLoc, RParenLoc);
8796      Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
8797      return ExprError();
8798    }
8799
8800    RecordDecl *Parent = MemberDecl->getParent();
8801    if (IndirectMemberDecl)
8802      Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
8803
8804    // If the member was found in a base class, introduce OffsetOfNodes for
8805    // the base class indirections.
8806    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
8807                       /*DetectVirtual=*/false);
8808    if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
8809      CXXBasePath &Path = Paths.front();
8810      for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
8811           B != BEnd; ++B)
8812        Comps.push_back(OffsetOfNode(B->Base));
8813    }
8814
8815    if (IndirectMemberDecl) {
8816      for (IndirectFieldDecl::chain_iterator FI =
8817           IndirectMemberDecl->chain_begin(),
8818           FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
8819        assert(isa<FieldDecl>(*FI));
8820        Comps.push_back(OffsetOfNode(OC.LocStart,
8821                                     cast<FieldDecl>(*FI), OC.LocEnd));
8822      }
8823    } else
8824      Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
8825
8826    CurrentType = MemberDecl->getType().getNonReferenceType();
8827  }
8828
8829  return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
8830                                    TInfo, Comps.data(), Comps.size(),
8831                                    Exprs.data(), Exprs.size(), RParenLoc));
8832}
8833
8834ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
8835                                      SourceLocation BuiltinLoc,
8836                                      SourceLocation TypeLoc,
8837                                      ParsedType ParsedArgTy,
8838                                      OffsetOfComponent *CompPtr,
8839                                      unsigned NumComponents,
8840                                      SourceLocation RParenLoc) {
8841
8842  TypeSourceInfo *ArgTInfo;
8843  QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
8844  if (ArgTy.isNull())
8845    return ExprError();
8846
8847  if (!ArgTInfo)
8848    ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
8849
8850  return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
8851                              RParenLoc);
8852}
8853
8854
8855ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
8856                                 Expr *CondExpr,
8857                                 Expr *LHSExpr, Expr *RHSExpr,
8858                                 SourceLocation RPLoc) {
8859  assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
8860
8861  ExprValueKind VK = VK_RValue;
8862  ExprObjectKind OK = OK_Ordinary;
8863  QualType resType;
8864  bool ValueDependent = false;
8865  if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
8866    resType = Context.DependentTy;
8867    ValueDependent = true;
8868  } else {
8869    // The conditional expression is required to be a constant expression.
8870    llvm::APSInt condEval(32);
8871    ExprResult CondICE
8872      = VerifyIntegerConstantExpression(CondExpr, &condEval,
8873          diag::err_typecheck_choose_expr_requires_constant, false);
8874    if (CondICE.isInvalid())
8875      return ExprError();
8876    CondExpr = CondICE.take();
8877
8878    // If the condition is > zero, then the AST type is the same as the LSHExpr.
8879    Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
8880
8881    resType = ActiveExpr->getType();
8882    ValueDependent = ActiveExpr->isValueDependent();
8883    VK = ActiveExpr->getValueKind();
8884    OK = ActiveExpr->getObjectKind();
8885  }
8886
8887  return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
8888                                        resType, VK, OK, RPLoc,
8889                                        resType->isDependentType(),
8890                                        ValueDependent));
8891}
8892
8893//===----------------------------------------------------------------------===//
8894// Clang Extensions.
8895//===----------------------------------------------------------------------===//
8896
8897/// ActOnBlockStart - This callback is invoked when a block literal is started.
8898void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
8899  BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
8900  PushBlockScope(CurScope, Block);
8901  CurContext->addDecl(Block);
8902  if (CurScope)
8903    PushDeclContext(CurScope, Block);
8904  else
8905    CurContext = Block;
8906
8907  getCurBlock()->HasImplicitReturnType = true;
8908
8909  // Enter a new evaluation context to insulate the block from any
8910  // cleanups from the enclosing full-expression.
8911  PushExpressionEvaluationContext(PotentiallyEvaluated);
8912}
8913
8914void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
8915  assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
8916  assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
8917  BlockScopeInfo *CurBlock = getCurBlock();
8918
8919  TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
8920  QualType T = Sig->getType();
8921
8922  // GetTypeForDeclarator always produces a function type for a block
8923  // literal signature.  Furthermore, it is always a FunctionProtoType
8924  // unless the function was written with a typedef.
8925  assert(T->isFunctionType() &&
8926         "GetTypeForDeclarator made a non-function block signature");
8927
8928  // Look for an explicit signature in that function type.
8929  FunctionProtoTypeLoc ExplicitSignature;
8930
8931  TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
8932  if (isa<FunctionProtoTypeLoc>(tmp)) {
8933    ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
8934
8935    // Check whether that explicit signature was synthesized by
8936    // GetTypeForDeclarator.  If so, don't save that as part of the
8937    // written signature.
8938    if (ExplicitSignature.getLocalRangeBegin() ==
8939        ExplicitSignature.getLocalRangeEnd()) {
8940      // This would be much cheaper if we stored TypeLocs instead of
8941      // TypeSourceInfos.
8942      TypeLoc Result = ExplicitSignature.getResultLoc();
8943      unsigned Size = Result.getFullDataSize();
8944      Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
8945      Sig->getTypeLoc().initializeFullCopy(Result, Size);
8946
8947      ExplicitSignature = FunctionProtoTypeLoc();
8948    }
8949  }
8950
8951  CurBlock->TheDecl->setSignatureAsWritten(Sig);
8952  CurBlock->FunctionType = T;
8953
8954  const FunctionType *Fn = T->getAs<FunctionType>();
8955  QualType RetTy = Fn->getResultType();
8956  bool isVariadic =
8957    (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
8958
8959  CurBlock->TheDecl->setIsVariadic(isVariadic);
8960
8961  // Don't allow returning a objc interface by value.
8962  if (RetTy->isObjCObjectType()) {
8963    Diag(ParamInfo.getLocStart(),
8964         diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
8965    return;
8966  }
8967
8968  // Context.DependentTy is used as a placeholder for a missing block
8969  // return type.  TODO:  what should we do with declarators like:
8970  //   ^ * { ... }
8971  // If the answer is "apply template argument deduction"....
8972  if (RetTy != Context.DependentTy) {
8973    CurBlock->ReturnType = RetTy;
8974    CurBlock->TheDecl->setBlockMissingReturnType(false);
8975    CurBlock->HasImplicitReturnType = false;
8976  }
8977
8978  // Push block parameters from the declarator if we had them.
8979  SmallVector<ParmVarDecl*, 8> Params;
8980  if (ExplicitSignature) {
8981    for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
8982      ParmVarDecl *Param = ExplicitSignature.getArg(I);
8983      if (Param->getIdentifier() == 0 &&
8984          !Param->isImplicit() &&
8985          !Param->isInvalidDecl() &&
8986          !getLangOpts().CPlusPlus)
8987        Diag(Param->getLocation(), diag::err_parameter_name_omitted);
8988      Params.push_back(Param);
8989    }
8990
8991  // Fake up parameter variables if we have a typedef, like
8992  //   ^ fntype { ... }
8993  } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
8994    for (FunctionProtoType::arg_type_iterator
8995           I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
8996      ParmVarDecl *Param =
8997        BuildParmVarDeclForTypedef(CurBlock->TheDecl,
8998                                   ParamInfo.getLocStart(),
8999                                   *I);
9000      Params.push_back(Param);
9001    }
9002  }
9003
9004  // Set the parameters on the block decl.
9005  if (!Params.empty()) {
9006    CurBlock->TheDecl->setParams(Params);
9007    CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
9008                             CurBlock->TheDecl->param_end(),
9009                             /*CheckParameterNames=*/false);
9010  }
9011
9012  // Finally we can process decl attributes.
9013  ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
9014
9015  // Put the parameter variables in scope.  We can bail out immediately
9016  // if we don't have any.
9017  if (Params.empty())
9018    return;
9019
9020  for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
9021         E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
9022    (*AI)->setOwningFunction(CurBlock->TheDecl);
9023
9024    // If this has an identifier, add it to the scope stack.
9025    if ((*AI)->getIdentifier()) {
9026      CheckShadow(CurBlock->TheScope, *AI);
9027
9028      PushOnScopeChains(*AI, CurBlock->TheScope);
9029    }
9030  }
9031}
9032
9033/// ActOnBlockError - If there is an error parsing a block, this callback
9034/// is invoked to pop the information about the block from the action impl.
9035void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
9036  // Leave the expression-evaluation context.
9037  DiscardCleanupsInEvaluationContext();
9038  PopExpressionEvaluationContext();
9039
9040  // Pop off CurBlock, handle nested blocks.
9041  PopDeclContext();
9042  PopFunctionScopeInfo();
9043}
9044
9045/// ActOnBlockStmtExpr - This is called when the body of a block statement
9046/// literal was successfully completed.  ^(int x){...}
9047ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
9048                                    Stmt *Body, Scope *CurScope) {
9049  // If blocks are disabled, emit an error.
9050  if (!LangOpts.Blocks)
9051    Diag(CaretLoc, diag::err_blocks_disable);
9052
9053  // Leave the expression-evaluation context.
9054  if (hasAnyUnrecoverableErrorsInThisFunction())
9055    DiscardCleanupsInEvaluationContext();
9056  assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
9057  PopExpressionEvaluationContext();
9058
9059  BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
9060
9061  PopDeclContext();
9062
9063  QualType RetTy = Context.VoidTy;
9064  if (!BSI->ReturnType.isNull())
9065    RetTy = BSI->ReturnType;
9066
9067  bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
9068  QualType BlockTy;
9069
9070  // Set the captured variables on the block.
9071  // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
9072  SmallVector<BlockDecl::Capture, 4> Captures;
9073  for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
9074    CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
9075    if (Cap.isThisCapture())
9076      continue;
9077    BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
9078                              Cap.isNested(), Cap.getCopyExpr());
9079    Captures.push_back(NewCap);
9080  }
9081  BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
9082                            BSI->CXXThisCaptureIndex != 0);
9083
9084  // If the user wrote a function type in some form, try to use that.
9085  if (!BSI->FunctionType.isNull()) {
9086    const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
9087
9088    FunctionType::ExtInfo Ext = FTy->getExtInfo();
9089    if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
9090
9091    // Turn protoless block types into nullary block types.
9092    if (isa<FunctionNoProtoType>(FTy)) {
9093      FunctionProtoType::ExtProtoInfo EPI;
9094      EPI.ExtInfo = Ext;
9095      BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9096
9097    // Otherwise, if we don't need to change anything about the function type,
9098    // preserve its sugar structure.
9099    } else if (FTy->getResultType() == RetTy &&
9100               (!NoReturn || FTy->getNoReturnAttr())) {
9101      BlockTy = BSI->FunctionType;
9102
9103    // Otherwise, make the minimal modifications to the function type.
9104    } else {
9105      const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
9106      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9107      EPI.TypeQuals = 0; // FIXME: silently?
9108      EPI.ExtInfo = Ext;
9109      BlockTy = Context.getFunctionType(RetTy,
9110                                        FPT->arg_type_begin(),
9111                                        FPT->getNumArgs(),
9112                                        EPI);
9113    }
9114
9115  // If we don't have a function type, just build one from nothing.
9116  } else {
9117    FunctionProtoType::ExtProtoInfo EPI;
9118    EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
9119    BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
9120  }
9121
9122  DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
9123                           BSI->TheDecl->param_end());
9124  BlockTy = Context.getBlockPointerType(BlockTy);
9125
9126  // If needed, diagnose invalid gotos and switches in the block.
9127  if (getCurFunction()->NeedsScopeChecking() &&
9128      !hasAnyUnrecoverableErrorsInThisFunction())
9129    DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
9130
9131  BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
9132
9133  computeNRVO(Body, getCurBlock());
9134
9135  BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
9136  const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
9137  PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
9138
9139  // If the block isn't obviously global, i.e. it captures anything at
9140  // all, then we need to do a few things in the surrounding context:
9141  if (Result->getBlockDecl()->hasCaptures()) {
9142    // First, this expression has a new cleanup object.
9143    ExprCleanupObjects.push_back(Result->getBlockDecl());
9144    ExprNeedsCleanups = true;
9145
9146    // It also gets a branch-protected scope if any of the captured
9147    // variables needs destruction.
9148    for (BlockDecl::capture_const_iterator
9149           ci = Result->getBlockDecl()->capture_begin(),
9150           ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
9151      const VarDecl *var = ci->getVariable();
9152      if (var->getType().isDestructedType() != QualType::DK_none) {
9153        getCurFunction()->setHasBranchProtectedScope();
9154        break;
9155      }
9156    }
9157  }
9158
9159  return Owned(Result);
9160}
9161
9162ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
9163                                        Expr *E, ParsedType Ty,
9164                                        SourceLocation RPLoc) {
9165  TypeSourceInfo *TInfo;
9166  GetTypeFromParser(Ty, &TInfo);
9167  return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
9168}
9169
9170ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
9171                                Expr *E, TypeSourceInfo *TInfo,
9172                                SourceLocation RPLoc) {
9173  Expr *OrigExpr = E;
9174
9175  // Get the va_list type
9176  QualType VaListType = Context.getBuiltinVaListType();
9177  if (VaListType->isArrayType()) {
9178    // Deal with implicit array decay; for example, on x86-64,
9179    // va_list is an array, but it's supposed to decay to
9180    // a pointer for va_arg.
9181    VaListType = Context.getArrayDecayedType(VaListType);
9182    // Make sure the input expression also decays appropriately.
9183    ExprResult Result = UsualUnaryConversions(E);
9184    if (Result.isInvalid())
9185      return ExprError();
9186    E = Result.take();
9187  } else {
9188    // Otherwise, the va_list argument must be an l-value because
9189    // it is modified by va_arg.
9190    if (!E->isTypeDependent() &&
9191        CheckForModifiableLvalue(E, BuiltinLoc, *this))
9192      return ExprError();
9193  }
9194
9195  if (!E->isTypeDependent() &&
9196      !Context.hasSameType(VaListType, E->getType())) {
9197    return ExprError(Diag(E->getLocStart(),
9198                         diag::err_first_argument_to_va_arg_not_of_type_va_list)
9199      << OrigExpr->getType() << E->getSourceRange());
9200  }
9201
9202  if (!TInfo->getType()->isDependentType()) {
9203    if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
9204                            diag::err_second_parameter_to_va_arg_incomplete,
9205                            TInfo->getTypeLoc()))
9206      return ExprError();
9207
9208    if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
9209                               TInfo->getType(),
9210                               diag::err_second_parameter_to_va_arg_abstract,
9211                               TInfo->getTypeLoc()))
9212      return ExprError();
9213
9214    if (!TInfo->getType().isPODType(Context)) {
9215      Diag(TInfo->getTypeLoc().getBeginLoc(),
9216           TInfo->getType()->isObjCLifetimeType()
9217             ? diag::warn_second_parameter_to_va_arg_ownership_qualified
9218             : diag::warn_second_parameter_to_va_arg_not_pod)
9219        << TInfo->getType()
9220        << TInfo->getTypeLoc().getSourceRange();
9221    }
9222
9223    // Check for va_arg where arguments of the given type will be promoted
9224    // (i.e. this va_arg is guaranteed to have undefined behavior).
9225    QualType PromoteType;
9226    if (TInfo->getType()->isPromotableIntegerType()) {
9227      PromoteType = Context.getPromotedIntegerType(TInfo->getType());
9228      if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
9229        PromoteType = QualType();
9230    }
9231    if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
9232      PromoteType = Context.DoubleTy;
9233    if (!PromoteType.isNull())
9234      Diag(TInfo->getTypeLoc().getBeginLoc(),
9235          diag::warn_second_parameter_to_va_arg_never_compatible)
9236        << TInfo->getType()
9237        << PromoteType
9238        << TInfo->getTypeLoc().getSourceRange();
9239  }
9240
9241  QualType T = TInfo->getType().getNonLValueExprType(Context);
9242  return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
9243}
9244
9245ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
9246  // The type of __null will be int or long, depending on the size of
9247  // pointers on the target.
9248  QualType Ty;
9249  unsigned pw = Context.getTargetInfo().getPointerWidth(0);
9250  if (pw == Context.getTargetInfo().getIntWidth())
9251    Ty = Context.IntTy;
9252  else if (pw == Context.getTargetInfo().getLongWidth())
9253    Ty = Context.LongTy;
9254  else if (pw == Context.getTargetInfo().getLongLongWidth())
9255    Ty = Context.LongLongTy;
9256  else {
9257    llvm_unreachable("I don't know size of pointer!");
9258  }
9259
9260  return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
9261}
9262
9263static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
9264                                           Expr *SrcExpr, FixItHint &Hint) {
9265  if (!SemaRef.getLangOpts().ObjC1)
9266    return;
9267
9268  const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
9269  if (!PT)
9270    return;
9271
9272  // Check if the destination is of type 'id'.
9273  if (!PT->isObjCIdType()) {
9274    // Check if the destination is the 'NSString' interface.
9275    const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
9276    if (!ID || !ID->getIdentifier()->isStr("NSString"))
9277      return;
9278  }
9279
9280  // Ignore any parens, implicit casts (should only be
9281  // array-to-pointer decays), and not-so-opaque values.  The last is
9282  // important for making this trigger for property assignments.
9283  SrcExpr = SrcExpr->IgnoreParenImpCasts();
9284  if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
9285    if (OV->getSourceExpr())
9286      SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
9287
9288  StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
9289  if (!SL || !SL->isAscii())
9290    return;
9291
9292  Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
9293}
9294
9295bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
9296                                    SourceLocation Loc,
9297                                    QualType DstType, QualType SrcType,
9298                                    Expr *SrcExpr, AssignmentAction Action,
9299                                    bool *Complained) {
9300  if (Complained)
9301    *Complained = false;
9302
9303  // Decode the result (notice that AST's are still created for extensions).
9304  bool CheckInferredResultType = false;
9305  bool isInvalid = false;
9306  unsigned DiagKind = 0;
9307  FixItHint Hint;
9308  ConversionFixItGenerator ConvHints;
9309  bool MayHaveConvFixit = false;
9310  bool MayHaveFunctionDiff = false;
9311
9312  switch (ConvTy) {
9313  case Compatible: return false;
9314  case PointerToInt:
9315    DiagKind = diag::ext_typecheck_convert_pointer_int;
9316    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9317    MayHaveConvFixit = true;
9318    break;
9319  case IntToPointer:
9320    DiagKind = diag::ext_typecheck_convert_int_pointer;
9321    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9322    MayHaveConvFixit = true;
9323    break;
9324  case IncompatiblePointer:
9325    MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
9326    DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
9327    CheckInferredResultType = DstType->isObjCObjectPointerType() &&
9328      SrcType->isObjCObjectPointerType();
9329    if (Hint.isNull() && !CheckInferredResultType) {
9330      ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9331    }
9332    MayHaveConvFixit = true;
9333    break;
9334  case IncompatiblePointerSign:
9335    DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
9336    break;
9337  case FunctionVoidPointer:
9338    DiagKind = diag::ext_typecheck_convert_pointer_void_func;
9339    break;
9340  case IncompatiblePointerDiscardsQualifiers: {
9341    // Perform array-to-pointer decay if necessary.
9342    if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
9343
9344    Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
9345    Qualifiers rhq = DstType->getPointeeType().getQualifiers();
9346    if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
9347      DiagKind = diag::err_typecheck_incompatible_address_space;
9348      break;
9349
9350
9351    } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
9352      DiagKind = diag::err_typecheck_incompatible_ownership;
9353      break;
9354    }
9355
9356    llvm_unreachable("unknown error case for discarding qualifiers!");
9357    // fallthrough
9358  }
9359  case CompatiblePointerDiscardsQualifiers:
9360    // If the qualifiers lost were because we were applying the
9361    // (deprecated) C++ conversion from a string literal to a char*
9362    // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
9363    // Ideally, this check would be performed in
9364    // checkPointerTypesForAssignment. However, that would require a
9365    // bit of refactoring (so that the second argument is an
9366    // expression, rather than a type), which should be done as part
9367    // of a larger effort to fix checkPointerTypesForAssignment for
9368    // C++ semantics.
9369    if (getLangOpts().CPlusPlus &&
9370        IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
9371      return false;
9372    DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
9373    break;
9374  case IncompatibleNestedPointerQualifiers:
9375    DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
9376    break;
9377  case IntToBlockPointer:
9378    DiagKind = diag::err_int_to_block_pointer;
9379    break;
9380  case IncompatibleBlockPointer:
9381    DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
9382    break;
9383  case IncompatibleObjCQualifiedId:
9384    // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
9385    // it can give a more specific diagnostic.
9386    DiagKind = diag::warn_incompatible_qualified_id;
9387    break;
9388  case IncompatibleVectors:
9389    DiagKind = diag::warn_incompatible_vectors;
9390    break;
9391  case IncompatibleObjCWeakRef:
9392    DiagKind = diag::err_arc_weak_unavailable_assign;
9393    break;
9394  case Incompatible:
9395    DiagKind = diag::err_typecheck_convert_incompatible;
9396    ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
9397    MayHaveConvFixit = true;
9398    isInvalid = true;
9399    MayHaveFunctionDiff = true;
9400    break;
9401  }
9402
9403  QualType FirstType, SecondType;
9404  switch (Action) {
9405  case AA_Assigning:
9406  case AA_Initializing:
9407    // The destination type comes first.
9408    FirstType = DstType;
9409    SecondType = SrcType;
9410    break;
9411
9412  case AA_Returning:
9413  case AA_Passing:
9414  case AA_Converting:
9415  case AA_Sending:
9416  case AA_Casting:
9417    // The source type comes first.
9418    FirstType = SrcType;
9419    SecondType = DstType;
9420    break;
9421  }
9422
9423  PartialDiagnostic FDiag = PDiag(DiagKind);
9424  FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
9425
9426  // If we can fix the conversion, suggest the FixIts.
9427  assert(ConvHints.isNull() || Hint.isNull());
9428  if (!ConvHints.isNull()) {
9429    for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
9430         HE = ConvHints.Hints.end(); HI != HE; ++HI)
9431      FDiag << *HI;
9432  } else {
9433    FDiag << Hint;
9434  }
9435  if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
9436
9437  if (MayHaveFunctionDiff)
9438    HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
9439
9440  Diag(Loc, FDiag);
9441
9442  if (SecondType == Context.OverloadTy)
9443    NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
9444                              FirstType);
9445
9446  if (CheckInferredResultType)
9447    EmitRelatedResultTypeNote(SrcExpr);
9448
9449  if (Complained)
9450    *Complained = true;
9451  return isInvalid;
9452}
9453
9454ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9455                                                 llvm::APSInt *Result) {
9456  class SimpleICEDiagnoser : public VerifyICEDiagnoser {
9457  public:
9458    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9459      S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
9460    }
9461  } Diagnoser;
9462
9463  return VerifyIntegerConstantExpression(E, Result, Diagnoser);
9464}
9465
9466ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
9467                                                 llvm::APSInt *Result,
9468                                                 unsigned DiagID,
9469                                                 bool AllowFold) {
9470  class IDDiagnoser : public VerifyICEDiagnoser {
9471    unsigned DiagID;
9472
9473  public:
9474    IDDiagnoser(unsigned DiagID)
9475      : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
9476
9477    virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
9478      S.Diag(Loc, DiagID) << SR;
9479    }
9480  } Diagnoser(DiagID);
9481
9482  return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
9483}
9484
9485void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
9486                                            SourceRange SR) {
9487  S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
9488}
9489
9490ExprResult
9491Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
9492                                      VerifyICEDiagnoser &Diagnoser,
9493                                      bool AllowFold) {
9494  SourceLocation DiagLoc = E->getLocStart();
9495
9496  if (getLangOpts().CPlusPlus0x) {
9497    // C++11 [expr.const]p5:
9498    //   If an expression of literal class type is used in a context where an
9499    //   integral constant expression is required, then that class type shall
9500    //   have a single non-explicit conversion function to an integral or
9501    //   unscoped enumeration type
9502    ExprResult Converted;
9503    if (!Diagnoser.Suppress) {
9504      class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
9505      public:
9506        CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
9507
9508        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9509                                                 QualType T) {
9510          return S.Diag(Loc, diag::err_ice_not_integral) << T;
9511        }
9512
9513        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9514                                                     SourceLocation Loc,
9515                                                     QualType T) {
9516          return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
9517        }
9518
9519        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9520                                                       SourceLocation Loc,
9521                                                       QualType T,
9522                                                       QualType ConvTy) {
9523          return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
9524        }
9525
9526        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9527                                                   CXXConversionDecl *Conv,
9528                                                   QualType ConvTy) {
9529          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9530                   << ConvTy->isEnumeralType() << ConvTy;
9531        }
9532
9533        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9534                                                    QualType T) {
9535          return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
9536        }
9537
9538        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9539                                                CXXConversionDecl *Conv,
9540                                                QualType ConvTy) {
9541          return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
9542                   << ConvTy->isEnumeralType() << ConvTy;
9543        }
9544
9545        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9546                                                     SourceLocation Loc,
9547                                                     QualType T,
9548                                                     QualType ConvTy) {
9549          return DiagnosticBuilder::getEmpty();
9550        }
9551      } ConvertDiagnoser;
9552
9553      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9554                                                     ConvertDiagnoser,
9555                                             /*AllowScopedEnumerations*/ false);
9556    } else {
9557      // The caller wants to silently enquire whether this is an ICE. Don't
9558      // produce any diagnostics if it isn't.
9559      class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
9560      public:
9561        SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
9562
9563        virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
9564                                                 QualType T) {
9565          return DiagnosticBuilder::getEmpty();
9566        }
9567
9568        virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
9569                                                     SourceLocation Loc,
9570                                                     QualType T) {
9571          return DiagnosticBuilder::getEmpty();
9572        }
9573
9574        virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
9575                                                       SourceLocation Loc,
9576                                                       QualType T,
9577                                                       QualType ConvTy) {
9578          return DiagnosticBuilder::getEmpty();
9579        }
9580
9581        virtual DiagnosticBuilder noteExplicitConv(Sema &S,
9582                                                   CXXConversionDecl *Conv,
9583                                                   QualType ConvTy) {
9584          return DiagnosticBuilder::getEmpty();
9585        }
9586
9587        virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
9588                                                    QualType T) {
9589          return DiagnosticBuilder::getEmpty();
9590        }
9591
9592        virtual DiagnosticBuilder noteAmbiguous(Sema &S,
9593                                                CXXConversionDecl *Conv,
9594                                                QualType ConvTy) {
9595          return DiagnosticBuilder::getEmpty();
9596        }
9597
9598        virtual DiagnosticBuilder diagnoseConversion(Sema &S,
9599                                                     SourceLocation Loc,
9600                                                     QualType T,
9601                                                     QualType ConvTy) {
9602          return DiagnosticBuilder::getEmpty();
9603        }
9604      } ConvertDiagnoser;
9605
9606      Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
9607                                                     ConvertDiagnoser, false);
9608    }
9609    if (Converted.isInvalid())
9610      return Converted;
9611    E = Converted.take();
9612    if (!E->getType()->isIntegralOrUnscopedEnumerationType())
9613      return ExprError();
9614  } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
9615    // An ICE must be of integral or unscoped enumeration type.
9616    if (!Diagnoser.Suppress)
9617      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9618    return ExprError();
9619  }
9620
9621  // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
9622  // in the non-ICE case.
9623  if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
9624    if (Result)
9625      *Result = E->EvaluateKnownConstInt(Context);
9626    return Owned(E);
9627  }
9628
9629  Expr::EvalResult EvalResult;
9630  llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
9631  EvalResult.Diag = &Notes;
9632
9633  // Try to evaluate the expression, and produce diagnostics explaining why it's
9634  // not a constant expression as a side-effect.
9635  bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
9636                EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
9637
9638  // In C++11, we can rely on diagnostics being produced for any expression
9639  // which is not a constant expression. If no diagnostics were produced, then
9640  // this is a constant expression.
9641  if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
9642    if (Result)
9643      *Result = EvalResult.Val.getInt();
9644    return Owned(E);
9645  }
9646
9647  // If our only note is the usual "invalid subexpression" note, just point
9648  // the caret at its location rather than producing an essentially
9649  // redundant note.
9650  if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9651        diag::note_invalid_subexpr_in_const_expr) {
9652    DiagLoc = Notes[0].first;
9653    Notes.clear();
9654  }
9655
9656  if (!Folded || !AllowFold) {
9657    if (!Diagnoser.Suppress) {
9658      Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
9659      for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9660        Diag(Notes[I].first, Notes[I].second);
9661    }
9662
9663    return ExprError();
9664  }
9665
9666  Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
9667  for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9668    Diag(Notes[I].first, Notes[I].second);
9669
9670  if (Result)
9671    *Result = EvalResult.Val.getInt();
9672  return Owned(E);
9673}
9674
9675namespace {
9676  // Handle the case where we conclude a expression which we speculatively
9677  // considered to be unevaluated is actually evaluated.
9678  class TransformToPE : public TreeTransform<TransformToPE> {
9679    typedef TreeTransform<TransformToPE> BaseTransform;
9680
9681  public:
9682    TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
9683
9684    // Make sure we redo semantic analysis
9685    bool AlwaysRebuild() { return true; }
9686
9687    // Make sure we handle LabelStmts correctly.
9688    // FIXME: This does the right thing, but maybe we need a more general
9689    // fix to TreeTransform?
9690    StmtResult TransformLabelStmt(LabelStmt *S) {
9691      S->getDecl()->setStmt(0);
9692      return BaseTransform::TransformLabelStmt(S);
9693    }
9694
9695    // We need to special-case DeclRefExprs referring to FieldDecls which
9696    // are not part of a member pointer formation; normal TreeTransforming
9697    // doesn't catch this case because of the way we represent them in the AST.
9698    // FIXME: This is a bit ugly; is it really the best way to handle this
9699    // case?
9700    //
9701    // Error on DeclRefExprs referring to FieldDecls.
9702    ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
9703      if (isa<FieldDecl>(E->getDecl()) &&
9704          SemaRef.ExprEvalContexts.back().Context != Sema::Unevaluated)
9705        return SemaRef.Diag(E->getLocation(),
9706                            diag::err_invalid_non_static_member_use)
9707            << E->getDecl() << E->getSourceRange();
9708
9709      return BaseTransform::TransformDeclRefExpr(E);
9710    }
9711
9712    // Exception: filter out member pointer formation
9713    ExprResult TransformUnaryOperator(UnaryOperator *E) {
9714      if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
9715        return E;
9716
9717      return BaseTransform::TransformUnaryOperator(E);
9718    }
9719
9720    ExprResult TransformLambdaExpr(LambdaExpr *E) {
9721      // Lambdas never need to be transformed.
9722      return E;
9723    }
9724  };
9725}
9726
9727ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
9728  assert(ExprEvalContexts.back().Context == Unevaluated &&
9729         "Should only transform unevaluated expressions");
9730  ExprEvalContexts.back().Context =
9731      ExprEvalContexts[ExprEvalContexts.size()-2].Context;
9732  if (ExprEvalContexts.back().Context == Unevaluated)
9733    return E;
9734  return TransformToPE(*this).TransformExpr(E);
9735}
9736
9737void
9738Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
9739                                      Decl *LambdaContextDecl,
9740                                      bool IsDecltype) {
9741  ExprEvalContexts.push_back(
9742             ExpressionEvaluationContextRecord(NewContext,
9743                                               ExprCleanupObjects.size(),
9744                                               ExprNeedsCleanups,
9745                                               LambdaContextDecl,
9746                                               IsDecltype));
9747  ExprNeedsCleanups = false;
9748  if (!MaybeODRUseExprs.empty())
9749    std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
9750}
9751
9752void Sema::PopExpressionEvaluationContext() {
9753  ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
9754
9755  if (!Rec.Lambdas.empty()) {
9756    if (Rec.Context == Unevaluated) {
9757      // C++11 [expr.prim.lambda]p2:
9758      //   A lambda-expression shall not appear in an unevaluated operand
9759      //   (Clause 5).
9760      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
9761        Diag(Rec.Lambdas[I]->getLocStart(),
9762             diag::err_lambda_unevaluated_operand);
9763    } else {
9764      // Mark the capture expressions odr-used. This was deferred
9765      // during lambda expression creation.
9766      for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
9767        LambdaExpr *Lambda = Rec.Lambdas[I];
9768        for (LambdaExpr::capture_init_iterator
9769                  C = Lambda->capture_init_begin(),
9770               CEnd = Lambda->capture_init_end();
9771             C != CEnd; ++C) {
9772          MarkDeclarationsReferencedInExpr(*C);
9773        }
9774      }
9775    }
9776  }
9777
9778  // When are coming out of an unevaluated context, clear out any
9779  // temporaries that we may have created as part of the evaluation of
9780  // the expression in that context: they aren't relevant because they
9781  // will never be constructed.
9782  if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
9783    ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
9784                             ExprCleanupObjects.end());
9785    ExprNeedsCleanups = Rec.ParentNeedsCleanups;
9786    CleanupVarDeclMarking();
9787    std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
9788  // Otherwise, merge the contexts together.
9789  } else {
9790    ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
9791    MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
9792                            Rec.SavedMaybeODRUseExprs.end());
9793  }
9794
9795  // Pop the current expression evaluation context off the stack.
9796  ExprEvalContexts.pop_back();
9797}
9798
9799void Sema::DiscardCleanupsInEvaluationContext() {
9800  ExprCleanupObjects.erase(
9801         ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
9802         ExprCleanupObjects.end());
9803  ExprNeedsCleanups = false;
9804  MaybeODRUseExprs.clear();
9805}
9806
9807ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
9808  if (!E->getType()->isVariablyModifiedType())
9809    return E;
9810  return TranformToPotentiallyEvaluated(E);
9811}
9812
9813static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
9814  // Do not mark anything as "used" within a dependent context; wait for
9815  // an instantiation.
9816  if (SemaRef.CurContext->isDependentContext())
9817    return false;
9818
9819  switch (SemaRef.ExprEvalContexts.back().Context) {
9820    case Sema::Unevaluated:
9821      // We are in an expression that is not potentially evaluated; do nothing.
9822      // (Depending on how you read the standard, we actually do need to do
9823      // something here for null pointer constants, but the standard's
9824      // definition of a null pointer constant is completely crazy.)
9825      return false;
9826
9827    case Sema::ConstantEvaluated:
9828    case Sema::PotentiallyEvaluated:
9829      // We are in a potentially evaluated expression (or a constant-expression
9830      // in C++03); we need to do implicit template instantiation, implicitly
9831      // define class members, and mark most declarations as used.
9832      return true;
9833
9834    case Sema::PotentiallyEvaluatedIfUsed:
9835      // Referenced declarations will only be used if the construct in the
9836      // containing expression is used.
9837      return false;
9838  }
9839  llvm_unreachable("Invalid context");
9840}
9841
9842/// \brief Mark a function referenced, and check whether it is odr-used
9843/// (C++ [basic.def.odr]p2, C99 6.9p3)
9844void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
9845  assert(Func && "No function?");
9846
9847  Func->setReferenced();
9848
9849  // Don't mark this function as used multiple times, unless it's a constexpr
9850  // function which we need to instantiate.
9851  if (Func->isUsed(false) &&
9852      !(Func->isConstexpr() && !Func->getBody() &&
9853        Func->isImplicitlyInstantiable()))
9854    return;
9855
9856  if (!IsPotentiallyEvaluatedContext(*this))
9857    return;
9858
9859  // Note that this declaration has been used.
9860  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
9861    if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
9862      if (Constructor->isDefaultConstructor()) {
9863        if (Constructor->isTrivial())
9864          return;
9865        if (!Constructor->isUsed(false))
9866          DefineImplicitDefaultConstructor(Loc, Constructor);
9867      } else if (Constructor->isCopyConstructor()) {
9868        if (!Constructor->isUsed(false))
9869          DefineImplicitCopyConstructor(Loc, Constructor);
9870      } else if (Constructor->isMoveConstructor()) {
9871        if (!Constructor->isUsed(false))
9872          DefineImplicitMoveConstructor(Loc, Constructor);
9873      }
9874    }
9875
9876    MarkVTableUsed(Loc, Constructor->getParent());
9877  } else if (CXXDestructorDecl *Destructor =
9878                 dyn_cast<CXXDestructorDecl>(Func)) {
9879    if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
9880        !Destructor->isUsed(false))
9881      DefineImplicitDestructor(Loc, Destructor);
9882    if (Destructor->isVirtual())
9883      MarkVTableUsed(Loc, Destructor->getParent());
9884  } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
9885    if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
9886        MethodDecl->isOverloadedOperator() &&
9887        MethodDecl->getOverloadedOperator() == OO_Equal) {
9888      if (!MethodDecl->isUsed(false)) {
9889        if (MethodDecl->isCopyAssignmentOperator())
9890          DefineImplicitCopyAssignment(Loc, MethodDecl);
9891        else
9892          DefineImplicitMoveAssignment(Loc, MethodDecl);
9893      }
9894    } else if (isa<CXXConversionDecl>(MethodDecl) &&
9895               MethodDecl->getParent()->isLambda()) {
9896      CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
9897      if (Conversion->isLambdaToBlockPointerConversion())
9898        DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
9899      else
9900        DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
9901    } else if (MethodDecl->isVirtual())
9902      MarkVTableUsed(Loc, MethodDecl->getParent());
9903  }
9904
9905  // Recursive functions should be marked when used from another function.
9906  // FIXME: Is this really right?
9907  if (CurContext == Func) return;
9908
9909  // Instantiate the exception specification for any function which is
9910  // used: CodeGen will need it.
9911  const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
9912  if (FPT && FPT->getExceptionSpecType() == EST_Uninstantiated)
9913    InstantiateExceptionSpec(Loc, Func);
9914
9915  // Implicit instantiation of function templates and member functions of
9916  // class templates.
9917  if (Func->isImplicitlyInstantiable()) {
9918    bool AlreadyInstantiated = false;
9919    SourceLocation PointOfInstantiation = Loc;
9920    if (FunctionTemplateSpecializationInfo *SpecInfo
9921                              = Func->getTemplateSpecializationInfo()) {
9922      if (SpecInfo->getPointOfInstantiation().isInvalid())
9923        SpecInfo->setPointOfInstantiation(Loc);
9924      else if (SpecInfo->getTemplateSpecializationKind()
9925                 == TSK_ImplicitInstantiation) {
9926        AlreadyInstantiated = true;
9927        PointOfInstantiation = SpecInfo->getPointOfInstantiation();
9928      }
9929    } else if (MemberSpecializationInfo *MSInfo
9930                                = Func->getMemberSpecializationInfo()) {
9931      if (MSInfo->getPointOfInstantiation().isInvalid())
9932        MSInfo->setPointOfInstantiation(Loc);
9933      else if (MSInfo->getTemplateSpecializationKind()
9934                 == TSK_ImplicitInstantiation) {
9935        AlreadyInstantiated = true;
9936        PointOfInstantiation = MSInfo->getPointOfInstantiation();
9937      }
9938    }
9939
9940    if (!AlreadyInstantiated || Func->isConstexpr()) {
9941      if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
9942          cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
9943        PendingLocalImplicitInstantiations.push_back(
9944            std::make_pair(Func, PointOfInstantiation));
9945      else if (Func->isConstexpr())
9946        // Do not defer instantiations of constexpr functions, to avoid the
9947        // expression evaluator needing to call back into Sema if it sees a
9948        // call to such a function.
9949        InstantiateFunctionDefinition(PointOfInstantiation, Func);
9950      else {
9951        PendingInstantiations.push_back(std::make_pair(Func,
9952                                                       PointOfInstantiation));
9953        // Notify the consumer that a function was implicitly instantiated.
9954        Consumer.HandleCXXImplicitFunctionInstantiation(Func);
9955      }
9956    }
9957  } else {
9958    // Walk redefinitions, as some of them may be instantiable.
9959    for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
9960         e(Func->redecls_end()); i != e; ++i) {
9961      if (!i->isUsed(false) && i->isImplicitlyInstantiable())
9962        MarkFunctionReferenced(Loc, *i);
9963    }
9964  }
9965
9966  // Keep track of used but undefined functions.
9967  if (!Func->isPure() && !Func->hasBody() &&
9968      Func->getLinkage() != ExternalLinkage) {
9969    SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
9970    if (old.isInvalid()) old = Loc;
9971  }
9972
9973  Func->setUsed(true);
9974}
9975
9976static void
9977diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
9978                                   VarDecl *var, DeclContext *DC) {
9979  DeclContext *VarDC = var->getDeclContext();
9980
9981  //  If the parameter still belongs to the translation unit, then
9982  //  we're actually just using one parameter in the declaration of
9983  //  the next.
9984  if (isa<ParmVarDecl>(var) &&
9985      isa<TranslationUnitDecl>(VarDC))
9986    return;
9987
9988  // For C code, don't diagnose about capture if we're not actually in code
9989  // right now; it's impossible to write a non-constant expression outside of
9990  // function context, so we'll get other (more useful) diagnostics later.
9991  //
9992  // For C++, things get a bit more nasty... it would be nice to suppress this
9993  // diagnostic for certain cases like using a local variable in an array bound
9994  // for a member of a local class, but the correct predicate is not obvious.
9995  if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
9996    return;
9997
9998  if (isa<CXXMethodDecl>(VarDC) &&
9999      cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
10000    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
10001      << var->getIdentifier();
10002  } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
10003    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
10004      << var->getIdentifier() << fn->getDeclName();
10005  } else if (isa<BlockDecl>(VarDC)) {
10006    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
10007      << var->getIdentifier();
10008  } else {
10009    // FIXME: Is there any other context where a local variable can be
10010    // declared?
10011    S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
10012      << var->getIdentifier();
10013  }
10014
10015  S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
10016    << var->getIdentifier();
10017
10018  // FIXME: Add additional diagnostic info about class etc. which prevents
10019  // capture.
10020}
10021
10022/// \brief Capture the given variable in the given lambda expression.
10023static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
10024                                  VarDecl *Var, QualType FieldType,
10025                                  QualType DeclRefType,
10026                                  SourceLocation Loc) {
10027  CXXRecordDecl *Lambda = LSI->Lambda;
10028
10029  // Build the non-static data member.
10030  FieldDecl *Field
10031    = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
10032                        S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
10033                        0, false, false);
10034  Field->setImplicit(true);
10035  Field->setAccess(AS_private);
10036  Lambda->addDecl(Field);
10037
10038  // C++11 [expr.prim.lambda]p21:
10039  //   When the lambda-expression is evaluated, the entities that
10040  //   are captured by copy are used to direct-initialize each
10041  //   corresponding non-static data member of the resulting closure
10042  //   object. (For array members, the array elements are
10043  //   direct-initialized in increasing subscript order.) These
10044  //   initializations are performed in the (unspecified) order in
10045  //   which the non-static data members are declared.
10046
10047  // Introduce a new evaluation context for the initialization, so
10048  // that temporaries introduced as part of the capture are retained
10049  // to be re-"exported" from the lambda expression itself.
10050  S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
10051
10052  // C++ [expr.prim.labda]p12:
10053  //   An entity captured by a lambda-expression is odr-used (3.2) in
10054  //   the scope containing the lambda-expression.
10055  Expr *Ref = new (S.Context) DeclRefExpr(Var, false, DeclRefType,
10056                                          VK_LValue, Loc);
10057  Var->setReferenced(true);
10058  Var->setUsed(true);
10059
10060  // When the field has array type, create index variables for each
10061  // dimension of the array. We use these index variables to subscript
10062  // the source array, and other clients (e.g., CodeGen) will perform
10063  // the necessary iteration with these index variables.
10064  SmallVector<VarDecl *, 4> IndexVariables;
10065  QualType BaseType = FieldType;
10066  QualType SizeType = S.Context.getSizeType();
10067  LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
10068  while (const ConstantArrayType *Array
10069                        = S.Context.getAsConstantArrayType(BaseType)) {
10070    // Create the iteration variable for this array index.
10071    IdentifierInfo *IterationVarName = 0;
10072    {
10073      SmallString<8> Str;
10074      llvm::raw_svector_ostream OS(Str);
10075      OS << "__i" << IndexVariables.size();
10076      IterationVarName = &S.Context.Idents.get(OS.str());
10077    }
10078    VarDecl *IterationVar
10079      = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
10080                        IterationVarName, SizeType,
10081                        S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
10082                        SC_None, SC_None);
10083    IndexVariables.push_back(IterationVar);
10084    LSI->ArrayIndexVars.push_back(IterationVar);
10085
10086    // Create a reference to the iteration variable.
10087    ExprResult IterationVarRef
10088      = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
10089    assert(!IterationVarRef.isInvalid() &&
10090           "Reference to invented variable cannot fail!");
10091    IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
10092    assert(!IterationVarRef.isInvalid() &&
10093           "Conversion of invented variable cannot fail!");
10094
10095    // Subscript the array with this iteration variable.
10096    ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
10097                             Ref, Loc, IterationVarRef.take(), Loc);
10098    if (Subscript.isInvalid()) {
10099      S.CleanupVarDeclMarking();
10100      S.DiscardCleanupsInEvaluationContext();
10101      S.PopExpressionEvaluationContext();
10102      return ExprError();
10103    }
10104
10105    Ref = Subscript.take();
10106    BaseType = Array->getElementType();
10107  }
10108
10109  // Construct the entity that we will be initializing. For an array, this
10110  // will be first element in the array, which may require several levels
10111  // of array-subscript entities.
10112  SmallVector<InitializedEntity, 4> Entities;
10113  Entities.reserve(1 + IndexVariables.size());
10114  Entities.push_back(
10115    InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
10116  for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
10117    Entities.push_back(InitializedEntity::InitializeElement(S.Context,
10118                                                            0,
10119                                                            Entities.back()));
10120
10121  InitializationKind InitKind
10122    = InitializationKind::CreateDirect(Loc, Loc, Loc);
10123  InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
10124  ExprResult Result(true);
10125  if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
10126    Result = Init.Perform(S, Entities.back(), InitKind,
10127                          MultiExprArg(S, &Ref, 1));
10128
10129  // If this initialization requires any cleanups (e.g., due to a
10130  // default argument to a copy constructor), note that for the
10131  // lambda.
10132  if (S.ExprNeedsCleanups)
10133    LSI->ExprNeedsCleanups = true;
10134
10135  // Exit the expression evaluation context used for the capture.
10136  S.CleanupVarDeclMarking();
10137  S.DiscardCleanupsInEvaluationContext();
10138  S.PopExpressionEvaluationContext();
10139  return Result;
10140}
10141
10142bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10143                              TryCaptureKind Kind, SourceLocation EllipsisLoc,
10144                              bool BuildAndDiagnose,
10145                              QualType &CaptureType,
10146                              QualType &DeclRefType) {
10147  bool Nested = false;
10148
10149  DeclContext *DC = CurContext;
10150  if (Var->getDeclContext() == DC) return true;
10151  if (!Var->hasLocalStorage()) return true;
10152
10153  bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
10154
10155  // Walk up the stack to determine whether we can capture the variable,
10156  // performing the "simple" checks that don't depend on type. We stop when
10157  // we've either hit the declared scope of the variable or find an existing
10158  // capture of that variable.
10159  CaptureType = Var->getType();
10160  DeclRefType = CaptureType.getNonReferenceType();
10161  bool Explicit = (Kind != TryCapture_Implicit);
10162  unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
10163  do {
10164    // Only block literals and lambda expressions can capture; other
10165    // scopes don't work.
10166    DeclContext *ParentDC;
10167    if (isa<BlockDecl>(DC))
10168      ParentDC = DC->getParent();
10169    else if (isa<CXXMethodDecl>(DC) &&
10170             cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
10171             cast<CXXRecordDecl>(DC->getParent())->isLambda())
10172      ParentDC = DC->getParent()->getParent();
10173    else {
10174      if (BuildAndDiagnose)
10175        diagnoseUncapturableValueReference(*this, Loc, Var, DC);
10176      return true;
10177    }
10178
10179    CapturingScopeInfo *CSI =
10180      cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
10181
10182    // Check whether we've already captured it.
10183    if (CSI->CaptureMap.count(Var)) {
10184      // If we found a capture, any subcaptures are nested.
10185      Nested = true;
10186
10187      // Retrieve the capture type for this variable.
10188      CaptureType = CSI->getCapture(Var).getCaptureType();
10189
10190      // Compute the type of an expression that refers to this variable.
10191      DeclRefType = CaptureType.getNonReferenceType();
10192
10193      const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
10194      if (Cap.isCopyCapture() &&
10195          !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
10196        DeclRefType.addConst();
10197      break;
10198    }
10199
10200    bool IsBlock = isa<BlockScopeInfo>(CSI);
10201    bool IsLambda = !IsBlock;
10202
10203    // Lambdas are not allowed to capture unnamed variables
10204    // (e.g. anonymous unions).
10205    // FIXME: The C++11 rule don't actually state this explicitly, but I'm
10206    // assuming that's the intent.
10207    if (IsLambda && !Var->getDeclName()) {
10208      if (BuildAndDiagnose) {
10209        Diag(Loc, diag::err_lambda_capture_anonymous_var);
10210        Diag(Var->getLocation(), diag::note_declared_at);
10211      }
10212      return true;
10213    }
10214
10215    // Prohibit variably-modified types; they're difficult to deal with.
10216    if (Var->getType()->isVariablyModifiedType()) {
10217      if (BuildAndDiagnose) {
10218        if (IsBlock)
10219          Diag(Loc, diag::err_ref_vm_type);
10220        else
10221          Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
10222        Diag(Var->getLocation(), diag::note_previous_decl)
10223          << Var->getDeclName();
10224      }
10225      return true;
10226    }
10227
10228    // Lambdas are not allowed to capture __block variables; they don't
10229    // support the expected semantics.
10230    if (IsLambda && HasBlocksAttr) {
10231      if (BuildAndDiagnose) {
10232        Diag(Loc, diag::err_lambda_capture_block)
10233          << Var->getDeclName();
10234        Diag(Var->getLocation(), diag::note_previous_decl)
10235          << Var->getDeclName();
10236      }
10237      return true;
10238    }
10239
10240    if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
10241      // No capture-default
10242      if (BuildAndDiagnose) {
10243        Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
10244        Diag(Var->getLocation(), diag::note_previous_decl)
10245          << Var->getDeclName();
10246        Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
10247             diag::note_lambda_decl);
10248      }
10249      return true;
10250    }
10251
10252    FunctionScopesIndex--;
10253    DC = ParentDC;
10254    Explicit = false;
10255  } while (!Var->getDeclContext()->Equals(DC));
10256
10257  // Walk back down the scope stack, computing the type of the capture at
10258  // each step, checking type-specific requirements, and adding captures if
10259  // requested.
10260  for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
10261       ++I) {
10262    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
10263
10264    // Compute the type of the capture and of a reference to the capture within
10265    // this scope.
10266    if (isa<BlockScopeInfo>(CSI)) {
10267      Expr *CopyExpr = 0;
10268      bool ByRef = false;
10269
10270      // Blocks are not allowed to capture arrays.
10271      if (CaptureType->isArrayType()) {
10272        if (BuildAndDiagnose) {
10273          Diag(Loc, diag::err_ref_array_type);
10274          Diag(Var->getLocation(), diag::note_previous_decl)
10275          << Var->getDeclName();
10276        }
10277        return true;
10278      }
10279
10280      // Forbid the block-capture of autoreleasing variables.
10281      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10282        if (BuildAndDiagnose) {
10283          Diag(Loc, diag::err_arc_autoreleasing_capture)
10284            << /*block*/ 0;
10285          Diag(Var->getLocation(), diag::note_previous_decl)
10286            << Var->getDeclName();
10287        }
10288        return true;
10289      }
10290
10291      if (HasBlocksAttr || CaptureType->isReferenceType()) {
10292        // Block capture by reference does not change the capture or
10293        // declaration reference types.
10294        ByRef = true;
10295      } else {
10296        // Block capture by copy introduces 'const'.
10297        CaptureType = CaptureType.getNonReferenceType().withConst();
10298        DeclRefType = CaptureType;
10299
10300        if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
10301          if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
10302            // The capture logic needs the destructor, so make sure we mark it.
10303            // Usually this is unnecessary because most local variables have
10304            // their destructors marked at declaration time, but parameters are
10305            // an exception because it's technically only the call site that
10306            // actually requires the destructor.
10307            if (isa<ParmVarDecl>(Var))
10308              FinalizeVarWithDestructor(Var, Record);
10309
10310            // According to the blocks spec, the capture of a variable from
10311            // the stack requires a const copy constructor.  This is not true
10312            // of the copy/move done to move a __block variable to the heap.
10313            Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
10314                                                      DeclRefType.withConst(),
10315                                                      VK_LValue, Loc);
10316            ExprResult Result
10317              = PerformCopyInitialization(
10318                  InitializedEntity::InitializeBlock(Var->getLocation(),
10319                                                     CaptureType, false),
10320                  Loc, Owned(DeclRef));
10321
10322            // Build a full-expression copy expression if initialization
10323            // succeeded and used a non-trivial constructor.  Recover from
10324            // errors by pretending that the copy isn't necessary.
10325            if (!Result.isInvalid() &&
10326                !cast<CXXConstructExpr>(Result.get())->getConstructor()
10327                   ->isTrivial()) {
10328              Result = MaybeCreateExprWithCleanups(Result);
10329              CopyExpr = Result.take();
10330            }
10331          }
10332        }
10333      }
10334
10335      // Actually capture the variable.
10336      if (BuildAndDiagnose)
10337        CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
10338                        SourceLocation(), CaptureType, CopyExpr);
10339      Nested = true;
10340      continue;
10341    }
10342
10343    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
10344
10345    // Determine whether we are capturing by reference or by value.
10346    bool ByRef = false;
10347    if (I == N - 1 && Kind != TryCapture_Implicit) {
10348      ByRef = (Kind == TryCapture_ExplicitByRef);
10349    } else {
10350      ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
10351    }
10352
10353    // Compute the type of the field that will capture this variable.
10354    if (ByRef) {
10355      // C++11 [expr.prim.lambda]p15:
10356      //   An entity is captured by reference if it is implicitly or
10357      //   explicitly captured but not captured by copy. It is
10358      //   unspecified whether additional unnamed non-static data
10359      //   members are declared in the closure type for entities
10360      //   captured by reference.
10361      //
10362      // FIXME: It is not clear whether we want to build an lvalue reference
10363      // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
10364      // to do the former, while EDG does the latter. Core issue 1249 will
10365      // clarify, but for now we follow GCC because it's a more permissive and
10366      // easily defensible position.
10367      CaptureType = Context.getLValueReferenceType(DeclRefType);
10368    } else {
10369      // C++11 [expr.prim.lambda]p14:
10370      //   For each entity captured by copy, an unnamed non-static
10371      //   data member is declared in the closure type. The
10372      //   declaration order of these members is unspecified. The type
10373      //   of such a data member is the type of the corresponding
10374      //   captured entity if the entity is not a reference to an
10375      //   object, or the referenced type otherwise. [Note: If the
10376      //   captured entity is a reference to a function, the
10377      //   corresponding data member is also a reference to a
10378      //   function. - end note ]
10379      if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
10380        if (!RefType->getPointeeType()->isFunctionType())
10381          CaptureType = RefType->getPointeeType();
10382      }
10383
10384      // Forbid the lambda copy-capture of autoreleasing variables.
10385      if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
10386        if (BuildAndDiagnose) {
10387          Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
10388          Diag(Var->getLocation(), diag::note_previous_decl)
10389            << Var->getDeclName();
10390        }
10391        return true;
10392      }
10393    }
10394
10395    // Capture this variable in the lambda.
10396    Expr *CopyExpr = 0;
10397    if (BuildAndDiagnose) {
10398      ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
10399                                          DeclRefType, Loc);
10400      if (!Result.isInvalid())
10401        CopyExpr = Result.take();
10402    }
10403
10404    // Compute the type of a reference to this captured variable.
10405    if (ByRef)
10406      DeclRefType = CaptureType.getNonReferenceType();
10407    else {
10408      // C++ [expr.prim.lambda]p5:
10409      //   The closure type for a lambda-expression has a public inline
10410      //   function call operator [...]. This function call operator is
10411      //   declared const (9.3.1) if and only if the lambda-expression’s
10412      //   parameter-declaration-clause is not followed by mutable.
10413      DeclRefType = CaptureType.getNonReferenceType();
10414      if (!LSI->Mutable && !CaptureType->isReferenceType())
10415        DeclRefType.addConst();
10416    }
10417
10418    // Add the capture.
10419    if (BuildAndDiagnose)
10420      CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
10421                      EllipsisLoc, CaptureType, CopyExpr);
10422    Nested = true;
10423  }
10424
10425  return false;
10426}
10427
10428bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
10429                              TryCaptureKind Kind, SourceLocation EllipsisLoc) {
10430  QualType CaptureType;
10431  QualType DeclRefType;
10432  return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
10433                            /*BuildAndDiagnose=*/true, CaptureType,
10434                            DeclRefType);
10435}
10436
10437QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
10438  QualType CaptureType;
10439  QualType DeclRefType;
10440
10441  // Determine whether we can capture this variable.
10442  if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
10443                         /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
10444    return QualType();
10445
10446  return DeclRefType;
10447}
10448
10449static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
10450                               SourceLocation Loc) {
10451  // Keep track of used but undefined variables.
10452  // FIXME: We shouldn't suppress this warning for static data members.
10453  if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
10454      Var->getLinkage() != ExternalLinkage &&
10455      !(Var->isStaticDataMember() && Var->hasInit())) {
10456    SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
10457    if (old.isInvalid()) old = Loc;
10458  }
10459
10460  SemaRef.tryCaptureVariable(Var, Loc);
10461
10462  Var->setUsed(true);
10463}
10464
10465void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
10466  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10467  // an object that satisfies the requirements for appearing in a
10468  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10469  // is immediately applied."  This function handles the lvalue-to-rvalue
10470  // conversion part.
10471  MaybeODRUseExprs.erase(E->IgnoreParens());
10472}
10473
10474ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
10475  if (!Res.isUsable())
10476    return Res;
10477
10478  // If a constant-expression is a reference to a variable where we delay
10479  // deciding whether it is an odr-use, just assume we will apply the
10480  // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
10481  // (a non-type template argument), we have special handling anyway.
10482  UpdateMarkingForLValueToRValue(Res.get());
10483  return Res;
10484}
10485
10486void Sema::CleanupVarDeclMarking() {
10487  for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
10488                                        e = MaybeODRUseExprs.end();
10489       i != e; ++i) {
10490    VarDecl *Var;
10491    SourceLocation Loc;
10492    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
10493      Var = cast<VarDecl>(DRE->getDecl());
10494      Loc = DRE->getLocation();
10495    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
10496      Var = cast<VarDecl>(ME->getMemberDecl());
10497      Loc = ME->getMemberLoc();
10498    } else {
10499      llvm_unreachable("Unexpcted expression");
10500    }
10501
10502    MarkVarDeclODRUsed(*this, Var, Loc);
10503  }
10504
10505  MaybeODRUseExprs.clear();
10506}
10507
10508// Mark a VarDecl referenced, and perform the necessary handling to compute
10509// odr-uses.
10510static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
10511                                    VarDecl *Var, Expr *E) {
10512  Var->setReferenced();
10513
10514  if (!IsPotentiallyEvaluatedContext(SemaRef))
10515    return;
10516
10517  // Implicit instantiation of static data members of class templates.
10518  if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
10519    MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
10520    assert(MSInfo && "Missing member specialization information?");
10521    bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
10522    if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
10523        (!AlreadyInstantiated ||
10524         Var->isUsableInConstantExpressions(SemaRef.Context))) {
10525      if (!AlreadyInstantiated) {
10526        // This is a modification of an existing AST node. Notify listeners.
10527        if (ASTMutationListener *L = SemaRef.getASTMutationListener())
10528          L->StaticDataMemberInstantiated(Var);
10529        MSInfo->setPointOfInstantiation(Loc);
10530      }
10531      SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
10532      if (Var->isUsableInConstantExpressions(SemaRef.Context))
10533        // Do not defer instantiations of variables which could be used in a
10534        // constant expression.
10535        SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
10536      else
10537        SemaRef.PendingInstantiations.push_back(
10538            std::make_pair(Var, PointOfInstantiation));
10539    }
10540  }
10541
10542  // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
10543  // an object that satisfies the requirements for appearing in a
10544  // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
10545  // is immediately applied."  We check the first part here, and
10546  // Sema::UpdateMarkingForLValueToRValue deals with the second part.
10547  // Note that we use the C++11 definition everywhere because nothing in
10548  // C++03 depends on whether we get the C++03 version correct. This does not
10549  // apply to references, since they are not objects.
10550  const VarDecl *DefVD;
10551  if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
10552      Var->isUsableInConstantExpressions(SemaRef.Context) &&
10553      Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
10554    SemaRef.MaybeODRUseExprs.insert(E);
10555  else
10556    MarkVarDeclODRUsed(SemaRef, Var, Loc);
10557}
10558
10559/// \brief Mark a variable referenced, and check whether it is odr-used
10560/// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
10561/// used directly for normal expressions referring to VarDecl.
10562void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
10563  DoMarkVarDeclReferenced(*this, Loc, Var, 0);
10564}
10565
10566static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
10567                               Decl *D, Expr *E) {
10568  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
10569    DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
10570    return;
10571  }
10572
10573  SemaRef.MarkAnyDeclReferenced(Loc, D);
10574}
10575
10576/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
10577void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
10578  MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
10579}
10580
10581/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
10582void Sema::MarkMemberReferenced(MemberExpr *E) {
10583  MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
10584}
10585
10586/// \brief Perform marking for a reference to an arbitrary declaration.  It
10587/// marks the declaration referenced, and performs odr-use checking for functions
10588/// and variables. This method should not be used when building an normal
10589/// expression which refers to a variable.
10590void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
10591  if (VarDecl *VD = dyn_cast<VarDecl>(D))
10592    MarkVariableReferenced(Loc, VD);
10593  else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
10594    MarkFunctionReferenced(Loc, FD);
10595  else
10596    D->setReferenced();
10597}
10598
10599namespace {
10600  // Mark all of the declarations referenced
10601  // FIXME: Not fully implemented yet! We need to have a better understanding
10602  // of when we're entering
10603  class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
10604    Sema &S;
10605    SourceLocation Loc;
10606
10607  public:
10608    typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
10609
10610    MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
10611
10612    bool TraverseTemplateArgument(const TemplateArgument &Arg);
10613    bool TraverseRecordType(RecordType *T);
10614  };
10615}
10616
10617bool MarkReferencedDecls::TraverseTemplateArgument(
10618  const TemplateArgument &Arg) {
10619  if (Arg.getKind() == TemplateArgument::Declaration) {
10620    if (Decl *D = Arg.getAsDecl())
10621      S.MarkAnyDeclReferenced(Loc, D);
10622  }
10623
10624  return Inherited::TraverseTemplateArgument(Arg);
10625}
10626
10627bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
10628  if (ClassTemplateSpecializationDecl *Spec
10629                  = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
10630    const TemplateArgumentList &Args = Spec->getTemplateArgs();
10631    return TraverseTemplateArguments(Args.data(), Args.size());
10632  }
10633
10634  return true;
10635}
10636
10637void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
10638  MarkReferencedDecls Marker(*this, Loc);
10639  Marker.TraverseType(Context.getCanonicalType(T));
10640}
10641
10642namespace {
10643  /// \brief Helper class that marks all of the declarations referenced by
10644  /// potentially-evaluated subexpressions as "referenced".
10645  class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
10646    Sema &S;
10647    bool SkipLocalVariables;
10648
10649  public:
10650    typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
10651
10652    EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
10653      : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
10654
10655    void VisitDeclRefExpr(DeclRefExpr *E) {
10656      // If we were asked not to visit local variables, don't.
10657      if (SkipLocalVariables) {
10658        if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
10659          if (VD->hasLocalStorage())
10660            return;
10661      }
10662
10663      S.MarkDeclRefReferenced(E);
10664    }
10665
10666    void VisitMemberExpr(MemberExpr *E) {
10667      S.MarkMemberReferenced(E);
10668      Inherited::VisitMemberExpr(E);
10669    }
10670
10671    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
10672      S.MarkFunctionReferenced(E->getLocStart(),
10673            const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
10674      Visit(E->getSubExpr());
10675    }
10676
10677    void VisitCXXNewExpr(CXXNewExpr *E) {
10678      if (E->getOperatorNew())
10679        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
10680      if (E->getOperatorDelete())
10681        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10682      Inherited::VisitCXXNewExpr(E);
10683    }
10684
10685    void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
10686      if (E->getOperatorDelete())
10687        S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
10688      QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
10689      if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
10690        CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
10691        S.MarkFunctionReferenced(E->getLocStart(),
10692                                    S.LookupDestructor(Record));
10693      }
10694
10695      Inherited::VisitCXXDeleteExpr(E);
10696    }
10697
10698    void VisitCXXConstructExpr(CXXConstructExpr *E) {
10699      S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
10700      Inherited::VisitCXXConstructExpr(E);
10701    }
10702
10703    void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
10704      Visit(E->getExpr());
10705    }
10706
10707    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10708      Inherited::VisitImplicitCastExpr(E);
10709
10710      if (E->getCastKind() == CK_LValueToRValue)
10711        S.UpdateMarkingForLValueToRValue(E->getSubExpr());
10712    }
10713  };
10714}
10715
10716/// \brief Mark any declarations that appear within this expression or any
10717/// potentially-evaluated subexpressions as "referenced".
10718///
10719/// \param SkipLocalVariables If true, don't mark local variables as
10720/// 'referenced'.
10721void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
10722                                            bool SkipLocalVariables) {
10723  EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
10724}
10725
10726/// \brief Emit a diagnostic that describes an effect on the run-time behavior
10727/// of the program being compiled.
10728///
10729/// This routine emits the given diagnostic when the code currently being
10730/// type-checked is "potentially evaluated", meaning that there is a
10731/// possibility that the code will actually be executable. Code in sizeof()
10732/// expressions, code used only during overload resolution, etc., are not
10733/// potentially evaluated. This routine will suppress such diagnostics or,
10734/// in the absolutely nutty case of potentially potentially evaluated
10735/// expressions (C++ typeid), queue the diagnostic to potentially emit it
10736/// later.
10737///
10738/// This routine should be used for all diagnostics that describe the run-time
10739/// behavior of a program, such as passing a non-POD value through an ellipsis.
10740/// Failure to do so will likely result in spurious diagnostics or failures
10741/// during overload resolution or within sizeof/alignof/typeof/typeid.
10742bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
10743                               const PartialDiagnostic &PD) {
10744  switch (ExprEvalContexts.back().Context) {
10745  case Unevaluated:
10746    // The argument will never be evaluated, so don't complain.
10747    break;
10748
10749  case ConstantEvaluated:
10750    // Relevant diagnostics should be produced by constant evaluation.
10751    break;
10752
10753  case PotentiallyEvaluated:
10754  case PotentiallyEvaluatedIfUsed:
10755    if (Statement && getCurFunctionOrMethodDecl()) {
10756      FunctionScopes.back()->PossiblyUnreachableDiags.
10757        push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
10758    }
10759    else
10760      Diag(Loc, PD);
10761
10762    return true;
10763  }
10764
10765  return false;
10766}
10767
10768bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
10769                               CallExpr *CE, FunctionDecl *FD) {
10770  if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
10771    return false;
10772
10773  // If we're inside a decltype's expression, don't check for a valid return
10774  // type or construct temporaries until we know whether this is the last call.
10775  if (ExprEvalContexts.back().IsDecltype) {
10776    ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
10777    return false;
10778  }
10779
10780  class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
10781    FunctionDecl *FD;
10782    CallExpr *CE;
10783
10784  public:
10785    CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
10786      : FD(FD), CE(CE) { }
10787
10788    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
10789      if (!FD) {
10790        S.Diag(Loc, diag::err_call_incomplete_return)
10791          << T << CE->getSourceRange();
10792        return;
10793      }
10794
10795      S.Diag(Loc, diag::err_call_function_incomplete_return)
10796        << CE->getSourceRange() << FD->getDeclName() << T;
10797      S.Diag(FD->getLocation(),
10798             diag::note_function_with_incomplete_return_type_declared_here)
10799        << FD->getDeclName();
10800    }
10801  } Diagnoser(FD, CE);
10802
10803  if (RequireCompleteType(Loc, ReturnType, Diagnoser))
10804    return true;
10805
10806  return false;
10807}
10808
10809// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
10810// will prevent this condition from triggering, which is what we want.
10811void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
10812  SourceLocation Loc;
10813
10814  unsigned diagnostic = diag::warn_condition_is_assignment;
10815  bool IsOrAssign = false;
10816
10817  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
10818    if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
10819      return;
10820
10821    IsOrAssign = Op->getOpcode() == BO_OrAssign;
10822
10823    // Greylist some idioms by putting them into a warning subcategory.
10824    if (ObjCMessageExpr *ME
10825          = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
10826      Selector Sel = ME->getSelector();
10827
10828      // self = [<foo> init...]
10829      if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
10830        diagnostic = diag::warn_condition_is_idiomatic_assignment;
10831
10832      // <foo> = [<bar> nextObject]
10833      else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
10834        diagnostic = diag::warn_condition_is_idiomatic_assignment;
10835    }
10836
10837    Loc = Op->getOperatorLoc();
10838  } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
10839    if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
10840      return;
10841
10842    IsOrAssign = Op->getOperator() == OO_PipeEqual;
10843    Loc = Op->getOperatorLoc();
10844  } else {
10845    // Not an assignment.
10846    return;
10847  }
10848
10849  Diag(Loc, diagnostic) << E->getSourceRange();
10850
10851  SourceLocation Open = E->getLocStart();
10852  SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
10853  Diag(Loc, diag::note_condition_assign_silence)
10854        << FixItHint::CreateInsertion(Open, "(")
10855        << FixItHint::CreateInsertion(Close, ")");
10856
10857  if (IsOrAssign)
10858    Diag(Loc, diag::note_condition_or_assign_to_comparison)
10859      << FixItHint::CreateReplacement(Loc, "!=");
10860  else
10861    Diag(Loc, diag::note_condition_assign_to_comparison)
10862      << FixItHint::CreateReplacement(Loc, "==");
10863}
10864
10865/// \brief Redundant parentheses over an equality comparison can indicate
10866/// that the user intended an assignment used as condition.
10867void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
10868  // Don't warn if the parens came from a macro.
10869  SourceLocation parenLoc = ParenE->getLocStart();
10870  if (parenLoc.isInvalid() || parenLoc.isMacroID())
10871    return;
10872  // Don't warn for dependent expressions.
10873  if (ParenE->isTypeDependent())
10874    return;
10875
10876  Expr *E = ParenE->IgnoreParens();
10877
10878  if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
10879    if (opE->getOpcode() == BO_EQ &&
10880        opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
10881                                                           == Expr::MLV_Valid) {
10882      SourceLocation Loc = opE->getOperatorLoc();
10883
10884      Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
10885      SourceRange ParenERange = ParenE->getSourceRange();
10886      Diag(Loc, diag::note_equality_comparison_silence)
10887        << FixItHint::CreateRemoval(ParenERange.getBegin())
10888        << FixItHint::CreateRemoval(ParenERange.getEnd());
10889      Diag(Loc, diag::note_equality_comparison_to_assign)
10890        << FixItHint::CreateReplacement(Loc, "=");
10891    }
10892}
10893
10894ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
10895  DiagnoseAssignmentAsCondition(E);
10896  if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
10897    DiagnoseEqualityWithExtraParens(parenE);
10898
10899  ExprResult result = CheckPlaceholderExpr(E);
10900  if (result.isInvalid()) return ExprError();
10901  E = result.take();
10902
10903  if (!E->isTypeDependent()) {
10904    if (getLangOpts().CPlusPlus)
10905      return CheckCXXBooleanCondition(E); // C++ 6.4p4
10906
10907    ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
10908    if (ERes.isInvalid())
10909      return ExprError();
10910    E = ERes.take();
10911
10912    QualType T = E->getType();
10913    if (!T->isScalarType()) { // C99 6.8.4.1p1
10914      Diag(Loc, diag::err_typecheck_statement_requires_scalar)
10915        << T << E->getSourceRange();
10916      return ExprError();
10917    }
10918  }
10919
10920  return Owned(E);
10921}
10922
10923ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
10924                                       Expr *SubExpr) {
10925  if (!SubExpr)
10926    return ExprError();
10927
10928  return CheckBooleanCondition(SubExpr, Loc);
10929}
10930
10931namespace {
10932  /// A visitor for rebuilding a call to an __unknown_any expression
10933  /// to have an appropriate type.
10934  struct RebuildUnknownAnyFunction
10935    : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
10936
10937    Sema &S;
10938
10939    RebuildUnknownAnyFunction(Sema &S) : S(S) {}
10940
10941    ExprResult VisitStmt(Stmt *S) {
10942      llvm_unreachable("unexpected statement!");
10943    }
10944
10945    ExprResult VisitExpr(Expr *E) {
10946      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
10947        << E->getSourceRange();
10948      return ExprError();
10949    }
10950
10951    /// Rebuild an expression which simply semantically wraps another
10952    /// expression which it shares the type and value kind of.
10953    template <class T> ExprResult rebuildSugarExpr(T *E) {
10954      ExprResult SubResult = Visit(E->getSubExpr());
10955      if (SubResult.isInvalid()) return ExprError();
10956
10957      Expr *SubExpr = SubResult.take();
10958      E->setSubExpr(SubExpr);
10959      E->setType(SubExpr->getType());
10960      E->setValueKind(SubExpr->getValueKind());
10961      assert(E->getObjectKind() == OK_Ordinary);
10962      return E;
10963    }
10964
10965    ExprResult VisitParenExpr(ParenExpr *E) {
10966      return rebuildSugarExpr(E);
10967    }
10968
10969    ExprResult VisitUnaryExtension(UnaryOperator *E) {
10970      return rebuildSugarExpr(E);
10971    }
10972
10973    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
10974      ExprResult SubResult = Visit(E->getSubExpr());
10975      if (SubResult.isInvalid()) return ExprError();
10976
10977      Expr *SubExpr = SubResult.take();
10978      E->setSubExpr(SubExpr);
10979      E->setType(S.Context.getPointerType(SubExpr->getType()));
10980      assert(E->getValueKind() == VK_RValue);
10981      assert(E->getObjectKind() == OK_Ordinary);
10982      return E;
10983    }
10984
10985    ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
10986      if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
10987
10988      E->setType(VD->getType());
10989
10990      assert(E->getValueKind() == VK_RValue);
10991      if (S.getLangOpts().CPlusPlus &&
10992          !(isa<CXXMethodDecl>(VD) &&
10993            cast<CXXMethodDecl>(VD)->isInstance()))
10994        E->setValueKind(VK_LValue);
10995
10996      return E;
10997    }
10998
10999    ExprResult VisitMemberExpr(MemberExpr *E) {
11000      return resolveDecl(E, E->getMemberDecl());
11001    }
11002
11003    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11004      return resolveDecl(E, E->getDecl());
11005    }
11006  };
11007}
11008
11009/// Given a function expression of unknown-any type, try to rebuild it
11010/// to have a function type.
11011static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
11012  ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
11013  if (Result.isInvalid()) return ExprError();
11014  return S.DefaultFunctionArrayConversion(Result.take());
11015}
11016
11017namespace {
11018  /// A visitor for rebuilding an expression of type __unknown_anytype
11019  /// into one which resolves the type directly on the referring
11020  /// expression.  Strict preservation of the original source
11021  /// structure is not a goal.
11022  struct RebuildUnknownAnyExpr
11023    : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
11024
11025    Sema &S;
11026
11027    /// The current destination type.
11028    QualType DestType;
11029
11030    RebuildUnknownAnyExpr(Sema &S, QualType CastType)
11031      : S(S), DestType(CastType) {}
11032
11033    ExprResult VisitStmt(Stmt *S) {
11034      llvm_unreachable("unexpected statement!");
11035    }
11036
11037    ExprResult VisitExpr(Expr *E) {
11038      S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11039        << E->getSourceRange();
11040      return ExprError();
11041    }
11042
11043    ExprResult VisitCallExpr(CallExpr *E);
11044    ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
11045
11046    /// Rebuild an expression which simply semantically wraps another
11047    /// expression which it shares the type and value kind of.
11048    template <class T> ExprResult rebuildSugarExpr(T *E) {
11049      ExprResult SubResult = Visit(E->getSubExpr());
11050      if (SubResult.isInvalid()) return ExprError();
11051      Expr *SubExpr = SubResult.take();
11052      E->setSubExpr(SubExpr);
11053      E->setType(SubExpr->getType());
11054      E->setValueKind(SubExpr->getValueKind());
11055      assert(E->getObjectKind() == OK_Ordinary);
11056      return E;
11057    }
11058
11059    ExprResult VisitParenExpr(ParenExpr *E) {
11060      return rebuildSugarExpr(E);
11061    }
11062
11063    ExprResult VisitUnaryExtension(UnaryOperator *E) {
11064      return rebuildSugarExpr(E);
11065    }
11066
11067    ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
11068      const PointerType *Ptr = DestType->getAs<PointerType>();
11069      if (!Ptr) {
11070        S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
11071          << E->getSourceRange();
11072        return ExprError();
11073      }
11074      assert(E->getValueKind() == VK_RValue);
11075      assert(E->getObjectKind() == OK_Ordinary);
11076      E->setType(DestType);
11077
11078      // Build the sub-expression as if it were an object of the pointee type.
11079      DestType = Ptr->getPointeeType();
11080      ExprResult SubResult = Visit(E->getSubExpr());
11081      if (SubResult.isInvalid()) return ExprError();
11082      E->setSubExpr(SubResult.take());
11083      return E;
11084    }
11085
11086    ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
11087
11088    ExprResult resolveDecl(Expr *E, ValueDecl *VD);
11089
11090    ExprResult VisitMemberExpr(MemberExpr *E) {
11091      return resolveDecl(E, E->getMemberDecl());
11092    }
11093
11094    ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
11095      return resolveDecl(E, E->getDecl());
11096    }
11097  };
11098}
11099
11100/// Rebuilds a call expression which yielded __unknown_anytype.
11101ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
11102  Expr *CalleeExpr = E->getCallee();
11103
11104  enum FnKind {
11105    FK_MemberFunction,
11106    FK_FunctionPointer,
11107    FK_BlockPointer
11108  };
11109
11110  FnKind Kind;
11111  QualType CalleeType = CalleeExpr->getType();
11112  if (CalleeType == S.Context.BoundMemberTy) {
11113    assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
11114    Kind = FK_MemberFunction;
11115    CalleeType = Expr::findBoundMemberType(CalleeExpr);
11116  } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
11117    CalleeType = Ptr->getPointeeType();
11118    Kind = FK_FunctionPointer;
11119  } else {
11120    CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
11121    Kind = FK_BlockPointer;
11122  }
11123  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
11124
11125  // Verify that this is a legal result type of a function.
11126  if (DestType->isArrayType() || DestType->isFunctionType()) {
11127    unsigned diagID = diag::err_func_returning_array_function;
11128    if (Kind == FK_BlockPointer)
11129      diagID = diag::err_block_returning_array_function;
11130
11131    S.Diag(E->getExprLoc(), diagID)
11132      << DestType->isFunctionType() << DestType;
11133    return ExprError();
11134  }
11135
11136  // Otherwise, go ahead and set DestType as the call's result.
11137  E->setType(DestType.getNonLValueExprType(S.Context));
11138  E->setValueKind(Expr::getValueKindForType(DestType));
11139  assert(E->getObjectKind() == OK_Ordinary);
11140
11141  // Rebuild the function type, replacing the result type with DestType.
11142  if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
11143    DestType = S.Context.getFunctionType(DestType,
11144                                         Proto->arg_type_begin(),
11145                                         Proto->getNumArgs(),
11146                                         Proto->getExtProtoInfo());
11147  else
11148    DestType = S.Context.getFunctionNoProtoType(DestType,
11149                                                FnType->getExtInfo());
11150
11151  // Rebuild the appropriate pointer-to-function type.
11152  switch (Kind) {
11153  case FK_MemberFunction:
11154    // Nothing to do.
11155    break;
11156
11157  case FK_FunctionPointer:
11158    DestType = S.Context.getPointerType(DestType);
11159    break;
11160
11161  case FK_BlockPointer:
11162    DestType = S.Context.getBlockPointerType(DestType);
11163    break;
11164  }
11165
11166  // Finally, we can recurse.
11167  ExprResult CalleeResult = Visit(CalleeExpr);
11168  if (!CalleeResult.isUsable()) return ExprError();
11169  E->setCallee(CalleeResult.take());
11170
11171  // Bind a temporary if necessary.
11172  return S.MaybeBindToTemporary(E);
11173}
11174
11175ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
11176  // Verify that this is a legal result type of a call.
11177  if (DestType->isArrayType() || DestType->isFunctionType()) {
11178    S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
11179      << DestType->isFunctionType() << DestType;
11180    return ExprError();
11181  }
11182
11183  // Rewrite the method result type if available.
11184  if (ObjCMethodDecl *Method = E->getMethodDecl()) {
11185    assert(Method->getResultType() == S.Context.UnknownAnyTy);
11186    Method->setResultType(DestType);
11187  }
11188
11189  // Change the type of the message.
11190  E->setType(DestType.getNonReferenceType());
11191  E->setValueKind(Expr::getValueKindForType(DestType));
11192
11193  return S.MaybeBindToTemporary(E);
11194}
11195
11196ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
11197  // The only case we should ever see here is a function-to-pointer decay.
11198  if (E->getCastKind() == CK_FunctionToPointerDecay) {
11199    assert(E->getValueKind() == VK_RValue);
11200    assert(E->getObjectKind() == OK_Ordinary);
11201
11202    E->setType(DestType);
11203
11204    // Rebuild the sub-expression as the pointee (function) type.
11205    DestType = DestType->castAs<PointerType>()->getPointeeType();
11206
11207    ExprResult Result = Visit(E->getSubExpr());
11208    if (!Result.isUsable()) return ExprError();
11209
11210    E->setSubExpr(Result.take());
11211    return S.Owned(E);
11212  } else if (E->getCastKind() == CK_LValueToRValue) {
11213    assert(E->getValueKind() == VK_RValue);
11214    assert(E->getObjectKind() == OK_Ordinary);
11215
11216    assert(isa<BlockPointerType>(E->getType()));
11217
11218    E->setType(DestType);
11219
11220    // The sub-expression has to be a lvalue reference, so rebuild it as such.
11221    DestType = S.Context.getLValueReferenceType(DestType);
11222
11223    ExprResult Result = Visit(E->getSubExpr());
11224    if (!Result.isUsable()) return ExprError();
11225
11226    E->setSubExpr(Result.take());
11227    return S.Owned(E);
11228  } else {
11229    llvm_unreachable("Unhandled cast type!");
11230  }
11231}
11232
11233ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
11234  ExprValueKind ValueKind = VK_LValue;
11235  QualType Type = DestType;
11236
11237  // We know how to make this work for certain kinds of decls:
11238
11239  //  - functions
11240  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
11241    if (const PointerType *Ptr = Type->getAs<PointerType>()) {
11242      DestType = Ptr->getPointeeType();
11243      ExprResult Result = resolveDecl(E, VD);
11244      if (Result.isInvalid()) return ExprError();
11245      return S.ImpCastExprToType(Result.take(), Type,
11246                                 CK_FunctionToPointerDecay, VK_RValue);
11247    }
11248
11249    if (!Type->isFunctionType()) {
11250      S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
11251        << VD << E->getSourceRange();
11252      return ExprError();
11253    }
11254
11255    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
11256      if (MD->isInstance()) {
11257        ValueKind = VK_RValue;
11258        Type = S.Context.BoundMemberTy;
11259      }
11260
11261    // Function references aren't l-values in C.
11262    if (!S.getLangOpts().CPlusPlus)
11263      ValueKind = VK_RValue;
11264
11265  //  - variables
11266  } else if (isa<VarDecl>(VD)) {
11267    if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
11268      Type = RefTy->getPointeeType();
11269    } else if (Type->isFunctionType()) {
11270      S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
11271        << VD << E->getSourceRange();
11272      return ExprError();
11273    }
11274
11275  //  - nothing else
11276  } else {
11277    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
11278      << VD << E->getSourceRange();
11279    return ExprError();
11280  }
11281
11282  VD->setType(DestType);
11283  E->setType(Type);
11284  E->setValueKind(ValueKind);
11285  return S.Owned(E);
11286}
11287
11288/// Check a cast of an unknown-any type.  We intentionally only
11289/// trigger this for C-style casts.
11290ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11291                                     Expr *CastExpr, CastKind &CastKind,
11292                                     ExprValueKind &VK, CXXCastPath &Path) {
11293  // Rewrite the casted expression from scratch.
11294  ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
11295  if (!result.isUsable()) return ExprError();
11296
11297  CastExpr = result.take();
11298  VK = CastExpr->getValueKind();
11299  CastKind = CK_NoOp;
11300
11301  return CastExpr;
11302}
11303
11304ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
11305  return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
11306}
11307
11308static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
11309  Expr *orig = E;
11310  unsigned diagID = diag::err_uncasted_use_of_unknown_any;
11311  while (true) {
11312    E = E->IgnoreParenImpCasts();
11313    if (CallExpr *call = dyn_cast<CallExpr>(E)) {
11314      E = call->getCallee();
11315      diagID = diag::err_uncasted_call_of_unknown_any;
11316    } else {
11317      break;
11318    }
11319  }
11320
11321  SourceLocation loc;
11322  NamedDecl *d;
11323  if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
11324    loc = ref->getLocation();
11325    d = ref->getDecl();
11326  } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
11327    loc = mem->getMemberLoc();
11328    d = mem->getMemberDecl();
11329  } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
11330    diagID = diag::err_uncasted_call_of_unknown_any;
11331    loc = msg->getSelectorStartLoc();
11332    d = msg->getMethodDecl();
11333    if (!d) {
11334      S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
11335        << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
11336        << orig->getSourceRange();
11337      return ExprError();
11338    }
11339  } else {
11340    S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
11341      << E->getSourceRange();
11342    return ExprError();
11343  }
11344
11345  S.Diag(loc, diagID) << d << orig->getSourceRange();
11346
11347  // Never recoverable.
11348  return ExprError();
11349}
11350
11351/// Check for operands with placeholder types and complain if found.
11352/// Returns true if there was an error and no recovery was possible.
11353ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
11354  const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
11355  if (!placeholderType) return Owned(E);
11356
11357  switch (placeholderType->getKind()) {
11358
11359  // Overloaded expressions.
11360  case BuiltinType::Overload: {
11361    // Try to resolve a single function template specialization.
11362    // This is obligatory.
11363    ExprResult result = Owned(E);
11364    if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
11365      return result;
11366
11367    // If that failed, try to recover with a call.
11368    } else {
11369      tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
11370                           /*complain*/ true);
11371      return result;
11372    }
11373  }
11374
11375  // Bound member functions.
11376  case BuiltinType::BoundMember: {
11377    ExprResult result = Owned(E);
11378    tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
11379                         /*complain*/ true);
11380    return result;
11381  }
11382
11383  // ARC unbridged casts.
11384  case BuiltinType::ARCUnbridgedCast: {
11385    Expr *realCast = stripARCUnbridgedCast(E);
11386    diagnoseARCUnbridgedCast(realCast);
11387    return Owned(realCast);
11388  }
11389
11390  // Expressions of unknown type.
11391  case BuiltinType::UnknownAny:
11392    return diagnoseUnknownAnyExpr(*this, E);
11393
11394  // Pseudo-objects.
11395  case BuiltinType::PseudoObject:
11396    return checkPseudoObjectRValue(E);
11397
11398  // Everything else should be impossible.
11399#define BUILTIN_TYPE(Id, SingletonId) \
11400  case BuiltinType::Id:
11401#define PLACEHOLDER_TYPE(Id, SingletonId)
11402#include "clang/AST/BuiltinTypes.def"
11403    break;
11404  }
11405
11406  llvm_unreachable("invalid placeholder type!");
11407}
11408
11409bool Sema::CheckCaseExpression(Expr *E) {
11410  if (E->isTypeDependent())
11411    return true;
11412  if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
11413    return E->getType()->isIntegralOrEnumerationType();
11414  return false;
11415}
11416
11417/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
11418ExprResult
11419Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
11420  assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
11421         "Unknown Objective-C Boolean value!");
11422  return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
11423                                        Context.ObjCBuiltinBoolTy, OpLoc));
11424}
11425